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Abstract

In empirical sciences, data are collected in various forms regardless of qualitative or
quantitative, and structured or nonstructured. The ultimate goal of empirical sciences
is to understand the laws of nature deeply, and successively, to predict its future.
To accomplish the goal, researchers often conduct their researches in hypothetico-
deductive manner, in which a hypothesis creation and its verification is repeated.
For example, to understand a fundamental mechanism of psychological process of
human, a psychologist establishes a research hypothesis based on the previous re-
searches. Then, some psychological experiments are planned and conducted to verify
the hypothesis. Because the verification process is totally based on data collected by
experiments or observations, data play a critical role in today’s scientific research and
its data-based hypothesis verification.

The thesis firstly focuses on multivariate data analysis procedures and their ex-
ploratory usages, which is called exploratory data analysis. They are often used for
extracting clues for hypothesis creation. For example, principal component analysis
(PCA) can extract the essential components of a data matrix, excluding redundant
information by compressing multivariate data into lower dimensional space.

In exploratory data analysis, it is considered that how easily a resulting solution
can be interpreted, that is, the interpretability of a solution, is a very important
property. Interpretability is also important in the context of prediction, because it
assures the accountability of prediction models. However, in general, interpretability
is not always considered in the most of multivariate data analysis procedures, while
they sorely consider how well their solution fits to the given data.

Therefore, in this thesis, the author proposes a series of procedures to improve the
interpretability of various multivariate data analysis procedures, addressing that inter-
pretability is an essential property in their exploratory use cases. Two sub-concepts
of interpretability are proposed, sparseness (how many a solution matrix contains
zero elements) and simple structure. The existing procedures are modified by matrix-
intensive refinements so as to their solutions are highly interpretable. Six procedures
proposed in the thesis are categorized into the following four families: rotation of
solution matrices, combination with clustering, sparse estimation with cardinality
constraint, and some emerging techniques.

In Chapter 2, a new rotation technique is proposed, to overcome the critical draw-
back of the existing procedures for target rotation; the correspondence of the variables
in a target matrix to a loading matrix is unknown. In the proposed procedure, a load-
ing matrix is rotated simultaneously with a permutation of the rows of a target matrix,
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so that the rotated loading matrix is optimally matched with the row-permuted tar-
get matrix. Its algorithm is presented, with Thurstone’s definition of simple structure
modified so as to specify a target matrix uniquely. Permutimin is illustrated with real
data examples, and the relationships between Permutimin and Procrustes rotation
are discussed.

In Chapter 3, rotation toward a simple structure is extended to canonical correla-
tion analysis (CANO). There, a new formulation of CANO is firstly proposed, which
is proved to be equivalent to the exiting one. Two canonical structure matrices have
freedom with respect to orthogonal rotation under the new formulation. Thus, the
study proposes an orthogonal rotation method for rotating two structure matrices
individually for their simplicity and interpretability, while the existing formulation
allows only simultaneous rotation of the matrices. It is illustrated that the proposed
method facilitates the interpretation of solutions of CANO by a real data example.

Chapter 4 deals with biplot, a technique for obtaining a low-dimensional config-
uration of a data matrix. Biplot with a large number of objects and variables is
known to be difficult to interpret. Therefore, this study proposes a new biplot pro-
cedure where objects and variables are classified into a small number of clusters by
means of K-means clustering. The resulting clusters are simultaneously biplotted in
lower-dimensional space. The resulting biplot is composed of fewer points and vec-
tors and therefore easily captured. An extension of the proposed method to fuzzy
K-means clustering is also proposed. A simulation study and real data example are
also provided to demonstrate the effectiveness of the proposed procedures.

Chapter 5 considers the interpretability in K-means clustering because it does not
allow any post-hoc transformation of solutions. The study proposes a new procedure
for obtaining a centroid matrix, so that it has a number of exactly zero elements
by cardinality constraint. This allows easier interpretation of the matrix, as we may
focus on only the nonzero centroids. The development of an iterative algorithm for the
constrained minimization is described. A special case of the proposed procedure is also
proposed, in which some restrictions are imposed on the positions of nonzero elements.
The behaviors of the proposed procedure were evaluated in simulation studies and are
illustrated with three real data examples, which demonstrate that the performance of
the procedure is promising.

In Chapter 6, a novel framework of multivariate analysis procedure is proposed
that is called layered multivariate analysis (LMA), which includes layered multivariate
regression (LMR) as a special case. In LMR, a regression coefficient matrix is assumed
to be the sum of several sparse matrices, which is called layer. Therefore, the sparse-
ness of the resulting coefficient matrix is controlled by how many layers are used.
It is theoretically guaranteed that an LMR solution converges to the unconstrained
solution as the number of layers increases. LMR is assessed in a simulation study and
illustrated with a real data example. Further, Layered PCA is also proposed, in which
a loading matrix is constrained to have a layered simple structure.

In Chapter 7, a new penalty function that can be used for penalized estimation
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in various multivariate analysis procedures is proposed. The new penalty function
shrinks a solution matrix towards a target matrix with a simple structure. The pro-
posed function is a generalization of the existing ones, in that it includes LASSO and
ridge penalties as special cases.

Chapter 8 is devoted for summarization and general discussions throughout the
foregoing chapters. The thesis finally concludes that the studies successfully developed
the procedures that are able to simplify solution matrices, by accomplishing sparsity
and simplicity at the same time, which is the main contribution of the thesis to the
studies on multivariate data analysis.
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Chapter 1

Introduction

ABSTRACT

Multivariate data analysis procedures are widely used in today’s data-
based scientific researches to extract useful knowledge from data for hy-
pothesis creation. A formal definition of data analysis is presented, fol-
lowed by a matrix-based introduction of the following six fundamental
multivariate analysis procedures: multivariate regression analysis, princi-
pal component analysis, factor analysis, K-means clustering, and canon-
ical correlation analysis, with small examples. Further, it is discussed
that interpretable solutions are essential in the exploratory use of these
procedures, and two sub-concepts of interpretability are introduced. As
presented in the final section, the purpose of the thesis is to refine the
multivariate analysis procedures towards their improved interpretability
with their matrix-intensive modifications, which is presented in the final
section.

1.1 Multivariate Statistical Analysis in Scientific Research

Following the classical but time-honored definition by Popper (1962), today’s scientific
studies are driven by the hypothetico-deductive method. In these studies, a series of
hypotheses with falsifiability is made and verified to test the theory on a phenomena
of interest. In empirical sciences including psychology, sociology, and human sciences,
hypotheses are verified based on data collected by experiments and observations, and
the data are collected in various forms; it may be qualitative or quantitative, and
structural or nonstructural. For example, in psychology, for understanding the fun-
damental mechanism of the psychological and cognitive process of humans, a research
hypothesis is established based on previous research or empirical facts, and some psy-
chological experiments are planned and conducted to verify the hypothesis. Further,
the result of the experiment is used to improve the research hypothesis in the following
manner. It is assumed that the current hypothesis is true, and the assumption would
be rejected if it is not consistent with the observed data. Once the current hypothesis
is rejected, another more probable hypothesis would be made and the same verification
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Figure 1.1: Hierarchical relationship between phenomena, data, and
model (cited from Takane (1980)) and modified).

process is repeated. Similarly, in sociology, to understand a principle of dynamism
of our society, researchers often conduct questionnaires or interview surveys that are
designed to test their hypotheses, and determine whether they are true based on the
results. Thus, data collected by experiments or observations play a critical role in
today’s scientific research driven by data-based hypothesis verification.

To understand what data tell us about a phenomena of interest, we have to trans-
form it into an understandable form for researchers. In particular, data analysis is a
tool for extracting some useful but non-apparent information from data, and its result
would be used for hypothesis creation, verification, and its refinement. Takane (1980)
described the relationship between phenomena, data, and model as shown in Figure1.1
and classified the data analysis methods into the following two families. The first one
is confirmatory data analysis (CDA), which verifies a hypothesis by comparing the
actual behavior of a phenomena of interest with a prediction derived from a model of
the phenomena. Student’s t-test and analysis of variance (ANOVA) are well known
as examples of CDA (Heumann et al., 2016; Hogg et al., 2005). In CDA, a research
hypothesis is expressed as a form of a mathematical model, and its fitness to given
data is evaluated as a measure of the validity of the hypothesis; if the model fairly fits
to the data, the hypothesis is considered true, and vise versa. Therefore, how well a
model fits to data is of the greatest interest in CDA. The second one is exploratory
data analysis (EDA), which dates back to Tukey (1970), and it aims to extract useful
knowledge from data. For example, when a hypothesis has been rejected, there may
be a need for insight or clues that help establish another hypothesis. EDA serves
to extract such insight that would lead to another hypothesis. Especially, in recent
years, EDA is called data mining, and it is also used for specifying a small number of
variables that are useful for prediction. Variable selection is beneficial for building a
robust prediction model. EDA is thus becoming increasingly important not only be-
cause it plays a key role in scientific research, but also because it is suitable for dealing
with high-dimensional and large data, which is becoming common today. Thus the
thesis focuses on EDA rather than CDA.
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Above, the author discussed the role of multivariate analysis procedures in sci-
entific researches. Here, as a preliminary introduction to the following discussion, a
mathematical definition of data analysis is provided.

Definition 1.1.1 (data analysis). Let X be the set of given data with M being the
set of mathematical models to be fitted to X . We define the minimization problem

min. L(M(P|X ),X ) over P (1.1)

as the “data analysis of X ”, where M(P|X ) denotes a prediction of X derived by
M, and P is the set of model parameters of M. L(M(P|X ),X ) is a measure of the
discrepancy between M(P|X ) and X .

In the above definition, data analysis is defined as a data-fitting procedure, in
that the discrepancy between X and its prediction M(P|X ) is minimized over P.
As an example, consider the case with the multiple regression analysis where a single
dependent variable is regressed on multiple independent variables. Multiple regression
analysis is a basic technique of multivariate statistical data analysis, and it is used
to make a prediction of a dependent variable or explain its variation by a linear
combination of independent variables (Izenman, 2008). Let y = [y1 · · · , yn]′ be the
n-dimensional vector of a dependent variable where yi (i = 1, · · · , n) is the observed
value for the i-th observation, and X = {xij} = [x1, · · · ,xp] be the n× p matrix of p
independent variables with respect to the same observations in y. We thus have the
set of data X = {X,y}. Note that X is assumed to be column standardized without
the loss of generality. The mathematical model for the multiple regression analysis on
{X,y} is formally expressed as

y = Xw + e (1.2)

where w = {wj} is a p-dimensional vector of regression coefficients that corresponds
to p independent variables. Further, e = {ei} is an n-dimensional vector of residuals.
(1.2) is re-expressed as the scalar form

yi = xi1w1 + xi2w2 + · · ·+ xipwp + ei (1.3)

indicating a linear relationship is assumed between the independent and the dependent
variables.

Following Definition 1.1.1, the multiple regression analysis considered above seeks
to find P = {w} referring X = {X,y}. Optimization criteria to be minimized can
take various forms, and here, the least squares criterion

LS(w) = ||e||2 = ||y −Xw||2 (1.4)
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is considered, which is the sum of the squared elements of e. For the minimization,
we have the following normal equation

∂LS(w)

∂w
= −2X′Xw + 2X′y = 0p (1.5)

obtained by the partial derivative of (1.4) over w, where 0p denotes the p-dimensional
vector filled with 0s. Solving (1.5) with respect to w, we have

w = (X′X)−1X′y (1.6)

under the assumption that the inverse of X′X exists, and it is the minimizer of (1.4).
The estimate of the regression coefficient vector is obtained by substituting X and y

with the observed data, and its validity is guaranteed by the optimality of minimizing
the criterion (1.4).

So far, a least squares criterion is used for the parameter estimation in the multiple
regression analysis, and other criteria are also available. The maximum likelihood
criterion is known as such a criterion, in which the elements of e and y are assumed
as random variables, each of which follows a specific probability distribution. In
maximum likelihood, a distribution of e is called an error model, and a mathematical
model M as a representation model, in that it is a parametric representation of data
generation process of y. As an error model, a normal distribution is often assumed.

ei
iid∼ N(0, σ2) for i = 1, · · · , n. (1.7)

Above, σ2 is called error variance and treated as a parameter to be estimated. Under
the above error model and the representation model in (1.4), each of the elements in
y has the probability density function

ϕ(yi|w, σ2) =
1√
2πσ2

exp

(
(yi − x(i)w)2

2σ2

)
(1.8)

where x(i) is the p-dimensional vector of the observed values for the i-th observation in
X. The probability distribution function stands for, by its definition, the probability
that yi is observed with w and σ2 being given. Conversely, it is considered as a
function of w and σ2 given yi, and it evaluates how likely w and σ2 are when a
specific yi is observed. In the maximum likelihood estimation, a probability density
function (or, probability mass function if yi is discrete) is treated as a function of
parameters with given data, and the likelihood function, which is the product of the
probability density functions for all observations, is maximized over parameters. In
other words, a parameter estimate is given by one that is the most probable within
the parameter space. For example, the likelihood function in the multiple regression
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analysis is given by

L(w, σ2) =

n∏
i=1

{
(2πσ2)−1/2 exp

(
(yi − x(i)w)2

2σ2

)}
. (1.9)

Often, for the ease of computation, the log-likelihood function logL(w, σ2) is max-
imized. It should be noted that, in multiple regression analysis, least squares and
maximum likelihood estimation are proved to be equivalent. This is easily shown as
follows; in logL(w, σ2), the term relevant to w is −

∑
i(yi− x(i)w)2 = −||y−Xw||2,

and it is equivalent to (1.4). The equivalence is, however, not always the case in other
procedures or other error models. In EDA, it is considered to be beneficial to make no
strong distributional assumptions on the data and error model because its purpose is
information extraction and not evaluating the fitness to data. Therefore, in this the-
sis, least squares criterion, which does not require special distributional assumptions
on the distribution of data, is considered as an optimization criterion.

1.2 Matrix-Based Formulations of Multivariate Analysis
Procedures

In this section, six multivariate analysis procedures are introduced with their mathe-
matical formulations, estimation procedures, numerical examples, and related meth-
ods. Note that notations in a subsection are not consistent with those in other sub-
sections.

1.2.1 Multivariate Regression Analysis

Multivariate regression analysis is a natural generalization of multiple regression anal-
ysis, in which two or more dependent variables are regressed on multiple independent
variables (Izenman, 2008). In multivariate regression, q dependent variables are re-
gressed on p independent ones.

Formulation

Let Y = {y1, · · · ,yq} be an n × q matrix, which contains the observed values for n
observations with respect to q dependent variables. The least squares criterion to be
minimized is expressed as

LMVR(W) = ||Y −XW||2 (1.10)

and the multivariate regression analysis of {X,Y} thus minimizes LMVR(W) over W,
an unknown p × q matrix. The (j, k)-th element (j = 1, · · · , p, k = 1, · · · , q) of W
denoted as wjk stands for the regression coefficient of the j-th independent variable
for the prediction of the k-th dependent variable.
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Parameter Estimation

It is known that there exists a closed form solution of W that minimizes (1.10). Here,
by partially differentiating (1.10) with respect to W (Magnus and Neudecker, 2019),
we have

∂LMVR(W)

∂W
= −2X′XW + 2X′Y = Op×q (1.11)

where Op×q denotes the p×q matrix filled with zeros. The normal equation is therefore
solved by

W = (X′X)−1X′Y (1.12)

that is the minimizer of the loss function in (1.10). Note that the k-th column of W
noted as wk is expressed as wk = (X′X)−1X′yk. Noting (1.6), multivariate regression
analysis is thus equivalent to applying a multiple regression analysis to each of the
q dependent variables with the common X separately, and arranging the resulting q
regression coefficient vectors as the columns of W. Also, as seen in (1.12), rank(X) = p

(i.e., X is of full column-rank) is required in order to obtain the inverse of X′X. In
addition, if X contains two independent variables that are highly correlated, which
is called multicollinearity, the computation of (X′X)−1 would be unstable because X

has at least one singular value that is close to zero. The observation leads to another
requirement to X that it should have a sufficiently large condition number, defined as
the absolute ratio of the largest singular value to the smallest one.

Example

An example of multivariate analysis is shown here using an artificial dataset. 100
university students were asked to evaluate their degree of interest in the following six
academic fields from 0 (no interest) to 100 (highest interest); law, economics, math-
ematics, engineering, physics, and informatics. They also took three examinations
named test A, B and C and their scores were recorded. Multivariate regression anal-
ysis is then applied to X(100 × 6) (interest score) and Y(100 × 3) (test score). The
estimated regression coefficient matrix is shown in Table 1.1, and it can be interpreted
as follows. The regression coefficient on “law” in the regression of “test A” is 3.909,
which stands for the score of “test A” increases 3.909 on average, with the unit incre-
ment of “law”. Because the scales of all independent variables are identical, regression
coefficients are able to be compared mutually. X should be column-wise standardized
if they are not identical. For instance, “law” has a higher impact on “test A” compared
with “economics”. It is rephrased as that “law” and “test A” are closely related. As
seen here, one can capture the correspondence between independent and dependent
variables by referring the elements in the coefficient matrix that are higher in absolute
than others.
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Table 1.1: Estimated matrix of regression coefficients.

test A test B test C
law 3.909 0.499 -0.106
economics 2.697 0.201 -0.199
mathematics -0.204 -5.098 0.100
engineering -1.397 6.799 0.300
physics 0.201 -0.195 3.706
informatics -0.103 0.195 4.895

Related Methods

As seen above, a regression coefficient matrix expresses correspondences between inde-
pendent and dependent variables. Here, consider the case with the j-th independent
variable is not necessary for a prediction of the k-th dependent variable. In this case,
if we set wjk = 0, the independent variable is no longer used for the prediction.
Specifying the subset of independent variables that is necessary for a prediction and
removing the unnecessary variables, is called variable selection, and it is accomplished
by setting several regression coefficients at 0 or close to 0. The potential benefits of
variable selection are the following two points. The first point is that a prediction
would be robust if a limited number of independent variables are used; the fluctuation
of the variables that are unnecessary for the prediction is suppressed and thus the pre-
diction would be stabilized. The second point is that the correspondence between two
sets of variables is easier to be captured if fewer independent variables are used. The
hypothesis derived from a result of variable selection would be appreciated in terms
of parsimony, because a phenomenon of interest (dependent variable) is explained by
a reduced number of causes (independent variables).

Penalized estimation is widely used for obtaining regression coefficients including
several elements equaling or close to 0 for the purpose of variable selection (Hastie
et al., 2015; James et al., 2013). For instance, consider to minimize the composite loss
function

||y −Xw||2 + λP (w) (1.13)

that is the sum of the loss function in multiple regression analysis, and the penalty
function P (w) on w weighted by the tuning parameter λ(> 0). Variety of penalty
functions had been proposed, such that LASSO penalty (Tibshirani, 1996)

PLASSO(w) = ||w||1 =
∑
j

|wj | (1.14)

where || • ||1 stands for the l1 norm of a vector or matrix, Ridge penalty (Hoerl and
Kennard, 1970)

PRidge(w) = ||w||2 (1.15)
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Table 1.2: Estimated coefficient vectors by sparse estimation. Blanc
cells express elements equal to 0.

LASSO penalty Ridge penalty
λ=0 λ=2 λ=4 λ=12 λ=0 λ=50 λ=70 λ=100

law 3.900 3.815 3.726 3.412 3.900 2.831 2.555 2.231
economics 2.700 2.631 2.564 2.270 2.700 2.029 1.846 1.626
mathematics -0.199 -0.121 -0.043 -0.199 -0.154 -0.142 -0.128
engineering -1.398 -1.296 -1.199 -0.846 -1.398 -0.841 -0.716 -0.581
science 0.199 0.120 0.041 0.199 0.056 0.030 0.006
informatics -0.098 -0.019 -0.098 -0.066 -0.060 -0.053

or elastic net (Zou and Hastie, 2005)

Penet(w) =
α

2
||w||2 + (1− α)||w||1 (1.16)

where α (0 ≤ α ≤ 1) is the weight parameter. Note that LASSO and elastic-net
penalties are able to estimate w including exact 0 elements, while ridge penalty does
not have such property. λ (≥ 0) controls the relative strength of a penalty function
against a loss function, and it is often set in advance via cross-validation. Generally,
when λ is large, some elements in w shrink to 0, and therefore the resulting w gets
to be sparse.

As an example, the estimated regression coefficient vectors via LASSO and Ridge
penalty functions with several λs are shown in Table 1.2. When λ = 0, two penalty
functions vanish and therefore the results are equivalent to the one by the non-
penalized estimation shown in Figure 1.1. We can see that some elements in w get
closer to 0 as λ gets to be large in both penalties. Further, the result by LASSO
penalty have some elements equal to 0, while it is not in the case of Ridge penalty.
It should be noted that penalized estimation in multiple regression is easily extend to
multivariate regression analysis;

||Y −XW||2 +
∑
k

λkP (wk) (1.17)

is minimized where λk is the tuning parameter corresponds to the k-th column of W.

1.2.2 Principal Component Analysis

Multivariate regression analysis requires two sets of variables; independent and de-
pendent variables. A data analysis procedure that requires at least one dependent
variable is called supervised learning, while it is not required in unsupervised learning.
Unsupervised learning is often used for exploratory purpose, in that it extracts po-
tentially useful information hidden in multiple variables.
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Principal component analysis (PCA) is known as an unsupervised learning proce-
dure and often used for EDA (Jolliffe, 2011). PCA summarizes a multivariate data
matrix by compressing the variables into several weighted scores called principal com-
ponents, and the estimated principal components are interpreted as the essential part
that is hidden in the matrix. PCA also serves to reduce dimensionality of data and
thus used for data preprocessing in order to handle high-dimensional data by omitting
its redundant information.

Formulation

Here, PCA is formulated as lower rank approximation of a data matrix. Consider
the case with the a n× p matrix X are going to be compressed into r(≤ p) principal
components. Let F = {fij} be an n × r matrix of principal component scores, and
A = {aij} be a p × r matrix called a component loading matrix. As shown below,
A is considered as the correlation matrix of the p variables and the r components,
if X is a column-standardized matrix. A PCA on X with r principal components is
formulated as the minimization of

LPCA(F,A) = ||X− FA′||2 (1.18)

under the constraint that
1

n
F′F = Ir (1.19)

where Ir denotes the r×r identity matrix. The constraint indicates that a component
score has unit variance and is independent to other component scores. It also serves
to eliminate the indeterminacy of PCA solution except for orthogonal rotation as
discussed below.

Compared with (1.10), (1.18) is regarded as a multivariate regression’s loss function
in which the r principal components in F are regressed on the p variables in X. In this
case, the i-th data vector x(i) having p dimensionality is approximated by the linear
combination of the r-dimensional vector of principal component score f(i); x(i) ≈ f(i)A.
There, the original data vector in p-dimensional space is embedded into r-dimensional
space by A, which indicates that PCA reduces dimensionality of original data matrix.
One can apply PCA with r = 2 to high dimensional data matrix and make a scatter
plot of the resulting F, in order to visualize the data matrix instantly.

Denoting the matrix rank of X and its approximation FA′ as rank(X) and rank(FA′),
respectively, we have the following relationship;

rank(X) ≥ rank(FA′). (1.20)

PCA is thus viewed as a lower rank approximation of X, or, equivalently, a decompo-
sition of the data matrix into a score matrix F and a loading matrix A. Further, for
the covariance matrix of X denoted as ΣX = n−1X′X and the counterpart of FA′ as
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ΣFA′ = n−1AF′FA′ = AA′, we also have

rank(ΣX) ≥ rank(ΣFA′) (1.21)

meaning that the covariance structure of the data matrix is also approximated by the
one with reduced rank.

Parameter Estimation

It should be noted that the above formulation of PCA is based on Pearson (1901),
while Hotelling (1933) proposed another formulation that is more popular than the
former (Jolliffe, 2011). In the Hotelling’s formulation, a p-dimensional coefficient
vector w1 is obtained so as to maximize

n−1w′
1X

′Xw1 (1.22)

the variance of the weighted score vector Xw1. The constraint w′
1w1 = 1 is often

imposed on w1 in order to avoid a trivial solution that w1 → ∞. The first principal
component score is Xw1, and w2 that forms the second component is then obtained
as a maximizer of

n−1w′
2X

′Xw2 (1.23)

subject to n−1w′
1X

′Xw2 = 0 and w′
2w2 = 1. In this manner, r principal components

are sequentially obtained. In the following, however, the principal components are
simultaneously estimated based on Pearson’s formulation, in order to emphasize the
essential feature of PCA; it approximates a data matrix by a matrix with reduced
rank.

First, consider to estimate A that minimizes (1.18) with F kept fixed. It is easily
obtained as follows;

A = X′F(F′F)−1 = n−1X′F. (1.24)

Note that it is a correlation matrix if X is column-wise centered.
Next, F that minimizes (1.18) subject to (1.19) is estimated with fixed A. (1.18)

is expanded as
LPCA(F,A) = trX′X− 2trX′FA′ + nAA′ (1.25)

and only the second term is relevant to F. It immediately leads the equivalence of the
minimization of LPCA(F|A) to the maximization of trX′FA′ over F.

For this maximization, the following theorem by ten Berge (1993) is useful.

Theorem 1.2.1 (ten Berge’s theorem). Let M be an m×m sub-orthonormal matrix
with rank r ≤ m, which is defined as a matrix if it can be completed to an orthonormal
matrix by adding row or columns, or both. Let C = diag(c1, · · · , cm) be a diagonal
and nonnegative matrix and its diagonal elements are arranged in descending order.
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Then, the trace function trGC has the upper bound

trGC ≤
r∑
i

ci (1.26)

and the upper bound is attained with

G =

[
Ir Or×(m−r)

O(m−r)×r O(m−r)×(m−r)

]
(1.27)

Proof. See ten Berge et al. (1987) for the proof.

The theorem is a generalization of Kristof’s theorem (Kristof, 1970), which pro-
vides an upper bound of a trace function of an orthonormal matrix. Here, denote the
singular value decomposition (SVD) of X as

X = UDV′ (1.28)

where D is the diagonal matrix of the p∗ singular values of X arranged in descending
order, and U(n× p∗) and V(p× p∗) denote the matrices of the left and right singular
vectors, respectively. Using the above theorem and (1.24), trX′FA′ is maximized as
follows;

trX′FA′ = n−1trX′FF′X

= n−1trF′XX′F

= n−1trF′UDV′VDU′F

= tr(n−1U′FF′U)D2

≤ trD2
r . (1.29)

The upper bound is attained when

n−1U′FF′U =

[
Ir Or×(p∗−r)

O(p∗−r)×r O(p∗−r)×(p∗−r)

]
(1.30)

indicating
F = n1/2Ur (1.31)

where Ur denotes the matrix of the r left singular vectors correspond to the r largest
singular values. (1.31) is proved to satisfy the constraint on F; n−1F′F = n−1nU′U =

Ir.

Further, using (1.28) and (1.31), (1.24) is reduced to

A = n−1/2VDU′Ur = n−1/2VrDr (1.32)
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where Vr is a matrix of the r first column vectors of V. Thus, the PCA solution is
simply obtained by SVD the of X;

X = UDV′ ≈ UrDrV
′
r = (n1/2Ur)(n

−1/2VrDr) = FA′. (1.33)

If X is column-wise centered, namely, we have JnX = X with Jn = In−n−11n1
′
n

where 1n the n-dimensional vector filled with 1s. Then, F is also column-wise centered
shown as

JnF =
√
nJnKr =

√
nJnXLrΛ

−1
r =

√
nXLrΛ

−1
r = F. (1.34)

Referring (1.24), A is the covariance matrix of X and F and turns to be a correlation
matrix if X is column-wise standardized.

In (1.33) X is approximated by UrDrV
′
r, while the loss of the approximation is

noted as U⊥D⊥V⊥′; namely

X =
[
Ur,U

⊥
] [Dr

D⊥

][
V′

r

V⊥′

]
= UrDrV

′
r +U⊥D⊥V⊥′. (1.35)

Noting U⊥D⊥V⊥′ as X⊥, we have

trΣX = trΣFA′ + trΣX⊥

= trD2
r + trD⊥2

= trD2. (1.36)

Therefore, the total variance of the p variables in X is equal to the sum of the squared
singular values of X, and the amount of variance explained by the r principal compo-
nents is equal to trDr, sum of the squared r largest singular values. Variance explained
ratio is thus defined as

trD2
r

trD2
(1.37)

and it is used to determine the value of r, how many principal components should be
used.

A PCA’s result is commonly interpreted as follows; a component loading matrix
is referred at first in order to interpret what the components in its column represent,
by abstracting the variables that highly load on the components. The interpretation
would be easier if the correspondence between each of the components and the corre-
sponding set of the variables is easily captured. For example, suppose that a loading
matrix has a similar structure shown in the left part of Figure 1.3, compared with
the one in the right. The former structure is called simple structure, and known as
a desired property that solution matrices should be possessed, originally proposed in
the context of factor analysis. In particular, in the simple structure in Table 1.3 one
can abstract the meaning of the first and the second variable to interpret the first
component, that would be straightforward. In the not-simple case, on the contrary,
all variables are matched to the first component while nothing to the third component,
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Table 1.3: Examples of a simple structure (left) and not-simple struc-
ture (right). ∗ stands for a element whose absolute value is sufficiently

large, and blanc cells are elements close to 0.

Comp.1 Comp.2 Comp.3 Comp.1 Comp.2 Comp.3
Var.1 * *
Var.2 * * *
Var.3 * * *
Var.4 * *
Var.5 * * *
Var.6 * * *

and it would be difficult to interpret these components.
The challenge here is to obtain a loading matrix with simple structure. It is

known that PCA has a property called rotational indeterminacy ; a certain post-hoc
transformation of a component loading matrix is allowed without losing its optimality
with respect to the loss function (1.18). Here, (1.18) is rewritten as follows, using an
arbitrary r × r orthonormal matrix T satisfying T′T = TT′ = Ir

LPCA(F,A) = ||X− FA′||2 = ||X− FT(AT)′||2 = LPCA(F̃, Ã). (1.38)

It leads that {F,A} and {FT,AT} are equivalent, in that the latter does not change
the function value LPCA(F,A). Note that left-multiplying A by T stands for a
rotation of the space spanned A’s column vectors, and it is called orthogonal rotation
of A when T is an orthonormal matrix. Using this property, T can be determined so
that it maximizes the simplicity of AT. According to how the simplicity of a matrix
is defined, there exist various methods for rotation. For example, in Varimax rotation
(Kaiser, 1958), a matrix A is said to be simple if the sum of the column variance of
the squared matrix A2 = {a2jk}, and T is specified so that it maximizes the simplicity
of AT.

Example

Thirty-three baseball players’ batting average, number of home runs, hitting point,
score, number of strike outs, and number of steals were collected, and thus we have a
33 (players) × 6 (scores) data matrix. First, variance explained defined in (1.37) for
r = 1 to 6 were computed, and they were plotted in Figure 1.2. The plot is called
scree plot, and used to determine how many principal components should be used for
explaining the total information that a data matrix contains. In the figure, we can
see that the cumulative variance explained does not changes significantly when r ≥ 3.
The point, r = 3, is called a scree point, and often used for the number of principal
components. At the scree point, 94.1% of the variance of X is explained, and therefore
r is set at 3.
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Figure 1.2: Scree plot of variance explained for baseball data.

Table 1.4: Initial and Varimax-rotated loading matrix for baseball
data.

Initial Varimax-rotated
Comp.1 Comp.2 Comp.3 Comp.1 Comp.2 Comp.3

batting ave. 0.429 -0.650 0.524 0.330 -0.151 0.866
home runs 0.957 0.051 -0.040 0.957 -0.041 0.039
hitting point 0.965 0.059 0.084 0.961 0.048 0.126
steals -0.481 -0.610 -0.571 -0.521 -0.809 -0.068
score 0.543 -0.680 -0.407 0.481 -0.805 0.210
strike outs 0.527 0.472 -0.609 0.603 -0.090 -0.708
steals -0.481 -0.610 -0.571 -0.521 -0.809 -0.068

The resulting loading matrix is shown in Table 1.4. A loading matrix is used
for interpreting what the principal components stand for, and the rotated one is
generally easier to interpret in that it approximates a certain simple structure. It is
observed in the table that the contrast between the elements facilitates to capture
the correspondence between the variables and the components. For example, “home
runs”, “hitting point”, and “strike outs” highly load on the first principal component,
and thus the component is interpreted as batting power. In the same manner, the
second component matched to “score” and “steals” stands for weakness in running,
and the third component that positively loads on “batting average” and negatively
loads on “strike” outs is batting accuracy.

Related Methods

In the above example, the three-dimensional solution of PCA was presented. Biplot
is a graphical representation of a two-dimensional solution of PCA and it enables to
interpret the result easily and intuitively (Gower and Hand, 1995). In order to obtain
a biplot, PCA with r = 2 is applied to a given data matrix, followed by plotting the
rows of F as points and those of A as vectors, as shown in Figure 1.3. The Biplot
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Figure 1.3: Biplot representation of baseball data.

of X is thus composed of thirty-three points and six vectors corresponding to the
observations and variables, respectively.

Here, noting that X is column-wise centered, we have the following approximation;

ΣX = n−1X′X ≈ AA′. (1.39)

It indicates that the (j, k)-th element of ΣX, the covariance of the j-th and k-th
variable (j ̸= q), is approximated by the inner product of the j-th and k-th row
vector of A, a(j)a

′
(k). The cosine of the vectors for these variables, expressed as

a(j)a
′
(k)

||a(j)||×||a′
(k)

|| , is therefore approximates the correlation coefficient of the two variables.
For instance, the vectors of “batting average” and “score” are almost in same direction,
which indicates the cosine of these vectors is close to its maximum 1 and thus these
variables are highly correlated. Conversely, the cosine of “score” ’s and “strike out” ’s
vectors are around 0, and thus these variables are considered to be independent. In
addition, the point numbered as 3 is higher in “hitting point” and “scores” compared
with the point 30, because the direction of a vector is interpreted as the axis of the
variable. It should be noted that a biplot is valid only when a two dimensional solution
fits well to the original data matrix.

1.2.3 Factor Analysis

Factor analysis (FA) (Harman, 1976; Mulaik, 2010; Bartholomew et al., 2011) is known
to be similar but completely different from PCA, and it aims to extract latent vari-
ables hidden in multivariate data matrix. The latent variables are called common
factors, and hereafter they are simply called factors. As a model case, consider the
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Figure 1.4: Path diagram of factor analysis result.

situation where FA is applied to a data matrix of Big5 personality test scores. Big5
personality test is developed to describe human personality based on the following
five components: nervousness, extroversion, openness, coordination, and introversion.
Each component is composed of multiple sub-scales called items. Figure 1.4 demon-
strates a result of the FA to the Big5 test scores with five common factors as a path
diagram. The extracted factors and variables (questionnaires, in this example) are
connected by the paths, and they are obtained as a form of a matrix called the factor
loading matrix. In addition, unique factors are also obtained, each of which corre-
sponds to a single variable. As seen here, the FA explains the information that the
data matrix contains using common and unique factors.

Probabilistic Model

As the most popular formulation for FA, a probabilistic formulation of FA is firstly
presented. Let x be a p-dimensional vector of the observed values for an observation.
A FA model with r factors is expressed as the following model, using an r-dimensional
vector of the common factor score f and a p-dimensional vector of unique factor score
u.

x ≈ Λf + u (1.40)

where Λ is an unknown p×r matrix called a factor loading matrix. Noting the common
and unique factor score vectors for the i-th observation as f(i) and u(i), respectively,
(1.40) is rewritten as

X ≈ FΛ′ +U (1.41)
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where F = {f ′(1), · · · , f
′
(n)}

′ and U = {u′
(1), · · · ,u

′
(n)}

′. Here, it is assumed that f(i) and
u(i) are random variables, which identically and independently follows the following
distributions;

f(i) ∼ Nr(0r, Ir), u(i) ∼ Nr(0p,Ψ) (i = 1, · · · , n) (1.42)

where 0r is the r-dimensional vector filled with 0s, and Ψ = diag(ψ1, · · · , ψp) is the
diagonal matrix of the variances of p unique factors. This formulation of FA is thus
called a probabilistic FA model. The covariance matrix of f is constrained to be Ir,
indicating that each factor has a unit variance and is uncorrelated to the others. It is
expressed as

Cov[f , f ] = Ir. (1.43)

Further, common and unique factor scores are assumed to be independent.

Cov[f ,u] = Or×p. (1.44)

In a probabilistic FA model, different from the other multivariate analysis methods
introduced so far, the model parameters f and u are treated as random variables. x is
also a random variable following the model in (1.40) and x(1), · · · ,x(n) are identically
and independently follow a multivariate normal distribution with mean vector 0p, and
the covariance matrix that is modeled as

Var[x] ≈ ΛΛ′ +Ψ. (1.45)

Given a data matrix X, one can evaluate the discrepancy between the observed co-
variance matrix ΣX and its theoretical counterpart derived by (1.40) and (1.45) by
the following least squares loss function of Λ and Ψ

||ΣX − (ΛΛ′ +Ψ)||2. (1.46)

In the least squares estimation under the probabilistic FA model, the goal is to find
{Λ, Ψ} minimizing the loss function. Alternatively, one can define the following
log-likelihood function

−n
2
(log |ΛΛ′ +Ψ|+ trΣX(ΛΛ′ +Ψ)−1) (1.47)

and find its maximizer with respect to Λ and ΣX. See Yanai and Ichikawa (2006) for
the detailed procedures of the least squares and maximum likelihood estimation.

Matrix Formulation of FA Model and Its Parameter Estimation

In the probabilistic formulation of FA, matrices F and U are not directly obtained by
the minimization of (1.46) or maximization of (1.47), because f and u are treated as
random variables. They are usually estimated by post-hoc estimation procedures as
those found in Bartlett (1950), Anderson and Rubin (1956), and McDonald (1981).
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This property is considered a critical drawback of FA for the following reasons. For
example, in the case with the Big5 personality test, one might attempt to quantify
the five personalty traits by the factor scores, and they classify the respondents as
to the scores. Although a post-hoc estimation of factor scores provides the scores,
optimization criteria considered in the estimation is not identical to the one in the
parameter estimation of FA. In other words, joint usage of FA and a post-hoc estima-
tion of factor scores does not satisfy the definition of data analysis in (1.1.1) because
both independently optimize two different criteria.

In recent years, a matrix formulation of FA has been proposed (Adachi and
Trendafilov, 2018a; De Leeuw, 2004; Unkel and Trendafilov, 2010), and it assumes
that f and u are not random but fixed parameters, and thus, it enables us to esti-
mate F and U simultaneously. This is called the matrix decomposition factor analysis
(MDFA). The MDFA model is expressed as

X ≈ FΛ′ +UΨ = ZB′ (1.48)

with Z = [F,U] and B = [Λ,Ψ]. There, the following two constraints are imposed;

1′NZ = 0′r+p (1.49)

and

n−1Z′Z =

[
n−1F′F n−1F′U

n−1U′F n−1U′U

]
=

[
Ir Or×p

Op×r Ψ

]
(1.50)

and they are equivalent to those in the probabilistic model in (1.43) and (1.44). For
parameter estimation, the least squares criterion

LFA(Z,B) = ||X− ZB′||2 = ||X− (FΛ+UΨ)||2 (1.51)

is minimized under (1.49) and (1.50).
The minimization of LFA(Z,B) is accomplished by the following iterative algo-

rithm (Adachi and Trendafilov, 2018a).

1. Initialize B.

2. Update Z by
Z = n1/2KL′ (1.52)

using the SVD
n−1/2XB = K∆L′. (1.53)

3. Update B by
B = [n−1X′F, diag(n−1X′U)] (1.54)

4. Stop the algorithm if the decrement of LFA(Z,B) is less than ϵ, otherwise go
back to 2.
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Note that the algorithm for FA requires some iterative steps, and it is different from
those employed in multivariate regression analysis and PCA, in which the parameters
have closed-form solutions. This is because the update formulas (1.52) and (1.54)
include other unknown parameter matrices. This indicates that there is no closed-form
solution in FA, and the parameters must be estimated by iterating some steps where a
parameter is updated with the other parameters fixed. This is called Alternating least
squares (ALS), because parameter matrices are alternately updated. If the function
value is guaranteed to decrease monotonically at each step and the function value
is lower bounded (in a minimization problem), the values of the parameters after
the convergence is reached reasonably accepted as the estimate of the parameters.
Obviously, LFA(Z,B) is lower bounded by 0. Further, note that if a function to be
minimized is not a convex function, the estimated parameter is not guaranteed to be
a global optima. To obtain a solution close enough to the global optima, a multiple-
starts strategy is often used, wherein the algorithm starts from multiple initial values
separately and the solution that minimizes the optimization criterion the most within
the set of obtained solutions is accepted as the final solution.

Some Properties

It is known that there exists an indeterminacy in the MDFA model. This is called
rotational indeterminacy. To express this, (1.40) is rewritten as

x ≈ ΛTT′f + u = Λ̃f̃ + u (1.55)

using an arbitrary r × r orthonormal matrix T satisfying

T′T = TT′ = Ir. (1.56)

This implies that
Λ̃ = ΛT (1.57)

and
F̃ = {f ′(1)T

′, · · · , f ′(n)T
′}′ = FT (1.58)

are equally optimal as well as Λ and F because

||ΣX − (Λ̃Λ̃′ +Ψ)||2 = ||ΣX − (ΛT′TΛ′ +Ψ)||2 = ||ΣX − (ΛΛ′ +Ψ)||2 (1.59)

indicating the value of the optimization criterion is kept unchanged after the trans-
formation by T. It is shown that the property also holds in the maximum likelihood
estimation

−n
2
(log |Λ̃Λ̃′ +Ψ|+ trΣX(Λ̃Λ̃′ +Ψ)−1) = −n

2
(log |ΛΛ′ +Ψ|+ trΣX(ΛΛ′ +Ψ)−1)

(1.60)
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and in the matrix formulation

LFA(Z̃, B̃) = ||X− (FT′TΛ′ +UΨ)||2 = LFA(Z,B). (1.61)

Further, using an arbitrary r × r matrix S satisfying

diag(S−1S−1′) = Ir (1.62)

that includes (1.56) as a special case, the same property holds if we transform F and
λ as

F̃ = FS−1′, Λ̃ = ΛS. (1.63)

We thus have

LFA(Z̃, B̃) = ||X− (FS′−1S′Λ′ +UΨ)||2 = LFA(Z,B). (1.64)

The transformation by T is called an orthogonal rotation and the one by S is called
an oblique rotation. Note that after the transformation by S, we have

n−1F̃′F̃ = S−1S′−1 ̸= Ir (1.65)

and thus, the rotated factors are correlated.

Using the above properties, we can freely choose T or S and rotate F and Λ. It is
common to choose a rotation matrix such that the resulting Λ̃ has a simple structure
as introduced before, which is called factor rotation. Procedures for factor rotation
had been researched for decades in Psychometrics, and a variety of rotation procedures
have been proposed. The details of the factor rotation are discussed in Chapter 2.

Example

An example of FA is presented using an artificial dataset called Personality data. One
hundred participants evaluated their daily behaviors with respect to the following
eight aspects from 1 (not applicable at all) to 9 (completely applicable); “actively
do anything (active),” “being cheerful (cheerful),” “leading others (leading),” “being
unfriendly (unfriendly),” “being talkative (talkative),” “being motivated (motivated),”
“being hesitative (hesitative),” and “being popular (popular).” A two-factors FA model
was fitted to the data matrix that consists of 100 participants and 8 questionnaires.
To compare the three formulations of FA, [1] the probabilistic model with the least
squares estimation, [2] the probabilistic model with the maximum likelihood estima-
tion, and [3] the matrix formulation were employed. Further, Varimax and Promax
rotations were applied to the initial loading matrices. The results of FA are shown in
Table 1.5. Compared with the unrotated matrices, it is clear that the rotated loading
matrices are more interpretable in that variables (rows) and factors (columns) are
clearly matched. The Promax-rotated loading matrix indicates that the first factor
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Table 1.5: Factor loading matrices for personality data. MDFA:
initial solution of MDFA, MDFA+Varimax: Varimax-rotated
MDFA solution, MDFA+Promax: Promax-rotated MDFA solution,
ML+Promax: Promax-rotated solution by probabilistic formulation
based FA with maximum likelihood, LS+Promax: Promax-rotated

solution by probabilistic formulation based FA with least squares.

MDFA MDFA+Varimax MDFA+Promax ML+Promax LS+Promax
active 0.824 0.241 0.814 0.273 0.827 0.058 0.060 -0.826 0.836 0.058
cheerful 0.107 0.776 0.076 0.779 -0.151 0.848 0.852 0.153 -0.152 0.854
leading 0.734 0.193 0.726 0.222 0.744 0.028 0.022 -0.754 0.743 0.033
unfriendly -0.274 -0.785 -0.243 -0.795 -0.030 -0.816 -0.822 0.028 -0.035 -0.816
talkative 0.287 0.853 0.253 0.864 0.022 0.889 0.894 -0.023 0.019 0.893
motivated 0.858 0.190 0.850 0.224 0.883 -0.008 -0.002 -0.882 0.894 -0.014
hesitative -0.770 -0.085 -0.766 -0.115 -0.822 0.103 0.104 0.829 -0.818 0.102
popular 0.390 0.611 0.366 0.626 0.220 0.589 0.587 -0.225 0.218 0.594

factor correlation 1.000 0.000 1.000 0.000 1.000 0.505 1.000 -0.504 1.000 0.506
0.000 1.000 0.000 1.000 0.505 1.000 -0.504 1.000 0.506 1.000

active leading motivated hesitative cheerful unfriendly talkative popular

0.505

0.827
0.744 0.883

-0.822

0.220

0.848 -0.816 0.889
0.589

positive loading

negative loading

1st factor
activeness

2nd factor
sociableness

Figure 1.5: Path diagram of Promax-rotated MDFA solution to per-
sonality data. Width of the paths are proportional to the correspond-

ing loadings, and those for loading less than 0.2 were omitted.

is matched to the variables “active,” “leading,” “motivated,” and “hesitative” and in-
terpreted as activeness, while the second factor is sociableness in that it is matched
to “cheerful,” “unfriendly,” “talkative,” and “popular.” The interpretation is consistent
with the path diagram shown in Figure 1.5. In general, oblique rotation tends to
achieve simper results than the orthogonal one because the rotational constraint in
the former in (1.62) is less restrictive than (1.56). In addition, the loading matrices
after rotation are almost equivalent for the three formulations, and thus, all formu-
lations result in similar solutions even if their assumptions on the factor scores and
estimation procedures are different.
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1.2.4 K-means Clustering

Classification is often employed at the early stage of EDA and helps to grasp ho-
mogeneity of observations, which serves to understand data structure roughly and
intuitively. Clustering is a class of multivariate analysis procedures for classification
and aims to classify multiple observations into reduced the number of groups called
clusters. There exist a number of clustering procedures and they are classified into
the following two families. The first one is hierarchical clustering. It creates clusters
by merging similar observations or clusters according to a certain aggregation rule.
In other words, the number of clusters is equal to the number of observations at the
initial step, and it is reduced sequentially by repeating cluster agglomerations. Group-
average method and Ward’s method are known as such procedures (Ward, 1963). A
dendrogram shown in Figure 1.6 is provided by a hierarchical clustering applied to an
artificial data. Based on the figure, one might decide that three clusters are sufficient.
Note that hierarchical clustering yields nested solutions; a K-clusters solution includes
another (K + 1)-clusters solution.

The second family is non-hierarchical clustering represented byK-means clustering
(Aggarwal, 2014). K-means clustering requires the number of clusters as its input,
and seeks a partition of observations that minimizes a certain loss function. Thus,
two solutions of K-means clustering with different Ks are not nested. Its algorithm
is detailed below.

Formulation

Consider the case with the n observations in a n× p data matrix X are classified into
K(< n) clusters by K-means clustering. It is formally defined as the minimization of
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the least squares loss function

LKM (M,C) = ||X−MC′||2 (1.66)

over two unknown matrices M(n ×K) and C(p ×K). M = {mik} is called a mem-
bership matrix satisfying

∑
kmik = 1 for all ks and mik ∈ {0, 1} and mik = 1 stands

for the i-th observation is a member of the k-cluster. Because its row-sum is equal
to 1, each observation always belongs to a single cluster and this type of partitioning
is called crisp partition. C = {c1, · · · , cK} is called a centroid matrix, and its k-th
column stands for the averaged vector of the observations that belong to the k-th clus-
ter, as shown later. The matrix therefore represents the centroids of the K clusters
in p-dimensional space.

Parameter Estimation

First, consider to minimize LKM (M,C) with respect to M with C kept fixed. The
objective function can be rewritten as

LKM (M|C) =
n∑
i

K∑
k

mik||x(i) − ck||2 (1.67)

that is the sum of
∑

kmik||x(i) − ck||2 for all observations. This indicates that x(i)

is approximated by ck if the i-th observation belongs to the k-th cluster. An obser-
vation is therefore classified into a cluster minimizing ||x(i) − ck|| for all ks, and it is
accomplished by assigning the observation to a cluster whose centroid vector is closest
to x(i) in p-dimensional space. The elements of M is thus updated by

mik =


1 if k = argmin

l
||x(i) − cl||

0 otherwise
. (1.68)

It is easily verified that the updated M satisfies a series of constraints on it. No-
tice that the update rule in (1.68) requires the K-times computations for each of the
observations in order to specify the cluster that is closest to it, and thus it is compu-
tationally inefficient when K is large.

Next, LKM (M,C) is minimized over C with fixed M. This is simply accomplished
by using the same manner as in multivariate regression, assuming that X is regressed
on M with an unknown matrix of regression coefficients C. The update formula for
C is thus obtained as

C = X′M(M′M)−1. (1.69)

Noting that M′M is the K ×K diagonal matrix having the size of the k-th cluster as
its k-th diagonal element, the k-th column of C is expressed as n−1

k X′mk, where mk
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Table 1.6: Centroid matrix obtained by K-means clustering.

1st Cluster 2nd Cluster 3rd cluster
Nervous -0.492 -0.809 1.300
Extroversion -0.330 -0.747 1.077
Openness -1.258 0.568 0.690
Cooperative 1.196 -1.109 -0.087
Honesty -0.654 1.161 -0.507

denotes the k-th column vector of M. This immediately leads that the columns of C
is regarded as the centroid vectors of the K clusters.

The two parameter matrices M and C are iteratively updated starting from some
initial values, in the same manner as in FA; the objective function is minimized over
the one parameter with the others kept fixed, and it is repeated until convergence.
The whole algorithm is described as follows;

1. Randomly initialize M.

2. Update C by (1.69) using the current M.

3. Update M by (1.68) using the current C.

4. Terminate the algorithm if the decrement of the function value is less than ϵ,
otherwise go back to 2.

Example

Thirty participants were required to score their personality traits in terms of the fol-
lowing five scales; “nervous”, “extroversion”, “openness”, “cooperative”, and “honesty”.
Note that the dataset treated here is artificial. A K-means clustering with three clus-
ters was applied to the data matrix having 30 observations and 5 variables. In order
to avoid local minima, a hundred of initial values were employed. As a result, three
clusters consist of ten observations were obtained, and the estimated centroid matrix
is shown in Table 1.6. As discussed above, column vectors of a centroid matrix are
seen as representative observations of the obtained clusters. In other words, it serves
to interpret what kind of homogeneity were extracted from the dataset. In the exam-
ple, one might notice that the first cluster is less nervous and much cooperative than
the other clusters, which is considered as a common characteristic of the observations
in the cluster. Often, a centroid matrix is interpreted by finding correspondences
between rows and columns, as the same way in PCA and FA. Therefore, it would be
beneficial for interpretation that a centroid matrix also possesses a simple structure.
K-means clustering has, however, no indeterminacy but column permutations of M,
and it means that no post-hoc transformation toward simplicity is not allowed.
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Related Method

As noted above, K-means clustering provides a crisp partition, in which observations
are classified into non-over-wrapping clusters. As a natural extension, fuzzy K-means
clustering has been proposed Zadeh (1965); Bezdek (2013). There, observations are
classified intoK over-wrapping clusters; an observation is allowed to belong to multiple
clusters. In other words, the observations are fuzzily classified. It is achieved by
relaxing the constraints on the membership matrix M, such that

K∑
k

mik = 1, mij ∈ [0, 1]. (1.70)

Therefore, mik is interpreted as the probability that the i-th observation belongs to
the K-th cluster. The objective function of fuzzy K-means clustering is

LFCM (M,C) =
∑
i

∑
k

mq
ik||x(i) − ck||2 (1.71)

where q ≥ 1 is called a fuzziness parameter that controls how fuzzy the resulting
clusters are. (1.71) is reduced to the one of K-means clustering when q = 1. The
optimization procedure for minimizing (1.71) is detailed in Chapter 4.

1.2.5 Canonical Correlation Analysis

The unsupervised learning methods introduced so far (PCA, FA, and K-means clus-
tering) require a single set of variables as their input. Often, however, dataset is
composed of two or more variable sets. Canonical correlation analysis (CANO) can
deal with two sets of variables in order to summarize and extract the relation between
the sets (Hotelling, 1936). Specifically, it composes linear combinations for each of
the variable sets so that the correlation between the combinations is maximized, and
the linear combinations are called canonical variates.

Formulation

Suppose we have two sets of variables with their sizes of p1 and p2, respectively, and
let X1(n × p1) and X2(n × p2) be matrices of these variable sets with regard to the
same n observations. CANO is formulated by minimizing

LCA(W1,W2) = ||X1W1 −X2W2||2 (1.72)

over unknown weight matrices W1(p1 × r) and W2(p2 × r) of two variable sets, with
r ≤ min(p1, p2). In order to avoid the trivial solution {W1,W2} = {Op1×r,Op1×r},
the constraints

n−1W′
1X

′
1X1A1 = n−1W′

2X
′
2X2A2 = Ir. (1.73)



Chapter 1. Introduction 26

are often imposed on the weight matrices. CANO creates two sets of r canonical
variates corresponding to two given variable sets in order to explain the correlation
structure between them.

The loss function in (1.72) is expanded as

LCA(W1,W2) = −2trW′
2X

′
2X1W1 + 2n ∝ −tr(n−1W′

2X
′
2X1W1) (1.74)

and thus the minimization of LCA(W1,W2) is proved to be equivalent to maximizing
tr(n−1W′

2X
′
2X1W1), the sum of the correlation coefficients between the two canoni-

cal variates called canonical correlations. Therefore, CANO is regarded as a procedure
that construct two sets of canonical variates so that the sum of their inter-sets corre-
lations is maximized.

Parameter Estimation

CANO has a closed-form solution for W1 and W2 unlike FA and K-means clustering
as shown below. Here, consider to maximize L̃CA(W1,W2) = tr(n−1W′

2X
′
2X1W1)

under (1.73). For the maximization, W1 and W2 are reparametrized as

n−1/2(X′
1X1)

1/2W1 = W∗
1, n

−1/2(X′
2X2)

1/2W2 = W∗
2 (1.75)

where (M)1/2 is the square-root matrix of a symmetric and positive-semi-definite
matrix M; (M)1/2 = UMD

1/2
M U′

M with M = UMDMU′
M being the eigenvalue de-

composition of M. Using (1.75), (1.73) is re-expressed as

W∗′
1 W

∗
1 = W∗′

2 W
∗
2 (1.76)

and the loss function is

L̃CA(W1,W2) = trW∗′
2 (X

′
2X2)

−1/2X′
2X1(X

′
1X1)

−1/2W∗
1. (1.77)

The maximizer of L̃CA(W1,W2) is therefore obtained by maximizing (1.77) over
orthonormal matrices W∗

1 and W∗
2.

The maximization of the trace function is simply attained by Theorem 1.2.1 as

L∗
CA(W1,W2) = trW∗′

2 UDV′W∗
1 ≤ trDr (1.78)

using the SVD
(X′

2X2)
−1/2X′

2X1(X
′
1X1)

−1/2 = UDV′. (1.79)

The equality holds when
W∗

1 = Vr, W
∗
2 = Ur (1.80)
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where Ur and Vr are the first r columns of U and V, respectively, and Dr is the
diagonal matrix of the r-th largest singular values of (X′

2X2)
−1/2X′

2X1(X
′
1X1)

−1/2

arranged in descending order. Putting (1.80) into (1.75), we have

W1 = n1/2(X′
1X1)

−1/2Vr, W2 = n1/2(X′
2X2)

−1/2Ur. (1.81)

It is shown that (1.81) satisfies (1.73);

n−1W′
1X

′
1X1W1 = V′

r(X
′
1X1)

−1/2(X′
1X1)(X

′
1X1)

−1/2Vr (1.82)

= V′
rVr (1.83)

= Ir (1.84)

that also holds true for W2.

A matrix of canonical correlation coefficients are obtained as

n−1(W′
2X

′
2X1W1) = U′

r(X
′
2X

−1/2
2 (X′

2X1)(X
′
1X1)

−1/2Vr (1.85)

= U′
rUDV′Vr (1.86)

= Dr (1.87)

and it is proved to be the diagonal matrix of the r largest singular values in (1.79).

Example

CANO was applied to Sports dataset by Tanaka et al. (1984). Thirty nine high school
students took the two types of athletic ability tests named test A and B, and the
former is composed of “side jump”, “back strength”, “vertical jump”, “grip strength”,
and “step aerobics”, while the latter is made of “long-distance run”, “ball throw”, “long
jump”, “chin-up”, and “50 meters run”. We therefore have X1 and X2 both having the
dimension of 39 × 5. A CANO with three canonical variates was applied to the two
data matrices after their column-wise scaling, and the solution matrices W1 and W2

were obtained. Table 1.7 shows structure matrices, correlation matrices of the original
variables and the canonical variates, which are obtained as

S1 = n−1X′
1X1W1, S2 = n−1X′

2X2W2. (1.88)

The table shows that the first canonical variate is strongly characterized by almost all
of the variables. On the other hand, few of the variables are associated to the rest of
canonical variates, and it is not clear what the canonical variate stand for. It is well
known that CANO often yields difficult-to-interpret solutions as seen in the example.
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Table 1.7: Structure matrices and canonical correlations obtained by
canonical correlation analysis to Sports data.

canonical variates
1st 2nd 3rd

test A
side jump -0.670 -0.278 -0.187
back strength -0.744 0.167 -0.333
vertical jump -0.670 0.605 0.307
grip strength -0.251 -0.006 0.365
step aerobics -0.172 -0.773 0.526
testB
long-distance run 0.667 0.117 0.441
ball throw -0.775 0.168 -0.294
long jump -0.789 0.497 0.038
chin-up -0.649 0.214 0.565
50m run 0.676 0.362 -0.497

0.849
canonical correlation 0.715

0.553

1.3 Interpretability in Multivariate Analysis Procedures

In Section 1.1, the author discussed how multivariate data analysis procedures work
for hypotheses creations and their validations in scientific researches by means of
CDA and EDA; the author also introduced some important procedures in EDA. In
particular, interpretable solutions are of greater importance in EDA, in that they are
used for data-based hypotheses creations.

The thesis considers interpretability as an important property that should be pos-
sessed by the solutions of multivariate analysis procedures. To illustrate that inter-
pretability is important for hypotheses creations, the example of PCA would be worth
revisiting here. Of the two component loading matrices exhibited in Table 1.4, the one
before the rotation noted as “Initial” shows ambiguous correspondences between the
rows and columns, and thus, the components are difficult to interpreted. This is be-
cause the first component highly loads all variables in the matrix. On the other hand,
the other matrix approximates a simple structure by Varimax rotation, and thus, it is
easier to capture what the components stand for. For example, the easy-to-interpret
components allow building the following hypothesis; a baseball player’s capability is
composed of batting power, running power, and batting accuracy. Further, one can hy-
pothesize that batting power, which cannot be measured directly, can be numerically
evaluated by the two measurable scales “number of home runs” and “batting score”,
in that the first component highly loads to the two variables.

Interpretability is also important for prediction because it makes the prediction
model more accountable. Mathematical models for prediction are widely used today,
and being able to explain clearly how a certain prediction is made is essential in
addition to its prediction accuracy and generalizability, and not only for maintaining
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its accuracy but also ensuring its social credibility. For instance, in Section 1.2.1, the
regression coefficient vector estimated by the penalized estimation with the LASSO
penalty uses fewer independent variables when λ is large. This means that the scores
of “test A” can be explained or predicted by fewer predictors compared with the other
results in the table that use all six predictors. Based on the observation, the solution by
LASSO penalty presented there is more interpretable. Further, a model that predicts
the score of the test by linear combinations of small number predictors are said to
be more parsimonious compared with non-parsimonious models, such as the one with
more variables and higher order terms or nonlinear functions. In parsimonious models,
it is easy to explain its prediction mechanism. For example, the solution vector with
λ = 12 indicates the following simple explanation of the prediction model; the score
of “test A” increases by 3.412 points on average if the interest on “law” increases by 1
point, given the other interest scores are fixed. Further, the test score is only affected
by the interest scores of “law”, “economics”, and “engineering”. The observation implies
that a prediction model is explainable in general if the model is parsimonious and
interpretable.

In addition, it is essential to explain clearly how a prediction is generated, es-
pecially when the prediction highly affects on our society or a mis-prediction is po-
tentially hazardous. Imagine a prediction model for consumer credit risk and one’s
future illness as examples of such models. It would be easy to explain how the models
predict the future, if they possesses high interpretability and explainability.

1.3.1 Sub-concepts of Interpretability

Considering the examples of the multivariate analysis procedures presented above, the
thesis addresses the following two sub-concepts of interpretability, which the proce-
dures proposed in the following chapters aim to accomplish.

Simple Structure

The concept of a simple structure introduced in the examples of PCA and FA can be
rephrased as a property that helps to find which rows are associated to each columns.
Often, in multivariate analysis procedures, a solution matrix has variables in its rows
and components or clusters in its columns, and the latter need to be named by ab-
stracting the names of the associated variables. Thus, columns and rows are required
to be paired. The necessary conditions of the simple structure were first proposed by
Thurstone (1947):

• Each row should contain at least one zero.

• Each column should contain at least r zeros.

• Every pair of columns should have several rows with a zero in one column but
not the other.
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• If r ≥ 4, every pair of columns should have several rows with zeros in both
columns.

• Every pair of columns should have few rows with nonzero loadings in both
columns.

These conditions are further elaborated in the next chapter. A factor rotation proce-
dure usually defines a measure of simplicity following these conditions, and it finds a
rotation matrix maximizing the measure.

Sparseness

A vector or matrix having a number of elements equaling to zero is said to be sparse.
For instance, the LASSO estimate with λ = 12 in Table 1.2 is sparse, in that it
contains three zeros. Sparseness generally improves explainability, because, in the case
of the multiple regression, the number of variables used for a prediction is reduced.
Sparsity also facilitates interpretation in that only non-zero elements in a solution
matrix need to be interpreted, and one can concentrate on interpreting only few non-
zero elements. For instance, consider the case of a multiple regression model with
100 independent variables; the estimated regression coefficient vector contains only
10 non-zero elements and the rest of the elements are zero. The coefficient vector is
much easier to interpret, compared with the one with no zero elements, because the
variables that explain the dependent variable are remarkably reduced.

1.4 Purpose of the Thesis

Thus far, it has been discussed that the interpretability of solutions in multivariate
analysis is necessary, and that a simple structure and sparseness are key properties
that a highly interpretable solution should possess. In this thesis, the author proposes
multivariate analysis procedures that produce easy-to-interpreted solutions. The five
procedures introduced in Section 1.2 are going to be refined by means of matrix-
intensive modifications. Each introduced procedure is formulated as a minimization
of a discrepancy function between the observed values and their prediction over its
model parameters. The estimated parameter certainly minimizes the discrepancy;
however whether the solutions are interpretable is not always taken into account. The
ignorance of interpretability results in solutions that fit data fairly well but are difficult
to interpret. The proposed procedures consider not only the solutions’ fitness to data
but also their interpretability. More precisely, the proposed methods estimate their
model parameters so that they possess simplicity and/or sparseness, balancing it with
their fitness to the given data.

The remaining parts of the thesis are organized as follows.
In Chapters 2 to 7, a series of multivariate data analysis procedures are proposed,

and they are classified into the following four categories according to their method-
ological characteristics: rotation of solution matrices (Chapter 2 and 3), combination
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with clustering (Chapter 4), sparse estimation with cardinality constraint (Chapter
5), and some emerging techniques (Chapter 6 and 7). The details of the procedures
are presented below.

In Chapter 2, a new rotation procedure is proposed, which directly approximates
the modified Thurstone’s simple structure. It can give a p-variables × r-factors target
matrix of zero and nonzero elements, which stands for the properties to be possessed by
the rotated loading matrix. However, the correspondence of the variables in the target
matrix to the loading matrix is unknown. In the proposed procedure, a loading matrix
is rotated simultaneously with the permutations of the rows of the target matrix,
so that the rotated loading matrix is optimally matched with the permuted target
matrix. Its novel feature is the use of permutation, and thus the technique is called
Permutimin. Its algorithm is presented, with Thurstone’s definition of simple structure
modified so as to ensure that the target matrix is uniquely specified. Permutimin is
illustrated with real data examples, and finally, the relationships between Permutimin
and Procrustes rotation are discussed.

Rotation toward a simple structure is extended to CANO in Chapter 3. There, a
new formulation of CANO is proposed, which is proved to be equivalent to the exiting
one. Two canonical structure matrices are shown to have freedom with respect to or-
thogonal rotation under the new formulation. The author thus proposes an orthogonal
rotation method for rotating two structure matrices individually for their simplicity
and interpretability. The proposed method is different from the one derived from the
existing formulation, in that it allows to rotate the matrices by a common rotation
matrix. This illustrates that the proposed method facilitates the interpretation of the
solutions of CANO applied to a real dataset.

The next chapter focuses on a biplot, a technique for obtaining a low-dimensional
configuration of a data matrix in that both the objects and variables of the matrix are
jointly represented as points and vectors, respectively. However, a biplot with a large
number of objects and variables is considered difficult to interpret. Therefore, this
study proposes a new biplot procedure that allows us to interpret a large data matrix
with ease. In particular, the objects and variables are classified into a small number of
clusters using K-means clustering. The resulting clusters are simultaneously biplotted
in lower-dimensional space. It thus is allowed to understand the configuration easily
and grasp the homogeneity of the objects and variables. Further, an extension of the
procedure to fuzzyK-means clustering is proposed. A simulation study and a real data
example are provided to demonstrate the effectiveness of the proposed procedures.

Chapter 5 considers the interpretability in K-means clustering because it does not
allow any post-hoc transformation of solutions. As noted in Section 1.2, a p(variables)
× K(clusters) centroid matrix is noted for interpreting variables that characterize
clusters, but often, the between-clusters differences are not always clearly captured.
The study addresses this problem and proposes a new procedure for obtaining an
centroid matrix with sparseness and a simple structure. This makes the interpretation
of the clusters easier, as one may focus on only the nonzero centroids. The development
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of an iterative algorithm for the constrained minimization is described. A cardinality
selection procedure for identifying the optimal cardinality is presented, as well as a
modified version of the proposed procedure, in which some restrictions are imposed
on the positions of nonzero elements. The behaviors of the proposed procedure were
evaluated in simulation studies and are illustrated with three real data examples,
which demonstrate that the performances of the procedure are promising.

Chapters 6 and 7 focus on multivariate regression analysis.
Recently, various procedures for sparse multivariate regression (SMR) have been

proposed, and they can be classified into the following two types: penalized procedures
and cardinality-constrained procedures. Among them, the resulting number of zeros in
the regression coefficient matrix is controlled/constrained by a certain penalty function
or a prespecified cardinality. The study proposes a novel framework of a multivariate
data analysis procedure with sparsity called layered multivariate analysis (LMA),
including layered multivariate regression (LMR) in which SMR is elaborated. In LMR,
a regression coefficient matrix is assumed to be the sum of several sparse matrices,
which is called layers. Therefore, the sparseness of a coefficient matrix is controlled
by how many layers are used. In the same way, layered PCA (LPCA), where a
component loading matrix is constrained to have a layered structure, is also proposed.
It is theoretically guaranteed that a LMR solution converges to the unconstrained
solution as the number of layers increases. LMA is assessed by means of a simulation
study and illustrated with a real data example.

In Chapter 7, a new penalty function is proposed, which can be used for penalized
estimation in various multivariate analysis procedures. The proposed function is a
generalization of the existing ones, in that it includes LASSO and ridge penalties as
special cases. The proposed function shrinks solutions to a prespecified target matrix
that possesses a certain simple structure. The resulting solution is therefore simple
and easy to interpret, and its simplicity is controlled by some tuning parameters. We
present the two applications of the proposed method in sparse principal component
analysis and three-way component analysis. The effectiveness of the proposed method
is demonstrated by real data examples.

The final chapter is devoted for summarization and general discussions of the
foregoing chapters.
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Chapter 2

Factor Rotation to Simple
Structure with Permutation of
Variables

ABSTRACT

In this study, we propose a new rotation technique, which is directly
based on Thurstone (1947)’s definition. The proposed method can give a
p-variables × r-factors target matrix of zero and nonzero elements, which
stands for the properties to be possessed by the rotated loading matrix,
and a loading matrix is obliquely rotated to the target. Further, it is
rotated jointly with permuting the rows of the target matrix, in order to
match its rows to the ones of the loading matrix optimally, which has not
been proposed in the context of factor rotation. The proposed method
is therefore called Permutimin. An iterative algorithm for Permutimin is
proposed, with a refinement of Thurstone’s definition of simple structure
so as to specify the target matrix uniquely. Two real data examples are
presented as illustrations of Pemutimin, and the relationships between
Permutimin and Procrustes rotation is discussed.

2.1 Introduction

In exploratory factor analysis (EFA), the correlations among p observed variables
are assumed to be explained by r(< p) common factors. Their relationships to the
variables are described by the factor loadings in the resulting p-variables ×r-factors
matrix A. However, the matrix A is not uniquely determined, and we call this
property rotational freedom. The rotational freedom is formally expressed as AU,
which can also be regarded as a loading matrix, where U(r × r) is called a rotation
matrix and satisfies a certain condition.

This chapter is based on the published article Yamashita and Adachi (2019b) with some modifi-
cations and extensions.
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The rotational freedom is exploited by specifying U for rotating A so that the
resulting loading matrix AU has a desired property. This is considered as inter-
pretability, but what matrix is interpretable? A belief answer to the question is the
one having the two features; being sparse and well-clustered (e.g., Adachi (2016)).
The first feature implies that the loading matrix includes a number of zero elements.
It facilitates interpreting what factors are expressed by the columns of the matrix,
as only nonzero elements may be focused on for the interpretation. The second well-
clustered feature implies that different rows (variables) are associated with different
columns (factors). It clarifies how factors differ mutually, which also facilitates inter-
pretation. The matrix with such features is said to have simple structure (Thurstone,
1947; Browne, 2001).

However, the above explanations for the features are not sufficient for specifying
the simple structure. The definition that can be considered sufficient has been pre-
sented by Thurstone (1947), as in Table 2.1; he has defined simple structure by rules
specifying how zero elements are arranged in a matrix.

For elucidating what Thurstone (1947) means by simple structure, we illustrate
the matrices provided by the rules in Table 2.1. The first two rules [T1] and [T2]
can provide the left matrix in Table 2.2, which is undesirable in that the third factor
(column) does not work and three variables (rows) do not load any factor. But, the
addition of [T3] to [T1] and [T2] excludes such a matrix and provide the matrices
of simple structure. One of them is the matrix (B) in Table 2.2. Here, different
factors are mutually distinctive and also different variables are so: the former explain
different variables and the latter load different factors. This property is coincident to
the EFA aim of exploring the factors which fulfill distinctive roles. Whereas the set
of [T1], [T2], and [T3] specifies the necessity for a matrix to have simple structure,
the remaining [T4] and [T5] require the resulting matrix to be further simpler. That
is, by considering [T5], we can replace the matrix (B) with (C) in Table 2.2. The
latter is simpler than the former in that the matrix (C) has more zero elements and
can be interpreted more easily. In [T4], it is argued that such simplicity is required in
particular for cases with a greater number of factors.

The Thurstone’s definition of simple structure illustrated above is still relevant
today, as the explanations of factor rotation start with introducing the definition in
the influential literature such as Browne (2001), Harman (1976), and Mulaik (2010).

Table 2.1: Thurstone’s (1947) definition of simple structure rewritten
more clearly by Browne (2001, p. 115)

No. Rule
[T1] Each row should contain at least one zero.
[T2] Each column should contain at least r zeros.
[T3] Every pair of columns should have several rows with a zero in one column but not the other.
[T4] If r ≥ 4, every pair of columns should have several rows with zeros in both columns.
[T5] Every pair of columns should have few rows with nonzero loadings in both columns.
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Table 2.2: Examples of 7× 3 matrices for illustrating the definition
of simple structure, where # and blank indicate nonzero and zero

elements, respectively.

(A) (B) (C)
# # # #
# # # # #
# # # # # #
# # # # # #

# # # #
# #
# #

However, the arrangement of zero elements in Table 2.1 is not directly considered
in the existing rotation methods. Rather, the value of a function of the elements
in AU is considered, whose maximization or minimization is expected to make the
loading matrix AU satisfy the definition in Table 2.1. For example, in the Varimax
rotation (Kaiser, 1958), such a function is defined by summing the column variances
of the squared elements of AU and maximized over U, whereas in the Oblimin ro-
tation (Carroll, 1953), the function is defined using the inter-column covariances of
the squared elements and minimized over U. Although these methods may eventu-
ally produce AU that approximately meets the conditions in Table 2.1, the objective
functions such as the variances and covariances considered in them are not directly
related to the arrangement of zero elements.

In this paper, a new rotation method is proposed, which is directly related to
Thurstone’s definition of simple structure, i.e., procedure to rotate the loading matrix
in order to approximate the structure defined in Table 2.1. To introduce the procedure,
we start with an example of the target matrix

T =

1

2

3

4

5

6

7



#

#

# #

#

# #

#

#


, (2.1)

which is the matrix (C) of simple structure in Table 2.2, with # and blank indicating
nonzero and zero elements, respectively. This matrix is called a target matrix and
used as the target of simple structure to be approximated by the rotated loading
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matrix. Let us consider the problem of rotating the artificial loading matrix

A =

1. Agreeableness

2. Conscientiousness

3. Extraversion

4. Neuroticism

5. Agressiveness

6. Depressiveness

7. Openness



−0.6 −0.6 −0.9
−0.3 −0.3 0.4

−0.6 0.1 −0.4
−0.4 0.2 0.7

0.4 0.4 −0.5
−0.1 0.5 0.3

−0.8 0.2 −0.5


(2.2)

so that the resulting matrix has a simple structure indicated by (2.1). Here, we
should notice that the correspondence of the rows in (2.1) to the variables in (2.2) is
not specified. Thus, the rows of T in (2.1) must be permuted, for the reason illustrated
as follows: for example, if the second row Durable in (2.2) is to load the third factor
(after rotation), then, the fifth, sixth, or seventh row of (2.1) (loading the third factor)
must be moved to the second row, through permutation, so as to be paired to the
row of Durable in (2.2). On the other hand, if the third row Durable in (2.1) is to
load the second factor, the third, fourth, or fifth row of (2.1) (loading the second
factor) must be moved to the third row through permutation. We therefore consider a
rotation procedure, in which A is rotated simultaneously with the rows of T, which are
permuted so that the two resulting matrices are optimally matched mutually. Using
P a p × p permutation matrix P, the matrices P and U are obtained, so that the
rotated matrix AU approximates permuted target matrix T in the proposed method.
Indeed, it provides the following results:

P =



0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 0 0 1 0 0


, PT =

3

6

4

1

7

2

5



# #

#

#

#

#

#

# #


, (2.3)

AU =

1. Agreeableness

2. Conscientiousness

3. Extraversion

4. Neuroticism

5. Agressiveness

6. Depressiveness

7. Openness



0.91 -0.91 0.12

−0.05 −0.01 0.57
0.04 -0.74 −0.16

-0.66 −0.01 0.36

0.04 0.04 -0.74
-0.61 0.01 0.36

−0.03 -0.98 -0.25


. (2.4)

Here, the values of nonzero elements # in (2.4) are also estimated, as described in
Section 2. By comparing the rows in (2.1) with those in (2.3), we can see that the
permutation of the former rows gives (2.3); the third row in (2.1) has been moved
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to the first row in PT. The comparison between (2.3) and (2.4) shows that the
boldfaced elements in (2.4) corresponding to # in (2.3) have large absolute values,
while the remaining ones are close to zero, except for a few elements. That is, the
rotated loadings in (2.4) attain simple structure fairly well, in that each factor is
manifested by the reduced number of variables; e.g., the first factor is manifested by
Agreeableness, Neuroticism, and Depressiveness.

The remaining parts of the paper are organized as follows: in the next section, we
formulate our proposed method, which we call Permutimin. How it can be located
among the existing methods are discussed in Section 3. Its algorithm for a specified
target T is presented in Section 4. Here, T is merely one matrix in a set of target
matrices (target set), which has a simple structure as that indicated by Thurstone’s
definition in Table 2.1. However, the definition includes vague aspects as discussed in
Section 5.1, and therefore it does not allow us to specify a target set; this is discussed
in Section 5. There, the definition is modified so that the target set can be specified
in an objective manner. Two examples are given to illustrate Permutimin in Section
6. Finally, discussions are made for reconsidering Permutimin.

2.2 Proposed Method: Permutimin

A target matrix can be expressed as

T = B •C. (2.5)

Here, • denotes Hadamard element-wise product, C is a p × r unknown and uncon-
strained matrix, and B is the binary matrix with its elements taking one and zero
corresponding to the zero and nonzero ones in T, respectively; for example, if T is
given as in (2.1), then

B =



1 0 0

1 0 0

1 1 0

0 1 0

0 1 1

0 0 1

0 0 1


. (2.6)

It shows that the simple structure expressed as the zero/nonzero elements in T is also
represented by the zero/ones in B; they specify the simple structure in the target by
the arrangement of nonzero elements. Therefore, we call B a binary target matrix.

For the loading matrix A (p×r) resulting in EFA, the optimal permutation matrix
P (p × p), rotation matrix U (r × r), and C (p × r) are obtained in Permutimin, so
that the rotated loading matrix AU is optimally matched with the permuted target
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matrix PT = P(B•C) in a least square sense. It is formally formulated as minimizing

f(P,U,C) = ||AU−P(B •C)||2 (2.7)

over P, U, and C subject to two constraints. One constraint is that P is a permutation
matrix. The other is that U is a rotation matrix. This constraint differs depending
on whether the rotation is orthogonal or oblique. We choose the latter, as the latter
includes the former as a special case. In this paper, we suppose the following: the
matrix A to be rotated has been obtained so that the matrix of the inter-factor
correlations is equal to the r × r identity matrix Ir which indicates that the FA
solution is obtained as an orthogonal solution. Then, in our chosen oblique rotation,
U is constrained as

diag(U−1U−1′) = Ir. (2.8)

Here, diag(M) denotes the diagonal matrix whose diagonal elements are the same as
those of the square matrix M.

The loss function in (2.7) can be rewritten as

f(P,U,C) = ||P′AU−B •C||2 (2.9)

using the property of permutation matrices P′P = PP′ = Ir. As P′ is also a per-
mutation matrix, (2.9) shows that Permutimin can also be formulated as a rotating
matrix A simultaneously by permuting its rows.

It should be noted that the binary target matrix B in (2.5) is merely an example:

B ∈ S (2.10)

where S is a set of binary target matrices having simple structure. Thus, we must
consider all B contained in S. The overall procedure in Permutimin is as follows:

1. Perform the constrained minimization of (2.7) for each B in S.

2. Compare the solutions across different Bs to select the best solution.

In the next section, we present the algorithm for [1] without considering which B in
S is to be used; we describe the algorithm for a given B. The set S is considered in
Section 4. For the selection in [2], we use a scree criterion as illustrated in Section 5.

2.3 Relationships to the Existing Procedures

Permutimin can be included in the family of target rotation procedures which include
a step of rotation a loading matrix to be matched with a target matrix. In this section,
we discuss hierarchical relationships among the procedures including Permutimin.

The simplest procedure in the family is Procrustes rotation (Green, 1952; Huley
and Cattell, 1962; Mosier, 1939; Gower and Dijksterhuis, 2004). It can be formulated
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as minimizing ||AU−T||2 over the rotation matrix U subject to (2.8) or its orthogonal
version for a given target T. This matrix is reparametrized as T = B•C in Browne’s
(1972a, 1972b) variant of Procrustes rotation, where B is a given binary matrix and C

is an unknown unconstrained matrix; ||AU−B•C||2 is minimized over U and C. This
function is the Permutimin’s loss function (2.7) with P fixed to Ip. Thus, Permutimin
can be viewed as an extension of Browne’s variant of Procrustes rotation. Another
one of its extensions is Kiers’s (1994) Simplimax, which is formulated as minimizing
||AU − B •C|| over U and C as well as B, subject to the number of zero elements
in B being specified. Though the function does not include P, the locations of zeros
in B are not fixed, but estimated. Thus, the Simplimax function may be rewritten as
||AU−P(B•C)||2. It shows that Permutimin can be viewed as a constrained version
of Simplimax with the locations of zeros fixed. These discussions give the following
hierarchy:

Procrustes ≺ Browne’s variant ≺ Permutimin ≺ Simplimax (2.11)

where the symbol ≺ stands for the method preceding it being more restrictive than
the following one.

As described above, Browne’s rotation is the restricted version of Permutimin with
its permutation matrix P fixed to Ip. It implies that any rows of B are not permuted.
Thus, Browne’s rotation only works for the cases where the correspondences of the
rows in the rotated matrix AU to those of target T = B • C are known a priori.
However, such correspondences are often unknown. In such cases, Browne’s rotation
is not useful, but Permutimin can be utilized since reasonable correspondences can be
found with estimating P optimally, if a suitable value is selected as target’s cardinality,
i.e., the number of nonzero elements in T. This selection can be attained with the
scree procedure introduced in Section 5.

The Procrustes rotation is the simplest and most restrictive as found in (2.11).
However, even if it is unknown how the rows in A correspond to those of the target,
the rotation can be used by specifying T according to the result of another rota-
tion procedure. This version of Procrustes rotation is Hendrickson & White’s (1964)
Promax rotation, in which T is specified using the Varimax-rotated loading matrix.
Obviously, the result of Promax depends on that of the Varimax rotation. A drawback
of the Promax is that it fails to provide a simple structure, if the preceding Varimax
rotation is misleading.

2.4 Algorithm

In this section, we present an algorithm for the constrained minimization of (2.7) or
(2.9) over C, U, and P for a given B. For the minimization, the three steps called
C-, U-, and P-step are alternately iterated until convergence is reached.
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In C-step, (2.7) is minimized over C for fixed U and P. For this minimization, we
note that B in (2.9) is a binary matrix. It shows that the optimal C is simply given
by

C = P′AU. (2.12)

It should be noted that C in (2.12) cannot be determined uniquely, since it is filtered
by B as B •C and the elements in C corresponding to the zeros in B do not affect
on the function value in (2.7). However, the target matrix is uniquely determined as
T = B •C, to which the initial loading matrix is rotated.

In U-step, (2.7) is minimized over U subject to (2.8) with C and P being fixed.
For this minimization, we use Jennrich’s (2002) gradient projection (GP) algorithm
in which the update of U is iterated, and the iteration is finished when the decrease
in (2.7) with the update is less than 10−5, or the number of iterations reaches 1000.

In P-step, the permutation matrix P is updated so that (2.7) decreases. For this
update, we find the permutation of two rows in P0T which leads to the greatest
decrease in (2.7), with P0 denoting P before update. This problem is formulated as
finding [I, J ] = argmin

[i,j],1≤i<j≤m
D(Qij). Here, [i, j] denotes a pair of row numbers; with

ei being the i-th column of Ip, the p× p permutation matrix for exchanging the i− th
and j − th rows of P0T is expressed as Qij = Ip − eie

′
i − eje

′
j + eie

′
j + eje

′
i; and

D(Qij) = ||AU−QijP0T||2 = ||AU−P0T||2 expresses the decrease in (2.7) by the
exchange. To specify [I, J ], D(Qij) for all possible pairs of (i, j) are evaluated. The
update of P is given by

P =

QIJP0 iff D(QIJ) < 0

P0 otherwise
(2.13)

which ensures that (2.7) decreases if D(QIJ) < 0. Otherwise, P remains P0, and the
value of (2.7) also remains unchanged, implying that the iteration is over.

The above steps allow us to form the following algorithm for the minimization of
(2.7):

1. Initialize P and U randomly.

2. Update C with (2.12).

3. Update U with the GP algorithm.

4. Update P with (2.13).

5. Finish if convergence is reached; otherwise go back to Step [2].
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In Step [1], P is initialized at a permutation matrix chosen randomly, and the initial
U is obtained by transforming an r × r matrix U0 so as to satisfy (2.8) by adjusting
the column length of U−1

0 to 1. Here, each element of U0 is drawn from the uniform
distribution U(−1, 1). The convergence of Step [5] is defined as that the decrease in
(2.7) from the previous round is less than 10−7 or P = P0 in (2.13). In order to reduce
the possibility of selecting a local minimum as the optimal solution, we run the above
algorithm multiple times and consider the solution with the lowest function value of
(2.7) as the optimal one. See Appendix 2 for details of the multiple run procedure.

2.5 Target Matrices of Simple Structures

In Section 4.1, we consider the definition of simple structure which allows the set S
in (2.10) to be specified. In Section 4.2, we describe how S is specified and how a
suitable B can be selected among S.

2.5.1 Modification of Thurstone’s Simple Structure

The definition of the simple structure to be possessed by the target matrix (2.5) was
originally presented by Thurstone (1947), and is shown in Table 2.1. However, the
rules [T3] to [T5] in the table include vague adjectives such as “several” and “few”,
which do not allow the set in (2.10) to be identified objectively, although [T1] and
[T2] in Table 2.1 are clearer. Here, "objectively" can be rewritten as "uniquely": the
set must be uniquely specified so that a target matrix can be computationally formed.
Therefore, we modify Thurstone’s rule such that its modified version allows S to be
specified easily.

Simple structure can be defined by the zeros/ones in B which is equivalent to the
zero/nonzero elements in T as found in (2.5). Thus, in our modified version, simple
structure is defined with zeros/ones in B, as follows:

[M1] Each row has at least one zero and at least one element being one.

[M2] Each column has at least r zeros.

[M3] The maximum of inter-column inner products is the smallest among possible
Bs.

[M4] The maximum of the inter-column differences in the number of ones is the
smallest among possible Bs.

Note that the above rules are made for the binary matrix B, and [M1] would be
”Each row has at least one zero and at least large element in magnitude” for other
matrices. Let us compare this version with the original one in Table 2.1. Rule [M2] is
equivalent to [T2]. Rule [M1] is simply given by adding the condition that each row
has at least one nonzero elements to [T1]. Rules [M3] and [M4] are detailed in the
next paragraphs.
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Rule [M3] is related to [T3], [T4], and [T5]. They imply that an element must be
zero, if the corresponding element in a different column takes a nonzero value. This
implication is expressed using inner-products in [M3] so as to be assessed numerically.

Rule [M4] is newly introduced, by which the number of nonzero elements in each
column can be specified. This rule can be rewritten as that homogeneous numbers of
variables load each common factor, which implies that all common factors are equiv-
alently significant. For example, three variables in rows of B in (2.6) are heavily load
each of the three factors in columns. The maximum of the inter-column differences
in the number of ones in B attains its minimum 0 among all Bs, and [M4] is there-
fore satisfied. This condition, though it may be restrictive, serve to avoid undesirable
factors that contribute to few variables. It is contradictory to the concept of common
factors in that they explain the variations in multiple variables.

As shown in the next subsection, B can be uniquely specified, when the number
of non-zero elements is given.

2.5.2 Constructing Binary Target Matrices

Let N = Card(B) = Card(T) be the cardinality of B or T; i.e., the number of
nonzero elements in the target matrix. Rules [M1] and [M2] imply that N is an
integer satisfying

p ≤ N ≤ r(p− r). (2.14)

Here, the lower bound is set to p for avoiding an empty row, in order to satisfy [M1]
which is necessary to specify B uniquely. The upper bound is set to r(p − r), as N
exceeding it would not allow [M1] to be satisfied.

Table 2.3 illustrates how the binary target matrix B meeting [M1] to [M4] is
specified for each N in (2.14) for p = 8 and r = 3. Its leftmost panel (A) shows B

for N being the minimal 8. Obviously, it follows the simple structure rules. Let us
note the change from Panel (A) to (B). In the latter, N is increased by one so that
the bold faced one is added in (1, 3). It can be seen that the addition ensures that
the rules are followed, with the number of ones in each column and the inter-column
inner products (shown at the bottom of Table 2.1) satisfying [M3] and [M4]. Next,
let us note the change from (B) to (C), where one is added to the cell (2, 1) so that
the rules are followed. We can find that the addition of one is replicated in similar
manners from (C) to (H).

The algorithm for forming the the binary target matrices that satisfy the modified
Thurstone’s rule can be described as next, using N for a set of indexes (i, j) and O

for the p× r zero matrix:

1. Set i = j = 1, n = 0, N = ∅, and B = O.

2. Set bij = 1 with bij is the (i, j)-th element of B.

3. j = j + 1 if j < r; otherwise set j = 1.
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4. i = i+ 1 if i < p; otherwise set i = 1.

5. If the current (i, j) is found in the set N , go back to [4]; otherwise add the
current (i, j) to N and go to [6].

6. Finish if n = N ; otherwise set n = n+ 1 and go back to [1].

Above, an integer n is used for counting the current number of zeros in B.
As discussed in Appendix 3, the optimal binary target matrix B that satisfies [M1]-

[M4] in Section 4.1 can be uniquely determined for a given N . That is, the modified
Thurstone’s rule gives the specified B through the above algorithm, in contrast to its
original version with unclear properties. This justifies the modification of the rule and
the proposed procedure based on the modified rule.

Table 2.3: Binary target matrices B (8× 3) satisfying the proposed
simple structure conditions.

(A) (B) (C) (D) (E) (F) (G) (H)
N 8 9 10 11 12 13 14 15

R(N/p) 8 1 2 3 4 5 6 7
R(N/r) 2 3 1 2 3 1 2 3

B

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Number of 1 3 3 2 3 3 3 4 3 3 4 4 3 4 4 4 5 4 4 5 5 4 5 5 5
Product* 0 0 0 0 1 0 1 1 0 1 1 1 1 2 1 2 2 1 2 2 2 2 3 2

*In each panel, the 1st, 2nd, and 3rd cells show inner products b′
1b2, b′

1b3 , and b′
2b3, respectively,

with bj the jth column of B.

We can ascertain that the algorithm gives Table 2.3, when p = 8 and r = 3.
By increasing n as n = 1, 2, · · · , N , with N = 8, we have (R(n/p), R(n/r)) =

(1, 3), (2, 1), · · · , (7, 3). They indicate the bold faced elements in Panels (B), (C),
· · · , (H), which are the ones added with an increase in N . Obviously, B can also be
defined for other p and r values.

2.5.3 Selection of Target Cardinality

Here, we consider the selection of a suitable N (the cardinality of the target matrix)
from its range (2.14). For this consideration, it must be noted that a trade-off re-
lationship exists between the interpretability of the rotated loading matrix AU and
how well it approximates the permuted target PT = P(B •C). As N increases, the
approximation is improved; i.e., the resulting value of the loss function (2.7) is de-
creased, since a larger N implies a greater number of parameters being estimated. On
the other hand, a decrease in N facilitates the interpretation, as a smaller N causes
a greater number of loadings to be close to zero, and they may not be noted for the
interpretation.
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A reasonable approach to selecting N is using a scree plot, in which f̃N = α−1fN

is plotted against N , where α = ||A||2 is used for the normalization. Here, fN denotes
the resulting (2.7) value as a function of N and α is a suitable normalizing factor. A
typical procedure with the plot is to note the amounts of decreases in the (2.7) values,
f̃N−1 − f̃N and f̃N − f̃N+1, where the two differences indicate the decrements before
the cardinality reaching N and after it exceeding N , respectively. Then, an N value
with f̃N−1− f̃N great but f̃N− f̃N+1 small can be selected as a suitable one. However,
inspecting the scree plot does not allow such an N value to be chosen easily. Thus,
we propose to use the numerical index

δ(N) =
f̃N−1 − f̃N
f̃N − f̃N+1

(2.15)

in place of the inspection: the N value maximizing (2.15) can be reasonably chosen
as a suitable cardinality. The scree plot procedure is illustrated in the next section.
However, the above procedure with (2.15) is not guaranteed to give optimal N in
terms of resulting simplicity of loading matrix. Thus, one may try to obtain the
loading matrices for some different Ns and compare the resulting ones to find an N

value which yields a preferable result.

2.6 Illustrations

In this section, we illustrate Permutimin with the selection of a suitable value of car-
dinality N , using two examples. In the first one, prior knowledge can be given for the
correspondences of the rows of a rotated loading matrix to the target’s counterparts,
but the knowledge is not given in the second example.

2.6.1 Thurstone’s Box Problem

As an example, we use Cureton & Mulaik’s (1975, p. 184, Table 1) 15 variables ×
3 factors loading matrix given by Thurstone’s (1947) box problem. In this problem,
the variables are defined using the functions of factors (x, y, z) as shown in Table 2.4
(left column), and the data simulated on the basis of the definition are analyzed by
using EFA to provide the loading matrix to be rotated. The rotated loadings can be
regarded as successful, if the variables show large loadings for the associated factors,
for example, the variable 2y + 2z gives a large loading for factors y and z. Thus, the
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suitable target matrix is

T =

x

y

z

xy

(xy)2

2(x+ y)√
x2 + y2

xz

(xz)2

2(x+ z)√
x2 + z2

yz

(yz)2

2(y + z)√
y2 + z2



#

#

#

# #

# #

# #

# #

# #

# #

# #

# #

# #

# #

# #

# #



(2.16)

with Card(T) = 27. It can be given by T = P(B •C), where the binary target B
chosen for Card(T) = 27 by the algorithm in Section 5.2.

Without using this prior knowledge, i.e., supposing that B, U, and U are unknown,
we performed Permutimin for Cureton and Mulaik’s matrix, with N set at each integer
with the interval (2.14), i.e., from 15 to 36, and the corresponding target matrix
obtained by the procedure described in Section 5.2. Figure 2.1(A) shows the scree
plot of the loss function (2.7) values. There, it is obvious that the values hardly change
for N < 31. For N ≤ 31, we obtained the ratios (2.15)) and their plot against N
is presented in Figure 2.1(B), where N = 27 is to be selected as the cardinality of
the target. This is the suitable value described above indicating that the scree test
procedure appropriately specified the reasonable N .

We performed Permutimin for Cureton and Mulaik’s matrix, with N set at each
integer within the interval (2.14), i.e., from 15 to 36, and the corresponding target
matrix obtained by the procedure described in Section 4.2. Figure 2.1(A) shows the
scree plot of the loss function (2.7) values. There, it is obvious that the values hardly
change for N > 31. For N ≤ 31, we obtained the ratios (2.15) and their plot against N
is presented in Figure 2.1(B), where N = 27 is to be selected as the cardinality of the
target. is consistent to the assumption that the 9 variables are associated to each of
the three factors. Therefore, it can be said that the scree test procedure appropriately
specifies reasonable N .

Panel (A) in Table 2.4 shows the loading matrix by Permutimin with N = 27. It is
seen that the loadings can be split into those greater than 0.3 and those close to zero
with their absolute values not exceeding 0.1. The former loadings, which are boldfaced,
demonstrate that the Permutimin solution can be considered to be successful in that
the variables load the factor(s) used for defining the variables. For comparison, we also
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rotated Cureton and Mulaik’s matrix by five other oblique rotation methods, namely
Oblimin, Promax, Geomin (Yates, 1987), Simplimax (Kiers, 1994), and component
loss rotation (Jennrich, 2004, 2006), where their detailed procedures are described in
Appendix 1. Panels (B) to (F) in Table 2.4 show the resulting loadings, with bold font
used for the ones whose absolute values are greater than 0.3. We can find that those
five methods did not attain the ideal structure as good as Permutimin did. Varimax
rotation has also been found to have failed to give the structure by Cureton and
Mulaik (1975). These comparisons demonstrate a promising behavior of Permutimin.

The procedures treated so far are those for the cases without prior knowledge. On
the other hand, Browne’s rotation is the procedure that works when the knowledge
given. We performed the Browne’s rotation with T set at (2.16). The resulting
loading matrix shown in Table 2.4(G) was identical to the one by Permutimin. It
demonstrates that Browne’s rotation works as fairly well as Permutimin if the target
is specified correctly, but Permutimin can also find the ideal structure even if only the
cardinality of target is specified.
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Figure 2.1: Attained minimum of function value (A) and δ(N) (B)
for N = 15 · · · , 36 for the box problem.

2.6.2 Personality Loadings

As the second example, we use Yanai & Ichikawa’s (2006) 12 personality traits × 3
factors loading matrix obtained for 12 scales of New Personality Test (Yanai et al.,
1987). For the matrix, we performed Permutimin in the same procedures as in the
last example. Existing rotation procedures were also applied for comparison But,
Browne’s rotation was not performed, as the prior knowledge to be required by the
rotation can not not be given. Figure 2.2(A) shows the scree plot of the resulting
loss function values. There, the values hardly change for N > 28. For N ≤ 28, we
obtained the ratio (2.15) and their plot against N is presented in Figure 2.2(B), where
N = 17 is to be selected as the cardinality of the target.
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The loading matrix resulted in Permutimin with N = 17 is shown in Panel (A) of
Table 2.5, together with the results for the matrices obtained with the other proce-
dures in Panels (D) - (H). Note that the loadings with their absolute values greater
than 0.3 boldfaced. The matrix for Permutimin in Panel (A) is similar to those of
other four procedures excluding Simplimax. That is, the five procedures including
Permutimin form a majority. Their loading matrices can be interpreted reasonably
as follows. The first factor, showing the large positive loadings for Extroversion, Ac-
tivity, Novelty, Self-revelation, and Aggressiveness, can be interpreted as standing for
“general activity”. The second one with large loadings for Aggressiveness, Lack of
Cooperativeness, Inferiority Feeling, Nervousness, and Depression can be labeled an
“emotional instability” factor. The third factor, which shows remarkably positive load-
ings for empathy, durability, and regularity, can be interpreted as a “conscientiousness”
factor.

For the potential users of Permutimin, we show two results with Ns different from
the above 17 which might satisfy some special interests. The result of Permutimin
with N = 14 is shown in Panel (B) in Table 2.5. The target cardinality is close to its
minimum and such a target would be useful for the purpose of variable clustering. In
this example, except for two variables, each variable highly loads on a single factor and
they can be classified into three clusters. One the other hand, one might be interested
in comparing the solutions for some candidates of N values. We thus performed
Permutimin with N = 22 in which second largest value of (2.15) was observed. The
rotation result is shown in Panel (C). This result is slightly different from the one in
Panel (A); Inferiority Feeling shows significantly negative loading to the first factor
and the correspondence between Activity and the third factor no longer observed.
The two loading matrices are equally simple and interpretable, but which is preferred
depends on users’ interest. Users may choose the results matched with their purposes.
In other words, while the scree test procedure suggests single N as a best, users can
try to run Permutimin with setting N to different values and find a better rotation
result from the stand point of interpretability and theoretical validity. Permutimin
provides such freedom for users, which satisfies broader needs for FA.

Permutimin’s solution is also useful for ordering (or permuting) the variables in
a covariance matrix, so that those loading to the same factor are arranged mutually
close. It facilitates interpreting the loading matrix. It is accomplished by referring
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the estimated PB. For example, in this illustration, the estimated PB is

1. Extraversion

2. Activity

3. Empathy

4. Novelty

5. Durability

6. Regularity

7. Self -revelation
8. Aggressiveness

9. Lack of Cooperativeness

10. Inferiority Feeling

11. Nervousness

12. Depression



1 0 0

1 1 0

0 1 0

1 0 0

1 1 0

0 1 0

1 0 1

1 0 1

0 1 1

0 0 1

0 1 1

0 0 1



,

which shows that the six variables Extroversion, Activity, Novelty, Durability, Self-
revelation, and Aggressiveness load the first factor. Thus, we can permute the rows
and columns of the corresponding covariance matrix, so that those six variables occupy
the first six rows in resulting the matrix. It allows us to easily capture what variables
characterize the first factor.
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Figure 2.2: Attained minimum of function value (A) and δ(N) for
N = 12 · · · , 36 for Yanai & Ichikawa’s (2006) loading matrix

2.7 Discussion

We proposed the Permutimin rotation, in which the loading matrix A is rotated
jointly with permutations of the rows of the target matrix T, so that the rotated
loading matrix optimally approximates the permuted target matrix. This procedure is
formulated as minimizing (2.7), i.e., f(P,U,C) = ||AU−PT||2 = ||AU−P(B•C)||2

over the rotation matrix U, permutation matrix P, and unconstrained C, with T =
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Table 2.4: Rotated loading matrices and factor correlations for
the box problem by seven rotation procedures; Permutimin (Pmin),
Oblimin, Promax, Simplimax (Smax), Geomin, Component Loss Ro-
tation (CLF), and Browne’s (1972a) Procrustes Rotation (Browne).

(A) Pmin (B) Oblimin (C) Promax (D) Smax
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

x 0.98 0.03 0.03 0.44 0.39 0.73 -0.52 0.48 0.88 0.74 0.32 0.61
y 0.02 0.96 0.03 -0.17 0.98 -0.33 0.46 0.82 -0.37 0.44 0.69 -0.45
z 0.03 0.04 0.96 0.97 -0.16 -0.34 0.84 -0.32 0.43 0.82 -0.32 -0.46
xy 0.61 0.67 0.00 0.11 0.91 0.23 -0.04 0.86 0.26 0.72 0.68 0.08
xy2 0.35 0.84 0.03 0.00 0.98 -0.03 0.22 0.87 -0.03 0.63 0.71 -0.18
2x+ 2y 0.54 0.75 -0.04 0.02 0.98 0.17 0.01 0.91 0.15 0.67 0.73 0.02
(x2 + y2)0.5 0.51 0.74 -0.02 0.03 0.95 0.15 0.03 0.88 0.14 0.66 0.71 0.00

loadings xz 0.61 0.01 0.67 0.93 0.09 0.21 0.24 0.04 0.83 0.99 -0.05 0.07
xz2 0.42 -0.03 0.82 1.02 -0.05 0.03 0.46 -0.13 0.75 0.97 -0.20 -0.10
2x+ 2z 0.58 -0.02 0.71 0.97 0.04 0.19 0.27 -0.01 0.84 0.99 -0.10 0.05
(x2 + z2)0.5 0.55 -0.02 0.71 0.95 0.03 0.17 0.30 -0.02 0.81 0.96 -0.11 0.03
yz -0.03 0.60 0.63 0.50 0.46 -0.46 0.85 0.26 0.00 0.75 0.19 -0.60
yz2 -0.01 0.43 0.77 0.68 0.26 -0.44 0.88 0.07 0.14 0.80 0.02 -0.58
2y + 2z -0.01 0.61 0.63 0.49 0.48 -0.45 0.84 0.28 0.00 0.76 0.20 -0.59
(y2 + z2)0.5 0.01 0.61 0.59 0.47 0.50 -0.42 0.79 0.30 0.01 0.75 0.22 -0.56

correlation F1 1.00 1.00 1.00 1.00
F2 0.19 1.00 0.55 1.00 0.47 1.00 0.00 1.00
F3 0.20 0.31 1.00 -0.07 -0.08 1.00 0.47 0.43 1.00 0.00 -0.12 1.00

(E) Geomin (F) CLF (G) Browne
F1 F2 F3 F1 F2 F3 F1 F2 F3

x 1.49 0.00 0.88 1.30 0.01 0.63 0.98 0.03 0.03
y 0.03 0.58 -0.75 0.04 0.55 -0.77 0.02 0.96 0.03
z 0.07 -0.50 -0.79 0.08 -0.53 -0.77 0.03 0.04 0.96
xy 0.93 0.42 0.06 0.82 0.40 -0.11 0.61 0.67 0.00
xy2 0.54 0.50 -0.35 0.48 0.48 -0.45 0.35 0.84 0.03
2x+ 2y 0.82 0.49 -0.04 0.72 0.47 -0.20 0.54 0.75 0.04
(x2 + y2)0.5 0.78 0.47 -0.07 0.70 0.45 -0.22 0.51 0.74 0.02

loadings xz 0.94 -0.36 0.01 0.83 -0.38 -0.12 0.61 0.01 0.67
xz2 0.67 -0.47 -0.25 0.60 -0.49 -0.34 0.42 0.03 0.82
2x+ 2z 0.91 -0.40 -0.02 0.80 -0.42 -0.14 0.58 0.02 0.71
(x2 + z2)0.5 0.85 -0.40 -0.05 0.76 -0.42 -0.17 0.54 0.02 0.71
yz -0.02 0.02 -1.01 0.00 -0.01 -0.99 0.03 0.60 0.63
yz2 0.00 -0.16 -0.98 0.01 -0.20 -0.96 0.01 0.43 0.77
2y + 2z 0.00 0.03 -1.00 0.02 0.00 -0.99 0.01 0.61 0.62
(y2 + z2)0.5 0.04 0.05 -0.95 0.04 0.02 -0.95 0.01 0.61 0.59

correlation F1 1.00 1.00 1.00
F2 0.02 1.00 0.00 1.00 0.19 1.00
F3 -0.77 -0.02 1.00 -0.69

Table 2.5: Rotated loading matrix for Yanai & Ichikawa’s (2006)
loading matrix obtained by six rotation procedures.

(A) Pmin (N = 17) (B) Pmin (N = 14) (C) Pmin (N = 22) (D) Oblimin (E) Promax
F1 F2 F3 F1 F2 F3 F2 F3 F1 F1 F2 F3 F2 F3 F1

Extroversion 0.47 -0.19 0.14 0.44 -0.33 0.16 0.47 -0.30 0.13 0.44 -0.33 0.16 0.47 -0.30 0.13
Activity 0.63 -0.07 0.33 0.60 -0.25 0.34 0.64 -0.20 0.31 0.60 -0.25 0.34 0.64 -0.20 0.31
Empathy -0.05 -0.01 0.59 -0.05 0.04 0.60 0.00 0.08 0.60 -0.05 0.04 0.60 0.00 0.08 0.60
Novelty 0.61 0.13 0.03 0.58 -0.07 0.01 0.58 -0.04 0.00 0.58 -0.07 0.01 0.58 -0.04 0.00
Durability -0.05 -0.06 0.68 -0.05 -0.01 0.69 0.01 0.05 0.69 -0.05 -0.01 0.69 0.01 0.05 0.69

loadings Regularity 0.08 0.11 0.73 0.08 0.12 0.72 0.14 0.19 0.73 0.08 0.12 0.72 0.14 0.19 0.73
Self-revelation 0.66 0.34 0.01 0.64 0.12 -0.04 0.63 0.15 -0.04 0.64 0.12 -0.04 0.63 0.15 -0.04
Aggressiveness 0.60 0.55 -0.11 0.59 0.34 -0.20 0.56 0.36 -0.18 0.59 0.34 -0.20 0.56 0.36 -0.18
Lack of Cooperativeness 0.20 0.51 -0.10 0.22 0.42 -0.17 0.18 0.43 -0.14 0.22 0.42 -0.17 0.18 0.43 -0.14
Inferiority Feeling -0.29 0.56 -0.03 -0.25 0.63 -0.10 -0.30 0.62 -0.04 -0.25 0.63 -0.10 -0.30 0.62 -0.04
Nervousness -0.02 0.73 0.37 0.01 0.74 0.27 0.00 0.77 0.33 0.01 0.74 0.27 0.00 0.77 0.33
Depression 0.05 0.85 0.09 0.08 0.82 -0.02 0.04 0.84 0.04 0.08 0.82 -0.02 0.04 0.84 0.04

correlation F1 1.00 1.00 1.00 1.00 1.00
F2 -0.32 1.00 -0.02 1.00 -0.03 1.00 -0.02 1.00 -0.03 1.00
F3 0.26 -0.24 1.00 0.24 -0.17 1.00 0.19 -0.31 1.00 0.24 -0.17 1.00 0.19 -0.31 1.00

(F) Smax (G) Geomin (H) CLF
F1 F2 F3 F1 F2 F3 F1 F2 F3

Extroversion 0.66 -0.13 0.06 0.48 -0.25 0.12 0.48 -0.28 0.18
Activity 0.68 0.03 0.24 0.65 -0.15 0.31 0.64 -0.19 0.36
Empathy 0.00 -0.03 0.59 -0.01 -0.02 0.58 -0.01 0.00 0.59
Novelty 0.42 0.24 -0.03 0.59 0.06 0.02 0.62 0.00 -0.01
Durability 0.06 -0.08 0.66 0.00 -0.07 0.66 0.00 -0.05 0.68

loadings Regularity 0.00 0.13 0.71 0.12 0.09 0.72 0.12 0.10 0.71
Self-revelation 0.23 0.49 -0.04 0.63 0.27 0.01 0.62 0.20 0.00
Aggressiveness -0.07 0.71 -0.14 0.55 0.49 -0.11 0.54 0.42 -0.14
Lack of Cooperativeness -0.39 0.59 -0.08 0.16 0.49 -0.09 0.16 0.46 -0.14
Inferiority_Feeling -0.89 0.55 0.06 -0.32 0.59 0.00 -0.32 0.60 -0.09
Nervousness -0.81 0.79 0.43 -0.04 0.72 0.39 -0.03 0.72 0.29
Depression -0.90 0.94 0.16 0.01 0.84 0.12 0.01 0.83 0.01

correlation F1 1.00 1.00 1.00
F2 0.57 1.00 -0.17 1.00 -0.05 1.00
F3 0.35 0.09 1.00 0.19 -0.23 1.00 0.13 -0.13 1.00
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B • C where B denotes a known binary matrix. B can be selected from the set of
possible Bs, which is specified by the modified version of Thurstone’s (1947) definition
of simple structure in Section 4, so as to obtain PAU of that structure. For selecting
a suitable N , we can use the scree-plot of the attained function value of (2.7), as
illustrated in Section 5.

As found in (2.11) Simplimax is found to be the least restrictive; however, it is
not necessarily desirable, as found in Section 5.1, where Permutimin was shown to
outperform Simplimax in rotating the box-problem loadings. Simplimax can give
a target matrix including an empty column filled with zeros, which may make the
corresponding factor irrelevant to any variable in the target. Such a case can be
avoided in Permutimin by using B without an empty column.

Appendix 2.A Details of Rotation Procedures in Section
6

We carried out Oblimin, Promax, Geomin, and Browne’s rotation using R packages
with their default settings. For Simplimax, the number of zero elements in the target
matrix was set at 15 × 3 − 27 = 18 in Section 5.1 and 12 × 3 − 17 = 19 using the
scree test procedure in which the N maximizing (15) is selected. The component loss
rotation was performed using our our own FORTRAN program, in which the linear
component loss function (Jennrich, 2006) was minimized with the GP algorithm.

The R program for Permutimin and the compiled FORTRAN program for the
component loss rotation can be obtained from the authors upon request.

Appendix 2.B Multiple Runs Procedure

In order to reduce the possibility of selecting a local minimum as the optimal solution,
we use Adachi’s (2011) multiple runs procedure in which an algorithm is run multiple
times, starting with random initial values until two equivalently best solutions are
found. Using Rm = {Cm,Um,Pm} for the resulting solution from the m−th run
and f(Rm) for the attained value of f(Cm,Um,Pm), the multiple run procedure for
Permutimin is stated as follows.

1. Set M = 50 and obtain Rm for m = 1, · · · ,M ; find m∗ = argmin
1≤m≤M

f(Rm).

2. Select Rm as the optimal solution to finish if Rm∗ is equivalent to Rm∗ is equiv-
alent to Sl, resulting from the l−th run with l ̸= m∗; otherwise, go to [3].

3. Set M :=M + 1 to obtain RM ; exchange Rm∗ for RM if f(RM ) < f(Rm∗).

4. Select Rm∗ as the optimal solution to finish if Rm∗ is equivalent to RM or
M = 400; otherwise, go back to [3].

Above, the equivalence of Rm∗ to Rl is defined as |f(Rm∗)− f(Rl)| < 10−7.
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Appendix 2.C Uniqueness of the binary target matrix B

for a given N

In this appendix, it is explained why [I] the algorithm (Steps[1] - [6]) in Section 3
uniquely specifies B with an arbitrary N satisfying (2.14) and [II] such B satisfies the
modified Thurstone’s rule in Section 4.1.

We firstly explain [I]. The algorithm fails to form the unique B with a given N if
and only if the current (i, j) corresponding to the current n is already included in the
set N , at a repetition of the algorithm. In such a case, the current B is not updated
at Step [2] because bij is already equal to 1, and therefore B is not uniquely specified.
This situation is avoided by Step [5], however, and therefore the algorithm uniquely
specifies B for a given N .

Next, we explain [II]. All rows of B must have at least one and at least one zero
as a result of Step [4] and (2.14), and therefore [M1] is satisfied.

Step [3] provides the binary matrix B in which the number of zero elements is
expressed as

p−N/r if mod(N/r) = 0 (2.17)

or
p− ⌊N/r⌋ or p− ⌊N/r⌋+ 1 if mod(N/r) > 0, (2.18)

where mod(N/r) and ⌊•⌋ denote the remainder resulting from the division of integer
N by r and the floor function, respectively. It can be found that those numbers are
not less than r if N satisfies (2.14). For the case with (2.17), we have p − N/r ≥ r

follows from N ≤ r(p− r). For the case with (2.18), we also have p− ⌊N/r⌋ ≥ r and
p− ⌊N/r⌋+ 1 ≥ r. This is because ⌊N/r⌋ attains its maximum when N = r(p− r).
Then, we have ⌊N/r⌋ = p− r. [M2] is thus satisfied.

The maximum of inter-column products in B resulting in Steps [3] and [4] is given
by 0 if N ≤ p; otherwise ⌈(N − p)/r⌉, where ⌈•⌉ denotes the ceiling function. These
numbers are obviously the minimum of inter-column inner products for all possible
Bs, and therefore Bs formed by the algorithm satisfy [M3].

Finally, the ones in B given through Step [3] is ⌊N/r⌋ or ⌊N/r⌋ + 1, and the
difference between those possible integers is one at maximum. It indicates that B

satisfies [M4].
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Chapter 3

Rotation in Canonical Correlation
Analysis as Maximizing Sum of
Squared Correlations

ABSTRACT

In this study, canonical correlation analysis, which is known to be dif-
ficult to interpret, is re-formulated as maximization of sum of squared
correlations, and its equivalence to the existing formulation is shown.
Under the new formulation, two structure matrices that are often used
in interpretation are allowed to be rotated orthogonally and individually.
The study thus proposes an orthogonal rotation method for rotating two
structure matrices individually to simple structures, and it is different
from the one allowed in the existing formulation. The existing rotation
method only allows the simultaneous rotation of two structure matrices,
and thus the proposed method further simplifies the matrices. It is illus-
trated that the proposed method facilitates the interpretation of solutions
of canonical correlation analysis by a real data example.

3.1 Introduction

Canonical Correlation Analysis (CANO) is a multivariate analysis procedure that
composes linear combinations of two sets of observed variables so as to maximize their
correlation. The resulting linear combinations are called canonical variates, while the
correlation between the canonical variates is canonical correlation.

While CANO is a classical and fundamental procedure dealing with multiple sets
of variables, it has not been applied in real data analysis, mainly because its result is
difficult to interpret, as empirically shown in Section 1.2.5.

This chapter is based on the published article Yamashita (2012a) with some modifications and
extensions.
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Related to the issue, Cliff and Krus (1976) and Reynolds and Jackosfsky (1981)
proposed to rotate CANO’s solution matrices to simplicity. It is certainly useful
and improves the interpretability of CANO’s result, but it has a critical limitation;
structure matrices corresponding to two sets of variables need to be rotated by a
common rotation matrix. In other words, their individual rotation are not allowed.
Therefore, it is quite rare that those two matrices are simultaneously simplified.

In order to solve the above problem in CANO and the existing rotation methods,
the study firstly proposes a new formulation of CANO that is equivalent to the existing
one. The existing formulation of CANO is the maximization of sum of correlation
of canonical variates over two weight matrices subject to some suitable constraints,
as discussed in Section 1.2.5. The new formulation is to maximize sum of squared
correlation of the variates under the same constraints, and it is proved to be equivalent
to the existing formulation. Under the new formulation, it is shown that two weight
matrices have a indeterminacy with respect to independent rotation. The author
thus proposes an independent rotation procedure and it is expected to considerably
improves the interpretability of CANO’s results compared with simultaneous rotation
under the existing formulation.

3.2 A New Formulation of Canonical Correlation Analysis

The function to be maximized in the existing formulation of CANO is expressed as

FCA(W1,W2) = trR = trn−1W′
1X

′
1X2W2. (3.1)

where R is the r×r correlation matrix of canonical variates, and it is called canonical
correlation matrix. Note that X1W1 and X2W2 are the matrices of r canonical
variates in 1st and 2nd variable sets, respectively. It is maximized under the constraint

n−1W′
1X

′
1X1A1 = n−1W′

2X
′
2X2A2 = Ir (3.2)

and the solution is given by given

W1 = n1/2(X′
1X1)

−1/2Vr, W2 = n−1/2(X′
2X2)

1/2Ur (3.3)

using the SVD
M = (X′

2X2)
−1/2X′

2X1(X
′
1X1)

−1/2 = UDV′. (3.4)

See Section 1.2.5 for the derivation of the solution.
In interpreting CANO’s result, rather than the weight matrices W1 and W2,

matrices called structure matrices defined as

S1 = n−1X′
1X1W1, S2 = n−1X′

2X2W2 (3.5)
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is often used (Levine, 1977), because they are the correlation matrix of original vari-
ables and canonical variates and thus ranges from -1 to 1.

Here, we have the following theorem with regard to the formulation of CANO.

Theorem 3.2.1. Under the constraint (3.2), we have the inequality

F ∗
CA(W1,W2) = ||R||2 = ||n−1W′

1X
′
1X2W2||2 ≤ trD2

r (3.6)

and the inequality holds when (3.3).

Proof. F ∗
CA(W1,W2) is expanded as

F ∗
CA(W1,W2) = trW∗′

1 M
′W∗

2W
∗′
2 MW∗

1

= trW∗′
1 VDU′W∗

2W
∗′
2 UDV′W∗

1

= tr(U′W∗
1W

∗′
1 U)D(V′W∗

2W
∗′
2 V)D (3.7)

with W∗
1 = (X′

1X1)
1/2W1, W∗

2 = (X′
2X2)

1/2W2, and M having the rank of r∗(≤
min(p1, p2)). Since W∗′

1 W
∗
1 = W∗′

2 W
∗
2 = Ir, W∗

1 and W∗
2 are column-orthogonal

matrices and their transpose are row-orthogonal. The matrix products U′W∗
1W

∗′
1 U

and V′W∗
2W

∗′
2 V are thus sub-orthogonal matrices by Lemma 4 in Ten Berge (1983).

See Ten Berge (1983) for the definition of sub-orthogonality. Finally, using Theorem
2 in the same article, it follows that

F ∗
CA(W1,W2) ≤ ErD

2 = D2
r (3.8)

where Er denotes the r∗ × r∗ diagonal matrix whose first r diagonal elements are 1
and zeros elsewhere. The equality holds when

U′W∗
1W

∗′
1 U = V′W∗

2W
∗′
2 V = Er (3.9)

that leads (3.3).

The theorem indicates that the maximization of L∗
CA(W1,W2), which was newly

introduced here, is maximized by the same W1 and W2 that also maximizes LCA(W1,W2),
the function maximized in the existing formulation. It leads that CANO can be for-
mulated by the maximization of sum of squared canonical correlations.

3.3 Individual Rotation of Structure Matrices

In the existing objective function of CANO, there exists an indeterminacy of simulta-
neous and orthogonal rotation of solution matrices expressed as

FCA(W1,W2) = trn−1W′
1X

′
1X2W2 = trn−1T′W′

1X
′
1X2W2T (3.10)

where T denotes an arbitrary r×r orthonormal matrix that satisfies T′T = TT′ = Ir.
The weight matrices are rotated as W1T and W2T toward their simplicity to help
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interpretation, by a common rotation matrix T. As to be exemplified in the next
section, the simultaneous rotation often fails to simplify W1 and W2 at the same time,
because the rotation matrices used for rotating them are restricted to be identical.

A rotation matrix T can be specified so as to maximize sum of the simplicity
attained after rotation. Such maximization criterion can be formulated as

S(T) = αs(W1T) + βs(W2T) (3.11)

where s(N) is a measure of how simple the matrix N is, and α and β are the weight
parameters. In this study, as such measure, Varimax criterion (Kaiser, 1958) is con-
sidered, and the simultaneous rotation by T is called simultaneous Varimax rotation.
An algorithm to maximize S(T) in (3.11) is described in Appendix.

The new formulation of CANO also has another rotational indeterminacy, but it
allows to rotate the weight matrices individually;

L∗
CA(W1,W2) = ||n−1T′

1W
′
1X2W2T

2||2 (3.12)

with T1 and T2 are both satisfy the same constraint as T, and they are used for
rotate W1 and W2, respectively. The individual rotation is called individual Varimax
rotation, in that T1 and T2 are specified by applying Varimax rotation to W1 and W2

in parallel. Individual Varimax rotation is expected to simplify W1 and W2 better
than the simultaneous one.

As noted above, the structure matrices defined in (3.5) are often used for the
interpretation. They also allowed to be rotated individually and simultaneously since

S1T = n−1X′
1X1(W1T), S2T = n−1X′

2X2(W2T) (3.13)

in simultaneous rotation, and

S1T1 = n−1X′
1X1(W1T1), S2T2 = n−1X′

2X2(W2T2) (3.14)

in individual rotation. It indicates that simultaneous and individual rotations are
equally applied to structure matrices S1 and S2 as well W1 and W2.

3.4 Real Data Example

Simultaneous and individual rotations were both applied to Sports data introduced in
Section 1.2.5. CANO was applied to the dataset and the obtained structure matrices
for the two variables sets were rotated by simultaneous and individual Varimax rota-
tion. The dimension of canonical variates was set at 3, since the singular values of
(X′

2X2)
−1/2X′

2X1(X
′
1X1)

−1/2 in was 0.849, 0.715, 0.553, 0.339, and 0.038 in descend-
ing order, and a scree point can bet seen at the third singular value. For simultaneous
rotation, (α, β) = (1/p1, 1/p2) = (1/5, 1/5) was used, and it is recommended in Kiers
(1998) for standard weights for simultaneous rotation of two or more matrices.
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Table 3.1: Unrotated and individually/simultaneously rotated struc-
tured matrices obtained by CANO to Sports data.

Unrotated Individual Varimax Simultaneous Varimax
1 2 3 1 2 3 1 2 3

Test A
Side Jump -0.670 0.278 -0.187 -0.697 0.117 0.246 -0.663 -0.112 0.330
Back Strength -0.744 -0.167 -0.333 -0.733 0.359 -0.160 -0.183 -0.935 -0.009
Vertical Jump -0.670 -0.605 0.307 -0.202 0.926 -0.105 -0.734 -0.388 -0.049
Grip Strength -0.251 0.006 0.365 0.013 0.334 0.29 0.055 -0.309 0.312
Step Aerobics -0.172 0.773 0.526 -0.015 -0.103 0.944 0.084 0.179 0.929

Test B
Long-distance Run 0.667 -0.117 0.441 0.784 0.149 -0.129 0.799 -0.102 -0.062
Ball Throw -0.775 -0.168 -0.294 -0.688 -0.473 0.193 -0.732 0.424 -0.016
Long Jump -0.789 -0.497 0.038 -0.387 -0.827 0.136 -0.466 0.807 -0.049
Chin-up -0.649 -0.214 0.565 0.020 -0.640 0.614 -0.066 0.779 0.418
50m Run 0.676 -0.362 -0.497 0.174 0.163 -0.882 0.232 -0.375 -0.800
canonical correlation 0.849 0.706 0.13 -0.235 0.717

matrix 0.715 -0.002 0.261 0.612 -0.099 0.675
0.553 -0.020 -0.687 0.229 -0.106 -0.016 0.725

Table 3.2: Averaged within-column variance and between covariance
of the structure matrices.

Averaged Averaged
Within-column Variance Between-column Covariance
Test A Test B Test A Test B

Unrotated 0.045 0.012 -0.008 -0.004
Individual Varimax 0.116 0.089 -0.043 -0.043
Simultaneous Varimax 0.112 0.081 -0.041 -0.039

The resulting two structure matrices are rotated by individual and simultaneous
Varimax rotation, and their results are shown in Table 3.1. An element is bolded
when its absolute value exceeds 1) 0.2 or 2) half of the largest-in-absolute value in
its row. The unrotated structured matrices are difficult to interpret in that the first
canonical variates highly correlate with all variables. Such canonical variate can be
named general athletic ability, but it is useless when the purpose of CANO is to extract
sub-concepts of the general athletic ability.

The rotated matrices are highly interpretable compared with the unrotated ones,
because the canonical variates highly loads to the fewer variables, and thus these vari-
ates are understood as the sub-concepts of the athletic ability that the two tests aim
to measure. Their relationships are expressed in the canonical correlation matrices.

Further, the attained simplicity of the individually and simultaneously-rotated
structure matrices was evaluated by averaged within-column variance and averaged
between-column covariance. The two metrics stand for simplicity and complexity,
respectively, and their values are listed in Table 3.2. For both rotation, it is observed
that the within-column variance was increased while the between-column covariance
decreased, and thus the structure matrices are simplified. In addition, the increment of
simplicity and the decrement of complexity is larger in individual rotation. It indicates
that the individual rotation performs better than the simultaneous one, because it can
freely rotate each of the matrices. Also, the successful result implies that potential
effectiveness of the new formulation of CANO that enables individual rotation.
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Side Jump
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Cardiopulmonary 
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Canonical Variates

Figure 3.1: Network representation of the independently rotated
structure matrices.

After rotation, a canonical correlation matrix is no longer diagonal. It is shown
as, after simultaneous rotation

R = T′A′(n−1X′
1X2)W2T (3.15)

it is a symmetric matrix, and after individual rotation

R = T′
1A

′(n−1X′
1X2)W2T1 (3.16)

a regular square matrix. The correlation structure between two sets of canonical
variates is relaxed after rotation and it is need to be interpreted carefully. To interpret
it, the following network representation of CANO’s result would be of great help. It
is shown in the Figure 3.1 and width of the paths is proportional to the absolute
value of the corresponding elements. Negative paths are shown in dashed lines. The
elements less than 0.3 in absolute are omitted in the figure. The correspondence
between the canonical variates and the variables are clearly captured because of the
individual rotation, and the variates can be named shown in the figure. Further, as
noted above, the correlation structure between the canonical variates are not diagonal
nor symmetric. Taking in to account that column-wise flipping of signs in structure
matrices is allowed, the resulting correlation structure expressed in the figure seems to
be appropriate, in that Jump Power and Instantaneous Power, and Cardiopulmonary
Ability and Instantaneous Power are both positively correlated.

3.5 Discussion

The study proposes a new formulation of CANO as maximization of sum of squared
canonical correlations with its equivalence to the existing one, in which sum of the
correlations is maximized. Under the new formulation, it is allowed to orthogonally
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rotate structure matrices toward their simplicity individually, while only simultane-
ous rotation is allowed under the existing formulation. The superiority of individual
rotation over simultaneous rotation is exemplified by a real data example. The result
shows that the individual rotation increases the simplicity of structure matrices and
helps to interpret the canonical variates.

As demonstrated in Section 3.4, individual rotation leads a non-diagonal and non-
symmetric canonical correlation matrix. The property allows various correlation struc-
ture between the canonical variates, but sometimes difficult to interpret, because the
rotation only considers the simplicity of the structure matrices. Despite the problem,
rotation would be preferred especially in the exploratory use of CANO, because it
greatly improves the interpretability of CANO’s solution. To remedy the difficulty, it
is recommended to use small r as possible in order to reduce the dimensionality of R
and the number of correlations that have be interpreted.

Appendix 3.A An Algorithm for Simultaneous Varimax
Rotation

An algorithm for minimizing (3.11) to specify the rotation matrix T.
For the function s(·), a measure for simplicity of a matrix, the Varimax criterion

is considered here. The Varimax criterion for a p× rmatrix A = {aij} is expressed as
(Kaiser, 1958)

v(A) =

p∑
i=1


r∑

j=1

a4ij −
1

r

 r∑
j=1

aij

2 (3.17)

and it is further rewritten as follows (Sherin, 1966; Neudecker, 1981);

v(A) = tr(A •A)′Pp(A •A) (3.18)

where • denotes the Hadamard product and Pp = Ip − p−11p1
′
p. The minimization

criterion S(T) in (3.11) is thus rewritten as follows, using Result 2 in Neudecker
(1981);

S = αtr(W̃1 • W̃1)
′Pp1(W̃1 • W̃1) + βtr(W̃2 • W̃2)

′Pp2(W̃2 • W̃2)

= tr
α

r
[{(W̃1 • W̃1)

′Pp1} • W̃′
1]W1T+ tr

β

r
[{(W̃2 • W̃2)

′Pp2} • W̃′
2]W2T

= tr(B1 +B2)T (3.19)

where W̃1 and W̃2 are the rotated matrices by T, and B1 = α
r [{(W̃1 • W̃1)

′Pp1} •
W̃′

1]W1 and B2 =
α
r [{(W̃2 •W̃2)

′Pp2} •W̃′
2]W2. The maximum of S(T) is attained

by using the SVD B̃1 + B̃2 = U∆V′ as follows

S(T) = trU∆V′ ≤ tr∆. (3.20)
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The equality holds when
T = VU′ (3.21)

Since the matrix B̃1 + B̃2 includes W1 and W2 before rotation, S(T) is maximized
by the following iterative algorithm.

1. Initialize T.

2. Rotate W1 and W2 as W̃1 = W1T and W̃2 = W2T.

3. Update T by (3.21).

4. Repeat 2. and 3. until convergence.

Note that in the example in Section 3.4, the structure matrices S1 and S2 were
rotated, and the above algorithm was run with W1 ← S1 and W2 ← S2.
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Chapter 4

Biplot Procedures with Joint
Classification Objects and
Variables

ABSTRACT

Biplot is a technique for obtaining a low-dimensional configuration of
the data matrix but biplots with a large number of objects and variables
remain difficult to interpret. The study proposes a new biplot procedure
with high interpretability. In particular, the objects and variables are clas-
sified into a small number of clusters by using K-means clustering and the
resulting clusters are simultaneously biplotted in lower-dimensional space.
Further, it is extended to fuzzy clustering, where the objects and variables
are fuzzily classified. A simulation study and real data example are also
provided to demonstrate the effectiveness of the proposed procedure.

4.1 Introduction

Biplot (Gabriel, 1971; Gower and Hand, 1995; Gower et al., 2011) is a multivariate
technique for visualizing a data matrix that provides low-dimensional configurations
and where objects and variables are represented as points and vectors, respectively.
In this research, a row vector is denoted with a subscript with parentheses and a
column vector is expressed by a subscript with no parentheses. That is, f(i) is the i-th
row vector of F, while fj denotes its j-th column vector. Suppose that we have an
I (objects) × J (variables) data matrix X. One of the ways in which to obtain the
biplot of X, often referred to as a PC biplot, is to decompose X into the product of
two low-rank matrices, say F and A. After performing principal component analysis
on X, plot each row of the principal component matrix F = {f ′(1), · · · , f

′
(I)}

′(I × r)

This chapter is based on the published article Yamashita and Mayekawa (2012) and Yamashita
and Mayekawa (2015) with some modifications and extensions.
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and the loadings matrix A = {a′(1), · · · ,a
′
(J)}

′(J × r) in r-dimensional space to obtain
the biplot of X, where

F = Kr, A = LrΛr (4.1)

Here, Λr is an r × r diagonal matrix whose diagonal elements are the r largest sin-
gular values of X arranged in descending order and Kr and Lr are the matrices of
the corresponding left and right singular vectors, respectively. The dimension of the
solution is denoted as r, which is often set to two or three to improve the convenience
of interpretation. The rows of F and A represent the coordinates of the corresponding
objects and variables and the (i, j) element of X, xij , is approximated by the inner
product f(i)a

′
(j). In other words, a PC biplot can be interpreted as a method that

decomposes the data matrix X by minimizing the least squares criterion:

LPCA(F,A) = ||X− FA′||2 (4.2)

with respect to F and A and the plots of their rows in r-dimensional space.
Biplot is a useful technique for visualizing the relationships between the ob-

jects and variables in a dataset, resulting in many data visualization applications
(Greenacre, 2010). An example of the PC biplot of an artificial dataset composed of
15 objects and five variables is presented in Figure 4.1a. In the PC biplot obtained by
using the method above, the correlation between the m-th and j-th (m ̸= j) variables
is approximated by the cosine of the angle between the vectors corresponding to those
variables. In addition, in Figure 4.1a, the length of the m-th vector is set proportional
to the standard deviation of the m-th variable. From these properties of PC biplots,
the following interpretation of the biplot shown in Figure 4.1a is possible: since the
vectors of the 1st, 2nd, and 3rd variables and those of the 5th and 6th variables are
almost orthogonal, the data consist of two almost independent groups of variables. As
exemplified here, a biplot provides us with a visual interpretation of the relationships
between objects and variables. In this research, without loss of generality, we assume
that the data matrix X is of full-column rank, that is, rank(X) = J , where rank(·)
denotes the rank of a parenthesized matrix.

(a) Small dataset (I = 15, J = 5)

Var1

Var2
Var3

(b) Large dataset (I = 500, J = 200)

Var4

Var5

Figure 4.1: PC biplots of two artificial datasets
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The difficulty of interpreting biplots often arises when X contains a large number
of objects and variables. The PC biplot of a large dataset that has 500 objects and
200 variables is illustrated in Figure 4.1b. Compared with the biplot of the relatively
small dataset shown in Figure 4.1a, the PC biplot of the large dataset is quite difficult
to understand since its configuration is composed of many points and vectors. As
explained here, the existing biplot procedure for obtaining a biplot is thought to be
unsuitable for datasets consisting of many objects and variables. One way in which
to overcome this difficulty with large datasets is to perform cluster analysis on F and
A and obtain a biplot of the resulting object and variable clusters. Specifically, if we
use the K-means clustering procedure, F and A are approximated as

F ≈ UP, A ≈ VQ (4.3)

with U (I×K) and V (J×L) being dummy matrices indicating the inclusion/exclusion
of row objects in each of the row clusters and P (K × r) and Q (L × r) matrices of
row cluster means. Therefore, instead of (F,A), the biplot of (P,Q) should provide
us with a more concise and interpretable result. However, this type of approach,
called tandem analysis by Arabie and Hubert (1994), in which clustering is performed
according to the results of the preceding analysis, has been criticized in some studies.
First, this approach often fails to detect the hidden but important cluster of the data,
as exemplified by Vichi and Kiers (2001). Second, the solution obtained by using a
certain technique is not guaranteed to optimize two different criteria (Hwang et al.,
2010).

This research proposes a new biplot procedure termed as crisp cluster-wise biplot
analysis (CCBA), as an alternative to tandem analysis. It is defined as the minimiza-
tion of the least squares criterion:

LCCBA(U,V,P,Q) = ||X−UPQ′V′||2 (4.4)

with respect to all the parameters, namely, U,V,P, and Qsubject to certain con-
straints. The I objects and J variables are crisply classified into K and L clusters,
respectively, and resulting K and L clusters are jointly plotted as a biplot. The con-
figuration is achieved by plotting the rows of P and Q. The biplot is thus composed of
lesser points and vectors, and therefore easier to interpret compared with the existing
biplot.

CCBA has the following two potential disadvantages. First, a local minimum
frequently occurs in the practical use of CCBA because the CCBA algorithm involves
updating the binary matrices U and V. Second, the binary constraint imposed on
the memberships seems to be too restrictive for dealing with real-world problems.
These disadvantages of CCBA are dramatically remedied by generalizing CCBA to
fuzzy clustering, where the memberships of objects and variables are represented in a
stochastic manner. To overcome the problems of CCBA, this research also proposes an
extension of CCBA where objects and variables are fuzzily classified by fuzzyK-means
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clustering.

4.2 Proposed Method

4.2.1 Crisp Cluster-wise Biplot Analysis

CCBA is formulated by the minimization of the loss function in (4.4) subject to the
constraint that

I−1P′U′UP = Ir, I
−1Q′V′VQ = diag. (4.5)

First, consider to minimize (4.4) over U with other parameters kept fixed. The loss
function is rewritten as

LCCBA(U|P,Q,V) = ||X−U(PQ′V′)||2 = LKM (U,PQ′V′) (4.6)

which is equivalent to the loss function of K-means clustering to X. LKM (U,PQ′V′)

is minimized over the membership matrix U by (1.68) with fixed centroid matrix
PQ′V′. In the similar manner, (4.4) is rewritten as

LCCBA(U|P,Q,V) = ||X′ −V(QP′U′)||2 = LKM (V,QP′U′). (4.7)

Thus, (4.4) is minimized over V by the K-means clustering to X′.
Next, (1.68) is minimized over P and Q with fixed U and V. V is obtained by

(1.68) with fixed centroid matrix QP′U′. The loss function is expanded as

fCCBA(P,Q|U,V) = trX′X− 2trX′UPQ′V′ + trP′U′UPQ′V′VQ (4.8)

= ||H− (U′U)1/2PQ′(V′V)1/2||2 + ||X||2 − ||H||2 (4.9)

using H = (U′U)−1/2U′XV(V′V)−1/2 (ten Berge, 1993). Thus, minimizing (4.4)
over P and Q is equivalent to minimizing the first term of (4.9). It is accomplished
by

P = I1/2(U′U)−1/2K♯
rT, Q = I1/2(V′V)−1/2L♯

rΛ
♯
rT (4.10)

with the singular value decomposition

H = K♯Λ♯L♯′ (4.11)

(Ten Berge, 1983). where T is an r × r orthonormal matrix. The matrix U′U

and V′V are the diagonal matrices of the size of K object clusters and L variables
clusters, respectively. Therefore, (U′U)1/2 and (V′V)1/2 exist if no empty cluster
exists. Properties and recommendations for implementation are detailed in Yamashita
and Mayekawa (2012).

In the next section, CCBA is therefore extended to fuzzy classification of objects
and variables.
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4.2.2 Fuzzy K-means Clustering

As noted in Chapter 1, fuzzy K-means clustering is formulated as minimizing (1.71).
Here, an algorithm for fuzzy K-means clustering, which is a generalization of K-means
clustering, is presented in detail. The membership matrix M and centroid matrix C,
which minimize the loss function, can be obtained through the following algorithm
(Gan et al., 2007):

1. Given the number of clusters K, randomly generate M.

2. With M fixed, update the k-th row of C with c(k) =
∑

i m
q
ikx(i)∑

i m
q
ik

, for k = 1, · · · ,K.

3. With C fixed, update M with

mik =

{
K∑
l=1

( ||x(i) − c(k)||
||x(i) − c(l)||

) 2
q−1

}−1

(4.12)

4. Repeat 2. and 3. until convergence.

The above formulation can be extended to a matrix-based one. Here, let DM =

diag(vec(M
q
2 )) be an IK×IK matrix with M

q
2 = {m

q
2
ik} and vec(·) being the column-

wise vectorization of the parenthesized matrix by stacking its column vectors vertically.
(1.71) can be rewritten as the following form:

LFKM (M,C|X) = ||DM{(1K ⊗ II)Y − (IK ⊗ 1I)C}||2 (4.13)

where 1I is the I-dimensional vector filled with 1s, and ⊗ denotes the Kronecker
product. In fuzzy K-means clustering, we may interpret the (i, k) element of the M

matrix as the posterior probability of object i belonging to the k-th cluster in the
finite mixture model based clustering. In maximum likelihood clustering, the clusters
are crisp but the posterior probabilities are not. In fuzzy K-means clustering, the
fuzziness is directly expressed as the model parameter M.

4.2.3 Fuzzy Cluster-wise Biplot Analysis

In this subsection, fuzzy cluster-wise biplot analysis (FCBA) as a generalization of
CCBA is proposed. FCBA for the data matrix X is formulated as minimizing the
following least squares loss function:

LFCBA(U,V,P,Q) =
I∑
i

J∑
j

K∑
k

L∑
l

uαikv
β
jk(xij − p(k)q

′
(l))

2 (4.14)

with respect to the parameter matrices U = {uik}, V = {vjl}, P = {p′
(1), · · · ,p

′
(K)}

′,
and Q = {q′

(1), · · · ,q
′
(K)}

′ subject to rank(PQ′) = r ≤ min(K,L). Note that U

and V are the fuzzy membership matrices of the objects and variables, and thus they
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satisfies that ∑
k

uik = 1, 0 ≤ uik ≤ 1 (4.15)∑
l

vjl = 1, 0 ≤ vjl ≤ 1. (4.16)

P and Q coordinate matrices whose rows are plotted in r-dimensional space associated
with the object and variable clusters, respectively. In addition, α(> 1) and β(> 1) are
the constants that control the fuzziness of the resulting object and variable clusters,
respectively. In the proposed procedure, I objects and J variables are jointly classified
into K(≤ I) object clusters and L(≤ J) variable clusters, making the resulting biplots
of those clusters simpler and easier to understand than the PC biplot of X, especially
when the size of X is quite large. Hereafter the resulting biplot is called as a fuzzy
cluster-wise (FC) biplot.

Below, ALS procedure for estimating FCBA’s parameters is derived. First, the
loss function is minimized over U with other parameters kept fixed. The loss function
is rewritten as

LFCBA(U,V,P,Q|X) = ||DU{(1K⊗II)X(1L⊗IJ)′DV−(IK⊗1I)PQ′(IL⊗1J)′DV}||2

(4.17)
where DU (IK × IK) and DV (JL × JL) are diagonal matrices whose diagonal

elements are vec(U
α
2 ) and vec(V

β
2 ) with U

α
2 = {u

α
2
ik} and V

β
2 = {u

β
2
ik}, respectively.

Compared with (4.13), (4.17) can be regarded as the least squares criterion of the
fuzzy K-means clustering of X(1L ⊗ IJ)

′DV, say

LFCBA(U|V,P,Q,X) = LFKM (U,PQ′(IL ⊗ 1J)
′DV|X(1L ⊗ IJ)

′DV) (4.18)

and thus, the fuzzy membership matrix U that minimizes (4.14) can be obtained
by applying fuzzy K-means clustering to X(1L ⊗ IJ)

′DV with the fixed centroid
PQ′(IL ⊗ 1J)

′DV, according to the third step of the algorithm described above.
Likewise, since (4.14) can also be rewritten as

LFCBA(V|U,P,Q,X) = LFKM (V,QP′(IK ⊗ 1I)
′DU|X′(1K ⊗ II)

′DU). (4.19)

V minimizing the loss function can be obtained by the fuzzy K-means to X′(1K ⊗
II)

′DU with the fixed centroid QP′(IK ⊗ 1I)
′DU.

Finally (4.14) can be rewritten as

LFCBA(U,V,P,Q|X)

= ||H∗ − {(IK ⊗ 1I)
′D2

U(IK ⊗ 1I)}1/2PQ′{(IJ ⊗ 1L)
′D2

V(IJ ⊗ 1L)}1/2||2

− ||H∗||2 + ||DU(1K ⊗ II)X(1L ⊗ IJ)
′DV||2 (4.20)
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using

H∗ = {(IK ⊗ 1I)
′D2

U(IK ⊗ 1I)}−1/2(IK ⊗ 1I)
′D2

U(1K ⊗ II)X

(1L ⊗ IJ)
′D2

V(IL ⊗ 1J){(IL ⊗ 1J)
′D2

V(IL ⊗ 1J)}−1/2. (4.21)

(ten Berge, 1993) The minimization of (4.14) over P and Q are therefore equivalent
to minimizing ||H∗ − {(IK ⊗ 1I)

′D2
U(IK ⊗ 1I)}1/2PQ′{(IJ ⊗ 1L)

′D2
V(IJ ⊗ 1L)}1/2||2

over the parameters. Let us define the singular value decomposition of the K × L
matrix H∗ having rank h(≤ min(K,L)) as

H∗ = K∗Λ∗L∗′. (4.22)

By using this decomposition, P and Q that minimize g(P,Q) are obtained as below
(Ten Berge, 1983):

P = {(IK ⊗ 1I)
′D2

U(IK ⊗ 1I)}−1/2K∗
rΛ

∗1/2
r DT, (4.23)

Q = {(IL ⊗ 1J)
′D2

V(IL ⊗ 1J)}−1/2L∗
rΛ

∗1/2
r D−1T (4.24)

where K∗
r and L∗

r are the matrices of the first r columns of K∗ and L∗, respectively.
Λ∗

r is a diagonal matrix of the r largest singular values of H∗, and D is an r × r

arbitrary diagonal matrix with non-zero diagonal elements. In this chapter, we set
T = D = Ir without loss of generality.

From the foregoing results, we propose the following ALS algorithm for obtaining
U, V, P, and Q that minimizes (4.14):

1. Given the dimension of solution r and numbers of clusters K and L, randomly
generate U and V.

2. Update P and Q by (4.23) and (4.24), respectively.

3. Apply fuzzy K-means on X(1L ⊗ IJ)
′DV with the fixed centroid PQ′(IL ⊗

1J)
′DV to update U.

4. Apply fuzzy K-means on X′(1K ⊗ II)
′DU with the fixed centroid QP′(IK ⊗

1I)
′DU to update V.

5. If the reduction of the function value is less than ||X||2 × 10−7, stop the proce-
dure; otherwise, return to 2.

As noted above, α and β must be given before applying FCBA, and these pa-
rameters should not be set too high (e.g., higher than 3) because of the following
property. As α and β increase, the resulting membership of objects and variables, uik
and vjl, respectively, become close to K−1 and L−1, respectively, indicating that all
object/variable clusters are almost identical. As a result, the row vectors of P and Q

corresponding to the centroids of the object and variable clusters become identical,
which leads to rank-deficient H∗, P, and Q. In addition, it can be shown that the
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function value of (4.14) attained after convergence with α > 0 and β > 0 does not
exceed the function value with α = β = 1 since CCBA is a special case of FCBA.
However, as α and β increase, it is not guaranteed that the attained function value
monotonically decreases or approaches a certain value asymptotically. This means
that α and β must be chosen in a subjective manner. However, while choosing α and
β may be a problem in the proposed procedure, setting α = β = 1.2 has never failed
in the following numerical simulation or in application to real datasets, as determined
by the procedure introduced below.

Note that our approach to obtaining the biplot is different from tandem analysis,
where the fuzzy K-means clustering procedure is performed to solve the PC biplot.
Note also that the proposed biplot procedure is a generalization of the CCBA proposed
in Yamashita and Mayekawa (2012), which classifies objects and variables by using
K-means clustering, because if we impose the additional constraint on the membership
matrices of uik, vjl ∈ [0, 1] and set α = β = 1 both procedures are identical. Further,
under this binary constraint on U and V, the objective function of FCBA reduces to
the one of CCBA in (4.4). Therefore, the resulting membership of the objects and
variables in FCBA provides a more insightful interpretation than the counterpart of
CCBA, since membership values are fuzzily expressed in the former.

4.2.4 Multiple Runs Procedure

Although the objective function fFCB(U,V,P,Q|X) monotonically decreases accord-
ing to the steps 2 to 4 of the algorithm above, the solution obtained after convergence
is not guaranteed to be the global minimizer. To avoid the local minimum and obtain
a solution as close as possible to the global minimizer, we use the procedure proposed
by Adachi (2011) in which the FCBA algorithm is run multiple times starting from
different initial values until the two equivalently best solutions are found. By noting
Sm = {Um,Vm,Pm,Qm} as the solution obtained by the m-th run and LFCBA(Sm)

for the attained value of LFCBA(Um,Vm,Pm,Qm), the multiple runs procedure for
FCBA is stated as follows:

1. Set M = 15 and obtain Sms for m = 1, · · · ,M ; find m∗ = argmin
1≤m≤M

LFCBA(Sm).

2. Select Sm as the optimal solution to finish if LFCBA(Sm∗) is equivalent to
LFCBA(Sl) resulting from the l-th run with l ̸= m∗; otherwise, proceed to
3.

3. Set M =M + 1 and let SM be the output from the M -th run.

4. Exchange Sm∗ for SM if LFCBA(SM ) < LFCBA(Sm∗).

5. Select Sm as the optimal solution to finish if LFCBA(Sm∗) is equivalent to
LFCBA(SM ) or M = 15; otherwise, return to 3.

Here, the equivalence of LFCBA(Sm∗) to LFCBA(Sl) is defined as |LFCBA(Sm∗) −
LFCBA(Sl)| < ||X||2× 10−7.
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4.3 Simulation Study

A simulation study was performed in order to investigate the performance of FCBA
because it include CCBA as a special case. In particular, this study aimed to evaluate
the recovery of the model parameter matrices and correctness of classification through
a comparison with the predetermined true values of them, varying the inter-cluster
variance and error level. In this section, artificial datasets with four object clusters
and four variable clusters are considered, namely K = L = 4.

A data matrix X with I = 100 (objects), J = 80 (variables), K = 4 (object
clusters), and L = 4 (variable clusters) was constructed as follows: [1] By randomly
associating objects and variables with clusters, the crisp membership matrices UT

and VT were generated as the true values of U and V, respectively. [2] The true
values of P and Q, expressed as PT and QT , were then set as below:

PT =


0 1

1 0

0 −1
−1 0

 , QT =


1 1

−1 1

1 −1
−1 −1

 . (4.25)

[3] For i = 1, · · · , I and j = 1, · · · , J , the two-dimensional vectors f(i) and a(j) that
correspond to the coordinates of the objects and variables in two-dimensional space,
respectively, were randomly drawn from N2(uT (i)PT , σ

2I) and N2(vT (j)QT , σ
2I), re-

spectively, where uT (i) and vT (j) denote the i-th and j-th rows of UT and VT

and σ2 is a constant that indicates the variance within each cluster. [4] By using
F = {f ′(1), · · · , f

′
(I)}

′ and A = {a′(1), · · · ,a
′
(J)}

′, the data matrix X was constructed
with X = FA′+θ(ρ)E, where E was filled with standard normal errors and θ(ρ) given
as follows (Adachi, 2011):

θ(ρ) =

√
1− ρ
ρ
× ||FA

′||2
||E||2

. (4.26)

Note that it is rewritten as

ρ =
||FA′||2

||FA′||2 + θ2(ρ)||E||2
(4.27)

and thus, it approximately expresses the amount of variance explained by the model
part FA′; in other words, if trE′FA′ is close enough to zero, we have the approximation
||X||2 ≃ ||FA′||2+θ2(ρ)||E||2, that is, ρ = ||FA′||2/||X||2 approximately expresses the
variance of X accounted for by the model part FA′. We tried the proportion ρ in a
range from 0 to 1 in order to control the smallness of the error contained in the
resulting dataset X. The PC biplots of two datasets generated under two different
conditions with (σ2, ρ) = (0.01, 0.85) and (σ2, ρ) = (0.10, 0.85) are shown in Figure
4.2.

For each of 3× 3 = 9 combinations of σ2 = 0.01, 0.10, and 0.30 and ρ = 1.00, 0.85,
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(a) σ2 = 0.10, ρ = 0.85 (b) σ2 = 0.30, ρ = 0.85

Figure 4.2: PC biplots of generated datasets under two different
conditions

and 0.70, we generated 100 data matrices by repeating the foregoing steps and then
applied FCBA to the resulting 100×9 = 900 data matrices. The results were evaluated
from the following three points of view: [1] the rate of the correct classification of
objects and variables, [2] the recovery of P and Q, and [3] how often a local minimum
occurred. To measure how correctly objects and variables were classified, we used the
adjusted Rand index (ARI) (Hubert and Arabie, 1985), which ranges from 0 to 1, and
the function CM(M,MT ) = 100 × m−1trM′MT that ranges from 0 to 100. Both
evaluate the congruence of the two m × n membership matrices M and MT . Note
that they were computed after transforming the fuzzy membership matrices U and V

into crisp ones whose elements are binary, with maxk(ui1, · · · , uiK) = 1(i = 1, · · · , I),
maxl(vj1, · · · , vkL) = 1(j = 1, · · · , J), and zeros elsewhere. In order to evaluate how
well P and Q are recovered, we used the congruence coefficient (CC) (Tucker, 1951)
and the following function that evaluates the closeness of the two m× n matrices W

and WT :

SS(W,WT ) = 1− 0.5
||W −WT ||2

||W −W#||2 + ||WT −W#||2
(4.28)

where W# = (2mn)−11m1′m(W + WT )1n1
′
n (Adachi, 2011). These indices both

range from 0 to 1, and attain their maximum 1 when W = WT .
Note that it is not guaranteed that the estimated k-th cluster corresponds to the

true k-th cluster, since LFCBA(U,V,P,Q|X) = LFCBA(URU,VRV,R
′
UP,R′

VQ|X),
with RU(K×K) and RU(L×L) being arbitrary permutation matrices. To eliminate
this indeterminacy with respect to the permutation of clusters and evaluate the degree
of recovery of the parameter matrices appropriately, we chose RU and RV within RU

and RV to maximize CM(URU,UT ) and CM(VRV,VT ), where RU and RV denote
the set of all possible permutation matrices having K! and L! elements, respectively.

In addition, in order to appropriately evaluate the recovery of P and Q, it is
necessary to eliminate the indeterminacy as to the rotation by an orthonormal matrix
T and scaling by a diagonal matrix D, as mentioned in (4.23) and (4.24). For this
purpose, we developed an algorithm called the joint Procrustes transformation to
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obtain T and D that minimizes the following least squares criterion:

fJPT (T,D) = K−1||PT −R′
UPDT||2 + ||QT −R′

VQD−1T||2 (4.29)

The details of the algorithm to determine T and D are presented in the Appendix A.

1. For any given σ2 and ρ, generate a data matrix X.

2. Carry out FCBA with 10 different random starts and obtain the best solution
Ŝ = {U,V,P,Q} that minimizes LFCBA(U,V,P,Q|X) the most.

3. Compute the percentage of the occurrence of the local minimum.

4. Obtain RU and RV and permute the columns of U and V by RU and RV and
the rows of P and Q by RU and RV, resulting in URU,VRV, R′

UP and R′
VQ.

5. Transform URU and VRV into crisp membership matrices and evaluate CM
and ARI with respect to UT and VT .

6. Carry out the joint Procrustes transformation for R′
UP and R′

VQ to obtain T

and D and evaluate Adachi’s standardized similarity (SS) and CC with respect
to PT and QT .

Table 4.1 shows the 1st, 2nd, and 3rd quartiles of CM(URU,UT ) and CM(VRV,VT ),
namely the rates of correct classification in these nine situations. There, we observe
that the objects and variables were correctly classified in many situations, even when
σ2 was large and ρ was small (i.e., even if the data had an ambiguous cluster structure
and was error-contaminated). Further, the 1st, 2nd and 3rd quartiles of the SS and
CC values and average percentages of the frequency of the local minimum are listed in
Table 4.2. This table shows that the recovery of P and Q was found to be fairly good
in most cases in spite of the occurrence of the local minimum. From these results,
we thus conclude that our proposed method and algorithm are suitable for practical
use because the objects and variables are correctly classified and true configuration
appropriately estimated even when the data had an obscure cluster structure and were
error-contaminated.

4.4 Real Data Example

In this section, in order to demonstrate that the FCBA procedure provides a biplot
that is easy to interpret, we present an application of the proposed procedure on a real
dataset. Further, the result of FCBA is compared with that of CCBA. The dataset
analyzed in this example is available at UCI Machine Learning Repository (Dua and
Graff, 2019) as Wine dataset. In total, 178 samples were drawn from three types
of wines, termed A, B, and C, with each sample evaluated with respect to the 13
chemical features listed in the caption of Figure 4.6.



Chapter 4. Biplot Procedures with Joint Classification Objects and Variables 71

Table 4.1: The values for the 1st, 2nd, and 3rd quartiles of ARI
and the index of the congruence of memberships (CM). Each index
was evaluated after appropriately permuting the columns of U and V,

followed by the crisp transformation of them.

σ2 0.01 0.10 0.30
ρ 1.00 0.85 0.70 1.00 0.85 0.70 1.00 0.85 0.70

index

25% ARI 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.82
CM 100.00 100.00 100.00 100.00 100.00 100.00 90.00 90.00 91.00

Objects 50% ARI 1.00 1.00 1.00 1.00 1.00 1.00 0.84 0.84 0.86
(U) CM 100.00 100.00 100.00 100.00 100.00 100.00 92.00 92.00 93.00

75% ARI 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.88 0.88
CM 100.00 100.00 100.00 100.00 100.00 100.00 94.00 94.00 94.00

25% ARI 1.00 1.00 1.00 0.92 0.91 0.92 0.55 0.53 0.51
CM 100.00 100.00 100.00 96.30 95.90 96.30 76.30 75.00 73.80

Variables 50% ARI 1.00 1.00 1.00 0.95 0.95 0.95 0.62 0.60 0.59
(V) CM 100.00 100.00 100.00 97.50 97.50 97.50 80.00 78.80 78.80

75% ARI 1.00 1.00 1.00 0.97 0.97 0.97 0.68 0.66 0.66
CM 100.00 100.00 100.00 98.80 98.80 98.80 83.80 82.50 82.50

Table 4.2: The values for 1st, 2nd and 3rd quartiles of CC and SS,
and average percentage of the frequency of the local minimum.

σ2 0.01 0.10 1.00
ρ 1.00 0.85 0.70 1.00 0.85 0.70 1.00 0.85 0.70

index

25% CC 1.00 1.00 1.00 1.00 0.98 0.62 0.99 0.92 0.55
SS 0.99 1.00 1.00 0.99 0.99 0.80 0.99 0.96 0.76

P 50% CC 1.00 1.00 1.00 1.00 0.99 0.70 0.99 0.95 0.59
SS 1.00 1.00 1.00 1.00 0.99 0.83 0.99 0.97 0.78

75% CC 1.00 1.00 1.00 1.00 0.99 0.77 1.00 0.98 0.62
SS 1.00 1.00 1.00 1.00 1.00 0.88 1.00 0.99 0.81

25% CC 1.00 1.00 1.00 0.99 0.98 0.60 0.96 0.89 0.53
SS 0.99 1.00 1.00 0.99 0.98 0.78 0.97 0.93 0.74

Q 50% CC 1.00 1.00 1.00 1.00 0.99 0.68 0.98 0.93 0.57
SS 1.00 1.00 1.00 1.00 0.99 0.83 0.98 0.96 0.76

75% CC 1.00 1.00 1.00 1.00 0.99 0.75 0.99 0.96 0.62
SS 1.00 1.00 1.00 1.00 0.99 0.86 0.99 0.97 0.78

Local minimum 0.00 0.00 0.00 5.00 0.00 0.00 12.70 12.20 14.90
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Figure 4.3: The scree plot of the singular values of the wine dataset.

Before carrying out CCBA and FCBA on this dataset, the number of dimensions
r was set to two in order to allow us to interpret the resulting biplots. Actually, this
setting was not consistent with the fact that the “elbow point” was not r = 2 in Figure
4.3, even though the eduction of the singular values of the data matrix between the
first and second dimensions was largest of all. This is, however, certainly optimum
for visualization.

The number of object and variable clusters K and L was determined as follows.
Since the objects were samples drawn from one of the three types of wine, it was
reasonable to assume that three heterogeneous subgroups of objects existed in the
dataset, and we thus set K = 3. For the number of variable clusters, we use L =

3, which can be validated as follows. For the validation, the author employed the
fuzziness performance index (FPI) (Bezdek, 2013; Roubens, 1982) as an index of the
validity of the given fuzzy membership matrix M(I ×K), defined as

FPI(M) = 1− K × I−1||M||2 − 1

K − 1
. (4.30)

Hwang et al. (2010) used FPI in order to determine the number of clusters in the
context of cluster-wise MCA, with small FPI values indicating that the objects or
variables are clearly separated from each other. In addition, the attained function
value was also considered to be an index of model fit, which decreases as L increases.
In Figure 4.4, the joint plot of the FPI values and attained function values for L =

2, 3, · · · , 12 are presented. This plot shows that that L = 3 is appropriate because
of the lowest FPI value and largest reduction of the function value. The setting
K = L = 3 is thus used for FCBA and it is also used in CCBA for comparability of
their results.

In FCBA, as α and β increase, the resulting membership becomes fuzzier, while the
membership becomes crisp as they decrease. As pointed out above, FCBA and CCBA
are identical when α = β = 1, and thus the objects and variables are crisply assigned
to object and variable clusters. On the contrary, if we use large values of α and β,
we cannot differentiate these clusters. Therefore, we must choose certain appropriate
values for α and β, avoiding extreme cases and obtaining clearly separated clusters.



Chapter 4. Biplot Procedures with Joint Classification Objects and Variables 73

FPI
attained function value

FP
I

3 L

at
ta
in
ed
fu
nc
tio
n
va
lu
e

Figure 4.4: Joint plot of the attained function value (solid line) and
FPI (dotted line) against the number of variable clusters L.

Cluster 1 Cluster 2 Cluster 3

(a) α = 1.0

(b) α = 1.1

(d) α = 1.3

(e) α = 1.4

(c) α = 1.2 (f) α = 1.5

Figure 4.5: The estimated object memberships expressed as bar plots
with α = 1.0, 1.1, 1.2, 1.3, 1.4 and 1.5.

Generally, setting these parameters to their maximum values is recommended as long
as the resulting clusters are clearly separated, because this improves interpretation
and, at the same time, maintains the characteristic of the proposed method (i.e.,
fuzzily expressed clusters). In Figure 4.5, the estimated object membership values
with α = 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 are expressed as bar plots, in which, for each
observation located on the horizontal axis, the vertical bar is divided into K parts
according the value of uik (k = 1, 2, · · · ,K). This figure indicates that the estimated
clusters become fuzzier as the fuzziness parameter increases, while α = 1.2 is consid-
ered to be reasonable since the object clusters in Figures 4.5d to 4.5f are not clearly
separated. The clusters in Figure 4.5b are similar to the result of CCBA in Figure
4.5a, whereas the clusters in Figure 4.5c are clearly separated and they appropri-
ately express the fuzziness of the object clusters. The value of parameter β was also
determined to be β = 1.2 by using the same procedure.



Chapter 4. Biplot Procedures with Joint Classification Objects and Variables 74

OC1

VC2

VC1

VC3

OC3

OC2

(a) PC biplot (b) FC biplot

OC2

OC1 OC3

VC2

VC1

VC3

(c) CC biplot

Figure 4.6: The PC and FC biplots of the wine dataset.

FCBA and CCBA were applied to this dataset with the settings mentioned above
and the obtained biplots are shown in Figure 4.6b, where the symbols OC and VC
represent the object and variable clusters, respectively. In the figure, the 13 vari-
ables are abbreviated as follows; alcohol (Alc), proline (Pro), magnesium (Mg), ash
(Ash), DNA OD280/D315 of diluted wines (DNA), flavonoids (Flv), hue (Hue), to-
tal phenols (Phe), proanthocyanidins (ProA), non-flavonoid phenols (NP), malic acid
(MAc), alkalinity of ash (AA), color intensity (Col_int). Let us compare Figure 4.6a
(PC biplot) with Figure 4.6b (FC biplot) with respect to the conciseness of their in-
terpretation. In the PC biplot, each object point is labeled A, B, or C according to
the type of wine from which it was sampled. This biplot is composed of many points
and vectors that hamper its straightforward interpretation. For example, recognizing
that there are three variable clusters is difficult simply by inspecting the directions of
the vectors. On the contrary, the FC biplot provides an intuitive interpretation of the
relationships of within/between objects and variables, since it consists of a reduced
number of points and vectors. Further, it is observed that the PC biplot is correctly
summarized by the FC biplot in that [1] the resulting 1st, 2nd, and 3rd object clusters
correspond to wines A, B, and C, respectively and [2] the variable vectors in the PC
biplot are summarized in the FC biplot based on their directions in the PC biplot,
indicating that both biplots are consistent.

It is clear that such fuzzily expressed membership cannot be obtained in CCBA,
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Table 4.3: Contingency table for comparing object membership with
the three types of wine.

object cluster 1st 2nd 3rd
type of wine

A 56 5 0
B 3 58 0
C 0 8 48

which enables the more insightful interpretation of the object/variable clusters men-
tioned below. The variable clusters are composed of four, five, and four variables,
respectively, while the cluster structure extracted by using the proposed procedure
is reasonable and suitable compared with the PC biplot (i.e., the directions of the
vectors representing the 13 variables are appropriately summarized by the three vari-
able clusters). In addition, since membership is expressed in a stochastic manner in
the proposed method, some variables are not crisply classified into one of these three
clusters. For example, the variable “color intensity” has the chemical properties of
both variable cluster 1 (Alc, Pro, Mg, Ash) and variable cluster 3 (NP, Mac, AA).
Similarly, the variable “ash” seems to be in between the 1st and 2nd variable clusters.
Importantly, CCBA cannot provide such an interpretation as the objects and variables
are crisply classified.

Table 4.3 is the 3 × 3 contingency table whose row and column categories are
associated with the three types of wine from which each sample is drawn and estimated
membership of each sample, respectively. Here, the fuzzy membership matrices of the
objects are transformed into crisp ones whose memberships are represented as 0 or
1 with maxl(uj1, · · · , ujL) = 1 for j = 1, · · · , J and zeros elsewhere. This table
shows that 178 objects were correctly classified according to the type of wine from
which they were sampled. It should be noted that the correct classification rate of
objects obtained by dividing the number of correct classifications by the total number
of objects was 0.91, which was equal to the rate in CCBA. However, in contrast to
CCBA, the memberships in FCBA are obtained in a fuzzy fashion and thus the risk
of misclassification is considered to be lower than that in CCBA, where memberships
must be expressed crisply, while fuzzy expression is allowed in FCBA. In addition, the
frequency of the local minimum in CCBA was 0.8, while no local minimum occurred in
FCBA, which is considered to be owing to the computational efficiency of the proposed
method.

Considering the preceding results on memberships and configuration, the FCBA
results for the wine dataset can be interpreted as follows. Given the relative positions
of the variable vectors, it is assumed that the horizontal axis of the FC biplot marks the
contrast between the variables classified into the 2nd and 3rd variable clusters, while
the vertical axis represents the degree of chemical feature evaluated by the 1st variable
cluster. Further, the variables organizing the 1st variable cluster are considered to be
independent of the other variables, since the vector of VC1 is almost orthogonal to the
other vectors. Moreover, since the object clusters are separate from each other, the
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objects are clearly classified into three different clusters, each of which corresponds
to a type of wine having different chemical features. The difference between wine
A (OC1) and wine C (OC3) is considered to be defined by the variables classified
into the 2nd and 3rd variable clusters, which represent almost completely opposite
chemical features, because those object clusters are located in the opposite position
to the horizontal axis. Those types of wine have the intermediate chemical features
characterized by the 1st variable cluster. Further, the difference between wine B
(OC2) and the other wines is negatively characterized by the 1st variable cluster,
since OC2 is located in the opposite direction to VC1. For the 2nd and 3rd variable
clusters, wine B is considered to be in between the other object clusters. Such biplot
interpretations empirically exemplify the effectiveness of the proposed procedure.

The summarized biplot of the wine dataset obtained by using CCBA assuming
three object/variable clusters is presented in Figure 4.6c. Even though the CC bi-
plot is similar to the FC biplot in Figure 4.6b, the major difference between CCBA
and FCBA is whether the resulting object/variable membership is crisply or fuzzily
expressed. It is clear that the fuzzily expressed membership of the latter method
leads to the more precise interpretation of clusters than that of the former, which is
exemplified as follows. In Figure 4.6a, since the object point A enclosed by the circle
is located on the boundary of wines A and B, this object should have a property in
between these wine types (associated with OC1 and OC2, respectively). However,
this object is crisply classified into the 2nd object cluster in CCBA. On the contrary,
in FCBA, the row of the U matrix, indicating membership of the 28th object to three
clusters, was {0.538, 0.462, 0.008}, expressing the intermediate property of this object
appropriately.

4.5 Concluding Remarks

In this study, we proposed two new biplot procedures to obtain an interpretable biplot
of a given data matrix, which simultaneously classifies objects and variables into a
small number of clusters and plots these clusters in low-dimensional space. A simula-
tion study was then performed in order to evaluate the performance of the proposed
method for the recovery of parameters. The result showed that the proposed method
recovered all the parameters fairly well and correctly classified objects and variables
even when the data were error-contaminated. A real data example empirically verified
that the proposed procedure can effectively summarize the PC biplot and correctly
classify objects and variables. We thus conclude that the proposed procedure is suit-
able for addressing real-world problems.

In the simulation study and real data example, we set the fuzziness parameters
α and β subjectively from the perspective of improving interpretability as well as
convenience when comparing the resulting membership matrices. However, how to
determine these hyper parameters appropriately in FCBA remains a matter to be
discussed. Suk and Hwang (2010) proposed a method for obtaining the optimal values
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of fuzziness parameters based on entropy maximization, and their method seems to
be applicable to FCBA.

How to choose the number of clusters is one of the most important issues in
clustering, since this choice represents the researcher’s hypothesis on the homogeneity
of the data. In the demonstration of the procedure proposed herein, we determined
the number of object and variable clusters K and L on the basis of prior information
on the dataset and FPI, as the validity of the resulting fuzzy memberships depends
on the number of clusters. Specifically, the validity of these memberships does not
always lead to the suitability of the hypothesis of the latent homogeneity of the data,
and vice versa. Taking this point into account, K and L should be determined based
on not only the validity of the resulting fuzzy memberships but also the use of external
or prior knowledge on the origin of the data, which can be used to make assumptions
about the number of hidden homogeneities and support the decision based on FPI

value.

Appendix 4.A Joint Procrustes transformation

In order to eliminate the indeterminacy as to an orthonormal matrix T and a diagonal
matrix D and suitably evaluate the recovery of parameters P and Q in Section 4.3, an
algorithm called the joint Procrustes transformation is developed, where P and Q are
jointly transformed by T and D to maximize the agreement with PT and QT in the
least squares sense. This problem is equivalent to obtaining T and D that minimize

LJPT (T,D) = K−1||PT −R′
UPDT||2 + L′||QT −R′

VQD−1T||2 (4.31)

subject to T′T = TT′ = I and D being a diagonal matrix. The criterion is expanded
as follows:

LJPT (T,D) = trK−1P′
TPT + trL−1Q′

TQT

− 2trK−1P′
TR

′
UPDT− 2trL−1Q′

TR
′
VQD−1T

+ trK−1P′PD2 + trL−1Q′QD−2. (4.32)

The minimization of (4.31) over T with fixed D is thus equivalent to maximize

LT(T|D) = trK−1P′
TR

′
UPDT+ trL−1Q′

TR
′
VQD−1T

= tr{K−1P′
TR

′
UPD+ L−1Q′

TR
′
VQD−1}T. (4.33)

Here, define the singular value decomposition of K−1P′
TR

′
UPD + L−1Q′

TR
′
VQD−1

as
K−1P′

TR
′
UPD+ L−1Q′

TR
′
VQD−1 = K∗Λ∗L∗′ (4.34)

where K∗ and L∗ are orthonormal matrices and Λ∗ denotes the diagonal matrix whose
diagonal elements are singular values arranged in descending order. The maximum of
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LT(T|D) is attained by
T = L∗′K∗ (4.35)

by using Theorem 1.2.1.
Next, by setting the partial derivative of LJPT (T,D) with respect to the i-th

diagonal element of D = diag{d1, · · · , dr} equal to zero, we have the following normal
equation for the elements of D:

∂LJPT (T,D)

∂di
= ϕ(di)

= 2p′
ip

′
idi − 2t′iP

′
TR

′
Upi − 2t′iQ

′
TR

′
Vqid

−2
i − 2q′

iqid
−3
i = 0

⇔ p′
ip

′
id

4
i − t′iP

′
TR

′
Upid

3
i + t′iQ

′
TR

′
Vqidi + q′

iqi = 0 (4.36)

where pi and qi denote the i-th column of PT and QT , respectively. Because of the
rank constraint imposed on P and Q, it is guaranteed that P satisfies p′

ipi > 0; in
other words, pi has at least one non-zero element for all i. The equation ϕ(di) = 0 is
thus a quartic equation with respect to di that has at most four real roots, expressed as
γt (t = 1, · · · , 4) with each of these roots able to be obtained explicitly by using Ferrari’
s solution (Weisstein, 2002). Therefore, the optimal di that minimizes LJPT (T,D)

for fixed T and dk(k ̸= i) is obtained by

di = argmin
1≤r≤4

LJPT (T,D(γt)) (4.37)

where D(γt) denotes the function that returns the diagonal matrix whose i-th diagonal
element is γt and the remaining elements are those of D.

From the above results, the algorithm of the joint Procrustes transformation can
be summarized as follows:

1. Initialize D.

2. Update T by (4.35).

3. For all i, update di by (4.37).

4. Repeat 2. and 3. until convergence.
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Chapter 5

A Modified K-means clustering for
obtaining a simple centroid matrix

ABSTRACT

In K-means clustering, between-clusters differences are not always
clearly captured in the centroid matrix. The study addresses this prob-
lem and propose a modified K-means clustering procedure that produces
a sparse centroid matrix. This allows easy interpretation of the matrix,
since the elements equaling to zero can be ignored in the interpretation.
An iterative algorithm for the constrained minimization is proposed, with
a cardinality selection procedure for identifying the optimal cardinality.
In addition, it is shown that a centroid matrix possesses a simple structure
when some restrictions are imposed on the positions of nonzero elements.
The performance of our proposed procedure were evaluated by simulation
studies. Further, three real data examples are presented to exemplify that
the proposed method works well.

5.1 Introduction

k-means clustering is one of the most popular procedures for classifying the rows of an
observations × variables data matrix into a small number of clusters (Aggarwal, 2014).
The k-means clustering procedure is widely used for classification purposes and recent
advances in its development can be found in Steinley (2006). Various extensions and
related procedures of the k-means clustering exist, fuzzy versions (Miyamoto et al.,
2008), probabilistic models (Bock, 1996), and variable selection procedures (Brusco
and Cradit, 2001), for example. Applications of k-means clustering can be found in
various fields of sciences, such as biology (Jetti et al., 2014), environmental science
(Dalton et al., 2016), agricultural science (Hyland et al., 2016), engineering (Peng

This chapter is based on the published article Yamashita and Adachi (2017) and Yamashita and
Adachi (2019a) with some modifications and extensions.
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et al., 2013), applied psychology (Cortina and Wasti, 2005; Kuerbis et al., 2014), and
experimental psychology (Schloss et al., 2015; Alsius et al., 2016; Slobodenyuk et al.,
2015).

For the n-observations × p-variable data matrix X, k-means clustering is formu-
lated as minimizing the least squares loss function

f(M,Y) =
∑
i,l

mil||x′
(i) − yl||2 = ||X−MY′||2 (5.1)

over M and Y. Here, M = {mil}(i = 1, · · · , n; l = 1, · · · , k) is an n-observations
× k-clusters binary membership matrix and Y = {yjl}(j = 1, · · · , p) is a p-variables
× k-cluster centroid matrix. x(i) and yl denote the i-th row vector and l-th column
vector of X and Y, respectively. The operator ||X||2 = tr(X′X) denotes the sum of
the squared elements in X. The minimization of (5.1) can be attained by using the
iterative algorithm proposed by MacQueen (1967), in which M and Y are alternately
updated.

The resulting membership matrix M shows how observations are classified into
clusters. In the interpretation of what variables characterize the clusters, the centroid
matrix Y plays a key role. Let us illustrate such an interpretation process with a data
matrix by Adachi (2006); 13 (jobs) × 12 (attributes) data matrix X called job impres-
sion data in this article, which describes the extent to which the jobs are described
by the impression attributes. We applied k-means clustering to the column-centered
version of the data matrix, with the number of clusters set to 4. Table 5.1 shows the
resulting centroid matrix. Its j-th row equals the average vector of the observations
classified into the l-th cluster and represents the variables that characterize the l-th
cluster. For example, the third cluster (C3) is characterized by the impressions of
“powerful,”, “strong,” and “fast,” as the elements for them in C3 show larger values
than those in the other clusters, where police, journalist, sailor, and athlete are classi-
fied into C3. The within-column and between-column contrasts in the centroids help
to capture which variables feature clusters, although these contrasts are not always
observed clearly in the centroid matrix.

A typical strategy to clarify the contrasts is to ignore the elements close to zeros
(those less than 0.4 in absolute value, for example) in the centroid matrix and regard
them as zeros. For example, we can consider that the first cluster (C1) is charac-
terized by the “useful,” “stubborn,” and “busy” impression, by ignoring the elements
having absolute values less than 0.4. This strategy is not desirable, however, because
which elements can be ignored depends on the users’ decisions. Such decisions are
both subjective and potentially erroneous, because, in fact, they weaken the initial fit
achieved by the centroid matrix in an intuitive manner.

In this article, considering the above problem of the interpretability of the result-
ing centroid matrix, we propose a new clustering procedure that produces an easily
interpreted centroid matrix. This procedure is called cardinality-constrained k-means
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Table 5.1: Estimated centroid matrix by k-means with four clusters
to job impression data.

C1 C2 C3 C4

admirable 0.338 -0.379 0.121 0.005
useful 0.557 -0.393 0.182 -0.276
good 0.205 -0.129 0.021 -0.062
large -0.010 -0.418 0.382 0.057
powerful -0.071 -0.796 1.029 -0.238
strong 0.031 -0.711 1.014 -0.436
fast -0.333 0.125 0.950 -1.100
noisy -0.279 0.246 0.871 -1.212
young 0.019 0.686 0.461 -1.548
honest 0.443 -0.332 0.168 -0.224
stubborn 0.569 -1.239 0.386 0.569
busy 0.590 0.282 0.207 -1.243

clustering (CCKM). In CCKM, a number of the elements in the centroid matrix Y

are constrained to be zeros, where Card(Y) for the cardinality of Y, i.e., its number
of nonzero elements. The constraint is expressed as

Card(Y) = c (5.2)

with c a prespecified integer. That is, our proposed CCKM is formulated as minimizing
(5.1) subject to (5.2). Here, it should be noted that it is unknown which elements in
Y are zero/nonzero. They are also estimated optimally in CCKM. This provides the
centroid matrix with pk − c zero elements, which facilitates the interpretation of Y,
as we may ignore the zero elements in Y. Here, it is noteworthy that no subjective
decision is involved in what elements are ignored; as described above, which elements
are to be zeros is estimated optimally.

The classic work Gordon (1973) firstly introduced constrained clustering proce-
dure, in which a priori information as to clusters are incorporated to clustering. Such
a priori information is thoroughly discussed in DeSarbo and Mahajan (1984); some
pairs of objects are constrained to be in same or different cluster, for example. These
constraints are helpful for obtaining interpretable and valid clusters. The related
works can be found in Steinley and Hubert (2008) and Basu et al. (2008). These
procedures requires clearly defined information as to cluster structures although is
often unavailable before applying clustering in the case of exploratory data analysis.
The proposed procedure in this paper does not require such external information with
combination of cardinality selection procedure introduced in Section 5.3.

The proposed procedure is also related to variable selection technique in clustering
(Brusco and Cradit, 2001). These procedures are designed to obtain appropriate clus-
ter structure even if some musking variables Fowlkes and Mallows (1983) exist, which
often spoils clustering result. In order to accomplish this, variable selection procedure
specify the set of variables which manifest cluster structure by various strategies,
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which are detailed and compared in Steinley and Brusco (2008). CCKM differs from
the variable selection procedures in that it is aimed to improve interpretability of clus-
ter centroids and therefore the set of variable corresponds to clusters are not always
identical.

The remaining parts of this paper are organized as follows. In the following section,
we present the algorithm for minimizing (5.1) under the cardinality constraint (5.2).
In Section 5.3, a cardinality selection procedure is proposed, in which the best c is
chosen with an information criterion. In Section 5.4, a modified version of CCKM
is presented, in which cardinality constraints are imposed row/column-wise, although
(5.2) is imposed matrix-wise. Two numerical simulations and three real data examples
are presented in Section 5.5 and 5.6, respectively, in order to assess and illustrate the
performances of the proposed procedure. Section 5.7 is devoted to a general discussion.

5.1.1 Related Method: Factor Rotation

Interpretability of solutions is of importance also in the multivariate analysis pro-
cedures other than clustering. Factor rotation is a well-known technique to obtain
interpretable solutions in factor analysis (FA), in which its initial solution is trans-
formed into more interpretable one of simple structure (Browne, 2001). It is based
on the rotational indeterminacy of the FA solution, which allows a factor loading ma-
trix be transformed in a post-hoc manner. Varimax rotation (Kaiser, 1958), Oblimin
rotation (Harman, 1976), and Promax rotation (Hendrickson and White, 1964) are
known as common procedures for factor rotation. More generally, rotation can be
applied to some other multivariate analysis techniques, not limited for factor analysis;
Yamashita (2012a) and Satomura and Adachi (2013) proved that solutions can be
rotated in canonical correlation analysis.

In clustering, however, such post-hoc transformations of solutions are not feasi-
ble. We therefore propose CCKM for improving the interpretability of solutions in
clustering, and it is surely beneficial for practical users. Also, as a special case of
CCKM, we propose RC-CCKM to produce the centroid matrix having a simple struc-
ture, by means of restricting the row/column cardinality of the centroid matrix, Such
a structure is desired also in FA (Thurstone, 1947; Ullman, 2006).

5.2 Algorithm

The optimization algorithm for CCKM is outlined in Section 5.2.1. It is composed of
two steps called the M- and Y-steps, which are iteratively alternated until convergence
is reached. These steps are described in detail in Section 5.2.2.

5.2.1 Outline: Whole Algorithm

Our proposed CCKM is formulated as

minimize f(M,Y) = ||X−MY′||2 over M and Y (5.3)
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subject to the cardinality constraint (5.2) and the membership constraint imposed on
M such that

mil ∈ {0, 1} and
∑
l

mil = 1. (5.4)

Two parameter matrices are alternately updated in the M- and Y-steps, respectively,
starting from multiple sets of initial values in order to avoid accepting a local minimum
as a final solution. In each step, (5.1) is minimized over M or Y with the other
parameter matrix kept fixed. The CCKM algorithm is thus summarized as follows.

Step 1. Set t = 0

Step 2. Set initial values for M and Y.

Step 3. (M-step) Update M to that which minimizes f(M,Y) subject to (5.4) with
Y fixed.

Step 4. (Y-step) Update Y to that which minimizes f(M,Y) subject to (5.2) with
M fixed.

Step 5. If the current M has an empty column filled with zeros, return to Step 2.

Step 6. Increase t by one and go to Step 7, if the decrease in the (5.1) value from the
previous round is less than 1.0× 10−7; otherwise, return to Step 3.

Step 7. Update M̂ and Ŷ by the current M and Y if f(M̂, Ŷ) > f(M,Y) or t = 1.

Step 8. If t = tmax, accept M̂ and Ŷ as the final solution; otherwise, return to Step
2.

The purpose of Step 5 is to avoid a solution with an empty cluster to which no
observations belong. In order to avoid accepting a local minimum, Steps 2 to 6 are
repeated tmax times starting from different initial values. Among the resulting multiple
solutions, that with the lowest (5.1) value is selected as the optimal solution. The
update formulas used in the M- and Y-steps are presented in the following section.

5.2.2 Optimization in M-step and Y-step

For the M-step, the corresponding step in the k-means clustering (MacQueen, 1967)
can be used: for fixed Y, the optimal M = {mil} minimizing (5.1) is given by

mil =


1 (l = argmin

l
f(M,Y))

0 (otherwise)
, (5.5)

for i = 1, · · · , n.
The problem in the Y-step cannot be solved straightforwardly and we therefore

need a trick. As such a one, we use the fact that (5.1) can be decomposed as

f(M,Y) = ||X−MA′||2 + ||D1/2(A−Y)||2. (5.6)
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Here, D = diag{d11, · · · , dll, · · · , dkk} denotes the k × k diagonal matrix with dll the
number of the observations classified into the l-th cluster (l = 1, · · · , k), while A is
defined as

A = X′M(M′M)−1, (5.7)

the l-th column of which contains the averages of the observation in the l-th cluster.
The identity in (5.6) can be proved as follows. (5.1) can be rewritten as

f(M,Y) = ||X−MY′||2

= ||X−MA′ +MA′ −MY′||2 (5.8)

= ||X−MA′||2 + ||D1/2(A−Y)||2 − tr{(X−MA′)′(MA′ −MY′)}

with its last term vanishing as

tr{(X−MA′)′(MA′ −MY′)}

= tr{X′M(M′M)−1M′X} − tr{X′M(M′M)−1M′X} − tr(X′M′M) + tr(X′M′M)

= 0. (5.9)

In the right-hand side of (5.6), only g(Y) = ||D1/2(A−Y)||2 is relevant to Y. Thus,
our task is to minimize g(Y) subject to (5.2). The minimum can be found using the
fact that g(Y) satisfies the following identity and inequality:

g(Y) =
∑

(j,l)∈Z

d
1/2
ll a2jl +

∑
(j,l)∈Z⊥

d
1/2
ll (ajl − yjl)2 ≥

∑
(j,l)∈Z

d
1/2
ll a2jl, (5.10)

where Z denotes the set of pk − c pairs (j, l)s for the elements yjls to be zero, while
Z⊥ is the complement of Z. The inequality in (5.10) shows that g(Y) attains its lower
limit

∑
(j,l)∈Z d

1/2
ll a2jl when the elements yjls in the second term in (5.10) is equal to

zero, that is, when the yjls with (j, l) ∈ Z⊥ is set equal to zero. Further, the limit∑
(j,l)∈Z d

1/2
ll a2jl is minimal when Z contains the indices for the pk − c smallest a2jls

among all squared elements in A. Therefore, the optimal Y is obtained as

yjl =

0 (iff a2jl ≤ a2[pk−c])

ajl (otherwise)
. (5.11)

for l = 1, · · · , k and j = 1, · · · , p, where a2[pk−c] denotes the (pk− c)-th smallest value
among all a2jls.

Equations (5.5) and (5.11) are used for the updates in M- and Y-step, respectively.
They guarantee the monotonic decrement in the the f(M,Y) value. In the following
simulation studies and real data examples, we used 300 different initial values for M

and Y; i.e., tmax = 300.
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5.3 Cardinality Selection based on Information Criteria

In the CCKM algorithm, the cardinality of centroid matrix Y has to be set to a positive
integer c, as in (5.2). In this article, the minimum and maximum of c, cmin, cmax, are
defined as

cmin = p, cmax = pk. (5.12)

It should be noted that Y has p non-zero elements when Y has a perfect cluster
structure; i.e., each variable is associated with only one cluster. The selection of
the number of non-zero elements in Y can be viewed as a model selection problem,
since the selection partially specifies the model part of CCKM, MY′, fitted to the
given data matrix X. Thus, information criteria, such as Akaike information criterion
(AIC) and Bayesian information criterion (BIC), for the model selection problem can
be suitable for determining c, which directly constrains the cardinality of the model
fitted to the dataset. In this study, we propose using AIC and BIC to select the “best”
c among the interval [cmin, cmax].

Let E = {eij} be the matrix of errors defined as E = X−MY′ and assume that
data matrix X is modeled as X = MY′ + E with eij distributed independently and
identically according to N(0, σ2) for all i and j. Here, N(0, σ2) represents normal
distribution with its mean zero and variance σ2. Then, it can be shown that the
least squares and maximum likelihood estimates for CCKM are equivalent. Under the
above assumption, the log-likelihood function to be maximized in ML estimation is
expressed as

l(M,Y) = −np
2

log ||X−MY′||2. (5.13)

Its maximization is equivalent to minimizing least squares function (5.1). For a posi-
tive integer c, the maximum of l(M,Y) is attained as

l(M,Y) ≤ −np
2

log fmin(c). (5.14)

where fmin(c) denotes the attained function value of (5.1). Using (5.14), the informa-
tion criteria AIC(c) and BIC(c) for a specific c are defined as

AIC(c) = np× log fmin(c) + 2ν(c), (5.15)

BIC(c) = np× log fmin(c) + log(np)× ν(c), (5.16)

where ν(c) denotes the number of parameters to be estimated and equals the sum of
the numbers of the memberships in M, the nonzero elements in Y, and error variance
σ2:

ν(c) = n+ c+ 1. (5.17)

Therefore, the best c can be given by c = argmin
cmin≤c≤cmax

AIC(c) or BIC(c). AIC and

BIC were originally proposed as model selection criteria and also used for cardinality
selection in studies in the literature (Adachi and Trendafilov, 2016, 2018b). This
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approach is not considered to be computationally efficient, however, because CCKM
involves the optimization with respect to a binary membership matrix, as in the
standard k-means, and therefore is sensitive to local minima. To select c with AIC(c)
or BIC(c) is not feasible because a heavy computational load is required for all runs,
especially when the data matrix is large (i.e., X contains many objects and variables).
In such a situation, the centroid matrix to be estimated is also large, although CCKM
must facilitate the interpretation of such a large matrix.

In order to find a suitable c value with a lower computational cost, we propose the
following algorithm.

Step 1. Set Sinitial and Sdecrease to an integer within the range [0, 1]. Set ccurrent =
cmin and S = cmax × Sinitial.

Step 2. Repeat Steps 2 and 3 for S > 1.

Step 3. (Forward search) Repeat (a) to (c).

(a) Set c = ccurrent and compute

∆AIC(c) = AIC(c+ 1)−AIC(c) (5.18)

or
∆BIC(c) = BIC(c+ 1)−BIC(c) (5.19)

(b) If ∆AIC(c) or ∆BIC(c) is smaller than 0, set ccurrent = ccurrent + S and
return to Step 2; otherwise, proceed to (c).

(c) Set S = S × Sdecrease and proceed to the backward search.

Step 4. (Backward search) Repeat (a) to (c).

(a) Set c = ccurrent and compute ∆AIC(c) or ∆BIC(c).

(b) If ∆AIC(c) or ∆BIC(c) is greater than 0, set ccurrent = ccurrent − S and
return to Step 4; otherwise proceed to (c).

(c) Set S = S × Sdecrease and proceed to the forward search.

Step 5. If the previous step is forward search, repeat backward search with S = 1 until
∆AIC(c) or ∆BIC(c) becomes positive; otherwise, repeat forward search until
∆AIC(c) or ∆BIC(c) becomes negative.

The above algorithm seeks c that minimizes AIC(c) or BIC(c) within the range
[mmin,mmax] by repeating the forward and backward searches and reducing the step
size S through iteration. The rate of decrement in the step size is controlled by
Sdecrease and the initial step size is defined as cmax×Sinitial. The total computational
cost is therefore dramatically reduced in comparison with that incurred by performing
CCKM with computation of AIC(c) or BIC(c) for all cs. In the following simulation
and real data examples, we set Sinitial = 0.9 and Sdecrease = 0.7, settings that were
empirically confirmed to behave well.
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5.4 CCKM with Row/Column-wise Cardinality Constraint
(RC-CCKM)

While a matrix-wise cardinality is constrained by cardinality parameter c in CCKM,
we can also consider its modified version subject to row- and column-wise cardinality
constraints. By combining row- and column-wise constraints, we can restrict both the
cardinality of the centroid matrix and the positions of the nonzero elements, so that
the resulting matrix approximates a simple structure. The utility of this approach
can be illustrated with an example of a 5 variables × 3 clusters centroid matrix that
has several zero elements, but is not easily interpretable:

Y =


∗

∗ ∗ ∗
∗

∗ ∗ ∗
∗

 . (5.20)

Here, the cardinality is 10 and ∗ represents a nonzero element. Although this matrix
has more zero elements than unconstrained ones, it is still difficult to interpret in that
the centroid matrix has a column (the third column) filled with non-zero elements,
which indicates that all the variables are associated with the third cluster. To interpret
of such a cluster, abstraction and integration of all variables are required, and it is
not always straightforward to name the cluster. Similarly, the second and fourth rows
are filled with non-zeros. We therefore prefer the centroid matrix

Y =


∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗

 (5.21)

because it does not contain any row/column vector filled with non-zeros in spite of its
cardinality equaling that of (5.20). In order to obtain a centroid matrix as in (5.21),
the positions of nonzero elements, in other words, the cardinality of rows and columns,
have to be restricted. Such constraints are defined as

Card(y(j)) = r(j), Card(yl) = c(l) (5.22)

where r(j) and c(l) denote the cardinality of the row and column of Y, respectively.
To find the matrices M and Y that minimize (5.1) under the above constraint,

the Y-step in Section 5.2.2 can be modified as follows. To minimize (5.1) subject to
the constraint Card(y(j)) = r(j), the set Z is redefined as

Z = {(j, l)|a2jl ≤ a2j[r(j)]}, (5.23)
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Figure 5.1: Boxplots of SD(cAIC) and SD(cBIC) as indices of dis-
crepancy between true and estimated cardinality by AIC and BIC

criterion.

where {a2j[k−r(j)]} denotes the {k − r(j)}-th smallest element among a2j1, · · · , a2jk for
j = 1, · · · , p. Each row is therefore updated by using the above Z and referencing
the squared elements of A in (5.7). In a parallel manner, under Card(yl) = c(l), Z is
redefined as

Z = {(j, l)|a2jl ≤ a2[c(l)]l} (5.24)

with a2[p−c(l)]l the {p− c(l)}-th smallest element among a21l, · · · , a2pl for l = 1, · · · , k.
We refer to the above procedure as CCKM with row/column-cardinality constraint

(RC-CCKM). The performance of the procedure is demonstrated later in one of the
real data examples.

5.5 Simulation Studies

In order to assess the behaviors of the CCKM algorithm presented in Section 5.2
and the AIC/BIC-based cardinality selection procedure presented in Section 5.3, we
performed two numerical simulation studies. The behaviors to be assessed are the
following two. 1) The correctness of the identification of the true cardinality is identi-
fied by the cardinality selection procedure and 2) the recovery by CCKM of the true
parameters from which artificial datasets are synthesized. Therefore, the purpose of
the first simulation study was to assess the accuracy of the cardinality selection, and
of the second to evaluate the performance of the parameter recovery.

5.5.1 Accuracy of Cardinality Selection

First, we examined the accuracy of true cardinality in the cardinality selection pro-
cedure. A hundred data matrices X of n = 100 by p = 30 were randomly generated
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Figure 5.2: Boxplot of ARI (adjusted Rand index) and AAE(Ŷ,Y)
values in the case with (n, p) = (100, 30).

with setting k = 3, as follows.

Step 1. A positive integer cT was randomly drawn from the interval [0.1×pk, 0.9×pk]
and used for the true cardinality of a centroid matrix.

Step 2. The cT nonzero elements in Y were drawn from the uniform distribution
U(1, 5), with their positions and signs randomly chosen.

Step 3. The true membership matrix M was formed by randomly assigning n obser-
vations to k clusters.

Step 4. The elements of n× p error matrix E were drawn from the standard normal
distribution N(0, 1).

Step 5. Data matrix X of n-observations × p-variables was synthesized with

X = MY′ + µ(ρ)E. (5.25)

where µ(ρ) is defined as

µ(ρ) =

√
1− ρ
ρ
× ||MY′||2
||E||2

(5.26)

with ρ being the rate of the variance explained.

In Step 5, µ(ρ) was used for controlling the level of errors, so that ρ approximated the
proportion of the variances in ||X||2 accounted for by the model part MY′ (Adachi,
2009; Yamashita and Mayekawa, 2015). We considered the medium error level with
ρ = 0.70, which represents the 70% of the variance of X explained by MY′. For each
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Figure 5.3: Boxplot of ARI (adjusted Rand index) and AAE(Ŷ,Y)
values in the case with (n, p) = (30, 100).

of 100 Xs, the best cardinality was selected with AIC and BIC: cAIC and cBIC were
used for the selected cardinality, respectively. The bias of the estimated cardinality
was evaluated with the standardized difference (SD) defined as

SD(m) = (pk)−1(cT − c). (5.27)

Figure 5.1 shows the boxplots of the resulting SD(cAIC) and SD(cBIC) in the
medium-error condition. The SD values are found to approximate zero in the BIC-
based cardinality selection, which indicates that the BIC-based procedure almost per-
fectly specifies the true cardinality, although it slightly overestimates it in a few cases.
Conversely, the AIC-based selection tended to considerably underestimate the true
cardinality, which is seen in the result that the discrepancy between the true and esti-
mated cardinality is over 7% of all entries in Y at 50 percentile of SD(c). These results
show that the BIC-based is more precise than the AIC-based selection, suggesting that
the former should be used.

5.5.2 Accuracy of Parameter Estimation

In order to assess how well the parameter matrices are recovered in the CCKM al-
gorithm, we considered the cases where (n, p) = (100, 30) and (30, 100) and three
error levels (ρ = 0.90, 0.70, 0.50). A hundred artificial datasets X were generated as
described in the previous section. Next, CCKM was applied to X with its cardinality
set as c = cT (identical to the true cardinality), c = cT − 0.05 × pk (5% fewer than
the true cardinality), and c = cT + 0.05× pk (5% more than the true cardinality) in
order to assess the sensitivity to cardinality misidentification. For each of 2 (dimen-
sion of data matrix; (n, p) = (100, 30), (30, 100)) × 3 (error level; ρ = 0.90, 0.70, 0.50)
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× 3 (cardinality setting; 5% fewer, identical to true cardinality, and 5% more) combi-
nations, we generated 100 datasets in the manner described in the previous section.
The resulting parameters (M̂, Ŷ) were compared to their true counterparts and the
accuracy of their recovery was evaluated by the following indices. For the membership
matrix, we compared M̂ and M in terms of the Adjusted Rand Index (ARI) (Rand,
1971; Hubert and Arabie, 1985) of these matrices, ranged from 0 to 1 with ARI = 1

representing the perfect coherence of the two partitions shown by M̂ and M. The
proximity between Ŷ = {ŷjl} and its true counterpart Y = {yjl} was evaluated with
Averaged Absolute Error (AAE) defined asAAE(Ŷ,Y) = (pk)−1

∑
j,l |ŷjl−yjl|, which

indicates the averaged discrepancy between the pk elements in Ŷ and Y. It should be
noted that, before computing the four indices, we must choose the k× k permutation
matrix that minimizes ||ŶP −Y||2, to eliminate the freedom of row-permutation of
Ŷ shown as ||X −MY′||2 = ||X − (MP)(YP)′||. Therefore, the permutation of P
was chosen that minimizes ||ŶP −Y||2 among all possible p! permutation matrices.
We use M̂P for M̂ and ŶP for Ŷ with the chosen P.

The CCKM algorithm is run starting from tmax different initial values in order to
avoid accepting a local minimum as the final solution. In this simulation, we ran the
CCKM algorithm from 300 different initial values; i.e., tmax = 300.

Figures 5.2 and 5.3 show the parameter recovery results in the two cases of data
sizes. Overall, the parameters were correctly recovered by CCKM, in that the ARI
indices attained their maximum 1 in almost all cases, and that the discrepancy be-
tween Ŷ and Y indicated by the AAE values are sufficiently small. Even in the case
where ρ = 0.50, where the error variance amounts to the half of the total variance of
the dataset, the AAE value is lower than 0.3 at 50 percentile. Further, even if the
cardinality is misidentified, the levels of the ARI and AAE values are still satisfactory.
Thus, it can be considered that the true cardinality can be identified fairly accurately
in CCKM. These results allow us to conclude that the performances of CCKM is suit-
able for dealing with practical problems, in that the CCKM almost perfectly recovers
the true parameters.

5.6 Real Data Examples

In this section, we illustrate CCKM with the cardinality selection procedure, using
three real data examples. Further, the modified version of CCKM with row/column-
cardinality constraints are finally illustrated with an additional example.

5.6.1 Example 1: Fisher’s Iris Data

CCKM was applied to Iris data (Fisher, 1936), in which the 150 observations sampled
from 3 species were measured with respect to 4 variables. Note that the data matrix
was column-wise standardized beforehand. In order to find the optimal cardinality,
the BIC-based cardinality selection procedure was used and the results suggested that
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Table 5.2: Estimated centroid matrices by CCKM with c = 10 (left)
and k-means (right); a blank cell shows exact-zero element.

CCKM k-means
C1 C2 C3 C1 C2 C3

Sepal.Length 1.030 -0.999 1.132 -0.050 -1.011
Sepal.Width -0.969 0.903 0.088 -0.880 0.850
Petal.Length 0.940 -1.299 0.993 0.347 -1.301
Petal.Width 0.969 -1.252 1.014 0.281 -1.251

c = 8 is the best. We also applied k-means clustering to the dataset for comparison.
The estimated centroid matrices are shown in Table 5.2.

In the centroid matrix estimated by CCKM in Table 5.2, we can find that the first
cluster is contrasted to the second one for Sepal.Length and Sepal.Width. Further,
the second cluster is different from the other clusters for Sepal.Width, with Versicolor
in the second cluster characterized by narrow sepals. The contrast between clusters
is clearer in the centroid matrix of CCKM than in that of the resulting k-means
clustering, because the former has exactly zero elements. Further, as shown in Table
5.3, the three clusters are associated with the three species, Setosa, Versicolor, and
Virginica, respectively. It can be seen that the estimated memberships correspond
to the species, since (49 + 37 + 42)/150 = 85.3% of 150 observations are correctly
classified into the true species, while (50 + 39 + 36)/150 = 83.3% in the k-means
clustering.

The ARI (with its 95 % confidence interval by Steinley et al. (2016)) between
the partition obtained by CCKM for the three species was 0.645 ([0.626, 0.664]), while
ARI = 0.620 ([0.601, 0.638]) for k-means clustering. Also, ARI for the two partitions
was 0.832 ([0.813, 0.851]), and it suggests that two partitions obtained by CCKM and
k-means are similar, even if the cardinality of centroid matrix is restricted in CCKM.

These results demonstrate that CCKM yields an easily interpreted centroid matrix
subject to the cardinality constraint, and the classification accuracy is improved.

Table 5.3: Contingency table for species vs. the estimated partitions
by CCKM and k-means.

CCKM(c = 8) k-means
C1 C2 C3 C1 C2 C3

Setosa 49 0 0 50 0 0
Versicolor 1 37 8 0 39 14
Virginica 0 13 42 0 11 36

5.6.2 Example 2: Wine Data

The second example is that of the Wine data available at the UCI machine learning
repository, in which the 178 types of wine are evaluated in terms of 13 chemical fea-
tures. Note that the data matrix was column-wise standardized beforehand. CCKM
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was performed for the dataset with c = 35 selected by the BIC-based procedure.
Table 5.4 shows the estimated centroid matrix. It can be seen that each cluster is
characterized by a small number of chemical features, which highlights the contrasts
among clusters. For example, the contrast between the fourth and fifth clusters can
be found in “Malic acid” and “Hue”; the observations classified into the fourth cluster
are characterized by lower “Malic acid” and higher “Hue.” Similarly, the other contrast
between clusters can be found in several variables, such as “Ash,” “Total phenols,” and
“Nonflavonoid phenols,” which are clearly highlighted by the cardinality constrained
estimation of nonzero and exact-zero elements.

Originally, the wines in the dataset are classified into three categories. In Table 5.5,
we compare these categories and the clusters obtained by CCKM and k-means. Note
that the number of clusters in k-means was set at 5 for comparison. It is interesting
that clusters obtained by the two procedures are fairly similar, as indicated that
ARI = 0.715 with its 95% interval [0.700, 0.731] for the two partitions. For both
procedures, the first and fifth clusters correspond to Category 1 and 3, respectively.
Further, the wines in Category 2 is splitted into three clusters (second, third, and
fourth clusters). It suggests that even if CCKM reduces cardinality of centroid matrix,
it produces similar cluster structure to k-means clustering.

Table 5.4: Centroid matrix obtained by CCKM with cardinality of
r = 35. The exact-zero elements are shown as blank cells.

C1 C2 C4 C4 C5

Alcohol 0.930 -0.613 -0.993 -0.737
Malic acid -0.843 0.930
Ash 1.960 -1.225
Alcalinity of ash -0.780 1.499 0.668 -0.587 0.524
Magnesium 0.505 1.548 -0.701
Total phenols 0.881 -1.004
Flavonoids 0.958 0.491 -1.233
Nonflavonoid phenols -0.611 0.743
Proanthocyanidins 0.599 -0.774
Color intensity -1.007 -0.709 0.953
Hue 0.975 -1.180
OD280 315 0.772 -1.275
Proline 1.204 -0.807 -0.652

Table 5.5: Contingency table for wine categories vs. the estimated
partitions by CCKM and k-means.

CCKM(c = 35) k-means
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Category 1 56 2 0 1 0 54 4 0 1 0
Category 2 1 4 37 27 2 0 18 25 27 1
Category 3 0 1 0 0 47 0 0 1 0 47
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5.6.3 Example 3: Job Impression Data

Here, we illustrate RC-CCKM by using the job impression dataset that was also used
in Section 5.1. Note that the data matrix was column-wise centered beforehand.
Row- and column-wise cardinalities were set to r(j) = k/2 = 2 and c(l) = p/2 = 6

for j = 1, · · · , 12, l = 1, · · · , 4. This implies “Each row should contain at least one
zero and each column should contain at least k zeros,” which is a property of an easily
interpreted matrix (Thurstone 1947).

The estimated centroid matrix is presented in Table 5.6. The resulting cardinality
of the centroid matrix is 19, which is 19/48 ≈ 39.6% of all entries. As in the previous
two examples, we can see clear differences between clusters and the homogeneity in
each cluster. As the row-wise cardinality was set at 2, each row has at least two zero
elements and the remaining nonzero elements show the contrast of extreme positive
and negative values, as found in the rows of “powerful” and “strong,” for example.
Furthermore, each cluster corresponds to fewer variables, as compared with the results
of k-means in Table 5.1, which facilitates the interpretation of clusters. It should be
noted that the proportion of the variance explained by the CCKM is 60.8%, which is
not substantially lower than the proportion of 68.9% in the k-means solution. Further,
the memberships estimated in CCKM perfectly correspond to those in the k-means
clustering. These results demonstrate promising performances of RC-CCKM: it gives
easily interpreted solutions while the goodness of fit to data is retained.

Table 5.6: Estimated centroid matrix by CCKM with row/column-
cardinality constraint and four clusters for job impression data; exact-

zero elements are shown as blank cells.

C1 C2 C3 C4

admirable 0.338
useful 0.557 -0.393
good
large -0.418
powerful -0.796 1.029
strong -0.711 1.014
fast 0.950 -1.100
noisy 0.871 -1.212
young 0.686 -1.548
honest 0.443
stubborn 0.569 -1.239
busy 0.590 -1.243

5.7 Concluding Remarks

In this paper, we addressed the difficulty in interpreting the centroid matrix resulting
from the standard k-means clustering. We proposed a new procedure called CCKM
in which the cardinality of the centroid matrix is directly constrained ti improve its
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interpretability. CCKM produces a centroid matrix with reduced cardinality and
its interpretation is easier than that of the standard k-means clustering, because
between-cluster contrasts are highlighted by exact-zero elements. We also proposed
a cardinality selection procedure and modified version of CCKM. The results of the
simulation studies show that the BIC-based cardinality selection is more accurate than
the AIC-based one, and the parameter estimation of CCKM is not sensitive to error
contamination and misidentification of cardinality. Real data examples were presented
to demonstrate the promising performance of CCKM and its modified version.

In clustering, the interpretability of solutions is of importance, as well as the clas-
sification accuracy. Thus, the cardinality constraint is considered to be useful for users
in that the number of non-zero elements is directly associated with interpretability.
Further, users can control the balance of low cardinality and model fit by tuning the
cardinality parameter c within a restricted range. Therefore, we can conclude that
the proposed procedure is suitable for extracting interpretable clusters.
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Chapter 6

Multivariate Analysis Procedures
with Layered Simple Structure

ABSTRACT

The study proposes a new class of multivariate analysis procedures
and it is called Layered Multivariate Analysis (LMA). In LMA, a solu-
tion matrix is expressed as a sum of several sparse matrices, which are
called “layers”. How sparse is the resulting solution matrix is controlled
by the number of layers employed. As special cases, Layered Multivariate
Regression (LMR) and Layered Principal Component Analysis (LPCA)
are proposed and a regression coefficient matrix and a component loading
matrix are constrained to have layered structure, respectively. A general
framework of parameter estimation is proposed by means of majorization
technique. It is shown that LMA’s solution converges to unconstrained so-
lution as the number of layers increases. Real data examples are presented
to exemplify the effectiveness of the proposed procedures.

6.1 Introduction

One of the key roles of multivariate analysis is to provide insights of the relationships
between variables (Izenman, 2008), and it is accomplished by interpreting of their
solutions. For example, principal component analysis (Hotelling, 1936; Jolliffe, 2011)
for an N -observations × P -variables data matrix X seeks an N × r(≤ P ) component
matrix F and a P × r loading matrix A that minimize

lPCA(F,A) = ||X− FA′||2 (6.1)

subject to the constraint that n−1F′F = Ir where Ir denotes the r × r identity ma-
trix. The relationship between the P variables in X is summarized by the r principal
components. A loading matrix A indicates the correspondence between P variables in

This chapter is based on the published article Yamashita & Adachi(in press) with some modifi-
cations and extensions.
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rows and r principal components in columns. Namely, it serves to find some subsets
of variables corresponding to principal components, and to understand what the com-
ponents stand for. Interpreting A is, however, not always straightforward because the
contrast between/within column(s) of A is often unclear, and this is mainly because
interpretability is not considered in the traditional formulation of PCA.

Vichi and Saporta (2009) considered the above problem and proposed a modified
PCA procedure called clustering and disjoint principal component analysis (CDPCA)
where a loading matrix is constrained to have a perfect cluster structure (Harris and
Kaiser, 1964; Kaiser, 1974; Bernaards and Jennrich, 2003). CDPCA is aimed to
minimize the least squares loss function

lCDPCA(U, F̃,A) = ||X−UF̃A′||2 (6.2)

where U and F̃ denote an I (objects) ×k (clusters) membership matrix and an k× r
component score matrix that has k(< I) component scores corresponding to the k
clusters for the I objects. (6.2) is minimized subject to the constraint that U is a
binary and row-wise stochastic matrix and A has a perfect cluster structure; each
row of A has a single non-zero element and zeros elsewhere. The variables in rows
are therefore classified into r disjoint sets each of which corresponds to a column,
and thus the components are self-evidently characterized by these sets. Note that
original CDPCA disjointly classifies not only I objects into k classes but also P

variables into r classes. In this paper, we focus on variable classification because
it is of prominent importance for interpreting components. Importantly, Vichi (2017)
proposed a procedure for estimating a loading matrix having such structure in factor
analysis and the above approach can be therefore extended to other techniques of
multivariate analysis. It is considered to be beneficial to extend the above procedure
to multivariate regression (Izenman, 2008) and k-means clustering (MacQueen, 1967;
Aggarwal, 2014), for example. On the other hand, the drawback of this approach
is that the constraint imposed on the solution (i.e., perfect cluster structure) is too
restrictive in many practical cases, and the resulting fit to a data matrix is generally
poor. Therefore, a family of procedures that produces interpretable solutions with
sufficient fitness to a data matrix is considered to be beneficial in practical use cases,
especially for exploratory purpose of multivariate analysis.

The main contribution of this study is to propose a new approach of multivariate
analysis that is called layered multivariate analysis (LMR). The concept of LMA is
that a solution matrix is constrained to be a sum of matrices, which are called layers,
having a certain simple structure. For example, layered PCA (LPCA) as a member
of LMA family is formulated as the minimization of

fLPCA(A1, · · · ,AL) = ||X− F

L∑
l=1

Al||2 s.t. n−1F′F = Ir. (6.3)

In the formulation, notice that an unknown loading matrix A is expressed as a sum
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of L layers A1, · · · ,AL. Each layer is constrained to posses a certain structure that
is helpful for the interpretation of A; e.g., perfect cluster structure. The proposed
procedure therefore considered as a generalization of CDPCA, which corresponds to
CDPCA with L = 1. As a result, even if a layer-level structure is restrictive as in CD-
PCA, by superimposing multiple layers, it is possible to obtain a solution matrix that
is easy to interpret with better fitness to a data matrix. Or equivalently, it allows users
to control the balance between the interpretability and the goodness-of-fit of solutions
by increasing or decreasing layers that are used in LMA. As an interesting property
of the proposed method, an unconstrained solution is guaranteed to be recovered by a
finite set of layers and the resulting goodness of fit is improved as the number of layers
increases. Based on this property, one can safely choose a desired level of simplicity
between the most restrictive but simplest case (L = 1) and the original solution that
fits to data best. The study proposes a general framework for parameter estimation
in LMA, followed by introducing Layered Multivariate Regression (LMR) and LPCA
where a coefficient matrix and a component loading matrix are expressed as a sum of
layers, respectively.

The remaining parts of this chapter are organized as follows. The next section
presents a general algorithm for parameter estimation in LMA, and it is specialized
into LPCA and LMR. Also an algorithm for determining how many layers should
be employed is proposed in Section 6.2.3. In Section 6.2.4, an important property
of the proposed procedures is introduced. Two real data examples are presented in
Section 6.3, in order to exemplify the effectiveness of the proposed procedures. The
final section is devoted to a concluding remark.

6.2 Proposed Method

In this section, a general framework of LMA is proposed. Two procedures, LPCA and
LMR, are proposed as a special case of the formulation, together with optimization
algorithms for the minimizations. As a starting point, we define the least squares
criterion in LMA as

f(P) = ||M−NP||2 (6.4)

that is minimized over the set of parameters P under some constraints, if necessary.
Above, matrices M, N, and P are arbitrary matrices having suitable dimensions.
Entries of P and three matrices noted as M,N, and P are determined according
to the problem to be solved. For example, in LPCA, P is given by {F,A} with
(M,N,P) = (X,F,A′). The criterion is defined as f(P) = ||X − FA′||2. Here,
consider the following structure on P called layered structure;

P =
L∑
l=1

Pl (6.5)
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where Pl is the l-th layer having a specific structure, e.g., a perfect cluster structure.
This serves for obtaining an interpretable solution matrix P having a simple structure
and controlling the degree of its simplicity against the fitness to a data matrix by
increasing or decreasing how many layers are employed.

Here, f(P) is rewritten as

f(P) = ||(M−N
∑
l′ ̸=l

Pl′ )−NPl||2 = ||M̃l −NPl||2 (6.6)

where M̃l = M−N
∑

l
′ ̸=l Pl

′ stands for the partial residual of other than l-th layer.
Therefore, Pl is obtained as the one minimizes f (l)(Pl) = ||M̃l −NPl||2 given other
parameter(s) and layers kept fixed. The overall algorithm is thus composed of the
following four steps where P♯ stands for a set of parameters other than P.

1. Initialize the entries of P.

2. For l-th layer (l = 1, · · · , L), update the current Pl by the one that minimizes
f (l)(Pl) satisfying constraint on its structure, keeping other layers and parame-
ter(s) fixed.

3. If S♯ ̸= ∅, update P♯ by the one that minimizes f(P♯|P); otherwise proceed to
Step 4.

4. Finish if convergence is reached; otherwise go back to Step 2.

It is guaranteed that the function value monotonically decreases while repeating Step
2 to 3. In order to reduce the possibility to select a local minimum as a final solution,
it is recommended to use 100 initial values for P and accept the solution as optimal
one that gives the lowest function value of f(P). In the following, a general algorithm
to minimize ||M̃l − NPl||2 over l-th layer subject to constraint on its structure is
derived, while the optimization in Step 3 is dependent on the problem to be solved.

For the minimization of f (l)(Pl), we use majorization function that is defined as
follows:

Definition 6.2.1. Let g(Θ) be an arbitrary matrix function of a matrix Θ. The
function m(Θ) is said to be majorization function of g(Θ) if m(Θ) satisfies

1. g(Θ̃) = m(Θ̃)

2. g(Θ) ≥ m(Θ) for all possible Θs.

These two conditions state that the majorization function m(Θ) touches g(Θ) at
the point Θ = Θ̃ and is never less than g(Θ). See Kiers (1990) for details. Following
Kiers (2002), a majorization function of f (l)(Pl) is given by

m(l)(Pl) = α||Ql −Pl||2 (6.7)
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where
Ql = Pc

l − α−1(N′M̃l −N′NPc
l ). (6.8)

Above, α and Pc
l denote a positive integer larger than the largest eigen value of

N′N⊗I, and the current estimate for Pl, respectively, with I being an identity matrix.
Considering the definition of the majorization function, minimization of f (l)(Pl) is
accomplished by minimizing m(l)(Pl) and replacing Pl as the minimizer. Further, this
minimization is simply accomplished as follows. Here, as an example, consider the
minimization of m(l)(Pl) under the constraint that Pl has a perfect cluster structure.
Since m(l)(Pl) is proportional to a sum of squared differences between Ql and Pl, the
(i, j)-th element of the optimal Pl denoted as p(l)ij is simply obtained as

p
(l)
ij =

q
(l)
ij iff |q(l)ij | > |q

(l)
kj | (k ̸= i)

0 otherwise
(6.9)

where q
(l)
ij and p

(l)
ij denote the (i, j)-th element of Ql and Pl, respectively. (6.9)

indicates that the optimal Pl is set as Ql and replace the elements other than the
maximum element in absolute with zeros for each row. In other cases, if the cardinality
(i.e., number of non-zero elements) of Pl is constrained to be lower than a positive
integer c, Pl is obtained as Ql and replace the elements other than the c-th largest
elements in Ql with zeros. As seen here, various types of constraint on the structure
of P can be considered in LMA, since the optimization with respect to Pl is simply
reduced to the minimization of m(Pl) = α||Fl−Pl||2, which can be minimized easily.

In the following, as special cases of the above algorithm, the study proposes two
procedures in which solution matrices are constrained to be layered for their inter-
pretability.

6.2.1 Layered Multivariate Regression (LMR)

In LMR a regression coefficient matrix W is expressed as a sum of L layers, and it is
formally defined as the minimization of

fLMR(W) = ||Y −XW||2 = ||Y −X

L∑
l=1

Wl||2 (6.10)

where Y(n× q) denotes the matrix of q dependent variables with respect to n obser-
vations. The q dependent variables are regressed on p independent ones in an n × p
matrix X with an unknown p×q matrix of regression coefficients W. Considering that
{M,N,P} in (6.10) corresponds to {Y,X,W} and P♯ = ∅ in (6.10), the majorization
function in (6.7) is re-expressed as following in LMR;

m
(l)
LMR(Wl) = α||{Wc

l − α−1(X′Ỹl)−X′XWc
l } −Wl||2 (6.11)
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that majorizes f (l)LMR = ||Ỹ − XWl||2 to be minimized for updating the l-th layer
Wl, where Ỹ = Y−X

∑
l′ ̸=l Wl′ stands for the partial residual of other than the l-th

layer. Above, α is a positive integer larger than the largest eigen value of X′X ⊗ Iq

where Iq denotes the q-dimensional identity matrix, and Wc
l is the current estimate

for Wl.
As noted in the previous subsection, m(l)

LMR(Wl) is easily minimized under some
constraint on W1, · · · ,WL. This study considers a perfect cluster structure for all
layers, and such layers are obtain by (6.9) for l-th layer with Ql = Wc

l −α−1(X′Ỹl)−
X′XWc

l and Pl = Wl.

6.2.2 Layered Principal Component Analysis (LPCA)

As already mentioned, LPCA in which a loading matrix is expressed as a sum of L
layers is formally defined as the minimization of (6.3) given a data matrix X. It is
equivalent to minimize

fLPCA(F,A) = ||X− FA′||2 = ||X− F
L∑
l

A′
l||2 (6.12)

that is equivalent to (6.4) with {M,N,P} = {X,F,A′} and P = {F,A}. Further,
the criterion to be minimized for the l-th layer of Al is expressed as

f
(l)
LPCA(F,A) = ||X̃l − FA′

l||2 (6.13)

with X̃l = X− F
∑

l′ ̸=l Al′ . Therefore, using n−1F′F = Ir, we obtain a majorization
function of (6.13) as

m
(l)
LPCA(Al) = α||{Ac

l − α−1(X̃′
lF−Ac

lF
′F)} −Al||2 (6.14)

= ||n−1X̃′
lF−Al||2 (6.15)

where Ac
l is the current estimate of Al. Above α = n is used since α is define as a

positive integer larger than the largest eigen value of F′F = Ip = In+p that is equal to
1 < n. Under the constraint that A1, · · · ,AL have a perfect cluster structure, (6.15)
is easily minimized by the same manner as in LMR, namely, by row-wise searching of
the highest element in absolute of n−1X̃′

lF for all ls.

6.2.3 Determining number of layers L

Before applying LMA including three procedures introduced above, the number of
layers L has to be specified beforehand. As to be discussed and numerically exemplified
in the next section, the function value of LMA in (6.4), namely fLMR(W) (LMR) or
fLPCA(F,A) (LPCA), keep on increasing and approach to the attained function values
for unconstrained solutions without layer structure, as L increases. For example, in
LMR, fLMR(ŴOLS)−fLMR(Ŵ) approaches to zero as the number of layers increases,
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where ŴOLS = (X′X)−1X′Y denotes the OLS estimate without layer structure for
W and Ŵ is the estimate of LMR.

Using this property, the study recommend to use scree method in order to de-
termine L where the function values after convergence are plotted against a specific
range of Ls. L can be determined at a scree point of the plot, which can be considered
as an enough number of layers to approximate the unconstrained solution by the one
with layer structure. It should be noted that L specified by the scree method should
be considered as a reference for the best number of layers, and it is recommended
to investigate the resulting solutions for some candidates for L. This is because L
controls the balance between interpretability and fitness of the solution and the their
balance considerably depends on what is aimed in the data analysis. For example, if
a scree plot suggest that L = 3 is best, it is recommended to check the results with
L = 1, 3, 4, in order to confirm the resulting interpretability of solutions.

6.2.4 Properties

Since the novelty of the proposed method is that a parameter matrix is expressed
as a sum of layers, theoretical investigation of LMA’s solutions is necessary. For the
purpose, the subsection begins with the following theorem;

Theorem 6.2.1. Let Pl(l = 1, · · · , L) be the l-th layer of a certain matrix P, and
P(L) =

∑L
l Pl. For each of the attained minima of fP(P) = ||M−NP||2 with different

Ls, we have
min .fP(P

(L)) ≥ min .fP(P
(L+1)) ≥ fP(P̂OLS) (6.16)

where P̂OLS denotes the unconstrained solution for fP(P).

Proof. Let P(L)♯ =
∑L

l P♯
l and P(L+1)⋆ =

∑L+1
l P⋆

l denote the minimizer of fP(P(L))

and fP(P
(L+1)), respectively. Note that P♯

l is not always identical to P⋆
l , because

their estimates depend on the current value for the layers other than the l-th layer.
Here, consider the minimization of

fP(PL+1|P(L)♯) = ||M−N(P(L)♯ +PL+1)||2 (6.17)

that is equivalent to obtain (L + 1)-th layer PL+1 subject to the 1, · · · , L-th layers
kept fixed. For its attained minimum, we have

fP(P
(L)♯) ≥ min .fP(PL+1|P(L)♯) (6.18)

since the function on the right side is over-parametrized than the left side. Further,
as to the minimum of min .fP(P

(L+1)), we also have

min .fP(PL+1|P(L)♯) ≥ fP(P(L+1)⋆) (6.19)
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because the right side is minimized over a total of L+1 layers, while the right side is
minimized over only a single layer PL+1. In addition, we have

fP(P
(L+1)⋆) ≥ fP(P̂OLS) (6.20)

since it is guaranteed that P̂OLS minimizes fP(P) the most within the feasible set
of Ps. The above inequalities indicate that fP(P(L)♯) ≥ min .fP(PL+1|P(L)♯) ≥
fP(P

(L+1)⋆) ≥ fP(P̂OLS) that leads (6.16).

The theorem indicates that, in LMA, the attained minimum of function value in
(6.4) decreases as the number of layers increases, which means that fitness to dataset is
improved as L increases. Further, if L is set to a sufficiently large value, the obtained
solution as a sum of constrained layers perfectly recovers the unconstrained solution.

The above properties is exemplified here by a real data example. LMR and ordinal
multiple regression analysis are both applied to Tobacco dataset (Izenman, 2008) in
which the total of six variables of chemical compounds Nitrogen (N), Chlorine (Cl),
Potassium (K), Phosphorus (P), Calcium (Cl), and Magnesium (Mg), are regressed on
the three characteristics (Burn rate, Sugar and Nicotine content) of tobacco leaves.
The number of layers L in LMR is set at the range [1, · · · , 8], and the resulting
sum of squared errors (SSE), obtained as a function value of fLMR(W), is plotted
against Ls in Figure 6.1. In the figure, SSE of unconstrained solution obtained by
||Y−XWOLS ||2 is shown in dotted line, and it can be seen that fitness to the dataset is
improved as the layers increases and never exceed the one of unconstrained solution,
which exemplifies Theorem 2. In addition, the fitness of LMR solution is almost
identical to the one of unconstrained solution at L = 5 or later. The result suggests
that we can safely choose the number of layers between the continuum between L = 1

(simplest but poor fitness) and unconstrained solution.
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Figure 6.1: Scree plot of variance explained against the number of
layers; variance explained of unconstrained solution is shown as dotted

line
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6.3 Real Data Examples

As demonstrations of the proposed procedures, the section presents two real data
examples in which LMR and LPCA are applied.

6.3.1 Example of LMR: Tobacco Data

First, LMR is applied to Tobacco dataset that has been introduced above. Table 6.1
shows the results of LMR for L = 1, · · · , 4 and the unconstrained solution, together
with their proportion of explained variance as a measure of model-fitness. It can be
seen that the number of the exact zero elements increases as L increases, and the
clear correspondences between the independent variables (rows) and the dependent
variables (columns) are observed in the cases of fewer layers, although the goodness
of fit is worse than the unconstrained solution. In other words, the result suggests
trade-off of better fit and simplicity, because the value of variance explained gets
higher but fewer exact zero elements as the number of layers increases. The scree
plot in Figure 6.1 indicates that we have a scree point at L = 3, which can be chosen
as an appropriate number of layers. Referring the solution with L = 3, one can
see that concentration of Nicotine is mainly explained by chemical compounds other
than Potassium and Phosphorus. 4 elements in coefficient matrix is estimated to be
zero exactly, but the decrement of model fit is only 4% = 74.4% − 74.0%, which
indicates that these elements are not necessary to explained the relation between
independent/dependent variables.

Table 6.1: Estimated coefficient matrices by LMR with L = 1, · · · , 4
and unconstrained solution with proportion of variance explained

(Vexp.); element equaling to zero shows a blanc cell.

LMR (L = 1) LMR (L = 2) LMR (L = 3) LMR (L = 4) unconstrained
Brate Sug Nic Brate Sug Nic Brate Sug Nic Brate Sug Nic Brate Sug Nic

N -0.69 -0.65 0.51 -0.52 0.39 -0.58 0.30 0.10 -0.58 0.29
Cl -0.61 -0.60 0.38 -0.60 0.41 -0.31 -0.60 0.39 -0.32 -0.58 0.39 -0.32
K 0.62 0.52 0.26 0.52 0.14 0.52 0.20 0.11 0.45 0.20 0.11
P 0.17 -0.14 0.20 -0.14 0.22 -0.14 0.22 -0.13 0.22 -0.05
Ca 0.33 0.47 0.47 0.18 0.47 0.11 0.25 0.41 0.11 0.24
Mg 0.73 -0.26 0.43 -0.26 -0.21 0.40 -0.26 -0.21 0.47 -0.32 -0.22 0.48
Vexp. 0.569 0.701 0.740 0.742 0.744

6.3.2 Example of LPCA: Wine Data

In the second example, LPCA is applied to Wine dataset (Asuncion and Newman,
2007), in which 173 wines are described by 13 chemical features. The data matrix
therefore consists of 173 rows and 13 columns, and standard PCA, CDPCA by Vichi
and Saporta (2009), and LPCA were applied. Note that the dataset had been column-
wise standardized and the number of principal components is set at 2. Before applying
LPCA, how many layers should be employed for the dataset was specified via scree
method. Figure 6.2 shows the scree plot of variance explained for LPCA solutions
with L = 1, · · · , 5. The scree plot suggests that the solution with L = 3 is best, while
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the solution with L = 2 should be checked since the explained variance of the solution
with L = 3 is almost equivalent to the one of standard PCA. The LPCA solution with
L = 2 is therefore preferred because it is expected to be sparse and thus interpretable
since it uses fewer layers.
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Figure 6.2: Scree plot of variance explained against the number of
layers; variance explained of standard PCA is shown as dotted line

Figure 6.3 shows the obtained biplots of three PCA procedures, in which compo-
nent scores and loadings are plotted as points and vectors, respectively. Although,
the standard PCA solution fits to the dataset best, we can see that it is difficult to
comprehend what each of the components stands for in the solution of standard PCA;
correspondence between component (axis) and set of variables (vectors) is unclear.
The solution obtained by LPCA fits slightly inferior to the one of standard PCA,
but is considered to be easier to interpret, since each component is explained by the
reduced number of variables because of exact zero elements in component loading ma-
trix. For example, the first component (PC1) is manifested by the variables “Alc” and
“Ash”, while the second one (PC2) is characterized by “NFlaP”, “Proan”, and “OD”. It
is because, in the LPCA solution, some elements in loading matrix corresponding to
the first or second component are estimated as zero. Also, in the solution of CDPCA,
loading matrix is constrained have at least one zero element in each row, and it leads
to the result that all variables are perfectly corresponds to the first or second compo-
nent. Despite of the straightforwardness in interpretation, CDPCA fits poorer than
LPCA, which explains 50.82% of total variation of the dataset. Further, the distribu-
tion of component scores is differ from the one of standard PCA, which indicates that
the reduced space obtained by CDPCA is considerably differ from standard PCA that
explains the dataset best. It is numerically shown in Figure6.4. The reduced space
obtained by LPCA fairly approximates the one in standard PCA, while the one in
CDPCA considerably differs. It can be therefore concluded that even if the CDPCA
solution is easier to interpret than standard PCA and LPCA, its reduced space does
not manifest the given data structure. On the other hand, LPCA successfully extract
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the reduced space that is not only easy to interpret but also reflects the original data
itself.
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Figure 6.3: Principal component biplots of standard PCA, LPCA,
and CDPCA

6.4 Concluding Remarks

The study considered to improve interpretability in multivariate analysis procedures,
and proposed LMA, a novel framework of multivariate analysis procedure that has
LMR and LMCA as special cases. In LMA, a coefficient matrix is expressed as a sum
of layers having simple structure. For example, LMR allows to capture the relation-
ship between independent and dependent variables more easier than unconstrained
regression, because a reduced number of independent variables corresponds to each
dependent variables. It is theoretically shown that LMR’s solution approximates an
unconstrained solution when sufficient number of layers are employed. Two numerical
examples reveals that the proposed procedures works considerably well compared with
the existing procedures.

Throughout this chapter, a perfect cluster structure is considered as a layer-level
structure, in both LMR and LPCA. Another simple structure for layers should be
considered in order to further improve interpretability. In addition, applications of
the proposed method to another multivariate analysis procedures should be consid-
ered. For example, simple structure in canonical correlation analysis, multiple cor-
respondence analysis, and K-means clustering would be of great help for the easier
interpretation of those solutions.
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Chapter 7

Procrustes Penalty Function for
Matching Matrices to Targets

ABSTRACT

Penalized estimation is widely used for obtaining sparse solutions,
which facilitates easier interpretation compared with ordinal estimation
procedures. In this study, as a generalized form of penalized estimation, a
new penalty function is proposed. The proposed function shrinks solutions
to a prespecified target matrix that possesses a certain simple structure.
The resulting solution is therefore simple and easy to interpret, and its
simplicity is controlled by some tuning parameters. Two applications of
the proposed method are presented; sparse principal component analy-
sis and three-way component analysis. The applications show that the
proposed method surely produce sparse and interpretable solutions.

7.1 Introduction

Interpretability of solutions is one of the most important issues in modern multivariate
analysis. Specifically, growing interest in machine learning technology makes the issue
more important, in that it often involves less interpretable and black-box models
(Rudin, 2019). Penalized estimation (Hastie et al., 2015) is widely used for obtaining
sparse and interpretable solutions in various procedures of multivariate analysis, which
uses penalized functions in order to shrink some elements toward zero. For example,
Sparse Principal Component Analysis (SPCA) (Jolliffe et al., 2003; Zou et al., 2006)
with an L1 penalty aims to minimize

||Z− FA′||2 + λ||A||1 (7.1)

This chapter is based on the published article Yamashita(in press) with some modifications and
extensions.
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over an n (objects) ×r (components) score matrix F and a p (variables) ×r loading
matrix A given an n × p data matrix Z, where ||A||1 =

∑
|ajk|(j = 1, · · · , p; k =

1, · · · , r) and λ denote the L1 norm of A and a tuning parameter, respectively. The
second term in (7.1) is called a penalty function and serves to shrink the elements in
A toward zero, and therefore the estimated A is of reduced cardinality.

The paper proposes a new penalty function that includes various penalty functions.
The function is called a Procrustes penalty function, which is formally expressed as

PPro(A|Λ,T) = ||(A−T)Λ||1 (7.2)

where Λ denotes the diagonal matrix of tuning parameters λ1, · · · , λr(> 0). λs con-
trols the penalty strength on the s-th column of A. T denotes a prespecified target
matrix with the same dimension as A. Here, consider to set T as a matrix with a cer-
tain simple structure. The elements in A shrink toward simple T so as to approximate
its structure, and the resulting A is considered to be simple and easy interpret. The
novel point of the proposed method is that a solution matrix directly approximates
a simple structure, while the existing one shrinks all elements toward zeros without
considering whether the resulting A has a simple structure or not. Procrustes penalty
function therefore expected to yield a more simple and interpretable solution matrix
compared with the existing methods. It should be noted that the article only consider
the case with L1-norm penalty, since the main goal of the study is to obtain sparse
and interpretable solution matrices.

The remaining parts of the article are organized as follows. In the next section,
an optimization algorithm for the proposed methods is presented, where a general
case of regression model with Procrustes penalty is considered. There, a theorem of
the minimizer for the regression problem is also presented. Further, the proposed
procedure is applied to some machine learning problems, followed by their examples
in Section 7.3. The final section is devoted to conclusions and future remarks.

7.2 Proposed Method

7.2.1 General Case: Multivariate Regression

Here, a multiple regression problem with a Procrustes penalty function as a general
case is considered. It is formally expressed as the minimization of

f(W) = ||Y −XW||2 + PPro(W|Λ,T) (7.3)

where Y = [y1, · · · ,yq] denotes the n× q matrix of the dependent variables, and it is
regressed on the p independent variables in an n×p data matrix X = [x1, · · · ,xp]. W
is an unknown p× q matrix of regression coefficients. Above, the Procrustes penalty
function applied to the coefficient matrix W serves to obtain an interpretable estimate
of the parameter matrix W. Here, as PPro(W|Λ,T), the L1-norm is considered;
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PPro(W|Λ,T) = ||Λ(A − T)||1, because it is able to produce a W including some
exact zero elements.

For the minimization of (7.3) over W, we have the following theorem. Note that
the theorem is valid only in the case with L1-norm penalty.

Theorem 7.2.1. The minimizer of the penalized loss function f1(W) = ||Y−XW||2+
||(W −T)Λ||1 is given by

wjl =


ŵjl −

λj

2||xj ||2

(
ŵjl > tjl +

λj

2||xj ||2

)
ŵjl +

λj

2||xj ||2

(
ŵjl < tjl −

λj

2||xj ||2

)
tjl

(
|wjl| ≤ tjl +

λj

2||xj ||2

) (7.4)

using Ŵ = {ŵkl} = (X′X)−1X′Y, where tjl is the (j, l)-th element of T corresponding
to wjl, the (j, l)-th element of W.

Proof. f1(W) can be rewritten as

f1(W) =

q∑
l=1

p∑
j=1

(
||yl − wjlxj ||2 + λk|wjl − tjl|

)
. (7.5)

For minimizing it, consider the following three cases; [1]wjl > tjl, [2]wjl < tjl, and
[3]otherwise. In the case [1], f1(W) is reduced to

f1(W) =

q∑
l=1

p∑
j=1

(
||yl − wjlxj ||2 + λj(wjl − tjl)

)
(7.6)

and therefore its minimizer in the case is obtained as follows;

∂f1(W)

∂wjl
= −2y′

lxk + 2wjl||xj ||2 + λk = 0⇔ wjl = ŵjl −
λj

2||xj ||2
. (7.7)

Further, the condition can be rewritten as

ŵjl −
λj

2||xj ||2
> tjl ⇔ ŵjl > tjl +

λj
2||xj ||2

, (7.8)

that leads the first case of (7.4). In the similar manner, the minimizer in the case [2]
can be given by wjl = ŵjl−

λj

2||xj ||2 and the condition indicates that ŵjl < tjl−
λj

2||xj ||2 .

The case [3] indicates wjl = tkl, and its condition is |wjl| ≤ tjl +
λj

2||xj ||2 , which
is not covered by the first and second conditions. These results immediately lead
(7.4).

(7.4) can be simply expressed as below, with (x)+ being x if x ≥ 0 and −x
otherwise;

wjl = sign(ŵjl − tjl)
(
|ŵjl − tjl| −

λj
2||xj ||2

)
+

+ tjl. (7.9)
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It should be noted that (7.4) is a generalization of LASSO solution in that both are
equivalent when T = Op×q, where Op×q denotes the p× q matrix filled with 0s. This
implies that a LASSO penalty function is aimed to shrink a solution matrix toward
the zero matrix with the same dimension.

7.2.2 Applications in Machine Learning Problems

The above minimization procedure can be applied to SPCA, in which a component
loading matrix A is sparsely estimated. It is formulated as the minimization of

fSPCA(F,A) = ||Z− FA′||2 + ||(A−T)Λ||1. (7.10)

subject to n−1F′F = Ir. Note that it is equivalent to SCoTLASS (Jolliffe et al., 2003)
if one set T = O. The minimization of fSPCA(F,A) is attained by repeating the
following two steps until the decrement of the function value converges, starting from
suitable initial values for F,A.

1. Update F by F = n1/2Kr where Kr (n × r) denotes the matrix of r right-
eigenvectors corresponding the r-largest eigenvalues of X.

2. Update A by (7.9) with setting W→ A′, X→ F, and Y → Z.

The example of the SPCA procedure is shown in the next section.
Also, the proposed procedure is also applicable for three-mode component analysis

(Kroonenberg, 2008). Tucker3 (Tucker, 1966; Kroonenberg and De Leeuw, 1980) and
CANDECOMP/PARAFAC (Carroll and Chang, 1970) models are common choices for
the problem. It is known that the former is less restrictive but difficult to interpret its
result, while the latter is easier to interpret but too restrictive. It is formally expressed
as follows. Let X̄ be an n× p× k data array. Tucker3 and PARAFAC models either
compress the first, second, and third modes into s, t, and u components, respectively,
and an s × t × u array C̄ called a core array is obtained. Note that s = t = u in
PARAFAC model. In PARAFAC, the core array is restricted to be super-diagonal
array and easier to be interpreted in that it contains several zero elements; the number
of linkages between the components is limited. On the other hand, no constraint is
imposed on the array in Tucker3 and thus often difficult to interpret (Frølich et al.,
2018). In terms of fitness to the data array, Tucker3 is better because it has more
unknown parameters than the other.

Here, Procrustes penalty function is used to an intermediate solution between
two models in order to balance interpretability and fitness to the data array. It is
accomplished by minimizing

fTP (G,C,H,E) = ||Z−GC(H⊗E)′||2 + ||(C−T)Λ||1 (7.11)

where the former is Tucker3’s loss function. Above, G(n × s), H(p × t), and E(k ×
u) are unknown component loading matrices of the first, second, third mode of X̄,
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respectively. Z = {X1, · · · ,Xk} is the n × pk matrix of the horizontal slices of X̄.
Also, C = {C1, · · · ,Ck} is the s× tu matrix composed of the horizontal slices of C̄,
and it is matched to T having a suitable dimension. Here, consider to set T as the
matrix of horizontal slices of the core array estimated by PARAFAC. The estimated
core array by minimizing (7.11) therefore shrinks towards the one by PARAFAC, and
thus the array is considered to be in the middle of PARAFAC and Tucker3. The
relative strength of Procrustes penalty to the Tucker3’s loss function is controlled by
Λ; Λ having high values for its diagonal elements leads to a more PARAFAC-like core
array, and vice-versa.

The minimization of (7.11) is accomplished as follows. Nelder-Mead’s numerical
optimization is used for minimizing fTP (G,C,H,E) over G, H, E. The core array
minimizing the loss function is obtained by extending Theorem 1 to Penrose regression
in which

fPen(W) = ||Y −X1WX2||2 + ||Λ(W −T)||2 (7.12)

is minimized over W.

Corollary 7.2.1. The minimizer of the loss function in (7.12) over W is given by

wjk = sign(w̃ik − tjk)

(
|w̃jk − tjk| −

λj

2||x(1)
j ||2||x

(2)
k ||2

)
+

+ tjk (7.13)

where x
(1)
j and x

(2)
k denote the j-th and k-th columns of X1 and X2, respectively.

Proof. It can be easily verified in the same way as Theorem 7.2.1.

Using the corollary, the optimal C is obtained by setting X1 → G and X2 →
H ⊗ E. The solution for the minimization of (7.11) is obtained by repeating the
following steps; updating C by (7.13), and updating the other parameter matrices by
numerical optimization of the loss function.

7.3 Example

The proposed procedures are illustrated in order to show how well they work in dealing
with real datasets.

SPCA to Wine Data

The SPCA procedure combined with a Procrustes penalty function is to be demon-
strated. The dataset used here is Wine data (Dua and Graff, 2019) that consists of
178 samples (wines) and 13 variables (chemical ingredients), and it is available at UCI
machine learning repository.

First, the target matrix T was specified by the following manner. An original
principal component analysis with three components was applied to the dataset, and
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Figure 7.1: Solution paths for three components; names of the thir-
teen variables are shortened. The y-axes stand for value of elements.

The legend is common for all the plots.

the score and loading matrices were obtained denoted as F̃ and Ã, respectively. Let
Ã♯ = {ã♯jk} be a Varimax-rotated Ã and T was set by

tjk =

sign(a♯jk) (|ã♯jk| > τ)

0 (otherwise)
(7.14)

where τ is a suitable threshold. The value of τ was set at 0.4 in this example. T

is considered as a possible simple structure because it is based on Varimax-rotated
loading matrix, and its simplicity was further emphasized by substituting all elements
with ±1 or zeros.

The study restricted λk = λ for k = 1, · · · , r for the simplicity of the example,
and estimated As for λs within the range of λ ∈ [20, 250]. Figure 7.1 shows solution
paths of A where each of the estimated elements of A is plotted against λs. It can
be seen that some of the elements shrink toward zero as λ increases, while the others
shrinks toward 1 or -1. The figure indicates that most of the elements in A take 0, 1,
or -1 when λ is large, and therefore λ controls the resulting simplicity of the solution.
To illustrate this, the example picked up some λs within the range of λs and showed
the estimated As with the target matrix T as Table reftab:As . The correspondences
between the variables and the components are clearly captured, because the estimated
loading matrix contains many exact zero elements when λ is sufficiently large, and
also has simple structure as well as T. For example, referring A with λ = 50, the
second component is characterized by Alcohol (Alc) and Color intensity (Col), and
Proline (Pro), but it is not clearly captured in the one with λ = 20.
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Table 7.1: Estimated As for λ = 20, 50, 100 and the target matrix.
Blanc cells indicate exact zero elements.

λ = 20 λ = 50 λ = 100 Target Matrix T
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Alc -0.003 -0.925 -1.000 -1.000 -1.000
MA 0.497 -0.066 0.177 0.381 0.055 0.196
Ash -0.247 0.931 -0.174 1.000 1.000 1.000
AA 0.268 0.265 0.832 0.201 0.132 0.937 0.031 1.000 1.000
Mg -0.134 -0.422 0.142 -0.058 -0.290 -0.079
ToP -0.887 -0.239 -1.000 -0.078 -1.000 -1.000
Flv -0.969 -0.157 -1.000 -1.000 -1.000
NP 0.523 0.107 0.241 0.448 0.135 0.293
ProA -0.606 -0.140 -0.540 -0.405
Col 0.358 -0.818 0.027 0.201 -0.930 0.030 -1.000 -1.000
Hue -0.668 0.161 -0.019 -0.540 0.090 -0.358
OD -0.939 -1.000 -1.000 -1.000
Pro -0.354 -0.822 -0.314 -0.891 -0.159 -1.000 -1.000

7.3.1 Three-Mode Component Analysis to Multiple Personality Data

The proposed method is also used for estimating an intermediate core array between
Tucker3 (unconstrained) and PARAFAC (constrained to be super-diagonal). The
three-mode component analysis with Procrustes penalty function was applied to Mul-
tiple Personality Data (Kroonenberg, 2008) in which fifteen concepts were evaluated
by ten scales by six personalities. The data array X̄ is thus has a dimension of
13× 10× 6, and see Osgood and Luria (1954) for details of the data. To set a target
matrix T, PARAFAC with s = t = u = 2 was firstly applied to X̄, and the resulting
2 × 2 × 2 core array C̄ is transformed into 2 × 4 a target matrix T. For simplicity,
the isotropic penalty parameters were used; Λ = λI2. With the target, the proposed
method was applied to the data, using the penalty parameters λ = 1, 10, and 100.

Table 7.2 shows frontal slices of the estimated core arrays together with Tucker3
(λ = 0) and PARAFAC (λ =∞) solutions. There are two extreme cases, Tucker3 and
PARAFAC, and components are fully connected in the former solution while they are
sparsely connected in the latter. The proposed method allows to obtain intermediate
solutions between them. As λ gets increases, the solution gradually approximates
PARAFAC solution that is the most restrictive but interpretable core array. Users
freely choose appropriate value of λ, by checking resulting simplicity of the core array.
If one considers λ = 10 is appropriate, connections between several components can
be ignored while all connection have to be interpreted in Tucker3.

7.4 Conclusions

The study proposes a new penalty function for penalized optimization in multivariate
analysis procedures. It is called Procrustes penalty function, and it shrinks a solution
matrix to a prespecified target matrix. The target matrix possesses a certain desired
stricture that the resulting solution should possess, such as a simple structure. If a
target with a simple structure is employed, the resulting solution matrix is thus simple
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Table 7.2: Estimated core arrays by Tucker3, PARAFAC, and the
proposed method with three λs. Blanc cells stand for exact zero ele-

ments.

mode 3 (personalities)
comp.1 comp.2

mode 2 (scales) comp.1 comp.2 comp.1 comp.2
mode 1 (concepts)

Tucker3 comp.1 -15.803 -5.723 3.437 -3.363
comp.2 4.423 -12.243 -1.229 -2.460

λ = 1
comp.1 -5.185 -0.189 -2.404
comp.2 1.295 -0.934 -3.008

λ = 10
comp.1 -0.277 0.088 0.075
comp.2 0.022 -0.305 0.266

λ = 100
comp.1 0.582
comp.2 0.493

PARAFAC comp.1 0.582
comp.2 0.493

and interpreted, while the existing penalty functions hardly consider the matrix-wise
simplicity of a solution matrix. The proposed method is applicable to various multi-
variate analysis procedures, in order to obtain a interpretable solution matrix or other
purposes. The study used the Procrustes penalty in SPCA and three-mode compo-
nent analysis, aiming to simplify the loading matrix in the former, and to obtain an
intermediate solution between Tucker3 and PARAFAC.

So far, the author treated the target matrix T as a prespecified matrix need to
be fixed. T is, however, possible to be estimated jointly as well as other parameter
matrices. There exist some cases where it is difficult specify T in advance, and such
extension of the proposed method serves to relax the hurdle for using the Procrustes
penalty function.
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Chapter 8

Discussions

ABSTRACT

To conclude the thesis, the procedures proposed in the preceding chap-
ters are reviewed and classified based on their strategies for enhancing the
interpretability of solutions. Their limitations and directions for future
studies are also discussed. Finally, the superiority of the proposed pro-
cedures as compared to the existing ones are discussed in terms of their
ability to simultaneously achieve sparseness and simple structures, which
are essential for interpretability.

As discussed in Chapter 1, there is a growing demand for interpretability in modern
multivariate data analysis and machine learning procedures, in order to drive scientific
research processes and assure their social accountability. The preceding chapters pro-
posed seven procedures to improve interpretability, which are reviewed in the following
section.

8.1 Summary of Chapters 2 to 7

Chapters 2 and 3 proposed two procedures for the post-hoc transformation of solution
matrices for their interpretability. Chapter 2 proposed the oblique Procrustes rota-
tion procedure called Permutimin, which directly approximates a target matrix with
a refinement of Thurston’s simple structure. One of the major novelties of Permu-
timin is that it jointly estimates a target matrix and its optimal row permutations,
together with an optimal rotation of a loading matrix, in order to approximate the
target. Further, row permutations enable the rows of target and loading matrices to
be matched, and therefore, Permutimin produces a simpler loading matrix compared
to existing procedures, in which these rows are matched deterministically.

In Chapter 3, a new formulation of canonical correlation analysis (CANO) was
proposed, and its equivalence to the existing formulation was proved. The new for-
mulation is based on maximizing the sum of squared correlations of canonical variates,
and it is proven that the individual rotation of structure matrices is allowed, unlike in
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the existing formulation. Structure matrices are further simplified by individual rota-
tion, whereas their simultaneous rotation was shown to be too restrictive to simplify
the matrices.

Two novel biplot procedures were proposed in Chapter 4. The first called crisp
cluster-wise biplot analysis (CCBA), and it yields a simple and interpretable biplot by
joint classification of the objects and variables in a data matrix. The resulting biplot
is interpretable in that it is composed of fewer points and vectors compared with the
existing one, and it would be beneficial when there is a large number of objects and
variables. Further, CCBA is formulated as the minimization of a single loss function,
and thus differs from tandem analysis (Arabie and Hubert, 1994) which often produces
an erroneous result. CCBA was further generalized to fuzzy clustering, which was
proposed as fuzzy cluster-wise biplot analysis (FCBA). The simulation study and the
real data example revealed that the proposed procedures worked fairly well.

Chapter 5 proposed a cardinality-constrained K-means clustering (CCKM) as a
new clustering procedure that produces a centroid matrix with higher interpretability.
It is well known that post-hoc transformation of solution matrices is not allowed in K-
means clustering, while it is allowed in factor analysis (FA) and CANO. As a result, an
estimated centroid matrix is often difficult to interpret. In CCKM, a centroid matrix
C is estimated under a cardinality constraint; the matrix has at least r zero elements
equaling to zero. Thus, CCKM controls the resulting sparseness by the number of zero
elements that must be contained in C. The tuning parameter in CCKM therefore has
an intuitive meaning, different from the existing procedures that use L1 or L2 penalty
functions. In this respect, CCKM is considered more efficient for the purpose of
obtaining interpretable solutions. Importantly, the study also proposed a variant of
CCKM that approximates a simple structure by specifying the column-wise cardinality
rather than the entire matrix.

Chapter 6 and 7 both proposed emerging techniques named layered multivariate
analysis (LMA) and penalized estimation by Procrustes penalty function, respectively.
Their approaches are considered to be different from those proposed above. LMA, in-
cluding a layered version of multivariate analysis and PCA as special cases, constrains
a solution matrix as a sum of matrices called layers, and they are required to possess a
certain simple structure. Procrustes penalty aims to approximate a prespecified target
matrix having a simple structure by a solution matrix. Note that these approaches
can easily be extended to other multivariate procedures introduced in this research,
because each of them is proposed as a general framework.

8.2 Four Approaches towards Enhanced Simplicity

This section classifies the seven procedures proposed herein into four classes. Their
limitations and possible future directions are also discussed.
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8.2.1 Rotation of Solution Matrix

This class of approach attempts to develop a new post-transformation method of a
solution matrix, exploiting the indeterminacy of orthogonal or oblique rotation in
some of the multivariate analysis procedures. Permutimin, proposed in Chapter 2, is
classified into this class, in which a simple target matrix is approximated by obliquely
rotating a factor loading matrix. In Psychometrics, a variety of rotation procedures
have been proposed, as reviewed in Browne (2001). Here, the existing rotation proce-
dures can be classified into three families according to their strategy of rotation, that
is, how the simplicity (or complexity) of a matrix is defined, and how to maximize the
simplicity. The first family is the simplicity-maximization family, which defines the
simplicity of a rotated loading matrix as a function of a rotation matrix and maxi-
mizes it over the rotation matrix. Varimax rotation can be classified into this family.
Recently, Jennrich (2004, 2006) proposed a component loss function as a novel mea-
sure of matrix simplicity, and found that maximizing the function successfully yielded
a simple loading matrix.

The second family, called the complexity-minimization family, aims to minimize
the complexity of a matrix, contrary to the first family. For instance, Kaiser (1958)
defined a matrix complexity as sum of inter-column covariances and found a minimizer
of the complexity function. Note that the first and second family are equivalent in
that the maximization of simplicity is equivalent to the minimization of complexity.

Now, the author introduces the third family the target rotation family, which is
considerably different from the other families. In general, it is formulated as the
minimization of

LPR(S) = ∥T−ΛS∥2 (8.1)

over a rotation matrix S with a suitable dimensionality. Rotation procedure based on
this type of minimization is called a Procrustes rotation, and Promax (Hendrickson
and White, 1964) rotation is known as a special case of Procrustes rotation. A tar-
get matrix is specified, before the rotation, as a matrix with a property desired for
interpretation (e.g., simple structure). Permutimin, classified into the target rotation
family, is novel because it does not require the specification but estimates an optimal
target matrix, which is similar to Simplimax rotation (Kiers, 1994).

These rotation procedures are useful in that they can simplify solution matrices
a posteriori, under the condition that rotational indeterminacy exists. It would be
beneficial to extend the area in which rotation is allowed by discovering new indeter-
minacy for other multivariate analysis procedures. As proposed in Section 3, it has
been proven that solution matrices in CANO have rotational indeterminacy, and thus
their individual and orthogonal rotation is allowed by reformulating CANO as maxi-
mization of sum of squared canonical correlations. Followed by the study, Satomura
and Adachi (2013) proposed another new formulation of CANO, in which oblique
rotation of solution matrices is allowed.

The most critical drawback of this approach is that rotation is not applicable
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in all of the multivariate analysis procedures. For example, to the best of the au-
thor’s knowledge, it appears impossible to reformulate K-means clustering such that
a centroid matrix can be rotated. This issue may be solved by a technological break-
through in matrix-based multivariate statistical analysis, which is unlikely to happen
at present.

Further, as shown in Table 3.1, a canonical correlation matrix is no longer diagonal
after rotation, and it indicates that rotated canonical variates have several correlation
structures, which might produce another problem regarding their interpretation. A
similar problem also occurs in FA; an inter-factor correlation matrix is often difficult
to interpret after oblique rotation, because rotated factors are not orthogonal. As
seen here, although the optimality of a solution itself does not change after its rota-
tion, some properties of the solution may change, and thus, its interpretation may be
difficult.

One possible approach in FA is to consider the simplicity of an inter-factor corre-
lation matrix as well as a factor loading matrix, thus simultaneously simplifying both
matrices. This can be accomplished by maximizing

S(ΛS)− ||SS′||2 (8.2)

over a rotation matrix S, where S()̇ is a certain simplicity index of a matrix. Above,
the second term represents the squared sum of elements in an inter-factor correlation
matrix after rotation and it can be interpreted as a complexity of the correlation
matrix. The second term serves as a penalty function that shrinks the off-diagonal
elements in the correlation matrix toward zero.

8.2.2 Combination with Clustering

CCBA and FCBA, proposed in Chapter 4, both provide simple biplots that are easily
interpreted by joint classification of the object and variables in a data matrix. Gener-
ally, the combination of a multivariate analysis procedure with clustering considerably
reduces the cognitive load required for interpretation. This approach is particularly
effective not only for biplots but also for multivariate data analysis procedures that
involve visualization, such as multidimensional scaling and multiple correspondence
analysis. In fact, some procedures in which clustering is incorporated with other mul-
tivariate analysis procedures have been proposed. Hwang et al. (2010) proposed the
combined use of multiple correspondence analysis (MCA) (Gifi, 1990) and fuzzy K-
means clustering in order to extract heterogeneous subgroups of objects, called fuzzy
cluster MCA (FMCA). In addition, as a generalization of linear cluster-wise regression
analysis (Späth, 1979), several procedures for fuzzy linear cluster-wise regression have
been proposed (Bezdek et al., 1981a,b; Wedel and Steenkamp, 1989; Hathaway and
Bezdek, 1993; D’Urso et al., 2010) Likewise, some methods combining clustering and
another method of multivariate analysis in a single framework have been developed
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(e.g., Rocci and Vichi (2005), Hwang and Dillon (2010), and Hwang et al. (2007)). A
good review of such procedures can be found in Bezdek et al. (1999).

These these works indicate that incorporating clustering with certain multivariate
techniques is sufficient to handle real-world problems. An insightful suggestion for
such an approach can be found in Coppi et al. (2006).

As represented in the algorithm for K-means clustering in Chapter 3, updating
M requires computations of ||x(i) − ck||2 for all possible ks, assigning the i-th object
to the cluster minimizing the function value. It indicates that, even when combined
with other multivariate analysis procedures, M can be updated in the same manner
because the form of the loss function is irrelevant to the update process. This useful
property makes it easier to integrate K-means clustering with other procedures.

A shortcoming of the combination is that it degrades computational efficiency,
because updating M requires a type of brute-force computation for all clusters and
objects; namely the local minimum frequently occurs in the computation. This issue
becomes critical when attempting to handle a high dimensional data matrix that
contains many objects and variables. FCBA partly solves the issue by means of fuzzy
clustering, as shown in the simulation study in Section 4.3, which serves as a useful
suggestion for the future study of the approach.

8.2.3 Sparse Estimation with Cardinality Constraint

Sparse estimation with penalized estimation by an L1 penalty function for example is
applicable to various types of loss functions, including the least squares loss function
and maximum likelihood function. Existing sparse estimation methods may sometimes
yield inconveniences when used to improve interpretability. For instance, a penalty
parameter that balances sparseness and fitness is difficult to specify because it ranges
between [0, inf], and its value does not have any clear interpretation; in the example
in Table 1.2, λ = 12 only indicates the relative importance of the LASSO penalty
function to the loss function.

Sparse estimation with the cardinality constraint treated in Chapter 5 is compara-
ble to the aforementioned combination with clustering approach in that both require
lesser cognitive load for interpretation owing to the fewer elements that need to be
interpreted. Further, it achieves a sparse solution matrix via a cardinality constraint
instead of an L1 penalty function. There, the resulting number of non-zero elements
in a solution matrix functions as a tuning parameter, and it has a clear interpretation:
the number of non-zero elements that should be possessed in the solution matrix. For
example, a solution matrix with 30% elements zero equaling to zero can be obtained.
In this respect, cardinality constraint is considered to be more suitable for treating
the issue of interpretability as compared with other penalized estimation methods.

In the same chapter, it was shown that column-wise and row-wise cardinality
constraints yielded a solution with sparseness and, importantly, Thurstone’s simple
structure. Note that a sparse solution matrix with a certain simple structure is the
one that the rotation of the solution attempts to approximate but always fails. The
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successful result shown in the chapter indicates that not only sparseness but also
positions of zero elements can be considered in the cardinality constraint, unlike in
rotation and existing penalized estimation procedures.

8.2.4 Some Emerging Techniques

The procedures proposed in Chapters 6 and 7 are considered to novel in that both
the procedures are based on unique computational techniques which have not been
proposed yet. Namely, multivariate layered analysis in Chapter 6 assumes a layered
simple structure for a solution matrix, while Procrustes penalty function in Chap-
ter 7 shrinks a solution matrix to a prespecified target matrix. They are applicable
to various multivariate analysis procedures including PCA and CANO, for example.
Further, these procedures also achieve a solution matrix with sparsity and a simple
structure. Further research is desired for these emerging techniques, as they demon-
strate promising performance in achieving interpretable solutions.

8.3 Hierarchical Relationships of the Proposed Methods

This thesis considers two sub-concepts of interpretability: sparseness and simple struc-
ture. A sparse solution matrix is easy to interpret, because it contains several zero ele-
ments, and therefore, its rows and columns are clearly matched. The simple structure
aims to emphasize these correspondences, and Thurstone’s simple structure, presented
in Chapter 2, can be assumed to be the the most ideal one. Considering Thurstone’s
rules, shown in Table 2.1, it can be observed that all the rules refer to zero elements,
and each rule seems to require that a solution matrix contain some zeros. For example,
[T1] and [T2] both require rows and columns to contain some zero elements, and [T3]
to [T5] respectively require that the arrangement of zero and nonzero elements satisfy
certain conditions. Therefore, a simple structure is considered to be a sparseness plus
a constraint on the position of zero elements. In other words, sparseness is a necessary
condition for a simple structure, and in certain cases, a solution matrix may be sparse
but may not have a simple structure represented by the one in (5.20); although the
matrix is sparse, the position of the zero element is inappropriate, and thus [T3] is
not satisfied.

Based on the above discussions, the thesis concludes that the the proposed and
existing procedures possess the hierarchical relationship shown in Figure 8.1.

The figure shows that the majority of the procedures proposed in the thesis
can simultaneously achieve sparsity and simple structure, while L1 penalization only
achieves sparseness, which cannot achieved by the rest of the procedures. The figure
also reveals another critical drawback of rotation: its result is merely an approxi-
mation of an ideal structure which is sparse and has a simple structure. Therefore,
a sparse solution cannot be obtained by rotation, and Thurstone’s rules can not be
precisely satisfied. In practical cases, elements whose absolute values are below a pre-
specified threshold would be regarded as zeros, which is called thresholding, in order
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Figure 8.1: Hierarchical relationship between the proposed and ex-
isting procedures.

to transform a non-sparse loading matrix into a sparse one. However, thresholding
should be avoided because 1) a threshold must be subjectively specified, 2) it often
yields misleading results (Trendafilov, 2014; Trendafilov et al., 2017), and 3) the trans-
formed loading matrix does not satisfy any optimality. To make matters worse, even
with thresholding is used in the interpretation process, the thresholding value is rarely
reported.

Cardinality-constrained estimation and some other emerging techniques can solve
the above issue by directly approximating a sparse and simple structure. Existing
methods, including L1 penalization, do not have this property, partly because they
were originally developed and used for the purpose of variable selection and building
robust models and were thus not always suitable for improving the interpretability of
solution. This thesis has focused on this weakness of the existing methods, developed
a series of methods that accomplished both sparseness and simple structure, and their
effective functioning has been demonstrated by means of simulation studies and real
data examples.
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Appendix A

Short Paper (In Japanese)

研究の背景と目的

　心理学，社会学などの人間科学を含む経験科学では，その研究の途上において，質的

もしくは量的，構造的もしくは非構造的を問わず様々な形で，何らかのデータが収集さ

れる．さらに，そのデータや過去の研究知見から演繹的に研究仮説を構築し，その真

偽判定およびより確からしい仮説の構築を繰り返すことで，研究が対象とする現象の

理解，ひいては将来の現象の予測を目指す．例えば心理学では，人間の心理や認知に関

する基本的なメカニズムを理解することを目的として，先行研究による知見や経験的

事実に基づいた研究仮説を立案し，それを検証するための心理実験を計画，実施する．

さらに，その実験により得られたデータをもとに，研究仮説の確からしさを検証する．

このように，今日の科学的研究において収集されるデータは，仮説の検証と修正のた

めに中心的な役割を果たす．

さて本研究が中心に扱う，多変量データ解析法，特に，探索的データ解析法は，仮

説の立案にあたって，研究の対象とする複雜な事象のふるまいを規定する，少数の根

本原因に関する手がかりを抽出するために，しばしば用いられる．例えば主成分分析

（Principal Component Analysis; PCA）は，多変量データを少数の次元に圧縮するこ
とで，冗長な情報を除外した，データの本質的な成分を抽出することができる．特に近

年では，探索的データ解析は，データマイニングとも呼ばれる．データマイニングは，

大量のデータを要約したり，頑健な予測モデルを構築するために，予測に有用な少数

の変数を大量の変数群から特定することにも用いられる．このように探索的データ解

析は，仮説構築という科学的研究の出発点における重要なツールとしてだけではなく，

データの大規模化，高次元化といった今日のデータを取り巻くトレンドの中で，その重

要性を増しつつある．

探索的データ解析では，その結果得られた解が，どの程度容易に解釈できるかどう

か，すなわち解の解釈可能性（interpretability）が，非常に重要な性質であると考えら
れる．例えば，もしある多変量解析の解に対して，明快な解釈を与えることができな

ければ，研究の出発点となる仮説を立案することがそもそも困難となるであろう．この

ことは，表A.1に示す，日常の行動の傾向を評定したデータに対する因子分析の適用例
（仮想数値例）を参照することによって明瞭に示される．

表には，変数（行動の傾向）と因子の対応を示す因子負荷量行列を示しているが，

初期解を参照しても，行に並ぶ変数と列に並ぶ主成分の対応関係が曖昧であり，その

因子が何を意味するか解釈しづらい．したがって，例えばこのデータから，研究者が，
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Table A.1: 性格データに関する因子分析の結果．太字は絶対値が 0.5
以上の要素．

初期解 Varimax回転後
因子 1 因子 2 因子 1 因子 2

話し好き 0.79 0.43 0.87 0.25
無愛想 -0.74 -0.40 -0.80 -0.24
陽気 0.61 0.50 0.78 0.07
人気 0.70 0.18 0.63 -0.37
やる気 0.76 -0.44 0.23 0.85
積極性 0.77 -0.38 0.28 0.81
躊躇 -0.63 0.46 -0.12 -0.77
先導性 0.67 -0.36 0.22 0.73

行動傾向を要約する因子に対する仮説を得ようとしても，因子分析によって得られた

因子を明快に解釈できないため，仮説の立案は困難である．一方，初期解に Varimax
回転 (Kaiser, 1958)を施した結果を参照すると，変数と因子の対応関係が明瞭に把握で
きる．この点で，回転後の因子負荷量行列は解釈可能性が高い．この結果に基づけば，

第 1因子は社交性，第 2因子は活動性といった解釈を与えることができ，この結果に基
づいて「行動の活動性はやる気，積極性，先導性という 3つの下位尺度から構成され
る」といった仮説をたてることが可能であろう．この例では，たかだか変数の数が 8つ
のケースを取り上げたが，変数の数が非常に多い場合には，ある現象を規定する少数

の要因を特定するという意味において，単純構造によって達成される解釈可能性の重

要性はより大きくなる．

また，解釈可能性は，予測という文脈においては，予測モデルの説明可能性（ac-
countability）のために重要な性質である．予測のための数理モデルが学術のみならず
社会でも広く用いられる今日において，ある予測モデルがどのようにその予測を導く

かを明快に説明できること，すなわちモデルの説明可能性が高いことは，予測精度を

維持するのみならず，その社会的な信用を担保するためにも重要である．

ただし，一般に，多変量データ解析法で得られる解は，データに基づく観測値と，

モデルから導かれる予測値の不一致度が最も小さくなるようにして推定される．この

プロセスでは，得られる解の解釈が可能かどうか，容易に行えるかどうかは，全く考慮

されていない．

そこで本論文では，解釈可能性が研究の出発点となる仮説を導き出すことに必要と

なる性質であることを鑑みて，様々な多変量解析法の解釈可能性を向上させるための

方法を提案する．具体的には，解釈可能性を構成する 2つの要素として，[1]スパース
性（解行列が多くのゼロを含むこと），[2]単純構造，を想定し，それらの性質を解が
有するように，多変量解析法のアルゴリズムを修正する．

本研究で提案する手法の要旨

　本研究で提案する 6つの手法は，以下の 4つのカテゴリに分類することができる．
1つ目は，解の回転およびその適用範囲の拡張である．ここでは，第 1節で例示し

たバリマックス回転のような，解の事後的な回転法に関して，既存法がもつ問題点を解
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決する，新たな回転のアルゴリズムを提案する．さらに，因子分析や主成分分析など，

これまで解の回転が許容されていた多変量データ解析法以外の分析法でも，同様に回

転が許容されることを数学的に証明し．解の回転の適用範囲に関する理論的基礎を拡

張する．第 2章，第 3章で提案する方法は，このカテゴリに該当する．
2つ目は，クラスタリングとの融合であり，第 4章で提案する方法が該当するカテ

ゴリである．ここでは，ある多変量解析法をクラスタリングと融合することで，データ

中に含まれる多くの個体や変数を少数のクラスタに分類し，より直感的な解釈を行え

る解を出力する方法を提案する．

続く 5章は，解のスパース推定と呼ばれるカテゴリであり，解行列をスパースに推
定する，すなわち，多くのゼロを含むように推定する方法を提案する．解行列をスパー

スに推定することによって，解釈を必要とする要素が非ゼロ要素に限定され，解釈に伴

う認知的な負荷を大きく軽減することが期待できる．また，表A.1の解釈において，例
えば絶対値が 0.3以下の要素を無視するといった，主観的かつ adhocな解釈法を取り入
れる必要がなくなる点でも望ましい．

4つ目のカテゴリは，新たな計算原理に基づく方法であり，第 6，7章では，これま
で述べたカテゴリとは異なる，新しい計算原理を導入した 2つの方法を提案する．上で
述べたカテゴリは，これまでの先行研究を拡張するものであった一方で，ここで提案す

る方法は，全く新しい研究アプローチを提供するものであり，解釈可能性に関する今後

の研究において，大きな示唆を与えるであろう．

これらの 4カテゴリと，解釈可能性を構成するスパース性，単純構造との関係は，
図A.1に示される．本論文で提案する方法の最も特徴的な点は，その多くが，スパース
かつ単純構造を有する解が得られる点である．元来機械学習の分野で提案され，解釈

可能性向上にしばしば用いられる L1正則化などに基づく既存手法では，これらの 2つ
の性質を有する解を得ることは困難であった．本論文では，L1正則化とは異なるアプ

ローチで解釈可能性の問題に取り組むことにより，スパースかつ単純構造を有する解

を得る方法を数多く考案しており，この点が多変量データ解析に関する研究に対する，

本論文の最も大きな貢献である．

以下では，上の 6つの手法の概要を紹介する．

Permutimin: Factor Rotation to Simple Structure with Permutation
of Variables(第 2章)

　ターゲット回転と呼ばれる回転法では，解釈のために望ましい構造をもつターゲット

行列を用意して，それとの差異がなるべく小さくなるように解行列を回転することに

よって，解行列の単純化を試みる．そのような方法として，Promax回転 (Hendrickson
and White, 1964)が知られている．この手法の問題点として，[1]ターゲット行列を明
示的に与えられない場合が多いこと，[2]ターゲット行列と回転対象の解行列の行が必
ずしも一致しない事があることが知られている．特に 2つ目の問題点は，達成可能な単
純構造を制約してしまう点で大きな問題であったものの，著者の知る限り，これを解決

可能な回転法はこれまで存在しなかった．

本研究では，上の 2つの問題に対して，[1]ターゲット行列を固定するのではなく，推
定および更新しつつ回転すること，[2][1]と同時にターゲット行列の最適な行置換を行う
こと，の 2点を新たに有する回転法として，Permutimin回転を提案した．Cureton and
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スパース性を達成可能
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解の回転と
その適⽤範囲の拡張
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クラスタリングとの
融合
(第4章)
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性

⾼い
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Figure A.1: 提案手法，既存手法とスパース性/単純構造の関係．

Mulaik (1975)によるBoxデータに対して，Permutimin回転，Oblimin回転 (Harman,
1976)，および Promax 回転を適用した結果を表A.2に示した．ほか 2 手法と比べて，
Permutimin回転では，明瞭に単純構造が得られており，3つの因子がそれぞれ，変数
中に含まれる x, y, zに対応することがはっきりと見て取れる．

なお，以上の内容はYamashita and Adachi (2019b)の内容を一部発展させたもので
ある．

Table A.2: Box データに対する Permutimin 回転，Oblimin 回転，
Promax回転の結果．

Permutimin Oblimin Promax
F1 F2 F3 F1 F2 F3 F1 F2 F3

x 0.98 0.03 0.03 0.44 0.39 0.73 -0.52 0.48 0.88
y 0.02 0.96 0.03 -0.17 0.98 -0.33 0.46 0.82 -0.37
z 0.03 0.04 0.96 0.97 -0.16 -0.34 0.84 -0.32 0.43
xy 0.61 0.67 0.00 0.11 0.91 0.23 -0.04 0.86 0.26
xy2 0.35 0.84 0.03 0.00 0.98 -0.03 0.22 0.87 -0.03
2x+ 2y 0.54 0.75 -0.04 0.02 0.98 0.17 0.01 0.91 0.15
(x2 + y2)1/2 0.51 0.74 -0.02 0.03 0.95 0.15 0.03 0.88 0.14
xz 0.61 0.01 0.67 0.93 0.09 0.21 0.24 0.04 0.83
xz2 0.42 -0.03 0.82 1.02 -0.05 0.03 0.46 -0.13 0.75
2x+ 2z 0.58 -0.02 0.71 0.97 0.04 0.19 0.27 -0.01 0.84
(x2 + z2)1/2 0.55 -0.02 0.71 0.95 0.03 0.17 0.30 -0.02 0.81
yz -0.03 0.60 0.63 0.50 0.46 -0.46 0.85 0.26 0.00
yz2 -0.01 0.43 0.77 0.68 0.26 -0.44 0.88 0.07 0.14
2y + 2z -0.01 0.61 0.63 0.49 0.48 -0.45 0.84 0.28 0.00
(y2 + z2)1/2 0.01 0.61 0.59 0.47 0.50 -0.42 0.79 0.30 0.01

Canonical Correlation Analysis Formulated as Maximizing Sum of
Squared Correlations and Rotation of Structure Matrices（第 3章）

　正準相関分析は，2つのデータ行列のそれぞれに対して，最も相関が高くなるような
合成変数を，観測変数の線形結合により構成する分析法である．2つのデータ行列を取
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Table A.3: 体力診断テスト/運動能力テストに対する正準相関分析の
結果と提案手法による回転の結果．

初期解 提案手法
1 2 3 1 2 3

体力診断テスト
反復横跳び -0.670 0.278 -0.187 -0.697 0.117 0.246
背筋力 -0.744 -0.167 -0.333 -0.733 0.359 -0.160
垂直跳び -0.670 -0.605 0.307 -0.202 0.926 -0.105
握力 -0.251 0.006 0.365 0.013 0.334 0.29
踏み台昇降 -0.172 0.773 0.526 -0.015 -0.103 0.944

運動能力テスト
長距離走 0.667 -0.117 0.441 0.784 0.149 -0.129
ボール投げ -0.775 -0.168 -0.294 -0.688 -0.473 0.193
走り幅跳び -0.789 -0.497 0.038 -0.387 -0.827 0.136
懸垂 -0.649 -0.214 0.565 0.020 -0.640 0.614
50m走 0.676 -0.362 -0.497 0.174 0.163 -0.882

り扱うことができる点で，他の多変量データ解析法と比べユニークなこの方法は，そ

の結果出力される解行列の解釈が困難であることが知られている．ただし，因子分析

や主成分分析と異なり，正準相関分析では，解の回転の不定性が存在しないとされてき

ており，そのため，上でのべたPermutimin回転のような方法を利用して，解を単純化
することが許容されなかった．

そこで本研究では，まず，正準相関分析の新たな定式化を提案する．この新たな定

式化は，正準相関係数の平方和の最大化に基づくものであり，この新しい定式化が，既

存の定式化と同等であり，なおかつ同じ解を与えることを証明する．さらに，この新た

な定式化のもとでは，これまで許容されなかった，解の回転を行うことができる．すな

わち，これまで提案されている様々な回転法を自由に適用して，正準相関分析の解を単

純化することが，理論的に保証される．

表A.3に，体力診断テストと運動能力テストそれぞれに対する成績データに，正準
相関分析を適用し，得られた解と，それを提案手法によって回転した結果を示す．初期

解は，ほとんどすべての変数が第 1正準変数に大きく関係しており，いわば「一般的運
動能力」として解釈可能な因子が得られてしまっている．もし，分析者の関心が「一般

運動能力」を構成する下位の概念を抽出することにあるならば，初期解は無意味であ

る．一方で，提案手法による結果は，その下位尺度とみなせるような正準変数が確かに

得られており，かつその解釈が容易であることがはっきりと確認できる．

なお，以上の内容はYamashita (2012a)の内容を一部発展させたものである．

A New Biplot Procedure with Joint Classification Objects and Vari-
ables by Crisp and Fuzzy K-means Clustering（第 4章）

　主成分分析の結果の優れた視覚化法であるバイプロットは，データ行列に含まれる

個体と変数の関係性，等質性の直感的な把握を目的として，広く用いられている．ただ

し，データ行列が非常に多くの個体と変数を含む場合，バイプロットを構成する点（各

個体に対応する）とベクトル（各変数に対応する）の数が非常に多くなるため，直感的
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既存⼿法によるバイプロット 提案⼿法によるバイプロット

Figure A.2: 既存手法/提案手法によるバイプロットの比較．

な結果の把握が妨げられることが懸念される．本研究では，そのような大規模なデー

タであっても，解釈が容易なバイプロットを得るための方法として，Crisp Clusterwise
Biplot Analysis（CCBA）を提案する．CCBAでは，個体と変数のクラスタリングと，
それによって得られた，個体クラスタおよび変数クラスタのバイプロットを同時に行

う．このことにより，バイプロットはクラスタ数分の点およびベクトルから構成される

ため，データ行列が巨大であったとしても，そのバイプロットの解釈は容易になると考

えられる．

178個の個体と，13個の変数からなるデータ行列に対して，個体と変数のクラスタ
数がそれぞれ 3の提案手法を適用した結果を，図A.2に示す．既存手法によるバイプロッ
トは，データが多数の個体と変数から構成されるがゆえに，煩雑な見た目となり，デー

タの構造が直感的に把握しづらい．一方提案手法では，個体と変数がそれぞれ 3つのク
ラスタに分類されることで，解釈が容易なバイプロットが得られている．

本研究では上の結果に加えて，個体/変数のクラスタリングを，所属クラスタの重
複を認める，ファジィクラスタリングに拡張した，Fuzzy Clusterwise Biplot Analsys
（FCBA）も提案する．なお，以上の結果，Yamashita and Mayekawa (2012)およびYa-
mashita and Mayekawa (2015)を一部発展させたものである．

A Modified K-means clustering procedure for obtaining a cardinality-
constrained centroid matrix（第 5章）

　個体の分類に広く用いられるK-meansクラスタリングでは，得られたクラスタがど
のような変数によって特徴づけられるかを解釈する上で，セントロイド行列と呼ばれ

る解行列が参照される．ただし，K-meansクラスタリングでは，正準相関分析と同様
に，解の回転が許容されていない．また，第 3章と同じアプローチにより，回転が許容
されるようにK-meansクラスタリングを再定式化することは，計算上の困難が伴う．
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Table A.4: K-meansとRSKMにより得られたセントロイド行列．空
白のセルはゼロに等しい要素を表す．

K-means RSKM
C1 C2 C3 C4 C1 C2 C3 C4

立派な 0.34 -0.38 0.12 0.00 0.34
役に立つ 0.56 -0.39 0.18 -0.28 0.56 -0.39
良い 0.20 -0.13 0.02 -0.06
大きい -0.01 -0.42 0.38 0.06 -0.42
力強い -0.07 -0.80 1.03 -0.24 -0.80 1.03
強力な 0.03 -0.71 1.01 -0.44 -0.71 1.01
速い -0.33 0.13 0.95 -1.10 0.95 -1.10
騒がしい -0.28 0.25 0.87 -1.21 0.87 -1.21
若い 0.02 0.69 0.46 -1.55 0.69 -1.55
真面目な 0.44 -0.33 0.17 -0.22 0.44
頑固な 0.57 -1.24 0.39 0.57 0.57 -1.24
忙しい 0.59 0.28 0.21 -1.24 0.59 -1.24

そこで本研究では，セントロイド行列中の非ゼロ要素の数（cardinality）を制約
することにより，スパースで解釈が容易なセントロイド行列を得る方法を，Reduced
Structure K-Means（RSKM）として提案する．RSKMでは，事前に設定した個数以
上のゼロ要素を含むように，セントロイド行列が推定されるため，分析者は，その結果

の解釈において，一部のゼロ要素にのみ注目すればよく，解釈に伴う認知的コストを大

きく削減できる．また，ゼロ要素と非ゼロ要素が混在することで，行に並ぶ変数と列に

並ぶ変数の対応関係がより明瞭に把握できるようになる．さらに，提案手法の変法と

して，行ごと，列ごとの cardinalityを制約して，解の回転が目指す，単純構造を直接
得られる方法も併せて提案する．すなわち，スパース性と単純構造を両方有したセン

トロイド行列を得ることができる．

表A.4には，通常のK-meansと，提案手法の RSKMを，13の職業を 12の印象語
で評定した，職業評定データに対して適用した例を示す．得られた 4つのクラスタが
それぞれ何を意味するかに関して，値がゼロの要素を含まないK-meansの結果を参照
しても，直感的に理解することは難しい．一方RSKMは，単純構造に近い構造を取り，
クラスタと印象語の対応関係がはっきりと理解できる．

なお，以上の内容はYamashita and Adachi (2019a)およびYamashita and Adachi
(2017)の結果を一部発展させたものである．

Layered Multivariate Analysis(第 6章)

解の解釈可能性向上に関する新たな研究アプローチとして，Vichi (2017)は，完全クラ
スタ構造をもつ主成分負荷量行列，つまり，各行にただひとつの非ゼロ要素しか存在し

ない解を出力する主成分分析を提案している．ただし，完全クラスタ行列のように制

約の強い構造が，実データに対して良好に適合することは稀である．そこで本研究で

は，上の方法から着想を得て，完全クラスタ行列の和として解行列を表現する，Layered
Multivariate Analysis，および，その特別版としての Layered Multibariate Regression
（LMR）および Layered PCA（LPCA）を提案する．提案手法では，解行列が，layer
と呼ばれる，完全クラスタ構造をもつ行列の和として表現される．そのため，Layerの
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個数を増減させることで，データに対する適合性と，解行列の単純性のバランスを調整

することが可能である．LMRでは回帰係数行列が，LPCAでは主成分負荷量行列が，
それぞれ layerの和で表現される．また，layerの個数を大きくしていくと，無制約時の
解に収束することが，数学的に保証される．

LMRを，タバコ葉の科学的組成に関するデータに適用した例を表A.5に示す．表に
は，レイヤ数（L）が 1から 4までの場合と，無制約時の解（最小二乗解）を示してい
るが，layerの数を増やしていくにつれて，ゼロに等しい要素の数が減り，分散説明率
が上昇，すなわち，データに対する適合度が上昇していることが見て取れる．例えば，

この例では，分散説明率の変化が小さくなる，L = 3程度が適当な layer数だと思われ
るが，タバコ葉の燃焼率，および含まれる糖類とNic（ニコチン）の量に影響を与える
科学的組成が明瞭に特定できる．

以上の内容は，Yamashita and Adachi (ress)を一部拡張したものである．

Table A.5: Layered Multivariate Regressionの適用例．空白のセルは
ゼロに等しい要素を表す．

LMR (L = 1) LMR (L = 2) LMR (L = 3) LMR (L = 4) 最小二乗解
燃焼率 糖類 Nic 燃焼率 糖類 Nic 燃焼率 糖類 Nic 燃焼率 糖類 Nic 燃焼率 糖類 Nic

N -0.69 -0.65 0.51 -0.52 0.39 -0.58 0.30 0.10 -0.58 0.29
Cl -0.61 -0.60 0.38 -0.60 0.41 -0.31 -0.60 0.39 -0.32 -0.58 0.39 -0.32
K 0.62 0.52 0.26 0.52 0.14 0.52 0.20 0.11 0.45 0.20 0.11
P 0.17 -0.14 0.20 -0.14 0.22 -0.14 0.22 -0.13 0.22 -0.05
Ca 0.33 0.47 0.47 0.18 0.47 0.11 0.25 0.41 0.11 0.24
Mg 0.73 -0.26 0.43 -0.26 -0.21 0.40 -0.26 -0.21 0.47 -0.32 -0.22 0.48
分散説明率 0.569 0.701 0.74 0.742 0.744

Procrustes Penalty Function for Matching Matrices to Targets with
its Applications(第 7章)

スパースな解行列を得るための方法として，解行列の要素絶対値和（L1ノルム）を罰

則項として用いた，罰則項付き推定が用いられることが多い．この罰則項付き推定で

は，解行列中のすべての要素を 0に向けて縮退させることで，スパースな解行列を推定
することができる．しかしながら，解の解釈可能性を目標とすることを考えると，この

推定法では不十分であると考えられる．なぜならば，これまで提案した方法で見たよ

うに，解釈可能性のためには，値のスパース性だけではなく，単純構造も同じく重要で

あり，それを達成する上で，必ずしもすべての要素を 0へ向けて縮退させることが効果
的であるとは限らないためである．

そこで本研究では，解行列の要素ごとに 0へ縮退させるのではなく，解行列全体を，
あるターゲット行列へ向けて縮退させることにより，スパース性と単純構造の両立を目

指す罰則項，Procrustes penaltyを提案する．提案手法を用いた罰則項付き推定では，
行列全体をターゲット行列へ近づけるため，すべての要素を 0へ向けて縮退するとは限
らず，一部の要素は非ゼロの値に近づいていく．この事によって，ターゲットが単純構

造を取っていれば，推定される解行列もまた単純構造に近づくことが期待できる．

提案手法を PCAと組み合わせて，スパース PCAを適用した結果を表A.6に示す．
罰則項の相対的な強さを調整する λの値を大きくするに従って，表中に示したターゲッ

ト行列に解行列が近づき，主成分と変数との対応関係がより明確に表現されているこ
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Table A.6: 提案手法によるスパース PCAの結果と，用いたターゲッ
ト行列．空白はゼロに等しい要素を表す．

λ = 20 λ = 50 λ = 100 Target Matrix T
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Alc -0.003 -0.925 -1.000 -1.000 -1.000
MA 0.497 -0.066 0.177 0.381 0.055 0.196
Ash -0.247 0.931 -0.174 1.000 1.000 1.000
AA 0.268 0.265 0.832 0.201 0.132 0.937 0.031 1.000 1.000
Mg -0.134 -0.422 0.142 -0.058 -0.290 -0.079
ToP -0.887 -0.239 -1.000 -0.078 -1.000 -1.000
Flv -0.969 -0.157 -1.000 -1.000 -1.000
NP 0.523 0.107 0.241 0.448 0.135 0.293
ProA -0.606 -0.140 -0.540 -0.405
Col 0.358 -0.818 0.027 0.201 -0.930 0.030 -1.000 -1.000
Hur -0.668 0.161 -0.019 -0.540 0.090 -0.358
OD -0.939 -1.000 -1.000 -1.000
Pro -0.354 -0.822 -0.314 -0.891 -0.159 -1.000 -1.000

とが見て取れる．また，Procrustes paneltyは，PCAだけではなく，多変量回帰分析
やK-meansクラスタリングなど，様々な多変量データ解析法にも適用可能である．
以上の内容はYamashita (ress)を拡張したものである．

総合論議

　解の回転は，何らかの基準を最適化することによって，単純構造を有するように解行

列を変換することを企図したものである．ただし，ここで重要なことは，その変換が，

直交回転もしくは斜交回転に限定されているため，得られる解はあくまで単純構造を

近似したものであり，回転後の解は，一般にスパースではなく，それゆえ単純構造を厳

密な意味で有するものではない．言い換えれば，スパース性と単純構造をどちらも達

成できない．

一方，解釈の容易なセントロイド行列を出力する RSKMでは，セントロイド行列
の cardinalityを制約することによって，セントロイド行列のスパース性を達成が達成
される．さらに，行ごと，列ごとの cardinalityを制約することで，ゼロ要素の位置を
制約することができる．これらの 2つの特徴により，RSKMは，スパース性の達成に
加えて，単純構造の実現において不可欠である，ゼロ要素の位置まで制約することが可

能であり，RSKMにより得られた解は，スパース性と単純構造をどちらも有すること
が期待できる．一方で，機械学習におけるスパース推定で頻繁に用いられる L1罰則項

による罰則項付き推定では，すべての要素を一斉に 0に向けて shrinkさせるため，ゼ
ロ要素の位置の flexibleな調整は，一般には不可能である．よって，結果として得られ
る解は，スパースであるが，単純構造を取り得ない．

さらに，新たな計算原理に基づく手法として，Layered Multivariate Analysisと，
Procrustes penaltyをそれぞれ提案したが，これらもRSKMと同様に，ゼロ要素の位置
を制約することで，スパース性だけではなく，単純構造を有する解を出力可能である．

ここで見たように，本研究で提案した手法のほとんどは，スパース性と単純構造を

同時に有する解を出力できる．L1正則化などのこれまで提案されている方法とは異な

る，本研究の提案する方法の大きなアドバンテージである．元来，L1正則化は，解の
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解釈可能性向上よりもむしろ，変数選択や予測モデルのロバスト化のために提案され，

用いられてきた方法であった．そのような経緯のために，罰則項付き推定による解の単

純化には限界があるといえるだろう．第 1章で議論したとおり，昨今，解の解釈可能性
やそれがもたらすモデルの accountabilityが重要視される中で，多変量データ解析法の
解釈可能性を考慮することは，必須であるといえる．そのような状況の中，本研究で

は，スパース性を超えた解釈可能性の重要性に注目し，既存の方法には困難であった，

スパース性と単純構造の両立が可能な方法を，数多く開発し，その有用性を示した．



133

Bibliography

Adachi, K. (2006). Multivariate data analysis. Nakanishiya Shuppan, Tokyo (in
Japanese).

Adachi, K. (2009). Joint procrustes analysis for simultaneous nonsingular transfor-
mation of component score and loading matrices. Psychometrika, 74(4):667.

Adachi, K. (2011). Constrained principal component analysis of standardized data
for biplots with unit-length variable vectors. Advances in Data Analysis and Clas-
sification, 5(1):23–36.

Adachi, K. (2016). Matrix-based introduction to multivariate data analysis. Springer.

Adachi, K. and Trendafilov, N. T. (2016). Sparse principal component analysis subject
to prespecified cardinality of loadings. Computational Statistics, 31(4):1403–1427.

Adachi, K. and Trendafilov, N. T. (2018a). Some mathematical properties of the
matrix decomposition solution in factor analysis. Psychometrika, 83(2):407–424.

Adachi, K. and Trendafilov, N. T. (2018b). Sparsest factor analysis for clustering
variables: a matrix decomposition approach. Advances in Data Analysis and Clas-
sification, 12(3):559–585.

Aggarwal, C. C. (2014). Data classification: algorithms and applications. CRC press.

Alsius, A., Wayne, R. V., Paré, M., and Munhall, K. G. (2016). High visual resolution
matters in audiovisual speech perception, but only for some. Attention, Perception,
& Psychophysics, 78(5):1472–1487.

Anderson, T. W. and Rubin, H. (1956). Statistical inference in factor analysis. In Pro-
ceedings of the third Berkeley symposium on mathematical statistics and probability,
volume 5, pages 111–150.

Arabie, P. and Hubert, L. (1994). Cluster analysis in marketing research. In Bagozzi,
R., editor, Advanced Methods of Marketing Research, pages 160–189. Blackwell,
Oxford.

Asuncion, A. and Newman, D. (2007). Uci machine learning repository.

Bartholomew, D. J., Knott, M., and Moustaki, I. (2011). Latent variable models and
factor analysis: A unified approach, volume 904. John Wiley & Sons.



BIBLIOGRAPHY 134

Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of
statistical psychology, 3(2):77–85.

Basu, S., Davidson, I., and Wagstaff, K. (2008). Constrained clustering: Advances in
algorithms, theory, and applications. CRC Press.

Bernaards, C. A. and Jennrich, R. I. (2003). Orthomax rotation and perfect simple
structure. Psychometrika, 68(4):585–588.

Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms.
Springer Science & Business Media.

Bezdek, J. C., Coray, C., Gunderson, R., and Watson, J. (1981a). Detection and
characterization of cluster substructure i. linear structure: Fuzzy c-lines. SIAM
Journal on Applied Mathematics, 40(2):339–357.

Bezdek, J. C., Coray, C., Gunderson, R., and Watson, J. (1981b). Detection and
characterization of cluster substructure ii. fuzzy c-varieties and convex combinations
thereof. SIAM Journal on Applied Mathematics, 40(2):358–372.

Bezdek, J. C., Keller, J., Krisnapuram, R., and Pal, N. (1999). Fuzzy models and
algorithms for pattern recognition and image processing, volume 4. Springer Science
& Business Media.

Bock, H. H. (1996). Probabilistic models in cluster analysis. Computational Statistics
& Data Analysis, 23(1):5–28.

Browne, M. W. (1972a). Oblique rotation to a partially specified target. British
Journal of Mathematical and Statistical Psychology, 25:207–212.

Browne, M. W. (1972b). Orthogonal rotation to a partially specified target. British
Journal of Mathematical and Statistical Psychology, 25:115–120.

Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis.
Multivariate Behavioral Research, 36:111–150.

Brusco, M. J. and Cradit, J. D. (2001). A variable-selection heuristic for k-means
clustering. Psychometrika, 66(2):249–270.

Cadima, J. and Jolliffe, I. T. (1995). Loading and correlations in the interpretation
of principle compenents. Journal of Applied Statistics, 22(2):203–214.

Carroll, J. B. (1953). An analytic rotation for approximating simple structure in factor
analysis. Pssychometrika, 18:23–38.

Carroll, J. D. and Chang, J.-J. (1970). Analysis of individual differences in multi-
dimensional scaling via an n-way generalization of “eckart-young” decomposition.
Psychometrika, 35(3):283–319.



BIBLIOGRAPHY 135

Cliff, N. and Krus, D. J. (1976). Interpretation of canonical analysis: Rotated vs.
unrotated solutions. Psychometrika, 41(1):35–42.

Coppi, R., Gil, M. A., and Kiers, H. A. (2006). The fuzzy approach to statistical
analysis. Computational statistics & data analysis, 51(1):1–14.

Cortina, L. M. and Wasti, S. A. (2005). Profiles in coping: Responses to sexual harass-
ment across persons, organizations, and cultures. Journal of Applied Psychology,
90(1):182.

Cureton, E. and Mulaik, S. A. (1975). The weighted varimax rotation and the promax
rotation. Psychometrika, 40:183–195.

Dalton, C., Jennings, E., O’Dwyer, B., and Taylor, D. (2016). Integrating observed,
inferred and simulated data to illuminate environmental change: a limnological
case study. In Biology and Environment: Proceedings of the Royal Irish Academy,
volume 116, pages 279–294. JSTOR.

De Leeuw, J. (2004). Least squares optimal scaling of partially observed linear systems.
In Recent Developments on Structural Equation Models, pages 121–134. Springer.

DeSarbo, W. S. and Mahajan, V. (1984). Constrained classification: the use of a
priori information in cluster analysis. Psychometrika, 49(2):187–215.

Dua, D. and Graff, C. (2019). UCI machine learning repository
[http://archive.ics.uci.edu/ml]. university of california, school of information
and computer science.

D’Urso, P., Massari, R., and Santoro, A. (2010). A class of fuzzy clusterwise regression
models. Information Sciences, 180(24):4737–4762.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Annals of eugenics, 7(2):179–188.

Fowlkes, E. B. and Mallows, C. L. (1983). A method for comparing two hierarchical
clusterings. Journal of the American statistical association, 78(383):553–569.

Frølich, L., Andersen, T. S., and Mørup, M. (2018). Rigorous optimisation of multilin-
ear discriminant analysis with tucker and parafac structures. BMC bioinformatics,
19(1):197.

Gabriel, K. R. (1971). The biplot graphic display of matrices with application to
principal component analysis. Biometrika, 58(3):453–467.

Gan, G., Ma, C., and Wu, J. (2007). Data clustering: theory, algorithms, and appli-
cations, volume 20. Siam.

Gifi, A. (1990). Nonlinear multivariate analysis. Wiley.



BIBLIOGRAPHY 136

Gower, J. C. and Dijksterhuis, G. B. (2004). Procrustes problems. Oxford University
Press, Oxford.

Gower, J. C. and Hand, D. J. (1995). Biplots, volume 54 of Monographs on Statistics
and Applied Probability. CRC Press.

Gower, J. C., Lubbe, S. G., and Le Roux, N. J. (2011). Understanding biplots. John
Wiley & Sons.

Green, B. F. (1952). The orthogonal approximation of an oblique structure in factor
analysis. Psychometrika, 17:429–440.

Greenacre, M. J. (2010). Biplots in practice. Fundacion BBVA.

Harman, H. H. (1976). Modern factor analysis. University of Chicago press.

Harris, C. W. and Kaiser, H. F. (1964). Oblique factor analytic solutions by orthogonal
transformations. Psychometrika, 29(4):347–362.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical learning with spar-
sity: the lasso and generalizations. Chapman and Hall/CRC.

Hathaway, R. J. and Bezdek, J. C. (1993). Switching regression models and fuzzy
clustering. IEEE Transactions on fuzzy systems, 1(3):195–204.

Hendrickson, A. E. and White, P. O. (1964). Promax: A quick method for rotation
to oblique simple structure. British Journal of Statistical Psychology, 17:65–70.

Heumann, C., Schomaker, M., et al. (2016). Introduction to statistics and data anal-
ysis. Springer.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67.

Hogg, R. V., McKean, J., and Craig, A. T. (2005). Introduction to mathematical
statistics. Pearson Education.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6):417.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4):321–
377.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification,
2(1):193–218.

Huley, J. and Cattell, R. B. (1962). The procrustes program: Producing direct rotation
to test a hypothesized factor structure. Behavioral Science, 7:258–262.

Hwang, H., DeSarbo, W. S., and Takane, Y. (2007). Fuzzy clusterwise generalized
structured component analysis. Psychometrika, 72(2):181.



BIBLIOGRAPHY 137

Hwang, H. and Dillon, W. R. (2010). Simultaneous two-way clustering of multiple
correspondence analysis. Multivariate behavioral research, 45(1):186–208.

Hwang, H., Dillon, W. R., and Takane, Y. (2010). Fuzzy cluster multiple correspon-
dence analysis. Behaviormetrika, 37(2):111–133.

Hyland, J. J., Jones, D. L., Parkhill, K. A., Barnes, A. P., and Williams, A. P. (2016).
Farmers’perceptions of climate change: identifying types. Agriculture and Human
Values, 33(2):323–339.

Izenman, A. J. (2008). Modern Multivariate Statistical Techniques: Regression, Clas-
sification, and Manifold Learning. Springer, New York.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to
statistical learning, volume 112. Springer.

Jennrich, R. I. (2002). A simple general method for oblique rotation. Psychometrika,
67:7–20.

Jennrich, R. I. (2004). Rotation to simple loadings using component loss functions:
The orthogonal case. Psychometrika, 69:257–273.

Jennrich, R. I. (2006). Rotation to simple loadings using component loss functions:
The oblique case. Psychometrika, 71:173–191.

Jetti, S. K., Vendrell-Llopis, N., and Yaksi, E. (2014). Spontaneous activity governs
olfactory representations in spatially organized habenular microcircuits. Current
biology, 24(4):434–439.

Jolliffe, I. (2011). Principal component analysis. Springer.

Jolliffe, I. T., Trendafilov, N. T., and Uddin, M. (2003). A modified principal com-
ponent technique based on the lasso. Journal of Computational and Graphical
Statistics, 12(3):531–547.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.
Psychometrika, 23:187–240.

Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1):31–36.

Kiers, H. A. (1990). Majorization as a tool for optimizing a class of matrix functions.
Psychometrika, 55(3):417–428.

Kiers, H. A. (1998). Joint orthomax rotation of the core and component matrices
resulting from three-mode principal components analysis. Journal of Classification,
15(2):245–263.

Kiers, H. A. (2002). Setting up alternating least squares and iterative majorization al-
gorithms for solving various matrix optimization problems. Computational statistics
& data analysis, 41(1):157–170.



BIBLIOGRAPHY 138

Kiers, H. A. L. (1994). Simplimax: Oblique rotation to an optimal target with simple
structure. Psychometrika, 59:567–579.

Kristof, W. (1970). A theorem on the trace of certain matrix products and some
applications. Journal of Mathematical Psychology, 7(3):515–530.

Kroonenberg, P. M. (2008). Applied multiway data analysis, volume 702. John Wiley
& Sons.

Kroonenberg, P. M. and De Leeuw, J. (1980). Principal component analysis of
three-mode data by means of alternating least squares algorithms. Psychometrika,
45(1):69–97.

Kuerbis, A., Armeli, S., Muench, F., and Morgenstern, J. (2014). Profiles of confidence
and commitment to change as predictors of moderated drinking: A person-centered
approach. Psychology of Addictive Behaviors, 28(4):1065.

Levine, M. S. (1977). Canonical analysis and factor comparison. Number 6. Sage
Publications.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA.

Magnus, J. R. and Neudecker, H. (2019). Matrix differential calculus with applications
in statistics and econometrics. John Wiley & Sons.

McDonald, R. P. (1981). Constrained least squares estimators of oblique common
factors. Psychometrika, 46(3):337–341.

Miyamoto, S., Ichihashi, H., Honda, K., and Ichihashi, H. (2008). Algorithms for fuzzy
clustering. Springer.

Mosier, C. I. (1939). Determining a simple structure when loadings for certain tests
are known. Psychometrika, 4:149–162.

Mulaik, S. A. (2009). Foundations of factor analysis. Chapman and Hall/CRC.

Mulaik, S. A. (2010). Foundations of factor analysis. Second Edition. Boca Raton:
CRC Press.

Neudecker, H. (1981). On the matrix formulation of kaiser’s varimax criterion. Psy-
chometrika, 46(3):343–345.

Osgood, C. E. and Luria, Z. (1954). A blind analysis of a case of multiple personality
using the semantic differential. The Journal of Abnormal and Social Psychology,
49(4p1):579.



BIBLIOGRAPHY 139

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572.

Peng, X., Zhou, C., Hepburn, D. M., Judd, M. D., and Siew, W. H. (2013). Appli-
cation of k-means method to pattern recognition in on-line cable partial discharge
monitoring. IEEE Transactions on Dielectrics and Electrical Insulation, 20(3):754–
761.

Popper, K. (1962). Conjectures and refutations: The growth of scientific knowledge.

Qi, X., Luo, R., and Zhao, H. (2013). Sparse principal component analysis by choice
of norm. Journal of multivariate analysis, 114:127–160.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association, 66(336):846–850.

Reynolds, T. J. and Jackosfsky, E. F. (1981). Interpreting canonical analysis: The
use of orthogonal transformations. Educational and Psychological Measurement,
41(3):661–671.

Rocci, R. and Vichi, M. (2005). Three-mode component analysis with crisp or fuzzy
partition of units. Psychometrika, 70(4):715–736.

Roubens, M. (1982). Fuzzy clustering algorithms and their cluster validity. European
journal of operational research, 10(3):294–301.

Rudin, C. (2019). Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine Intelligence,
1(5):206.

Satomura, H. and Adachi, K. (2013). Oblique rotaton in canonical correlation analysis
reformulated as maximizing the generalized coefficient of determination. Psychome-
trika, 78(3):526–537.

Schloss, K. B., Hawthorne-Madell, D., and Palmer, S. E. (2015). Ecological influ-
ences on individual differences in color preference. Attention, Perception, & Psy-
chophysics, 77(8):2803–2816.

Sherin, R. J. (1966). A matrix formulation of kaiser’s varimax criterion. Psychome-
trika, 31(4):535–538.

Slobodenyuk, N., Jraissati, Y., Kanso, A., Ghanem, L., and Elhajj, I. (2015). Cross-
modal associations between color and haptics. Attention, Perception, & Psy-
chophysics, 77(4):1379–1395.

Späth, H. (1979). Algorithm 39 clusterwise linear regression. Computing, 22(4):367–
373.



BIBLIOGRAPHY 140

Steinley, D. (2006). K-means clustering: a half-century synthesis. British Journal of
Mathematical and Statistical Psychology, 59(1):1–34.

Steinley, D. and Brusco, M. J. (2008). Selection of variables in cluster analysis: An
empirical comparison of eight procedures. Psychometrika, 73(1):125.

Steinley, D. and Hubert, L. (2008). Order-constrained solutions in k-means clustering:
even better than being globally optimal. Psychometrika, 73(4):647.

Suk, H. W. and Hwang, H. (2010). Regularized fuzzy clusterwise ridge regression.
Advances in data analysis and classification, 4(1):35–51.

Takane, Y. (1978). Multi dimensional scaling. Seminars in Nuclear Medicine, 8:283–
298.

Takane, Y. (1980). Multi Dimensional Scaling. Todai Syuppan, Tokyo (in Japanese).

Tanaka, Y., Tarumi, T., and Wakimoto, K. (1984). Pasokon Toukei Kaiseki Hand-
book II Tahenryo Kaiseki Hen (Handbook of Computerized Statistical Analysis II,
Multivariate Analysis). Kyoritsu Syuppan (in Japanese).

Ten Berge, J. M. (1983). A generalization of kristof’s theorem on the trace of certain
matrix products. Psychometrika, 48(4):519–523.

ten Berge, J. M. (1993). Least squares optimization in multivariate analysis. DSWO
Press, Leiden University Leiden.

ten Berge, J. M., de Leeuw, J., and Kroonenberg, P. M. (1987). Some additional results
on principal components analysis of three-mode data by means of alternating least
squares algorithms. Psychometrika, 52(2):183–191.

Thurstone, L. L. (1947). Multiple-factor analysis; a development and expansion of
the vectors of mind.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Trendafilov, N. T. (2014). From simple structure to sparse components: a review.
Computational Statistics, 29(3-4):431–454.

Trendafilov, N. T., Fontanella, S., and Adachi, K. (2017). Sparse exploratory factor
analysis. psychometrika, 82(3):778–794.

Tucker, L. R. (1951). A method for synthesis of factor analysis studies (personal
research section report no. 984). Technical report, U.S. Department of the Army,
Washington, D.C.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 31(3):279–311.



BIBLIOGRAPHY 141

Tukey, J. W. (1970). Exploratory Data Analysis. Preliminary edition. Addison-Wesley.

Ullman, J. B. (2006). Structural equation modeling: Reviewing the basics and moving
forward. Journal of personality assessment, 87(1):35–50.

Unkel, S. and Trendafilov, N. T. (2010). Simultaneous parameter estimation in ex-
ploratory factor analysis: An expository review. International Statistical Review,
78(3):363–382.

Vichi, M. (2017). Disjoint factor analysis with cross-loadings. Advances in Data
Analysis and Classification, 11(3):563–591.

Vichi, M. and Kiers, H. A. (2001). Factorial k-means analysis for two-way data.
Computational Statistics & Data Analysis, 37(1):49–64.

Vichi, M., Rocci, R., and Kiers, H. A. (2007). Simultaneous component and clustering
models for three-way data: within and between approaches. Journal of Classifica-
tion, 24(1):71–98.

Vichi, M. and Saporta, G. (2009). Clustering and disjoint principal component anal-
ysis. Computational Statistics & Data Analysis, 53(8):3194–3208.

Ward, J. H. J. (1963). Hierarchical grouping to optimize an objective function. Journal
of the American statistical association, 58(301):236–244.

Wedel, M. and Steenkamp, J.-B. E. (1989). A fuzzy clusterwise regression approach
to benefit segmentation. International Journal of Research in Marketing, 6(4):241–
258.

Weisstein, E. W. (2002). CRC concise encyclopedia of mathematics. Chapman and
Hall/CRC.

Yamashita, N. (2012a). Canonical correlation analysis formulated as maximizing sum
of squared correlation and rotation of structure matrix. The Japanese Journal of
Behaviometrics, 39(1):1–12.

Yamashita, N. (2012b). Sparse multivariate multiple regression analysis and its ap-
plication. In The 40th Conference of the Behaviormetric Society of Japan.

Yamashita, N. (in press). Procrustes penalty function for matching matrices to targets
with its applications. In The Annual Meeting of the Psychometric Society. Springer.

Yamashita, N. and Adachi, K. (2017). Spark: A new clustering algorithm for obtaining
sparse and interpretable centroids. In The Annual Meeting of the Psychometric
Society, pages 407–416. Springer.

Yamashita, N. and Adachi, K. (2019a). A modified k-means clustering procedure for
obtaining a cardinality-constrained centroid matrix. Journal of Classification, pages
1–17.



BIBLIOGRAPHY 142

Yamashita, N. and Adachi, K. (2019b). Permutimin: Factor rotation to simple struc-
ture with permutation of variables. Multivariate behavioral research, pages 1–13.

Yamashita, N. and Adachi, K. (in press). Layered multivariate regression and its
applications. In Advanced Researches in Classification and Data Science. Springer.

Yamashita, N. and Mayekawa, S. (2012). A new biplot procedure for joint classification
of objects and variables with k-means clustering. Bulletin of Data Analysis of
Japanese Classification Society, 2(1):33–51.

Yamashita, N. and Mayekawa, S. (2015). A new biplot procedure with joint clas-
sification of objects and variables by fuzzy c-means clustering. Advances in Data
Analysis and Classification, 9(3):243–266.

Yanai, H. and Ichikawa, M. (2006). Factor analysis. In Rao, C. and Sinharay, S., edi-
tors, Psychometrics, volume 26 of Handbook of Statistics, pages 257 – 296. Elsevier.

Yanai, H., Kashiwagi, S., and Kokusho, R. (1987). Construction of new personality
inventory by means of factor analysis based on promax rotation. The Japanese
Journal of Psychology, 58:158–165. (in Japanese).

Yanai, H., Shigemasu, K., Mayekawa, S.-I., and Ichikawa, M. (1990). Inshi Bunseki -
Sono Riron To Houhou (Factor Analysis -Theory and Method). Asakura Syuppan,
Tokyo (in Japanese).

Yates, A. (1987). Multivariate exploratory data analysis: A perspective on exploratory
factor analysis. Albany: State University of New York Press.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3):338–353.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the royal statistical society: series B (statistical methodology), 67(2):301–
320.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis.
Journal of computational and graphical statistics, 15(2):265–286.



143

Acknowledgements

Firstly, I would like to express my sincere gratitude to my prime supervisor Prof. Kohei
Adachi for the continuous support of my Ph.D research and related publications, strict
but kind comments on my (stupid) ideas, exhaustive comments on my manuscripts,
and countless suggestions. His guidance and devotion on our research kept motivated
me in all the time of research and writing of this thesis. I could not have imagined
having a better advisor and mentor for my Ph.D study. I also show my thank to Prof.
Yasoshima and Prof. Nittono, vise-supervisors of my Ph.D research.

Besides my supervisors, I would like to thank to Prof. Shin-ichi Mayekawa (my
supervisor at Tokyo Institute of Technology), Assoc. Prof. Satoshi Usami (University
of Tokyo), and Assoc. Prof. Kensuke Okada (University of Tokyo) for their insightful
comments and encouragement which incented me to widen my research from various
perspectives.

Also, I would like to show gratitude to my previous colleagues at Japan Tobacco
Inc. and current colleagues at Yahoo Japan Inc.

Last but not the least, I would like to thank my family: my wife Shizuka, my son
Akihito, my parents Takeshi and Shigeko who devoted themselves to working hard
to send me Osaka University. Their heart-warming supports throughout writing this
thesis and my life in general encouraged me in all time.




