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Chapter 1

Introduction

In this thesis, we consider the Cauchy problem for nonlinear fourth-order
Schrédinger equations:

{ i@tu — %AQU = f (uvﬂ)a (t,l’) € (0’ OO) X Rn’ (1.0.1)

u(0,2) = up (), z € R",

where ug is a C-valued known function which belongs to suitable weighted
Sobolev space and small. u = u (t,x) is a C-valued unknown function and
% is the complex conjugate of u. f (u,u) is a nonlinearity. The class of the
fourth-order nonlinear Schrodinger equations (1.0.1) describes deep water
wave dynamics (see [6]). We consider a global existence of small solutions
under the growth condition of

Ou0hf (u,)| < Clupf =", (1.0.2)

with 0 < a + b < p. Since the pointwise time decay estimates of solutions
to the free fourth-order Schrédinger equation is O (t_%> and the linear
problem has the L? conservation law, L? norm of the nonlinearity f (u,u)
decays like O (t_%(p_l)). We find floo 1Pt < coif p > l—i-%, therefore
we expect a global existence of small solutions to (1.0.1) holds if p > 1+ %.

1 .
In [21], the LPTL-L'"5 time decay estimate of evolution operator ezitA

was applied to the nonlinear Schrédinger equations

{ i0u + %Au = f(u,u), (t,z)€ (0,00)xR",

u(0,z) = ug (x), x € R", (1.0.3)

to obtain a global existence of small solutions, when the initial data are small
1
in H'NL'"» and the order of nonlinearity p satisfies p2 s (n) < p < pa2.« (n),



where

pas (m) = &

2
p2* {

More precisely,

2 (102) 4 (2))

1,2)
23>

/-~

(_

1

Theorem 1.0.1. We assume that pas(n) < p < pa.(n), up € H' N L't»

and HUOHHIHLHl < €, then there exists an € > 0 such that (1.0.3) has a
P

unique global solution u € C ([0,00) -L2N Lp+1). Moreover, the following
estimate

_n(1_2
Ju @l < oy 2078,
is true for any 2 < q < p+ 1.

We remark that a global well-posedness and the L* time decay estimate
of solutions are unknown.

From the time decay of free solutions, in the case of the fourth-order
nonlinear Schrédinger equation, po s (n) and pa « (n) are replaced by pa (%)
and po « (%) respectively. We write ps o (%), D2, (%) by pas(n), pax(n),
respectively. Then,

1 4 4\ 2 4
p4,s(n):§ 1‘1‘;‘*’ 1‘1‘; +4 ﬁ s

[ oo (n=1,2,3,4)
pe={ S o)

Applying the method of Strauss, global in time of small solutions for (1.0.1)
will be obtained if ps s (n) < p < pa« (n). However there are no global result
for the case 1 + % < p < pas(n) as far as we know. Therefore, the purpose
of this thesis is to consider the case when

4
1+E<p§m§@%

In Chapter 2, we deal with the Cauchy problem (1.0.1) with the space
dimension n = 1, 2. A typical example of the nonlinearity f (u,u) is given
by |u[P"'w and |u[P. By Hayashi, Mendez-Navarro and Naumkin [12], a
global existence of small solutions and LY (3 < ¢ < 00) time decay estimates
of solutions to (1.0.1) in the case of f (u, @) = |u/’” " u and one dimensional
case n = 1 are obtained. We discuss the Cauchy problem (1.0.1) with more
general nonlinearities and dimensions.



In Chapter 3, we study the Cauchy problem (1.0.1) withn =6, f (u,w) =
Au? and A € C. We remark that py s (6) = 2. We show if the initial data ug
is sufficiently small, regular and decay rapidly at infinity, then (1.0.1) has a
unique global solution.

This thesis is a rearrangement of the author’s papers [1] and [2]. Chapter
2 is a joint work with Professors Nakao Hayahi and Pavel I. Naumkin.

Before closing this Chapter, we introduce notation and function spaces.
Let

1

Fo=¢p=—
p=9 (2m)2

/ e~ () dx
R”»

denote the Fourier transform of ¢ and

1
(27)

Flo= o [ e*o(e) i

3

denote the inverse Fourier transform of ¢. The free evolution group is given
by

Ut)y=rrteikl'r
The Lebesgue space is defined by

L? ={¢:R" — C; ¢ is measurable function and |||y, < oo},

where the norm

6l = { (e [P d2) . (1< p < o0)

ess.SUP,egrn |¢ (7)], (p = o0)

The weighted Sobolev space is

Hy = {6 € L7 [fllgpe = [1(2)" (i9)™ Bl < 00},

where m,s € R, 1 < p < o0, (z) = \/1+ |z> and (iV) = F~1(£) F. Also

define the homogeneous Sobolev space
Hy = {6 €8 10l = 11021 lls < o0},

where |9,|* = F~1 |¢|* F. We denote 83 = 921 --- 99, where o € (N U {0})".
We also use the notations H™* = H}»*, H™ = H™0, H™ = H}* shortly,
if it dose not cause any confusion. Let C(I,B) be the space of continu-
ous functions from an interval I to a Banach space B. Different positive
constants might be denoted by the same letter C.



Chapter 2

(lobal existence of small
solutions for the fourth-order
nonlinear Schrodinger
equation

2.1 Introduction

This Chapter is based on the joint work [2] with Nakao Hayashi and Pavel I.
Naumkin. We consider the Cauchy problem for the fourth-order nonlinear
Schrodinger equation

{ ’L'atu—%AQU:f(Uwﬂ)a (tul‘) €R+ XR”7 (21 1)

u(0,z) =wug (z), z € R,

where the space dimension n = 1, 2 and the nonlinearity f (u,u) satisfies
the estimate

9eob f (u,ﬂ)‘ < Cluf?, (2.1.2)

with p > 1+ % and 0 < a+b < p. A typical example of the nonlinearity
f (u, ) is given by |ulP~' u and |ulP. Local and global existence of solutions
for more general equations including (2.1.1) have been studied by many au-
thors (see, e.g., [8], [16], [17], [19], [23]). In the case of the gauge invariant
nonlinearity |u[P~" u with p > 1+ 4 the small data global existence (SDGE)
to (2.1.1) was shown in [10] in the one dimensional case n = 1. We are inter-
ested in (SDGE) to (2.1.1) with more general nonlinearities and dimensions.

As far as we know, the critical power of the nonlinearity for (SDGE) is



p=1+ %. Previously in [10] and [11], we have applied the operator

T =U (1) 2U (—t)

it A2 it A2 it A2 it A2
:<e_4A$164A,---,e 4A:Une4A>
= (x1 —itA0y,, -+ , Ty — itADy,)
=x — itAV

to show (SDGE) of (2.1.1) with the gauge invariant nonlinearity for n = 1.
A similar operator

ezlpem 28 = (1 +it0gy, -+ , &y + 1t0y,) = x + itV
was widely used for the study of the large time asymptotic behavior of so-

lutions to the nonlinear Schrodinger equations with a gauge invariant non-
linearity such that

{ 10 + %Au = |u]pf1 u, (t,r) € RT x R, (2.1.3)

u(0,z) = ug (), x e R",

where it works well. However it is known from [15] that the operator

e282¢7 22 does not work well for the nonlinearity of the form |ul’. The

operator J = e~ 18%2e %A% is useful for obtaining the time decay estimates
. QAQ . P .

of solutions €4~ wug to the linear problem. However, it is not clear if J acts
well on the nonlinear term. In this Chapter, our aim is to show that the
operator J works well not only on the gauge invariant nonlinearity |u|’ 1y
but also for |ul?.

To state our results in this Chapter precisely, we introduce notation. In
order to obtain the result for the two dimensional case, we use the dilation

operator

)

n
P=x-V+4t0, =) x;0,, +4t0
j=1
(Qj,k)ng:l,... no (xja$k - xka$j)j7k:17... n

which is related to the operator J by the identity

TV =3 T30, =3 (00, — it202)
= =

=z -V —itA%? =z -V + 4td, + 4it (z'at—iN)

= P+ 4itL,



where £ = i0; — %Az is the linear part of equation (2.1.1). We have the
commutation relations [7, L] = 0, and [£,P] = 4L and [£,Q;;] = 0. We

introduce the function space
Zoo = {v; U(—t)v € C([0,00);Z) and vllz, < oo},
where

[vllz., = sup U (=t)v (t)llz

€[0,00
1
Z =Hz"NH",

_1
168l = 18l g oo+ 1910305 + ) llgpo

for n =1 and

[vllz, = sup [U(=t)v(t)lz+ sup [[Pv (@),
t€[0,00) t€[0,00)

Z — H1+5 N I_Il,l7

19llz = 8llgri+s + 19llgrra

for n = 2, where d > 0 is small enough.
Our main result is the following.

Theorem 2.1.1. Assume thatp > 1+ %, and the initial data are such that
|luoll, < 0o. Then there exists an ey > 0 such that (2.1.1) has a unique global
solution u € Zoo satisfying |lullz < 2€ for any € such that ||lugz <& < e1.

In view of the proof of the above theorem we have

Corollary 2.1.2. Let u be the solution constructed in Theorem 2.1.1. Then
the time decay estimates are fulfilled

[ ()]l < ot~ i(-3), 3 < r < o0,

()]l < CEF, (105w (B)||pe < CE2, n=1,

_1_;(;_;> 1 1
Hu(t)HIzFSCt“Q‘I’“,6<r<oo,1>f—f>6,n:2.
” q T



Our proof is based on the estimate of the operator J = U (t) zU (—t) =
x — itAV in the L?- norm. The main ingredient of the proof is that, when
acting by J on the nonlinearity f (u,u), we obtain the worst term itAV,
which can be expressed again in terms of 7. Then the derivatives of the ﬁrslt
and the1 second order give us gain of the time decay of solutions of order ¢4
and t~ 2, respectively according to the properties of the linear evolutions
group U (t). Also the multiplication of the nonlinearity f (u,w) by = can
be decomposed as follows |z f (u,u)| = O <(|:c]0‘ \u|)é |u]p_é> , S0 we need
to estimate the loss of the time decay, when multiplying the solution u by
\x!é, where % <a<g.

We organize the rest of our Chapter as follows. Section 2.2 and Section
2.4 are devoted to the estimates for the solution of the linear problem in
L? and weighted L>° (Lemmas 2.2.1-2.4.3) and the estimates of J f (u, )
(Lemmas 2.2.3, 2.4.4) in the one dimensional and two dimensional cases,
respectively. We prove the main result in Section 2.3 and Section 2.5 in the
one dimensional and two dimensional cases, respectively.

2.2 Preliminary estimates for n =1

We first estimate the solutions of linear problem in the following lemma.

Lemma 2.2.1. Let u > 0 be small. Then the following estimates
(-2)
6 (1) 6l < € 07TV (10l gy + 1901 g034,)
if 3 < q < o0,

102U (t) Dllpe < CE2 [[D]] 30

and

ool

< CtimE (1)
L00

<xt<11>_é 02U (t) ¢

(161l g0+ (7% 8lgp0r)

are true for all t > 0.

Proof. We have
1 : it p14 o~
Ut d = iz§+ [¢] d
(16 == L 5 (€) de
= [A-nnowa.
where the kernel

1 e
A (.Qf',t) = E /Re’blf'i‘:§|4d£'



1—j

By the estimate of the kernel |A (z,t)| < ct— i <a:t_i> ® given in paper
[3], we obtain

1—j

i _ 1475 _1
ool <o [(@=nrt) T omlan @20
Therefore using the Young’s inequality

[E 5 Gllgs < ClFllp [Gliea s

1 _1
where ¢ = -+
we get

% —1 and the convolution (F x G) (z) = [ F (z —y) G (y) dy,

1

_1fq_1 _1(q_1
04 ) ¢l < 0t 30 gl < ot 02D g
if 3 < g <00, and

10U (1) Bl < Ct72 [l < CE72 4]

HO%JWL '

Then the first estimate of the lemma follows by the Sobolev embedding
theorem. We consider the third estimate to find that

L1
_3 p_1
< O (I6lgo v+ 1575 [0l )

B_7 1 _1
< CtAE)5 (100 g + 45 I6lazns )
O

In order to estimate the action of J on the nonlinearity we need the
following lemmas.

Lemma 2.2.2. Let p > %. Then there exists small p > 0 such that

s

llzsu@o| . <ct it tiol ..,

is true for all t > 0.

10



Proof. By (2.2.1) and the Hoélder’s inequality with % + % =1

tiu@e] < et [yt (@-)iF) oy

1
_1 _1\"3, 1
vert [{@-neh) i o o)ldy
1
< O o+ 0 E (a3 ) llafé o
LS
< Ct78 gllga + O lals ¢
ifs>3,ie. 1<r< % We choose r = %, where 1 > 0 is small enough.
Then we get
%U <C 1 C _1l_p 1
[l u@e| < crtioln, + s |als o] e -
Since [|¢[lp1 < Cll¢]l o,3+, and
1215 8] _,a. < [[@5 1215 |, @757, o < Clidlgs
LT = L2 LT = H»2 T+’

we obtain

=N

[l u@o| <o (e 44755 ) 16l g0y
0

Next we estimate the action of the operator J = U () xlU (—t) = z —itd>
on the nonlinearity f (u,@). Define the norms

lully = llull g1+ + 124 (=) wll o1, »

lullyy = 11U (—¢) ul ()75 U (—0) g0 -

HQ%‘FH«
Lemma 2.2.3. Let p > %. Then there exists a small p > 0 such that
_ _5 L_ Ll 9y -1
1T F ) < O @) T7307 ul i ullw
is valid for all t > 0.
Proof. By a direct computation, we have

|7 (w,@)| < Ct|ul"™* |0pul* + Ct [u"™ |95ul |83 ul
+ Cla||uff + C |[uP~t | Tul. (2.2.2)

11



By the second and third estimates of Lemma 2.2.1 with ¢ = U (—t) u, we
get

_1
[0zu|pee < C172 [ully,

and

_1
<xt_411 > * 9%u

< CHiT5 (1) (Hu( B ull oo + ()75 U (—1) uHHOJ)

< L5 (1) ||ullyy -

LOO

Hence the first term of the right-hand side of (2.2.2) is estimated as

3
P @u)®| , < 8l lulad -

and for the second term by Lemma 2.2.2 we obtain

L
1 7% 2
<xt_4> ozu
Loe
B_3
< TR @5 lully el el a2

B_3_ 1 L 3
+ O 0 ully ol (ot ) lul2zd

t H P2 (9yu) 92u

< Ot |0 ul| oo

1
<:1:t 4>3 JulP~?

L2

0ol

B_3
<Ctims {t >8 lelly vy 12l 26—

B_5
+ CHETR ST gy [l ul7z0 s

By the first estimate of Lemma 2.2.1 we get

1(,_5 )
lulP52 ) < C ()10 3) |lu)l%;

and

< C iy iR ugg?

”uHLz(p 3) >

if 2 (p — 3) > 3. Therefore
¢ H [P (8$u)3HL2 +t H\uw—? (D) 82

|
L2

By Lemma 2.2.2, we also have for the third summand of the right-hand side
of (2.2.2)

_5 p_ 1 4 1
<Ot () T3P a2 ullvy -

1
o bl < il ) ez

_lop ok
<t (1 U (=) ull g lullats)

1

< 13 () ul

12



The last term of the right-hand side of (2.2.2) is estimated by Lemma 2.2.1
as

—1 -1 —L(p-3 -1
= 7|, < Nl 1Tullge < € 75072l fully

Therefore we get the desired estimate. O

2.3 Proof of Theorem 2.1.1 for n =1
We consider the linearized equation

10 — %A2u — F(0,7),u(0) = uo, (2.3.1)
where

V€ Zoop = {v € Z; vz, < P},

[vllz,, = sup [[U(=t)v(D)lz,

te[0,00)

_1
16llz = ol 145 + 10 o145 + ()3 [[Dllggon -

We have the integral equation associated with (2.3.1)

w(t) = Sv(t) = U () uo —i/o U= s) f (0,7) ds. (2.3.2)

By Lemma 4 in [14], we obtain

t
p—1
o lu (D g3+ < lwoll 5145 +C/O 1o ($)llLee 1 ()l g3+5 ds

< luoll 345 + Cp". (2.3.3)

By Lemma 2.2.3 and (2.3.2) we get

t
70Ol < llowole + 7 [ 578 (55500 ds
0
< auolly + CpPts (2.3.4)
and also

2tz u (=t u 1)

L2

L[t u s o) e s

546
< [t ’

13



By Holder’s inequality, Lemma 2.2.3 and the first estimate of Lemma 2.2.1
we have

[l (=s) £ .3, < ot (=) 7 0,0 E 1f (0"

< CpPs 1o 80 (s) T3 (PR HEIHIS S (936
Therefore applying (2.3.6) to (2.3.5) we get

12tz u (=) u 1)

L2

< H|x’%+5 ’U,()HL2 + Cpp + Cpp/l Sfi(p*1)+i(u+5+u5)d8

= L

Lo (2.3.7)

if p > 54+ p+d+pd. Thus (2.3.3), (2.3.4) and (2.3.7) show that the mapping
S defined by u = Sv transforms Z., , into itself if the data are sufficiently
small in Z,,. We also find

sup [|[Svi () = Sva (t)]lg2 < CpP~' sup o (1) —v2 (B)[lg2 - (2.3.8)
t€[0,00) te€[0,00)

Therefore the contraction mapping shows that there exists a unique global
solution u such that

U(—t)u e L® (o, 0o H2 0 HO’%”) ()5 U (—t)u € L (0, 00; HY)
and
u € C([0,00);L?).
The continuity in time of solutions U (—t)u in H2 1 H follows from
(2.3.3) and (2.3.4).
2.4 Preliminary estimates for n = 2

We obtain

1 : it ¢4 ~
axa — _ zz-§+z|§\ « d
0.1 U (1) 6 (msze €176 (€) de

:/nAa@—y,t)qb(y)dy,

where 0 < o« < 3 and the kernel

Ay (z.t) = (2;)3 /n pizé+ el €| de.

14



The estimate of the kernel A, (z,t) with an integer a was obtained in paper
[3]. We are interested here in fractional a.. By the scalling at1 = v, 525% =7

1
and then changing the variable of integration n = z |y|3, we get

1 . i
Ao (2,t) = —— / el g dg
(2m)2 Jrn
a1 . i

S

o o [ ) e,
27'(' n

Aa (y)7

24« n+to

=t 1 \y’ 3

where

e 1 i 3 ozt d|z)d «a
Aa () / €|y|3(|5‘ +4||)|Z| dz.

It is easy to see that ‘;{Va (y)‘ < oo for |y| <1 since 0 < a < 3. To estimate
Aq (y) for large y we apply the stationary phase method (see [7], p. 110)

. 4 o\ 2 1 rean
F (.Z‘) ez)\S(x)dx — ez)\S(zo) (;) ‘det S ('7:0)‘ é ezzsgnS (xO)F (:170)

R™
+0 (A*%*1> ,
4
where A\ = |y|3, S(z) = % ST+ i|x\4 and the stationary point zo =

(xo,1,+ -+ , o) is defined by the equation
VS (xg) = (018 (20) -+, 0nS (20))
= (yl +|zo* 201, - In 4 |xo|2xo,n>
|yl |
=(0,---,0).

We have zg = —‘—Z| and for n = 2

’.%0’2 + 2$(2)71 2.%0,11‘0,2

det 8" (z9) = = 3|xo|* = 3,

2x0,170,2 |zo|® + 29«"3,2

sgnS” (zg) is the difference between the number of positive and negative
eigenvalues of S” (z¢) and sgnS” (zo) = 2, f (zo) = |xo|* = 1. Then

1

Aa (y) 7

L4
ilyl =5 e H 4 0 |y 75)

15



for |y| — oco. Thus we obtain the estimate

2—«a

|Ag (2,8)] < Ct75° <xt—i>

In the two dimensional case we would like to avoid the use of the norm
l|¢]|1,1 since we restrict to the weighted Sobolev space ||¢||g1.1-

Lemma 2.4.1. Let p > 0 be small. Then the following estimates are true
for allt >0

14 8) 6lgs < €805 (glgpien + [@leror)
(0 ol < 4 (88 g,

if%<q§oo, and

2—1_Tn

_1 1_7p
04 (1) Bl < 0175 gl

z’f%<q§oo.

Proof. As in the proof of Lemma 2.2.1, applying the Young’s inequality with
%—i—l:%—ké, we get

forvucod],, <cr

[ (@08 T bwia
()7 1o

_2j 1
<Ot |9l

La

<ot ‘

since

2—5 |7

w‘
N[

=t

()

if0§1+%—%=%<%,j:0,1. Hencetaking%zl—%,wehave

/ (:L‘Y%T dx < Ctz
L" R?

1_p
o 0 6l < €075 g

if 2—?—# < q <00, j=0,1 For the case of 0 < t < 1, we apply the
Sobolev embedding theorem || (t) ¢||1q < C U (t) ¢l ggin = C ||@]| g1+ for

16



1 < ¢ < o0, to obtain the first estimate of the lemma. For the second
estimate in the case of 0 < ¢t < 1, we estimate

[ (@=0 ) wowia

i, 1 _3
Vol < Ct7272 [Vl < Ct75 ||¢llggua s

L4

IVU (1) §lg0 < Ct 2

1 _2
L

if 0 < 1—1—5—% = % < %, taking r = 4, % = %—I—% we get the second estimate
of the lemma. To prove the third estimate of the lemma, we use the Young’s

inequality with é +1= % + %, o = 2 — p, to obtain

llocPuwe| = |02 @lon o]

/RQ <(m —Y) t_%>7 10y & ()| dy

Iy
ety

= 6 |
< Ctar for r > W and choosing ¢ =1 — {5, we

< Ct 3

L¢

<cti !

<cti !
1N\
(at7)

S T ) _lfo 1 T
[o-Pu e, <cr i o ol < o HCE) o),

11021 Sls -
L

J3
3

L’r‘

Then using ‘

get,

if 1—3 <q< 0. O
In order to estimate the action of J on the nonlinearity we need the
following lemmas.

Lemma 2.4.2. Let u > 0 be small. Then the estimate
[EEaaor:

L SO 6

is true for all t > 0.
Proof. Using the Young’s inequality with 1 = % + % = % + %, we get

a _1
2| U (t) ¢llpc < Ct 2

IN\NT a
vert| [ {@-ped) Tl oy
R2 =S
a2
<ot (et ) | 16l
SN
2
_1 _1\ "% a
+Or | (ar8) )l ol
LS

1,a, 1 1,1
< Ct 2t ||glly, + Ct 2 |2 @l

17



i (%_a),,,,/ > 2, %51 >2 e 1<r< AH%’ 1<s< % Therefore we have

_1la _ 1
2] U (t) Pl < Ct7 2T [l + Ct 2 ||| @Iy,

for0§a<%,1§r<4+%,1§s<%. Takinga:%—u,%zl—%,
1 =24 & wefind
“ 2_
[lals U@ <crsfiel s +oti T lwfre| .
Since
—1
91 s < ) élge | (@) s, < O g
and
N =
125 7#¢|| o <@ (@) 757 e < Cllon
we obtain the estimate of the lemma
2_y _1l_p
125 @ o, . < ct 5 16l
O

Define the norm

[10llz = ol gzi+n + Dl grrs -

Lemma 2.4.3. Let p > 3. Then there exists a small p > 0 such that the
estimate

- R
24 (8) ¢l < Ct73 ()57 [l
holds for all t > 0.
Proof. We use Lemma 2.4.2 to find

e[ (2) 9Pl = ‘ RO e e
< C |latd @ ol |77 0y ol E
L(péim)

< Ct_(1+ )2 3 2 3u t p*273uf )
< z H¢HH01 U ( )QSHLQ(T,,ﬁ)

For a small > 0, we find that 2 ( 5= SM) > 2 , hence the first estimate
of Lemma 2.4.1 says

HU(t) ¢||P;T3 ) < C<t>_%(1’—ﬁ_%_%<l’ 2 3u>) HQZ)HP 2-3u S;A‘
LA\P- =
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Therefore we obtain

_3 _1_
<Cti(t) 1 elly
since p > 3 and p > 0 is small enough. O

Next we estimate the action of the operator J = U (t) ald (—t) = x —
itAV on the nonlinearity f (u,u).

Lemma 2.4.4. Let p > 3. Then there exists a small p > 0 such that the
estimate

1T f (@) |2 < CE3 (1)1 (—t) ulll
is true for all t > 0.

Proof. As in (2.2.2) we start with

ITf (@)l <Ct Y Ig+Ct Y Iug

|81=1 lal=2,|8|=1
~1
+C |z ful’||g +C ‘|u|p ju) L (2.4.1)
where
3
Iy =t [ul ™ 0ful ||
L2
-2
Ing=t H\u]p (8511,) otu ’LQ

By the Holder’s inequality with Z =17, = % we find

Iﬁ — H Her(p 3) *

Then taking ri = %— i, + = p, and using the first and the second estimates
1 T2
of Lemma 2.4.1 with ¢ =U (—t) u we get

< Ot 2B g (<) ully

lull?23, 4 <
and
|0u]| ., < ctt o 3G ju (ol
Hence
Iy < O3 (6 27DV U (<t ully
< Ct {7 E T U (—t) ull} (2.4.2)
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if p > 3 and g > 0 is small. Similarly, by the Holder’s inequality with

3 1 _ 1
Zj=1 E =3 we ﬁnd

p—2
La3(P—2) *

lop < Ct]|0Gul| L

B
o[ llul

Then taking qll = U, q% = %

¢ =U (—t) u we obtain

ul?52, o, < C () 22758 0=2) oy ()2,

La3(p—2) —
5
oz, < ct % @ B oyl
2
and
1080y < CE 255 U (—t) ully, -
Hence

1

Lp < O35 (1) 2 =200 ED g (—t)
<O (1) ully,.
By Lemma 2.4.4 we have

_3 _1_
el ul"llge < Ct™3 () 737 U (=) ully

— qig = %, and applying Lemma 2.4.1 with

(2.4.3)

(2.4.4)

Also the last term of the right-hand side of (2.4.1) is estimated by Lemma

2.4.1 as
w7, <l 17l e
<o 7 08 (—t) ullh
<O ()T U (—t) .

Therefore we get the desired estimate from (2.4.2) - (2.4.5).

2.5 Proof of Theorem 2.1.1 for n =2

We consider the linearized equation (2.3.1), where
v E Zoo,p = {7) S Zoo; HUHZOO < p}7
with the norm

[vllz,, = sup [U(=t)v(t)lz+ sup [[Pv (02,
t€[0,00) te[0,00)

20
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10llz = ollgres + 1@llga -

We consider the integral equation (2.3.2) associated with (2.3.1). We apply

Lemma 2.4.4 in (2.3.2) to get
[Tu @)Lz < llzuollz + CpP.

By Lemma 4 in [14], we obtain

o Ol < luolioes +€ [ 7 (26).767) .,

t
—1
< uolkasss +C [ o )R o (5) g ds.

We also get by the first estimate of Lemma 2.4.1
o ()l < C () 7208 .
Therefore, we find
[ () llgr+s < luollgres + Cp".
By the identity
J - Vu=Pu+ 4itLu = Pu+ 4itf (v,v),

we have

1T - Vullge < |[Pullpe + Ctl|f (0,)ll2 < [Pullg + Cp”.

Applying P to both sides of (2.3.2), we obtain
LPu=(4+P)f(v,7)

and by the energy estimate

(2.5.1)

(2.5.2)

(2.5.3)

(2.5.4)

t
[Pu(®)llL2 <[l Vuollg +C/O lo ()lIg= (IPv ($)llgz + v (8)llg2) ds

< ||z - Vug|lp2 + CpP.
We apply (2.5.5) to (2.5.4) to obtain
1T - Vu®)lgs < o - Fuollgz + CoP.
Applying €2, = 0k — 240, to both sides of (2.3.2), we get

ﬁQj7ku = Qj7kf (U,@)

21
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and by the energy method

190w ()2 < [192;ku0llg2 +C/ [V][E 1192 k0]l 2 ds
< 1) kuollg2 + Cp”. (2.5.7)

As in [9], we obtain by integration by parts

2 2
Y 1Tonullss = Y (T30 tt, T, )
J.k=1 j.k=1

2
(0,1, 0y, u) + Z (xj&rku, —itAé?xjﬁxku)

M)

Ji.k=1 j.k=1
2 2
+ Y (<itADy; Onyu, w0p 1) + Y (itADy O u, itAD,; O, 1)
j.k=1 g.k=1
1 2
=3 Z Qjpu, Qjpu) + (- V)u, (z- V)u) + (—itAV - Vu, (z - V) u)

,_.

Jik

—~
/—\

V) u, —itAV - Vu) + (itAV - Vu,it AV - Vu)

2
1
D) Z otz + 1T VUH?P
jk=1

where we have denoted the inner product by (-,-). By (2.5.1), (2.5.3) and
(2.5.6) we get

lullz <e+CpP. (2.5.8)

Hence the mapping S defined by u = Sv transforms Z, , into itself. In the
same way as in the proof of (2.3.8), we obtain (2.3.8) for n = 2. Therefore
the contraction mapping shows that there exists a unique global solution
such that

U(—t)u e L™ (0, oo; HIF N H1’1> ,
and

uGC([O,oo);LQ).

The continuity in time of solutions U (—t)u in H*® N HY! follows from
(2.5.2), (2.5.4) and (2.5.5).
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Chapter 3

Global existence of small
solutions for a quadratic
nonlinear fourth-order
Schrodinger equation in six
space dimensions

3.1 Introduction

This Chapter is based on the author’s work [1]. We consider the Cauchy
problem for a quadratic nonlinear fourth-order Schrodinger equation in six
space dimensions

o LA2_ y2 6
{z@tu A% = Xa?, (t,x) € (0,00) x RS, (3.1.1)

u(0,z) =g (), z € RS,

where, u is the complex conjugate of u and A € C. The aim of this Chapter
is to prove a global existence of small solutions and L9 (3 < ¢ < co) time
decay estimates of solutions to (3.1.1). We recall known results of global
existence of small solutions for

{ iOu— 1A%u = f(uw,u), (t,z)€ (0,00) x R" (3.1.2)
u(0,z) = ug (z), x e R, o

where the nonlinearity f (u, %) satisfies the growth condition [029% f (u,w)| <
ClulP™"" with 0 < a +b < p. Since the pointwise time decay estimates
of solutions to the free fourth-order Schrédinger equation is O (t_%) and
the linear problem has the L? conservation law, L? norm of the nonlinearity
f (u,w) decays like O (t_%(p_l)). We find [} =i Ddt < coif p> 1+ %,
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therefore we expect a global existence of small solutions to (3.1.2) holds if
p>1+ %. In the previous paper [2], we have applied the operator

_itA2 QA2 _itA2 it A2 _itA2 it A2
T =e 12 gett = (e 8 et ,oe L€ A iL'n€4A>
= (z1 — itAOy, - ,xy — itAD,) = x — itAV

(3.1.2) to show a global existence of small solutions to (3.1.2) with the space
dimensions n = 1 or 2 when the order of nonlinearity p > 1 + %. We have
shown that the operator J works well for the power nonlinearities f (u,u)
in lower space dimensions as we have seen in Chapter 2. We are interested
in a global existence of small solutions to (3.1.2) when n >3 and p > 1+ %.

1 .
In [21], the LPHLL % time decay estimate of evolution operator 3 was

applied to the nonlinear Schréodinger equations

{ O+ 5Au = f(u,1), (tx) € (0,00) x R, (3.1.3)

u(0,2) = ug (x), r e R,

to obtain a global existence of small solutions, when the initial data are small

1
in HY°NL'"% and the order of nonlinearity p satisfies p2,s (n) < p < pay(n),
where

More precisely,

1
Theorem 3.1.1. We assume that ps s (n) < p < pa.« (n), up € HON L'

and ||ugl| 1 < g, then there exists an € > 0 such that (3.1.3) has a
HLONL' P

unique global solution u € C ([0,00) :L2N LPH). Moreover, the following
estimate

@l < 00 5075,

is true for any 2 < q < p+ 1.

We remark that a global existence of small solutions to (3.1.3) with n = 4,
5and f (u,u) = u?+72+ |u|? was solved in the sense of Theorem 3.1.1 since
p2,s (n) <2 < pay(n) for n =4, 5. However global well-posedness and the
L time decay estimate of solutions are unknown. From the time decay of
free solutions, in the case of the fourth-order nonlinear Schrodinger equation,
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p2,s (n) and po . (n) are replaced by pa s (%) and po « (%) respectively. We
write pa g (%), D2, (%) by pa,s (n), pax (n), respectively. Then,

1 4 4\? 4
p4,s(n)=5 1+n+\/(1+n> +4<n> ,
oo (n=1,2,3,4)

me={ 3 025

Applying the method of Strauss, global in time of small solutions for (3.1.2)
will be obtained if pss(n) < p < pas(n). However there are no global
result for the case 1 + % < p < pas(n) as far as we know. Note that
Pa,s (6) = p2s(3) = 2. In [12], [13] and [18], global results in time and L>
time decay estimate of solutions to (3.1.3)) were shown when n = 3 and
f(u,@) = u? + w%. In these papers the factorization technique of the free
evolution group was used. If we apply the same method as in [12], [13] and
[18] to (3.1.3) with n > 4 and f (u,u) = u® 4 u2, we use the operator J to
the equation [%] + 1 times, where

~ _it it _it it _it it
J=e€ 2Aac62A:<e 2A:vle2A,-~,e 2Axne2A)

= (1 + 1t0y,, -+ ,xp +it0y,) = v + itV.

It seems that the iterative use of J makes the problem difficult, therefore
as far as we know, global results for higher space dimensions are still open
problem. We have the same difficulty in our problem of this Chapter.

We define the following operators

P =x-V,+4L0,

P = —€- Ve + 40,

(k) p=1, 6 = (j0n, — xkaxj)j,k:l,---,ti'
The operator P is related to the operator J through the identity

6 6
TV =3 T, = 3 (w00, — it ) = vV — itA?
j=1 g=1
1
=x -V +4t0, + 4it (i@t — 4A2) =P+ 4itl

where £ = i9; — $A? is the linear part of equation (3.1.1). We have the

commutation relations [J, L] = 0, [£,P] = 4L and [£,Q;x] = 0. To state
our results in this Chapter precisely, we introduce the notation.

3 3
X = (YH” |lvllx =Y o]l gz-s
j=0 =0

Our main result is the following.
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Theorem 3.1.2. Let ug € X, then there exists an € > 0 such that (3.1.1)
has a unique global solution u satisfying U (—t)u € C([0,00) : X) for any
ug satisfying ||uo||x < . Moreover, the time decay estimates

lullgg, < co3078) -5+
q

are fulfilled, wher60§a<3,%<T<q§ooand7>%<%—%),

We note here that we have L time decay of solutions such that
lully < CE277,
where v > 2—?;, r > 3. Therefore order of time decay is worse compared to
the one of solutions to the linear problem O (f%). This fact comes from

the reason why the use of the operator Z‘ al=4 J¢ yields the strong time

growth O (t4) in the nonlinearity which is difficult to treat, see our strategy
below.
From the proof of the above theorem, we have the scattering result.

Corollary 3.1.3. Let u be the solution constructed in Theorem 3.1.2. Then
for any ug € X satisfying ||uo||x < € there exists a unique scattering state
up € Xy = ﬂ?:g H!27%J 5 X, such that lutllx, <2¢ and

Jim U (~t)u— i, =0.

We state our strategy of the proof. The operator J = (*7j)j:1,2,3,4,5,67
Jj = x; — itAdx; is useful to get time decay estimates of solutions to
fourth-order nonlinear Schrédinger equations. However, when we apply the
operator J to the nonlinearity @2 iteratively, we encounter a difficulty of
the explicit time growth. Indeed we have from equation (3.1.1)

EZJUCU:AZja72280+81+82+83+7—\{[5, (3.1.4)
|a|=3 |ar|=3
where
By = > CapTudlu,
loo|+|8]=3,0<]B]<1
By =t > Cl 08 T udl T Pu
la|+181=2,0<|B1<1,|v]+8]=3,0<]8]<3
By = t? Z CIP) T uddu + t2 Z C°Juddu,
|at|=1,]v|+6]=6,0<]5]<6 [7|+16]=5,0<]4]<2

Bs=t* > C"0udlu,

[v1+18]=9,0<]5]<4

Rp=t Y C0Juti+t > C0 07 Tuddu.

[v|=1 la|=1, ]| +[8]=2,0<[6] <2
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It seems to be difficult to get the desired estimates for By and Bs which are
needed to show the theorem. In this Chapter, we overcome the difficulty to
use the normal form method. Our approach to this problem is based on [20],
where quadratic nonlinear terms were transformed to cubic nonlinearities
with faster time decay properties in nonlinear Klein-Gordon equations with
quadratic nonlinearities. The normal form method was applied to nonlinear
Schrodinger equations successfully by [4] in two space dimensions, where a
global existence of small solutions to the Cauchy problem (3.1.3) with n = 2
and f = f(u,u) = Zik:l Ajk (0z;1) (02,W), Ajr € C was shown. In [4],
(3.1.3) was shown that the identity

[ =L2G1 (u,w) + 261 (Lou, ) (3.1.5)

holds for any smooth function u, where Lo = i0; + %A and the symmetric
bilinear operator G; is defined by the convolution

160 = [ [ 20— u)v (- ) dyds

and the kernel g; (y, z)is given by the inverse Fourier transform of

& Eﬂ?k
Z

P e+ m?

g1 (&,
with respect to y and z, namely

L iy-Etiz
o (y, 2 k/ / VEHE ge
m)* Z e Jre €+ € n+ [n)?

We remark that Gi (¢,1) can be rewritten as

160 =C [ [ G € d(€)d tn) =€ dgan,
If w is the solution of (3.1.3), then
Lou = f = L2G1 (W, 1) + 2G1 (f, )
which yields the nonlinear Schrédinger equation
Ly (u— G (w,u)) =26, (f,7),

If one tries to apply this method to the nonlinear terms

2 2
[= Z tjk (Oz,u) (B u) or f= Z Vjk (02,1) (Og,u) ,  pjk,vji € C

J,k=1 J,k=1
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then the functions g%and g% will have a form

5]7716
FleP+en

A R SUL
g2 (&m) = > Hikg o or g3 (&)

respectively. Note the first function gﬁ dose not have singularity at the origin
and so Gy ( I, H) can be considered as a cubic nonlinearity through the result
of Coifman-Mayer [5]. Their result was improved by [22] as

Proposition 3.1.4. Let
:/n/ e Em (¢,m) ¢ (€) ¥ (n) dédn,
where 1< p.q.r < o0 and 3 = zlo T %' If m € C"1 (R*\ {0}) satisfies
\a;“afm (5,77)‘ < C([¢] + )~ le-18!

for all o] + 8] <n+1 and (§,n) # (0,0), then

1A (2, D)[er < Cliolles 19l

18 true.

If we put g1 (£,7) = m (€,n) in Proposition 3.1.4, then ¢ (€,n) satisfies
the Coifman-Mayer condition of the proposition. Hence we have the estimate

o (7Em.m),,

< c Z ”aguHLPl Z H&?UHLW HUHLP3 ’

lal=1 lal=1
where
1 1
- = Z —, 1<p;, r<oo.
1<5<3 P

However, other two functions g% and g:3 have singularities at the origin,
hence, G (f,u) or Gs ( f, u) does not satisfies the Coifman-Mayer condition

except ga (£,1) = oz (p11 + pi22), pi11 = pioo = 1. In this case Go (u,u) = u?
and f =), (0z;u) (Oz,u). Therefore we have

f = Lou® — 2ulou
which implies if u is the solution of (3.1.3), then we have

Lo (u — u2) = —2ulou = —2uf.
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We now turn to our problem. We consider the problem

Lu = fj, (t,x) € (0,00) x RS,
{ (0 x)J: wo(x). RO, (3.1.6)
where
A=) (05 (&‘fﬂ) o= > (05w <8£u) fi= > (0%w) <8fa
o] +]B]=4 o] +]B]=4 | +|B]=4

to explain our situation. In the same way as in the proof of (3.1.5), we have

fi=-LG, (ﬂ, ﬂ) —2G;1 (E, ﬁ) R (3.1.7)
fo=—LGs (u,u) — 2Gy (Lu,u)
and
f3 = —LG3 (u,u) — 2G3 (Lu, )
where
2 4 &’
57 = b
&M = oy al},;4 €+ Il + I + ol
; 4 g
g (57 77) = - 3
: (2m)° |a|§|_4 &+ Il =l +nl*
and

2 4 P
&) = .
& = Gy la%4 & =Tl + e+l

Nonlinear terms Bz and Bs which are in the right hand sides of (3.1.4)
will be represented as the similar form as the right hand side of (3.1.7).

In the case of the fourth order Schédinger equation, ¢» and g3 have
singularities at the origin. This is the reason why the nonlinearity of (3.1.1)
does not include the nonlinearity u? or |ul?.

We organize the Chapter as follows. In Sections 3.2, we prove preliminary
estimates. In Section 3.3, We state the normal form method in the case of
the fourth-order nonlinear Schrédinger equation. We prove the main result
in Section 3.4.

3.2 Preliminary estimate

We summarize some estimates of the solutions of linear problem.
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Lemma 3.2.1. We define

At,z)=F 'E= 171/ e~ witlél iz € ge
(27r)5 n

If 0 < a < 3, then the following estimate

0.1 A (t,2)| < Ct= 5" (o8 °

is true for any t > 0, and xr € R".

Lemma 3.2.2. Letn =16,2 < q < 00 and % + % =1. Then

U ) Bl < €200 gL

for any t > 0.

Proof. By Lemma 3.2.1, we obtain
4 () Bllee < CllA% Sl < Ct [l

where (F  G) (z) = [ge F (x —y) G (y) dy. Also U (t) is unitary operator in
L2. Therefore, we have the desire estimate by the Riesz-Thorin interpolation
theorem. O

Since by the Sobolev embedding ||¢||pa < C ||¢]lg1 s [|0llpe < C @]z

where 2 < ¢1 < 3,2 < g2 < 6 and by the Hélder inequality [|¢]| ¢ < [[¢]|go.1,

||¢HLq§ < [[¢llggo.2 , where q% + é = q% + é =1, we get from Lemma 3.2.2

Corollary 3.2.3. Letn =6,2 < g1 <3 and 2 < g2 < 6. Then the following
estimates

3
2

=2 (llgs + llzgon).
(0=%) (gllge + I9lgg02)

U (&) Pllpa < C (1)
1L (t) Pllpe < C (1)

are true for any t > 0.

3
2

Next two lemmas say that time decay of solutions to linear problem is
similar to that of fourth order parabolic equation if we restrict L? time decay
of solutions with ¢ > 3.

Lemma 3.2.4. Letn =6, 0 < a < 3, 617—8@<q§oo,617—8a<r1§qand
% = % — % + 1. Then the following estimate
1

_3(1—L)_a
04 (1) Blgy < 0t 207 g,

is valid for any t > 0.
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Proof. We obtain
1
(2m)°

where the kernel

|8I|QU(t)¢: /}RG 6—%it|£|4+ix~£ |£‘a(lg(é—) dé-:/l;ﬁ Aa (t,x_y)¢(y) dy,

Ay (t,x) = |05|" A(t,z) =

Lit|e|* +iz- a
ot Jo ¢ et

By Lemma 3.2.1, we get

0 U <C [ 1Autta =)l lo Wl dy

[ @0 pwia

Therefore applying the Young’s inequality

(e

<Ot 2

1E# Gllpe < 1 Fllgn 1G]g

1_1 4, 1
where 1=t 1, we have
3 1\ — 852
_2_a 2 3
101U (¢) dllg, < Ct~375 || (at™7) Il
L1
_3(1—L)_a
< o H073) % o,
if% < q < o0, % <r; <gq, % = %—%—i—l, which implies the lemma. [

Remark 3.2.1. In Lemma 3.2.4, we put ri = q, ro = 1, then

_3(1-1)_a
04 8) Blgy < 0t 3075) " g

where 61—78(1 < q < 00,0 <a < 3. Time decay estimate of solutions for the

fourth-order Schrodinger equations is the same as that for the fourth-order
heat equations if we assume the restriction on q from the below. This is the

different point from the usual second order Schrodinger equations.
As a corollary of Lemma 3.2.4, we get

Corollary 3.2.5. Let 0<a < 3,b>3+a, 61—7811 < q < oo, % <r <q
61

and % <ry <6, 7% < q2 < 00. Then the following estimates

4 ®) bllgy <€)7 (gl + olapon)

L]

140 6llzy, < € H07%)7 (gl + olapo)

are true for any t > 0.
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Proof. By lemma 3.2.4, we find

-3(-4)-

M@
»Mz

16l < ct3077%)-

1 (#) by = Ct 6] g0. »

4 ®) 6llgy, < O ) g, < 00 O g
where % qij — % +1 (j=1,2). Applying the Sobolev inequality, we get
W4 (1) Sllgz, < ClIA (1) Sl < Cll el »
where 5 = 1,2 and b > a + 3. Therefore, Corollary 3.2.5 is proved. O

In order to estimate the action of J = U (t) 2l (—t) on the nonlinearity
we need the following lemma. We use the lemma by putting ¢ = U (—t) u.

Lemma 3.2.6. Let 0 < a < 3, b > 3+a, % < q < oo, % <r <gq,
18 1_ 1 1 _ 1,1
—a<7’3<6and5—;+5—1—a+a—1. Then
] 1021 U (t) ¢l La
5+a+ _m_'_i
<C (7T A7) (I6lgsa + I6les + [6l502)

for any t > 0.

Proof. By Lemma 3.2.1, we find

6—a

el ioel"u ()01 < €% [ o —yi{@=n)tt) " owldy

Lo /RS <(:z: —y) ti>_63a lyllo (y)| dy

<o [ {w-nit) T lowla
ror® [ {e-nrt) T ool

=

Applying the Young inequality, we get
] 102" U () 6l q
3—a
_1\ "3 _6+a
(at77) llrs + Ot
L™

ta, 3
+oor L Ste +2T3)H¢HH0,3-

6—a

<:L‘t_l>7 ’

IS

<ot

2] @llprs
3

a+a

gc(t
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Let t < 1. By x; = J; — itAd,;, we obtain

6
1021 U (1) Bllpa < C Y [l 1001 U (t) Sl 4

j=1
6

< CY (175 10U (8) Bllpq + t || A0, 100U () 6| ,) -
j=1

Applying the Sobolev inequality and the identity J; = U (t) x;U (—t), we
have

17 100" U (t) Gllg,0 + ¢ || ADa, 101" U () ]|

< C (|77 10:1"U (1) Bllggo-—a + T || A0z, 102" U (1) | ggo-a)
< C (|l 1021 ¢llgg-a + I6llgzes)

< C(l[@llgoa + [[9llgro+2)

with j =1,---,6. Thus, we get

2| [0x]" U (t) dllLe < C (|llggor + 1]l ggo+s) -
Therefore we obtain the desire estimate. O
The next lemma is used for obtaining estimates of 3, _5 |7 “ul|g and
ool
Lemma 3.2.7. Let ¢ > 6. Then we have the following estimates

3(¢—2) 3(q

_3(g=1)
H<>4m(_t) EQHLOO S CmaX (t 2q 7t 2q +70’tg+2'70> ”U’H2Y7

3(3¢—4) 3(3q

_ 2)
< C'max (t st 0 4 4+270> l[ull3

IVFU (=) 7|

for any t > 1, where

olly = llollgz + (&) > 1Tl + [ FU (=t) vl
|af=3

and 0 < p.
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Proof. Applying the operator FU (—t) to @2, we find

FU(—t)u® = 2n)> s [ (e —n)a(n)dy

RS
= (n)? ettt | GG gamn

= (2m)3 et " i (n — g) i <— <n - g))dn

. 4 4
= ny? [ (i)
R6

% eiit|’7*%‘4ﬁ (17 _ g) eiit|7(n+%)|4ﬁ, <— (17 + g))dn

. 4 4
_ (2n)® / cdit(le +n=5 "+~ (n+5)[")
R6

>
/7~
3
\
(PN
~——
>
/]\
~/
3
+
N[y
~
S~
U
3

= n)? [ AT ),

4

g0+

9
=2n* +2(n- &>+ In*1€]* + 3 eIt

S(n,&) = |€\4+'17

Uz n-Sn = (1),
By the identity
et = [y, . (neiz‘w(n,g))
with

1

-1 -
= (o4 gt 50.9) = (o4t (20 + (-0 + 5 16P1))
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and integration by parts, we obtain
/ eiitS(mE)@(z)@(w)dn :/ HYV, - (neiitS(n7§)> @ (2) ¢ (w)dn
RS R6

__ / 11500 (1., H) ¢ (2)  (w)dn
.

n P
+/R6ei“5(77’5)H2 ((n-vn)Q (W))dn. (3.2.1)
By applying the estimates
[0V H| < OW (n,)
(-9, )|+ 1H (n- V) Bl + |H?] < C (W (n,€))?
with
W)= (14 tinf? (1o + 1€))
and the estimate
-9, (28 ()|
<C|m- Vo) (@@ @)|+ |1+ (- V) vy (2E () )]

<Cll Y @)+ Chl’ Y 1079 ()] 0% (w)

i

lal+|8l=1 la|+|B]=2
we find
) 2
‘/ edtSO 5 () ¢ (w)dn’ < C’Zh Js
RS e
where

hy= [ POV @07 S 106 () |o%6 () d

laf+|8l=7
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with j =0, 1, 2. We make a change of variable n = tfiﬁ to obtain

i w e, <c / (1" (1 elal®) ™)
<ot [ (il (1+at) ") aq
ct3-%

if > 1 and (8 — ) a > 6. By (3.2.2), the Holder and the Sobolev inequal-
ities, we estimate

IN

(3.2.2)

no<C [ Wme e @l1ewld

SCHW(%&)Q‘L;Q

(q 2)

<Ct IIIL

na<C [ mWmo? 3 10 [0% ) dr

|| +|B]=1

< CH!H\W(H,S)Q

o Y 1109y 18l
|a|=1

_3(g=1)
<Ct 2 PllLe
and
ha<C [ WEWmOT X 107()][0% ()] an
R6
|o]+]B]=2
<C|mPw .| s, Z e e
2
2 2 a A
+C|lnPw e |Z 103 lgs
al=1
3(g—1)
<Ct 7 +Cts ||95Hi13a
where g > 2.

By the Holder inequality, we obtain
—2
€l no < [ 16l (L el (1 +1€2)) 7 16 116 (w)l d
RG
<1 / 0~ ¢ (2)] 1 (w)]
RG

— A2 A2
<72 (Ipl1E: + 111,
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if ¢ > 6. In the same way

i nas [ et (1 el (P 16P)) T X 1070 )07 (w)] dn

laf+[8]=1

<o [l Y e |0 ) dy

|| +|B]=1

<2 1@l 12l + D 10%@llps 16 Lq

la|=1
< Ct2 (@l 1212 + 120 gga 12l]0)
if ¢ > 3 and
-2
€' ns < /R el (1l (I +162)) YD 107¢ ()] 0% (w) dn

| +[8]=2

<o [l Y e |0 w)|dy

o] +[B]=2
- . . . 5 A112
< Ct2 | (1@l 18l + D 119°@les [Bllee + D 0%l
|a|=2 la]=1
< Ct2 (|l N2l + 19 lews (1€0gxs + 12lIea)) -
if ¢ > 6. Thus we find

_3(g=2) _ 3(¢=1)

040 = Cmane (1257, 25 e g

for any t > 1. Therefore, the first estimate of the lemma follows.
To obtain the second estimate, we compute

- 1 TN AN
VeRU (<)% = () Ve [ S O5 T Butan

—3.
Qi [ s (1,031 Gl
4 RS

+ (@) / SOV (526 (w)) dn
RS
= Jl + ']27

where N (n,§) =4(n-&)n+ % 1€2€ 4+ 2|n[*¢. In the same way as in the
proof of (3.2.1), we have

3 3
| 1] < Ctle,j, |Ja| < CZJZ,]'

J=0 J=1
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where

B = [ (6 +€lmR) k) 0V ) S 10 (] % () dn

laf+[81=7

7=0,1,2, 3 and

Tog = [ IOV ) X (07 (2] |7 () dn

laf+18]=7

In order to estimate Jy j (j = 1,2,3), we apply the Holder and the Sobolev
inequalities to obtain for 0 < a,b < 2

D= [ (1€ +1elln) (1+ ¢l (1 + 16%)) " 10 12 ()l
<cief [ (1+em1e) " I @l1e @l dr
el [ (et el) e Ig i

<Clef ( [ (e ) ) I8l
R6
2( 2L -
+C ] (/ ul (q*)( L+t || b\é!) @ 2>dn) 1@ -
RS
By changing of variable T |€ |ﬁ n =1, we get
-3 %
[ (eeier) g
R6
__6 _ 6a o\ 3 5)
=t 4-a ’€| 4—a/ (1+|77|4 ) ( 2) dﬂ
RS6
_ _6a

<Ot Ta

if 3 (q_%) (4 —a) > 6. In the same way,

[P (1 et ig) " gy
RS
=g (et ) ) el (1) ) g

< o g (it gt ) )
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if —2 (q%) +3 (;%2) (4 — b) > 6. Therefore

ho < o7 (7)1 () a2,

o @ () e () g2,

4 4 a —2 —92
WePUta:3qE4,b: (3qq4)_3a then3——(qT)_0 1—T(q7)i
42—_1’1) = 0. We also find that 3(ﬁ> (4—a) > 6if ¢ > 4 and —2 (qTQQ> +
3(;—2) (4—10b) > 6if ¢ > 4. Hence

_ 6 (g=2 _ 6 (a=2\__2
Bo < o7 (T gi2, + o ()2 g2,

_3Ba=4) o
<Ot @l (3.2.3)

for ¢ > 4.
We also obtain

By <CIE [l (1 el )T X 10 (2 [0% )] an

o]+ Bl=4
. -3
welel [ (L) TS 0 [0 (w) dn
R o +181=j
We take a = 3;32’17 = 3(32‘1_2), then in the same way as in the proof of

(3.2.3), we find

~ 3(3¢—2) . . _3B¢=2) .
Jia <Ct e Y 0%l @l < Ct s @l I8l
la]=1

for ¢ > 2. We obtain

ha<Clel [l (1+ e er) " 3 107 () I tw)ldn

|a|=2
wolel [t (L) T S 10 @l e tw)ldn
|or|=2
4—c -3 o A B A
Il [ o (1 el 1) T S 107 ()l Y (0% w)]
lo]=1 18]=1

el [ it (14 el 1) X e @l X |07 ) an

laf=1 18]=1
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We put a = ,b=3,c= %, d = 5. Then in the same way as in the
proof of (3.2 3) We find

_3(3q—2) R R 9 112
T2 <Ot 3 Yy 0%Glgs [@lle +Ct5 Y 10°¢]5s

Ia\*Q laf=1

<ot i IIsOHHs 1llLe + Ct 7 (|93 (3.2.4)
for ¢ > 2. Similarly,

_ 3(3¢—2) R R _9 R N
Ng <Ot A Y 0% @l +CE 3 > [[0%@]lgs ||07
|o}=3 |la|=2,|8|=1
_3(3a-2) . 9 9
<Ct |l [Pl + O3 ([l (3.2.5)
for ¢ > 2. By (3.2.3)-(3.2.5)
3(3¢—4) 3(3¢—2)
il < Cmax (7555, S b ) g (a0
for t > 1. In the same way as in the proof of (3.2.6), we obtain
_ 3(3q—4) 3(3¢—2)
72| < C max <t TR Tt t‘4+270> ull - (3.2.7)
Therefore, by (3.2.6) and (3.2.7), Lemma 3.2.7 is proved. O

In order to estimate »_, 3 [|7“ullg: we need Lemma 3.2.8 - Lemma
3.2.10 below.

Lemma 3.2.8. Let

k= [ W @0 S - 9) ¢ ) m-V) g (w)] dn

a+b=j
where 7 =0, 1, 2, 3,

W)= (1+ el (P +16%))

o =FU(—t)u, z:n—% andwz—(n—i—%). Then we have

3
> <sup el + s 1+ m\) < CC¥M ullfy + Ot lullg (D + B)

j=0 \l¢I<1

forcmytZlwhereq>6,71:2,0<5§1—71,0<'yo<%,

1
lollg = D I1T%lgnz-sim + 677 > 1T lg + Y Q% 0llggrz-aia

0<a|<2 =0 lal=3 1<|a|<3

+ Y HJO‘Q%HHZ+H<->3]-"Z/l(—t)v‘

1< <2,]8|=1

i

L«
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Q=(Q1,,Q17) = (1777, (k) g1 6, jzk) ,

D = sup ‘\§|2A}"L{(—t)62‘
1€1<1

and

E = sup ‘|§\3+5 AFU (~t) ﬂ .
1<

Proof. We make a change of variable n = 3 €] 7 to obtain

sose [((rel) ) a
<celeg [ (1) dn
<t 37" (3.2.8)

[w e

if > 1.
First we estimate 1. Let |{| < 1. Applying the Holder inequality and
(3.2.8), we have

(el

o < 69 .,

SCF%%EUHMhm (3.29)
where ¢ > 2. Let |£| > 1. By
" < e (Il +12P) (nf* + [wl®) < € m)° (2 w)?
we find
7m0 < CIE [ W 06274 ()] [0 ¢ ()]
gcmﬁﬂ/vvm@ﬂwﬁ¢wumﬁ¢mﬁm
RS
+or i [ e @) () e ) an

2
é o — —34+6 | ~
< Cle* w8 Pol|, + e 1o loa
where g > 2. Therefore we get
5 S346 L —3st 2 A2 —3 | ¢|=3+0 || 2
617 k1o < ORI 0P|+ 0t 167 s

(3.2.10)
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By (3.2.9) and (3.2.10), we obtain

sup "f\Qm,o‘ + sup ’16\3” m,o‘ < Ot )| (3.2.11)
gl<1 1<[e|

We next consider the term x1,1. We use the estimate
n a _~IM

v @<l [Pec|+ T i@l +taw @)l | =c o)

lal=1

(see [13]) to find that

g/ €W 0,0° 3 10-9) ¢ () |(n- V)" (w)] i

a+b=1
< lg° / 5 (0,6 0 (2) 16 () i
el [ mwm,@ 5(2) p (w) dn
= K111 + K1,1,2- (3.2.12)

Let [£] < 1. In order to remove a singularity or gain faster time decay, we
apply [¢] < C (|n] +|z]). We get

(’m n Inl) W (,6)°

We make a change of variable n = 3 €] 71 7 to obtain

|77’5+1 B 3
() win

5 A
k11,1 < CI¢ Pl [[@llLa -

5g—6
Ly

[0}

L3
«
|B+1 8 2,42\ 2
<0/ g (1+einPie?) | dn
5
B+1 “
3 a8 | _g_ 7 _ 2\ 3 _

cors 2o [ () (1) | an

‘n—gélﬁ\tz

By the Holder inequality,

dn < oo

1
/ |7 =™ (1 + 7)) e
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if y e R 1 <a<6and (6—8)a > 6. Therefore, we find
\77|ﬂJrl B 3 i
+ [nl” ) W(n,¢)

Thus, we get

< Ot3=F |¢| 68, (3.2.13)
L

3 6 ~
ki < Ct o g ‘ /

m T Z 192Gl g2 + ¢ |1 0e@llps | 1&g s

|a|=1

(3.2.14)

where ¢ > 9. Let [¢| > 1. By applying the estimate |¢| < C (|n] + |w|), we
obtain

4
’f|3+6 k111 < C |§|6+(s /Ra ’]nz‘] (W (n, 5))3 p(2) | (w)]dn

+Cle [ 1.6 ) |ful® o )] dy

= K1,1,1,1 + K1,1,1,2- (3.2.15)

By [¢* [n]> W (€,7) < Ct~' and [¢] < C (|n] + |2]), we get

5
K1,1,1,1 < Ct?’/ K; p(2) ¢ (w)|dn
Re || [2]

_ 1 1 .
<o ( R 1_5>p(2)\¢(w)\d77-
e \InP 0 1

2
nl”|2|
We use the Holder inequality to find that
r1111 < Ot (llpllee 190l + l1olles [1€llea) (3.2.16)

where % <q.
By €| < C(|n| + |z|), we have

In the same way as in the proof of (3.2.14), we find

e < Ol [ ('”’ +!n>( (1,€))" p ()| jwl* & ()| dn

Pl (3.2.17)

sLyty La

P
k1112 < Ct i a & Lo ollLe

where ¢ > g. Applying the Sobolev inequality, we obtain

lollee + liolle < € { [Pe ., + - 19°6lue +t 102lgs + ¢ 102l o

|a|=1
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‘We obtain

llgge T D199l < O | 1U (=) Pullgpo + Y U (—) Q|02
lor|=1 |a|=1

< Clullg - (3.2.18)

By the equation i, = AFU (—t)W? and Lemma 3.2.7 with ¢ > 6 and
0<’yo§%,weﬁnd

H0wplys + tlole < Ct (0¥ Fu (=@ <l
where 0 < a < 1. Combining the estimates (3.2.14)-(3.2.18), we get

sup |6 k] + sup |16 k| < CF ul
l€1<1 L<[¢]

where v, = S. Similarly

sup |6 k1.0] + sup (1674 mr1| < O3 Jull
l§1<1 1<[¢]

Therefore we find

sup ‘]é\znu + sup ’]ff’” H1,1‘ < Ct 3 )% (3.2.19)
|€1<1 1<lg]

Next we estimate x1,2. We obtain

k2 < [ 68OV 0.9 (- D)@ @ (- V)¢ (w)ld
+/Re €W (0. (|0 992 ¢ (2)] 19 ()| + 12 ()] (0 9)% ¢ (w)])

= K121 T K1,2,2

By the estimates

m-veE <ol [ [Pe@)|+ X 1906 @)+ tag @) | = o)

E = E

and [£| < C(|z| + |w]), we obtain

6 2
v<e [ BP0y () p () dy

re |2]|w]

2

<ol [ W ov ) ) p(w)dr
2

ol [ v .6 ) p(w)dn

—R1211+f£1212

14yt
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Let || < 1. By [£| < C(|n] + |z|), the Holder inequality and (3.2.13), we
estimate

mann < Clel [ (”‘ +|n|><w<n,f>>3p<z>p<w>dn

nl’
<ol (M) v . 0| L ol g
2] L3 L
n
2
=342 =2+ 520 54 a4 P
<Ct 310 €| 340 H,PSOHHQ + |Z 1P| g2 + ¢ ”8t§0||L%g ,
al=
(3.2.20)
where 0 < 6 < 371 . Let |¢] > 1. Using [£| < (z) (w), we obtain
n
6 aan < [0 .97 (70 ) o )
In the same way as in the proof of (3.2.20), we find
€13 k1o < Ct3taia ’§|71+6+3§%
2
[P+ 3 100l 27 0] e
|a|=1
(3.2.21)

We obtain

1P| s+ 2 19°0laaz2 < € [ 104 (=) Ptllggzz + D I (=) Ll

la|=1 Ja|=1

< Culg- (3.2.22)

H2:2

Due to Lemma 3.2.7 with ¢ > 6 and 0 < vy < i, we get
oo

By (3.2.20)-(3.2.23), we have

s <Ot H<->3}"Z/l(—t) u2HLw < Clul)% . (3.2.23)

sup ’15\2/%1,2,1,1’ + sup ‘\5|3+‘s /%1,2,1,1’ < Ot |l
gl<1 1<[e|

Similarly, we get

sup |6 ka2 12| + sup |16 k1 010] < O Jull
1€1<1 1<)
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Therefore

sup “§|2/{1,2,1‘ + sup ‘Iél T k191 ‘ < Ct 3 |l (3.2.24)
l€1<1 1<

Next we consider k122 to obtain

fros < Chi +c/ 4lle ‘"' (W (1) ¢ (2) & (w)] dn

. 'g"u',]” W <n,s>>3 6 (2l (w) d

=Ck11 +K1221+ K1,22.2,

+C

where

- ‘ﬁw (z)\ + D190V (2)] + 110,V (2)]
la|=1

Let |£] < 1. By [£] < C (n] + |#|), the Holder inequality and (3.2.13), we
find

< CI° [ ('”' +rn\)(vv(n,g»?’c(z)\@(w)\dn

(’(’H o ) W (,€))°

_343 , _146 .
<t e [sllgs 19l (3.2.25)

||§”L3 ||¢’HLq
L2 3
n

where ¢ > 3. Let [¢] > 1. By |¢] < C (|n| + |w]), we have

5
€770 k1001 < ClET° /R ||77|| (W (n,6))%< (2) |@ (w)| dn

2
o [ I o 00y ) [l ¢ )] an

In the same way as in the proofs of (3.2.16) and (3.2.25), we obtain
5
N R
o [ I .0 o )l
Rro |2]
< Ot |[¢llz lllge + Ct 2 lIsls 18l

6
where 715 <4 and

6 [ Mo .90 ) [l )] dn

—34+3 o —14648 3 4
<Ct g lislles || 172,

9
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where ¢ > % and 0 < 6 <1 — ;. Therefore, we find

i K1221 < Ct™? H75¢

o T 20 19 +EIVOLe | (18]

la|=1

+C (t—3 3t |§;‘1+5+§>

X Hﬁg&

ot D 190l + IVl | [

al=1

Lo~
(3.2.26)

Here we have used the Sobolev inequality. By the Holder inequality, we get
tVoigll < Ct Y [T ||y
|a|=1
<0t Y (|leo@|pe + [[itA05% )
la|=1
<Ct Y ||aw| . + CF
la|=1

3
< Ct ] ullye ullge + C#2{| (=23 u|__ Jluly-

ﬂ(—A)% u

L2

Applying Corollary 3.2.5, we obtain

3
et sorfear,.

<C <t>—i+%+%+(70+49(71—70)) lull¢
< Cllullg,

6

where 0 < 6 is small, 0 < v9 < % and =iy

find

< r < oo. By Lemma 3.2.6, we

tllJa] ufl e < CEH)™TH20ull g < Clullg,

6
1—4~p

~ 2
tIVOrplly. < Cllullg -

where 0 < vy < i and < r < 0o. Therefore, we obtain

Using the Holder inequality and Lemma 3.2.7 with ¢ > % and 0 < 99 < %,
we find

2 1
tIVorpllps < tIVOpllia IVOP|lfe

2

3
1
<ot 3 7% | VU T < Cllul
|a|=1

(3.2.27)
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By (3.2.25)-(3.2.27), we obtain

sup ”5\2/@2,2,1’ + sup ‘\§|3+6 /<&1,2,2,1’ < Cct HUH%?
1€1<1 1<)

Similarly, we have

sup ‘|§|2ff1,2,2,2‘ + sup ‘\f|3+6 51,2,2,2‘ < ot HUH%
l€1<1 1<[¢]

Therefore, we get

sup ‘\§|2 I€1’272‘ + sup ’]5\3+5 /@172’2‘ < Ot 3t HuH%{. (3.2.28)
1€1<1 1<

Due to (3.2.24) and (3.2.28), we have

sup |I¢[? k1o + sup |16 k2| < CEFM Jufl3 (3.2.29)
|§1<1 1<él

Next we estimate x1 3. We find that s 3 is estimated from above as

kg < [ IOV (.6
x (0= (1 9) Ve (DI |- V)¢ @) + 10 V)¢ ()] In- (0 V) T ()
+ [ el v 0.9)°
X (10 V) A (I ()] + 16 ()] |0 V) Ap (w)) d + Crigy + Ciiy
= K131+ K132 + K133 + K134 + Cri1 + Ckro.

By [£| < |z| + |w|, we obtain

1£1° Inf?
re |2 |w]
€ |l
re |7
£ |nl®
re |w|

k131 < C (W (n,€))< (2) p (w) dn

<C (W (0,€)*< (2) p (w) dn

+C (W (0,€))*s (2) p (w) dn
= K1,3,1,1 + K1,3,1,2,

where we recall that

p(2)=[Pe()| + Y 190 ()| + t 10 (=)

lal=1
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and

:‘ﬁw ‘ D199V (2)] + 0V (2)].

la|=1
Let [¢] < 1. By [¢| < C(|n| + |2|) and (3.2.13), we get
masn < Clel [ (“” +¢n|)(W/OL£D3<@Op(w)dn

(Wh+w>ovmoﬁ

_3+ 36 —2t 36
< 2(2+0)
<ot €725 el ol_psss - (3230)

4
<0l Isliea el gsze

246
L”I

where 0 < 0 < 4’“ . Let [¢] > 1. By using [§| < C (|n| + |w|), we have

I €< () o () dy

o |z]

€[>+0 k1311 < C ’§\6+6/
R

3
ol [ I v 0.0 @) ol o (w) g

In the same way as in the proofs of (3.2.16) and (3.2.30), we obtain

o ﬂ( (1 6))* s () p (w)

< Ot ol ol + ¢ slia ol gss

646 @ 3 2
€147 [T OV (0.9 ()l w)

< o g T |||

where 0 < <1 —7; and 0 < 0 < 27}/ Therefore, we get

64360

)
L1420
+ Ot sz llpllge - (3.2.31)

_gq4 30 1.4 .30
€[>+ k1510 < C (t_3 ¢t g 1+2+"+6> N[

Due to (3.2.30) and (3.2.31), we have

sup |Ig[ 1,01+ sup [1€*7 k| < CEF ulR
1€1<1 L<¢]
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Similarly, we find

sup ‘|f|251,3,1,2‘ + sup ‘\f|3+6 fi1,3,1,2‘ < CctHm HUH%
l€1<1 1<[¢]

Therefore, we get

sup ‘\§|2H1,3,1‘ + sup ’!5\3+5 F&L3,1‘ < O [u)l (3.2.32)
[€1<1 1<)€]

In the same way as in the proof of (3.2.32), we have

sup 1€ k2| + sup |16 5] < CF )% (3.2.33)
lg1<1 1<[¢]

Next we estimate

€1°

(W (1,€))* 01 (2) |¢ (w)| dn,
RS |Z|

k1,33 < C

where

o1 (2) = [Pag (2)] + D 10780 (2)] + t12:8¢ (2)].
lal=1
We divide o (z) into two parts

61 13
€]” |n]
re 2]

6 3
Lt /R I w0, 10,86 (2] I ()] an

2|

k133 < C (W (0,€))° o2 (2) |2 (w)| dn

10y —

= K1,3,3,1 T K1,3,3,2

where

02 (2) = [PAG ()| + 3 19°4¢ (2)].

jal=1

Let || < 1. By [¢] < C(In| + |z|), the Holder inequality and (3.2.13), we
get

5 |77’4 3 3 A
wraan < CIE [ (Tl ) O .0)° 02 ()16 ()

2|

n[* )
<Clep <| ’ + ) (W (n,€)° 2y No2llp2 1@l
z LF
343 1.6 .
<Ct el ool 1@ » (3.2.34)
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where ¢ > 2. By [£]*|n]* W (€,1) < Ct™', we have
k1332 < Ct[E / (77‘ + [n] ) (W (1,€))° |0:A¢ (2)] | (w)| dn

2 ¢—-1 1 5 (w
<ot [ (s ) A Elswlan 6239

y (3.1.1), we find
IOt AD = NAFU (—t) T2
We define B = {n € R% 1 < |z|}. By definitions

D = sup ‘\5\2 AFU (—t) EQ‘

|€1<1
and
E = sup \|5\3+5 AFU (—) 7|,
1<|¢]
we obtain
1 )
/ 00 (2)] ¢ (w)] di
R [n]? |2
<E/ 1\¢(w)\dn+D/ L e w)ldn
= B Pt Be |n* 2]

The Holder inequality gives us

1 R R
/ 88 (2)) 16 (w)| dn
ws [ |2

: 9o + 0| s | o 190
< — 5 115 Pllpe + PliLa
Il |2 *+ L't [ [z Iz
<C(D+E)|&lLa (3.2.36)
where g > 6.
Similarly, we get
1 ~ N A
/RG P 0:Ap (2)]|@ (w)| dn < C(D + E) || q - (3.2.37)
Collecting (3.2.34)-(3.2.37), we have
sup |16l mrs| < COF uld + O (D B) fullg . (3.239)

l§1<1

o1



Let [§] > 1. By [¢] < C (|n] + [w]), we get

6
€7 kg1 < C ¢ /R b (W (0,))° o2 (2) | (w)| dn

6 |2]
3
wolg [ W av 0.0 () Jof* ¢ )] ar

In the same way of the proofs of (3.2.16) and (3.2.34), we find

6
o [ 1 W (7, €))? 02 (2) 6 (w)] iy

o |2
— d
<Ot oalge ()¢

L+ Ot ol

(|

9

L4

where ¢ > 3 and

3
s [ (.6 02 ) [l ¢ ()] an

o |2]

343 | —14+845 A
<O ol || [P 2

L¢

where g > 2. Therefore, we have

: - —343 14845 5
6P kiga0 < O (53 4700 1) floala (||

,+||ePe

u)

L
We obtain

6
€% m152 < O1IEF [R |rn|| e

3
worlg [ T av 0,0 086 @) |luf ¢ ()] o

o |2|

Similarly, we get

€77 k1332 < Ct2(D + E) (HH%‘

)

Lrore

+ot g M D+ E) |1

Thus, we find

sup 1677 ki ga| < CUFM uld + CER(D+ B) Jullg . (3:2.39)
1<[¢

Analogously, we get
sup ’|§\2H1,3,4 + sup ‘|§!3+§ /<61,3,4’
1€1<1 1<)
< Ct 3 )% + Ct 2 (D + E) |lullg - (3.2.40)
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Therefore, we have

sup €1 1| + o 161772 1| < ¥ ully + € Jullg (D + B).
<1 1<|¢

Lemma 3.2.8 is proved. ]

In the same way of the proof of Lemma 3.2.8, the following lemmas are
true.

Lemma 3.2.9. Let

wans = [ (€84 10E) W 0.6 3 10 9)° ¢ )l (- V)" (w)]
a+b=j

with 7 =0, 1, 2, 3, and

ka05= [ (68 +0E) OV .07 X 1090 - V) ) - 90 )]
atb=j

kaa5= [ (€8 +10) O 0.6)* 3 10 9) 2 )l (- 9 (- 9) 6 )]
atb=j

with 5 =1, 2, where
-1
W (€)= (14t (I +1¢?))
Then the following estimates

S| sup (12 ma ] + sup (1 )
1<)

0<j<3 \[¢I<1
< P )+t fullg (D + B).

> (sup)\a K005 + sup 1€ M;])

1<G<o2<k<s \¢IS
—241 2 -1 B
< Ct Hu||§+C’t ||uHY (D+E)

are true for any t > 1.
Lemma 3.2.10. Let
wai= [ WO S Ve @9 0% ) dn
R | +|8=2,a-+b=j

where 7 =0, 1. Then we have

> (sup €17 s

0<j<1 \[éI=1

foranyt > 1.

+ sup [Je na,j]) < G ulfy + C lully (D + B)
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3.3 Normal form method

In this section, we state the normal form method in the case of the fourth-
order Schrodinger equation. We consider the transformation of

= Y e (075) (07570)

|’ |+[B']=4

where o, f € (NU{0})™ and S = (1,V, (T5) j=1.... 6). For scalar functions
¢, ¥ and a single distribution €2, we define

b0 = [ [ TE 0.0 2y
RS JRS
Multiplying both side of equation (3.1.1) by S, we obtain
1
10, S%u — ZAzSau = \S“w. (3.3.1)
As in [4], by the equation (3.3.1), we represent
qa,B = —L ([Ua, M, Ug]) — [Fa, M, UB] — [Ua, M, Fﬁ] s

where U, = S%u, F, = \S0? , L = i0; — %AQ and

. 4 nﬁc’y
M (n,¢) = 6 E CBy A 1 4
Cn) iy I G+

In order to estimate [, M, -], we use the following result.

Theorem 3.3.1. ([5], [22]). Let

~

o) @) = [ e (0,0) 6 (1) ()

and let 1 < p,q,r < oo and % =<4 %. If m e Cnt! (R2" \ {0}) satisfies

O50m (n, Q)| < C (I + ¢y~ 1H+1P
for all |a] + 8] <n+1 and (n,¢) # (0,0), then

A (& )l < CliSllLe [[¥lLa

18 true.

’or

hypothesis Theorem 3.3.1 on m (n,(), then
llé, M, ¢llLr < Clillpe [¢llpa-

Corollary 3.3.2. If1 < p,q,r < o0, + = %4— % and M (n,¢) satisfies the
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3.4 Proof of Theorem 3.1.2

We use the notation X = ﬂ?zo H27397 v = Z?:o l|v]|ggr2-35; and

3
ol = > 1T%lgpz-siar + Y077 D 1Tl + D 1Q%lgpiz-stal

0<a|<2 =0 la|=3 1<]a|<3

+ Y HJ“Q%HH2+H<->3fu(—t)v)

1<]a|<2,|8|=1

)

L4

where

Q= (Q1, - ,Q17) = (17 P, (Qj,k)j7k:17... 6, jZk) )

1
O<’70< 0<71<270,72—371,’Y3—571

and 5 - < g < o0.
By the contraction mapping principle, we prove local existence of solu-
tions.

Proposition 3.4.1. Let ug € X, then there exists an € > 0 such that (3.1.1)
has a unique solution u satisfying U (—t)u € C([0,T];X) with T > 1 and

1
sup |[lu(t)||x, <e2
te[0,7

for any ug satisfying ||uol|x < €.

Proof. We consider the mapping u = Muv defined by the linearized Cauchy
problem corresponding to (3.1.1):

Lu= M2, (t,z)€ (0,00) x RS,
U( )_UO(:Ua xERG,

where v € Y, = {v € C([0,T]; X) ssupsejo 1) vl xr < ,0}. By virtue of
the classical energy method we obtain the estimates

sup Z | T %u (t) ]| ggr2-sal

t€[0,T =0
2
< Hu0||x+0 SUP Z | T % ( HH12 3la
|o¢\ 0
<e+ Cp g
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|* Fut () ul

L4

< Clluollgss +C(T) | sup D> [T () lggiz-sie
t€[0,T 0<]a|<3

< Ce+Cp*(T)! <

Wi

and

sup | > Qg ae + D HJ"Q%HHZ §26+C'p2(T>4§§

tel0.T] \ 1<|al<3 1<]al<2,/8]=1

if max{2e,Ce} = & and Cp (T)* < &. Thus, we get supsefo,r) Mo ()% <
p. Similarly, we have

1
sup || Moy — Musllx, < Cp(T)* sup |Jvg — vallxs < 5 sup lvr — val|x/
te[0,T) te[0,T) t€[0,7)

if we take e satisfying Cp (T )4 < % Therefore, we get a unique fixed point
u = Mu such that v € C([0,T];X’) with T" > 1. We find that U (—t)u €
C ([0,7];X). Moreover, we have

sup |lu(t)|x < p=6max{2,C}e < ez
te[0,7)

if 6 max{2, C’}eé < 1. Proposition 3.4.1 is proved. O

Global existence of small solutions for Cauchy problem (3.1.1) is obtained
in the following proposition.

Proposition 3.4.2. Let ug € X, then there exists an € > 0 such that (3.1.1)
has a unique global solution u satisfying U (—t)u € C([0,00);X) and

1
sup lu (t)[x, < e
t€[0,00)

for any ug satisfying ||uol|x < €.

Proof. By Proposition 3.4.1, we find a T' > 1 such that

sup |ullx, < ez,
te[0,T

We assume that there exists a time T such that

NG

sup |jullx, < e2.
te[0,7

o6



By applying a contradiction argument we prove that 7' = oco. In order to
prove that T' = co, we will derive a priori estimates which do not depend on
T. By Corollary 3.2.5, we obtain

lullge < C 07200 [l + S 1Tl | < € (1) 72079590 ]y,

o|<3

where 3 < r < 0o. Due to the energy method we find

d —1-k
o Il <€ [0?|| ez < C lullgpe lullpe < C ()7 e

where 0 < k < % — 7. Thus we obtain

sup ||ul|gpe < Ce. (3.4.1)
t€[0,T]

Next we estimate Zl§|a\§3 |Q¥V||gr12-41a. Using Corollary 3.2.5, we get

Z HQaUHLw <C <t>_%(1_%) Z HQQU||H4 + Z HJBQQU

laf=1 laf=1 laf=1,|8]=2

<o )207) |Jullg,

L2

and
1T - Vullge < CO7 2D ST 17 % g + >0 1%l
|| <1 |a|<3
<0 ()20 )|y,

where 3 < r < 6. Applying Lemma 3.2.6, we find

Iz - Vaullge < C @720 {ulgs + 3 1T %ullggs + 3 172

lal<1 |a<3
< (121790 |y,

where 9 < r < co. By the identities [£,P] = 4L, [£,Q;1] = 0 and AV =
L (z — J), Corollary 3.2.5, Lemma 3.2.6 and the energy method, we get

it
d
g 2 @l <0 37 1|Q7 g

|a|=1 la|=1
<C Y [uQulgs
la|=1
<O Y (lullgs 1Q Ul + g 1Qullgys)
|a|=1
<o e,

o7



d
@l £C Y (@7

|a|=2 |a|=2
<O luQulg +C Y @) (Q%)|
|a‘:2 |O“7|B‘:1

< O (ully + [[A%]|ge) 30 1Q%ule + D 1Qulye |||,
o= alBl=1

< C(lullg + 17 - Vullge + 2 - Vullge)e2 +C (1) e

<oy re

and

d
= Y 1@l £ C Y 1@l el +C YD 1@l [ @7

=3 =3 lal=1,|8|=2
<oy e,

L2

where 0 < k < i — 0. Hence

sup Y [|Q0||gz-ajay < Ce.
t€[0,T] 1<[a]<3
Now we estimate >, _; [[Jugo. By the Holder inequality and (3.4.10),
we estimate
1 1
Yo 1T %le < D 1T ullgs llullgs < Ce. (3.4.2)

la|=1 |a|=2
Using the identities J -V = P + 4itL and
6 1S
2 2 2
> ITi0mblise = 5 > 1248lge + 17 - Vellg
J.k=1 J.k=1

(see [2]), we get

> 1%l < C 3 [ATQ ]l + Ct A Lull,

s jof=1
< Ce + Ct |[ulu| .
< Ce+ Ct|ullgeo |1 gs
< Ce.

Therefore, we find

sup Z | T %o < Ce. (3.4.3)
t€[0,T] lal=1
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Next we estimate }|, o [ J*ullgs. Applying the operator J to equation
(3.1.1) iteratively, we obtain

LY Tu=XY JU = A+ A+ A + Ra,

|ov|=2 || =2
where

Av= > Copd®uTPu, A=t Y CPOJ*udlu,

o +[B]=2 laf=1
0<|Bl<1 IvI+16]=3
0<16]<3

Ay =12 > CM0udlu,
I|+161=6

0<[6|<3
and

Ra=t Z C'y"sﬁgu@gu.

Iv[+]0]=2
0<[s|<1

Due to the following identity AV = L (z — J), we have

Cr=0 if (lal,|yl,1d]) =(1,3,0).

By the normal form method, we obtain

L Z T+ t2A2,1 =Ag+ A1 + R4+ Qit.Az,l + t2.,4272, (3.4.4)
|a|=2

where

A2,1 - Z [8QU7M1,77U]7
Iv|=2
A2,2 - Z (_[8;f7M1,’yvu] - [a;u7M1,’Y7f])7

[v[=2

f = M\u? and M, is Coifman-Meyer kernel. Using the energy method to
(3.4.4), we have

d « 2
o Z Ju+t" Az
|or|=2 L2
< Mol + [Millgz + [Rallpz + Ct | A2z + ¢ [ Azz2l2 -
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Applying Corollary 3.2.5, we obtain

> 7], s eI S ]y 3 [l
18l=1 18I=1 18I<3

L2

<0ty fully,

)

_3(1=-1)_a
lullgg < C 0720775 {lullgs + Y 17wl

jal<3

<O ()20 ully

)

where 0 < a < 3, % < q < o0, % < r < q. By Corollary 3.2.3, we find

N oz T Ul <07 Y 1T s + Y 1Tl

la],[v]=1 la]<2 o] <3

<O fulyr s

ST uls <C@ Y 1Tl + Y 1T Ul

laf=1,]v|=2 |laf<2 |la|<3

<O g -

Using the Holder inequality and the identity AV = % (r — J), we estimate
Mol <C > 17 %ullyz

laf+|8|=2
0<IBI<1

J%HLOO <O @)y he,

Millgz < C D0 1T %ullge | D 1T ullgeo + 2] ullpe

|a|=1 lal=1
1 1
+Ct Y 08Tl |0 +Ct D 0Ll |02,
la,|v|I=1 |af,|6]=1
13]=2 Iyl=2
<oy e,
2
—1-k
[Ralle < Ct | [ D2 10%ullga | + Y 102ullgs llul s | <7 Fe,
lyl=1 Iv|=2

where 0 < 79 < % (ie. 0 <y < %) and 0 < k < % — 2. Applying the
Coifman-Meyer inequality, we get
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—2—k
Mo llgs < C 3 183ullys llull 1 < C (57> "e,

[v|=2

2

—3—k
lAz2llps < C ( lullfe D N107ullps + | D 103ullps | llullgs | <C @07 Fe

[v|=2 [v|=1

where 0 < k < % — 279. Hence

d
A DR AR PR el (s
Jor|=2 L2

from which it follows that

Z T+ t2A2,1 < JJuo||go.2 + Ce < Ce.
|or|=2 L2

By the triangle inequality, we find

> 1Tl < Ce+ £ | Az|lga < Ce. (3.4.5)
|a|=2

Using the following identities J - V = P + 4itL and

6 6
1
> 17000012 = 5 D 19u8lge + 17 - VoIL:

Jk=1 Jk=1
we get

ST Ullge < C 3T |A2Q%|| 1, + Ct Y (| A2Q0 Lu| L, + COFF || A2L%ul|

|a|=2 |a|=2 lal=1

<Ce+Ct Y ||A*QW |2 + CF || A L7 .,

la|=1

< Ce+ Ct (Jlullge + HA2UHLOO) Z Q“ul g

jaf=1

+ O (||uA%l| g, + || (A%0)%]| , + lustullp) . (346)
By the following identity AV = 4 (z — 7), we find

| A% e < 1T - Vaullpe + 12 - Vullg < ()7 €7,
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where 0 < k < % — . On account of Corollary 3.2.5, we obtain
£ [[u? A% < 8 flullf o fullgs < C22 (1) 7, (3.4.7)

where 0 < k < 1—27y. By the following identity AV = th (z — J), Corollary
3.2.5 and Lemma 3.2.6, we have

t* H(A2u)2HL2 < t? HA2uHLOO ”UHH4
41TVl + - Fulge) ol
<Ce(t)", (3.4.8)

£ lulrtul| > < Ot Jullpee Y 17 %ullggs + Ot [lla] ullpe Jullgs < Ce ()7,

la|=1
(3.4.9)
where 0 < k < % — 9. Thus, we obtain
> 1Tl < Ce.
|o]=2
Therefore
sup Y || T%ullgs < Ce. (3.4.10)
t€[0,7] la|=2

Let us estimate Zlg|a\§2,|ﬁ\:1 HjaQﬂvHHQ. Applying Zla\=2 J*P to both
sides of (3.1.1), we get

LY TPu=X> J*(4+P)w
|a|=2 |or|=2
By the identity P = J - V — 4itL, we have

S gePwt =2 J° (aPu)

|a|=2 |o|=2

= (2% (aT - Vu) — 8iAtJ* (w?)) = Do + D1 + D2 + Rop,
|ae|=2
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where

Dy = Z C’gﬁjo‘uéﬂjﬁu, D=t Z C’g:g@;jauagjﬁu,

ol +151=3 ol +181=2
1<|8]<3 1<|5|<2
hi=1 I+ol=4
1<|8]<4
Dy=t" Y CPPOudiTou+t* Y CYudlu,
jal=1 Ihl+01=6
hl+lol=7 0<[5]<3
1<]o]<7
Rp=t Y CPOudiJou+t »  C¥0Juddu—8ixt Y J*(uu?).
lal=1 [7|161=2 jal=2
[v[+]6]=3 0<|6]<1
1<]6]<3

Using the identity J = x — itAV, we obtain

Cl=0 if |a|=1 and (|],]]) =(0,7),(1,6),(2,5),(0,3).

«

By the normal form method, we get

Dy =—L(tD11) +iD11 + tDi 2,
Dy = —L (£*Da1) + 2itDay + t* Doy,

where

Dig = Z [jaU,Ml,a,mjﬁu] ;

|l +(B|=2
1<IBI<2

Dip = Z (— |:\7af7M1,a,,B,\.76U:| - [Jau, M1,a,5,Jﬂf])a

|| +|B|=2
1<I81<2

Dy, = Z [agu, Mgﬂﬁ,jau] + Z {u, Mgv(g,agu} ,
la]=1 |6]=2
16]=3

Doz =3 (= [00f, Mo, T ] = [0, Mo 5, 7°f] )
|a|=1
|6]=3

s (_ [f, Mg’&agu} _ [u,Mg,a,aif])7

5=2
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f = \u? and Mi o8, M2, Ms3s are the Coifman-Meyer kernel. Applying
Corollary 3.2.3, Corollary 3.2.5 and Lemma 3.2.6, we estimate

Dol <O Y 1Tl
|a|=2
181=1,|5]=1

Y Tl |
o] +[B]=3
2<181<3,[d]=1

<oty e,

2|,

8gjﬁu’

L2

D11 <oy e,

L2+0 —

J%‘

2 <C Z 1T *ull e

||+ B]=2
1<|g|<2

t]|Dy 2

L2

<Ot 3 N ulgase | | 2 7%, + Nl ulien | Tullzrs

laf=1 181=1
Y 1
2 103ulle D [0l
lvl=1 |6]=2

4
+ Ctl[ullpes | Mullpe, D 1T %ullgare +t > 07T %ul|p21s ||0u .
|a|=2 la)=1
[v[+19]=3
1<[5|<2
<o)y e,
t D21y

<O T ulgano | 3 [+ lelullper | +Ctlullzs D 02uly

jaf=1 181=1 jaf=1
<o)y e,
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and

£ Daallge < Ot 3 1 ulnero | | 3 || 7], + el ulse | luless

laf=1 18l=1
1
Y 103ulln D [|05]]
yl=1 18=2

2
2
+C (Nl D 103ullys + | D 107ullgs | Ilullys
[v[=2 [v|=1
<oy e,

where 6 > 0 is small, p; = @,m = @ and 0 < k:<%—270. Due to

the identity J = x — itAV, we obtain

£ 1T @)l

laf=2

<Ct Yy Tl

Tl +Ct Y 1T %ullge el e

|| +|B|=2 |a]=1
0<|BI<L1
2 2 4
+ Ctlllefulfs lullge + 02 > [0R7|| | I03ullye ||odul|
la]=1
|Bl+][+6]=3
|BL,171,1017#3
3
3 1
w0t Y ||ofu]|_, 103ulys [o5ul| , + [ D 103ulys
|B|=3 [v]=2
|v|=2
|5]=1
<o)y e
Therefore, we find
IR DIl
1 1
<ct| 3 10T ul Y |08l + 0t D7 Norgeulie Y |[odu]
lal,ly|=1 |6]=2 |a|=1 l6]=1

[v|=2
2

—1-k
wct (| X ozl | + 3 I0zullys ul s | +C )7+
IvI=1 Iv|=2
<o) e,
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where 0 < k < % — 9. Applying the energy method, we get
Z | TPullp. < Ce.
|a|=2

In the same way,

> AT Pullys < Ce.

lof=2

Using the identity 2; = 20k — 2x0z; = JjOk — J0x,;, we analogously get

Z HJO‘QBuH ) < Ce.
|ar|=2 H
|Bl=1

Therefore,
sup Z HJO‘QBUHHQSCE. (3.4.11)

te[0,7 1<]al<2
|Bl=1

Next we estimate 3,3 |7 *u|lgs. Applying the operator -, _5 J to
equation (3.1.1), we obtain

LY Ju=X)Y JU =Bo+Bi+Bs+Bs+Ra, (3.4.12)
|a|=3 |a|=3
where
Bo= Y CopJudPu, Bi=t Y  CI0ITudlTPu,

ol +15/=3 o +]]=2
0<|8I<1 0<|B|<1

hl+81=3

0<[5|<3

By=t" Y CPoIJoudlu+t* Y CWOudlu,

jof=1 Iy|+13]=5
il 0<s|<2

By=t* Y C"0Judlu,

Iv[+]6]=9
0<|6]<4

Rg=t» ClOuu+t »  CIP°0ITudlu.
yl=1 ja|=1
[y|+8]=2
0<[s]<2
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By the identity J = x — itAV, we have

C =0 it (1, 18) = (9,0),(8,1),

G20 =0 it (lal,lyl,[8]) = (1,6,0),(1,2,0)
and
Cg:g =0 if (lof,|8],7],]d]) =(2,0,3,0),(2,0,2,1),(1,1,2,1),(1,1,3,0),(1,1,2,1).
Applying the normal form method, we get

L Z T+ t* By + B3
|oe|=3

= By + By + 2itBa1 + t*Bao + 3it’Bs 1 + t°Bs 2 + R,
where

B = Z [8;jau, Mg’é,agu} + Z [07u, M7 u],

|or]=1 [v[=1
IvI+16]=2
1<[5]<2

Boo= Y. (=[onoos 20,00 - 2700 037 1] )

|or|=1
[vI+]6]=2
1<[5]<2

+ Z <_ [azva’Y?u] - [&ZU’MVJD,

[v|=1

Bii=Y [Ggu,M%‘;,agu},

|v|=3
§]=2

83,2 = Z (_ [a;fa M%(S»a‘gu} - |:a;:yua M%éaagf]> )
lv|=3
[6]=2
f = M\a? and Mg’é, M7, M7 are Coifman-Meyer kernels. Applying the
Holder inequality, Corollary 3.2.3, Corollary 3.2.5 and Lemma 3.2.6, we
estimate

Bollp: <€ Y- 1T ullpe

o +[B|=3
0<|B|<1

j%HLw <oy e,
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1Bille < Ct Y- 03T ullyp S [lof]]
la|=2 |5]=2
/=1

w03 Tl | 3 70, el ul

lor|=2 |8]=1
<)y Re,

1
IRalle < Ct | S 102l lullge + S 177l ||o5u]
lv|=1 |la=1
16]=2
0
TID D L 22
la,|y],16]=1
<o

where 0 < k < % — %0 — 1. By the Coifman-Meyer inequality, we get

0
HBatllge < Ct { 3 N0l lulle + > 17wl sp ||08u| |
[v|=1 |oe|=1,]6]=2
19
> Tl |0k,
|al,|v],l6]=1
<o,
and
£ [|1B2.2ly2
1
<O 3 | Y 03Tl + el ullgen | ||05| ., Tl
[y|=1 \lel=1
|5]=1

2
+C2 | Y T Ul + Wl ullpe | | D2 107ulgare + D 187ullys lulipe

laf=1 Ivl=1 Ivl=2

2 1 2
+ O3 ogulite Y ||otu] , + e S 10gule s
[vl=2 |6]=1 Ivl=1
<Oty e,
wherep1Zw,m:%,0<’m<%and0<k<i—?ryg. By
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Corollary 3.2.5, we obtain

2 2 )
£2|Baallge < CF Y 103ull g ||08u] s

H

5(9+20) 80 49((188+5(()9)) 79(82590)
2 9(5+20 9(5+20 ) +56 ) +56
<O Y logul 5 103ulys ™ ofu]| T (0]
i
5(9420) |, 4(18450)

9(5120) T 9(8150)
5(15+40) 964350

< C<t>2_ 9(5+20) ~ 9(8+50) ||UHH6 + Z HjauHHl
|er|<3

1 80 250
65 (9(5+2e) + 9(8+50) )

C <t>—1+§+2'yl €,

IN X

t1Bs2ll 2

2
<Ot Y ITllge + el ullpe | | D 10%ullgare + Y 107ullys ullgs

or|=1 lvl=1 /=2
2
w0 [ 3 10gule | D ||t
lvl=2 6]=1
<o)y e,
where 0,0 > 0 are small, p; = @, Py = 5(64j99), 0<m < %70, 0<~vy<

Y —2y and 0 < k < % — 370. Applying the energy method, we get

D T < Ce+7e < C (1) e
|a|=3
Using the following identity J - V = P + 4itL, we obtain
Y TT Vu= Y (T Pu+4itgLu) =Y  (T*Pu+4iXTw?).
|a|=2 |a|=2 |a|=2

Hence we find

S 1T°T -Vl < Y- (17°Pullge + Ot [ 77 |)

|ar|=2 |a|=2
<Ce+Ct Y ||TT|e - (3.4.13)

|af=2
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Since

> 7@ s < CllAFU (=) 2|
|a|=2

<C (sup ’\§|2 AFU (—t)T*| + sup ’]§\3+5 AFU (—t)uQD ,
l€1<1 1<)
(3.4.14)

we consider
_ 1, 7N
Fu(-)a = (20" [ SOOI STuan
where

S (&) =2l +20- € + P Ie + ¢ lel*,

O=FU(-t)u, z= —g and w:—<n+§>.

We compute
AeFU (—1) 7 = (27 / (Acek®509)) 3276
RG
+2(2m)° / (Veet®509) . v (3(2) @ (w) ) di
RG

+ (271')3/ e%its(”@Ag ((ﬁ (2) @ (w)) dn
RG
— Ky + Ko + K. (3.4.15)

Denoting
2 2 2, 9 .2 2 9 9\ e
M= (897 (ammP+ 21e?) + (2P + D 1eP) 1el
+it (410 +91¢P) .
we write K7 in the form
Ki= (20 [ (8ecttS09) 5T 5 iy
RG
=20 [ cHS09M (1,) 5T 2w
RG

We integrate by parts via the identity

eS8 = gy, . (neiitﬂnuf))
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with

-1
H= <6+4ztn VS (0, 5))

—1
<6 it (2 |t + (- €)%+ % I3§ |77|2)>

to get
K| < C‘/RG es"S0y ., (Hn -V, (Hn - V) (HM (mé))))@(Z)sé(w)dn’
wo| [ A0y, (- ¥, (1M (1.0 9, (FET 6 )
#O| [ S0, (1 9, (1M (1.) 1V, (FETE 00
R6
| [ ARy, (1M (0.6) (n- V) (FETR)) dn‘
0| [ HS00y v, (-9, (120 (01.60) - 9, (5CT4 (0))
R6
+C /R A0 v, (HUM (1,9)) (- V)" (2 () 6 (w)) dn‘
+C /R eHS0Sy . v, (HM (n,€)) (n- Vy)? (£ () @ () dn’
wo| [ moma 0.6 0 v (5T ) ]

Therefore we obtain

3 3
‘Kl‘ < CtZZK/L]‘ +Ctzl€2717‘j (3.4.16)
=0 §=0
where
v = [ EE W @0 X - 9) ¢ ) (- V)% ()] dn
a+b=j
oans = [ (IélHnl) P Y A e @) [ V) b w)ay
a+b=j
and

W)= (14 tinf? (1o + 1€P))
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In the same method, we find

3 2 2 1
|Ko| < Ct (Z Koij+ > K22+ Y "iz,zm) , |Ks| <O ks
j=1 j=1 j=1

j=0
(3.4.17)
where
kans = [ (1€ + 1) G+ij| 0 V) (2 V)@ ()] |(n- V)" @ (w)| dn,
ass = [ (|ar+m|) 2 19 B [ ) o 9) b )|,
a+b=j
K3, W (n,€) l(n-V)*0% (2)] V)? 0% (w))| dn.
34 = / n \a(lﬂ)mf UN ‘77 ‘ n

By (3.4.16), (3.4.17), Lemma 3.2.8, Lemma 3.2.9 and Lemma 3.2.10, we find

3
ZSWW“W”WWM&’
l§1<1 1<[¢]

< Ct e+ C(D+ E)es.
By (3.4.15), we have

D+ E=sup (\5\2 AFU (—t) 72| + sup ‘ygy?’” AFU (—t) ﬂ
= 1<le]

lgl<1

< Z sup 1€ K| + sup [1¢* K|
1<)
< Ct’”’“a +C(D+E)ez

Solving the inequality, we find
€

D+E<Ct Hm_-—

- < Ot
1—Ce>2

Using (3.4.14), we obtain

> e 2\}L2gc(sup\\sr AFU (1) 2\+sup]rs\3+%m<—t>u2])

<C(D+E)
< Ot g,
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By (3.4.13), we get

S IT°T  Vulga < Ce+Ct 3 |77y,

|a|=2 la|=2
< CtMe.

Using the identity
6 1 6
2 2 2
1Tj0z,, 812 = 5 19 k0llz2 + 1T - V12
2
Ji,k=1 J.k=1
we estimate

> 17l < c( S o] L+ Y jaj.wp)
la|=2

laf=3 1<|al<2,|8]<1
<C(t)"e.

Applying the Sobolev inequality, we obtain
1 1
Do ullg < Y 1Tz, D 1T ullZ,
|| =3 |or|=3 || =3
<C{
< C(

where 72 = 37v; and 3 = 5v1. By the following identities J - V = P + 4itL
and

¥1+73
2 g
g,

t)
t)

2

6 6
1
> 15000l = 3 Y 19xdlie + 11T - VoliLe

jk=1 jk=1

we find

S 1T%ullgs < Ce+ O || L3z
|a|=3

By (3.1.1) and £ = i0, — A?, we obtain
|e8ullgs < € 1220 < © (|0 a + 0% g + [ A% )
< ([ @2, + 10Fu) ull o + 16 (i) | + [Justu]] )

<0 (e + /(A2 e+ [u2a%u s + [ (4207 + [ )
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Using Corollary 3.2.5, we have
£ ([l + 1 (A%2) o + [[0?A%] )
<8 (Jluligs + [|4%% s Nl + [[u2A%] )
£ (Nl + ud?ull o full oo + (02020
< ¢ (Jlullgs + lullg 1AU (U (=) Aulpae [[ulp-)

3

Cez.

IN

IN

Therefore, we obtain
> 1T ullgs < Oz + CF || (8%0)°| |, + 0 [Juartulg,
=3
By the identity AV = 4 (J — z), we get
luatullpe < 78 ([ud?ul|p, + [[uA®V - Tully, + [Ju (@ A*Vu)|[2) -
Applying Corollary 3.2.5 and Lemma 3.2.6, we obtain

2 [Judul|, < Ot ([[ullyee 17 - Vullgz + (2] ]l goo [Valg2)
< Ck,

2 HUAQV : juHL2 <t|uA(z—T)  Jullye
< Ot (Jullgee + Nzl ullpee) D 1T %ullg2

jal<2
< Cg,
and
2 Ju (z - A*Vu)|| o < P llully: |2 - A*Vaul| .
07 (102]"7 V)

%
<t ullyz

! [

1
< C () er (UH12 + Z | T ullgo + Z ja“H%é)

o<1 || <3
<C <t>’y1+4’)/1 ,

where 6 > 0 is small. Thus, we have

t3 HUA4uHL2 <C(t)Pe,
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where 3 = 5v;. Similarly, we get
(2207, < et (fudullys + 18207 - Tulys + [% - Fu) )
By Corollary 3.2.5 and Lemma 3.2.6, we get

A%V - Tully, < CE V- Tullys

10210,

LOO
< (Ce

and

2 [[8% - Vg = ]| (2A%) - Tl

< ullgg |21 10177 (102" w )|

1
<o) ez | ullge + Z 1T ul[go + Z 1T *ull o

lal<1 |a[<3
< C{(t)Pe,
where 6 > 0 is small. Thus, we have
2
3 H(A%) ‘m <C({t)Pe.

Consequently, we find

ST Ul < C ()%

|a|=3
Thus, we obtain
3
sup 3 ()7 Y || Tl < Ce. (3.4.18)
t€[0,T =0 a|=3

Next we estimate H(-)B}"Z/{ (—t)uHL . Applying FU (—t) to both sides of
q
(3.1.1), we get

0 (FU (—t) u) = NFU (—t) T2

Therefore, we have

t
FU (—t)u = 1ig — z’)\/ FU (—t) w2dr.
0
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By Lemma 3.2.7, we obtain

| Fu =ty

La

< H<->31ZOH q +c/01 H<->3fz4(—t7)a2um dT—i—C/lt"(-)S.FZ/{(—T)quLq dr

L
< O Jluolggs.s + Ce + c/lt |0t Fu || ar
< Ce.

Thus we get

< Ce. (3.4.19)

L4

sup H<->3fu (—t) u’
te[0,7

Collecting estimates (3.4.1) - (3.4.3), (3.4.10), (3.4.11), (3.4.18) and (3.4.19),

we obtain
lu@®llx < Cz < &2

for all t € [0, T]. Then we get a contradiction. Therefore, we can let T' = oco.

Let 0 < a < 3, % <7 <qand72%(i—é>+%. Due to Corollary

T1
3.2.5, we have

_3(1-L)_2
lullgy <€ 620 [l + 3 177 ullgs

o] <3

for any ¢ > 0. This completes the proof of Theorem 3.1.2. O

3.5 Proof of Corollary 3.1.3

By (3.1.1), we get

u:L{(t)uo—i/O Ut —7) f (u,) dr,

from which it follows that
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Using Corollary 3.2.5 and Lemma 3.2.6, we obtain
i (U (w0 U () us) s =0, (35.1)

)

By (3.4.4), we have

Z U (—t)u

|ae|=2
¢
= > 2% — U (—t) Agy — z/ U(—T) (Ao + Ar + R+ 2iT Ay + 77 Az ) dr.
|a|=2 0
In the same way of the proof of (3.4.5), we obtain

Do Nl U () u (t) — U (=s)u(s)lg2

|a|=2
t
<c(w @) e [t tar
where 0 < k < % — Y9 — 1. Therefore, we find
lim Z |lz“U (—t)u (t) — U (—s) u(s)|ly2 = 0. (3.5.2)

t,s—00
o] =2

Collecting (3.4.6)-(3.4.9), we have
3 Hu (—t) (agja - A2QQ) w(t) = U (=s) (907° - A2Q*) u (s)‘

1.2
|a|=2
16|=6
<c(F+ 7).
where 0 < k < 7. In the same way of proof of (3.5.2), we get
D U (=) A%Qu () — U (=) A2Q%u (5) |
|a|=2
t
<c( @)+ [ @t tar
where 0 < k < i. Thus, we find
téiinoo zlz lzU (—t) u (t) — 22U (=s) u (8)]|ge = O. (3.5.3)
al=2

By (3.5.1)-(3.5.3), we have
Jim [l (=) (t) = U (=5) u )| prenponpes = 0.
Therefore, there exists a unique final state v, € H?NH*»'NH52, such that
Jim U (=) w (t) — us |l gpzapo qms2 = 0

This completes the proof of Corollary 3.1.3.
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