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Chapter 1

Introduction

In this thesis, we consider the Cauchy problem for nonlinear fourth-order
Schrödinger equations:{

i∂tu− 1
4∆

2u = f (u, u) , (t, x) ∈ (0,∞)×Rn,
u (0, x) = u0 (x) , x ∈ Rn,

(1.0.1)

where u0 is a C-valued known function which belongs to suitable weighted
Sobolev space and small. u = u (t, x) is a C-valued unknown function and
u is the complex conjugate of u. f (u, u) is a nonlinearity. The class of the
fourth-order nonlinear Schrödinger equations (1.0.1) describes deep water
wave dynamics (see [6]). We consider a global existence of small solutions
under the growth condition of∣∣∣∂au∂buf (u, u)∣∣∣ ≤ C |u|p−a−b , (1.0.2)

with 0 ≤ a + b ≤ p. Since the pointwise time decay estimates of solutions

to the free fourth-order Schrödinger equation is O
(
t−

n
4

)
and the linear

problem has the L2 conservation law, L2 norm of the nonlinearity f (u, u)

decays like O
(
t−

n
4
(p−1)

)
. We find

∫∞
1 t−

n
4
(p−1)dt <∞ if p > 1+ 4

n , therefore

we expect a global existence of small solutions to (1.0.1) holds if p > 1 + 4
n .

In [21], the Lp+1-L
1+ 1

p time decay estimate of evolution operator e
1
2
it∆

was applied to the nonlinear Schrödinger equations{
i∂tu+ 1

2∆u = f (u, u) , (t, x) ∈ (0,∞)×Rn,
u (0, x) = u0 (x) , x ∈ Rn,

(1.0.3)

to obtain a global existence of small solutions, when the initial data are small

in H1∩L
1+ 1

p and the order of nonlinearity p satisfies p2,s (n) < p < p2,∗ (n),
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where

p2,s (n) =
1

2

1 +
2

n
+

√(
1 +

2

n

)2

+ 4

(
2

n

) ,

p2,∗ (n) =

{
∞ (n = 1, 2)
n+2
n−2 (n ≥ 3) .

More precisely,

Theorem 1.0.1. We assume that p2,s (n) < p < p2,∗ (n), u0 ∈ H1 ∩ L
1+ 1

p

and ∥u0∥
H1∩L1+ 1

p
< ε, then there exists an ε > 0 such that (1.0.3) has a

unique global solution u ∈ C
(
[0,∞) : L2 ∩ Lp+1

)
. Moreover, the following

estimate

∥u (t)∥Lq ≤ C ⟨t⟩−
n
2

(
1− 2

q

)
ε,

is true for any 2 ≤ q ≤ p+ 1.

We remark that a global well-posedness and the L∞ time decay estimate
of solutions are unknown.

From the time decay of free solutions, in the case of the fourth-order
nonlinear Schrödinger equation, p2,s (n) and p2,∗ (n) are replaced by p2,s

(
n
2

)
and p2,∗

(
n
2

)
respectively. We write p2,s

(
n
2

)
, p2,∗

(
n
2

)
by p4,s (n), p4,∗ (n),

respectively. Then,

p4,s (n) =
1

2

1 +
4

n
+

√(
1 +

4

n

)2

+ 4

(
4

n

) ,

p4,∗ (n) =

{
∞ (n = 1, 2, 3, 4)
n+4
n−4 (n ≥ 5)

.

Applying the method of Strauss, global in time of small solutions for (1.0.1)
will be obtained if p4,s (n) < p < p4,∗ (n). However there are no global result
for the case 1 + 4

n < p ≤ p4,s (n) as far as we know. Therefore, the purpose
of this thesis is to consider the case when

1 +
4

n
< p ≤ p4,s (n) .

In Chapter 2, we deal with the Cauchy problem (1.0.1) with the space
dimension n = 1, 2. A typical example of the nonlinearity f (u, u) is given
by |u|p−1 u and |u|p. By Hayashi, Mendez-Navarro and Naumkin [12], a
global existence of small solutions and Lq (3 < q ≤ ∞) time decay estimates
of solutions to (1.0.1) in the case of f (u, u) = |u|p−1 u and one dimensional
case n = 1 are obtained. We discuss the Cauchy problem (1.0.1) with more
general nonlinearities and dimensions.
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In Chapter 3, we study the Cauchy problem (1.0.1) with n = 6, f (u, u) =
λu2 and λ ∈ C. We remark that p4,s (6) = 2. We show if the initial data u0
is sufficiently small, regular and decay rapidly at infinity, then (1.0.1) has a
unique global solution.

This thesis is a rearrangement of the author’s papers [1] and [2]. Chapter
2 is a joint work with Professors Nakao Hayahi and Pavel I. Naumkin.

Before closing this Chapter, we introduce notation and function spaces.
Let

Fϕ ≡ ϕ̂ =
1

(2π)
n
2

∫
Rn

e−ix·ξϕ (x) dx

denote the Fourier transform of ϕ and

F−1ϕ =
1

(2π)
n
2

∫
Rn

eix·ξϕ (ξ) dξ

denote the inverse Fourier transform of ϕ. The free evolution group is given
by

U (t) = F−1e−
it
4
|ξ|4F .

The Lebesgue space is defined by

Lp = {ϕ : Rn → C ; ϕ is measurable function and ∥ϕ∥Lp <∞} ,

where the norm

∥ϕ∥Lp =

{ (∫
Rn |ϕ (x)|p dx

) 1
p , (1 ≤ p <∞)

ess.supx∈Rn |ϕ (x)| , (p = ∞)
.

The weighted Sobolev space is

Hm,s
p =

{
ϕ ∈ Lp; ∥ϕ∥Hm,s

p
= ∥⟨x⟩s ⟨i∇⟩m ϕ∥Lp <∞

}
,

where m, s ∈ R, 1 ≤ p ≤ ∞, ⟨x⟩ =
√
1 + |x|2 and ⟨i∇⟩ = F−1 ⟨ξ⟩F . Also

define the homogeneous Sobolev space

Ḣα
p =

{
ϕ ∈ S′; ∥ϕ∥Ḣα

p
= ∥|∂x|α ϕ∥Lp <∞

}
,

where |∂x|α = F−1 |ξ|αF . We denote ∂αx = ∂α1
x1

· · · ∂αn
xn

, where α ∈ (N ∪ {0})n.
We also use the notations Hm,s = Hm,s

2 , Hm = Hm,0, Ḣm = Ḣm
2 shortly,

if it dose not cause any confusion. Let C (I,B) be the space of continu-
ous functions from an interval I to a Banach space B. Different positive
constants might be denoted by the same letter C.
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Chapter 2

Global existence of small
solutions for the fourth-order
nonlinear Schrödinger
equation

2.1 Introduction

This Chapter is based on the joint work [2] with Nakao Hayashi and Pavel I.
Naumkin. We consider the Cauchy problem for the fourth-order nonlinear
Schrödinger equation{

i∂tu− 1
4∆

2u = f (u, u) , (t, x) ∈ R+ × Rn,
u (0, x) = u0 (x) , x ∈ Rn,

(2.1.1)

where the space dimension n = 1, 2 and the nonlinearity f (u, u) satisfies
the estimate ∣∣∣∂au∂buf (u, u)∣∣∣ ≤ C |u|p−a−b , (2.1.2)

with p > 1 + 4
n and 0 ≤ a + b ≤ p. A typical example of the nonlinearity

f (u, u) is given by |u|p−1 u and |u|p. Local and global existence of solutions
for more general equations including (2.1.1) have been studied by many au-
thors (see, e.g., [8], [16], [17], [19], [23]). In the case of the gauge invariant
nonlinearity |u|p−1 u with p > 1+ 4

n , the small data global existence (SDGE)
to (2.1.1) was shown in [10] in the one dimensional case n = 1. We are inter-
ested in (SDGE) to (2.1.1) with more general nonlinearities and dimensions.
As far as we know, the critical power of the nonlinearity for (SDGE) is
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p = 1 + 4
n . Previously in [10] and [11], we have applied the operator

J = U (t)xU (−t)

=
(
e−

it
4
∆2
x1e

it
4
∆2
, · · · , e−

it
4
∆2
xne

it
4
∆2
)

= (x1 − it∆∂x1 , · · · , xn − it∆∂xn)

= x− it∆∇

to show (SDGE) of (2.1.1) with the gauge invariant nonlinearity for n = 1.
A similar operator

e
it
2
∆xe−

it
2
∆ = (x1 + it∂x1 , · · · , xn + it∂xn) = x+ it∇

was widely used for the study of the large time asymptotic behavior of so-
lutions to the nonlinear Schrödinger equations with a gauge invariant non-
linearity such that{

i∂tu+ 1
2∆u = |u|p−1 u, (t, x) ∈ R+ × Rn,

u (0, x) = u0 (x) , x ∈ Rn,
(2.1.3)

where it works well. However it is known from [15] that the operator

e
it
2
∆xe−

it
2
∆ does not work well for the nonlinearity of the form |u|p. The

operator J = e−
it
4
∆2
xe

it
4
∆2

is useful for obtaining the time decay estimates

of solutions e
it
4
∆2
u0 to the linear problem. However, it is not clear if J acts

well on the nonlinear term. In this Chapter, our aim is to show that the
operator J works well not only on the gauge invariant nonlinearity |u|p−1 u,
but also for |u|p.

To state our results in this Chapter precisely, we introduce notation. In
order to obtain the result for the two dimensional case, we use the dilation
operator

P = x · ∇+ 4t∂t =
n∑

j=1

xj∂xj + 4t∂t

(Ωj,k)j,k=1,··· ,n =
(
xj∂xk

− xk∂xj

)
j,k=1,··· ,n .

which is related to the operator J by the identity

J · ∇ =
n∑

j=1

Jj∂xj =
n∑

j=1

(
xj∂xj − it∆∂2xj

)
= x · ∇ − it∆2 = x · ∇+ 4t∂t + 4it

(
i∂t −

1

4
∆2

)
= P + 4itL,
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where L = i∂t − 1
4∆

2 is the linear part of equation (2.1.1). We have the
commutation relations [J ,L] = 0, and [L,P] = 4L and [L,Ωj,k] = 0. We
introduce the function space

Z∞ =
{
v; U (−t) v ∈ C ([0,∞) ;Z) and ∥v∥Z∞

<∞
}
,

where

∥v∥Z∞
= sup

t∈[0,∞)
∥U (−t) v (t)∥Z

Z = H
1
2
+δ ∩H0,1,

∥ϕ∥Z = ∥ϕ∥
H

1
2+δ + ∥ϕ∥

H0, 12+δ + ⟨t⟩−
1
8 ∥ϕ∥H0,1

for n = 1 and

∥v∥Z∞
= sup

t∈[0,∞)
∥U (−t) v (t)∥Z + sup

t∈[0,∞)
∥Pv (t)∥L2 ,

Z = H1+δ ∩H1,1,

∥ϕ∥Z = ∥ϕ∥H1+δ + ∥ϕ∥H1,1

for n = 2, where δ > 0 is small enough.
Our main result is the following.

Theorem 2.1.1. Assume that p > 1+ 4
n , and the initial data are such that

∥u0∥Z <∞. Then there exists an ε1 > 0 such that (2.1.1) has a unique global
solution u ∈ Z∞ satisfying ∥u∥Z∞

≤ 2ε̃ for any ε̃ such that ∥u0∥Z ≤ ε̃ ≤ ε1.

In view of the proof of the above theorem we have

Corollary 2.1.2. Let u be the solution constructed in Theorem 2.1.1. Then
the time decay estimates are fulfilled

∥u (t)∥Lr ≤ Ct−
n
4 (1−

1
r ), 3 < r <∞,

∥u (t)∥L∞ ≤ Ct−
1
4 , ∥∂xu (t)∥L∞ ≤ Ct−

1
2 , n = 1,

∥u (t)∥H̊1
r
≤ Ct

− 1
4
− 1

2

(
1
q
− 1

r

)
, 6 < r <∞, 1 >

1

q
− 1

r
>

5

6
, n = 2.
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Our proof is based on the estimate of the operator J = U (t)xU (−t) =
x− it∆∇ in the L2- norm. The main ingredient of the proof is that, when
acting by J on the nonlinearity f (u, u), we obtain the worst term it∆∇,
which can be expressed again in terms of J . Then the derivatives of the first
and the second order give us gain of the time decay of solutions of order t−

1
4

and t−
1
2 , respectively according to the properties of the linear evolutions

group U (t) . Also the multiplication of the nonlinearity f (u, u) by x can

be decomposed as follows |xf (u, u)| = O
(
(|x|α |u|)

1
α |u|p−

1
α

)
, so we need

to estimate the loss of the time decay, when multiplying the solution u by

|x|
1
α , where 1

p < α ≤ n
3 .

We organize the rest of our Chapter as follows. Section 2.2 and Section
2.4 are devoted to the estimates for the solution of the linear problem in
Lp and weighted L∞ (Lemmas 2.2.1-2.4.3) and the estimates of J f (u, u)
(Lemmas 2.2.3, 2.4.4) in the one dimensional and two dimensional cases,
respectively. We prove the main result in Section 2.3 and Section 2.5 in the
one dimensional and two dimensional cases, respectively.

2.2 Preliminary estimates for n = 1

We first estimate the solutions of linear problem in the following lemma.

Lemma 2.2.1. Let µ > 0 be small. Then the following estimates

∥U (t)ϕ∥Lq ≤ C ⟨t⟩−
1
4

(
1− 1

q

) (
∥ϕ∥

H
1
2+µ + ∥ϕ∥

H0, 12+µ

)
if 3 < q ≤ ∞,

∥∂xU (t)ϕ∥L∞ ≤ Ct−
1
2 ∥ϕ∥

H
1
2+µ

and∥∥∥∥⟨xt− 1
4

⟩− 1
3
∂2xU (t)ϕ

∥∥∥∥
L∞

≤ Ct
µ
4
− 7

8 ⟨t⟩
1
8

(
∥ϕ∥

H0, 12+µ + ⟨t⟩−
1
8 ∥ϕ∥H0,1

)
are true for all t > 0.

Proof. We have

U (t)ϕ =
1√
2π

∫
R
eixξ+

it
4
|ξ|4 ϕ̂ (ξ) dξ

=

∫
R
A (x− y, t)ϕ (y) dy,

where the kernel

A (x, t) =
1√
2π

∫
R
eixξ+

it
4
|ξ|4dξ.
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By the estimate of the kernel |A (x, t)| ≤ Ct−
1+j
4

⟨
xt−

1
4

⟩− 1−j
3

given in paper

[3], we obtain

∣∣∂jxU (t)ϕ
∣∣ ≤ Ct−

1+j
4

∫
R

⟨
(x− y) t−

1
4

⟩− 1−j
3 |ϕ (y)| dy. (2.2.1)

Therefore using the Young’s inequality

∥F ∗G∥Ls ≤ C ∥F∥Lr ∥G∥Lq ,

where 1
s = 1

r +
1
q − 1 and the convolution (F ∗G) (x) =

∫
F (x− y)G (y) dy,

we get

∥U (t)ϕ∥Lq ≤ Ct
− 1

4

(
1− 1

q

)
∥ϕ∥L1 ≤ Ct

− 1
4

(
1− 1

q

)
∥ϕ∥

H0, 12+µ

if 3 < q ≤ ∞, and

∥∂xU (t)ϕ∥L∞ ≤ Ct−
1
2 ∥ϕ∥L1 ≤ Ct−

1
2 ∥ϕ∥

H0, 12+µ .

Then the first estimate of the lemma follows by the Sobolev embedding
theorem. We consider the third estimate to find that⟨

xt−
1
4

⟩− 1
3
∣∣∂2xU (t)ϕ

∣∣
≤ Ct−

3
4

∫
R

⟨
xt−

1
4

⟩− 1
3
⟨
(x− y) t−

1
4

⟩ 1
3
⟨
yt−

1
4

⟩− 1
3
⟨
yt−

1
4

⟩ 1
3 |ϕ (y)| dy

≤ Ct−
3
4

∥∥∥∥⟨xt− 1
4

⟩ 1
3
ϕ

∥∥∥∥
L1

≤ Ct−
3
4

∥∥∥∥x 1
2
+µ
⟨
xt−

1
4

⟩ 1
2
−µ
ϕ

∥∥∥∥
L1

≤ Ct−
3
4

(
∥ϕ∥

H0, 12+µ + t
µ
4
− 1

8 ∥ϕ∥H0,1

)
≤ Ct

µ
4
− 7

8 ⟨t⟩
1
8

(
∥ϕ∥

H0, 12+µ + ⟨t⟩−
1
8 ∥ϕ∥H0,1

)
.

In order to estimate the action of J on the nonlinearity we need the
following lemmas.

Lemma 2.2.2. Let p > 9
2 . Then there exists small µ > 0 such that∥∥∥|x| 13 U (t)ϕ
∥∥∥
L∞

≤ Ct−
1
6
− µ

12 ⟨t⟩
µ
12 ∥ϕ∥

H0, 12+µ

is true for all t > 0.
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Proof. By (2.2.1) and the Hölder’s inequality with 1
r +

1
s = 1∣∣∣|x| 13 U (t)ϕ

∣∣∣ ≤ Ct−
1
4

∫
|x− y|

1
3

⟨
(x− y) t−

1
4

⟩− 1
3 |ϕ (y)| dy

+ Ct−
1
4

∫ ⟨
(x− y) t−

1
4

⟩− 1
3 |y|

1
3 |ϕ (y)| dy

≤ Ct−
1
4
+ 1

12 ∥ϕ∥L1 + Ct−
1
4

∥∥∥∥⟨xt− 1
4

⟩− 1
3

∥∥∥∥
Ls

∥∥∥|x| 13 ϕ∥∥∥
Lr

≤ Ct−
1
6 ∥ϕ∥L1 + Ct−

1
4r

∥∥∥|x| 13 ϕ∥∥∥
Lr

if s > 3, i.e. 1 ≤ r < 3
2 . We choose r = 3

2+µ , where µ > 0 is small enough.
Then we get∥∥∥|x| 13 U (t)ϕ

∥∥∥
L∞

≤ Ct−
1
6 ∥ϕ∥L1 + Ct−

1
6
− µ

12

∥∥∥|x| 13 ϕ∥∥∥
L

3
2+µ

.

Since ∥ϕ∥L1 ≤ C ∥ϕ∥
H0, 12+µ and∥∥∥|x| 13 ϕ∥∥∥

L
3

2+µ
≤
∥∥∥⟨x⟩ 1

6
+µ |x|

1
3 ϕ
∥∥∥
L2

∥∥∥⟨x⟩− 1
6
−µ
∥∥∥
L

6
1+2µ

≤ C ∥ϕ∥
H0, 12+µ ,

we obtain ∥∥∥|x| 13 U (t)ϕ
∥∥∥
L∞

≤ C
(
t−

1
6 + t−

1
6
− µ

12

)
∥ϕ∥

H0, 12+µ .

Next we estimate the action of the operator J = U (t)xU (−t) = x−it∂3x
on the nonlinearity f (u, u). Define the norms

∥u∥V = ∥u∥
H

1
2+µ + ∥U (−t)u∥

H0, 12+µ ,

∥u∥W = ∥U (−t)u∥
H0, 12+µ + ⟨t⟩−

1
8 ∥U (−t)u∥H0,1 .

Lemma 2.2.3. Let p > 9
2 . Then there exists a small µ > 0 such that

∥J f (u, u)∥L2 ≤ Ct−
5
8 ⟨t⟩

µ
4
− 1

4
(p−4) ∥u∥p−1

V ∥u∥W

is valid for all t > 0.

Proof. By a direct computation, we have

|J f (u, u)| ≤ Ct |u|p−3 |∂xu|3 + Ct |u|p−2 |∂xu|
∣∣∂2xu∣∣

+ C |x| |u|p + C |u|p−1 |J u| . (2.2.2)
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By the second and third estimates of Lemma 2.2.1 with ϕ = U (−t)u, we
get

∥∂xu∥L∞ ≤ Ct−
1
2 ∥u∥V

and∥∥∥∥⟨xt− 1
4

⟩− 1
3
∂2xu

∥∥∥∥
L∞

≤ Ct
µ
4
− 7

8 ⟨t⟩
1
8

(
∥U (−t)u∥

H0, 12+µ + ⟨t⟩−
1
8 ∥U (−t)u∥H0,1

)
≤ Ct

µ
4
− 7

8 ⟨t⟩
1
8 ∥u∥W .

Hence the first term of the right-hand side of (2.2.2) is estimated as

t
∥∥∥|u|p−3 (∂xu)

3
∥∥∥
L2

≤ Ct−
1
2 ∥u∥3V ∥u∥p−3

L2(p−3)

and for the second term by Lemma 2.2.2 we obtain

t
∥∥∥|u|p−2 (∂xu) ∂

2
xu
∥∥∥
L2

≤ Ct ∥∂xu∥L∞

∥∥∥∥⟨xt− 1
4

⟩− 1
3
∂2xu

∥∥∥∥
L∞

∥∥∥∥⟨xt− 1
4

⟩ 1
3
u |u|p−3

∥∥∥∥
L2

≤ Ct
µ
4
− 3

8 ⟨t⟩
1
8 ∥u∥V ∥u∥W ∥u∥p−2

L2(p−2)

+ Ct
µ
4
− 3

8
− 1

12 ⟨t⟩
1
8 ∥u∥V ∥u∥W

∥∥∥|x| 13 u∥∥∥
L∞

∥u∥p−3

L2(p−3)

≤ Ct
µ
4
− 3

8 ⟨t⟩
1
8 ∥u∥V ∥u∥W ∥u∥p−2

L2(p−2)

+ Ct
µ
6
− 5

8 ⟨t⟩
1
8
+ µ

12 ∥u∥W ∥u∥2V ∥u∥p−3

L2(p−3) .

By the first estimate of Lemma 2.2.1 we get

∥u∥p−2

L2(p−2) ≤ C ⟨t⟩−
1
4(p−

5
2) ∥u∥p−2

V

and

∥u∥p−3

L2(p−3) ≤ C ⟨t⟩−
1
4(p−

7
2) ∥u∥p−3

V

if 2 (p− 3) > 3. Therefore

t
∥∥∥|u|p−3 (∂xu)

3
∥∥∥
L2

+ t
∥∥∥|u|p−2 (∂xu) ∂

2
xu
∥∥∥
L2

≤ Ct−
5
8 ⟨t⟩

µ
4
− 1

4
(p−4) ∥u∥p−1

V ∥u∥W .

By Lemma 2.2.2, we also have for the third summand of the right-hand side
of (2.2.2)

∥x |u|p∥L2 ≤
∥∥∥|x| 13 u∥∥∥3

L∞
∥u∥p−3

L2(p−3)

≤ Ct−
1
2
−µ

4 ⟨t⟩
µ
4 ∥U (−t)u∥3

H0, 12+µ ∥u∥
p−3

L2(p−3)

≤ Ct−
1
2
−µ

4 ⟨t⟩−
1
4(p−

7
2
−µ) ∥u∥pV .

12



The last term of the right-hand side of (2.2.2) is estimated by Lemma 2.2.1
as ∥∥∥|u|p−1 J u

∥∥∥
L2

≤ ∥u∥p−1
L∞ ∥J u∥L2 ≤ C ⟨t⟩−

1
4(p−

3
2) ∥u∥p−1

V ∥u∥W .

Therefore we get the desired estimate.

2.3 Proof of Theorem 2.1.1 for n = 1

We consider the linearized equation

i∂tu− 1

4
∆2u = f (v, v) , u (0) = u0, (2.3.1)

where

v ∈ Z∞,ρ =
{
v ∈ Z∞; ∥v∥Z∞

≤ ρ
}
,

∥v∥Z∞
= sup

t∈[0,∞)
∥U (−t) v (t)∥Z ,

∥ϕ∥Z = ∥ϕ∥
H

1
2+δ + ∥ϕ∥

H0, 12+δ + ⟨t⟩−
1
8 ∥ϕ∥H0,1 .

We have the integral equation associated with (2.3.1)

u (t) = Sv (t) = U (t)u0 − i

∫ t

0
U (t− s) f (v, v) ds. (2.3.2)

By Lemma 4 in [14], we obtain

sup
t∈[0,T ]

∥u (t)∥
H

1
2+δ ≤ ∥u0∥

H
1
2+δ + C

∫ t

0
∥v (s)∥p−1

L∞ ∥v (s)∥
H

1
2+δ ds

≤ ∥u0∥
H

1
2+δ + Cρp. (2.3.3)

By Lemma 2.2.3 and (2.3.2) we get

∥J u (t)∥L2 ≤ ∥xu0∥L2 + Cρp
∫ t

0
s−

5
8 ⟨s⟩

µ
4
− 1

4
(p−4) ds

≤ ∥xu0∥L2 + Cρpt
1
8 (2.3.4)

and also∥∥∥|x| 12+δ U (−t)u (t)
∥∥∥
L2

≤
∥∥∥|x| 12+δ u0

∥∥∥
L2

+ C

∫ ∞

0

∥∥∥|x| 12+δ U (−s) f (v, v)
∥∥∥
L2
ds. (2.3.5)

13



By Hölder’s inequality, Lemma 2.2.3 and the first estimate of Lemma 2.2.1
we have∥∥∥|x| 12+δ U (−s) f (v, v)

∥∥∥
L2

≤ ∥xU (−s) f (v, v)∥
1
2
+δ

L2 ∥f (v, v)∥
1
2
−δ

L2

≤ Cρps−
5
16

− 5
8
δ ⟨s⟩−

1
4(p−

9
4)+

7
8
δ+ 1

4
µδ+ 1

8
µ . (2.3.6)

Therefore applying (2.3.6) to (2.3.5) we get∥∥∥|x| 12+δ U (−t)u (t)
∥∥∥
L2

≤
∥∥∥|x| 12+δ u0

∥∥∥
L2

+ Cρp + Cρp
∫ ∞

1
s−

1
4
(p−1)+ 1

4
(µ+δ+µδ)ds

≤
∥∥∥|x| 12+δ u0

∥∥∥
L2

+ Cρp (2.3.7)

if p > 5+µ+δ+µδ. Thus (2.3.3), (2.3.4) and (2.3.7) show that the mapping
S defined by u = Sv transforms Z∞,ρ into itself if the data are sufficiently
small in Z∞. We also find

sup
t∈[0,∞)

∥Sv1 (t)− Sv2 (t)∥L2 ≤ Cρp−1 sup
t∈[0,∞)

∥v1 (t)− v2 (t)∥L2 . (2.3.8)

Therefore the contraction mapping shows that there exists a unique global
solution u such that

U (−t)u ∈ L∞
(
0,∞;H

1
2
+δ ∩H0, 1

2
+δ
)
, ⟨t⟩

1
8 U (−t)u ∈ L∞ (0,∞;H0,1

)
and

u ∈ C
(
[0,∞) ;L2

)
.

The continuity in time of solutions U (−t)u in H
1
2
+δ ∩ H0,1 follows from

(2.3.3) and (2.3.4).

2.4 Preliminary estimates for n = 2

We obtain

|∂x|α U (t)ϕ =
1

(2π)
n
2

∫
Rn

eix·ξ+
it
4
|ξ|4 |ξ|α ϕ̂ (ξ) dξ

=

∫
Rn

Aα (x− y, t)ϕ (y) dy,

where 0 ≤ α < 3 and the kernel

Aα (x.t) =
1

(2π)
n
2

∫
Rn

eix·ξ+
it
4
|ξ|4 |ξ|α dξ.

14



The estimate of the kernel Aα (x, t) with an integer α was obtained in paper

[3]. We are interested here in fractional α. By the scalling xt−
1
4 = y, ξt

1
4 = η

and then changing the variable of integration η = z |y|
1
3 , we get

Aα (x, t) =
1

(2π)
n
2

∫
Rn

eix·ξ+
it
4
|ξ|4 |ξ|α dξ

= t−
2+α
4

1

2π

∫
Rn

eiy·η+
i
4
|η|4 |η|α dη

= t−
2+α
4 |y|

n+α
3

1

2π

∫
Rn

e
i|y|

4
3

(
y
|y| ·z+

1
4
|z|4

)
|z|α dz

= t−
2+α
4 |y|

n+α
3 Ãα (y) ,

where

Ãα (y) =
1

2π

∫
Rn

e
i|y|

4
3

(
y
|y| ·z+

1
4
|z|4

)
|z|α dz.

It is easy to see that
∣∣∣Ãα (y)

∣∣∣ <∞ for |y| ≤ 1 since 0 ≤ α < 3. To estimate

Ãα (y) for large y we apply the stationary phase method (see [7], p. 110)∫
Rn

F (x) eiλS(x)dx = eiλS(x0)

(
2π

λ

)n
2 ∣∣detS′′ (x0)

∣∣− 1
2 ei

π
4
sgnS′′(x0)F (x0)

+O
(
λ−

n
2
−1
)
,

where λ = |y|
4
3 , S (x) = y

|y| · x + 1
4 |x|

4 and the stationary point x0 =

(x0,1, · · · , x0,n) is defined by the equation

∇S (x0) = (∂1S (x0) , · · · , ∂nS (x0))

=

(
y1
|y|

+ |x0|2 x0,1, · · · ,
yn
|y|

+ |x0|2 x0,n
)

= (0, · · · , 0) .

We have x0 = − y
|y| and for n = 2

detS′′ (x0) =

∣∣∣∣∣ |x0|2 + 2x20,1 2x0,1x0,2
2x0,1x0,2 |x0|2 + 2x20,2

∣∣∣∣∣ = 3 |x0|4 = 3,

sgnS′′ (x0) is the difference between the number of positive and negative
eigenvalues of S′′ (x0) and sgnS′′ (x0) = 2, f (x0) = |x0|α = 1. Then

Ãα (y) =
1√
3
i |y|−

4
3 e−

3
4
i|y|

4
3 +O

(
|y|−

8
3

)
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for |y| → ∞. Thus we obtain the estimate

|Aα (x, t)| ≤ Ct−
2+α
4

⟨
xt−

1
4

⟩− 2−α
3
.

In the two dimensional case we would like to avoid the use of the norm
∥ϕ∥L1 since we restrict to the weighted Sobolev space ∥ϕ∥H1,1 .

Lemma 2.4.1. Let µ > 0 be small. Then the following estimates are true
for all t > 0

∥U (t)ϕ∥Lq ≤ C ⟨t⟩−
1
2

(
1− 1

q
−µ

6

)
(∥ϕ∥H1+µ + ∥ϕ∥H0,1)

if 6
2−µ < q ≤ ∞,

∥U (t)ϕ∥Ḣ1
q
≤ Ct−

3
8 ⟨t⟩−

1
2

(
3
4
− 1

q
−µ

6

)
∥ϕ∥H1,1

if 6
1−µ < q ≤ ∞, and

∥U (t)ϕ∥Ḣ2
q
≤ Ct

− 1
2

(
2− 1

q
− 7µ

12

)
∥ϕ∥H1,1

if 12
µ < q ≤ ∞.

Proof. As in the proof of Lemma 2.2.1, applying the Young’s inequality with
1
q + 1 = 1

r +
1
s , we get

∥∥∥|∂x|j U (t)ϕ
∥∥∥
Lq

≤ Ct−
2+j
4

∥∥∥∥∫
R2

⟨
(x− y) t−

1
4

⟩− 2−j
3 |ϕ (y)| dy

∥∥∥∥
Lq

≤ Ct−
2+j
4

∥∥∥∥⟨xt− 1
4

⟩− 2−j
3

∥∥∥∥
Lr

∥ϕ∥Ls

≤ Ct−
2+j
4

− 1
2r ∥ϕ∥Ls ,

since ∥∥∥∥⟨xt− 1
4

⟩− 2−j
3

∥∥∥∥r
Lr

= t
1
2

∫
R2

⟨x⟩−
2−j
3

r dx ≤ Ct
1
2

if 0 ≤ 1 + 1
q −

1
s = 1

r <
2−j
6 , j = 0, 1. Hence taking 1

s = 1− µ
6 , we have

∥U (t)ϕ∥
Ḣj

q
≤ Ct

− 1
2

(
2+j
2

− 1
q
−µ

6

)
∥ϕ∥H0,1 ,

if 6
2−j−µ < q ≤ ∞, j = 0, 1. For the case of 0 < t < 1, we apply the

Sobolev embedding theorem ∥U (t)ϕ∥Lq ≤ C ∥U (t)ϕ∥H1+µ = C ∥ϕ∥H1+µ for
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1 ≤ q ≤ ∞, to obtain the first estimate of the lemma. For the second
estimate in the case of 0 < t < 1, we estimate

∥∇U (t)ϕ∥Lq ≤ Ct−
1
2

∥∥∥∥∫
R2

⟨
(x− y) t−

1
4

⟩− 2
3 |∇ϕ (y)| dy

∥∥∥∥
Lq

≤ Ct−
1
2

∥∥∥∥⟨xt− 1
4

⟩− 2
3

∥∥∥∥
Lr

∥∇ϕ∥Ls ≤ Ct−
1
2
+ 1

2r ∥∇ϕ∥Ls ≤ Ct−
3
8 ∥ϕ∥H1,1 ,

if 0 ≤ 1+ 1
q −

1
s = 1

r <
1
3 , taking r = 4, 1

s = 3
4 +

1
q we get the second estimate

of the lemma. To prove the third estimate of the lemma, we use the Young’s
inequality with 1

q + 1 = 1
r +

1
s , α = 2− µ, to obtain∥∥∥|∂x|2 U (t)ϕ

∥∥∥
Lq

=
∥∥∥|∂x|2−µ U (t) |∂x|µ ϕ

∥∥∥
Lq

≤ Ct
µ
4
−1

∥∥∥∥∫
R2

⟨
(x− y) t−

1
4

⟩−µ
3 ||∂y|µ ϕ (y)| dy

∥∥∥∥
Lq

≤ Ct
µ
4
−1

∥∥∥∥⟨xt− 1
4

⟩−µ
3

∥∥∥∥
Lr

∥|∂x|µ ϕ∥Ls .

Then using

∥∥∥∥⟨xt− 1
4

⟩−µ
3

∥∥∥∥
Lr

≤ Ct
1
2r for r > 6

µ , and choosing 1
s = 1− µ

12 , we

get ∥∥∥|∂x|2 U (t)ϕ
∥∥∥
Lq

≤ Ct
−1+ 1

2q
+ 7µ

24 ∥|∂x|µ ϕ∥Ls ≤ Ct
− 1

2

(
2− 1

q
− 7µ

12

)
∥ϕ∥H1,1

if 12
µ < q ≤ ∞.

In order to estimate the action of J on the nonlinearity we need the
following lemmas.

Lemma 2.4.2. Let µ > 0 be small. Then the estimate∥∥∥|x| 23−µ U (t)ϕ
∥∥∥
L∞

≤ Ct−
1
3
− µ

12 ∥ϕ∥H0,1

is true for all t > 0.

Proof. Using the Young’s inequality with 1 = 1
r +

1
r′ =

1
s +

1
s′ , we get

∥|x|a U (t)ϕ∥L∞ ≤ Ct−
1
2

∥∥∥∥∫
R2

|x− y|a
⟨
(x− y) t−

1
4

⟩− 2
3 |ϕ (y)| dy

∥∥∥∥
L∞

+ Ct−
1
2

∥∥∥∥∫
R2

⟨
(x− y) t−

1
4

⟩− 2
3 |y|a |ϕ (y)| dy

∥∥∥∥
L∞

≤ Ct−
1
2
+a

4

∥∥∥∥⟨xt− 1
4

⟩a− 2
3

∥∥∥∥
Lr′

∥ϕ∥Lr

+ Ct−
1
2

∥∥∥∥⟨xt− 1
4

⟩− 2
3

∥∥∥∥
Ls′

∥|x|a ϕ∥Ls

≤ Ct−
1
2
+a

4
+ 1

2r′ ∥ϕ∥Lr + Ct−
1
2
+ 1

2s′ ∥|x|a ϕ∥Ls
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if
(
2
3 − a

)
r′ > 2, 2

3s
′ > 2, i.e. 1 ≤ r < 6

4+3a , 1 ≤ s < 3
2 . Therefore we have

∥|x|a U (t)ϕ∥L∞ ≤ Ct−
1
2r

+a
4 ∥ϕ∥Lr + Ct−

1
2s ∥|x|a ϕ∥Ls

for 0 ≤ a < 2
3 , 1 ≤ r < 6

4+3a , 1 ≤ s < 3
2 . Taking a = 2

3 − µ, 1
r = 1 − µ

3 ,
1
s = 2

3 + µ
6 we find∥∥∥|x| 23−µ U (t)ϕ

∥∥∥
L∞

≤ Ct−
1
3
− µ

12 ∥ϕ∥
L

3
3−µ

+ Ct−
1
3
− µ

12

∥∥∥|x| 23−µ ϕ
∥∥∥
L

6
4+µ

.

Since

∥ϕ∥
L

3
3−µ

≤ ∥⟨x⟩ϕ∥L2

∥∥∥⟨x⟩−1
∥∥∥
L

6
3−2µ

≤ C ∥ϕ∥H0,1

and∥∥∥|x| 23−µ ϕ
∥∥∥
L

6
4+µ

≤
∥∥∥⟨x⟩ 1

3
+µ |x|

2
3
−µ ϕ

∥∥∥
L2

∥∥∥⟨x⟩− 1
3
−µ
∥∥∥
L

6
1+µ

≤ C ∥ϕ∥H0,1 ,

we obtain the estimate of the lemma∥∥∥|x| 23−µ U (t)ϕ
∥∥∥
L∞

≤ Ct−
1
3
− µ

12 ∥ϕ∥H0,1 .

Define the norm

∥ϕ∥Z = ∥ϕ∥H1+µ + ∥ϕ∥H1,1 .

Lemma 2.4.3. Let p > 3. Then there exists a small µ > 0 such that the
estimate

∥x |U (t)ϕ|p∥L2 ≤ Ct−
3
4 ⟨t⟩−

1
4
−µ ∥ϕ∥pZ

holds for all t > 0.

Proof. We use Lemma 2.4.2 to find

∥|x| |U (t)ϕ|p∥L2 =

∥∥∥∥∣∣∣|x| 23−µ |U (t)ϕ|
∣∣∣ 3
2−3µ |U (t)ϕ|p−

3
2−3µ

∥∥∥∥
L2

≤ C
∥∥∥|x| 23−µ |U (t)ϕ|

∥∥∥ 3
2−3µ

L∞
∥U (t)ϕ∥

p− 3
2−3µ

L
2(p− 3

2−3µ)

≤ Ct
−(1+µ

4 )
1

2−3µ ∥ϕ∥
3

2−3µ

H0,1 ∥U (t)ϕ∥
p− 3

2−3µ

L
2(p− 3

2−3µ)
.

For a small µ > 0, we find that 2
(
p− 3

2−3µ

)
> 6

2−µ , hence the first estimate

of Lemma 2.4.1 says

∥U (t)ϕ∥
p− 3

2−3µ

L
2(p− 3

2−3µ)
≤ C ⟨t⟩−

1
2

(
p− 3

2−3µ
− 1

2
−µ

6

(
p− 3

2−3µ

))
∥ϕ∥

p− 3
2−3µ

Z .
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Therefore we obtain

∥|x| |U (t)ϕ|p∥L2 ≤ Ct
−(1+µ

4 )
1

2−3µ ⟨t⟩−
1
2

(
p− 3

2−3µ
− 1

2
−µ

6

(
p− 3

2−3µ

))
∥ϕ∥pZ .

≤ Ct−
3
4 ⟨t⟩−

1
4
−µ ∥ϕ∥pZ

since p > 3 and µ > 0 is small enough.

Next we estimate the action of the operator J = U (t)xU (−t) = x −
it∆∇ on the nonlinearity f (u, u).

Lemma 2.4.4. Let p > 3. Then there exists a small µ > 0 such that the
estimate

∥J f (u, u)∥L2 ≤ Ct−
3
4 ⟨t⟩−

1
4
−µ ∥U (−t)u∥pZ

is true for all t > 0.

Proof. As in (2.2.2) we start with

∥J f (u, u)∥L2 ≤ Ct
∑
|β|=1

Iβ + Ct
∑

|α|=2,|β|=1

Iα,β

+ C ∥x |u|p∥L2 + C
∥∥∥|u|p−1 J u

∥∥∥
L2
, (2.4.1)

where

Iβ = t

∥∥∥∥|u|p−3
∣∣∣∂βxu∣∣∣3∥∥∥∥

L2

,

Iα,β = t
∥∥∥|u|p−2

(
∂βxu

)
∂αxu

∥∥∥
L2
.

By the Hölder’s inequality with
∑2

j=1
1
rj

= 1
2 we find

Iβ ≤ t
∥∥∥∂βxu∥∥∥3

L3r1
∥u∥p−3

Lr2(p−3) .

Then taking 1
r1

= 1
2−µ,

1
r2

= µ, and using the first and the second estimates
of Lemma 2.4.1 with ϕ = U (−t)u we get

∥u∥p−3

Lr2(p−3) ≤ C ⟨t⟩−
1
2(p−3−µ

6
(p+3)) ∥U (−t)u∥p−3

Z

and ∥∥∥∂βxu∥∥∥3
L3r1

≤ Ct−
9
8 ⟨t⟩−

1
4(

7
2
+µ) ∥U (−t)u∥3Z .

Hence

Iβ ≤ Ct−
1
8 ⟨t⟩−

1
2(p−

5
4)+

p
12

µ ∥U (−t)u∥pZ
≤ Ct−

3
4 ⟨t⟩−

1
4
−µ ∥U (−t)u∥pZ (2.4.2)
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if p > 3 and µ > 0 is small. Similarly, by the Hölder’s inequality with∑3
j=1

1
qj

= 1
2 we find

Iα,β ≤ Ct ∥∂αxu∥Lq1

∥∥∥∂βxu∥∥∥
Lq2

∥u∥p−2

Lq3(p−2) .

Then taking 1
q1

= µ, 1
q2

= 1
6 − µ, 1

q3
= 1

3 , and applying Lemma 2.4.1 with
ϕ = U (−t)u we obtain

∥u∥p−2

Lq3(p−2) ≤ C ⟨t⟩−
1
2(p−2− 1

3
−µ

6
(p−2)) ∥U (−t)u∥p−2

Z ,

∥∥∥∂βxu∥∥∥
Lq2

≤ Ct−
3
8 ⟨t⟩−

1
2(

3
4
− 1

6
+ 5µ

6 ) ∥U (−t)u∥Z

and

∥∂αxu∥Lq1 ≤ Ct−1+ 19
24

µ ∥U (−t)u∥Z .

Hence

Iα,β ≤ Ct−
3
8
+ 19

24
µ ⟨t⟩−

1
2(p−

7
4)+

1
12

µ(p−7) ∥U (−t)u∥pZ
≤ Ct−

3
4 ⟨t⟩−

1
4
−µ ∥U (−t)u∥pZ . (2.4.3)

By Lemma 2.4.4 we have

∥|x| |u|p∥L2 ≤ Ct−
3
4 ⟨t⟩−

1
4
−µ ∥U (−t)u∥pZ . (2.4.4)

Also the last term of the right-hand side of (2.4.1) is estimated by Lemma
2.4.1 as ∥∥∥|u|p−1 J u

∥∥∥
L2

≤ ∥u∥p−1
L∞ ∥J u∥L2

≤ C ⟨t⟩−
p−1
2 (1−µ

6 ) ∥U (−t)u∥pZ
≤ Ct−

3
4 ⟨t⟩−

1
4
−µ ∥U (−t)u∥pZ . (2.4.5)

Therefore we get the desired estimate from (2.4.2) - (2.4.5).

2.5 Proof of Theorem 2.1.1 for n = 2

We consider the linearized equation (2.3.1), where

v ∈ Z∞,ρ =
{
v ∈ Z∞; ∥v∥Z∞

≤ ρ
}
,

with the norm

∥v∥Z∞
= sup

t∈[0,∞)
∥U (−t) v (t)∥Z + sup

t∈[0,∞)
∥Pv (t)∥L2 ,
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∥ϕ∥Z = ∥ϕ∥H1+δ + ∥ϕ∥H1,1 .

We consider the integral equation (2.3.2) associated with (2.3.1). We apply
Lemma 2.4.4 in (2.3.2) to get

∥J u (t)∥L2 ≤ ∥xu0∥L2 + Cρp. (2.5.1)

By Lemma 4 in [14], we obtain

∥u (t)∥H1+δ ≤ ∥u0∥H1+δ + C

∫ t

0

∥∥∥f (v (s) , v (s))∥∥∥
H1+δ

ds

≤ ∥u0∥H1+δ + C

∫ t

0
∥v (s)∥p−1

L∞ ∥v (s)∥H1+δ ds. (2.5.2)

We also get by the first estimate of Lemma 2.4.1

∥v (s)∥L∞ ≤ C ⟨s⟩−
1
2(1−

µ
6 ) ρ.

Therefore, we find

∥u (t)∥H1+δ ≤ ∥u0∥H1+δ + Cρp. (2.5.3)

By the identity

J · ∇u = Pu+ 4itLu = Pu+ 4itf (v, v) ,

we have

∥J · ∇u∥L2 ≤ ∥Pu∥L2 + Ct ∥f (v, v)∥L2 ≤ ∥Pu∥L2 + Cρp. (2.5.4)

Applying P to both sides of (2.3.2), we obtain

LPu = (4 + P) f (v, v)

and by the energy estimate

∥Pu (t)∥L2 ≤ ∥x · ∇u0∥L2 + C

∫ t

0
∥v (s)∥p−1

L∞ (∥Pv (s)∥L2 + ∥v (s)∥L2) ds

≤ ∥x · ∇u0∥L2 + Cρp. (2.5.5)

We apply (2.5.5) to (2.5.4) to obtain

∥J · ∇u (t)∥L2 ≤ ∥x · ∇u0∥L2 + Cρp. (2.5.6)

Applying Ωj,k = xj∂k − xk∂xj to both sides of (2.3.2), we get

LΩj,ku = Ωj,kf (v, v)
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and by the energy method

∥Ωj,ku (t)∥L2 ≤ ∥Ωj,ku0∥L2 + C

∫ t

0
∥v∥p−1

L∞ ∥Ωj,kv∥L2 ds

≤ ∥Ωj,ku0∥L2 + Cρp. (2.5.7)

As in [9], we obtain by integration by parts

2∑
j,k=1

∥Jj∂xk
u∥2L2 =

2∑
j,k=1

(Jj∂xk
u,Jj∂xk

u)

=

2∑
j,k=1

(xj∂xk
u, xj∂xk

u) +

2∑
j,k=1

(
xj∂xk

u,−it∆∂xj∂xk
u
)

+
2∑

j,k=1

(
−it∆∂xj∂xk

u, xj∂xk
u
)
+

2∑
j,k=1

(
it∆∂xj∂xk

u, it∆∂xj∂xk
u
)

=
1

2

2∑
j,k=1

(Ωj,ku,Ωj,ku) + ((x · ∇)u, (x · ∇)u) + (−it∆∇ · ∇u, (x · ∇)u)

+ ((x · ∇)u,−it∆∇ · ∇u) + (it∆∇ · ∇u, it∆∇ · ∇u)

=
1

2

2∑
j,k=1

∥Ωj,ku∥L2 + ∥J · ∇u∥2L2

where we have denoted the inner product by (·, ·). By (2.5.1), (2.5.3) and
(2.5.6) we get

∥u∥Z∞
≤ ε+ Cρp. (2.5.8)

Hence the mapping S defined by u = Sv transforms Z∞,ρ into itself. In the
same way as in the proof of (2.3.8), we obtain (2.3.8) for n = 2. Therefore
the contraction mapping shows that there exists a unique global solution u
such that

U (−t)u ∈ L∞
(
0,∞;H1+δ ∩H1,1

)
,

and

u ∈ C
(
[0,∞) ;L2

)
.

The continuity in time of solutions U (−t)u in H1+δ ∩ H1,1 follows from
(2.5.2), (2.5.4) and (2.5.5).
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Chapter 3

Global existence of small
solutions for a quadratic
nonlinear fourth-order
Schrödinger equation in six
space dimensions

3.1 Introduction

This Chapter is based on the author’s work [1]. We consider the Cauchy
problem for a quadratic nonlinear fourth-order Schrödinger equation in six
space dimensions{

i∂tu− 1
4∆

2u = λu2, (t, x) ∈ (0,∞)×R6,
u (0, x) = u0 (x) , x ∈ R6,

(3.1.1)

where, u is the complex conjugate of u and λ ∈ C. The aim of this Chapter
is to prove a global existence of small solutions and Lq (3 < q ≤ ∞) time
decay estimates of solutions to (3.1.1). We recall known results of global
existence of small solutions for{

i∂tu− 1
4∆

2u = f (u, u) , (t, x) ∈ (0,∞)×Rn

u (0, x) = u0 (x) , x ∈ Rn,
(3.1.2)

where the nonlinearity f (u, u) satisfies the growth condition
∣∣∂au∂buf (u, u)∣∣ ≤

C |u|p−a−b with 0 ≤ a + b ≤ p. Since the pointwise time decay estimates

of solutions to the free fourth-order Schrödinger equation is O
(
t−

n
4

)
and

the linear problem has the L2 conservation law, L2 norm of the nonlinearity

f (u, u) decays like O
(
t−

n
4
(p−1)

)
. We find

∫∞
1 t−

n
4
(p−1)dt <∞ if p > 1 + 4

n ,
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therefore we expect a global existence of small solutions to (3.1.2) holds if
p > 1 + 4

n . In the previous paper [2], we have applied the operator

J = e−
it
4
∆2
xe

it
4
∆2

=
(
e−

it
4
∆2
x1e

it
4
∆2
, · · · , e−

it
4
∆2
xne

it
4
∆2
)

= (x1 − it∆∂1, · · · , xn − it∆∂n) = x− it∆∇

(3.1.2) to show a global existence of small solutions to (3.1.2) with the space
dimensions n = 1 or 2 when the order of nonlinearity p > 1 + 4

n . We have
shown that the operator J works well for the power nonlinearities f (u, u)
in lower space dimensions as we have seen in Chapter 2. We are interested
in a global existence of small solutions to (3.1.2) when n ≥ 3 and p > 1+ 4

n .

In [21], the Lp+1-L
1+ 1

p time decay estimate of evolution operator e
1
2
it∆ was

applied to the nonlinear Schrödinger equations{
i∂tu+ 1

2∆u = f (u, u) , (t, x) ∈ (0,∞)×Rn,
u (0, x) = u0 (x) , x ∈ Rn,

(3.1.3)

to obtain a global existence of small solutions, when the initial data are small

in H1,0∩L1+ 1
p and the order of nonlinearity p satisfies p2,s (n) < p < p2,∗ (n),

where

p2,s (n) =
1

2

1 +
2

n
+

√(
1 +

2

n

)2

+ 4

(
2

n

) ,

p2,∗ (n) =

{
∞ (n = 1, 2)
n+2
n−2 (n ≥ 3) .

More precisely,

Theorem 3.1.1. We assume that p2,s (n) < p < p2,∗ (n), u0 ∈ H1,0 ∩ L
1+ 1

p

and ∥u0∥
H1,0∩L1+ 1

p
< ε, then there exists an ε > 0 such that (3.1.3) has a

unique global solution u ∈ C
(
[0,∞) : L2 ∩ Lp+1

)
. Moreover, the following

estimate

∥u (t)∥Lq ≤ C ⟨t⟩−
n
2

(
1− 2

q

)
ε,

is true for any 2 ≤ q ≤ p+ 1.

We remark that a global existence of small solutions to (3.1.3) with n = 4,
5 and f (u, u) = u2+u2+ |u|2 was solved in the sense of Theorem 3.1.1 since
p2,s (n) < 2 < p2,∗ (n) for n = 4, 5. However global well-posedness and the
L∞ time decay estimate of solutions are unknown. From the time decay of
free solutions, in the case of the fourth-order nonlinear Schrödinger equation,
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p2,s (n) and p2,∗ (n) are replaced by p2,s
(
n
2

)
and p2,∗

(
n
2

)
respectively. We

write p2,s
(
n
2

)
, p2,∗

(
n
2

)
by p4,s (n), p4,∗ (n), respectively. Then,

p4,s (n) =
1

2

1 +
4

n
+

√(
1 +

4

n

)2

+ 4

(
4

n

) ,

p4,∗ (n) =

{
∞ (n = 1, 2, 3, 4)
n+4
n−4 (n ≥ 5)

.

Applying the method of Strauss, global in time of small solutions for (3.1.2)
will be obtained if p4,s (n) < p < p4,∗ (n). However there are no global
result for the case 1 + 4

n < p ≤ p4,s (n) as far as we know. Note that
p4,s (6) = p2,s (3) = 2. In [12], [13] and [18], global results in time and L∞

time decay estimate of solutions to (3.1.3)) were shown when n = 3 and
f (u, u) = u2 + u2. In these papers the factorization technique of the free
evolution group was used. If we apply the same method as in [12], [13] and
[18] to (3.1.3) with n ≥ 4 and f (u, u) = u2 + u2, we use the operator J̃ to
the equation

[
n
2

]
+ 1 times, where

J̃ = e−
it
2
∆xe

it
2
∆ =

(
e−

it
2
∆x1e

it
2
∆, · · · , e−

it
2
∆xne

it
2
∆
)

= (x1 + it∂x1 , · · · , xn + it∂xn) = x+ it∇.

It seems that the iterative use of J̃ makes the problem difficult, therefore
as far as we know, global results for higher space dimensions are still open
problem. We have the same difficulty in our problem of this Chapter.

We define the following operators

P = x · ∇x + 4t∂t,

P̃ = −ξ · ∇ξ + 4t∂t,

(Ωj,k)j,k=1,··· ,6 =
(
xj∂xk

− xk∂xj

)
j,k=1,··· ,6 .

The operator P is related to the operator J through the identity

J · ∇ =

6∑
j=1

Jj∂xj =

6∑
j=1

(
xj∂xj − it∆∂2xj

)
= x · ∇ − it∆2

= x · ∇+ 4t∂t + 4it

(
i∂t −

1

4
∆2

)
= P + 4itL

where L = i∂t − 1
4∆

2 is the linear part of equation (3.1.1). We have the
commutation relations [J ,L] = 0, [L,P] = 4L and [L,Ωj,k] = 0. To state
our results in this Chapter precisely, we introduce the notation.

X =
3∩

j=0

H12−3j,j , ∥v∥X =
3∑

j=0

∥v∥H12−3j,j .

Our main result is the following.
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Theorem 3.1.2. Let u0 ∈ X, then there exists an ε > 0 such that (3.1.1)
has a unique global solution u satisfying U (−t)u ∈ C ([0,∞) : X) for any
u0 satisfying ∥u0∥X < ε. Moreover, the time decay estimates

∥u∥Ḣα
q
≤ Ct

− 3
2

(
1− 1

q

)
−α

4
+γ

are fulfilled, where 0 ≤ α < 3, 18
6−α < r < q ≤ ∞ and γ > 3

2

(
1
r −

1
q

)
.

We note here that we have L∞ time decay of solutions such that

∥u∥L∞ ≤ Ct−
3
2
+γ ,

where γ > 3
2r , r > 3. Therefore order of time decay is worse compared to

the one of solutions to the linear problem O
(
t−

3
2

)
. This fact comes from

the reason why the use of the operator
∑

|α|=4 J α yields the strong time

growth O
(
t4
)
in the nonlinearity which is difficult to treat, see our strategy

below.
From the proof of the above theorem, we have the scattering result.

Corollary 3.1.3. Let u be the solution constructed in Theorem 3.1.2. Then
for any u0 ∈ X satisfying ∥u0∥X < ε there exists a unique scattering state
u+ ∈ X+ =

∩2
j=0H

12−3j,j ⊃ X, such that ∥u+∥X+
< 2ε and

lim
t→∞

∥U (−t)u− u+∥X+
= 0.

We state our strategy of the proof. The operator J = (Jj)j=1,2,3,4,5,6,
Jj = xj − it∆∂xj is useful to get time decay estimates of solutions to
fourth-order nonlinear Schrödinger equations. However, when we apply the
operator J to the nonlinearity u2 iteratively, we encounter a difficulty of
the explicit time growth. Indeed we have from equation (3.1.1)

L
∑
|α|=3

J αu = λ
∑
|α|=3

J αu2 = B0 + B1 + B2 + B3 +RB, (3.1.4)

where

B0 =
∑

|α|+|β|=3,0≤|β|≤1

Cα,βJ αuJ βu,

B1 = t
∑

|α|+|β|=2,0≤|β|≤1,|γ|+|δ|=3,0≤|δ|≤3

Cγ,δ
α,β∂

γ
xJ αu∂δxJ βu

B2 = t2
∑

|α|=1,|γ|+|δ|=6,0≤|δ|≤6

Cγ,δ
α ∂γxJ αu∂δxu+ t2

∑
|γ|+|δ|=5,0≤|δ|≤2

Cγ,δ∂γxu∂δxu,

B3 = t3
∑

|γ|+|δ|=9,0≤|δ|≤4

Cγ,δ∂γxu∂δxu,

RB = t
∑
|γ|=1

Cγ∂γxuu+ t
∑

|α|=1,|γ|+|δ|=2,0≤|δ|≤2

Cγ,δ
α ∂γxJ αu∂δxu.
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It seems to be difficult to get the desired estimates for B2 and B3 which are
needed to show the theorem. In this Chapter, we overcome the difficulty to
use the normal form method. Our approach to this problem is based on [20],
where quadratic nonlinear terms were transformed to cubic nonlinearities
with faster time decay properties in nonlinear Klein-Gordon equations with
quadratic nonlinearities. The normal form method was applied to nonlinear
Schrödinger equations successfully by [4] in two space dimensions, where a
global existence of small solutions to the Cauchy problem (3.1.3) with n = 2
and f = f (u, u) =

∑2
j,k=1 λjk

(
∂xju

)
(∂xk

u), λjk ∈ C was shown. In [4],
(3.1.3) was shown that the identity

f = L2G1 (u, u) + 2G1

(
L2u, u

)
(3.1.5)

holds for any smooth function u, where L2 = i∂t +
1
2∆ and the symmetric

bilinear operator G1 is defined by the convolution

G1 (ϕ, ψ) =

∫
Rn

∫
Rn

g1 (y, z)ϕ (x− y)ψ (x− z) dydz

and the kernel g1 (y, z)is given by the inverse Fourier transform of

ˆ̂g1 (ξ, η) =
2

(2π)2

2∑
j,k=1

λjk
ξjηk

|ξ|2 + ξ · η + |η|2
.

with respect to y and z, namely

g1 (y, z) =
2

(2π)4

2∑
j,k=1

λjk

∫
Rn

∫
Rn

ξjηk

|ξ|2 + ξ · η + |η|2
eiy·ξ+iz·ηdξdη

We remark that G1 (ϕ, ψ) can be rewritten as

G1 (ϕ, ψ) = C

∫
Rn

∫
Rn

ˆ̂g1 (ξ, η) ϕ̂ (ξ) ψ̂ (η) eix·(ξ+η)dξdη.

If u is the solution of (3.1.3), then

L2u = f = L2G1 (u, u) + 2G1

(
f, u

)
which yields the nonlinear Schrödinger equation

L2 (u− G1 (u, u)) = 2G1

(
f, u

)
,

If one tries to apply this method to the nonlinear terms

f =
2∑

j,k=1

µjk
(
∂xju

)
(∂xk

u) or f =
2∑

j,k=1

νjk
(
∂xju

)
(∂xk

u) , µjk, νjk ∈ C
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then the functions ˆ̂g2and ˆ̂g3 will have a form

ˆ̂g2 (ξ, η) =
2

(2π)2

2∑
j,k=1

µjk
ξjηk
ξ · η

or ˆ̂g3 (ξ, η) =
2

(2π)2

2∑
j,k=1

νjk
ξjηk

|ξ|2 + ξ · η
,

respectively. Note the first function ˆ̂g1 dose not have singularity at the origin
and so G1

(
f, u

)
can be considered as a cubic nonlinearity through the result

of Coifman-Mayer [5]. Their result was improved by [22] as

Proposition 3.1.4. Let

Λ (ϕ, ψ) (x) =

∫
Rn

∫
Rn

eix·(ξ+η)m (ξ, η) ϕ̂ (ξ) ψ̂ (η) dξdη,

where 1 < p, q, r <∞ and 1
r = 1

p + 1
q . If m ∈ Cn+1

(
R2n \ {0}

)
satisfies∣∣∣∂αη ∂βζm (ξ, η)

∣∣∣ ≤ C (|ξ|+ |η|)−|α|−|β|

for all |α|+ |β| ≤ n+ 1 and (ξ, η) ̸= (0, 0), then

∥Λ (ϕ, ψ)∥Lr ≤ C ∥ϕ∥Lp ∥ψ∥Lq

is true.

If we put ˆ̂g1 (ξ, η) = m (ξ, η) in Proposition 3.1.4, then ˆ̂g1 (ξ, η) satisfies
the Coifman-Mayer condition of the proposition. Hence we have the estimate

∥∥∥G1

(
f (u, u), u

)∥∥∥
Lr

≤ C

∑
|α|=1

∥∂αxu∥Lp1

∑
|α|=1

∥∂αxu∥Lp2

 ∥u∥Lp3 ,

where

1

r
=
∑

1≤j≤3

1

pj
, 1 < pj , r <∞.

However, other two functions ˆ̂g2 and ˆ̂g3 have singularities at the origin,
hence, G2 (f, u) or G3

(
f, u

)
does not satisfies the Coifman-Mayer condition

except ˆ̂g2 (ξ, η) =
1

2π2 (µ11 + µ22), µ11 = µ22 = 1. In this case G2 (u, u) = u2

and f =
∑

j=1,2

(
∂xju

) (
∂xju

)
. Therefore we have

f = L2u
2 − 2uL2u

which implies if u is the solution of (3.1.3), then we have

L2

(
u− u2

)
= −2uL2u = −2uf.
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We now turn to our problem. We consider the problem{
Lu = fj , (t, x) ∈ (0,∞)×R6,
u (0, x) = u0 (x) , x ∈ R6,

(3.1.6)

where

f1 =
∑

|α|+|β|=4

(∂αxu)
(
∂βxu

)
, f2 =

∑
|α|+|β|=4

(∂αxu)
(
∂βxu

)
, f3 =

∑
|α|+|β|=4

(∂αxu)
(
∂βxu

)
to explain our situation. In the same way as in the proof of (3.1.5), we have

f1 = −LG1 (u, u)− 2G1

(
Lu, u

)
, (3.1.7)

f2 = −LG2 (u, u)− 2G2 (Lu, u)

and

f3 = −LG3 (u, u)− 2G3 (Lu, u)

where

ˆ̂g1 (ξ, η) =
4

(2π)6

∑
|α|+|β|=4

ξαηβ

|ξ|4 + |η|4 + |ξ + η|4
,

ˆ̂g2 (ξ, η) = − 4

(2π)6

∑
|α|+|β|=4

ξαηβ

|ξ|4 + |η|4 − |ξ + η|4
,

and

ˆ̂g3 (ξ, η) =
4

(2π)6

∑
|α|+|β|=4

ξαηβ

|ξ|4 − |η|4 + |ξ + η|4
.

Nonlinear terms B2 and B3 which are in the right hand sides of (3.1.4)
will be represented as the similar form as the right hand side of (3.1.7).

In the case of the fourth order Schödinger equation, ˆ̂g2 and ˆ̂g3 have
singularities at the origin. This is the reason why the nonlinearity of (3.1.1)
does not include the nonlinearity u2 or |u|2.

We organize the Chapter as follows. In Sections 3.2, we prove preliminary
estimates. In Section 3.3, We state the normal form method in the case of
the fourth-order nonlinear Schrödinger equation. We prove the main result
in Section 3.4.

3.2 Preliminary estimate

We summarize some estimates of the solutions of linear problem.
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Lemma 3.2.1. We define

A (t, x) = F−1E =
1

(2π)
n
2

∫
Rn

e−
1
4
it|ξ|4+ix·ξdξ.

If 0 ≤ α < 3, then the following estimate

||∂x|αA (t, x)| ≤ Ct−
n+|α|

4

⟨
xt−

1
4

⟩−n−|α|
3

is true for any t > 0, and x ∈ Rn.

Lemma 3.2.2. Let n = 6, 2 ≤ q ≤ ∞ and 1
q +

1
q′ = 1. Then

∥U (t)ϕ∥Lq ≤ Ct
− 3

2

(
1− 2

q

)
∥ϕ∥Lq′

for any t > 0.

Proof. By Lemma 3.2.1, we obtain

∥U (t)ϕ∥L∞ ≤ C ∥A ∗ ϕ∥L∞ ≤ Ct−
n
4 ∥ϕ∥L1 ,

where (F ∗G) (x) =
∫
R6 F (x− y)G (y) dy. Also U (t) is unitary operator in

L2. Therefore, we have the desire estimate by the Riesz-Thorin interpolation
theorem.

Since by the Sobolev embedding ∥ϕ∥Lq1 ≤ C ∥ϕ∥H1 , ∥ϕ∥Lq2 ≤ C ∥ϕ∥H2 ,
where 2 ≤ q1 < 3, 2 ≤ q2 < 6 and by the Hölder inequality ∥ϕ∥

Lq′1
≤ ∥ϕ∥H0,1 ,

∥ϕ∥
Lq′2

≤ ∥ϕ∥H0,2 , where 1
q1

+ 1
q′1

= 1
q2

+ 1
q′2

= 1, we get from Lemma 3.2.2

Corollary 3.2.3. Let n = 6, 2 ≤ q1 < 3 and 2 ≤ q2 < 6. Then the following
estimates

∥U (t)ϕ∥Lq1 ≤ C ⟨t⟩−
3
2

(
1− 2

q1

)
(∥ϕ∥H1 + ∥ϕ∥H0,1) ,

∥U (t)ϕ∥Lq2 ≤ C ⟨t⟩−
3
2

(
1− 2

q2

)
(∥ϕ∥H2 + ∥ϕ∥H0,2)

are true for any t ≥ 0.

Next two lemmas say that time decay of solutions to linear problem is
similar to that of fourth order parabolic equation if we restrict Lq time decay
of solutions with q > 3.

Lemma 3.2.4. Let n = 6, 0 ≤ a < 3, 18
6−a < q ≤ ∞, 18

6−a < r1 ≤ q and
1
r2

= 1
q −

1
r1

+ 1. Then the following estimate

∥U (t)ϕ∥Ḣa
q
≤ Ct

− 3
2

(
1− 1

r1

)
−a

4 ∥ϕ∥Lr2

is valid for any t > 0.
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Proof. We obtain

|∂x|a U (t)ϕ =
1

(2π)3

∫
R6

e−
1
4
it|ξ|4+ix·ξ |ξ|a ϕ̂ (ξ) dξ =

∫
R6

Aa (t, x− y)ϕ (y) dy,

where the kernel

Aa (t, x) = |∂x|aA (t, x) =
1

(2π)3

∫
R6

e−
1
4
it|ξ|4+ix·ξ |ξ|a dξ.

By Lemma 3.2.1, we get

||∂x|a U (t)ϕ| ≤ C

∫
R6

|Aa (t, x− y)| |ϕ (y)| dy

≤ Ct−
3
2
−a

4

∫
R6

⟨
(x− y) t−

1
4

⟩− 6−a
3 |ϕ (y)| dy.

Therefore applying the Young’s inequality

∥F ∗G∥Lq ≤ ∥F∥Lr1 ∥G∥Lr2

where 1
q = 1

r1
+ 1

r2
− 1, we have

∥|∂x|a U (t)ϕ∥Lq ≤ Ct−
3
2
−a

4

∥∥∥∥⟨xt− 1
4

⟩− 6−a
3

∥∥∥∥
Lr1

∥ϕ∥Lr2

≤ Ct
− 3

2

(
1− 1

r1

)
−a

4 ∥ϕ∥Lr2

if 18
6−a < q ≤ ∞, 18

6−a < r1 ≤ q, 1
r2

= 1
q −

1
r1
+1, which implies the lemma.

Remark 3.2.1. In Lemma 3.2.4, we put r1 = q, r2 = 1, then

∥U (t)ϕ∥Ḣa
q
≤ Ct

− 3
2

(
1− 1

q

)
−a

4 ∥ϕ∥L1 ,

where 18
6−a < q ≤ ∞, 0 ≤ a < 3. Time decay estimate of solutions for the

fourth-order Schrödinger equations is the same as that for the fourth-order
heat equations if we assume the restriction on q from the below. This is the
different point from the usual second order Schrödinger equations.

As a corollary of Lemma 3.2.4, we get

Corollary 3.2.5. Let 0 ≤ a < 3, b > 3 + a, 18
6−a < q1 ≤ ∞, 18

6−a < r1 < q1
and 18

6−a < r2 < 6, 6r2
6−r2

< q2 ≤ ∞. Then the following estimates

∥U (t)ϕ∥Ḣa
q1

≤ C ⟨t⟩−
3
2

(
1− 1

r1

)
−a

4 (∥ϕ∥Hb + ∥ϕ∥H0,3)

∥U (t)ϕ∥Ḣa
q2

≤ C ⟨t⟩−
3
2

(
1− 1

r2

)
−a

4 (∥ϕ∥Hb + ∥ϕ∥H0,2)

are true for any t ≥ 0.
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Proof. By lemma 3.2.4, we find

∥U (t)ϕ∥Ḣa
q1

≤ Ct
− 3

2

(
1− 1

r1

)
−a

4 ∥ϕ∥Ls1 ≤ Ct
− 3

2

(
1− 1

r1

)
−a

4 ∥ϕ∥H0,3 ,

∥U (t)ϕ∥Ḣa
q2

≤ Ct
− 3

2

(
1− 1

r2

)
−a

4 ∥ϕ∥Ls2 ≤ Ct
− 3

2

(
1− 1

r2

)
−a

4 ∥ϕ∥H0,2 ,

where 1
sj

= 1
qj

− 1
rj

+ 1 (j = 1, 2). Applying the Sobolev inequality, we get

∥U (t)ϕ∥Ḣa
qj

≤ C ∥U (t)ϕ∥Hb ≤ C ∥ϕ∥Hb ,

where j = 1, 2 and b > a+ 3. Therefore, Corollary 3.2.5 is proved.

In order to estimate the action of J = U (t)xU (−t) on the nonlinearity
we need the following lemma. We use the lemma by putting ϕ = U (−t)u.

Lemma 3.2.6. Let 0 ≤ a < 3, b > 3 + a, 18
3−a < q ≤ ∞, 18

3−a < r1 < q,
18
6−a < r3 < 6 and 1

q = 1
r1

+ 1
r2

− 1 = 1
r3

+ 1
r4

− 1. Then

∥|x| |∂x|a U (t)ϕ∥Lq

≤ C
(
⟨t⟩−

5+a
4

+ 3
2r1 + ⟨t⟩−

6+a
4

+ 3
2r3

)
(∥ϕ∥Hb+3 + ∥ϕ∥Hb,1 + ∥ϕ∥H0,3)

for any t ≥ 0.

Proof. By Lemma 3.2.1, we find

||x| |∂x|a U (t)ϕ| ≤ Ct−
6+a
4

∫
R6

|x− y|
⟨
(x− y) t−

1
4

⟩− 6−a
3 |ϕ (y)| dy

+ Ct−
6+a
4

∫
R6

⟨
(x− y) t−

1
4

⟩− 6−a
3 |y| |ϕ (y)| dy

≤ Ct−
5+a
4

∫
R6

⟨
(x− y) t−

1
4

⟩− 3−a
3 |ϕ (y)| dy

+ Ct−
6+a
4

∫
R6

⟨
(x− y) t−

1
4

⟩− 6−a
3 |y| |ϕ (y)| dy.

Applying the Young inequality, we get

∥|x| |∂x|a U (t)ϕ∥Lq

≤ Ct−
5+a
4

∥∥∥∥⟨xt− 1
4

⟩− 3−a
3

∥∥∥∥
Lr1

∥ϕ∥Lr2 + Ct−
6+a
4

∥∥∥∥⟨xt− 1
4

⟩− 6−a
3

∥∥∥∥
Lr3

∥|x|ϕ∥Lr4

≤ C
(
t
− 5+a

4
+ 3

2r1 + t
− 6+a

4
+ 3

2r3

)
∥ϕ∥H0,3 .
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Let t ≤ 1. By xj = Jj − it∆∂xj , we obtain

∥|x| |∂x|a U (t)ϕ∥Lq ≤ C
6∑

j=1

∥xj |∂x|a U (t)ϕ∥Lq

≤ C
6∑

j=1

(
∥Jj |∂x|a U (t)ϕ∥Lq + t

∥∥∆∂xj |∂x|
a U (t)ϕ

∥∥
Lq

)
.

Applying the Sobolev inequality and the identity Jj = U (t)xjU (−t), we
have

∥Jj |∂x|a U (t)ϕ∥Lq + t
∥∥∆∂xj |∂x|

a U (t)ϕ
∥∥
Lq

≤ C
(
∥Jj |∂x|a U (t)ϕ∥Hb−a + t

∥∥∆∂xj |∂x|
a U (t)ϕ

∥∥
Hb−a

)
≤ C

(
∥xj |∂x|a ϕ∥Hb−a + ∥ϕ∥Hb+3

)
≤ C (∥ϕ∥Hb,1 + ∥ϕ∥Hb+3)

with j = 1, · · · , 6. Thus, we get

∥|x| |∂x|a U (t)ϕ∥Lq ≤ C (∥ϕ∥Hb,1 + ∥ϕ∥Hb+3) .

Therefore we obtain the desire estimate.

The next lemma is used for obtaining estimates of
∑

|α|=3 ∥J αu∥Ḣ1 and∥∥∥⟨·⟩3FU (−t)u
∥∥∥
Lq
.

Lemma 3.2.7. Let q > 6. Then we have the following estimates∥∥∥⟨·⟩4FU (−t)u2
∥∥∥
L∞

≤ Cmax

(
t
− 3(q−2)

2q , t
− 3(q−1)

2q
+γ0 , t−

3
2
+2γ0

)
∥u∥2Y ,

∥∥∇FU (−t)u2
∥∥
L∞ ≤ Cmax

(
t
− 3(3q−4)

4q , t
− 3(3q−2)

4q
+γ0 , t−

9
4
+2γ0

)
∥u∥2Y

for any t ≥ 1, where

∥v∥Y = ∥v∥L2 + ⟨t⟩−γ0
∑
|α|=3

∥J αv∥L2 + ∥FU (−t) v∥Lq ,

and 0 < γ0.
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Proof. Applying the operator FU (−t) to u2, we find

FU (−t)u2 = (2π)3 e
1
4
it|ξ|4

∫
R6

û (ξ − η) û (η) dη

= (2π)3 e
1
4
it|ξ|4

∫
R6

û (η − ξ) û (−η)dη

= (2π)3 e
1
4
it|ξ|4

∫
R6

û

(
η − ξ

2

)
û

(
−
(
η +

ξ

2

))
dη

= (2π)3
∫
R6

e
1
4
it
(
|ξ|4+|η− ξ

2 |
4
+|−(η+ ξ

2)|
4
)

× e
1
4
it|η− ξ

2 |
4

û

(
η − ξ

2

)
e

1
4
it|−(η+ ξ

2)|
4

û

(
−
(
η +

ξ

2

))
dη

= (2π)3
∫
R6

e
1
4
it
(
|ξ|4+|η− ξ

2 |
4
+|−(η+ ξ

2)|
4
)
φ̂

(
η − ξ

2

)
φ̂

(
−
(
η +

ξ

2

))
dη

= (2π)3
∫
R6

e
1
4
itS(η,ξ)φ̂ (z) φ̂ (w)dη,

where

S (η, ξ) = |ξ|4 +
∣∣∣∣η − ξ

2

∣∣∣∣4 + ∣∣∣∣−(η + ξ

2

)∣∣∣∣4
= 2 |η|4 + 2 (η · ξ)2 + |η|2 |ξ|2 + 9

8
|ξ|4 ,

φ̂ = FU (−t)u, z = η − ξ

2
, w = −

(
η +

ξ

2

)
.

By the identity

e
1
4
itS(η,ξ) = H∇η ·

(
ηe

1
4
itS(η,ξ)

)
with

H =

(
6 +

1

4
itη · ∇ηS (η, ξ)

)−1

=

(
6 + it

(
2 |η|4 + (η · ξ)2 + 1

2
|ξ|2 |η|2

))−1
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and integration by parts, we obtain∫
R6

e
1
4
itS(η,ξ)φ̂ (z) φ̂ (w)dη =

∫
R6

H∇η ·
(
ηe

1
4
itS(η,ξ)

)
φ̂ (z) φ̂ (w)dη

= −
∫
R6

e
1
4
itS(η,ξ) (η · ∇ηH) φ̂ (z) φ̂ (w)dη

−
∫
R6

e
1
4
itS(η,ξ)Hη · ∇η

(
φ̂ (z) φ̂ (w)

)
dη

=

∫
R6

e
1
4
itS(η,ξ)H

(
(η · ∇η)

2H
)
φ̂ (z) φ̂ (w)dη

+

∫
R6

e
1
4
itS(η,ξ) (η · ∇ηH)2 φ̂ (z) φ̂ (w)dη

+ 2

∫
R6

e
1
4
itS(η,ξ)H (η · ∇ηH) η · ∇η

(
φ̂ (z) φ̂ (w)

)
dη

+

∫
R6

e
1
4
itS(η,ξ)H2

(
(η · ∇η)

2
(
φ̂ (z) φ̂ (w)

))
dη. (3.2.1)

By applying the estimates

|η · ∇ηH| ≤ CW (η, ξ)∣∣∣H ((η · ∇η)
2H
)∣∣∣+ |H (η · ∇η)H|+

∣∣H2
∣∣ ≤ C (W (η, ξ))2

with

W (η, ξ) =
(
1 + t |η|2

(
|η|2 + |ξ|2

))−1

and the estimate∣∣∣(η · ∇η)
2
(
φ̂ (z) φ̂ (w)

)∣∣∣
≤ C

∣∣∣(η · ∇η)
(
φ̂ (z) φ̂ (w)

)∣∣∣+ ∣∣∣η · ((η · ∇η)∇η

(
φ̂ (z) φ̂ (w)

))∣∣∣
≤ C |η|

∑
|α|+|β|=1

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣+ C |η|2
∑

|α|+|β|=2

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ ,
we find ∣∣∣∣∫

R6

e
1
4
itS(η,ξ)φ̂ (z) φ̂ (w)dη

∣∣∣∣ ≤ C

2∑
j=0

I1,j ,

where

I1,j =

∫
R6

|η|j (W (η, ξ))2
∑

|α|+|β|=j

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη
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with j = 0, 1, 2. We make a change of variable η = t−
1
4 η̃ to obtain∥∥∥|η|βW (η, ξ)2

∥∥∥α
Lα
η

≤ C

∫ (
|η|β

(
1 + t |η|4

)−2
)α

dη

≤ Ct−
3
2
−αβ

4

∫ (
|η̃|β

(
1 + |η̃|4

)−2
)α

dη̃

≤ Ct−
3
2
−αβ

4 (3.2.2)

if α > 1 and (8− β)α > 6. By (3.2.2), the Hölder and the Sobolev inequal-
ities, we estimate

I1,0 ≤ C

∫
R6

W (η, ξ)2 |φ̂ (z)| |φ̂ (w)| dη

≤ C
∥∥∥W (η, ξ)2

∥∥∥
L

q
q−2
η

∥φ̂∥2Lq

≤ Ct
− 3(q−2)

2q ∥φ̂∥2Lq ,

I1,1 ≤ C

∫
R6

|η|W (η, ξ)2
∑

|α|+|β|=1

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη
≤ C

∥∥∥|η|W (η, ξ)2
∥∥∥
L

6q
5q−6
η

∑
|α|=1

∥∂αφ̂∥L6 ∥φ̂∥Lq

≤ Ct
− 3(q−1)

2q ∥φ̂∥Ḣ3 ∥φ̂∥Lq

and

I1,2 ≤ C

∫
R6

|η|2W (η, ξ)2
∑

|α|+|β|=2

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη
≤ C

∥∥∥|η|2W (η, ξ)2
∥∥∥
L

3q
2q−3

∑
|α|=2

∥∂αφ̂∥L3 ∥φ̂∥Lq

+ C
∥∥∥|η|2W (η, ξ)2

∥∥∥
L

3
2

∑
|α|=1

∥∂αφ̂∥L6

2

≤ Ct
− 3(q−1)

2q ∥φ̂∥Ḣ3 ∥φ̂∥Lq + Ct−
3
2 ∥φ̂∥2

Ḣ3 ,

where q > 2.
By the Hölder inequality, we obtain

|ξ|4 I1,0 ≤
∫
R6

|ξ|4
(
1 + t |η|2

(
|η|2 + |ξ|2

))−2
|φ̂ (z)| |φ̂ (w)| dη

≤ t−2

∫
R6

|η|−4 |φ̂ (z)| |φ̂ (w)| dη

≤ t−2
(
∥φ̂∥2L2 + ∥φ̂∥2Lq

)
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if q > 6. In the same way

|ξ|4 I1,1 ≤
∫
R6

|ξ|4 |η|
(
1 + t |η|2

(
|η|2 + |ξ|2

))−2 ∑
|α|+|β|=1

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη
≤ t−2

∫
|η|−3

∑
|α|+|β|=1

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη
≤ Ct−2

∥φ̂∥H1 ∥φ̂∥L2 +
∑
|α|=1

∥∂αφ̂∥L6 ∥φ̂∥Lq


≤ Ct−2

(
∥φ̂∥H1 ∥φ̂∥L2 + ∥φ̂∥Ḣ3 ∥φ̂∥Lq

)
if q > 3 and

|ξ|4 I1,2 ≤
∫
R6

|ξ|4 |η|2
(
1 + t |η|2

(
|η|2 + |ξ|2

))−2 ∑
|α|+|β|=2

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη
≤ t−2

∫
|η|−2

∑
|α|+|β|=2

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη
≤ Ct−2

∥φ̂∥H2 ∥φ̂∥H1 +
∑
|α|=2

∥∂αφ̂∥L3 ∥φ̂∥Lq +
∑
|α|=1

∥∂αφ̂∥2L6


≤ Ct−2

(
∥φ̂∥H2 ∥φ̂∥H1 + ∥φ̂∥Ḣ3

(
∥φ̂∥Ḣ3 + ∥φ̂∥Lq

))
,

if q > 6. Thus we find∥∥∥⟨·⟩4 I1,j∥∥∥
L∞

≤ Cmax

(
t
− 3(q−2)

2q , t
− 3(q−1)

2q
+γ0 , t−

3
2
+2γ0

)
∥u∥2Y

for any t ≥ 1. Therefore, the first estimate of the lemma follows.
To obtain the second estimate, we compute

∇ξFU (−t)u2 = (2π)−3∇ξ

∫
R6

e
1
4
itS(η,ξ)φ̂ (z) φ̂ (w)dη

=
(2π)−3 it

4

∫
R6

e
1
4
itS(η,ξ)N (η, ξ) φ̂ (z) φ̂ (w)dη

+ (2π)−3
∫
R6

e
1
4
itS(η,ξ)∇ξ

(
φ̂ (z) φ̂ (w)

)
dη

= J1 + J2,

where N (η, ξ) = 4 (η · ξ) η + 9
2 |ξ|

2 ξ + 2 |η|2 ξ. In the same way as in the
proof of (3.2.1), we have

|J1| ≤ Ct
3∑

j=0

J1,j , |J2| ≤ C
3∑

j=1

J2,j
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where

J1,j =

∫
R6

((
|ξ|3 + |ξ| |η|2

)
|η|j
)
(W (η, ξ))3

∑
|α|+|β|=j

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη,
j = 0, 1, 2, 3 and

J2,j =

∫
R6

|η|j−1 (W (η, ξ))2
∑

|α|+|β|=j

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη.
In order to estimate J1,j (j = 1, 2, 3), we apply the Hölder and the Sobolev
inequalities to obtain for 0 ≤ a, b ≤ 2

J1,0 =

∫
R6

(
|ξ|3 + |ξ| |η|2

)(
1 + t |η|2

(
|η|2 + |ξ|2

))−3
|φ̂ (z)| |φ̂ (w)| dη

≤ C |ξ|3
∫
R6

(
1 + t |η|4−a |ξ|a

)−3
|φ̂ (z)| |φ̂ (w)| dη

+ C |ξ|
∫
R6

|η|2
(
1 + t |η|4−b |ξ|b

)−3
|φ̂ (z)| |φ̂ (w)| dη

≤ C |ξ|3
(∫

R6

(
1 + t |η|4−a |ξ|a

)−3
(

q
q−2

)
dη

) q−2
q

∥φ̂∥2Lq

+ C |ξ|

(∫
R6

|η|2
(

q
q−2

) (
1 + t |η|4−b |ξ|b

)−3
(

q
q−2

)
dη

) q−2
q

∥φ̂∥2Lq .

By changing of variable t
1

4−a |ξ|
a

4−a η = η̃, we get∫
R6

(
1 + t |η|4−a |ξ|a

)−3
(

q
q−2

)
dη

= t−
6

4−a |ξ|−
6a
4−a

∫
R6

(
1 + |η̃|4−a

)−3
(

q
q−2

)
dη̃

≤ Ct−
6

4−a |ξ|−
6a
4−a

if 3
(

q
q−2

)
(4− a) > 6. In the same way,

∫
R6

|η|2
(

q
q−2

) (
1 + t |η|4−b |ξ|b

)−3
(

q
q−2

)
dη

= t−
6

4−b |ξ|−
6a
4−b

(
t−

1
4−b |ξ|−

b
4−b

)2( q
q−2

) ∫
R6

|η̃|2
(

q
q−2

) (
1 + |η̃|4−b

)−3
(

q
q−2

)
dη̃

≤ Ct−
6

4−b |ξ|−
6b
4−b

(
t−

1
4−b |ξ|−

b
4−b

)2( q
q−2

)
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if −2
(

q
q−2

)
+ 3

(
q

q−2

)
(4− b) > 6. Therefore

J1,0 ≤ Ct
− 6

4−a

(
q−2
q

)
|ξ|3−

6a
4−a

(
q−2
q

)
∥φ̂∥2Lq

+ Ct
− 6

4−b

(
q−2
q

)
− 2

4−b |ξ|1−
6b
4−b

(
q−2
q

)
− 2b

4−b ∥φ̂∥2Lq .

We put a = 4q
3q−4 , b =

4q
3(3q−4) =

1
3a, then 3− 6a

4−a

(
q−2
q

)
= 0, 1− 6b

4−b

(
q−2
q

)
−

2b
4−b = 0. We also find that 3

(
q

q−2

)
(4− a) > 6 if q > 4 and −2

(
q

q−2

)
+

3
(

q
q−2

)
(4− b) > 6 if q > 4. Hence

J1,0 ≤ Ct
− 6

4−a

(
q−2
q

)
∥φ̂∥2Lq + Ct

− 6
4−b

(
q−2
q

)
− 2

4−b ∥φ̂∥2Lq

≤ Ct
− 3(3q−4)

4q ∥φ̂∥2Lq (3.2.3)

for q > 4.
We also obtain

J1,j ≤ C |ξ|3
∫
R6

|η|j
(
1 + t |η|4−a |ξ|a

)−3 ∑
|α|+|β|=j

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη
+ C |ξ|

∫
R6

|η|2+j
(
1 + t |η|4−b |ξ|b

)−3 ∑
|α|+|β|=j

|∂αφ̂ (z)|
∣∣∣∂βφ̂ (w)

∣∣∣ dη.
We take a = 4q

3q−2 , b = 4q
3(3q−2) , then in the same way as in the proof of

(3.2.3), we find

J1,1 ≤ Ct
− 3(3q−2)

4q

∑
|α|=1

∥∂αφ̂∥L6 ∥φ̂∥Lq ≤ Ct
− 3(3q−2)

4q ∥φ̂∥Ḣ3 ∥φ̂∥Lq

for q > 2. We obtain

J1,2 ≤ C |ξ|3
∫
R6

|η|2
(
1 + t |η|4−a |ξ|a

)−3 ∑
|α|=2

|∂αφ̂ (z)| |φ̂ (w)| dη

+ C |ξ|
∫
R6

|η|4
(
1 + t |η|4−b |ξ|b

)−3 ∑
|α|=2

|∂αφ̂ (z)| |φ̂ (w)| dη

+ C |ξ|3
∫
R6

|η|2
(
1 + t |η|4−c |ξ|c

)−3 ∑
|α|=1

|∂αφ̂ (z)|
∑
|β|=1

∣∣∣∂βφ̂ (w)
∣∣∣ dη

+ C |ξ|
∫
R6

|η|4
(
1 + t |η|4−d |ξ|d

)−3 ∑
|α|=1

|∂αφ̂ (z)|
∑
|β|=1

∣∣∣∂βφ̂ (w)
∣∣∣ dη.

39



We put a = 4q
3q−2 , b = a

3 , c = 4
3 , d = c

3 . Then in the same way as in the
proof of (3.2.3), we find

J1,2 ≤ Ct
− 3(3q−2)

4q

∑
|α|=2

∥∂αφ̂∥L3 ∥φ̂∥Lq + Ct−
9
4

∑
|α|=1

∥∂αφ̂∥2L6

≤ Ct
− 3(3q−2)

4q ∥φ̂∥Ḣ3 ∥φ̂∥Lq + Ct−
9
4 ∥φ̂∥2

Ḣ3 (3.2.4)

for q > 2. Similarly,

J1,3 ≤ Ct
− 3(3q−2)

4q

∑
|α|=3

∥∂αφ̂∥L2 ∥φ̂∥Lq + Ct−
9
4

∑
|α|=2,|β|=1

∥∂αφ̂∥L3

∥∥∥∂βφ̂∥∥∥
L6

≤ Ct
− 3(3q−2)

4q ∥φ̂∥Ḣ3 ∥φ̂∥Lq + Ct−
9
4 ∥φ̂∥2

Ḣ3 (3.2.5)

for q > 2. By (3.2.3)-(3.2.5)

∥J1∥L∞ ≤ Cmax

(
t
− 3(3q−4)

4q , t
− 3(3q−2)

4q
+γ0 , t−

9
4
+2γ0

)
∥u∥2Y (3.2.6)

for t ≥ 1. In the same way as in the proof of (3.2.6), we obtain

∥J2∥L∞ ≤ Cmax

(
t
− 3(3q−4)

4q , t
− 3(3q−2)

4q
+γ0 , t−

9
4
+2γ0

)
∥u∥2Y . (3.2.7)

Therefore, by (3.2.6) and (3.2.7), Lemma 3.2.7 is proved.

In order to estimate
∑

|α|=3 ∥J αu∥Ḣ1 we need Lemma 3.2.8 - Lemma
3.2.10 below.

Lemma 3.2.8. Let

κ1,j =

∫
R6

|ξ|6 (W (η, ξ))3
∑

a+b=j

|(η · ∇)a φ̂ (z)|
∣∣∣(η · ∇)b φ̂ (w)

∣∣∣ dη,
where j = 0, 1, 2, 3,

W (η, ξ) =
(
1 + t |η|2

(
|η|2 + |ξ|2

))−1
,

φ̂ = FU (−t)u, z = η − ξ
2 and w = −

(
η + ξ

2

)
. Then we have

3∑
j=0

(
sup
|ξ|≤1

∣∣∣|ξ|2 κ1,j∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,j

∣∣∣) ≤ Ct−3+γ1 ∥u∥2
Ỹ
+ Ct−2 ∥u∥

Ỹ
(D + E)

for any t ≥ 1 where q > 6, γ1 =
6
q , 0 < δ ≤ 1− γ1, 0 < γ0 <

1
4 ,

∥v∥
Ỹ

=
∑

0≤|α|≤2

∥J αv∥H12−3|α| +

1∑
j=0

⟨t⟩−γj
∑
|α|=3

∥J αv∥Ḣj +
∑

1≤|α|≤3

∥Qαv∥H12−4|α|

+
∑

1≤|α|≤2,|β|=1

∥∥∥J αQβv
∥∥∥
H2

+
∥∥∥⟨·⟩3FU (−t) v

∥∥∥
Lq
,
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Q = (Q1, · · · , Q17) =
(
1,P, (Ωj,k)j,k=1,··· ,6, j≥k

)
,

D = sup
|ξ|≤1

∣∣∣|ξ|2∆FU (−t)u2
∣∣∣

and

E = sup
1≤|ξ|

∣∣∣|ξ|3+δ ∆FU (−t)u2
∣∣∣ .

Proof. We make a change of variable η = t−
1
2 |ξ|−1 η̃ to obtain∥∥∥W (·, ξ)3

∥∥∥α
Lα
η

≤ C

∫ ((
1 + t |ξ|2 |η|2

)−3
)α

dη

≤ Ct−3 |ξ|−6
∫ (

1 + |η̃|2
)−3α

dη̃

≤ Ct−3 |ξ|−6 (3.2.8)

if α > 1.
First we estimate κ1,0. Let |ξ| ≤ 1. Applying the Hölder inequality and

(3.2.8), we have

κ1,0 ≤ |ξ|6
∥∥∥(W (·, ξ))3

∥∥∥
L

q
q−2

∥φ̂∥2Lq

≤ Ct
−3+ 6

q |ξ|
12
q ∥φ̂∥2Lq , (3.2.9)

where q > 2. Let |ξ| ≥ 1. By

|ξ|6 ≤ C
(
|η|3 + |z|3

)(
|η|3 + |w|3

)
≤ C ⟨η⟩6 ⟨z⟩3 ⟨w⟩3

we find

|ξ|3+δ κ1,0 ≤ C |ξ|3+δ
∫
R6

⟨η⟩6W (η, ξ)3
∣∣∣⟨z⟩3 φ̂ (z)

∣∣∣ ∣∣∣⟨w⟩3 φ̂ (w)
∣∣∣ dη

≤ C |ξ|3+δ
∫
R6

W (η, ξ)3
∣∣∣⟨z⟩3 φ̂ (z)

∣∣∣ ∣∣∣⟨w⟩3 φ̂ (w)
∣∣∣ dη

+ Ct−3 |ξ|−3+δ
∫
R6

∣∣∣⟨z⟩3 φ̂ (z)
∣∣∣ ∣∣∣⟨w⟩3 φ̂ (w)

∣∣∣ dη
≤ C |ξ|3+δ

∥∥∥W (·, ξ)3
∥∥∥
L

q
q−2

∥∥∥⟨·⟩3 φ̂∥∥∥2
Lq

+ Ct−3 |ξ|−3+δ ∥φ̂∥2H0,3 ,

where q > 2. Therefore we get

|ξ|3+δ κ1,0 ≤ Ct
−3+ 6

q |ξ|−3+δ+ 12
q

∥∥∥⟨·⟩3 φ̂∥∥∥2
Lq

+ Ct−3 |ξ|−3+δ ∥φ̂∥2H0,3 .

(3.2.10)
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By (3.2.9) and (3.2.10), we obtain

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,0∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,0

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
. (3.2.11)

We next consider the term κ1,1. We use the estimate

|η · ∇φ̂ (z)| ≤ C
|η|
|z|

∣∣∣P̃φ̂ (z)
∣∣∣+ ∑

|α|=1

|Ωαφ̂ (z)|+ t |∂tφ̂ (z)|

 ≡ C
|η|
|z|
ρ (z)

(see [13]) to find that

κ1,1 ≤
∫
R6

|ξ|6W (η, ξ)3
∑

a+b=1

|(η · ∇)a φ̂ (z)|
∣∣∣(η · ∇)b φ̂ (w)

∣∣∣ dη
≤ |ξ|6

∫
R6

|η|
|z|
W (η, ξ)3 ρ (z) |φ̂ (w)| dη

+ |ξ|6
∫
R6

|η|
|w|

W (η, ξ)3 |φ̂ (z)| ρ (w) dη

= κ1,1,1 + κ1,1,2. (3.2.12)

Let |ξ| ≤ 1. In order to remove a singularity or gain faster time decay, we
apply |ξ| ≤ C (|η|+ |z|). We get

κ1,1,1 ≤ C |ξ|5
∥∥∥∥∥
(
|η|2

|z|
+ |η|

)
W (η, ξ)3

∥∥∥∥∥
L

6q
5q−6
η

∥ρ∥L6 ∥φ̂∥Lq .

We make a change of variable η = t−
1
2 |ξ|−1 η̃ to obtain∥∥∥∥∥

(
|η|β+1

|z|
+ |η|β

)
W (η, ξ)3

∥∥∥∥∥
α

Lα
η

≤ C

∫  |η|β+1∣∣∣η − ξ
2

∣∣∣ + |η|β
(1 + t |η|2 |ξ|2

)−3

α

dη

≤ Ct−3−αβ
2 |ξ|−6−αβ

∫  |η̃|β+1∣∣∣η̃ − 1
2ξ |ξ| t

1
2

∣∣∣ + |η̃|β
(1 + |η̃|2

)−3

α

dη̃.

By the Hölder inequality,∫
1

|η̃ − γ|α (1 + |η̃|)(5−β)α
dη̃ <∞
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if γ ∈ R6, 1 < α < 6 and (6− β)α > 6. Therefore, we find∥∥∥∥∥
(
|η|β+1

|z|
+ |η|β

)
W (η, ξ)3

∥∥∥∥∥
α

Lα
η

≤ Ct−3−αβ
2 |ξ|−6−αβ . (3.2.13)

Thus, we get

κ1,1,1 ≤ Ct
−3+ 3

q |ξ|−1+ 6
q

∥∥∥P̃φ̂∥∥∥
H2

+
∑
|α|=1

∥Ωαφ̂∥H2 + t ∥∂tφ̂∥L6

 ∥φ̂∥Lq ,

(3.2.14)

where q > 6
5 . Let |ξ| ≥ 1. By applying the estimate |ξ| ≤ C (|η|+ |w|), we

obtain

|ξ|3+δ κ1,1,1 ≤ C |ξ|6+δ
∫
R6

|η|4

|z|
(W (η, ξ))3 ρ (z) |φ̂ (w)| dη

+ C |ξ|6+δ
∫
R6

|η|
|z|

(W (η, ξ))3 ρ (z)
∣∣∣|w|3 φ̂ (w)

∣∣∣ dη
= κ1,1,1,1 + κ1,1,1,2. (3.2.15)

By |ξ|2 |η|2W (ξ, η) ≤ Ct−1 and |ξ| ≤ C (|η|+ |z|), we get

κ1,1,1,1 ≤ Ct−3

∫
R6

|ξ|δ

|η|2 |z|
ρ (z) |φ̂ (w)| dη

≤ Ct−3

∫
R6

(
1

|η|2−δ |z|
+

1

|η|2 |z|1−δ

)
ρ (z) |φ̂ (w)| dη.

We use the Hölder inequality to find that

κ1,1,1,1 ≤ Ct−3 (∥ρ∥L2 ∥φ̂∥L2 + ∥ρ∥L6 ∥φ̂∥Lq) , (3.2.16)

where 6
2+δ < q.

By |ξ| ≤ C (|η|+ |z|), we have

κ1,1,1,2 ≤ C |ξ|5+δ
∫
R6

(
|η|2

|z|
+ |η|

)
(W (η, ξ))3 ρ (z)

∣∣∣|w|3 φ̂ (w)
∣∣∣ dη

In the same way as in the proof of (3.2.14), we find

κ1,1,1,2 ≤ Ct
−3+ 3

q |ξ|−1+ 6
q
+δ ∥ρ∥L6

∥∥∥|·|3 φ̂∥∥∥
Lq
, (3.2.17)

where q > 6
5 . Applying the Sobolev inequality, we obtain

∥ρ∥L2 + ∥ρ∥L6 ≤ C

∥∥∥P̃φ̂∥∥∥
H2

+
∑
|α|=1

∥Ωαφ̂∥H2 + t ∥∂tφ̂∥L2 + t ∥∂tφ̂∥L6

 .
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We obtain∥∥∥P̃φ̂∥∥∥
H2

+
∑
|α|=1

∥Ωαφ̂∥H2 ≤ C

∥U (−t)Pu∥H0,2 +
∑
|α|=1

∥U (−t)Ωαu∥H0,2


≤ C ∥u∥

Ỹ
. (3.2.18)

By the equation i∂tφ̂ = λFU (−t)u2 and Lemma 3.2.7 with q > 6 and
0 < γ0 ≤ 1

4 , we find

t ∥∂tφ̂∥L2 + t ∥∂tφ̂∥L6 ≤ Ct
∥∥∥⟨·⟩3+aFU (−t)u2

∥∥∥
L∞

≤ C ∥u∥2Y ,

where 0 < a ≤ 1. Combining the estimates (3.2.14)-(3.2.18), we get

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,1,1∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,1,1

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
,

where γ1 =
6
q . Similarly

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,1,2∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,1,2

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
.

Therefore we find

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,1∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,1

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
. (3.2.19)

Next we estimate κ1,2. We obtain

κ1,2 ≤
∫
R6

|ξ|6 (W (η, ξ))3 |(η · ∇) φ̂ (z)| |(η · ∇) φ̂ (w)| dη

+

∫
R6

|ξ|6 (W (η, ξ))3
(∣∣∣(η · ∇)2 φ̂ (z)

∣∣∣ |φ̂ (w)|+ |φ̂ (z)|
∣∣∣(η · ∇)2 φ̂ (w)

∣∣∣) dη
= κ1,2,1 + κ1,2,2

By the estimates

|η · ∇φ̂ (z)| ≤ C
|η|
|z|

∣∣∣P̃φ̂ (z)
∣∣∣+ ∑

|α|=1

|Ωαφ̂ (z)|+ t |∂tφ̂ (z)|

 = C
|η|
|z|
ρ (z)

and |ξ| ≤ C (|z|+ |w|), we obtain

κ1,2,1 ≤ C

∫
R6

|ξ|6 |η|2

|z| |w|
(W (η, ξ))3 ρ (z) ρ (w) dη

≤ C |ξ|5
∫
R6

|η|2

|z|
(W (η, ξ))3 ρ (z) ρ (w) dη

+ C |ξ|5
∫
R6

|η|2

|w|
(W (η, ξ))3 ρ (z) ρ (w) dη

= κ1,2,1,1 + κ1,2,1,2.
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Let |ξ| ≤ 1. By |ξ| ≤ C (|η|+ |z|), the Hölder inequality and (3.2.13), we
estimate

κ1,2,1,1 ≤ C |ξ|4
∫
R6

(
|η|3

|z|
+ |η|2

)
(W (η, ξ))3 ρ (z) ρ (w) dη

≤ C |ξ|4
∥∥∥∥∥
(
|η|3

|z|
+ |η|2

)
(W (η, ξ))3

∥∥∥∥∥
L

3+θ
2

η

∥ρ∥2
L

6+2θ
1+θ

≤ Ct−3+ 2θ
3+θ |ξ|−2+ 4θ

3+θ

∥∥∥P̃φ̂∥∥∥
H2

+
∑
|α|=1

∥Ωαφ̂∥H2 + t ∥∂tφ̂∥
L

6+2θ
1+θ

2

,

(3.2.20)

where 0 < θ ≤ 3γ1
2−γ1

. Let |ξ| ≥ 1. Using |ξ| ≤ ⟨z⟩ ⟨w⟩, we obtain

|ξ|3+δ κ1,2,1,1 ≤ C |ξ|6+δ
∫
R6

|η|2

|z|
(W (η, ξ))3 ⟨z⟩2 ρ (z) ⟨w⟩2 ρ (w) dη.

In the same way as in the proof of (3.2.20), we find

|ξ|3+δ κ1,2,1,1 ≤ Ct−3+ 4θ
3+2θ |ξ|−1+δ+ 8θ

3+2θ

×

∥∥∥P̃φ̂∥∥∥
H2,2

+
∑
|α|=1

∥Ωαφ̂∥H2,2 + t
∥∥∥⟨·⟩2 ∂tφ̂∥∥∥

L
6+2θ
1+θ

2

.

(3.2.21)

We obtain

∥∥∥P̃φ̂∥∥∥
H2,2

+
∑
|α|=1

∥Ωαφ̂∥H2,2 ≤ C

∥U (−t)Pu∥H2,2 +
∑
|α|=1

∥U (−t)Ωαu∥H2,2


≤ C ∥u∥

Ỹ
. (3.2.22)

Due to Lemma 3.2.7 with q > 6 and 0 < γ0 ≤ 1
4 , we get

t
∥∥∥⟨·⟩2 ∂tφ̂∥∥∥

L
6+2θ
1+θ

≤ Ct
∥∥∥⟨·⟩3FU (−t)u2

∥∥∥
L∞

≤ C ∥u∥2Y . (3.2.23)

By (3.2.20)-(3.2.23), we have

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,2,1,1∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,2,1,1

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
.

Similarly, we get

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,2,1,2∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,2,1,2

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
.
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Therefore

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,2,1∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,2,1

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
. (3.2.24)

Next we consider κ1,2,2 to obtain

κ1,2,2 ≤ Cκ1,1 + C

∫
R6

|ξ|6 |η|2

|z|
(W (η, ξ))3 ς (z) |φ̂ (w)| dη

+ C

∫
R6

|ξ|6 |η|2

|w|
(W (η, ξ))3 |φ̂ (z)| ς (w) dη

= Cκ1,1 + κ1,2,2,1 + κ1,2,2,2,

where

ς (z) =
∣∣∣P̃∇φ̂ (z)

∣∣∣+ ∑
|α|=1

|Ωα∇φ̂ (z)|+ t |∂t∇φ̂ (z)| .

Let |ξ| ≤ 1. By |ξ| ≤ C (|η|+ |z|), the Hölder inequality and (3.2.13), we
find

κ1,2,2,1 ≤ C |ξ|5
∫
R6

(
|η|3

|z|
+ |η|2

)
(W (η, ξ))3 ς (z) |φ̂ (w)| dη

≤ C |ξ|5
∥∥∥∥∥
(
|η|3

|z|
+ |η|2

)
(W (η, ξ))3

∥∥∥∥∥
L

3q
2q−3
η

∥ς∥L3 ∥φ̂∥Lq

≤ Ct
−3+ 3

q |ξ|−1+ 6
q ∥ς∥L3 ∥φ̂∥Lq , (3.2.25)

where q > 3
2 . Let |ξ| ≥ 1. By |ξ| ≤ C (|η|+ |w|), we have

|ξ|3+δ κ1,2,2,1 ≤ C |ξ|6+δ
∫
R6

|η|5

|z|
(W (η, ξ))3 ς (z) |φ̂ (w)| dη

+ C |ξ|6+δ
∫
R6

|η|2

|z|
(W (η, ξ))3 ς (z)

∣∣∣|w|3 φ̂ (w)
∣∣∣ dη.

In the same way as in the proofs of (3.2.16) and (3.2.25), we obtain

|ξ|6+δ
∫
R6

|η|5

|z|
(W (η, ξ))3 ς (z) |φ̂ (w)| dη

≤ Ct−3 ∥ς∥L2 ∥φ̂∥L2 + Ct−3 ∥ς∥L3 ∥φ̂∥Lq ,

where 6
2+δ < q and

|ξ|6+δ
∫
R6

|η|2

|z|
(W (η, ξ))3 ς (z)

∣∣∣|w|3 φ̂ (w)
∣∣∣ dη

≤ Ct
−3+ 3

q |ξ|−1+δ+ 6
q ∥ς∥L3

∥∥∥|·|3 φ̂∥∥∥
Lq
,
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where q > 3
2 and 0 < δ ≤ 1− γ1. Therefore, we find

|ξ|3+δ κ1,2,2,1 ≤ Ct−3

∥∥∥P̃φ̂∥∥∥
H1

+
∑
|α|=1

∥Ωαφ̂∥H1 + t ∥∇∂tφ̂∥L2

 ∥φ̂∥L2

+ C
(
t−3 + t

−3+ 3
q |ξ|−1+δ+ 6

q

)
×

∥∥∥P̃φ̂∥∥∥
H2

+
∑
|α|=1

∥Ωαφ̂∥H2 + t ∥∇∂tφ̂∥L3

∥∥∥⟨·⟩3 φ̂∥∥∥
Lq
.

(3.2.26)

Here we have used the Sobolev inequality. By the Hölder inequality, we get

t ∥∇∂tφ̂∥L2 ≤ Ct
∑
|α|=1

∥∥J αu2
∥∥
L2

≤ Ct
∑
|α|=1

(∥∥xαu2∥∥
L2 +

∥∥it∆∂αxu2∥∥L2

)
≤ Ct

∑
|α|=1

∥∥xαu2∥∥
L2 + Ct2

∥∥∥∥u(−∆)
3
2 u

∥∥∥∥
L2

≤ Ct ∥|x|u∥L∞ ∥u∥L2 + Ct2
∥∥∥(−∆)

3
2 u
∥∥∥
L∞

∥u∥L2 .

Applying Corollary 3.2.5, we obtain

t2
∥∥∥(−∆)

3
2 u
∥∥∥
L∞

≤ Ct2
∥∥∥(−∆)θ u

∥∥∥
Ḣ3−2θ

∞

≤ C ⟨t⟩−
1
4
+ 3

2r
+ θ

2
+(γ0+4θ(γ1−γ0)) ∥u∥

Ỹ

≤ C ∥u∥
Ỹ
,

where 0 < θ is small, 0 < γ0 <
1
4 and 6

1−4γ0
< r < ∞. By Lemma 3.2.6, we

find

t ∥|x|u∥L∞ ≤ Ct ⟨t⟩−
5
4
+ 3

2r
+γ0 ∥u∥

Ỹ
≤ C ∥u∥

Ỹ
,

where 0 < γ0 <
1
4 and 6

1−4γ0
≤ r <∞. Therefore, we obtain

t ∥∇∂tφ̂∥L2 ≤ C ∥u∥2
Ỹ
.

Using the Hölder inequality and Lemma 3.2.7 with q > 12
5 and 0 < γ0 <

5
8 ,

we find

t ∥∇∂tφ̂∥L3 ≤ t ∥∇∂tφ̂∥
2
3

L2 ∥∇∂tφ̂∥
1
3
L∞

≤ Ct

∑
|α|=1

∥∥J αu2
∥∥
L2

 2
3 ∥∥∇FU (−t)u2

∥∥ 1
3

L∞ ≤ C ∥u∥2
Ỹ
.

(3.2.27)
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By (3.2.25)-(3.2.27), we obtain

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,2,2,1∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,2,2,1

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
.

Similarly, we have

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,2,2,2∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,2,2,2

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
.

Therefore, we get

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,2,2∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,2,2

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
. (3.2.28)

Due to (3.2.24) and (3.2.28), we have

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,2∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,2

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
. (3.2.29)

Next we estimate κ1,3. We find that κ1,3 is estimated from above as

κ1,3 ≤
∫
R6

|ξ|6 (W (η, ξ))3

× (|η · ((η · ∇)∇φ̂ (z))| |(η · ∇) φ̂ (w)|+ |(η · ∇) φ̂ (z)| |η · ((η · ∇)∇φ̂ (w))|) dη

+

∫
R6

|ξ|6 |η|2 (W (η, ξ))3

× (|(η · ∇)∆φ̂ (z)| |φ̂ (w)|+ |φ̂ (z)| |(η · ∇)∆φ̂ (w)|) dη + Cκ1,1 + Cκ1,2

= κ1,3,1 + κ1,3,2 + κ1,3,3 + κ1,3,4 + Cκ1,1 + Cκ1,2.

By |ξ| ≤ |z|+ |w|, we obtain

κ1,3,1 ≤ C

∫
R6

|ξ|6 |η|3

|z| |w|
(W (η, ξ))3 ς (z) ρ (w) dη

≤ C

∫
R6

|ξ|5 |η|3

|z|
(W (η, ξ))3 ς (z) ρ (w) dη

+ C

∫
R6

|ξ|5 |η|3

|w|
(W (η, ξ))3 ς (z) ρ (w) dη

= κ1,3,1,1 + κ1,3,1,2,

where we recall that

ρ (z) =
∣∣∣P̃φ̂ (z)

∣∣∣+ ∑
|α|=1

|Ωαφ̂ (z)|+ t |∂tφ̂ (z)|
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and

ς (z) =
∣∣∣P̃∇φ̂ (z)

∣∣∣+ ∑
|α|=1

|Ωα∇φ̂ (z)|+ t |∂t∇φ̂ (z)| .

Let |ξ| ≤ 1. By |ξ| ≤ C (|η|+ |z|) and (3.2.13), we get

κ1,3,1,1 ≤ C |ξ|4
∫
R6

(
|η|4

|z|
+ |η|3

)
(W (η, ξ))3 ς (z) ρ (w) dη

≤ C |ξ|4
∥∥∥∥∥
(
|η|4

|z|
+ |η|3

)
(W (η, ξ))3

∥∥∥∥∥
L2+θ
η

∥ς∥L3 ∥ρ∥
L

6+3θ
1+2θ

≤ Ct
−3+ 3θ

2(2+θ) |ξ|−2+ 3θ
2+θ ∥ς∥L3 ∥ρ∥

L
6+3θ
1+2θ

, (3.2.30)

where 0 < θ ≤ 4γ1
3−2γ1

. Let |ξ| ≥ 1. By using |ξ| ≤ C (|η|+ |w|), we have

|ξ|3+δ κ1,3,1,1 ≤ C |ξ|6+δ
∫
R6

|η|5

|z|
(W (η, ξ))3 ς (z) ρ (w) dη

+ C |ξ|6+δ
∫
R6

|η|3

|z|
(W (η, ξ))3 ς (z) |w|2 ρ (w) dη.

In the same way as in the proofs of (3.2.16) and (3.2.30), we obtain

|ξ|6+δ
∫
R6

|η|5

|z|
(W (η, ξ))3 ς (z) ρ (w) dη

≤ Ct−3 ∥ς∥L2 ∥ρ∥L2 + Ct−3 ∥ς∥L3 ∥ρ∥
L

6+3θ
1+2θ

,

|ξ|6+δ
∫
R6

|η|3

|z|
(W (η, ξ))3 ς (z) |w|2 ρ (w) dη

≤ Ct
−3+ 3θ

2(2+θ) |ξ|−1+ 3θ
2+θ

+δ ∥ς∥L3

∥∥∥|·|2 ρ∥∥∥
L

6+3θ
1+2θ

,

where 0 < δ ≤ 1− γ1 and 0 < θ ≤ 2γ1
3−γ1

. Therefore, we get

|ξ|3+δ κ1,3,1,1 ≤ C
(
t−3 + t

−3+ 3θ
2(2+θ) |ξ|−1+ 3θ

2+θ
+δ
)
∥ς∥L3

∥∥∥⟨·⟩2 ρ∥∥∥
L

6+3θ
1+2θ

+ Ct−3 ∥ς∥L2 ∥ρ∥L2 . (3.2.31)

Due to (3.2.30) and (3.2.31), we have

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,3,1,1∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,3,1,1

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
.
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Similarly, we find

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,3,1,2∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,3,1,2

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
.

Therefore, we get

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,3,1∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,3,1

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
. (3.2.32)

In the same way as in the proof of (3.2.32), we have

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,3,2∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,3,2

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
. (3.2.33)

Next we estimate

κ1,3,3 ≤ C

∫
R6

|ξ|6 |η|3

|z|
(W (η, ξ))3 σ1 (z) |φ̂ (w)| dη,

where

σ1 (z) =
∣∣∣P̃∆φ̂ (z)

∣∣∣+ ∑
|α|=1

|Ωα∆φ̂ (z)|+ t |∂t∆φ̂ (z)| .

We divide σ1 (z) into two parts

κ1,3,3 ≤ C

∫
R6

|ξ|6 |η|3

|z|
(W (η, ξ))3 σ2 (z) |φ̂ (w)| dη

+ Ct

∫
R6

|ξ|6 |η|3

|z|
(W (η, ξ))3 |∂t∆φ̂ (z)| |φ̂ (w)| dη

= κ1,3,3,1 + κ1,3,3,2

where

σ2 (z) =
∣∣∣P̃∆φ̂ (z)

∣∣∣+ ∑
|α|=1

|Ωα∆φ̂ (z)| .

Let |ξ| ≤ 1. By |ξ| ≤ C (|η|+ |z|), the Hölder inequality and (3.2.13), we
get

κ1,3,3,1 ≤ C |ξ|5
∫
R6

(
|η|4

|z|
+ |η|3

)
(W (η, ξ))3 σ2 (z) |φ̂ (w)| dη

≤ C |ξ|5
∥∥∥∥∥
(
|η|4

|z|
+ |η|3

)
(W (η, ξ))3

∥∥∥∥∥
L

2q
q−2
η

∥σ2∥L2 ∥φ̂∥Lq

≤ Ct
−3+ 3

q |ξ|−1+ 6
q ∥σ2∥L2 ∥φ̂∥Lq , (3.2.34)
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where q > 2. By |ξ|2 |η|2W (ξ, η) ≤ Ct−1, we have

κ1,3,3,2 ≤ Ct |ξ|5
∫
R6

(
|η|4

|z|
+ |η|3

)
(W (η, ξ))3 |∂t∆φ̂ (z)| |φ̂ (w)| dη

≤ Ct−2 |ξ|−1
∫
R6

(
1

|η|2 |z|
+

1

|η|3

)
|∂t∆φ̂ (z)| |φ̂ (w)| dη. (3.2.35)

By (3.1.1), we find

i∂t∆φ̂ = λ∆FU (−t)u2.

We define B =
{
η ∈ R6; 1 ≤ |z|

}
. By definitions

D = sup
|ξ|≤1

∣∣∣|ξ|2∆FU (−t)u2
∣∣∣

and

E = sup
1≤|ξ|

∣∣∣|ξ|3+δ ∆FU (−t)u2
∣∣∣ ,

we obtain ∫
R6

1

|η|2 |z|
|∂t∆φ̂ (z)| |φ̂ (w)| dη

≤ E

∫
B

1

|η|2 |z|4+δ
|φ̂ (w)| dη +D

∫
Bc

1

|η|2 |z|3
|φ̂ (w)| dη.

The Hölder inequality gives us∫
R6

1

|η|2 |z|
|∂t∆φ̂ (z)| |φ̂ (w)| dη

≤ E

∥∥∥∥∥ 1

|η|2 |z|4+δ

∥∥∥∥∥
L

q
q−1
B

∥φ̂∥Lq +D

∥∥∥∥ 1

|η|2 |z|3

∥∥∥∥
L

q
q−1
Bc

∥φ̂∥Lq

≤ C (D + E) ∥φ̂∥Lq (3.2.36)

where q > 6.
Similarly, we get∫

R6

1

|η|3
|∂t∆φ̂ (z)| |φ̂ (w)| dη ≤ C (D + E) ∥φ̂∥Lq . (3.2.37)

Collecting (3.2.34)-(3.2.37), we have

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,3,3∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
+ Ct−2 (D + E) ∥u∥

Ỹ
. (3.2.38)
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Let |ξ| ≥ 1. By |ξ| ≤ C (|η|+ |w|), we get

|ξ|3+δ κ1,3,3,1 ≤ C |ξ|6+δ
∫
R6

|η|6

|z|
(W (η, ξ))3 σ2 (z) |φ̂ (w)| dη

+ C |ξ|6+δ
∫
R6

|η|3

|z|
(W (η, ξ))3 σ2 (z)

∣∣∣|w|3 φ̂ (w)
∣∣∣ dη.

In the same way of the proofs of (3.2.16) and (3.2.34), we find

|ξ|6+δ
∫
R6

|η|6

|z|
(W (η, ξ))3 σ2 (z) |φ̂ (w)| dη

≤ Ct−3 ∥σ2∥L2

∥∥∥⟨·⟩δ φ̂∥∥∥
L2

+ Ct−3 ∥σ2∥L2

∥∥∥⟨·⟩δ φ̂∥∥∥
Lq
,

where q > 3 and

|ξ|6+δ
∫
R6

|η|3

|z|
(W (η, ξ))3 σ2 (z)

∣∣∣|w|3 φ̂ (w)
∣∣∣ dη

≤ Ct
−3+ 3

q |ξ|−1+ 6
q
+δ ∥σ2∥L2

∥∥∥|·|3 φ̂∥∥∥
Lq
,

where q > 2. Therefore, we have

|ξ|3+δ κ1,3,3,1 ≤ C
(
t−3 + t

−3+ 3
q |ξ|−1+ 6

q
+δ
)
∥σ2∥L2

(∥∥∥⟨·⟩δ φ̂∥∥∥
L2

+
∥∥∥⟨·⟩3 φ̂∥∥∥

Lq

)
.

We obtain

|ξ|3+δ κ1,3,3,2 ≤ Ct |ξ|6+δ
∫
R6

|η|6

|z|
(W (η, ξ))3 |∂t∆φ̂ (z)| |φ̂ (w)| dη

+ Ct |ξ|6+δ
∫
R6

|η|3

|z|
(W (η, ξ))3 |∂t∆φ̂ (z)|

∣∣∣|w|3 φ̂ (w)
∣∣∣ dη.

Similarly, we get

|ξ|3+δ κ1,3,3,2 ≤ Ct−2 (D + E)
(∥∥∥⟨·⟩δ φ̂∥∥∥

L2
+
∥∥∥⟨·⟩δ φ̂∥∥∥

Lq

)
+ Ct−2 |ξ|−1+δ (D + E)

∥∥∥|·|3 φ̂∥∥∥
Lq
.

Thus, we find

sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,3,3

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
+ Ct−2 (D + E) ∥u∥

Ỹ
. (3.2.39)

Analogously, we get

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,3,4∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,3,4

∣∣∣
≤ Ct−3+γ1 ∥u∥2

Ỹ
+ Ct−2 (D + E) ∥u∥

Ỹ
. (3.2.40)
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Therefore, we have

sup
|ξ|≤1

∣∣∣|ξ|2 κ1,3∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ1,3

∣∣∣ ≤ Ct−3+γ1 ∥u∥2
Ỹ
+ Ct−2 ∥u∥

Ỹ
(D + E) .

Lemma 3.2.8 is proved.

In the same way of the proof of Lemma 3.2.8, the following lemmas are
true.

Lemma 3.2.9. Let

κ2,1,j =

∫
R6

(
|ξ|2 + |η|2

)
(W (η, ξ))2

∑
a+b=j

|(η · ∇)a φ̂ (z)|
∣∣∣(η · ∇)b φ̂ (w)

∣∣∣ dη,
with j = 0, 1, 2, 3, and

κ2,2,̃j =

∫
R6

(
|ξ|2 + |η|2

)
(W (η, ξ))2

∑
a+b=j̃

|(η · ∇)a (z · ∇) φ̂ (z)|
∣∣∣(η · ∇)b φ̂ (w)

∣∣∣ dη,
κ2,3,̃j =

∫
R6

(
|ξ|2 + |η|2

)
(W (η, ξ))2

∑
a+b=j̃

|(η · ∇)a φ̂ (z)|
∣∣∣(η · ∇)b (w · ∇) φ̂ (w)

∣∣∣ dη
with j̃ = 1, 2, where

W (η, ξ) =
(
1 + t |η|2

(
|η|2 + |ξ|2

))−1
.

Then the following estimates∑
0≤j≤3

(
sup
|ξ|≤1

∣∣∣|ξ|2 κ2,1,j∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ2,1,j

∣∣∣)
≤ Ct−2+γ1 ∥u∥2

Ỹ
+ Ct−1 ∥u∥

Ỹ
(D + E) ,∑

1≤j̃≤2,2≤k≤3

(
sup
|ξ|≤1

∣∣∣|ξ|2 κ2,k,̃j∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ2,k,̃j

∣∣∣)
≤ Ct−2+γ1 ∥u∥2

Ỹ
+ Ct−1 ∥u∥

Ỹ
(D + E)

are true for any t ≥ 1.

Lemma 3.2.10. Let

κ3,j =

∫
R6

W (η, ξ)
∑

|α|+|β|=2,a+b=j

|(η · ∇)a ∂αφ̂ (z)|
∣∣∣(η · ∇)b ∂βφ̂ (w)

∣∣∣ dη,
where j = 0, 1. Then we have∑
0≤j≤1

(
sup
|ξ|≤1

∣∣∣|ξ|2 κ3,j∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δ κ3,j

∣∣∣) ≤ Ct−1+γ1 ∥u∥2
Ỹ
+ C ∥u∥

Ỹ
(D + E)

for any t ≥ 1.
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3.3 Normal form method

In this section, we state the normal form method in the case of the fourth-
order Schrödinger equation. We consider the transformation of

qα,β =
∑

|α′|+|β′|=4

cα′,β′

(
∂α

′Sαu
)(

∂β
′Sβu

)
,

where α, β ∈ (N ∪ {0})13 and S =
(
1,∇, (Jj)j=1,··· ,6

)
. For scalar functions

ϕ, ψ and a single distribution Ω, we define

[ϕ,Ω, ψ] =

∫
R6

∫
R6

ϕ (x− y)Ω (y, z)ψ (x− z)dydz.

Multiplying both side of equation (3.1.1) by S, we obtain

i∂tSαu− 1

4
∆2Sαu = λSαu2. (3.3.1)

As in [4], by the equation (3.3.1), we represent

qα,β = −L ([Uα,M,Uβ])− [Fα,M,Uβ]− [Uα,M, Fβ] ,

where Uα = Sαu, Fα = λSαu2 , L = i∂t − 1
4∆

2 and

M̂ (η, ζ) =
4

(2π)6

∑
|β|+|γ|=4

cβ,γ
ηβζγ

|ζ|4 + |η|4 + |ζ + η|4
.

In order to estimate [·,M, ·], we use the following result.

Theorem 3.3.1. ([5], [22]). Let

Λ (ϕ, ψ) (x) =

∫
Rn

∫
Rn

eix·(η+ζ)m (η, ζ) ϕ̂ (η) ψ̂ (ζ) dηdζ,

and let 1 < p, q, r <∞ and 1
r = 1

p + 1
q . If m ∈ Cn+1

(
R2n \ {0}

)
satisfies∣∣∣∂αη ∂βζm (η, ζ)

∣∣∣ ≤ C (|η|+ |ζ|)−(|α|+|β|)

for all |α|+ |β| ≤ n+ 1 and (η, ζ) ̸= (0, 0), then

∥Λ (ϕ, ψ)∥Lr ≤ C ∥ϕ∥Lp ∥ψ∥Lq

is true.

Corollary 3.3.2. If 1 < p, q, r < ∞, 1
r = 1

p + 1
q and M̂ (η, ζ) satisfies the

hypothesis Theorem 3.3.1 on m (η, ζ), then

∥[ϕ,M,ψ]∥Lr ≤ C ∥ϕ∥Lp ∥ψ∥Lq .
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3.4 Proof of Theorem 3.1.2

We use the notation X =
∩3

j=0H
12−3j,j , ∥v∥X =

∑3
j=0 ∥v∥H12−3j,j and

∥v∥X′ =
∑

0≤|α|≤2

∥J αv∥H12−3|α| +

3∑
j=0

⟨t⟩−γj
∑
|α|=3

∥J αv∥Ḣj +
∑

1≤|α|≤3

∥Qαv∥H12−4|α|

+
∑

1≤|α|≤2,|β|=1

∥∥∥J αQβv
∥∥∥
H2

+
∥∥∥⟨·⟩3FU (−t) v

∥∥∥
Lq
,

where

Q = (Q1, · · · , Q17) =
(
1,P, (Ωj,k)j,k=1,··· ,6, j≥k

)
,

0 < γ0 <
1

12
, 0 < γ1 <

1

2
γ0, γ2 = 3γ1, γ3 = 5γ1

and 6
γ1

≤ q <∞.
By the contraction mapping principle, we prove local existence of solu-

tions.

Proposition 3.4.1. Let u0 ∈ X, then there exists an ε > 0 such that (3.1.1)
has a unique solution u satisfying U (−t)u ∈ C ([0, T ] ;X) with T > 1 and

sup
t∈[0,T ]

∥u (t)∥X′ < ε
1
2

for any u0 satisfying ∥u0∥X < ε.

Proof. We consider the mapping u = Mv defined by the linearized Cauchy
problem corresponding to (3.1.1):{

Lu = λv2, (t, x) ∈ (0,∞)×R6,
u (0, x) = u0 (x) , x ∈ R6,

where v ∈ YT,ρ =
{
v ∈ C ([0, T ] ;X′) ; supt∈[0,T ] ∥v∥X′ ≤ ρ

}
. By virtue of

the classical energy method we obtain the estimates

sup
t∈[0,T ]

3∑
|α|=0

∥J αu (t)∥H12−3|α|

≤ ∥u0∥X + C ⟨T ⟩4
 sup

t∈[0,T ]

3∑
|α|=0

∥J αv (t)∥H12−3|α|

2

≤ ε+ Cρ2 ⟨T ⟩4 ≤ ρ

3
,
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∥∥∥⟨·⟩3FU (−t)u
∥∥∥
Lq

≤ C ∥u0∥H3,3 + C ⟨T ⟩4
 sup

t∈[0,T ]

∑
0≤|α|≤3

∥J αv (t)∥H12−3|α|

2

≤ Cε+ Cρ2 ⟨T ⟩4 ≤ ρ

3

and

sup
t∈[0,T ]

 ∑
1≤|α|≤3

∥Qαu∥H12−4|α| +
∑

1≤|α|≤2,|β|=1

∥∥∥J αQβu
∥∥∥
H2

 ≤ 2ε+ Cρ2 ⟨T ⟩4 ≤ ρ

3

if max{2ε, Cε} = ρ
6 and Cρ ⟨T ⟩4 ≤ 1

6 . Thus, we get supt∈[0,T ] ∥Mv (t)∥X′ ≤
ρ. Similarly, we have

sup
t∈[0,T ]

∥Mv1 −Mv2∥X′ ≤ Cρ ⟨T ⟩4 sup
t∈[0,T ]

∥v1 − v2∥X′ ≤
1

2
sup

t∈[0,T ]
∥v1 − v2∥X′

if we take ε satisfying Cρ ⟨T ⟩4 ≤ 1
2 . Therefore, we get a unique fixed point

u = Mu such that u ∈ C ([0, T ] ;X′) with T > 1. We find that U (−t)u ∈
C ([0, T ] ;X). Moreover, we have

sup
t∈[0,T ]

∥u (t)∥X′ ≤ ρ = 6max{2, C}ε < ε
1
2

if 6max{2, C}ε
1
2 < 1. Proposition 3.4.1 is proved.

Global existence of small solutions for Cauchy problem (3.1.1) is obtained
in the following proposition.

Proposition 3.4.2. Let u0 ∈ X, then there exists an ε > 0 such that (3.1.1)
has a unique global solution u satisfying U (−t)u ∈ C ([0,∞) ;X) and

sup
t∈[0,∞)

∥u (t)∥X′ < ε
1
2

for any u0 satisfying ∥u0∥X < ε.

Proof. By Proposition 3.4.1, we find a T > 1 such that

sup
t∈[0,T ]

∥u∥X′ < ε
1
2 .

We assume that there exists a time T such that

sup
t∈[0,T ]

∥u∥X′ ≤ ε
1
2 .
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By applying a contradiction argument we prove that T = ∞. In order to
prove that T = ∞, we will derive a priori estimates which do not depend on
T . By Corollary 3.2.5, we obtain

∥u∥L∞ ≤ C ⟨t⟩−
3
2(1−

1
r )

∥u∥H4 +
∑
|α|≤3

∥J αu∥L2

 ≤ C ⟨t⟩−
3
2(1−

1
r )+γ0 ∥u∥X′ ,

where 3 < r <∞. Due to the energy method we find

d

dt
∥u∥H12 ≤ C

∥∥u2∥∥
H12 ≤ C ∥u∥H12 ∥u∥L∞ ≤ C ⟨t⟩−1−k ε

where 0 < k < 1
2 − γ0. Thus we obtain

sup
t∈[0,T ]

∥u∥H12 ≤ Cε. (3.4.1)

Next we estimate
∑

1≤|α|≤3 ∥Qαv∥H12−4|α| . Using Corollary 3.2.5, we get

∑
|α|=1

∥Qαu∥L∞ ≤ C ⟨t⟩−
3
2(1−

1
r )

∑
|α|=1

∥Qαu∥H4 +
∑

|α|=1,|β|=2

∥∥∥J βQαu
∥∥∥
L2


≤ C ⟨t⟩−

3
2(1−

1
r ) ∥u∥X′

and

∥J · ∇u∥L∞ ≤ C ⟨t⟩−
3
2(1−

1
r )

∑
|α|≤1

∥J αu∥H5 +
∑
|α|≤3

∥J αu∥Ḣ1


≤ C ⟨t⟩−

3
2(1−

1
r )+γ1 ∥u∥X′

where 3 < r < 6. Applying Lemma 3.2.6, we find

∥x · ∇u∥L∞ ≤ C ⟨t⟩−
3
2(1−

1
r )

∥u∥H8 +
∑
|α|≤1

∥J αu∥H5 +
∑
|α|≤3

∥J αu∥L2


≤ C ⟨t⟩−

3
2(1−

1
r )+γ0 ∥u∥X′

where 9 < r < ∞. By the identities [L,P] = 4L, [L,Ωj,k] = 0 and ∆∇ =
1
it (x− J ), Corollary 3.2.5, Lemma 3.2.6 and the energy method, we get

d

dt

∑
|α|=1

∥Qαu∥H8 ≤ C
∑
|α|=1

∥∥Qαu2
∥∥
H8

≤ C
∑
|α|=1

∥uQαu∥H8

≤ C
∑
|α|=1

(∥u∥H8 ∥Qαu∥L∞ + ∥u∥L∞ ∥Qαu∥H8)

≤ C ⟨t⟩−1−k ε,
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d

dt

∑
|α|=2

∥Qαu∥H4 ≤ C
∑
|α|=2

∥∥Qαu2
∥∥
H4

≤ C
∑
|α|=2

∥uQαu∥H4 + C
∑

|α|,|β|=1

∥∥∥(Qαu)
(
Qβu

)∥∥∥
H4

≤ C
(
∥u∥L∞ +

∥∥∆2u
∥∥
L∞

) ∑
|α|=2

∥Qαu∥H4 +
∑

|α|,|β|=1

∥Qαu∥L∞

∥∥∥Qβu
∥∥∥
H4

≤ C (∥u∥L∞ + ∥J · ∇u∥L∞ + ∥x · ∇u∥L∞) ε
1
2 + C ⟨t⟩−1−k ε

≤ C ⟨t⟩−1−k ε

and

d

dt

∑
|α|=3

∥Qαu∥L2 ≤ C
∑
|α|=3

∥Qαu∥L2 ∥u∥L∞ + C
∑

|α|=1,|β|=2

∥Qαu∥L∞

∥∥∥Qβu
∥∥∥
L2

≤ C ⟨t⟩−1−k ε,

where 0 < k < 1
4 − γ0. Hence

sup
t∈[0,T ]

∑
1≤|α|≤3

∥Qαv∥H12−4|α| ≤ Cε.

Now we estimate
∑

|α|=1 ∥J αu∥H9 . By the Hölder inequality and (3.4.10),
we estimate ∑

|α|=1

∥J αu∥L2 ≤
∑
|α|=2

∥J αu∥
1
2

L2 ∥u∥
1
2

L2 ≤ Cε. (3.4.2)

Using the identities J · ∇ = P + 4itL and

6∑
j,k=1

∥Jj∂xk
ϕ∥2L2 =

1

2

6∑
j,k=1

∥Ωj,kϕ∥2L2 + ∥J · ∇ϕ∥2L2

(see [2]), we get∑
|α|=1

∥J αu∥Ḣ9 ≤ C
∑
|α|=1

∥∥∆4Qαu
∥∥
L2 + Ct

∥∥∆4Lu
∥∥
L2

≤ Cε+ Ct
∥∥u∆4u

∥∥
L2

≤ Cε+ Ct ∥u∥L∞ ∥u∥H8

≤ Cε.

Therefore, we find

sup
t∈[0,T ]

∑
|α|=1

∥J αu∥H9 ≤ Cε. (3.4.3)
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Next we estimate
∑

|α|=2 ∥J αu∥H6 . Applying the operator J to equation
(3.1.1) iteratively, we obtain

L
∑
|α|=2

J αu = λ
∑
|α|=2

J αu2 = A0 +A1 +A2 +RA,

where

A0 =
∑

|α|+|β|=2
0≤|β|≤1

Cα,βJ αuJ βu, A1 = t
∑
|α|=1

|γ|+|δ|=3
0≤|δ|≤3

Cγ,δ
α ∂γxJ αu∂δxu,

A2 = t2
∑

|γ|+|δ|=6
0≤|δ|≤3

Cγ,δ∂γxu∂δxu,

and

RA = t
∑

|γ|+|δ|=2
0≤|δ|≤1

Cγ,δ∂γxu∂δxu.

Due to the following identity ∆∇ = 1
it (x− J ), we have

Cγ,δ
α = 0 if (|α| , |γ| , |δ|) = (1, 3, 0) .

By the normal form method, we obtain

L

∑
|α|=2

J αu+ t2A2,1

 = A0 +A1 +RA + 2itA2,1 + t2A2,2, (3.4.4)

where

A2,1 =
∑
|γ|=2

[∂γxu,M1,γ , u] ,

A2,2 =
∑
|γ|=2

(− [∂γxf,M1,γ , u]− [∂γxu,M1,γ , f ]) ,

f = λu2 and M1,γ is Coifman-Meyer kernel. Using the energy method to
(3.4.4), we have

d

dt

∥∥∥∥∥∥
∑
|α|=2

J αu+ t2A2,1

∥∥∥∥∥∥
L2

≤ ∥A0∥L2 + ∥A1∥L2 + ∥RA∥L2 + Ct ∥A2,1∥L2 + t2 ∥A2,2∥L2 .
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Applying Corollary 3.2.5, we obtain

∑
|β|=1

∥∥∥J βu
∥∥∥
L∞

≤ C ⟨t⟩−
3
2(1−

1
r )

∑
|β|=1

∥∥∥J βu
∥∥∥
H4

+
∑
|β|≤3

∥∥∥J βu
∥∥∥
L2


≤ C ⟨t⟩−

3
2(1−

1
r )+γ0 ∥u∥X′ ,

∥u∥Ḣα
q
≤ C ⟨t⟩−

3
2(1−

1
r )−

a
4

∥u∥H6 +
∑
|α|≤3

∥J αu∥L2


≤ C ⟨t⟩−

3
2(1−

1
r )−

a
4
+γ0 ∥u∥X′ ,

where 0 ≤ a < 3, 18
6−a < q ≤ ∞, 18

6−a < r < q. By Corollary 3.2.3, we find

∑
|α|,|γ|=1

∥∂γxJ αu∥L3 ≤ C ⟨t⟩−
1
2

∑
|α|≤2

∥J αu∥H3 +
∑
|α|≤3

∥J αu∥Ḣ1


≤ C ⟨t⟩−

1
2
+γ1 ∥u∥X′ ,∑

|α|=1,|γ|=2

∥∂γxJ αu∥L4 ≤ C ⟨t⟩−
3
4

∑
|α|≤2

∥J αu∥H4 +
∑
|α|≤3

∥J αu∥Ḣ2


≤ C ⟨t⟩−

3
4
+γ2 ∥u∥X′ .

Using the Hölder inequality and the identity ∆∇ = 1
it (x− J ), we estimate

∥A0∥L2 ≤ C
∑

|α|+|β|=2
0≤|β|≤1

∥J αu∥L2

∥∥∥J βu
∥∥∥
L∞

≤ C ⟨t⟩−1−k ε,

∥A1∥L2 ≤ C
∑
|α|=1

∥J αu∥L2

∑
|α|=1

∥J αu∥L∞ + ∥|x|u∥L∞


+ Ct

∑
|α|,|γ|=1
|δ|=2

∥∂γxJ αu∥L3

∥∥∥∂δxu∥∥∥
L6

+ Ct
∑

|α|,|δ|=1
|γ|=2

∥∂γxJ αu∥L4

∥∥∥∂δxu∥∥∥
L4

≤ C ⟨t⟩−1−k ε,

∥RA∥L2 ≤ Ct

∑
|γ|=1

∥∂γxu∥L4

2

+
∑
|γ|=2

∥∂γxu∥L5 ∥u∥
L

10
3

 ≤ C ⟨t⟩−1−k ε,

where 0 < γ2 <
1
8 (i.e. 0 < γ0 <

1
12) and 0 < k < 1

8 − γ2. Applying the
Coifman-Meyer inequality, we get
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∥A2,1∥L2 ≤ C
∑
|γ|=2

∥∂γxu∥L5 ∥u∥
L

10
3
≤ C ⟨t⟩−2−k ε,

∥A2,2∥L2 ≤ C

∥u∥2L6

∑
|γ|=2

∥∂γxu∥L6 +

∑
|γ|=1

∥∂γxu∥L6

2

∥u∥L6

 ≤ C ⟨t⟩−3−k ε
3
2 ,

where 0 < k < 3
4 − 2γ0. Hence

d

dt

∥∥∥∥∥∥
∑
|α|=2

J αu+ t2A2,1

∥∥∥∥∥∥
L2

≤ C ⟨t⟩−1−k ε

from which it follows that∥∥∥∥∥∥
∑
|α|=2

J αu+ t2A2,1

∥∥∥∥∥∥
L2

≤ ∥u0∥H0,2 + Cε ≤ Cε.

By the triangle inequality, we find∑
|α|=2

∥J αu∥L2 ≤ Cε+ t2 ∥A2,1∥L2 ≤ Cε. (3.4.5)

Using the following identities J · ∇ = P + 4itL and

6∑
j,k=1

∥Jj∂xk
ϕ∥2L2 =

1

2

6∑
j,k=1

∥Ωj,kϕ∥2L2 + ∥J · ∇ϕ∥2L2 ,

we get∑
|α|=2

∥J αu∥Ḣ6 ≤ C
∑
|α|=2

∥∥∆2Qαu
∥∥
L2 + Ct

∑
|α|=1

∥∥∆2QαLu
∥∥
L2 + Ct2

∥∥∆2L2u
∥∥
L2

≤ Cε+ Ct
∑
|α|=1

∥∥∆2Qαu2
∥∥
L2 + Ct2

∥∥∆2Lu2
∥∥
L2

≤ Cε+ Ct
(
∥u∥L∞ +

∥∥∆2u
∥∥
L∞

) ∑
|α|=1

∥Qαu∥H4

+ Ct2
(∥∥u2∆2u

∥∥
L2 +

∥∥∥(∆2u
)2∥∥∥

L2
+
∥∥u∆4u

∥∥
L2

)
. (3.4.6)

By the following identity ∆∇ = 1
it (x− J ), we find

t
∥∥∆2u

∥∥
L∞ ≤ ∥J · ∇u∥L∞ + ∥x · ∇u∥L∞ ≤ ⟨t⟩−k ε

1
2 ,

61



where 0 < k < 5
4 − γ0. On account of Corollary 3.2.5, we obtain

t2
∥∥u2∆2u

∥∥
L2 ≤ t2 ∥u∥2L∞ ∥u∥H4 ≤ Cε

3
2 ⟨t⟩−k , (3.4.7)

where 0 < k < 1−2γ0. By the following identity ∆∇ = 1
it (x− J ), Corollary

3.2.5 and Lemma 3.2.6, we have

t2
∥∥∥(∆2u

)2∥∥∥
L2

≤ t2
∥∥∆2u

∥∥
L∞ ∥u∥H4

≤ t (∥J · ∇u∥L∞ + ∥x · ∇u∥L∞) ∥u∥H4

≤ Cε ⟨t⟩−k , (3.4.8)

t2
∥∥u∆4u

∥∥
L2 ≤ Ct ∥u∥L∞

∑
|α|=1

∥J αu∥H5 + Ct ∥|x|u∥L∞ ∥u∥H5 ≤ Cε ⟨t⟩−k ,

(3.4.9)

where 0 < k < 1
4 − γ0. Thus, we obtain∑

|α|=2

∥J αu∥Ḣ6 ≤ Cε.

Therefore

sup
t∈[0,T ]

∑
|α|=2

∥J αu∥H6 ≤ Cε. (3.4.10)

Let us estimate
∑

1≤|α|≤2,|β|=1

∥∥J αQβv
∥∥
H2 . Applying

∑
|α|=2 J αP to both

sides of (3.1.1), we get

L
∑
|α|=2

J αPu = λ
∑
|α|=2

J α (4 + P)u2.

By the identity P = J · ∇ − 4itL, we have∑
|α|=2

J αPu2 = 2
∑
|α|=2

J α
(
uPu

)
=
∑
|α|=2

(
2J α

(
uJ · ∇u

)
− 8iλtJ α

(
uu2
))

= D0 +D1 +D2 +RD,

62



where

D0 =
∑

|α|+|β|=3
1≤|β|≤3
|γ|=1

Cγ
α,βJ αu∂γxJ βu, D1 = t

∑
|α|+|β|=2
1≤|β|≤2
|γ|+|δ|=4
1≤|δ|≤4

Cγ,δ
α,β∂

γ
xJ αu∂δxJ βu,

D2 = t2
∑
|α|=1

|γ|+|δ|=7
1≤|δ|≤7

Cγ,δ
α ∂γxu∂δxJ αu+ t2

∑
|γ|+|δ|=6
0≤|δ|≤3

Cγ,δ∂γxu∂δxu,

RD = t
∑
|α|=1

|γ|+|δ|=3
1≤|δ|≤3

Cγ,δ
α ∂γxu∂δxJ αu+ t

∑
|γ|+|δ|=2
0≤|δ|≤1

Cδ,γ∂γxu∂δxu− 8iλt
∑
|α|=2

J α
(
uu2
)
.

Using the identity J = x− it∆∇, we obtain

Cγ,δ
α = 0 if |α| = 1 and (|γ| , |δ|) = (0, 7) , (1, 6) , (2, 5) , (0, 3) .

By the normal form method, we get

D1 = −L (tD1,1) + iD1,1 + tD1,2,

D2 = −L
(
t2D2,1

)
+ 2itD2,1 + t2D2,2,

where

D1,1 =
∑

|α|+|β|=2
1≤|β|≤2

[
J αu,M1,α,β,J βu

]
,

D1,2 =
∑

|α|+|β|=2
1≤|β|≤2

(
−
[
J αf,M1,α,β,J βu

]
−
[
J αu,M1,α,β,J βf

])
,

D2,1 =
∑
|α|=1
|δ|=3

[
∂δxu,M2,α,δ,J αu

]
+
∑
|δ|=2

[
u,M3,δ, ∂

δ
xu
]
,

D2,2 =
∑
|α|=1
|δ|=3

(
−
[
∂δxf,M2,α,δ,J αu

]
−
[
∂δxu,M2,α,δ,J αf

])

+
∑
|δ|=2

(
−
[
f,M3,δ, ∂

δ
xu
]
−
[
u,M3,δ, ∂

δ
xf
])
,
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f = λu2 and M1,α,β, M2,α,γ , M3,δ are the Coifman-Meyer kernel. Applying
Corollary 3.2.3, Corollary 3.2.5 and Lemma 3.2.6, we estimate

∥D0∥L2 ≤ C
∑
|α|=2

|β|=1,|δ|=1

∥J αu∥L2

∥∥∥∂δxJ βu
∥∥∥
L∞

+ C
∑

|α|+|β|=3
2≤|β|≤3,|δ|=1

∥J αu∥L∞

∥∥∥∂δxJ βu
∥∥∥
L2

≤ C ⟨t⟩−1−k ε,

∥D1,1∥L2 ≤ C
∑

|α|+|β|=2
1≤|β|≤2

∥J αu∥Lp1

∥∥∥J βu
∥∥∥
L2+θ

≤ C ⟨t⟩−1−k ε,

t ∥D1,2∥L2

≤ Ct
∑
|α|=1

∥J αu∥L2+θ

∑
|β|=1

∥∥∥J βu
∥∥∥
Lp2

+ ∥|x|u∥Lp2

 ∥u∥Lp2

+t
∑
|γ|=1

∥∂γxu∥Lp2

∑
|δ|=2

∥∥∥∂δxu∥∥∥
Lp2



+ Ct ∥u∥Lp2

∥u∥Lp2

∑
|α|=2

∥J αu∥L2+θ + t
∑
|α|=1

|γ|+|δ|=3
1≤|δ|≤2

∥∂γxJ αu∥L2+θ

∥∥∥∂δxu∥∥∥
Lp2


≤ C ⟨t⟩−1−k ε,

t ∥D2,1∥L2

≤ C
∑
|α|=1

∥J αu∥L2+θ

∑
|β|=1

∥∥∥J βu
∥∥∥
Lp1

+ ∥|x|u∥Lp1

+ Ct ∥u∥L4

∑
|α|=1

∥∂αxu∥L4

≤ C ⟨t⟩−1−k ε,

64



and

t2 ∥D2,2∥L2 ≤ Ct
∑
|α|=1

∥J αu∥L2+θ

∑
|β|=1

∥∥∥J βu
∥∥∥
Lp2

+ ∥|x|u∥Lp2

 ∥u∥Lp2

+t
∑
|γ|=1

∥∂γxu∥Lp2

∑
|δ|=2

∥∥∥∂δxu∥∥∥
Lp2


+ Ct2

∥u∥2L6

∑
|γ|=2

∥∂γxu∥L6 +

∑
|γ|=1

∥∂γxu∥L6

2

∥u∥L6


≤ C ⟨t⟩−1−k ε,

where θ > 0 is small, p1 = 2(2+θ)
θ , p2 = 4(2+θ)

θ and 0 < k < 1
4 − 2γ0. Due to

the identity J = x− it∆∇, we obtain

t
∑
|α|=2

∥∥J α
(
uu2
)∥∥

L2

≤ Ct
∑

|α|+|β|=2
0≤|β|≤1

∥J αu∥L2

∥∥∥J βu
∥∥∥
L∞

∥u∥L∞ + Ct
∑
|α|=1

∥J αu∥L2 ∥|x|u∥L∞ ∥u∥L∞

+ Ct ∥|x|u∥2L∞ ∥u∥L2 + Ct2
∑
|α|=1

|β|+|γ|+|δ|=3
|β|,|γ|,|δ|̸=3

∥∥∥∂βxJ αu
∥∥∥
L3

∥∂γxu∥L12

∥∥∥∂δxu∥∥∥
L12

+ Ct3
∑
|β|=3
|γ|=2
|δ|=1

∥∥∥∂βxu∥∥∥
L12

∥∂γxu∥L6

∥∥∥∂δxu∥∥∥
L4

+ Ct3

∑
|γ|=2

∥∂γxu∥L6

3

≤ C ⟨t⟩−1−k ε.

Therefore, we find

∥RD∥L2

≤ Ct

 ∑
|α|,|γ|=1

∥∂γxJ αu∥L3

∑
|δ|=2

∥∥∥∂δxu∥∥∥
L6

+ Ct
∑
|α|=1
|γ|=2

∥∂γxJ αu∥L4

∑
|δ|=1

∥∥∥∂δxu∥∥∥
L4


+ Ct

∑
|γ|=1

∥∂γxu∥L4

2

+
∑
|γ|=2

∥∂γxu∥L5 ∥u∥
L

10
3

+ C ⟨t⟩−1−k ε

≤ C ⟨t⟩−1−k ε,
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where 0 < k < 1
8 − γ2. Applying the energy method, we get∑

|α|=2

∥J αPu∥L2 ≤ Cε.

In the same way, ∑
|α|=2

∥∆J αPu∥L2 ≤ Cε.

Using the identity Ωj,k = xj∂k − xk∂xj = Jj∂k − Jk∂xj , we analogously get∑
|α|=2
|β|=1

∥∥∥J αΩβu
∥∥∥
H2

≤ Cε.

Therefore,

sup
t∈[0,T ]

∑
1≤|α|≤2
|β|=1

∥∥∥J αQβv
∥∥∥
H2

≤ Cε. (3.4.11)

Next we estimate
∑

|α|=3 ∥J αu∥H3 . Applying the operator
∑

|α|=3 J α to
equation (3.1.1), we obtain

L
∑
|α|=3

J αu = λ
∑
|α|=3

J αu2 = B0 + B1 + B2 + B3 +RB, (3.4.12)

where

B0 =
∑

|α|+|β|=3
0≤|β|≤1

Cα,βJ αuJ βu, B1 = t
∑

|α|+|β|=2
0≤|β|≤1
|γ|+|δ|=3
0≤|δ|≤3

Cγ,δ
α,β∂

γ
xJ αu∂δxJ βu,

B2 = t2
∑
|α|=1

|γ|+|δ|=6
0≤|δ|≤6

Cγ,δ
α ∂γxJ αu∂δxu+ t2

∑
|γ|+|δ|=5
0≤|δ|≤2

Cγ,δ∂γxu∂δxu,

B3 = t3
∑

|γ|+|δ|=9
0≤|δ|≤4

Cγ,δ∂γxu∂δxu,

RB = t
∑
|γ|=1

Cγ∂γxuu+ t
∑
|α|=1

|γ|+|δ|=2
0≤|δ|≤2

Cγ,δ
α ∂γxJ αu∂δxu.
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By the identity J = x− it∆∇, we have

Cγ,δ = 0 if (|γ| , |δ|) = (9, 0) , (8, 1) ,

Cγ,δ
α = 0 if (|α| , |γ| , |δ|) = (1, 6, 0) , (1, 2, 0)

and

Cγ,δ
α,β = 0 if (|α| , |β| , |γ| , |δ|) = (2, 0, 3, 0) , (2, 0, 2, 1) , (1, 1, 2, 1) , (1, 1, 3, 0) , (1, 1, 2, 1) .

Applying the normal form method, we get

L

∑
|α|=3

J αu+ t2B2,1 + t3B3,1


= B0 + B1 + 2itB2,1 + t2B2,2 + 3it2B3,1 + t3B3,2 +RB,

where

B2,1 =
∑
|α|=1

|γ|+|δ|=2
1≤|δ|≤2

[
∂γxJ αu,Mγ,δ

α , ∂δxu
]
+
∑
|γ|=1

[∂γxu,M
γ , u] ,

B2,2 =
∑
|α|=1

|γ|+|δ|=2
1≤|δ|≤2

(
−
[
∂γxJ αf,Mγ,δ

α , ∂δxu
]
−
[
∂γxJ αU,Mγ,δ

α , ∂δxf
])

+
∑
|γ|=1

(− [∂γxf,M
γ , u]− [∂γxu,M

γ , f ]) ,

B3,1 =
∑
|γ|=3
|δ|=2

[
∂γxu,M

γ,δ, ∂δxu
]
,

B3,2 =
∑
|γ|=3
|δ|=2

(
−
[
∂γxf,M

γ,δ, ∂δxu
]
−
[
∂γxu,M

γ,δ, ∂δxf
])
,

f = λu2 and Mγ,δ
α , Mγ , Mγ,δ are Coifman-Meyer kernels. Applying the

Hölder inequality, Corollary 3.2.3, Corollary 3.2.5 and Lemma 3.2.6, we
estimate

∥B0∥L2 ≤ C
∑

|α|+|β|=3
0≤|β|≤1

∥J αu∥L2

∥∥∥J βu
∥∥∥
L∞

≤ C ⟨t⟩−1−k ε,
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∥B1∥L2 ≤ Ct
∑
|α|=2
|γ|=1

∥∂γxJ αu∥
L

10
3

∑
|δ|=2

∥∥∥∂δxu∥∥∥
L5

+ C
∑
|α|=2

∥J αu∥L2

∑
|β|=1

∥∥∥J βu
∥∥∥
L∞

+ ∥|x|u∥L∞


≤ C ⟨t⟩−1−k ε,

∥RB∥L2 ≤ Ct

∑
|γ|=1

∥∂γxu∥L4 ∥u∥L4 +
∑
|α|=1
|δ|=2

∥J αu∥
L

10
3

∥∥∥∂δxu∥∥∥
L5

+
∑

|α|,|γ|,|δ|=1

∥∂γxJ αu∥L4

∥∥∥∂δxu∥∥∥
L4


≤ C ⟨t⟩−1−k ε,

where 0 < k < 1
8 − γ0 − γ1. By the Coifman-Meyer inequality, we get

t ∥B2,1∥L2 ≤ Ct

∑
|γ|=1

∥∂γxu∥L4 ∥u∥L4 +
∑

|α|=1,|δ|=2

∥J αu∥
L

10
3

∥∥∥∂δxu∥∥∥
L5

+
∑

|α|,|γ|,|δ|=1

∥∂γxJ αu∥L4

∥∥∥∂δxu∥∥∥
L4


≤ C ⟨t⟩−1−k ε,

and

t2 ∥B2,2∥L2

≤ Ct2
∑
|γ|=1
|δ|=1

∑
|α|=1

∥∂γxJ αu∥Lp1 + ∥|x| · ∂γxu∥Lp1

∥∥∥∂δxu∥∥∥
L4+θ

∥u∥L4+θ

+ Ct2

∑
|α|=1

∥J αu∥Lp1 + ∥|x|u∥Lp1

∑
|γ|=1

∥∂γxu∥
2
L4+θ +

∑
|γ|=2

∥∂γxu∥L5 ∥u∥Lp2


+ Ct3

∑
|γ|=2

∥∂γxu∥
2
L6

∑
|δ|=1

∥∥∥∂δxu∥∥∥
L6

+ Ct2
∑
|γ|=1

∥∂γxu∥L6 ∥u∥2L6

≤ C ⟨t⟩−1−k ε,

where p1 = 2(4+θ)
θ , p2 = 5(4+θ)

6−θ , 0 < γ0 <
1
12 and 0 < k < 1

4 − 3γ0. By
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Corollary 3.2.5, we obtain

t2 ∥B3,1∥L2 ≤ Ct2
∑
|γ|=3
|δ|=2

∥∂γxu∥L 9
2

∥∥∥∂δxu∥∥∥
L

18
5

≤ Ct2
∑
|γ|=3
|δ|=2

∥∂γxu∥
5(9+2Θ)
9(5+2Θ)

L
9
2+Θ

∥∂γxu∥
8Θ

9(5+2Θ)

L2

∥∥∥∂δxu∥∥∥ 4(18+5Θ)
9(8+5Θ)

L
18
5 +Θ

∥∥∥∂δxu∥∥∥ 25Θ
9(8+5Θ)

L2

≤ C ⟨t⟩2−
5(15+4Θ)
9(5+2Θ)

− 96+35Θ
9(8+5Θ)

∥u∥H6 +
∑
|α|≤3

∥J αu∥Ḣ1


5(9+2Θ)
9(5+2Θ)

+
4(18+5Θ)
9(8+5Θ)

× ε
1
2

(
8Θ

9(5+2Θ)
+ 25Θ

9(8+5Θ)

)
≤ C ⟨t⟩−1+γ̃+2γ1 ε,

t2 ∥B3,2∥L2

≤ Ct

∑
|α|=1

∥J αu∥Lp1 + ∥|x|u∥Lp1

∑
|γ|=1

∥∂γxu∥
2
L4+θ +

∑
|γ|=2

∥∂γxu∥L5 ∥u∥Lp2


+ Ct2

∑
|γ|=2

∥∂γxu∥L6

2 ∑
|δ|=1

∥∥∥∂δxu∥∥∥
L6

≤ C ⟨t⟩−1−k ε,

where θ,Θ > 0 are small, p1 = 2(4+θ)
θ , p2 = 5(4+θ)

6−θ , 0 < γ1 <
1
2γ0, 0 < γ̃ ≤

γ0 − 2γ1 and 0 < k < 3
4 − 3γ0. Applying the energy method, we get∑

|α|=3

∥J αu∥L2 ≤ Cε+ tγ̃+2γ1ε ≤ C ⟨t⟩γ0 ε.

Using the following identity J · ∇ = P + 4itL, we obtain∑
|α|=2

J αJ · ∇u =
∑
|α|=2

(J αPu+ 4itJ αLu) =
∑
|α|=2

(
J αPu+ 4iλtJ αu2

)
.

Hence we find∑
|α|=2

∥J αJ · ∇u∥L2 ≤
∑
|α|=2

(
∥J αPu∥L2 + Ct

∥∥J αu2
∥∥
L2

)
≤ Cε+ Ct

∑
|α|=2

∥∥J αu2
∥∥
L2 . (3.4.13)
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Since∑
|α|=2

∥∥J αu2
∥∥
L2 ≤ C

∥∥∆FU (−t)u2
∥∥
L2

≤ C

(
sup
|ξ|≤1

∣∣∣|ξ|2∆FU (−t)u2
∣∣∣+ sup

1≤|ξ|

∣∣∣|ξ|3+δ ∆FU (−t)u2
∣∣∣) ,

(3.4.14)

we consider

FU (−t)u2 = (2π)3
∫
R6

e
1
4
itS(η,ξ)φ̂ (z) φ̂ (w)dη

where

S (η, ξ) = 2 |η|4 + 2 (η · ξ)2 + |η|2 |ξ|2 + 9

8
|ξ|4 ,

φ̂ = FU (−t)u, z = η − ξ

2
and w = −

(
η +

ξ

2

)
.

We compute

∆ξFU (−t)u2 = (2π)3
∫
R6

(
∆ξe

1
4
itS(η,ξ)

)
φ̂ (z) φ̂ (w)dη

+ 2 (2π)3
∫
R6

(
∇ξe

1
4
itS(η,ξ)

)
· ∇ξ

(
φ̂ (z) φ̂ (w)

)
dη

+ (2π)3
∫
R6

e
1
4
itS(η,ξ)∆ξ

(
φ̂ (z) φ̂ (w)

)
dη

= K1 +K2 +K3. (3.4.15)

Denoting

M (η, ξ) = − t2

16

(
8 (η · ξ)2

(
4 |η|2 + 9

2
|ξ|2
)
+

(
2 |η|2 + 9

2
|ξ|2
)2

|ξ|2
)

+ it
(
4 |η|2 + 9 |ξ|2

)
,

we write K1 in the form

K1 = (2π)3
∫
R6

(
∆ξe

1
4
itS(η,ξ)

)
φ̂ (z) φ̂ (w)dη

= (2π)3
∫
R6

e
1
4
itS(η,ξ)M (η, ξ) φ̂ (z) φ̂ (w)dη.

We integrate by parts via the identity

e
1
4
itS(η,ξ) = H∇η ·

(
ηe

1
4
itS(η,ξ)

)
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with

H =

(
6 +

1

4
itη · ∇ηS (η, ξ)

)−1

=

(
6 + it

(
2 |η|4 + (η · ξ)2 + 1

2
|ξ|2 |η|2

))−1

to get

|K1| ≤ C

∣∣∣∣∫
R6

e
1
4
itS(η,ξ)η · ∇η (Hη · ∇η (Hη · ∇η (HM (η, ξ)))) φ̂ (z) φ̂ (w)dη

∣∣∣∣
+ C

∣∣∣∣∫
R6

e
1
4
itS(η,ξ)Hη · ∇η (Hη · ∇η (HM (η, ξ))) η · ∇η

(
φ̂ (z) φ̂ (w)

)
dη

∣∣∣∣
+ C

∣∣∣∣∫
R6

e
1
4
itS(η,ξ)η · ∇η

(
H2η · ∇η (HM (η, ξ))

)
η · ∇η

(
φ̂ (z) φ̂ (w)

)
dη

∣∣∣∣
+ C

∣∣∣∣∫
R6

e
1
4
itS(η,ξ)H2η · ∇η (HM (η, ξ)) (η · ∇η)

2
(
φ̂ (z) φ̂ (w)

)
dη

∣∣∣∣
+ C

∣∣∣∣∫
R6

e
1
4
itS(η,ξ)η · ∇η

(
Hη · ∇η

(
H2M (η, ξ)

))
η · ∇η

(
φ̂ (z) φ̂ (w)

)
dη

∣∣∣∣
+ C

∣∣∣∣∫
R6

e
1
4
itS(η,ξ)Hη · ∇η

(
H2M (η, ξ)

)
(η · ∇η)

2
(
φ̂ (z) φ̂ (w)

)
dη

∣∣∣∣
+ C

∣∣∣∣∫
R6

e
1
4
itS(η,ξ)η · ∇η

(
H3M (η, ξ)

)
(η · ∇η)

2
(
φ̂ (z) φ̂ (w)

)
dη

∣∣∣∣
+ C

∣∣∣∣∫
R6

e
1
4
itS(η,ξ)H3M (η, ξ) (η · ∇η)

3
(
φ̂ (z) φ̂ (w)

)
dη

∣∣∣∣ .
Therefore we obtain

|K1| ≤ Ct2
3∑

j=0

κ1,j + Ct

3∑
j=0

κ2,1,j (3.4.16)

where

κ1,j =

∫
R6

|ξ|6 (W (η, ξ))3
∑

a+b=j

|(η · ∇)a φ̂ (z)|
∣∣∣(η · ∇)b φ̂ (w)

∣∣∣ dη,
κ2,1,j =

∫
R6

(
|ξ|2 + |η|2

)
(W (η, ξ))2

∑
a+b=j

|(η · ∇)a φ̂ (z)|
∣∣∣(η · ∇)b φ̂ (w)

∣∣∣ dη
and

W (η, ξ) =
(
1 + t |η|2

(
|η|2 + |ξ|2

))−1
.
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In the same method, we find

|K2| ≤ Ct

 3∑
j=1

κ2,1,j +
2∑

j=1

κ2,2,j +
2∑

j=1

κ2,3,j

 , |K3| ≤ C

1∑
j=0

κ3,j

(3.4.17)

where

κ2,2,j =

∫
R6

(
|ξ|2 + |η|2

)
(W (η, ξ))2

∑
a+b=j

|(η · ∇)a (z · ∇) φ̂ (z)|
∣∣∣(η · ∇)b φ̂ (w)

∣∣∣ dη,
κ2,3,j =

∫
R6

(
|ξ|2 + |η|2

)
(W (η, ξ))2

∑
a+b=j

|(η · ∇)a φ̂ (z)|
∣∣∣(η · ∇)b (w · ∇) φ̂ (w)

∣∣∣ dη,
κ3,j =

∫
R6

W (η, ξ)
∑

|α|+|β|=2
a+b=j

|(η · ∇)a ∂αφ̂ (z)|
∣∣∣(η · ∇)b ∂βφ̂ (w)

∣∣∣ dη.
By (3.4.16), (3.4.17), Lemma 3.2.8, Lemma 3.2.9 and Lemma 3.2.10, we find

3∑
j=1

(
sup
|ξ|≤1

∣∣∣|ξ|2Kj

∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δKj

∣∣∣)
≤ Ct−1+γ1ε+ C (D + E) ε

1
2 .

By (3.4.15), we have

D + E = sup
|ξ|≤1

∣∣∣|ξ|2∆FU (−t)u2
∣∣∣+ sup

1≤|ξ|

∣∣∣|ξ|3+δ ∆FU (−t)u2
∣∣∣

≤
3∑

j=1

(
sup
|ξ|≤1

∣∣∣|ξ|2Kj

∣∣∣+ sup
1≤|ξ|

∣∣∣|ξ|3+δKj

∣∣∣)
≤ Ct−1+γ1ε+ C (D + E) ε

1
2 .

Solving the inequality, we find

D + E ≤ Ct−1+γ1 ε

1− Cε
1
2

≤ Ct−1+γ1ε.

Using (3.4.14), we obtain

∑
|α|=2

∥∥J αu2
∥∥
L2 ≤ C

(
sup
|ξ|≤1

∣∣∣|ξ|2∆FU (−t)u2
∣∣∣+ sup

1≤|ξ|

∣∣∣|ξ|3+δ ∆FU (−t)u2
∣∣∣)

≤ C (D + E)

≤ Ct−1+γ1ε.
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By (3.4.13), we get∑
|α|=2

∥J αJ · ∇u∥L2 ≤ Cε+ Ct
∑
|α|=2

∥∥J αu2
∥∥
L2

≤ Ctγ1ε.

Using the identity

6∑
j,k=1

∥Jj∂xk
ϕ∥2L2 =

1

2

6∑
j,k=1

∥Ωj,kϕ∥2L2 + ∥J · ∇ϕ∥2L2 ,

we estimate

∑
|α|=3

∥J αu∥Ḣ1 ≤ C

 ∑
1≤|α|≤2,|β|≤1

∥∥∥J αQβu
∥∥∥
L2

+
∑
|α|=2

∥J αJ · ∇u∥L2


≤ C ⟨t⟩γ1 ε.

Applying the Sobolev inequality, we obtain∑
|α|=3

∥J αu∥Ḣ2 ≤
∑
|α|=3

∥J αu∥
1
2

Ḣ1

∑
|α|=3

∥J αu∥
1
2

Ḣ3

≤ C ⟨t⟩
γ1+γ3

2 ε

≤ C ⟨t⟩γ2 ε,

where γ2 = 3γ1 and γ3 = 5γ1. By the following identities J · ∇ = P + 4itL
and

6∑
j,k=1

∥Jj∂xk
ϕ∥2L2 =

1

2

6∑
j,k=1

∥Ωj,kϕ∥2L2 + ∥J · ∇ϕ∥2L2 ,

we find ∑
|α|=3

∥J αu∥Ḣ3 ≤ Cε+ Ct3
∥∥L3u

∥∥
L2 .

By (3.1.1) and L = i∂t − 1
4∆

2, we obtain∥∥L3u
∥∥
L2 ≤ C

∥∥L2u2
∥∥
L2 ≤ C

(∥∥∂2t u2∥∥L2 +
∥∥∂t∆2u2

∥∥
L2 +

∥∥∆4u2
∥∥
L2

)
≤ C

(∥∥∥(∂tu)2∥∥∥
L2

+
∥∥(∂2t u)u∥∥L2 +

∥∥∆2 (u∂tu)
∥∥
L2 +

∥∥u∆4u
∥∥
L2

)
≤ C

(∥∥u4∥∥
L2 +

∥∥(∆2u2
)
u
∥∥
L2 +

∥∥u2∆2u
∥∥
L2 +

∥∥∥(∆2u
)2∥∥∥

L2
+
∥∥u∆4u

∥∥
L2

)
.
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Using Corollary 3.2.5, we have

t3
(∥∥u4∥∥

L2 +
∥∥(∆2u2

)
u
∥∥
L2 +

∥∥u2∆2u
∥∥
L2

)
≤ t3

(
∥u∥4L8 +

∥∥∆2u2
∥∥
L2 ∥u∥L∞ +

∥∥u2∆2u
∥∥
L2

)
≤ t3

(
∥u∥4L8 +

∥∥u∆2u
∥∥
L2 ∥u∥L∞ +

∥∥u2∆2u
∥∥
L2

)
≤ t3

(
∥u∥4L8 + ∥u∥L2 ∥∆U (t)U (−t)∆u∥L∞ ∥u∥L∞

)
≤ Cε

3
2 .

Therefore, we obtain∑
|α|=3

∥J αu∥Ḣ3 ≤ Cε+ Ct3
∥∥∥(∆2u

)2∥∥∥
L2

+ Ct3
∥∥u∆4u

∥∥
L2 .

By the identity ∆∇ = 1
it (J − x), we get∥∥u∆4u

∥∥
L2 ≤ Ct−1

(∥∥u∆2u
∥∥
L2 +

∥∥u∆2∇ · J u
∥∥
L2 +

∥∥u (x ·∆2∇u
)∥∥

L2

)
.

Applying Corollary 3.2.5 and Lemma 3.2.6, we obtain

t2
∥∥u∆2u

∥∥
L2 ≤ Ct (∥u∥L∞ ∥J · ∇u∥L2 + ∥|x|u∥L∞ ∥∇u∥L2)

≤ Cε,

t2
∥∥u∆2∇ · J u

∥∥
L2 ≤ t ∥u∆(x− J ) · J u∥L2

≤ Ct (∥u∥L∞ + ∥|x|u∥L∞)
∑
|α|≤2

∥J αu∥H2

≤ Cε,

and

t2
∥∥u (x ·∆2∇u

)∥∥
L2 ≤ t2 ∥u∥L2

∥∥x ·∆2∇u
∥∥
L∞

≤ t2 ∥u∥L2

∥∥∥|x| ∣∣∣|∂x|3−θ
(
|∂x|1+θ ∇u

)∣∣∣∥∥∥
L∞

≤ C ⟨t⟩γ1 ε
1
2

∥u∥H12 +
∑
|α|≤1

∥J αu∥H9 +
∑
|α|≤3

∥J αu∥Ḣ2+θ


≤ C ⟨t⟩γ1+4γ1 ε,

where θ > 0 is small. Thus, we have

t3
∥∥u∆4u

∥∥
L2 ≤ C ⟨t⟩γ3 ε,
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where γ3 = 5γ1. Similarly, we get∥∥∥(∆2u
)2∥∥∥

L2
≤ Ct−1

(∥∥u∆2u
∥∥
L2 +

∥∥∆2u∇ · J u
∥∥
L2 +

∥∥∆2u (x · ∇u)
∥∥
L2

)
.

By Corollary 3.2.5 and Lemma 3.2.6, we get

t2
∥∥∆2u∇ · J u

∥∥
L2 ≤ Ct2 ∥∇ · J u∥L2

∥∥∥|∂x|3−θ |∂x|θ u
∥∥∥
L∞

≤ Cε

and

t2
∥∥∆2u (x · ∇u)

∥∥
L2 = t2

∥∥(x∆2u
)
· ∇u

∥∥
L2

≤ t2 ∥u∥H1

∥∥∥|x| ∣∣∣|∂x|3−θ
(
|∂x|1+θ u

)∣∣∣∥∥∥
L∞

≤ C ⟨t⟩γ1 ε
1
2

∥u∥H12 +
∑
|α|≤1

∥J αu∥H9 +
∑
|α|≤3

∥J αu∥Ḣ1+θ


≤ C ⟨t⟩γ3 ε,

where θ > 0 is small. Thus, we have

t3
∥∥∥(∆2u

)2∥∥∥
L2

≤ C ⟨t⟩γ3 ε.

Consequently, we find ∑
|α|=3

∥J αu∥Ḣ3 ≤ C ⟨t⟩γ3 ε.

Thus, we obtain

sup
t∈[0,T ]

3∑
j=0

⟨t⟩−γj
∑
|α|=3

∥J αu∥Ḣj ≤ Cε. (3.4.18)

Next we estimate
∥∥∥⟨·⟩3FU (−t)u

∥∥∥
Lq
. Applying FU (−t) to both sides of

(3.1.1), we get

i∂t (FU (−t)u) = λFU (−t)u2.

Therefore, we have

FU (−t)u = û0 − iλ

∫ t

0
FU (−t)u2dτ.
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By Lemma 3.2.7, we obtain∥∥∥⟨·⟩3FU (−t)u
∥∥∥
Lq

≤
∥∥∥⟨·⟩3 û0∥∥∥

Lq
+ C

∫ 1

0

∥∥∥⟨·⟩3FU (−tτ)u2
∥∥∥
Lq
dτ + C

∫ t

1

∥∥∥⟨·⟩3FU (−τ)u2
∥∥∥
Lq
dτ

≤ C ∥u0∥H3,3 + Cε+ C

∫ t

1

∥∥∥⟨·⟩4FU (−τ)u2
∥∥∥
L∞

dτ

≤ Cε.

Thus we get

sup
t∈[0,T ]

∥∥∥⟨·⟩3FU (−t)u
∥∥∥
Lq

≤ Cε. (3.4.19)

Collecting estimates (3.4.1) - (3.4.3), (3.4.10), (3.4.11), (3.4.18) and (3.4.19),
we obtain

∥u (t)∥X′ ≤ Cε < ε
1
2

for all t ∈ [0, T ]. Then we get a contradiction. Therefore, we can let T = ∞.

Let 0 ≤ α < 3, 18
6−α < r1 < q and γ ≥ 3

2

(
1
r1

− 1
q

)
+ γ0. Due to Corollary

3.2.5, we have

∥u∥Ḣα
q
≤ C ⟨t⟩−

3
2

(
1− 1

r1

)
−α

4

∥u∥H6 +
∑
|α|≤3

∥J αu∥L2


≤ Cε

1
2 ⟨t⟩−

3
2

(
1− 1

q

)
−α

4
+ 3

2

(
1
r1

− 1
q

)
+γ0

≤ C ⟨t⟩−
3
2

(
1− 1

q

)
−α

4
+γ

for any t ≥ 0. This completes the proof of Theorem 3.1.2.

3.5 Proof of Corollary 3.1.3

By (3.1.1), we get

u = U (t)u0 − i

∫ t

0
U (t− τ) f (u, u) dτ,

from which it follows that

U (−t)u (t)− U (−s)u (s) = i

∫ t

s
U (−τ) f (u, u) dτ.
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Using Corollary 3.2.5 and Lemma 3.2.6, we obtain

lim
t,s→∞

∥U (−t)u (t)− U (−s)u (s)∥H12∩H9,1 = 0. (3.5.1)

By (3.4.4), we have∑
|α|=2

xαU (−t)u

=
∑
|α|=2

xαu0 − t2U (−t)A2,1 − i

∫ t

0
U (−τ)

(
A0 +A1 +RA + 2iτA2,1 + τ2A2,2

)
dτ.

In the same way of the proof of (3.4.5), we obtain∑
|α|=2

∥xαU (−t)u (t)− xαU (−s)u (s)∥L2

≤ C
(
⟨t⟩−k + ⟨s⟩−k

)
+ C

∫ t

s
⟨τ⟩−1−k dτ,

where 0 < k < 1
8 − γ0 − γ1. Therefore, we find

lim
t,s→∞

∑
|α|=2

∥xαU (−t)u (t)− xαU (−s)u (s)∥L2 = 0. (3.5.2)

Collecting (3.4.6)-(3.4.9), we have∑
|α|=2
|δ|=6

∥∥∥U (−t)
(
∂δxJ α −∆2Qα

)
u (t)− U (−s)

(
∂δxJ α −∆2Qα

)
u (s)

∥∥∥
L2

≤ C
(
⟨t⟩−k + ⟨s⟩−k

)
,

where 0 < k < 1
4 . In the same way of proof of (3.5.2), we get∑

|α|=2

∥∥U (−t)∆2Qαu (t)− U (−s)∆2Qαu (s)
∥∥
Ḣ6

≤ C
(
⟨t⟩−k + ⟨s⟩−k

)
+ C

∫ t

s
⟨τ⟩−1−k dτ,

where 0 < k < 1
4 . Thus, we find

lim
t,s→∞

∑
|α|=2

∥xαU (−t)u (t)− xαU (−s)u (s)∥Ḣ6 = 0. (3.5.3)

By (3.5.1)-(3.5.3), we have

lim
t,s→∞

∥U (−t)u (t)− U (−s)u (s)∥H12∩H9,1∩H6,2 = 0.

Therefore, there exists a unique final state u+ ∈ H12∩H9,1∩H6,2, such that

lim
t→∞

∥U (−t)u (t)− u+∥H12∩H9,1∩H6,2 = 0.

This completes the proof of Corollary 3.1.3.
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