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1 Introduction

1.1 Superconductivity

Superconductors exhibit zero resistivity and magnetic field shielding below the super-
conducting critical temperature Tc. Superconductors can be applied to electric wires
and superconducting maglevs, power storage devices, and so on. However, industrial
applications are restricted within narrow limits due to the low Tc compared with room
temperature. For example, the cuprates have the highest Tc of 133 K at ambient pres-
sure [1] (see Fig. 1.1). Hence high-temperature superconductivity and its mechanism
have been studied intensively for long years.

Fig. 1.1: A timeline of the superconducting transition temperature of major families of
superconductors at ambient pressure. Black points indicate the conventional BCS-type
superconductors, red the cuprates, blue the iron-based, and green the organic. This
figure is taken from Ref. [2].

The BCS theory revealed the following mechanism of superconductivity [3]:

1. Two electron forms one boson, called Cooper pair, due to an attractive interaction
between electrons mediated by phonons.

2. The condensation of Cooper pairs causes superconductivity at low temperature.

Further, the pairing glue has the energy and momentum dependence in general.From
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1 Introduction

the BCS theory, Tc of the phonon-mediated s-wave (BCS-type) pairing is given by

kBTc = 1.13ωD exp (−1/λ) , (1.1.1)

where ωD denotes the Debye frequency which determines the energy window of phonon
frequencies near the Fermi energy EF (|ω−EF| ≤ ωD). λ is the electron-phonon coupling.
This Tc formula tells us that as the electron-phonon coupling λ increases, Tc increases
rapidly. However, Tc is suppressed by strong renormalization as follows [4]:

λ→ λ/(1 + λ). (1.1.2)

Therefore, the upper limit of Tc of BCS-type superconductors had been estimated to be
about 10% of the Debye temperature, i.e. about 10 K. In the occurrence of supercon-
ductivity in general, there is a trade-off relation between strong pairing interactions and
weak renormalization: Strong pairing interaction, which itself enhances pairing, usually
increases renormalization simultaneously, giving rise to suppression of Tc. Quite recently,
the energy dependence of the pairing glue and renormalization effect has been considered
to be key factors for enhancing Tc (see section 3).
Amazingly, the BCS-type superconductivity above 200 K has been discovered in sev-

eral hydrides under high pressure [5–7]. The possibility of high-temperature conventional
superconductivity in hydrides has been pointed out since early days after the proposal
of the BCS theory. As is shown in Eq. (1.1.1), the Tc is proportional to the Debye fre-
quency, which can be proportional to the inverse of the square of mass. Thus, metallic
hydrides under high pressure are expected to exhibit extremely high Tc [8]. It is notable
that these discoveries have been motivated by first-principles calculations of the pressure
dependency of crystal structures and Tc [9,10]. First-principles calculations can filter out
the case for the weak electron-phonon coupling λ, where Tc should be low even when the
Debye frequency is very high. In this way, the combination of the experiment and theory
can make a breakthrough in the research of superconductivity. If the same is possible
in purely electronic systems, room-temperature superconductors can be discovered even
at ambient pressure since the energy scale of bare electrons (∼ 1 eV) is much larger
than the room temperature. To achieve this, we have to reveal the mechanism of the
non-BCS type (unconventional) superconductivity.

1.2 Spin-fluctuation mediated superconductivity

The spin-fluctuation mediated pairing is one of leading candidates for the mechanism
of high-temperature superconductivity; namely, cuprates [11] and iron-based supercon-
ductors [12]. Around a magnetic phase transition, such as paramagnetic (PM) phase
to antiferromagnetic (AFM) or ferromagnetic (FM), spin density wave (SDW) phases,
there are no long-range spin orders but spin fluctuations, which can mediate the pairing
similarly to phonons (e.g. Refs. [13, 14]). The Fermi surface nesting is crucial for the
occurrence of spin-fluctuation mediated superconductivity (see section 2.5). The Fermi
surface nesting means that two pieces of Fermi surfaces are connected with each other
via a certain wave vector (nesting vector Q).
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1.3 Cuprates

Next, we briefly review the basic properties of the high-temperature superconductors
and show the possible spin-fluctuation mediated pairing in these materials.

1.3 Cuprates

The basic properties of cuprates are as follows:

1. The mother compounds are antiferromagnetic (AFM) Mott insulators, which is
the insulating state caused by the strong correlation effect (see section 2.2).

2. By carrier doping, cuprates exhibit dx2−y2-wave spin-singlet superconductivity.

3. Cuprates possess a layered crystal structure composed of a stacking of blocking lay-
ers and conduction (superconducting) layers, quasi-two-dimensional CuO2 planes.

4. Carriers are doped from blocking layers to conduction layers.

5. The role of phonons for pairings should not be so crucial as much as that in the
BCS theory.

6. In the low-doping region close to the Mott phase, a finite-energy gap is observed
even above Tc, which is called the pseudogap.

Cuprates are approximated as two-dimensional systems with strongly hybridizing Cu-
3d and O-2p orbitals. In hole-doped cuprates, the Cu ions are surrounded by an octa-
hedron of oxygens as in a perovskite structure. On the other hand, in electron-doped
cuprates, apical oxygens are absent. Due to the crystal field effect, Cu-3d orbitals are
split into two-fold degenerate eg orbitals (dx2−y2 , dz2) and three-fold degenerate t2g or-
bitals (dxy, dyz, dzx). In most of cuprates, the perovskite structure is briefly extended in
the interlayer direction, so that the dx2−y2 energy level is higher than that of dz2 . In the
mother compounds, Cu ion possesses nine 3d electrons and the dx2−y2 orbital is nearly
half-filled. The band near the Fermi level and Fermi surface are mainly originating from
the dx2−y2 orbitals (see Fig. 1.3).

As is shown in Fig. 1.2, mother compounds of the cuprates are AFM Mott insulators,
so that the strong AFM correlation persists even in the carrier doped superconducting
states. In addition, according to a t-J model, which is the model of correlated electron
systems in the limit of strong correlation, the pairing can arise from the superexchange
interaction. There are no qualitative differences between these two hypotheses since
both of them describes the pairing glue made from the AFM fluctuation of spin degrees
of freedom.
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1 Introduction

Fig. 1.2: Schematic phase diagram of the cuprates on electron- or hole- doping. This
figure is taken from Ref. [15].

Fig. 1.3: Jahn-Teller effect on CuO6 in the cuprates and perovskite structure. To plot
the crystal structure, the VESTA software [16] is used throughout the present thesis.

1.4 Iron-based superconductors

The basic properties of iron-based superconductors are as follows:

1. The mother compounds are AFM metallic (SDW) state.

2. By carrier doping, iron-based superconductors exhibit spin-singlet superconduc-
tivity.

4



1.4 Iron-based superconductors

3. Iron-based superconductors possess a layered crystal structure composed of a
stacking of blocking layers and conduction (superconducting) layers, quasi-two-
dimensional Fe-Anion layers.

4. Carriers are doped from blocking layers to conduction layers.

5. The role of phonons for pairings should not be so crucial as much as that in the
BCS theory.

The basic properties are very similar to those of cuprates. The iron-based supercon-
ductors are approximated as strongly correlated two-dimensional electron systems with
Fe-3d orbitals [17]. Due to the crystal field effect, Fe-3d orbitals are split into two-fold
degenerate eg orbitals (dx2−y2 , dz2) and three-fold degenerate t2g orbitals (dxy, dyz, dzx).
The energy levels of eg and t2g orbitals are opposite to those of cuprates since anions
are located at the center of the square of Fe ions (see Fig. 1.5). In the mother com-
pounds, Fe ion possesses six 3d electrons. The band near the Fermi level and Fermi
surface are mainly originating from the dxy, dyz, dzx orbitals. In addition, the slightly
three-dimensionality of the bands is attributed to the dz2 orbital (see Fig. 1.6).

The iron-based superconductors are multi-orbital systems with spin-orbital interplay.
In the low-doping region, the SDW phase appears, and the tetragonal-to-orthorhombic
structural transition takes place at a temperature above the Néel temperature TN (see
Fig. 1.4). In the orthorhombic phase, the discrete lattice rotational symmetry is broken
by the orbital nematic order by making the symmetry between the x and y directions in
the iron plane non-equivalent. By carrier doping, the superconducting phase is realized
near the SDW and nematic phases. Additional superconducting domes in very high
hole- or electron- doping region have also been reported.

Fig. 1.4: Schematic phase diagram of the iron-based superconductors on electron- or
hole- doping. This figure is taken from Ref. [15].
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1 Introduction

Fig. 1.5: Lattice structure of LiFeAs. Orange and blue, gray balls denote Fe and As, Li
ions, respectively.

Fig. 1.6: Jahn-Teller effect on the Fe-Anion layers in the iron-based superconductors.
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1.5 Superconductors with incipient bands

1.5 Superconductors with incipient bands

In the early days of the study of the iron-based superconductors, it was considered that
the nesting between the electron and hole Fermi surfaces, combined with Hubbard U ,
induces the spin-fluctuation mediated pairing [17–22]. However, the spin-fluctuation
theory is challenged by discoveries of (heavily) electron-doped iron-based superconduc-
tors with a relatively high Tc where hole-like bands are away from, but still close to the
Fermi level leaving the only electron Fermi surface as shown in Fig. 1.8 [23–34]. Naively,
removing hole Fermi surfaces should destroy the spin-fluctuation-mediated pairing and
suppress Tc rapidly. After the observations, a role of “incipient bands”, which do not
intersect, but sit close to the Fermi level, have received much attention (see Figs. 1.7 and
1.8). Various authors have suggested that the spin-fluctuation scattering of pairs between
an electron Fermi surface and an incipient hole band can induce pairing [18,31,33,35–40].
We will come back to this topic in section 3.

Fig. 1.7: Typical Fermi surface and band structure of iron-based superconductors with
an incipient band. The arrow denotes the nesting vector Q = (π, 0).

Fig. 1.8: Band dispersion of a band at kz = 0 and π in LiFe0.97Co0.03As. (a,c) show
the ARPES intensity plots of LiFe0.97Co0.03As at 51 eV (kz = 0) and 35 eV (kz = p),
respectively. The data are recorded at 20 K with linearly polarized light to enhance the
a band. This figure is taken from Ref. [31].
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2 Basic concepts on the theory of
superconductivity

In this section, we explain the basic concepts on the theory of superconductivity. Firstly,
we derive the BCS wave function and the Tc formula by relying on the BCS theory.
Secondary, we introduce the way to study strongly correlated electron systems, such
as high-temperature superconductors. Thirdly, we briefly explain a perturbation theory,
which describes the possible pairing mechanism of those unconventional superconductors.

2.1 BCS theory

The BCS theory revealed the wave functions which describe superconducting ground
states incorporating non-perturbative many-body effects. To derive the BCS wave func-
tion, we consider the reduced Hamiltonian for many electron systems [3, 41]

Ĥred =
∑
k

∑
1

ξ1(k)c
†
k,1ck,1 +

∑
k,k′

∑
1,2,3,4

V1,2;3,4(k,k
′)c†−k,1c

†
k,2ck′,3c−k′,4, (2.1.1)

Here c†km/ckm creates/annihilates a fermion with momentum k and indexm(= 1, 2, 3, 4),
which denotes an internal degree of freedom, such as spin and orbital. ξ1(k) is the band
energy measured relative to the chemical potential µ and the operator V̂ is a general
effective electron-electron interaction. The quantity V1,2;3,4(k,k

′) denotes the matrix
element

V1,2;3,4(k,k
′) ≡ ⟨−k, 1;k, 2|V̂ | − k′, 4;k′, 3⟩ = ⟨0|ck,2c−k,1V̂ c

†
−k′,4c

†
k′,3|0⟩, (2.1.2)

From the anti-commutation relation of fermions, the following symmetries are given by

V1,2;3,4(k,k
′) = −V2,1;3,4(−k,k′) = −V1,2;4,3(−k,−k′) = V3,4;1,2(k,k

′). (2.1.3)

Let us consider the superconducting state in the single orbital system without the
external field (ξ↑(k) = ξ↓(k) = ξ(k)). The reduced Hamiltonian (Eq. (2.1.1)) is then
rewritten as

Ĥred =
∑
σ

∑
k

ξ(k)c†kσckσ+
∑

σ1,σ2,σ3,σ4

∑
k,k′

Vσ1,σ2;σ3,σ4(k,k
′)c†−kσ1

c†kσ2
ck′σ3c−k′σ4 . (2.1.4)

To proceed, we perform the usual mean-field decoupling of the quartic term:

c†−kσ1
c†kσ2

ck′σ3c−k′σ4 ≈ ⟨c†−kσ1
c†kσ2

⟩ck′σ3c−k′σ4 + ⟨ck′σ3c−k′σ4⟩c
†
−kσ1

c†kσ2

+ ⟨c†−kσ1
c†kσ2

⟩⟨ck′σ3c−k′σ4⟩. (2.1.5)

8



2.1 BCS theory

where σi(i = 1, 2, 3, 4) denote spins of electrons. The nonzero ⟨c†−kσ1
c†kσ2

⟩ corresponds
to one Cooper pair in the superconducting state. Then, we define the gap function:

∆σ1,σ2(k) = −
∑
σ3,σ4

∑
k′

Vσ2,σ1;σ3,σ4(k,k
′)⟨ck′σ3c−k′σ4⟩. (2.1.6)

Using Eq. (2.1.3), the Hermitian conjugate is given by

∆∗
σ1,σ2

(−k) =
∑
σ3,σ4

∑
k′

Vσ3,σ4;σ2,σ1(k,k
′)⟨c†−k′σ3

c†k′σ4
⟩. (2.1.7)

By definition, the gap function has the symmetry

∆σ2,σ1(−k) = −∆σ1,σ2(k). (2.1.8)

Eqs. (2.1.5) and (2.1.6), (2.1.7), (2.1.4), (2.1.3) yield the BCS Hamiltonian:

ĤBCS =
∑
σ

∑
k

ξ(k)c†kσckσ +
∑
σ1,σ2

∑
k

(
∆σ1,σ2(k)c

†
kσ1

c†−kσ2
−∆∗

σ1,σ2
(−k)c−kσ1ckσ2

)
.

(2.1.9)
Here we omitted one term containing only the mean field but no operators, since it gives
only a contribution to the ground state energy. Using Eq. (2.1.8), the Hamiltonian
matrix is given by

ĤBCS =
∑
k

(
c†k↑, c

†
k↓, c−k↑, c−k↓

)

×


ξ(k) 0 ∆↑↑(k) ∆↑↓(k)
0 ξ(k) ∆↓↑(k) ∆↓↓(k)

∆∗
↑↑(k) ∆∗

↓↑(k) −ξ(−k) 0

∆∗
↑↓(k) ∆∗

↓↓(k) 0 −ξ(−k)




ck↑
ck↓
c†−k↑
c†−k↓

 . (2.1.10)

This effective one-particle Hamiltonian can be easily diagonalized using a unitary Bogoliubov-
Valatin transformation,

ckσ =
∑
σ′

(
ukσσ′γkσ′ + vkσσ′γ†−kσ′

)
. (2.1.11)

The new operators γ
(†)
kσ satisfy the anti-communication relations of fermions and generate

the elementary excitations (quasi-particles) of the system. We use a four-component
notation,

cTk =
(
ck↑, ck↓, c

†
−k↑, c

†
−k↓

)T
, (2.1.12)

γT
k =

(
γk↑, γk↓, γ

†
−k↑, γ

†
−k↓

)T
, (2.1.13)

9



2 Basic concepts on the theory of superconductivity

which gives a more compact formulation of Eq. (2.1.11): ck = Ukγk with

Uk =

(
ûk v̂k
v̂∗−k û∗−k

)
and UkU

†
k = 1, (2.1.14)

where the second equation is the unitary condition of the transformation. The 2x2
matrices ûk and v̂k are defined by Eq. (2.1.11). Using this formalism, diagonalization
of ĤBCS is written as

Êk = U †
kÊkUk, (2.1.15)

where we use the 4x4 matrices

Êk =


Ek↑ 0 0 0
0 Ek↓ 0 0
0 0 −E−k↑ 0
0 0 0 −E−k↓

 , (2.1.16)

and

Êk =

(
ξ(k)σ̂0 ∆̂(k)

∆̂∗T(k) −ξ(−k)σ̂0

)
. (2.1.17)

The diagonal elements of Êk correspond to the excitation spectrum of the system, and
Êk is the representation of ĤBCS, where 2x2 matrix σ̂0 is the 2x2 unit matrix and the
matrix ∆̂(k) is defined in Eq. (2.1.10). Let us find the transformation Uk for the spin-
singlet pairing. For the singlet pairing, the gap function has to be an even function of
k. Therefore, ∆̂(k) is an antisymmetric matrix which can be described by a single even
function ∆SC(k),

∆̂(k) = iσ̂y∆SC(k) =

(
0 ∆SC(k)

−∆SC(k) 0

)
. (2.1.18)

The BCS Hamiltonian is then rewritten as

ĤBCS =
∑
σ

∑
k

(
c†kσ, c−kσ

)( ξ(k) σ∆SC(k)
σ∆SC(k) −ξ(−k)

)(
ckσ
c†−kσ

)
(σ = −σ). (2.1.19)

The Bogoliubov-Valatin transformation is given by

γkσ = ukckσ − σvkc
†
−kσ, (2.1.20)

γ†−kσ = σvkckσ + ukc
†
−kσ, (2.1.21)

with

u2k =
1

2

(
1 +

ξ(k)

E(k)

)
, (2.1.22)

v2k =
1

2

(
1− ξ(k)

E(k)

)
, (2.1.23)

ukvk =
∆SC(k)

2E(k)
, (2.1.24)

E(k) =
[
ξ(k)2 +∆SC(k)

2
]1/2

, (2.1.25)

10



2.1 BCS theory

where uk and vk are assumed to be real and even functions for k.
After diagonalizing ĤBCS, the superconducting ground state is obtained by creating

all negative energy states and annihilating all positive energy states on the vacuum state
as follows,

|ϕBCS⟩ =
∏
k

γk↑γ−k↓|0⟩ (2.1.26)

∝
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|0⟩. (2.1.27)

The gap function is derived as follows. Since the quasi-particle is the free fermion, the
number of electrons per site is

⟨γ†k↑γk↑⟩ = ⟨γ†−k↓γ−k↓⟩ =
1

1 + eβE(k)
, (2.1.28)

where 1/β = kBT . kB is the Boltzmann constant and T is the temperature. Using Eqs.
(2.1.21) and (2.1.28), we have

⟨ck↑c−k↓⟩ =
∆SC(k)

2E(k)
tanh

(
1

2
βE(k)

)
. (2.1.29)

Thus, the self-consistent equation of gap functions is given by

∆SC(k) = −
∑
k′

V (k,k′)
∆SC(k

′)

2E(k′)
tanh

(
1

2
βE(k′)

)
, (2.1.30)

where V (k,k′) is the interaction between up-spin and down-spin electrons (V (k,k′) =
V↓↑;↑↓(k,k

′)).
Now, the momentum dependence of V (k,k′) is neglected and the interaction is at-

tractive (V (k,k′) = −V < 0). The gap equation is then written as

∆SC(k) = V
∑
k′

∆SC(k
′)

2E(k′)
tanh

(
1

2
βE(k′)

)
. (2.1.31)

Since the right side of Eq. (2.1.31) is constant, ∆SC(k) is also constant. As T decreases,
the superconducting gap ∆SC starts to be finite at Tc. Then, the gap equation is

1 = V
∑
k′

1

2ξ(k′)
tanh

(
ξ(k′)

2kBTc

)
. (2.1.32)

The summation over k′ is restricted to a narrow energy window (−ωD ≤ ξ ≤ ωD) where
the density of states is constant D(EF). We have

1 ∼ V D(EF)

∫ ωD

−ωD

1

2ξ
tanh

(
ξ

2kBTc

)
dξ, (2.1.33)

11



2 Basic concepts on the theory of superconductivity

where ωD denotes the Debye frequency which determines the maximum value of phonon
frequencies. For kBTc ≪ ωD, by using a dimensionless variable x = ξ/2kBTc and the
partial integration, Eq. (2.1.33) becomes now

1 ∼ λ log

(
2γωD

πkBTc

)
, (2.1.34)

where log γ = 0.577 · · · denotes the Euler constant and λ = V D(EF). For λ > 0
(attractive force), using Eq. (2.1.34) gives a famous Tc formula

kBTc = 1.13ωD exp (−1/λ) . (2.1.35)

As can been seen in this equation, the assumption kBTc ≪ ωD corresponds to the
weak electron-phonon coupling limit (λ = V D(EF) ≪ 1). Moreover, the exponential
factor exp (−1/λ) in Eq. (2.1.35) exhibiting the essential singularity proves that the
superconductivity results from the non-perturbative effect.
At absolute zero, the gap equation (Eq. (2.1.31)) is written as

1 = λ

∫ ωD

−ωD

dξ

2
√
ξ2 +∆2

0

∼ λ log

(
2ωD

∆0

)
. (2.1.36)

Thus,
∆0 = 2ωD exp (−1/λ) , (2.1.37)

where ∆0 denotes the superconducting gap at T = 0. Using Eqs. (2.1.35) and (2.1.37)
gives an universal relation in the BCS theory

2∆0

kBTc
= 3.53. (2.1.38)

In this way, the Tc formula for the phonon-mediated s-wave superconductivity can be
obtained in the weak coupling regime.

2.2 Strongly correlated electron systems

We next move on to unconventional high-temperature superconductors. The cuprates
and iron-based superconductors are well known as typical strongly correlated electron
systems. The strength of electron correlation is defined as the ratio of kinetic energy
and the Coulomb interaction. Let us consider a Fermi gas with the mean distance
between electrons rs in a three-dimensional system. The kinetic energy and Coulomb
potential energy are proportional to 1/r2s and 1/rs, respectively, so that the kinetic
energy decreases earlier than the potential energy as rs increases. Therefore, when the
mean distance between electrons is large, the Coulomb interaction is dominant compared
to the kinetic interaction.
The same is true of condensed matters. As the interatomic distance increases, the

overlap integral of neighboring atomic orbitals decreases and the Coulomb interaction
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2.3 Downfolding

becomes dominant, resulting in the Mottness. Thus, transition metal oxides tend to be
Mott insulators because the d orbitals of transition metals comprising bands near the
Fermi level are far from each other due to oxygens surrounding the transition metals.
The common properties of strongly correlated electron systems are as follows:

1. Bandwidths of bands near the Fermi level are narrow.

2. Few bands intersect the Fermi level and are isolated from the other bands.

As mentioned above, the narrow bandwidth is due to small atomic orbitals compared to
the lattice constant, which result in a small overlap of neighboring atomic orbitals. At the
same time, the small atomic orbitals enhance a local Coulomb interaction between the
orbital electrons. Next, the reduction of the screening effect is also required to preserve
the strong correlation. The screening effect means that in a solid, a long-range term of
Coulomb potential of an electron is screened by polarized ions surrounding the electron.
If few bands near the Fermi level are isolated from the other bands, the screening effect
is so weak that the electron correlation remains strong.

Moreover, the strong correlation effect brings about the competition between various
ordering transitions, such as magnetism and dielectricity, superconductivity. Such a
competition leads to a break down of mean-field theories like the local density approxi-
mation (LDA), which is a kind of first principles band calculations. The first principles
calculation is the method to evaluate and estimate physical quantities of condensed mat-
ters only from constituent elements and fundamental physical constants, such as electron
mass and elementary charge, based on the principle of quantum mechanics. The den-
sity functional theory (DFT) is a standard method for the first principles calculations.
Omitting the details, the DFT has a variety of formalisms, including the LDA and
generalized gradient approximation (GGA), GW approximation. The DFT provides a
practical framework for estimating physical quantities of various weakly correlated sys-
tems, such as semiconductors. However, if the DFT is applied to strongly correlated
systems, for example, transition metal oxides and organic conductors, rare-earth com-
pounds, the obtained results often do not match with experimental results not only
quantitatively but also qualitatively. For instance, a LDA study of a cuprate La2CuO4

suggested a presence of a Fermi surface originating from the Cu 3dx2−y2 orbital, i.e. a
metallic phase [42, 43]. Actually, however, the mother compounds of the cuprates are
typical Mott insulating phases with a large gap of about 2 eV.

2.3 Downfolding

One of valid procedures to study the strongly correlated electrons is a downfolding
approach (e.g. Ref. [44]) including the following three steps:

1. Evaluate the global band structure including bands far from the Fermi level by
using DFT such as LDA, GGA or GW.

2. Construct effective models for low-energy degrees of freedom near the Fermi level
incorporating the higher energy degrees of freedom.

13



2 Basic concepts on the theory of superconductivity

3. Solve the low-energy effective model by using an accurate low-energy solver.

Putting it simply, electronic states for high- or low-energy degrees of freedom are evalu-
ated by relying on DFT and low energy solvers, respectively. This downfolding method
allows us to evaluate and estimate physical properties with high accuracy. This has been
applied to various correlated systems, such as cuprates and iron-based superconductors,
producing outstanding results. These researches tell us that a ground state is sensi-
tive to effective model parameters due to ordering competition. Therefore, the accurate
evaluation of model parameters is indispensable to reveal properties of actual strongly
correlated materials. However, the modeling often involves some ambiguities, which can
give rise to large change of model parameters especially for Coulomb interactions even
in relatively simple systems like cuprates.

2.4 Hubbard model

One of simplest models of strongly correlated electron systems is a single-orbital Hubbard
model including the tight binding term and the on-site Coulomb term,

Ĥ = −
∑
i>j

∑
σ

tij(c
†
iσcjσ + h.c.) + U

∑
i

ni↑ni↓. (2.4.1)

Here c†iσ/ciσ creates/annihilates a fermion with spin σ(=↑, ↓) on the ith site. tij is the
hopping integral between site i and site j. U is the on-site Coulomb interaction, and
niσ = c†iσciσ. This model has been considered to describe cuprates properly. Let us
consider the half-filled Hubbard model on the square lattice. If U is much larger than
the bandwidth, electrons are localized due to large U , resulting in the Mott insulating
phase. If carrier is doped, electrons start to move like sliding puzzle. Historically, the
parameters of low-energy effective models, such as hopping integrals tij and Hubbard
U , have been given by hand. As mentioned above, the model parameters can be ob-
tained from first principles calculations. From now on, we show numerical methods to
solve this Hamiltonian and demonstrate the possible mechanism of the high-temperature
superconductivity in cuprates.

2.5 Perturbation theories

A possible scenario for the mechanism of high-temperature unconventional supercon-
ductivity can be given by starting with the “Fermi liquid” theory, where the low energy
excitation of correlated electron systems corresponds to an elementary fermionic parti-
cle incorporating the correlation effect, called “quasi-particle”, at low temperature. The
normal phase of these unconventional superconductors exhibits completely different crit-
ical behaviors from that of the ordinal Fermi liquid but can be regarded as Fermi liquid
like systems where there are dressed particles with both the spin and charge.
The spin-fluctuation mediated pairing is one of leading candidates for the mechanism of

high-temperature superconductivity. Around a magnetic phase transition (paramagnetic
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2.5 Perturbation theories

phase to antiferromagnetic or ferromagnetic, SDW phases), there are no long-range spin-
orders but spin fluctuations, which can mediate the pairing similarly to phonons.

Taking a two-dimensional Hubbard model as an example, we briefly explain the spin-
fluctuation mediated pairing by using perturbation theories. According to the linear
response theory, dynamical spin susceptibilities are given by

χzz
s (q, iωm) =

∫ β

0
dτ exp (iωmτ)

1

N
⟨Sz

q(τ)S
z
−q(0)⟩, (2.5.1)

χ±
s (q, iωm) =

∫ β

0
dτ exp (iωmτ)

1

N
⟨S+

q (τ)S
−
−q(0)⟩, (2.5.2)

χc(q, iωm) =

∫ β

0
dτ exp (iωmτ)

1

2N
⟨ρq(τ)ρ−q(0)⟩, (2.5.3)

where ωm denotes the Matsubara frequency for bosons (ωm = 2mπkBT ) and ⟨Â⟩ is the
statistical average of an observable Â at a temperature kBT (= 1/β). N is the total
number of k-point mesh. Sz

q and S+
q , S

−
q denote the z-component of the spin operator

and spin creation and annihilation operators, respectively. ρq is the charge operator.
These operators are defined as

Sq =
1

2

∑
k

∑
σσ′

c†kσσσσ′ck+qσ′ , (2.5.4)

S±
q = Sx

q ± iSy
q , (2.5.5)

ρq =
∑
k

(c†k↑ck+q↑ + c†k↓ck+q↓). (2.5.6)

In the case of the paramagnetic state without orders, there is the spin rotational sym-
metry and spin susceptibilities are given by

2χzz
s (q, iωm) = χ±

s (q, iωm) ≡ χs(q, iωm). (2.5.7)

These susceptibilities are represented as

χs(q, iωm) =
χ0(q, iωm)

1− Uχ0(q, iωm)
, (2.5.8)

χc(q, iωm) =
χ0(q, iωm)

1 + Uχ0(q, iωm)
, (2.5.9)

where χ0(q, iωm) denotes the irreducible susceptibility. The irreducible susceptibility is
defined as the Feynman diagram where diagrams connect with each other even when
arbitrary two internal lines are removed.
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2 Basic concepts on the theory of superconductivity

2.5.1 Random phase approximation

In the random phase approximation (RPA), one employs the following noninteracting
irreducible susceptibility

χ0(q, iωm) = −kBT
N

∑
k,n

G0(q + k, iωm + iεn)G0(k, iεn) (2.5.10)

=
1

N

∑
k

f(ξ(q + k))− f(ξ(k))

iωm − [ξ(q + k)− ξ(k)]
(2.5.11)

where εn denotes the Matsubara frequency for fermions (εn = (2n+1)πkBT ). G0(k, iεn)
is the Green’s function for free electrons

G0(k, iεn) = [iεn − ξ(k)]−1. (2.5.12)

Further, f(ξ(k)) = [1 + exp(βξ(k))]−1 denotes the Fermi distribution function.
Skipping several procedures, we show the gap equation of superconductivity caused

by an effective interaction. By using the spin and charge susceptibilities, the effective
interactions are given by

Γσ,−σ(k, q, iεn, iεm) = U − 1

2
U2χc(k − q, iεn − iεm)

+
1

2
U2χs(k − q, iεn − iεm) + U2χc(k + q, iεn + iεm),

(2.5.13)

Γσ,σ(k − q, iεn − iεm) = −1

2
U2χc(k − q, iεn − iεm)

− 3

2
U2χs(k − q, iεn − iεm), (2.5.14)

Then, the Green’s function of quasi-particles satisfies the Dyson’s equation

[G(k, iεn)]
−1 = [G0(k, iεn)]

−1 − Σ(k, iεn), (2.5.15)

Σ(k, iεn) = −kBT
N

∑
q,m

[G(q, iεm)Γσ,σ(k − q, iεn − iεm)

− U2G0(q, iεm)χ0(k − q, iεn − iεm)], (2.5.16)

where Σ(k, iεn) denotes the self-energy without vertex corrections. The gap equation is
given by

λ∆(k, iεn) = −kBT
N

∑
q,m

G(q, iεm)G(−q,−iεm)Γσ,−σ(k, q, iεn, iεm)∆(q, iεm), (2.5.17)

where ∆(k, iεn) denotes the superconducting gap. This equation is called the linearized
Eliashberg equation. The eigenvalue λ of the linearized Eliashberg equation reaches
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2.5 Perturbation theories

Fig. 2.1: Typical Fermi surface and dx2−y2-gap structure of the hole-doped Hubbard
model on the square lattice. Q and Q′ denote nesting vectors.

unity at Tc, so that when it is calculated at a fixed temperature, systems with higher
Tc give larger eigenvalues. In other word, λ calculated at a fixed temperature can be
considered as a measure of Tc.
In the above equations, physical quantities are defined as functions of Matsubara fre-

quencies, which can be mapped to functions of complex frequencies by using an analytic
continuation, e.g. χs(q, iωm) → χs(q, ω) (ω ∈ C). From the gap equation (Eq. (2.5.17)),
the dx2−y2-wave superconducting phase is derived near the AFM phase in the Hubbard
model on the square lattice, which corresponds to the simple model of cuprates. The
band dispersion is given by

ε(k) = −2t(cos kx + cos ky). (2.5.18)

The Fermi surface and dx2−y2-gap structure in the low hole-doping regime are shown
in Fig. 2.1. Fermi surface nesting has been considered to be crucial for the occurrence
of spin-fluctuation mediated superconductivity. The nesting means that two pieces of
Fermi surfaces are connected with each other via a certain wave vector (nesting vector
Q). When there is good Fermi surface nesting (ξ(k + Q) = ξ(k)), the zero-energy
irreducible susceptibility χ0(Q, ω = 0) is enhanced as can be understood from in Eq.
(2.5.11). As shown in Eqs. (2.5.8) and (2.5.13), the intraorbital repulsion U , combined
with the nesting (Uχ0(q, ω = 0) ∼ 1), induces spin fluctuation (χs(q, ω = 0) → ∞),
which in turn mediates scattering processes between electron and hole Fermi surfaces
(Γσ,−σ(k,k +Q, iεn, iεn) → −∞). Then, the simplified gap equation is

∆(k) ∝ −V (Q)∆(k +Q) (2.5.19)

where the energy dependency is omitted. V (Q)(> 0) denotes the effective interaction
between up-spin and down-spin electrons, which is roughly proportional to Γσ,−σ(k,k+
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2 Basic concepts on the theory of superconductivity

Q, iεn, iεn). Multiplying through by ∆(k), we have

∆(k)2 ∝ −V (Q)∆(k)∆(k +Q). (2.5.20)

If ∆(k)2 is finite, the gap function should satisfy the following inequality

∆(k)∆(k +Q) < 0. (2.5.21)

Therefore, if the superconducting gap changes the sign before and after the pair scat-
tering (k ↑;−k ↓→ k + Q ↑;−k − Q ↓), the scattering processes act as a “repulsive”
pairing interaction around Q.

In the square lattice Hubbard model, a RPA study indicates the dx2−y2-wave super-
conductivity, which is consistent with the experiments for the cuprates. However, the
RPA is not applicable to the strong-correlation regime (U/t ≫ 1), where superconduc-
tivity can be strongly enhanced, due to the Stoner-type instability (Uχ0(q, ω = 0) ∼ 1)
because it neglects the interaction between electrons with various momentum. In the
weak-correlation regime (U/t ≈ 1), where the RPA is applicable, the estimated Tc is
about 10−3t, which is very low compared to that of cuprates when the hopping integral
takes an experimental value (t = 0.4 eV).

2.5.2 Fluctuation exchange approximation

The fluctuation exchange (FLEX) approximation is an expansion of the RPA, which is
applicable to the relatively strong-correlation regime [45, 46]. In the FLEX approxima-
tion, the irreducible susceptibility is given by

χ0(q, iωm) = −kBT
Ns

∑
k,n

G(q + k, iωm + iεn)G(k, iεn) (2.5.22)

As can be seen in this formalism, the irreducible susceptibility is self-consistently deter-
mined taking account of spin and charge fluctuations for the whole momentum (in the
case of the RPA, the momentum takes the single value). Thus, the FLEX approximation
incorporates the mode-mode coupling, which can reduce the Stoner-type instability.

For the realistic U/t ∼ 10, the FLEX approximation exhibits the dx2−y2-wave super-
conductivity similarly to the RPA and estimates the Tc to be about 10−2t, which is
comparable to that of cuprates for t = 0.4 eV.

To begin with, in two-dimensional systems, a phase transition is rigorously forbidden
at finite temperature by the Mermin-Wagner theorem. In addition, in one-dimensional
systems, the phase transition is forbidden even at absolute zero by the theorem. However,
the perturbation theory predicts the existence of phase transitions at finite-temperature,
which appears to be contradictory to the Mermin-Wagner theorem. Throughout this
thesis, we implicitly assume a working hypothesis that Tc estimated from the mean-field
theory can correspond to that for two (one) dimensional systems weakly coupled with
the other layers (chains).
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2.6 Real space description of repulsive pairing interaction

2.6 Real space description of repulsive pairing interaction

Perturbation theories demonstrate that anisotropic superconductivity can be induced
by spin fluctuation originating from the Hubbard U . At first glance, pairing originating
from a purely repulsive interaction may seem strange strange but can be explained
intuitively in the real space. Let us consider the square lattice Hubbard model with
large U . An up-spin electron can move to the next site only when there are no up-spin
electron at that site. Near half-filling, there has to be (nearly) one electron per site
in average, the absence of up-spin electron implies presence of a down-spin electron.
Electrons tend to hop to the nearest neighboring sites to reduce the total energy but
return to the original site to avoid the Hubbard U . This can be considered as an effective
nearest neighbor attractive interaction between up- and down- spin electrons. Actually,
the Mott insulating state occurs due to the strong-correlation effect at half filling. By
hole-doping, the electron mobility can be obtained like a sliding puzzle, resulting in
superconductivity.
What is interesting is that in high-temperature superconductors, the same pairing

symmetry is expected from momentum and real space descriptions corresponding to the
weak and strong correlation limit, respectively. In principle, the pairing symmetry can
change with respect to strength of correlations. The matching between these two pictures
may be important for the occurrence of the high-temperature superconductivity.

2.7 Pairing mechanism of iron-based superconductors

We come back to the iron-based superconductors. As shown in Fig. 2.2, the nesting be-
tween disconnected pockets of the Fermi surface induces an interband pairing scattering
associated with the nesting vector. This can lead to the superconducting gap changes the
sign between electron and hole Fermi surfaces, namely, the sign-reversal s-wave pairing
(see Eq. (2.5.20)) [17,22].

Fig. 2.2: Typical Fermi surface and band structure of iron-based superconductors. The
arrow denotes the nesting vector Q = (π, 0).
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3 Review on previous studies on multiband
superconductivity with incipient band

After the observations of the iron-based superconductors where the nesting is degraded or
absent, the role of “incipient bands”, which sit close to, but do not intersect the Fermi
level (see section 1.5), has received much attention. Various authors have suggested
that the spin-fluctuation scattering of pairs between an electron Fermi surface and an
incipient hole band can induce s± pairing [18, 31, 33, 35–40]. In this section, we review
the previous studies on multiband superconductors with the incipient band.

3.1 Bilayer Hubbard model

In the context of the iron-based superconductors, the bilayer Hubbard model, which
has been extensively studied in the past [47–56] has recently attracted renewed focus.
Having hole and electron Fermi surfaces, it can be regarded as a single-orbital analogue
of the iron-based superconductors. In fact, it has been found in previous studies that s±

pairing is favored over dx2−y2 pairing by increasing the relative strength of the inter-layer
nearest hopping to the intra-layer nearest hopping [57]. Further, as one of the bands
becomes shallow or incipient, the spectral weight of spin fluctuation is transferred to
higher energies, which can lead to s± pairing state in which a gap appears on the hole
band with the opposite sign to the gap on the electron Fermi surfaces as shown in Fig.
3.2 [58–60].
The bilayer Hubbard model shown in Fig. 3.1 is given as

H = −t
∑

⟨ij⟩mσ

(c†imσcjmσ + h.c.)− t⊥
∑
iσ

(c†i0σci1σ + h.c.)

− t′⊥
∑
⟨ij⟩σ

(c†i0σcj1σ + h.c.) + U
∑
im

nim↑nim↓. (3.1.1)

where c†imσ/cimσ are creation/annihilation operators for a fermion with spin σ(=↑, ↓) on
the ith site on the mth layer (m=0 or 1) and nimσ = c†imσcimσ. The intra-layer hopping
is t and the inter-layer hopping is t⊥, the next nearest neighbor inter-layer hopping is
t′⊥. In momentum space, the binding and antibonding bands are given as

ε(k) = −2(t+ t′⊥ cos kz)(cos kx + cos ky)− t⊥ cos kz, (3.1.2)

where the case of kz = 0 (π) corresponds to the bonding (anti-bonding) band. At t′⊥ = 0,
the bonding and antibonding bands have the same width, and for finite t′⊥, the bonding
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3.2 Systems with wide and narrow bands

Fig. 3.1: Upper panel: the two-leg ladder lattice (left) and the bilayer lattice (right).
Lower panels: typical band structures of the two-leg ladder lattice. Left: tr ∼ tl, t

′ ∼ 0,
middle: tr > tl, t

′ ∼ 0, right: tr ∼ tl, t
′ > 0.

band is wide and the antibonding band is narrow (see the bottom panels of Fig. 3.1).
Especially, at t′⊥ = 1, the antibonding band is perfectly flat. The band filling n is defined
as the average number of electrons per site; n = 1 corresponds to half filling. For n < 1,
the narrow antibonding band becomes incipient by hole doping (see the bottom panels
of Fig. 3.1).

3.2 Systems with wide and narrow bands

Regarding the incipient band situation, it was proposed in refs. [61, 62] that strongly
enhanced superconductivity can take place in a system with coexisting wide and narrow
bands when the narrow band sits in the vicinity of the Fermi level. The electrons in the
wide band, which are not so strongly renormalized, can form Cooper pairs with a strong
pairing interaction mediated by the large number of interband pair scattering channels
making use of the large DOS of the incipient narrow band as intermediate states (see
Fig. 3.3). There, the Hubbard model on a two-leg ladder was studied within the FLEX
approximation. In the two-leg ladder model, which is a two-band model with bonding
and antibonding bands, one of the bands becomes wide and the other becomes narrow
when diagonal hoppings t′ are introduced. In nowadays’ terminology, the narrow band in
this case is incipient. This theory has been extended to various one and two dimensional
systems with coexisting wide and narrow (or flat) bands [62–67]. However, as seen in
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Fig. 3.2: (a) The s± superconducting transition temperature Tc versus t⊥/t for n = 1.05
and U = 2.4t in the bilayer Hubbard model. The Lifshitz point is denoted by a filled
square on the t⊥/t axis and the t⊥/t value where the RPA evaluated SDW instability
ends by a vertical dashed line with light blue shading to the left of it. (b) The imaginary
part of RPA χ(π, π, π,Ω) at T = 0.1t versus Ω for U = 2.4t for different values of t⊥,
which continuously increases in units of 0.01t from t⊥ = 3.7t (red curve) to t⊥ = 4t (blue
curve). The thick line represents the value of t⊥ = 3.77t corresponding to the maximum
value of Tc. This figure is taken from Ref. [58].

Fig. 3.2, superconductivity is strongly enhanced in the bilayer Hubbard model with
incipient bands, where the DOS of the band edges is not large. What is the key factor
to the enhancement of superconductivity in multiband systems?

3.3 Role of finite-energy spin-fluctuation mediated pairing

Recently, in ref. [68], the role played by the spin fluctuations in different energy ranges in
two-band systems has been discussed as follows. There is a critical frequency ωc in the
spin-fluctuation spectrum, which should be smaller than a pairing cutoff energy εc. In
general, the low-energy spin fluctuations with ω < ωc lead to strong renormalization and
have a pair breaking effect whilst finite-energy spin fluctuations with ω > ωc enhance Tc.
Further, the contribution from pair-breaking (pairing-effective) spin fluctuations scales
as 1/ω4(1/ω2) [69]. Thus, when the low-lying spin fluctuations are suppressed while
the finite-energy spin fluctuations are enhanced, superconductivity can be enhanced. In
multiband systems, as one of bands gets away from the Fermi level, the spin-fluctuation
spectral weight is transfered to higher energies. When the spin-fluctuation spectral
weight is away from the critical frequency of spin fluctuations, but is concentrated at a
frequency within the paring energy cutoff (εc > ε > ωc), the pairing interaction can be
strong without strongly renormalizing the quasiparticles. On the other hand, when the
spin fluctuations are concentrated at very low or too high energies, superconductivity is
degraded. From this viewpoint, the commonalities and differences between the bilayer
and the two-leg ladder has been discussed in ref. [68]. In this section, we will briefly
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Fig. 3.3: Schematic picture of the system where a wide band crosses the Fermi level and
a narrow band is incipient. The arrows indicate inter-band pair scattering channels.

Fig. 3.4: Eigenvalue of the Eliashberg equation λ at T = 0.05 plotted against the bare
Fermi level measured from the flat band energy for the two-leg ladder and bilayer lattices
with t′ = 1. This figure is taken from Ref. [68] with some modifications in the notations.

review papers [62,68], which have partially motivated the study of the present thesis.
They obtained the renormalized Green’s function by relying on the FLEX approxima-

tion. Using the Green’s function, the imaginary part of the dynamical spin susceptibility
χ(q, ω) is calculated. As a quantity that measures the strength of the spin fluctuation,
they defined ImΓ(ω) as

ImΓ(ω) ≡
∑
q

Imχ(q, ω). (3.3.1)

To study superconductivity mediated by the spin fluctuation, the linearized Eliashberg
equation (Eq. (2.5.17)) is solved. The Eliashberg λ calculated at a fixed temperature
can be a measure for Tc. Unless noted otherwise, they adopted U/t = 6, which is a
typical value for the cuprate superconductors.
They considered a bilayer (two-leg ladder) lattice where the inter layer (chain) nearest

neighbor hopping t⊥(tr) is equal to the intra layer (chain) nearest neighbor hopping t.
They started with the case with t′⊥(t

′) = 1, where the antibonding band is perfectly flat.
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Fig. 3.5: λ at T = 0.05 plotted against t′⊥ for the bilayer lattice with various band fillings.
This figure is taken from Ref. [68] with some modifications in the notations.

Fig. 3.6: λ at T = 0.05 plotted against t′ for the two-leg ladder lattice with various band
fillings. This figure is taken from Ref. [62] with some modifications in the notations.

Both in the bilayer and two-leg ladder lattices, the eigenvalue is maximized when the
flat band is close to the Fermi level as shown in Fig. 3.4. Further, they also studied the
case when the antibonding band has a finite band width, namely, for t′⊥(t

′) < 1, both in
these two systems with various band fillings, as shown in Figs. 3.5 and 3.6. In both of
the models, it was found that λ is optimized at t′⊥(t

′) where the antibonding band nearly
touches the Fermi level, and λ is reduced for smaller t′⊥(t

′), where the antibonding band
intersects the Fermi level. On the other hand, the suppression of λ against the reduction
of t′⊥(t

′) was found to be faster in 2D than in 1D.

The origin of this difference can be interpreted in terms of the relation between the
frequency dependence of the spin fluctuations and the shape of the DOS. As t′⊥(t

′) in-
creases, the bottom of the antibonding band becomes closer to the Fermi level. When
the antibonding band is just above the Fermi level, around the bottom of the antibond-
ing band contributes to the pair-breaking spin fluctuations, while the portion of the
band somewhat away from the bottom contributes more to the pairing effective ones.
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3.3 Role of finite-energy spin-fluctuation mediated pairing

Fig. 3.7: (a) Maximized λ of the bilayer Hubbard model at T = 0.05 plotted against t⊥
for various t′⊥ . λ is maximized for each set of (t′⊥, t⊥) by varying the band filling n.
The numbers near arrows indicate the band filing that maximizes λ. Similar plot for
the two-leg Hubbard ladder model, where t⊥ is replaced by tr. This figure is taken from
Ref. [68] with some modifications in the notations.

Therefore, for the bilayer model (Fig.3.10(c)), the large portion of the DOS produces
the pairing-effective spin fluctuations while the small portion of the DOS gives rise to
the pair-breaking ones. As the van Hove singularity of the antibonding band approaches
the Fermi level (Fig. 3.10(e)), the large DOS increases the low-energy, pair-breaking,
spin fluctuations rapidly (see the dash-dotted lines in Fig. 3.9). By contrast, in the two-
leg ladder case, where the DOS at the antibonding band bottom is (nearly) diverging
(Fig.3.10(d)), the large portion of the DOS contributes to the pair-breaking spin fluctua-
tions, while the small portion of the DOS enhances the pairing-effective spin fluctuations.
After the Fermi surface of the antibonding band is formed, the DOS at the Fermi level
decreases (Fig. 3.10(f)), leading to a milder suppression of superconductivity.

In fact, they showed the relation between the spin-fluctuation spectral function and
the eigenvalue λ. Figure 3.9 shows ImΓ as functions of the frequency ω for various t′

and (t⊥, n). The parameter sets are chosen from those adopted in Fig. 3.7. When the
spectral weight of spin fluctuation is concentrated at relatively low energies (ω < O(0.1)),
superconductivity is degraded. Large values of λ is obtained when the low-energy spin
fluctuation with ω < O(0.1) is suppressed while the spin fluctuation in the range ∼ 0.1 <
ω <∼ 1 is large. When the spin fluctuation weight is transferred to too high energies,
superconductivity is once again degraded. Thus, when the low-energy spin fluctuation is
suppressed while the finite-energy spin fluctuation is enhanced within a specific energy
regime, superconductivity can be enhanced.

They also considered the cases when the vertical inter layer (chain) hopping t⊥(tr)
is larger than the intralayer nearest neighbor hopping t in the bilayer (two-leg ladder)
system. Figures 3.7(a) and (b) show t⊥(tr) dependence of λ which is maximized for each
set of (t′, t⊥(tr)) by varying the band filling n. In most cases, λ is optimized at a band
filling where the antibonding band is (near) incipient. On the other hand, in the case
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Fig. 3.8: (a) The result for t′⊥ = 0 is extracted from Fig. 3.7(a), and compared to that
of U = 3, t′⊥ = 0. (b) A similar plot for the two-leg ladder, where the result for t′ = 0 is
extracted from Fig. 3.7(b), and compared to that of U = 3, t′ = 0. This figure is taken
from Ref. [68] with some modifications in the notations.

of t′ ∼ 0, t⊥(tr) ∼ 1, λ is optimized at a band filling close to half filling, where both
bands form the Fermi surface firmly. In general, when the band filling is too far from
half filling, superconductivity is degraded due to the suppression of correlation effects.
As in the t′⊥(t

′) variation of λ, the suppression of λ against the reduction of t⊥(tr) was
found to be faster in 2D than in 1D. This difference is also attribute to the shape of the
DOS as discussed in section 5.5.

They further studied the effect of electron correlation on the band width comparing
cases with U = 6 and U = 3 for t′⊥ = 0 as shown in Fig. 3.8(a). λ is strongly suppressed
for U = 3 compared to U = 6. Also, much larger t⊥ is required to realize the incipient
antibonding band, where λ is further suppressed. This result indicates that in the bilayer
Hubbard model, superconductivity is not enhanced in the presence of the incipient band
when U is small. In the bottom panel of Fig. 3.9, they also compared ImΓ for the
two values of U . When U is large, the spin fluctuation weight is not only squeezed into
a narrow energy range regime, but also it is enhanced due to the electron correlation
effect. The situation here for the bilayer model was found to be also different from that
in the two-leg ladder shown in Fig.3.8(b). In the 1D case, superconductivity is enhanced
when the band is incipient even when U is small. This was again attributed to the shape
of the DOS; it is diverging at the band edge, so that when the band is incipient, spin
fluctuation develops in the energy range effective as a pairing glue even when U is small.

3.4 Motivation of the studies in the present thesis

As reviewed above, enhancement of superconductivity in some models with incipient
bands has been attributed to different roles played by spin fluctuations in different
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energy ranges. There, the spin fluctuation spectra can be roughly understood from the
shape of the density of states. However, it is not clear whether such a weak coupling
view is valid when electron correlation becomes strong.

In this thesis, we study various two-band Hubbard models, namely, single-orbital
Hubbard models on two-leg ladder and bilayer square lattices, and two-orbital Hubbard
models on one-dimensional chain and square lattices, using a many-variable variational
Monte-Carlo (mVMC) method [70, 71], which incorporates the strong correlation ef-
fect and order competitions accurately. By comparing the results for the two-leg (one-
dimensional) ladder and the bilayer (two-dimensional) lattices, and with and without
the coexistence of wide and narrow bands, we discuss how the DOS affects supercon-
ductivity and antiferromagnetism. Further, we show that two-orbital systems can be
approximated as single-orbital two-band systems under specific conditions.
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3 Review on previous studies on multiband superconductivity with incipient band

Fig. 3.9: Upper four panels : ImΓ plotted against ω for various t′⊥ and (t⊥, n). The
parameter sets are chosen from those adopted in Fig. 3.5. The solid, dashed, and
dash-dotted lines correspond to the cases where λ > 1.1, 1.1 > λ > 0.8, and 0.8 > λ,
respectively, in Fig. 3.5. Bottom panel : ImΓ plotted against ω for t′⊥ = 0 and U = 6
(solid) or U = 3 (dash-dotted). (t⊥, n) are chosen from those adopted in Fig. 3.8,
where three values of t⊥ are chosen ; t⊥ = 1, t⊥ = 2.2 (where the antibonding band for
U = 6 goes just above the Fermi level) and t⊥ = 3.4 (where the antibonding band for
U = 3 goes just above the Fermi level). This figure is taken from Ref. [68] with some
modifications in the notations.
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3.4 Motivation of the studies in the present thesis

Fig. 3.10: Schematic images of the renormalized DOS of the bilayer and two-leg ladder
models. In each figure, the left (right) side of the vertical line depicts the DOS of the
bonding (antibonding) band. The gray area denotes the portion of the bonding band
DOS which gives rise to the low energy (pair breaking) spin fluctuations, and the red area
is the portion of the antibonding band DOS contributing to the spin fluctuations that
are effective for superconductivity. (a)(b)(c)(e) are for the bilayer model, and (d)(f) are
for the two-leg ladder model. (a) small U case, and (b) large U case with the antibonding
band being incipient. (c) and (d) are cases where the anti bonding band is incipient. (e)
and (f) are cases where t′⊥ ∼ 0 and t⊥ ∼ 1, so the antibonding band intersects the Fermi
level (large amount of electrons are required for the antibonding band to be incipient).
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4 Variational Monte-Carlo method

The variational Monte-Carlo (VMC) method is a combination of the variational theory
with the Monte-Carlo technique for evaluating expectation values [72]. In the VMC
method, the variational wave function |ψγ⟩ with variational parameters γ is employed
as the numerical solution of fundamental equations of quantum mechanics, such as the
Schrödinger equation,

Ĥ|ψγ⟩ = Eγ |ψγ⟩, (4.0.1)

Here Ĥ is the Hamiltonian and Eγ is the variational energy, which is calculated from
the variational wave function using Monte-Carlo methods. Variational parameters are
optimized so as to minimize the variational energy as follows:

E0 ≤ min
γ

Eγ = min
γ

⟨ψγ |Ĥ|ψγ⟩
⟨ψγ |ψγ⟩

, (4.0.2)

where E0 is the exact ground-state energy.

The VMC method does not have the negative sign problem unlike the auxiliary field
quantum Monte-Carlo method, so that it can be applied to study relatively large system
sizes even at large amplitude of electron interactions and geometrical frustration at
reasonable computational cost. However, the result can be biased strongly depending
on the form and initial value of variational wave functions. In the region where various
phases compete with each other in a narrow energy window, the search for the correct
ground state is very challenging.

A stochastic reconfiguration (SR) method has been developed to optimize large num-
ber of parameters stably and efficiently, which can reduce the substantial bias of the
VMC method [73–75]. In the conventional VMC method, the number of variational
parameters is several dozen. On the other hand, in the many-variable VMC (mVMC)
method, one can employ thousands of variational parameters, which enables us to de-
scribe various quantum fluctuations of order parameters and strong correlation effects
accurately [70, 71, 73–76]. Further, in comparison to the dynamical mean-field theory,
the mVMC method has good tractability of various anisotropic orders and long-range
interactions. The mVMC method has achieved fruitful and reproducible comparisons
with the experimental results [77, 78], for instance, for cuprates and iron-based super-
conductors, in studies where effective Hamiltonians derived from ab initio calculations
were adopted [79–84]. However, the physical intuition is still required to choose “good”
variational wave functions. Systematic improvement of trial wave functions has been
desired in the VMC method. In this section, we explain the VMC method.
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4.1 Intuitive image and local minimum problem of mVMC method

4.1 Intuitive image and local minimum problem of mVMC
method

The mVMC method searches for the optimum solution in the large parameter space.
The above statement is trivial but is helpful for understanding this method deeply. In
general, the trial wave function is defined as

|ψγ⟩ =
∏
i

exp(−iγiĝi)|0⟩, (4.1.1)

where γi is a variational parameter and ĝi is a generator defined as a product of creation
and annihilation operators. The operator exp(−iγiĝi) represents a translation in the
parameter space. Now, we consider the translation of a trial wave function. The Taylor
expansion is given by

|ψ(x+ δx)⟩ = |ψ(x)⟩+ δx
∂

∂x
|ψ(x)⟩+ · · ·+ (δx)n

(
∂

∂x

)n

|ψ(x)⟩+ · · ·

= exp

(
δx

∂

∂x

)
|ψ(x)⟩ = exp (−iδxp̂) |ψ(x)⟩, (4.1.2)

where x is a parameter and the operator p̂(= i ∂
∂x) is a generator. exp (−iδxp̂) denotes

the translation operator. Therefore, Eq. (4.1.1) corresponds to the generalization of Eq.
(4.1.2) in the high-dimensional parameter space.

Many-variables can provide so many paths not only toward the accurate optimum
solution but also toward local minima. In the present circumstances, we have no ab
initio way to obtain the optimum solution avoiding local minima. Thus, we have to
choose initial values which are already close to the possible optimum solution. However,
in most cases, we do not know the correct answer. The problem of choosing initial
values is common with the dynamical mean-field theory (DMFT). Especially in the case
of strongly-correlated electron systems, there are so many possible ground states due to
ordering competition.

4.2 Ensemble average

The ensemble average is the average of a quantity that is a function of the individual
states of the system. Now, we consider N particle systems. The ensemble average of an
observable Â is defined as

⟨Â⟩ = ⟨ψ|Â|ψ⟩
⟨ψ|ψ⟩

, (4.2.1)

Here we consider the set of positions of N particles: x = {x1,x2, · · · ,xN}. |x⟩ is the
real space configuration defined as

|x⟩ = c†r1σ1
c†r2σ2

· · · c†rNσN
|0⟩, (4.2.2)
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4 Variational Monte-Carlo method

where c†riσi creates a fermion with spin σi at the position ri (i = 1, 2, · · · , N). Eq. (4.2.1)
is then rewritten as

⟨Â⟩ =
∑
x

⟨ψ|Â|x⟩⟨x|ψ⟩
⟨ψ|ψ⟩

=
∑
x

P (x)
⟨ψ|Â|x⟩
⟨ψ|x⟩

, (4.2.3)

with

P (x) =
|⟨ψ|x⟩|2

⟨ψ|ψ⟩
, (4.2.4)

where P (x) is the distribution of the configuration x.

4.3 Markov chain Monte-Carlo method

In general, large systems have enormous configurations, which give rise to the huge-
computational cost of calculating the ensemble average. For instance, the total number
of configurations is 2N in the N site Ising model. On the other hand, if we can extract
a small number of high-probability random states, we can calculate highly accurate
ensemble averages at low cost as follows:

⟨Â⟩ ≈ 1

M

∑
x∈Random Sampling

⟨ψ|Â|x⟩
⟨ψ|x⟩

, (4.3.1)

where M is the total number of random samples. The above method is called the
importance sampling.

The importance sampling can be performed by a Markov chain Monte-Carlo method,
which is a stochastic process defined as follows:

1. Each trials result in a finite number of possible events, whose indexes are 1, 2, · · · ,m.

2. At the first trial, the event 1, 2, · · · ,m is produced with the possibility P1, P2, · · · , Pm,
respectively.

When events i1, i2, · · · , in are obtained up to the nth trial, the event i is produced
at the (n + 1)th trial with the conditional possibility ωi1i2···ini. This stochastic process
is called the Markov chain. In particular, when the (n + 1)th trial only depends on
the latest result (ωi1i2···ini = ωini), the stochastic process is called the simple Markov
chain. In addition, the (simple) Markov chain Monte-Carlo method is the method which
produces the simple Markov chain making use of random numbers.
In N particle systems, the Markov chain Monte-Carlo method is performed as follows;

1. The initial configuration of N particles is set.

2. The temporary state j is generated.

3. We calculate the acceptance possibility ωij with which the current state i is tran-
sitioned to the temporary state j.
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4.3 Markov chain Monte-Carlo method

4. ωij is compared with uniform random numbers ξ (1 > ξ ≥ 0). If ωij ≥ ξ, the
temporary state j is adopted as the new state. Otherwise, the state does not
change and the current state i is adopted as the new state.

5. Repeat the above steps 2-4.

6. Calculate physical quantities using the Monte-Carlo sampling.

The Mersenne twister method is often adopted as a random number generator for sam-
pling [85].
ωij is derived from the following stochastic differential equation, called the Master

equation,

Pi(n+ 1)− Pi(n) = −
∑
j ̸=i

ωijPi(n) +
∑
j ̸=i

ωjiPj(n), (4.3.2)

where Pi(n) is the probability density, called the (stochastic) distribution, for the state i
occurring at the nth step. In equilibrium, the distribution is independent of the number

of steps (Pi(n) = P
(eq)
i ), and Eq. (4.3.2) is given by

0 = −
∑
j ̸=i

ωijP
(eq)
i +

∑
j ̸=i

ωjiP
(eq)
j . (4.3.3)

When the above equation is established, the following equation should be satisfied

ωijP
(eq)
i = ωjiP

(eq)
j . (4.3.4)

This condition is called the detailed balance. One of the possible solution is

ωij =

P
(eq)
j /P

(eq)
i (P

(eq)
i > P

(eq)
j )

1 (P
(eq)
i < P

(eq)
j )

. (4.3.5)

This algorithm is called the Metropolis-Hastings algorithm. Therefore, we have to cal-

culate distributions P
(eq)
i in the equilibrium state to obtain the transition probability

ωij . In the high-temperature limit, P
(eq)
i is approximated as the Boltzmann distribution.

The transition probability is then given by ωij = exp [−β(Ej − Ei)] where Ei is the total
energy of the state i and β is the inverse temperature. These equations mean that when
the energy of the temporary state j is lower (higher) than that of the current state i, the
temporary state j is adopted as the new state with the probability 1 (exp [−β(Ej − Ei)]).
Therefore, we can obtain low-energy configurations from the Monte-Carlo method.
Quantum many-body states are superpositions of enormous configurations, so that

the calculation of distributions P
(eq)
i is hard. If you want to calculate the distributions

exactly, you have to solve the large-scale eigenvalue problem, but it eliminates the merit
of the Monte-Carlo method and is often impossible. Therefore, we have to employ some
approximations to calculate distributions in equilibrium numerically with a reasonable
computational cost.
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4.4 Basic algorithm of variational Monte-Carlo method

The VMC method provides accurate estimation of distributions of configurations in
quantum many-body systems at a low-computational cost. In this subsection, we show
the basic algorithm of the VMC method [86]. We employ the Hubbard model for Ne

electrons on Ns sites. As previously stated in the beginning of this section, the VMC
method includes the following procedures:

1. Set up a variational wave function.

2. Evaluate the energy expectation value with the trial function.

3. Find a minimum of the energy expectation value with respect to the variational
parameters.

4. Calculate various physical quantities with the optimized wave function.

The first step is the most important since the variational wave function determines
the accuracy of this method. To describe a correlated paramagnetic state, we employ
the following Gutzwiller’s wave function:

|ψg⟩ = PG|ϕFS⟩, (4.4.1)

with
|ϕFS⟩ =

∏
k∈BZ

∏
σ

θ (ε(k)− µ) c†kσ|0⟩, (4.4.2)

where |ϕFS⟩ is the Hartree-Fock type wave function of the paramagnetic state of free
electrons. As is well known, the Pauli exclusion principle is adopted in the Hartree-Fock
approximation. BZ denotes the first Brillouin zone, and c†kσ is an annihilation operator
of an electron with momentum k and spin σ. ε(k) is the band dispersion and µ is the
Fermi level of free electrons. θ(x) is a step function defined as

θ(x) =

{
1 (x ≤ 0)

0 (x > 0)
. (4.4.3)

PG is the Gutzwiller factor, which describes the on-site Coulomb repulsion [87], defined
as

PG = exp

(
−g
∑
i

ni↑ni↓

)
=
∏
i

[1− (1− e−g)ni↑ni↓], (4.4.4)

Here g is a variational parameter, which is rewritten as e−g → g (0 ≤ g ≤ 1) in this
subsection. For g = 0, double occupations are prohibited. Meanwhile, for g = 1,
electrons are free.
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4.4 Basic algorithm of variational Monte-Carlo method

|ϕFS⟩ is rewritten in a real space representation:

|ϕFS⟩ =
∏
σ

∏
k∈BZ

1√
Ns
θ (ε(k)− µ)

∑
i

exp (ik · riσ) c†iσ|0⟩

∝
∏
σ

∑
i1,i2,··· ,iNe/2

exp (ik1 · ri1σ) exp (ik2 · ri2σ) · · · exp
(
ikNe/2 · riNe/2σ

)
× c†i1σc

†
i2σ

· · · c†iNe/2σ
|0⟩, (4.4.5)

where ki is the ith wave vector of free electrons under boundary conditions, which will
be specified in subsection 4.14. rjσ denotes jth electron with spin σ (j = 1, 2, · · · , Ne/2).

In the second step, one has to evaluate the energy expectation value (see Eq. (4.2.1))

E(γ) ≡ ⟨ψγ |Ĥ|ψγ⟩
⟨ψγ |ψγ⟩

, (4.4.6)

where γ denotes a set of variational parameters, which is g in this subsection. Eq. (4.4.6)
can be rewritten as

E(γ) =
∑
R

⟨ψγ |Ĥ|R⟩⟨R|ψγ⟩
⟨ψγ |ψγ⟩

=
∑
R

Pγ(R)
⟨ψγ |Ĥ|R⟩
⟨ψγ |R⟩

, (4.4.7)

where R represents a certain configurations of total spin-up and down electrons: R =
{R↑,R↓} and Rσ = {r1σ, r2σ, · · · , rNe/2σ}. Pγ(R) is the distribution of a configuration
R:

Pγ(R) =
|⟨ψγ |R⟩|2

⟨ψγ |ψγ⟩
> 0. (4.4.8)

The positive value of Pγ(R) circumvents the negative sign problem unlike AFQMC.
According to the Monte-Carlo method, the summation over R is replaced by the impor-
tance sampling with weight Pγ(R), for which we employ the Metropolis algorithm (see
subsection 4.3). Eq. (4.4.7) is then reduced to

E(γ) ∼ 1

M

∑
R∈MC sampling

⟨ψγ |Ĥ|R⟩
⟨ψγ |R⟩

, (4.4.9)

When a present configuration Ri is to be changed to a new configuration Rj , the accep-
tance possibility is given by Eq. (4.3.5) and (4.4.8) as

ωij ≡
Pγ(Rj)

Pγ(Ri)
=

|⟨Rj |ψγ⟩|2

|⟨Ri|ψγ⟩|2
. (4.4.10)

Using the trial wave function |ϕg⟩ defined as in Eq. (4.4.2), ⟨R|ϕg⟩ is given by

⟨R|ψg⟩ = gNd det [D↑(R↑)] det [D↓(R↓)] , (4.4.11)
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where det [Dσ(Rσ)] is a Slater determinant of the paramagnetic state of free electrons
and Nd denotes the total number of double occupied sites. The i, j-element of the
determinant is simply

[Dσ(Rσ)]ij = exp(iki · rjσ) ≡ φσ(ki, rjσ), (4.4.12)

Using Eq. (4.4.10), the acceptance possibility is then given by

ωij = g2δd
∣∣∣∣det [D↑(Rj↑)]

det [D↑(Ri↑)]

∣∣∣∣2 ∣∣∣∣det [D↓(Rj↓)]

det [D↓(Ri↓)]

∣∣∣∣2 , (4.4.13)

where δd denotes the change in the number of the doubly occupied sites. In the Monte-
Carlo step, the single electron hopping is often considered. When the αth electron with
spin σ moves from rασ to rασ + δ, the configuration is

| · · · , rασ, · · · ⟩ → | · · · , rασ + δ, · · · ⟩. (4.4.14)

The acceptance possibility is then given by

ωij = g2δd
∣∣∣∣det [Dσ(· · · , rασ + δ, · · · )]

det [Dσ(· · · , rασ, · · · )]

∣∣∣∣2 . (4.4.15)

Thus, the ratio of determinants is needed to evaluate ωij .
The energy expectation value is calculated as follows. In the first-quantization repre-

sentation, the Hubbard Hamiltonian is rewritten as

Ĥ = −
∑
α

∑
σ

∑
δ

tδ∆ασ(δ) + U
∑
i,j

δri↑,rj↓ . (4.4.16)

Here tδ is a hopping integral, and ∆ασ(δ) is a hopping operator defined as

∆ασ(δ)| · · · , rασ, · · · ⟩ = | · · · , rασ + δ, · · · ⟩ (4.4.17)

where σ denotes the spin with the opposite sign to the spin σ. Using Eqs. (4.4.16) and
(4.4.17), we have

⟨ψγ |Ĥ|R⟩
⟨ψγ |R⟩

= −
∑
i

∑
σ

∑
δ

gδdtδ
detDσ(· · · , riσ + δ, · · · )
detDσ(· · · , riσ, · · · )

+ UNd. (4.4.18)

Same as ωij , the ratio of Slater determinants is required to evaluate the energy expec-
tation value. The expectation value of any other observable Â, e.g. the momentum
distribution function and structure factors, can be evaluated in a similar way with the
score ⟨ψγ |Â|R⟩/⟨ψγ |R⟩.

In order to evaluate ωij and ⟨ψγ |Ĥ|R⟩/⟨ψγ |R⟩, we need the ratio of determinants

q ≡ detDσ(· · · , riσ + δ, · · · )
detDσ(· · · , riσ, · · · )

. (4.4.19)
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The Leibniz formula for determinants gives a O ((Ne/2)!) time complexity, which is very
high in the repeated calculation of the VMC method. In ref. [72], it has been proposed
that the most effective way to handle this wave function is to calculate the inverse of the
matrices Dσ (Eq. (4.4.12)). This inverse is needed to compute the acceptance possibility
ωij (Eq. (4.4.10)) and the variational energy. Since only one particle is being moved,
only one column of the matrix Dσ will change, and the required ratio of wave functions
is easily evaluated. Since D−1

σ is proportional to the matrix of cofactors, the ratio of
determinants is

q =

Ne/2∑
i=1

[D−1
σ ]iα φσ(ki, rασ + δ). (4.4.20)

If the move of the single electron is accepted, all of the elements of D−1
σ need to be

changed.

[D−1
σ ]

(n+1)
ji =


[D−1

σ ]
(n)
ji /q

(n) (i = α)

[D−1
σ ]

(n)
ji − [D−1

σ ]
(n)
jα

Ne/2∑
l=1

[D−1
σ ]

(n)
lj φσ(kl, rασ + δ)

q(n)
(i ̸= α)

. (4.4.21)

This method gives a O (Ne/2)
2 time complexity, which is quite low compared to that of

the Leibniz formula.

We demonstrate the easy example of the Gutzwiller’s wave function (Eq. (4.4.1)) in
the two-site Hubbard model for two electrons. The absolute values of inner products
⟨x|ϕg⟩ are 1, g, g, 1 for |x⟩ = | ↑, ↓⟩, | ↑↓, 0⟩, |0, ↑↓⟩, | ↓, ↑⟩, respectively. Substitution the
above equations in Eq. (4.4.7) leads to

E(g) = U − 4tg + U

1 + g2
. (4.4.22)

The variational energy E(g) is minimized at

g = −U
4t

+

√
1 +

(
U

4t

)2

≡ g(opt). (4.4.23)

Substituting this optimized value g(opt) for Eq. (4.4.22), the exact energy of the ground
state can be reproduced. Taking the limit U/4t → ∞ (0), g(opt) converges to 0 (1).
These results are consistent with intuitive pictures. The variational method can reduce
the computational cost efficiently since we do not have to solve eigenvalue problems.

In small-scale systems, the trial-wave function can reach the exact solution. Mean-
while, large-scale systems are usually unsolvable due to a huge number of configurations,
so that many variational parameters are required to describe the ground state of the sys-
tems accurately. The more elaborate variational wave functions are discussed later.
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4 Variational Monte-Carlo method

4.5 Variational wave functions

The “accurate” variational wave function is expected to bear the following properties:

1. Unified form which can describe several different phases by using many variables,

2. Treatment of various many-body correlations beyond the mean-field theory,

3. Restoring symmetry which is broken in the mean-field theory.

The development of multi-variable optimization methods enables the treatment of wave
functions with many variational parameters, which can provide the above properties.
The generalized form of wave functions in this thesis is

|ψ⟩ = PL|ϕ⟩, (4.5.1)

where |ϕ⟩ is a Hartree-Fock-Bogoliubov type function called “one-body part”, L is the
quantum number projector controlling symmetries of wave function [88,89], and P is the
Gutzwiller-Jastrow factor describing many-body correlations [87, 90]. Here, we employ
P which is commutable with L (LP = LP) in order to preserve symmetries of |ψ⟩.

4.6 One-body part

The mean-field Slater determinant is usually employed as the one-body part. In this
subsection, we show one-body parts for various states; namely, the superconducting
state and antiferromaginetic (AFM) state, state with AFM and superconducting orders,
respectively. Further, the formalism for multi-orbital systems is also given.

4.6.1 BCS wave functions

From Eq. (2.1.27) in section 2.1, the BCS wave function is given by

|ϕBCS⟩ =
∏
k

(
1 + φ(k)c†k↑c

†
−k↓

)
|0⟩, (4.6.1)

with

φ(k) =
∆SC(k)

ξ(k) +
√
ξ(k)2 +∆SC(k)2

, (4.6.2)

where ξ(k) = ε(k) − µ, µ is the chemical potential and ∆SC(k) is the superconducting
gap. Since the number of electrons Ne is fixed in VMC calculations, the BCS wave
function [91] is rewritten as

|ϕBCS⟩ =

(∑
k∈BZ

φ(k)c†k↑c
†
−k↓

)Ne/2

|0⟩. (4.6.3)
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4.6 One-body part

For actual calculations, we employ the following real space representation:

|ϕpair⟩ =

 Ns∑
i,j=1

fijc
†
i↑c

†
j↓

Ne/2

|0⟩. (4.6.4)

In this case, the coefficient fij is given by

fij =
1

Ns

∑
k∈BZ

φ(k)eik·(ri−rj). (4.6.5)

The one body part |ϕpair⟩ is called the “generalized pairing function”. The merit of this
formalism is discussed later.

4.6.2 AFM ordered states

Here, we consider the AFM order,

ĤMF =
∑
σ

∑
k∈BZ

ε(k)c†kσckσ +
∑
i

∆AF exp(iQ · ri)(c†i↑ci↑ − c†i↓ci↓) + H.c.

=
∑
σ

∑
k∈AFBZ

(
c†kσ, c

†
k+Qσ

)( ξ(k) σ∆AF

σ∆AF ξ(k +Q)

)(
ckσ
ck+Qσ

)
, (4.6.6)

where AFBZ denotes the folded AFM Brillouin zone and ∆AF is the AFM order param-
eter, Q is the AFM nesting vector. Here we assume the ordered moment to be aligned
in the z direction. After diagonalizing ĤMF, the band dispersion is given by

εa(k) = ξ2(k)−
√
ξ1(k)2 +∆2

AF

εb(k) = ξ2(k) +
√
ξ1(k)2 +∆2

AF

(k ∈ AFBZ) , (4.6.7)

with ξ1(k) = (ε(k) − ε(k + Q))/2 and ξ2(k) = (ε(k) + ε(k + Q))/2. The operators

{a†kσ, b
†
kσ} ({akσ, bkσ}) are creation (annihilation) operators for the AFM quasiparticles

transformed from c†kσ (ckσ) as follows:{
a†kσ = ukc

†
kσ + σvkc

†
k+Qσ

b†kσ = −σvkc†kσ + ukc
†
k+Qσ

(k ∈ AFBZ) , (4.6.8)

with

uk(vk) =

1
2

1− (+)
ξ1(k)√

ξ1(k)2 +∆2
AF

1/2

.. (4.6.9)

uk and vk are assumed to satisfy the following relations:

u2k + v2k = 1, uk = u−k, vk = v−k. (4.6.10)
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4 Variational Monte-Carlo method

In the hole-doped case, the wave function is then given by

|ϕAFM⟩ =
∏

k∈AFBZ

∏
σ

θ (εa(k)− µ) a†kσ|0⟩

∝
∏

k∈AFBZ

∏
σ

θ (εa(k)− µ)
∑
i

(uk − σvk exp(iQ · ri)) exp (ik · ri) c†iσ|0⟩.

(4.6.11)

The i, j element of the Slater determinant (Eq. (4.4.12)) is then given by

φσ(ki, rjσ) = (uki − σvki exp(iQ · rj)) exp (iki · rj) (4.6.12)

In the limit ∆AF → 0, the operators a†kσ and b†kσ are reduced to c†kσ and c†k+Qσ, respec-
tively. Then, the wave function |ϕAF⟩ becomes the Slater determinant. The summation
over all possible AFM orders Q would improve the accuracy of the one-body part.
However, such an expansion increases computational costs due to the large number of
variational parameters. Thus, the single plausible nesting vectorQ is taken in this thesis.

4.6.3 States with AFM and superconducting orders

A wave function with AFM and superconducting orders can be introduced as follows [92].
Here, we start from the mean-field Hamiltonian,

ĤMF =
∑

k∈AFBZ

[
εa(k)

(
a†k↑ak↑ + a†k↓ak↓

)
+∆a

SC(k)
(
a†k↑a−k↓ + a†−k↓ak↑

)
+εb(k)

(
b†k↑bk↑ + b†k↓bk↓

)
+∆b

SC(k)
(
b†k↑b−k↓ + b†−k↓bk↑

)]
− µ

∑
i,σ

c†iσciσ,

(4.6.13)

where ∆a
SC(k)and ∆b

SC(k) are superconducting order parameters, and µ is the chemi-

cal potential. The definitions of operators {a†kσ, b
†
kσ} ({akσ, bkσ}) are the same as Eq.

(4.6.8).
Using eigenfunctions of ĤMF, the wave function is obtained as

|ϕAF+SC⟩ =

[ ∑
k∈AFBZ

(
φa(k)a†k↑a

†
−k↓ + φb(k)b†k↑b

†
−k↓

)]Ne/2

|0⟩, (4.6.14)

with 
φa(k) =

∆a
SC(k)

(εa(k)− µ) +
√
(εa(k)− µ)2 +∆a

SC(k)
2

φb(k) =
∆b

SC(k)

(εb(k)− µ) +
√
(εb(k)− µ)2 +∆b

SC(k)
2

. (4.6.15)

In the limit ∆AF → 0, the operators a†kσ and b†kσ are reduced to c†kσ and c†k+Qσ, re-
spectively. Then, the wave function |ϕAF+SC⟩ is reduced to the conventional BCS wave

40



4.6 One-body part

function. On the other hand, in the limit ∆a
SC(k)(∆

b
SC(k)) → 0, φa(k)(φa(k)) converges

to zero if εa(b)(k) > µ and otherwise diverges. Thus, the states only below the chemical
potential are occupied by the AFM quasiparticles and |ϕAF+SC⟩ is reduced to the normal
AFM mean-field wave function.
By replacing the operators for the AFM quasiparticles {a†kσ, b

†
kσ} with that for the

electron {c†kσ} in Eq. (4.6.14), the superconducting and AFM terms are represented
explicitly. Using Eqs. (4.6.8) and (4.6.14), (4.6.10), we have

|ϕAF+SC⟩ =

[ ∑
k∈AFBZ

{(
u2kφ

a(k)− v2kφ
b(k)

)
c†k↑c

†
−k↓

+
(
−v2kφa(k) + u2kφ

b(k)
)
c†k+Q↑c

†
−k−Q↓

+
(
φa(k) + φb(k)

)
ukvk

(
c†k+Q↑c

†
−k↓ − c†k↑c

†
−k−Q↓

)}]Ne/2

|0⟩, (4.6.16)

where φa(k) and φb(k) are the variational parameters with the condition

φa(−k) = φa(k), φb(−k) = φb(k). (4.6.17)

Then, uk, vk, φ
a(k), φb(k) are rewritten as

uk = cos θk, vk = sin θk

A(k) = cos2 θkφ
a(k)− sin2 θkφ

b(k)

B(k) = − sin2 θkφ
a(k) + cos2 θkφ

b(k)

. (4.6.18)

The coefficient of the third term in Eq. (4.6.16) is given by(
φa(k) + φb(k)

)
ukvk =

1

2
(A(k) +B(k)) tan 2θk = C(k). (4.6.19)

Thus, the parameters uk, vk, φ
a(k), φb(k) are mapped to the new parameters A(k), B(k)

and C(k). A(k) (B(k)) corresponds to singlet pairing in (out) the AFBZ. Thus, we define
the following parameters{

φ(1)(k) = A(k), φ(1)(k +Q) = B(k)

φ(2)(k) = C(k)
(k ∈ AFBZ) . (4.6.20)

The wave function is then rewritten as

|ϕpair⟩ =

[∑
k∈BZ

φ(1)(k)c†k↑c
†
−k↓+

∑
k∈AFBZ

φ(2)(k)
(
c†k+Q↑c

†
−k↓ − c†k↑c

†
−k−Q↓

)]Ne/2

|0⟩, (4.6.21)
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4 Variational Monte-Carlo method

with
φ(1)(−k) = φ(1)(k), φ(2)(−k) = φ(2)(k). (4.6.22)

The first and second terms in Eq. (4.6.21) mainly come from the superconducting
spin singlet state and AFM state, respectively. The second term also contains the spin
triplet state, which breaks the spin rotational symmetry.
In the form of the generalized pairing function, fij is given by

fij =
1

Ns

∑
k∈BZ

φ(1)(k)eik·(ri−rj) +
1

Ns

∑
k∈AFBZ

φ(2)(k)eik·(ri−rj)
(
eiQ·ri − e−iQ·rj

)
.

(4.6.23)
At most, fij have N2

s independent variational parameters, which can give rise to high
computational costs. Thus, one had better allow fij to have a sublattice structure so as
to reduce the cost. The large number of variational parameters fij can represent various
ordering states such as paramagnetic metals, AFM ordered states, charge ordered states,
spin liquid, and superconducting states within an unified form of |ϕpair⟩.

4.6.4 Multi-orbital BCS wave functions

The multi-orbital kinetic term is given by

Ĥkin =
∑
k,σ

∑
α,β

ξαβ(k)c
†
kασckβσ. (4.6.24)

Here c†kασ/ckασ creates/annihilates a fermion with momentum k and spin σ(=↑, ↓), αth

orbital (α = 1, 2, · · · ,M). ξαβ(k) is given by

ξαβ(k) = −
∑
ij

(tiα,jβ − µ) exp (−ik · (ri − rj)) . (4.6.25)

where tiα,jβ denotes the hopping integral between the αth orbital of site i and the βth

orbital of site j. µ is the chemical potential.
At the beginning, one diagonalizes this kinetic term by using a unitary transformation,

dkpσ = Λk;pαckασ, (4.6.26)

d†kpσ = Λ∗
k;αpc

†
kασ. (4.6.27)

Here d†kpσ/dkpσ creates/annihilates a fermion with momentum k and spin σ(=↑, ↓), pth
band (p = 1, 2, · · · ,M). The kinetic term is rewritten as

Ĥkin =
∑
k,σ

∑
p

λp(k)d
†
kpσdkpσ, (4.6.28)

where λp(k) is the band dispersion of the pth band measured from the chemical potential.
The multi-orbital BCS-type Hamiltonian is then given by

ĤBCS =
∑
k

(
d†
k↑,d−k↓

)( E(k) ∆(k)
∆†(k) −E(k)

)(
dk↑
d†
−k↓

)
, (4.6.29)
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4.6 One-body part

with

d†
k↑ =

(
d†k1↑, d

†
k2↑, · · · , d

†
kM↑

)
, (4.6.30)

d−k↓ = (d−k1↓, d−k2↓, · · · , d−kM↓) , (4.6.31)

dk↑ = (dk1↑, dk2↑, · · · , dkM↑)
T , (4.6.32)

d†
−k↓ =

(
d†−k1↓, d

†
−k2↓, · · · , d

†
−kM↓

)T
, (4.6.33)

where T means transpose. E(k) and ∆(k) are M ×M matrices describing the kinetic
terms and superconducting order parameters, respectively. E(k) is defined as

[E(k)]pq = λp(k)δpq, (4.6.34)

where δpq is the Kronecker delta. The BCS Hamiltonian is diagonalized by using the
Bogoliubov-Valatin transformation matrix ΛSC. The 2M × 2M transformation matrix
ΛSC is divided into M ×M matrices A,B,C,D as follows:

ΛSC(k) =

(
A(k) B(k)
C(k) D(k)

)
, Λ†

SC(k) =

(
A†(k) C†(k)
B†(k) D†(k)

)
. (4.6.35)

These matrices are obtained from the exact diagonalization. The diagonalized BCS
Hamiltonian is given by

ĤBCS =
∑
k

(
γ†
k↑,γ−k↓

)( Ẽ(k) 0

0 −Ẽ(k)

)(
γk↑
γ†
−k↓

)
. (4.6.36)

Ẽ(k) denotes the diagonal matrix with eigenvalues E

[Ẽ(k)]µν = Eµ(k)δµν (E1 ≤ E2 ≤ · · · ≤ E2M ). (4.6.37)

where µ.ν are the band indexes. The new operators γ
(†)
kµσ satisfy the anti-communication

relations of fermions and generate the elementary excitations (quasi-particles) of the

system. γ
(†)
kµσ is given by

γkµ↑ = Aµp(k)dkp↑ +Bµp(k)d
†
−kp↓, (4.6.38)

γ†−kµ↓ = Cµp(k)dkp↑ +Dµp(k)d
†
−kp↓. (4.6.39)

The ground state of the superconducting state is obtained by creating all negative energy
states (γµ

†) and annihilating all positive energy states (γµ) on the vacuum state, |ϕBCS⟩ =∏
µ,k γµ,kγµ,k

†|0⟩ where Eµ = −Eµ ≥ 0. Thus, the multi-orbital BCS wave function has
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the form∏
k,µ

γ−kµ↓γkµ↑
†|0⟩ =

∏
k,µ

∑
pq

(
C∗
µp(k)d

†
kp↑ +D∗

µp(k)d−kp↓

)
×
(
Aµq(k)dkq↑ +Bµq(k)d

†
−kq↓

)
|0⟩

=
∏
α,k

∑
pq

(
C∗
µp(k)Bµq(k)d

†
kp↑d

†
−kq↓ +D∗

µp(k)Bµq(k)δpq

)
|0⟩

∝
∏
k

(
1 +

∑
µ,pq

Bµp(k)C
∗
µq(k)∑

p′ Bµp′(k)D
∗
µp′(k)

c†kp↑c
†
−kq↓

)
|0⟩,

This wave function is rewritten as

|ϕ∗pair⟩ =

(∑
k∈BZ

∑
pq

φpq(k)d
†
kp↑d

†
−kq↓

)Ne/2

|0⟩, (4.6.40)

with

φpq(k) =
∑
µ

Bµp(k)C
∗
µq(k)∑

p′ Bµp′(k)D
∗
µp′(k)

. (4.6.41)

|ϕ∗pair⟩ is the generalized multi-orbital pairing function for the intra and inter orbital
spin-singlet states. By using transformation (Eqs. (4.6.26) and (4.6.27)), the generalized
multi-orbital pairing function is rewritten as

|ϕ∗pair⟩ =

∑
k∈BZ

∑
αβ

φ̃αβ(k)c
†
kα↑c

†
−kβ↓

Ne/2

|0⟩, (4.6.42)

with

φ̃αβ(k) =
∑
pq

[Λ†
k]pα[Λ

†
−k]qβφpq(k). (4.6.43)

4.6.5 Inner products of the generalized pair function and real space
configuration

The inner product of the generalized pair function and real space configuration ⟨x|ϕpair⟩
is required in the VMC calculation. We recall the real space configuration |x⟩ (Eq.
(4.2.2)) ,

|x⟩ = c†r1σ1
c†r2σ2

· · · c†rNeσNe
|0⟩, (4.6.44)

The generalized pair function |ϕpair⟩ is given by

|ϕpair⟩ =

 Ns∑
i,j=1

∑
σ,σ′=↑,↓

fσσ
′

ij c†iσc
†
jσ′

Ne/2

|0⟩ (4.6.45)
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4.7 Gutzwiller-Jastrow correlation factor

where fσσ
′

ij denotes variational parameters.
The inner product ⟨x|ϕpair⟩ is represented as a pfaffian of Ne × Ne skew symmetric

matrix [93]. The inner product is given by

⟨x|ϕpair⟩ =
∑
P

(Ne/2)!

Ne/2∏
l=1

(
f
σP(2l−1)σP(2l)
rP(2l−1)rP(2l)

− f
σP(2l)σP(2l−1)
rP(2l)rP(2l−1)

)

×
Ne/2∏
l=1

⟨x|
(
c†rP(2l−1)σP(2l−1)

c†rP(2l)σP(2l)

)
|0⟩, (4.6.46)

where P is the permutation of Ne with the condition{
P(2l − 1) < P(2l)

P(1) < P(3) < · · · < P(Ne − 1)
. (4.6.47)

From the power Ne/2 in |ϕ⟩, the same term
∏(

fσσ
′

rr′ − fσ
′σ

r′r

)∏(
c†rσc

†
r′σ′

)
appears

(Ne/2)! times. Using the commutation relation of fermion operators, we have

⟨x|
Ne/2∏
l=1

(
c†rP(2l−1)σP(2l−1)

c†rP(2l)σP(2l)

)
|0⟩ = (−1)P , (4.6.48)

where (−1)P is the parity of P. Thus, ⟨x|ϕpair⟩ is given by

⟨x|ϕpair⟩ = (Ne/2)!
∑
P

Ne/2∏
l=1

(
f
σP(2l−1)σP(2l)
rP(2l−1)rP(2l)

− f
σP(2l)σP(2l−1)
rP(2l)rP(2l−1)

)
(4.6.49)

= (Ne/2)!PfX, (4.6.50)

where PfX is a pfaffian of Ne ×Ne skew symmetric matrix X with the element

Xij = f
σiσj
rirj − f

σjσi
rjri . (4.6.51)

4.7 Gutzwiller-Jastrow correlation factor

By using the one-body part, such as the single mean-field Slater determinant and
Hartree-Fock-Bogoliubov type wave function, the Pauli exclusion principle and pair cor-
relation are described. However, there are also many-body correlations beyond the mean-
filed theory, which can be represented by the Gutzwiller-Jastrow factor [87, 90, 94, 95].
Here, we introduce three famous many-body operators PG,PG and Pex

d-h.
As mentioned in subsection 4.4, the Gutzwiller factor [87] punishes the double occu-

pation of electrons defined as

PG = exp

(
−1

2

∑
i

gini↑ni↓

)
. (4.7.1)
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The Jastrow factor [90] is defined as

PJ = exp

−1

2

∑
ij

vijninj

 , (4.7.2)

with two-body term, where ni =
∑

σ niσ is a density operator and vij = v(ri − rj) are
variational parameters depending on the displacement ri − rj . The long-range part of
this factor drives the charge density correlation and distinction between the metal and
insulator.
The doublon-holon correlation factor [94,95] is defined as

Pex
d-h = exp

− 2∑
m=0

∑
l=1,2

α
(l)
(m)

∑
i

ξ
(l)
i(m)

 , (4.7.3)

where α
(l)
(m) are variational parameters. ξ

(l)
i(m) is a many-body operator which is diagonal

in the real space configuration. If a doublon (holon) exists at site i and m holons

(doublons) surround it at the lth nearest neighbor, ξ
(l)
i(m) = 1. Otherwise, ξ

(l)
i(m) = 0.

This factor represents a tendency toward formation of bound state between a doublon
(doubly occupied site) and a holon (empty site) in the Mott insulating state due to the
strong electron correlation.

4.8 Quantum number projection

Many electron systems have several symmetries such as translational symmetry, point
group symmetry of lattice, U(1) gauge symmetry, and SU(2) spin-rotational symmetry.
On the other hand, spontaneous symmetry breaking occurs when the vacuum is unstable
in the thermodynamic limit. Superconductivity and ferromagnetism are examples of the
symmetry breaking.
In the VMC method, the trial wave function sometimes does not have the symmetry

of systems because the one-body part comes from a symmetry violating mean-field treat-
ment. For example, the spin-rotational symmetry is broken in the present generalized
wave function (Eq. (4.6.21)), which includes a state with total spin S = 0 and S = 1.
However, the symmetry should be preserved in finite systems.
The quantum number projection technique can control and restore symmetries of

variational wave functions [88, 89]. The spin projection operator LS which generates a
state with total spin S and Sz = 0 has a form

LS =
2S + 1

8π2

∫
dΩPS(cosβ)R(Ω), (4.8.1)

where Ω = (α, β, γ) is the Euler angle and the integral is calculated over all range of
Ω. The weight PS(cosβ) is the Sth Legendre polynomial. R(Ω) denotes a rotational
operator defined as

R(Ω) = Rz(α)Ry(β)Rz(γ) = eiαSzeiβSyeiγSz , (4.8.2)
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where Sy and Sz are total spin operators of y and z directions, respectively.

Let us consider operating LS to the generalized one-body part |ϕ⟩:

|ϕ⟩ =

 Ns∑
i,j=1

∑
σ,σ′=↑,↓

fσσ
′

ij c†iσc
†
jσ′

Ne/2

|0⟩. (4.8.3)

The rotated wave function R(Ω)|ϕ⟩ is represented using the rotated creation operator

c†iσ(Ω) in the same form as Eq. (4.8.3):

LS |ϕ⟩ =

 Ns∑
i,j=1

∑
σ,σ′=↑,↓

fσσ
′

ij c†iσ(Ω)c
†
jσ′(Ω)

Ne/2

|0⟩. (4.8.4)

The rotated creation operator c†iσ(Ω) is given by(
c†i↑(Ω)

c†i↓(Ω)

)
= Rz(α)Ry(β)Rz(γ)

(
c†i↑

c†i↓

)
, (4.8.5)

with

Rz(θ) =

(
eiθ/2 0

0 e−iθ/2

)
, (4.8.6)

Ry(θ) =

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
. (4.8.7)

Thus,

LS |ϕ⟩ = 2S + 1

8π2

∫
dΩPS(cosβ)

 Ns∑
i,j=1

∑
σ,σ′=↑,↓

fσσ
′

ij c†iσ(Ω)c
†
jσ′(Ω)

Ne/2

|0⟩

=
2S + 1

8π2

∫ 2π

0
dα

∫ π

0
dβ

∫ 2π

0
dγ sinβPS(cosβ)

×

 Ns∑
i,j=1

∑
σ,σ′=↑,↓

F σσ′
ij (Ω)c†iσc

†
jσ′

Ne/2

|0⟩, (4.8.8)

where F σσ′
ij (Ω) is transformed from fσσ

′
ij using Eqs. (4.8.5) and (4.8.6), (4.8.7).

In this thesis, the one-body part (Eq. (4.6.4)) contains only Sz = 0 components, so
that the integration over γ is omitted,

LS |ϕ⟩ = 2S + 1

4π

∫ 2π

0
dα

∫ π

0
dβ sinβPS(cosβ)Rz(α)Ry(β)|ϕ⟩. (4.8.9)
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Moreover, the integration over α is also omitted by using a set of real space configurations
{|x⟩} since LS filters out Sz ̸= 0 components from samples of |x⟩,

LS |ϕ⟩ =
∑
x

|x⟩⟨x|LS |ϕ⟩ (Filtering out Sz ̸= 0 components)

=
Sz=0∑

x

|x⟩⟨x|LS |ϕ⟩

=
Sz=0∑

x

|x⟩2S + 1

2

∫ π

0
dβ sinβPS(cosβ)⟨x|Ry(β)|ϕ⟩. (4.8.10)

When the Gutzwiller-Jastrow factor is operated to LS |ϕ⟩, the form is given by

|ψ⟩ = PLS |ϕ⟩ =
Sz=0∑

x

|x⟩⟨x|PLS |ϕ⟩, (4.8.11)

with

⟨x|PLS |ϕ⟩ = P (x)
2S + 1

2

∫ π

0
dβ sinβPS(cosβ)⟨x|Ry(β)|ϕ⟩. (4.8.12)

The integration over β is evaluated efficiently by the Gauss-Legendre quadrature [96].
The required number of mesh points is typically 10 and 20 for the spin singlet state in
the half-filled Hubbard model with 10 and 200 sites, respectively.

Under the condition Sz = 0, |x⟩ is defined as

|x⟩ = c†r1↑c
†
r2↑ · · · c

†
rNe/2↑

c†rNe/2+1↓c
†
rNe/2+2↓ · · · c

†
rNe↓

|0⟩. (4.8.13)

The component ⟨x|Ry(β)|ϕ⟩ is given by

⟨x|Ry(β)|ϕ⟩ = ⟨x|

 Ns∑
i,j

∑
σ1,σ2,σ3,σ4

[Ry(β)]σ1σ3 [Ry(β)]σ2σ4f
σ1σ2
ij c†iσ3

c†iσ4

Ne/2

|0⟩

= ⟨x|

 Ns∑
i,j=1

∑
σσ′

F σσ′
ij (β)c†iσc

†
jσ′

Ne/2

|0⟩

= (Ne/2)! PfX(β), (4.8.14)

where the element of skew symmetric matrix X(β) is

Xij(β) =


F ↑↑
rirj (β)− F ↑↑

rjri(β) (i ≤ Ne/2, j ≤ Ne/2)

F ↑↓
rirj (β)− F ↓↑

rjri(β) (i ≤ Ne/2, j > Ne/2)

F ↓↑
rirj (β)− F ↑↓

rjri(β) (i > Ne/2, j ≤ Ne/2)

F ↓↓
rirj (β)− F ↓↓

rjri(β) (i > Ne/2, j > Ne/2)

. (4.8.15)

Therefore, the inner product ⟨x|Ry(β)|ϕ⟩ is

⟨x|PLS |ϕ⟩ = (Ne/2)!P (x)
2S + 1

2

∫ π

0
dβ sinβPS(cosβ)PfX(β). (4.8.16)
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4.9 Stochastic reconfiguration method

The stochastic reconfiguration (SR) method, which restricts the variation of the wave
function, offers an efficient and stable multi-variable optimization method [74–76]. The
SR method is in part similar to the Newton method and steepest descent (SD) method.
In addition, the SR method is equivalent to the time and imaginary-time evolution [97,
98]. We recall the variational energy

Eγ = min
γ

⟨ψγ |Ĥ|ψγ⟩
⟨ψγ |ψγ⟩

, (4.9.1)

where |ψγ⟩ is the variational wave function with variational parameters γ = (γ1, γ2, · · · , γp).
p is the total number of variational parameters. Let us consider the optimization by en-
ergy minimization for the variation αi → αi + γi (i = 1, 2, · · · , p). The second order
Taylor approximation of the variational energy around α is

Eα+γ = Eα +
∑
k

gkγk +
1

2

∑
k,l

hklγkγl +O(γ3), (4.9.2)

where gk is the energy gradient vector and hkl is the energy Hessian matrix,

gk =
∂

∂αk
Eγ , (4.9.3)

hkl =
∂2

∂αk∂αl
Eγ . (4.9.4)

We employ the following cost function,

FN =
∑
k

gkγk +
1

2

∑
k,l

hklγkγl. (4.9.5)

The stationary condition ∂FN/∂γ = 0 leads to the Newton method,

γk = −h−1
kl gl. (4.9.6)

In a similar way, the cost function of the SD method is defined as

FSD =
∑
k

gkγk + λ
∑
k

γ2k , (4.9.7)

where λ is a Lagrange multiplier. The second term λ
∑

k γ
2
k , which denotes the Cartesian

distance in the parameter space, restricts the variation of parameters to stabilize the
optimization. From the stationary condition, we have

γk = − 1

2λ
gk. (4.9.8)

This method optimizes all the parameters simultaneously, but is unstable when various
ordering fluctuations compete. Small change of the variational parameters sometimes
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give rise to a large change of the wave function, which induces the instability of the SD
method.
On the other hand, the SR method restricts the variation of the wave function. We

introduce the normalized wave function in the p-dimensional parameter space,

|ψα⟩ =
1√

⟨ψα|ψα⟩
|ψα⟩. (4.9.9)

The first order Taylor approximation of |ψα+γ⟩ around α is given by

|ψα+γ⟩ = |ψα⟩+
p∑

k=1

γk|ψkα⟩+O(γ2), (4.9.10)

where |ψkα⟩ is the derivative of |ψα⟩.

|ψkα⟩ =
∂

∂αk
|ψα⟩

=
1√

⟨ψα|ψα⟩

(
∂

∂αk
|ψα⟩ −

⟨ψα|∂/∂αk|ψα⟩
⟨ψα|ψα⟩

|ψα⟩

)
. (4.9.11)

The wave function set |ψα⟩ forms a non-orthogonal basis. The norm of the variation
between |ψα⟩ and |ψα+γ⟩ is defined as

∆2
norm =∥ |ψα+γ⟩ − |ψα⟩ ∥2

=

p∑
k,l=1

γkγl⟨ψkα|ψlα⟩ =
p∑

k,l=1

γkγlSkl, (4.9.12)

where Skl = ⟨ψkα|ψlα⟩ is the overlap matrix.From Eq. (4.9.12), the matrix S corresponds
to the metric matrix in the parameter space. The cost function of the SR method is
defined as

FSR =
∑
k

gkγk + λ∆2
norm. (4.9.13)

From the stationary condition, the optimized parameter change is given by

γk = −∆t

p∑
l=1

S−1
kl gl, (4.9.14)

where ∆t = (2λ)−1 determines the speed of the optimization.

4.10 Stabilization of SR method

The instability of the SR method arises from the overlap matrix S. Since S is a positive
definite symmetric matrix, S can be diagonalized using an orthogonal matrix U :

p∑
k,l=1

UkiUljSkl = λiδij , (4.10.1)
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and

Skl =

p∑
i=1

λiUkiUli, (4.10.2)

S−1
kl =

p∑
i=1

1

λi
UkiUli, (4.10.3)

where λi > 0 are the eigenvalues arranged in descending order (λ1 ≥ λ2 ≥ · · · ≥ λp).
The small eigenvalues (λi ≪ λ1) give rise to the instability in the inverse matrix S−1

(Eq. (4.10.3)). Using Eqs. (4.10.2) and (4.9.12), we have

∆2
norm =

p∑
k,l,i=1

γkγlλiUkiUli =

p∑
i=1

λix
2
i , (4.10.4)

with

xk =

p∑
i=1

γkUki. (4.10.5)

Eq. (4.10.4) means that the variation in the direction xi is negligible in the case of
λi/λ1 ≪ 1. We introduce the truncation of the directions which satisfy λi/λ1 < εwf. Eq.
(4.9.14) is then rewritten as

γk = −∆t

p∑
l=1

S−1
kl gl = −∆t

p∑
l=1

p∑
k=1

p∑
i=1

1

λi
UkiUligl (4.10.6)

⇓ (Truncation)

γk = −∆t

p∑
l=1

p∑
k=1

q∑
i=1

1

λi
UkiUligl (4.10.7)

By changing the truncation parameter εwf, both the accuracy and stability of the SR
method can be controlled [99].
Further, the small eigenvalues can be increased by the modification of diagonal ele-

ments in the overlap matrix S,

Skk → (1 + ε)Skk, (4.10.8)

where ε ≪ 1 is a small constant [100]. This modification preserves the positive definite
property and does not change the optimal parameters.

4.11 Derivative operator

The overlap matrix S and energy gradient g are evaluated as follows. The wave function
considered here is

|ψα⟩ = PαL|ϕα⟩ = Pα

∑
n

ωn|ϕ(n)α ⟩, (4.11.1)
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where the summation
∑

n and weight ωn comes from the quantum number projection L.
The variational parameters of the Gutzwiller-Jastrow factor and transformed one-body
parts are independent of each other. We introduce the diagonal operator Ok in the real
space configuration |x⟩,

Ok =
∑
x

|x⟩
[

1

⟨x|ψα⟩
∂

∂αk
⟨x|ψα⟩

]
⟨x| =

∑
x

|x⟩Ok(x)⟨x|. (4.11.2)

Ok satisfies the following relations:

⟨x|Ok|ψα⟩ =
∂

∂αk
⟨x|ψα⟩, (4.11.3)

Ok|ψα⟩ =
∑
x

|x⟩ ∂

∂αk
⟨x|ψα⟩, (4.11.4)

⟨Ok⟩ =
⟨ψα|Ok|ψα⟩
⟨ψα|ψα⟩

=
⟨ψα|∂/∂αk|ψα⟩

⟨ψα|ψα⟩
. (4.11.5)

The derivative of the normalized wave function (Eq. (4.9.9)) is rewritten as

|ψkα⟩ =
1√

⟨ψα|ψα⟩
(Ok − ⟨Ok⟩) |ψα⟩, (4.11.6)

and the overlap matrix S is

Skl = ⟨OkOl⟩ − ⟨Ok⟩⟨Ol⟩. (4.11.7)

The energy gradient g is

gk =
∂

∂αk
⟨ψα|H|ψα⟩ = ⟨ψkα|H|ψα⟩+ ⟨ψα|H|ψkα⟩ (4.11.8)

= 2⟨HOk⟩ − 2⟨H⟩⟨Ok⟩. (4.11.9)

The expressions of Ok(x) are derived as follows [73, 74, 101, 102]. The Gutzwiller-
Jastrow correlation factor has an exponential form,

Pα = exp

[
−
∑
k

αkΘk

]
, (4.11.10)

where αk are variational parameters and Θk are diagonal operators in real space config-
urations (Θk|x⟩ = Θk(x)|x⟩). The expression for Pα is

Ok(x) = −Θk(x). (4.11.11)
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Since the inner product ⟨x|ϕ(n)α ⟩ is proportional to the Pfaffian PfX
(n)
α , the expression

for the one-body part is given by

Ok(x) =
1

⟨x|ψα⟩
∂

∂αk
⟨x|ψα⟩

=
1

⟨x|L|ϕα⟩
∂

∂αk
⟨x|L|ϕα⟩

=
1

⟨x|L|ϕα⟩
∂

∂αk

∑
n

ωn⟨x|ϕ(n)α ⟩

= (Ne/2)!
1

⟨x|L|ϕα⟩
∑
n

ωn
∂

∂αk
PfX(n)

α

=

∑
n ωnPfX

(n)
α Tr

[
X

(n)−1
α

∂
∂αk

X
(n)
α

]
2×

∑
n ωnPfX

(n)
α

. (4.11.12)

By using the above equations, the overlap matrix and energy gradient are evaluated in
the VMC method.

4.12 Skew symmetric matrix and pfaffian

A 2M × 2M skew-symmetric matrix is the matrix which satisfies

AT = −A (Aij = −Aji), (4.12.1)

where AT denotes the transposed matrix of A. The pfaffian of A is defined as anti-
symmetric product

PfA =
∑
P

(−1)P
M∏
k=1

AP(2k−1)P(2k), (4.12.2)

where the summation runs over all the pair partitions P of 2M indices which satisfy
P(2k − 1) < P(2k). (−1)P denotes the parity of the permutation P:(

1 2 · · · 2M − 1 2M
P(1) P(2) · · · P(2M − 1) P(2M)

)
.

4.13 Update technique for skew-symmetric matrix

In the present formalism, one has to evaluate the pfaffian for each Monte-Carlo step.
The update of the pfaffian is carried out efficiently by using an algorithm which is similar
to the Ceperley’s method [70,72]. When the 1st electron moves, the 1st row and column
of the skew matrix A are changed simultaneously. The pfaffian of the updated skew
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matrix B is calculated using the Cayley’s identity [103]:

det


0 A12 · · · A1M

−b12 0 · · · A2M
...

...
. . .

...
−b1M −A2M · · · 0

 = Pf


0 A12 · · · A1M

−A12 0 · · · A2M
...

...
. . .

...
−A1M −A2M · · · 0



× Pf


0 b12 · · · b1M

−b12 0 · · · A2M
...

...
. . .

...
−b1M −A2M · · · 0


.

Using this identity and cofactor expansion of determinants, detA = (PfA)2, we have

PfB = detA
∑
m

A−1
αmbm / PfA

= PfA
∑
m

A−1
αmbm, (4.13.1)

where bm is the updated element of αth row in B. Thus, the inverse matrix A−1 also
has to be evaluated.
An inverse matrix of B is calculated by using the Sherman-Morrison’s formula [104].

For any nonsingular matrix A and any column vector u and v with the condition 1 +
vTAu ̸= 0, the formula is given by

[A+ uvT]−1
ij = A−1

ij − 1

1 + vTAu

∑
m,n

A−1
imumvnA

−1
nj . (4.13.2)

If A is a skew-symmetric matrix, an inverse matrix of B = A+ uvT − vuT is

B−1
ij = A−1

ij +
1∑

mA
−1
αmbm

∑
m,n

(
A−1

imvmunA
−1
nj −A−1

imumvnA
−1
nj

)
. (4.13.3)

Substituting ui = bi −Aαi, vi = δαi for the above equation, we have

B−1
ij = A−1

ij +
1∑

mA
−1
αmbm

[
−

(∑
m

A−1
imbm

)
A−1

αj

+

(∑
m

A−1
jmbm

)
A−1

αi + δiαA
−1
αj − δjαA

−1
αi

]
. (4.13.4)

4.14 Finite-size effects and boundary conditions in VMC

By using the VMC method, one studies finite-size systems. However, what is needed
is an information about actual materials containing huge number of atoms. There are

54



4.14 Finite-size effects and boundary conditions in VMC

qualitative differences between finite-size systems and infinite-size systems rigorously.
For instance, the spontaneous symmetry breaking occurs not in finite-size systems but
in infinite-size systems. Thus, order parameters, such as the superconducting and AFM,
ferromagnetic order parameters, should be zero in the finite-size systems. However,
finite-size systems have a boundary, which should not be essential in large scale proper-
ties.

Boundaries of finite-size systems are eliminated by periodic boundary condition. Let
us consider a one-dimensional chain of L sites with the periodic boundary condition,
where site L+ 1(0) is equal to site 1(L). Thus, the topology of the system corresponds
to a ring, where there is no boundary. Further, the periodic boundary condition can be
extended in higher dimensional systems. This procedure allows us to examine large scale
properties by using finite-size systems. Of course, the magnitude of order parameters
(strictly speaking, ordering fluctuations) can be overestimated in small systems since
order parameters tend to decrease with the system size. This wrong estimation is called
the finite-size effect.

In the VMC calculation, degenerate states (open-shell) are unfavored because the
optimization can become unstable due to the large number of configurations of the
ground state. To form non-degenerate states (closed shells), one can set appropriate
phase changes of electrons passing through boundaries. There are two notable ways
for setting the phase changes; the periodic and antiperiodic boundary conditions. The
former is already specified above. Under the antiperiodic condition, the value of the
phase change is π when an electron goes across the boundary. In a one-dimensional
chain of L sites, creation operators satisfy c†L+1 = −c†1 (c†0 = −c†L). Then, the k-points
decrease by L/π compared to the case of the periodic boundary condition

k =
2π

L
n (periodic), (4.14.1)

k =
2π

L

(
n− 1

2

)
(antiperiodic). (4.14.2)

We demonstrate the merit of the antiperiodic boundary condition in the case of half-
filled square lattice. The band dispersion is given by ε(k) = −2t(cos kx + cos ky). The
periodic boundary condition along one of the two axes and antiperiodic for the other
axis (p.a.) as shown in Fig. 4.1. Under this condition, the states at the Fermi level are
non-degenerate. On the other hand, in case the periodic boundary condition is imposed
in both directions (p.p.), the states at the Fermi level are highly degenerate (see Fig.
4.1); therefore it is not suitable for the VMC calculation. In general, the antiperiodic
boundary condition enables us to form the closed shell in the low-doped two- and three-
dimensional systems, which are attractive in terms of relations with exotic phenomena,
such as unconventional superconductivity and phase competition.

Unfortunately, the antiperiodic boundary condition often brings confusion when one
sets trial wave functions and calculate physical quantities in the VMC method. Here we
explain the misleading point referring to the formalism shown in subsection 4.4. Let us
consider a one-dimensional chain with the antiperiodic boundary condition. When an
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electron moves from site L to the “nearest neighbor site” L+ 1, the electron returns to
site 1 and the sign of the creation operator is changed. When one evaluates and updates
Slater determinants (see Eqs. (4.4.20) and (4.4.21)), one has to care about the sign of
them.
From the above, the boundary condition is helpful to obtain approximations of long

scale properties from VMC calculations of finite-size systems but can give rise to the
finite-size effect and bring some confusion.

Fig. 4.1: An illustration for the boundary condition and k-points within the Fermi sea
in the case of square lattice for 6x6 sites. The first Brillouin zone and the Fermi line
for the periodic-periodic (p.p) case is drawn with solid lines, while those of the periodic-
antiperiodic (p.a.) case is shown with dash-dotted lines. This figure is taken from
Ref. [86].
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4.15 Algorithm of mVMC method

We summarize the algorithm of the mVMC method.

1. Set the model and system size, form of variational wave functions, computational
conditions,

2. Set the initial value of variational parameters such as gi, vij , α
(l)
(m), fij ,

3. Set the initial configuration of electrons,

4. Construct the skew-symmetric matrix X of the initial state and evaluate the pfaf-
fian PfX and inverse matrix X−1 by using the definition of the pfaffian (Eq.
(4.12.2)) and Cramer’s rule,

5. Update the configuration several times without observations, and make systems
reach equilibrium,

6. Update the configuration several times without observations, and improve the in-
dependency between samples,

7. Measure observables,

8. Repeat steps 6 and 7,

9. The expected values of observables are obtained from the sample,

10. Optimize variational parameters referring to observables by using the SR method,

11. Repeat steps 3-10,

12. The optimized variational parameters are obtained by averaging the parameters
over the last several optimization steps,

13. Repeat steps 3-7 times,

14. By using expected values of observables, the expected values and standard errors
are evaluated.

The computational cost of the VMC method can be strongly reduce if the sampling is
parallelized. When the parallel computing grain size of a task is large, the calculation
efficiency is highly improved. Thus, the VMC method is suitable to the parallelization.

Although the mVMC method is difficult to handle, I implemented the mVMC method
by myself referring a previous work [70]. Further, I mastered the method and performed
the mVMC calculations successfully. Later, I transfered from my own program to an
open software [71] because it has the convenient flexible interface. We performed all
calculations in this thesis by using the open software. The initial values of the variational
wave functions and superconducting correlation functions are obtained from my own
program.
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5 Two-leg ladder and bilayer Hubbard
models with an incipient band

5.1 Motivation

The above mentioned studies on the two-leg ladder and bilayer lattices with diagonal
hoppings adopted the FLEX approximation [61,62,68], but because FLEX ignores higher
order vertex corrections, it is not clear whether the method can be applied to strongly
correlated regime. In this section, we study Hubbard models on the two-leg ladder
and bilayer square lattices, using a many-variable variational Monte-Carlo (mVMC)
method [70, 71], which enables us to perform high-precision calculations in the strong
coupling regime. By comparing the results for the two-leg ladder (one dimensional)
and the bilayer lattice (two dimensional), and with and without the diagonal hoppings,
we discuss how the density of states (DOS) affects superconductivity and antiferromag-
netism when one of the bands is close to being incipient.

5.2 Models

We study Hubbard models on the two-leg ladder and bilayer square lattices (Fig. 5.1).
The two-leg Hubbard ladder is given as

H = −tl
∑

⟨ij⟩mσ

(c†imσcjmσ + h.c.)− tr
∑
iσ

(c†i0σci1σ + h.c.)

− t′
∑
⟨ij⟩σ

(c†i0σcj1σ + h.c.) + U
∑
im

nim↑nim↓, (5.2.1)

where c†imσ/cimσ are creation/annihilation operators for an electron with spin σ(=↑, ↓)
on the ith site on the mth chain (m=0 or 1), and nimσ = c†imσcimσ. The nearest neighbor
hoppings in the leg and rung directions are tl and tr, respectively, and the next nearest
neighbor diagonal hopping is t′. Since two chains are connected by tr, we will call this
the inter-chain hopping. The band structure for this model is

ε(k) = −2(tl + t′ cos ky) cos kx − tr cos ky, (5.2.2)

where the case of ky = 0 (π) corresponds to the bonding (anti-bonding) band. For t′ > 0,
the bonding band is wider than the anti-bonding one.
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Fig. 5.1: Upper panel: the two-leg ladder lattice (left) and the bilayer lattice (right).
Lower panels: typical band structures of the two-leg ladder lattice. Left: tr ∼ tl, t

′ ∼ 0,
middle: tr > tl, t

′ ∼ 0, right: tr ∼ tl, t
′ > 0.

The bilayer Hubbard model on the square lattice is given as

H = −t
∑

⟨ij⟩mσ

(c†imσcjmσ + h.c.)− t⊥
∑
iσ

(c†i0σci1σ + h.c.)

− t′⊥
∑
⟨ij⟩σ

(c†i0σcj1σ + h.c.) + U
∑
im

nim↑nim↓, (5.2.3)

where c†imσ/cimσ are creation/annihilation operators for an electron with spin σ(=↑, ↓) on
the ith site on the mth layer (m=0 or 1). The intra-layer hopping is t and the inter-layer
hopping is t⊥, the next nearest neighbor inter-layer hopping is t′⊥. The band structure
for this model is

ε(k) = −2(t+ t′⊥ cos kz)(cos kx + cos ky)− t⊥ cos kz, (5.2.4)

where the case of kz = 0 (π) corresponds to the bonding (anti-bonding) band. For
t′⊥ > 0, the bonding band is wider than the anti-bonding one.

We take Ns = 60 × 2 (12 × 12 × 2) sites for the two-leg ladder (bilayer) Hubbard
model with the antiperiodic-periodic boundary condition in x (y) direction. A band
filling is defined as n = Ne/Ns where Ne =

∑
miσ nimσ. Hereinafter, the site index (i,m)

is simply rewritten as i.

To study the ground state of these Hubbard models, we employ a mVMC method [70,
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5 Two-leg ladder and bilayer Hubbard models with an incipient band

71], which incorporates the strong correlation and various ordering fluctuations accu-
rately. Our variational wave function is defined as

|ϕ⟩ = PGPJ|ϕpair⟩, (5.2.5)

where PG,PJ are the Gutzwiller and Jastrow correlation factors, respectively. |ϕpair⟩ is
the one-body part defined as

|ϕpair⟩ =

 Ns∑
i,j=1

fijc
†
i↑c

†
j↓

Ne/2

|0⟩, (5.2.6)

where fij is assumed to have 2 × 2 (2 × 2 × 2) sublattice structure or equivalently
2× 2×Ns (2× 2× 2×Ns) independent variational parameters for one-body part in the
two-leg ladder (bilayer) systems. To study a possible superconducting state, we consider
the BCS wave function (Eq. (4.6.3)). In this study, the BCS partial d (s±)-wave super-
conducting state are employed as the initial states for the ladder (bilayer) system, namely,
∆±(k) = ±∆0 for bonding and antibonding bands, respectively. We also employed more
elaborate variational wave functions with antiferromagnetic and superconducting mean
fields, spin projection. However, the improvement did not affect results qualitatively
because antiferromagnetic orders are destroyed by spin singlets formed in the interchain
(interlayer) direction when the interchain (interlayer) hopping is large. Thus, this simple
wave function can describe the ground state of these models properly. We optimize the
variational parameters simultaneously to minimize the variational energy by relying on
the stochastic reconfiguration method [73].

To investigate the ground state properties of these Hubbard models, we evaluate the
momentum distribution function and spin-structure factors, equal-time superconducting
correlation. The momentum distribution function is defined as

nσ(q) =
1

Ns

∑
i,j

⟨c†iσcjσ⟩ exp [iq · (ri − rj)] .

and the spin-structure factor is defined as

S(q) =
1

3Ns

∑
i,j

⟨Si · Sj⟩ exp [iq · (ri − rj)] .

In the case of the two-leg ladder (bilayer squar) lattice, as the interchain (interlayer)
hopping is large, an interchain (interlayer) antiferromagnetic spin correlation tends to
be enhanced in real space, which corresponds to a peak value of spin structure factor
around Q = (π, π)((π, π, π)) in momentum space.

Moreover, the equal-time superconducting correlations are defined as

Pα(r) =
1

2Ns

∑
ri

⟨∆†
α(ri)∆α(ri + r) + ∆α(ri)∆

†
α(ri + r)⟩.
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5.3 Results of two-leg Hubbard ladders

Superconducting order parameters ∆α(ri) are defined as

∆α(ri) =
1√
2

∑
r

fα(r)(cri↑cri+r↓ − cri↓cri+r↑).

Here fα(r), which is called the form factor, describes the symmetry of the supercon-
ducting pairing. For the partial d-wave pairing in the two-leg ladder chain lattice, we
define

fd(rx, ry) = δrx,0δry ,1,

where δij denotes the Kronecker’s delta. For the s±-wave pairing in the bilayer square
lattice, we define

fs±(rx, ry, rz) = δrx,0δry ,0δrz ,1.

In order to decrease stochastic errors, long-range average of the superconducting cor-
relation is evaluated, which is defined as

Pα =
1

M

∑
2<|r|<rmax

Pα(r),

where rmax is 30 (6
√
2) for the present two-leg ladder (bilayer) systems. M is the total

number of vectors satisfying 2 < r < rmax. Here, we eliminate the short range part of
the superconducting correlation since it does not reflect the off-diagonal ordering nature
of superconductivity to diminish the effect of the boundary condition.

5.3 Results of two-leg Hubbard ladders

We begin with the two-leg Hubbard ladder with/without diagonal hopping. Figure 5.2a
shows the inter-chain hopping dependence of several physical properties for t′/tl = 0 and
U/tl = 4; peak value of the spin structure factor S(qmax), which is the square of the
anti-ferromagnetic ordered moment, and average value of superconducting correlation
P d at long distance with the partial d symmetry, corresponding to the square of the
superconducting order parameter. We also plot the momentum distribution function
at the anti-bonding band minimum n(0, π), which monitors whether or not the anti-
bonding band intersects the Fermi level. For 1.2 ≤ tr/tl ≤ 1.6, n(0, π) decreases rapidly
and S(qmax) is strongly suppressed as tr/tl increases. The interchain spin correlation
is strongly suppressed when one of bands gets away from the Fermi level. Thus, the
incipient-band regime is estimated to be in a range of 1.2 ≤ tr/tl ≤ 1.6. The incipient
band is caused by the correlation effect since larger tr/tl(> 2) is required for the bare
antibonding band to go above the Fermi level at half-filling. In the incipient-band
regime, P d is maximized. Further, we find the dome structure of the partial d-wave
superconducting correlation around tr/tl ∼ 1.5, which is reminiscent of a previous FLEX
result of the two-leg ladder Hubbard model without t′ [105]. For t′/tl = 0.4, where
wide and narrow bands coexist, the inter-chain hopping dependence of several physical
properties are basically similar to those for t′/tl = 0 as shown in Fig. 5.2b. For a larger
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5 Two-leg ladder and bilayer Hubbard models with an incipient band

interaction value of U/tl = 8, the variation of n(0, π) against tr/tl becomes broad due to
correlation effects as shown in Figs. 5.2c and 5.2d. In the hole-doped two-leg Hubbard
ladder, as U increases, n(0, π) decreases while n(π, π) increases, and the momentum
distribution function of the antibonding band becomes faint. On the other hand, a
clear suppression of S(qmax) indicates the Lifshitz transition. Thus, superconductivity
is optimized when one of bands becomes incipient also in the strongly correlated regime.
Further, Figure 5.3 shows tr/tl dependence of the superconducting correlation P d

for various values of U/tl. Both for t′/tl = 0 and t′/tl = 0.4, the regime in which
the superconducting correlation is enhanced extends to smaller tr/tl as U/tl increases,
probably due to band narrowing caused by U . In general, Hubbard U can narrow bands
near the Fermi level and induce the Lifshitz transition [2]. We also verified that the
parameter dependence of various physical quantities is qualitatively similar between the
system with two system sizes, namely, 2x30 and 2x60 sites.
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5.3 Results of two-leg Hubbard ladders

Fig. 5.2: (color online). Inter-chain hopping tr/tl dependence of the averaged partial
d-wave superconducting correlation P d and the peak value of the spin structure factor
S(qmax) (upper panels), the momentum distribution function of the anti-bonding band
minimum n(0, π) (lower panels) for the two-leg ladder model with (a) t′/tl = 0 and
U/tl = 4, (b) t′/tl = 0.4 and U/tl = 4, (c) t′/tl = 0 and U/tl = 8, (d) t′/tl = 0.4 and
U/tl = 8. The band filling is n = 0.97. The yellow region denotes the incipient-band
regime. In the present plots and the plots in the later figures, the error bars indicate the
estimated statistical errors of the Monte Carlo sampling.
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5 Two-leg ladder and bilayer Hubbard models with an incipient band

Fig. 5.3: (color online). tr/tl dependence of P d for the two-leg ladder model with various
values of U/tl and (a) t′/tl = 0, (b) t′/tl = 0.4. The band filling is n = 0.97.

Fig. 5.4: (color online). Inter-layer hopping t⊥/t dependence of the averaged s±-wave
superconducting correlation P s± and the peak value of the spin structure factor S(qmax)
(upper panels), the momentum distribution function of the anti-bonding minimum
n(0, 0, π) (lower panels) for the bilayer model with (a) t′⊥/t = 0 and U/t = 8, (b)
t′⊥/t = 0.6 and U/t = 8. The band filing is n = 0.94.
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5.4 Results of bilayer Hubbard models

Fig. 5.5: (color online). t⊥/t dependence of P s± for the bilayer model with various values
of U/t and (a) t′⊥/t = 0, (b) t′⊥/t = 0.6. The band filling is n = 0.94.

5.4 Results of bilayer Hubbard models

We next move on to the bilayer Hubbard model with/without diagonal hopping. Figure
5.4a shows the inter-layer hopping dependence of physical properties for t′⊥/t = 0 and
U/t = 8; the peak value of the spin structure factor S(qmax) and the average value of
the superconducting correlation P s± at long distances with the s± symmetry. We also
plot the momentum distribution function at the anti-bonding band minimum n(0, 0, π).
For t⊥/t > 1.8, n(0, 0, π) decreases steeply, and S(qmax) is strongly suppressed as t⊥/t
increases. Thus, the incipient-band regime is estimated to be in a range of 1.8 ≤ t⊥/t ≤
2.4. The incipient band is caused by the correlation effect since larger t⊥/t(> 4) is
required for the bare antibonding band to go above the Fermi level at half-filling. Around
the incipient-band regime, P s± is enhanced. We find a dome structure of the s±-wave
superconducting correlation around t⊥/t ∼ 2.0 [106], which resembles FLEX [52] and
fRG [56], DCA [57] studies. For t′⊥/t = 0.6, t⊥/t dependence of the physical properties
are basically similar to those for t′⊥/t = 0 as shown in Fig. 5.4b.
As in the two-leg ladder, we also study t⊥/t dependence of superconducting correlation

P s± for various values of U/t as shown in Fig. 5.5. Both for t′⊥/t = 0 and t′⊥/t = 0.6, the
regime of enhanced superconducting correlation extends to smaller t⊥/t as U/t increases
in the same manner as the two-leg Hubbard ladder.
We note that n(0, 0, π) of the U = 8t bilayer Hubbard model decreases steeper than

n(0, π) of the U = 8tl two-leg Hubbard ladder, and in fact resembles that of U =
4tl ladder. Because the broadness of the momentum distribution variation around the
Lifshitz transition is presumably attributed to the correlation effect, the present result
indicates the strength of the electron correlation is roughly determined by U/W , where
W is the band width. We also verified that the parameter dependence of various physical
quantities is qualitatively similar between the system with two system sizes, namely,
6x6x2 and 12x12x2 sites.
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5 Two-leg ladder and bilayer Hubbard models with an incipient band

5.5 Discussion

These results demonstrate that superconductivity is enhanced in the incipient band
regime regardless of whether the system is one- or two-dimensional, or whether one of
the bare bands is narrow or not. Actually, there is resemblance between the present
mVMC study and the recent FLEX studies [62, 68, 107]. In this section, we further
discuss the commonalities and differences between the bilayer and two-leg ladder Hub-
bard models, referring previous studies. As mentioned in section 3.3, the low-lying spin
fluctuation leads to strong renormalization and hence is “pair breaking”, while the finite-
energy spin fluctuation enhances Tc [69]. Thus, when the low-energy spin fluctuation is
suppressed while the finite energy spin fluctuation is enhanced, superconductivity can
be enhanced. Refs. [58, 59, 68] pointed out that the finite-energy spin fluctuations can
enhance superconductivity in the bilayer Hubbard model. Moreover, quite recently, in
ref. [68], the role played by the spin fluctuations in various energy ranges in two-band
Hubbard models has been discussed as follows. In multi-band systems, as one of the
bands moves away from the Fermi level, the spin-fluctuation spectral weight is trans-
ferred to higher energies. When the spin-fluctuation spectral weight is away from the
critical frequency of spin fluctuations, but is within the paring cutoff energy, the pair-
ing interaction can be strong without strong renormalization of quasiparticles. On the
other hand, when the spin fluctuation is concentrated at very low or too high energies,
superconductivity is degraded. From this viewpoint, we discuss the relation between the
superconducting correlation calculated using the mVMC and the shape of the DOS of
the antibonding band, based on results of the previous FLEX studies [62,68] (see section
3).

One difference between the bilayer and the two-leg ladder observed in the present
study is the U dependence of superconductivity. Namely, in the two-leg ladder, the
superconducting correlation is enhanced even for U/tl = 2 when the antibonding band is
incipient, while such an enhancement is not obtained for the bilayer model for U/t = 4.
Note that here we compare two cases where U normalized by the bare band width are
the same. Actually, a similar result was obtained in the recent FLEX calculation (see
Fig. 3.8 in section 3.3 [68]). There, it has been pointed out that in the bilayer model,
the correlation effect reduces the width of the incipient band [2], which makes more
spin fluctuation weight lie within the energy regime effective for pairing. In the two-leg
ladder, such effect is not necessary for the superconductivity to be enhanced when the
antibonding band is incipient because in a one-dimensional system, DOS is diverging at
the band edge (see Fig. 5.6).

Another point that we notice, if we look closely, is that in the two-leg ladder, the
superconducting correlation, maximized around the incipient-band regime, is reduced as
tr/tl decreases and the antibonding band intersects the Fermi level, but does so rather
mildly and smoothly especially for U = 8tl, whereas the reduction of the superconducting
correlation in the bilayer model upon reducing t⊥ occurs rapidly after the antibonding
band intersects the Fermi level. If we compare in more detail the two cases for the
bilayer model, the reduction of the superconducting correlation is more abrupt for the
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5.6 Summary

Fig. 5.6: Typical density of states of the two-leg ladder Hubbard model. In each figure,
the left (right) side of the vertical line depicts the DOS of the bonding (antibonding)
band. The gray area denotes the portion of the bonding band DOS which gives rise
to the low-lying pair breaking spin fluctuations, and the red area is the portion of the
antibonding band DOS contributing to the spin fluctuations which mediate pairings.
(a) when both bands intersect the Fermi level, and (b) when the antibonding band is
incipient.

case with t′⊥ = 0.6. These differences can again be understood from the shape of the
DOS (see Figs. 5.6 and 5.7). Namely, in the two-leg ladder, where the DOS at the
band edge is diverging, the DOS at the Fermi level decreases (rapidly, especially for
large U because the band width shrinks due to renormalization) as tr is reduced after
the antibonding band intersects the Fermi level, so that the pair-breaking low-energy
spin fluctuations become weaker. By contrast, in the bilayer model, where the DOS
is diverging around the middle of the antibonding band, the DOS at the Fermi level
increases upon reducing t⊥ after the antibonding Fermi surface is formed, resulting in
an increase of the pair-breaking spin fluctuations. The diverging DOS of the antibonding
band approaches the Fermi level “faster” when t′⊥ is finite, so that the superconducting
correlation is rapidly suppressed for the case of t′⊥ = 0.6 as t⊥ is reduced. A similar
analysis has been performed in ref. [68], not for the tr, t⊥ variation, but for the t′(t′⊥)
variation of superconductivity as was mentioned in section 3 (comparison between Figs.
3.5 and 3.6).

5.6 Summary

To summarize, we have studied superconductivity in the Hubbard model on the two-leg
ladder and bilayer square lattices. In both systems, superconductivity can be optimized
in a region around the Lifshitz point, where one of the bands is (nearly) incipient. The
parameter dependence of the superconducting correlation function is reminiscent of the
FLEX results obtained in ref. [68]. What is noteworthy is the important role played by
an incipient band in the occurrence of superconductivity in the strong coupling regime.
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Fig. 5.7: Typical density of states for the bilayer Hubbard model. (a)(b) when t′⊥/t is
(nearly) zero, and (c)(d) when t′⊥/t is finite. (a)(c) when both bands intersect the Fermi
level, and (b)(d) when the antibonding band is incipient.

The present result suggests that the following view holds not only in the weak coupling
regime but also in the strong coupling regime as well: superconductivity is enhanced
by an incipient band due to the suppression of the near-zero-energy spin fluctuations
and enhanced finite energy spin fluctuations working as an effective pairing glue. We
also stress that the resemblance between the two approaches is highly nontrivial because
FLEX is based on a weak coupling perturbational theory, which takes into account the
spin fluctuations (in momentum space) explicitly in the effective interaction, whereas
the present mVMC method takes into account the electron correlation effect in a real-
space-based manner, which is expected to be more appropriate in the strong coupling
regime. Since it has been shown that incipient bands enhance superconductivity in other
models [2, 62–67], it is an interesting future problem to study those models using the
mVMC method.
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6 Two-orbital Hubbard models on
one-dimensional chain and square lattices

6.1 Motivation

In the previous section, motivated by the iron-based superconductors with “incipient
bands” [18, 31, 33, 35–40], we studied superconductivity in two-band systems, such as
the two-leg ladder and bilayer Hubbard models. The bilayer Hubbard model can be
regarded as a single-orbital analogue of the iron-based superconductors. In this section,
we revisit superconductivity in two-orbital systems with the incipient band. In multi-
orbital systems, interorbital interactions can induce charge orders and exotic quantum
states, such as a spin-triplet pairing (e.g. [108–110]) and orbital selective Mott phase
(e.g. [111]). Further, the hybridization effect significantly changes the band structure
and the Fermi surface, the orbital weights. Thus, the nature of multi-orbital systems
generally differs from that of single-orbital systems. However, there is a possible simi-
larity between multi-orbital systems and single-orbital systems with multi bands caused
by multi sites within a unit cell. For example, in some of the iron-based superconduc-
tors, the d-wave and s±-wave pairings may be closely competing, which is also the case
with the single-orbital analogue, namely, the bilayer Hubbard model. Moreover, some
theoretical studies suggest that there are two orbitals near the Fermi level in a unique
type of cuprate superconductors, such as a CuO2 monolayer on Bi2212 superconduc-
tors [112], Sr2CuO3+δ [113–115], Ba2CuO3+δ [116], and so on (cf. [117]). Motivated by
these materials, weak-coupling studies showed significant pairing strength in the dx2−y2-
wave and s±-wave channels in a two-orbital Hubbard model on square [110, 118, 119]
and Lieb [120] lattices, which are possible models of the unique type of cuprate su-
perconductors. These pairing symmetries are also the same as those in the iron-based
superconductors and the bilayer Hubbard model. In this section, we study two-orbital
Hubbard models on the one-dimensional chain and two-dimensional square lattices using
a mVMC method [70, 71] in order to discuss the commodities and differences between
the multi-orbital systems and single-orbital systems with multi sites.
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6.2 Models

The two-orbital Hubbard model is defined as

Ĥ =
∑

k,α,β,σ

εαβ(k)c
†
kασckβσ + U

∑
iα

niα↑niα↓

+
∑

i,α<β,σ

[
U ′niασniβσ̄ + (U ′ − J)niασniβσ

]
+ J

∑
i,α<β

(c†iα↑c
†
iβ↓ciα↓ciβ↑ + c†iα↑c

†
iα↓ciβ↓ciβ↑ +H.c.). (6.2.1)

Here c†iασ/ciασ creates/annihilates a fermion with spin σ(=↑, ↓) and αth(= 0 : x2−y2, 1 :

z2) orbital, niασ = c†iασciασ, and c
†
kασ is the Fourier transformation of c†iασ. U and U ′

denote the intra and inter orbital Coulomb repulsions, respectively. J denotes the spin-
flip and pair-hopping interaction, called Hund’s coupling (see Fig. 6.1). We employ the
following kinetic term

Ĥkin(k) =

(
ε00(k) ε01(k)
ε10(k) ε11(k)

)
=

(
εk ε′k
ε′k εk +∆

)
, (6.2.2)

where εk and ε′k denote band dispersion originating from intra and inter orbital hopping
integrals, respectively. ∆ is the energy difference between two-orbitals.

Fig. 6.1: Electron-electron interactions in multiorbital systems; (a) intraorbital Coulomb
interaction, (b)(c) interorbital Coulomb interactions, (d) spin-flip process, (e) pair-
hopping process.

After diagonalizing Ĥkin(k), the band dispersion is given by
εb(k) = εk +

∆

2
−
√
ε′k

2 +
∆2

4

εa(k) = εk +
∆

2
+

√
ε′k

2 +
∆2

4

. (6.2.3)
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6.2 Models

The operators {d†kbσ, d
†
kaσ} ({dkbσ, dkaσ}) are creation (annihilation) operators for the

electrons on bonding and antibonding bands, respectively. These operators are given
by using an unitary transformation dkpσ = [Λk]pαckασ, d

†
kασ = [Λ†

k]αpckασ (p = b, a) as
follows, {

d†kbσ = ukc
†
k0σ + vkc

†
k1σ

d†kaσ = −vkc†k0σ + ukc
†
k1σ

, (6.2.4)

with

u2k =
1

2

1 +
∆/2√

ε′k
2 +∆2/4

 (6.2.5)

v2k =
1

2

1− ∆/2√
ε′k

2 +∆2/4

 . (6.2.6)

Further, uk and vk are assumed to satisfy the following relations:

u2k + v2k = 1, uk = u−k, vk = v−k. (6.2.7)

In the limit ∆ → ∞, the operators d†kbσ and d†kaσ are reduced to c†k0σ and c†k1σ, respec-
tively. We employ a two-orbital Hubbard model on the one-dimensional chain, in which
the band dispersion is defined as {

ε(k) = −2t cos k

ε′(k) = −2t′ cos k
, (6.2.8)

where t and t′ denote the nearest intra and inter orbital hopping integrals. We also
employ a two-orbital Hubbard model on the square lattice, in which the band dispersion
is defined as {

ε(k) = −2t(cos kx + cos ky)

ε′(k) = −2t′(cos kx − cos ky)
, (6.2.9)

where t and t′ denote the nearest intra and inter orbital hopping integrals (see Fig. 6.2).
Due to the d-wave symmetry of the hybridization between dx2−y2 and dz2 orbitals, the
sign of the interorbital hopping integral is reversed between the x and y directions.

In order to demonstrate the hopping dependence of the band structure of two-orbital
systems, we begins with two special cases, namely, when the on-site energy is zero
(∆ = 0), and when the interorbital nearest neighbor hopping is zero (t′ = 0). For ∆ = 0,
the two orbital states are mixed at a ratio of one-to-one for each band. In the case of
the two-orbital one-dimensional chain, as t′ increases, one of the bands becomes wider
than the other as shown in Fig. 6.3. The definition of the bonding and antibonding
bands is then given in Fig. 6.3. On the other hand, in the case of the two-orbital square
lattice, the anisotropy of the bands is induced, which affects the shape of the DOS as
shown in Fig. 6.4. Especially, for t′ = 1, the band structure is one-dimensional. In this
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6 Two-orbital Hubbard models on one-dimensional chain and square lattices

Fig. 6.2: The two-orbital square lattice (left panel) and the trestle bilayer square lattice
(right panel) on the xz-plane, where “z” are the orbital and site indexes, respectively.

Fig. 6.3: Typical band structures (upper panels) and density of states (lower panels) of
the two-orbital one-dimensional Hubbard chain without the on-site energy (∆ = 0) for
various values of t′; (a) t′ = 0, (b) t′ ∼ 0.5t, (c) t′ ∼ t, for half filling. The dashed
line represents the Fermi level. In each lower panel, the left (right) side of the vertical
line depicts the DOS of the wide (narrow) band. The red (blue) arrow indicates the
antibonding (bonding) band.
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6.2 Models

Fig. 6.4: (color online). Typical band structures (upper panel) and density of states
(lower panels) of the two-orbital Hubbard model on the square lattice without the on-
site energy (∆ = 0) for various values of t′; (a) t′ = 0, (b) t′ = 0.5t, (c) t′ = t, for half
filling. In the upper panel, the solid (dashed) line represents the bonding (antibonding)
band. The definition of the bonding and antibonding bands is explained in the main
text.In each lower panel, the vertical line depicts the DOS of both the bonding and
antibonding band. The color band indicates the orbital weights for orbital 0 and 1.
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case, the bonding and antibonding bands are not defined since both two bands have the
same shape of the DOS and different momentum dependencies. Only in this case, the
antibonding (bonding) band means the band which mainly depends on kx(ky) rather
than ky(kx).Further, na(k, k) = nb(k, k). Next, we consider the case of t′ = 0, where
both of bands are isotropic. In the case of the two-orbital models on the square (one-
dimensional chain) lattice at half filling, the bare antibonding band gets away from the
Fermi level for ∆ > 8t(4t) as shown in Fig. 6.5. Further, we consider the two-orbital
system on the square lattice with ∆ > 0 and t′ > 0, where the bands are anisotropic
and the orbital states are mixed around momentums k = (0, π), (π, 0) (see Fig. 6.6). In
the two-leg ladder and bilayer square lattices, if the site index is regarded as the orbital
index, the two orbital (site) states are mixed for each band while in the two-orbital
one-dimensional chain and square lattices, the bonding (antibonding) band is mainly
originating from orbital 0 (1). The several nestings among disconnected pieces of the
electron-like and hole-like Fermi surfaces made of the “same orbitals”, combined with
“intraorbital” Coulomb repulsion U , induces interband spin fluctuations, which can lead
to pairing interactions around certain wave vectors. This possible pairing mechanism is
also the case with the iron-based superconductors [17, 121–123]. Thus, when one of the
bands is incipient, superconductivity can be enhanced in the same way as the bilayer
Hubbard model.

Particularly noteworthy is the case with U ′ = J = 0 and ∆ ≪ t, where the two-
orbital system corresponds to the trestle two-leg ladder (bilayer) Hubbard model with the
nearest-intra and next-nearest-inter chain (layer) hopping integrals t and t′, respectively
(see Fig. 6.2). Studying these trestle lattices allows us to investigate the relation between
the two-orbital systems and the two-band systems with multi-sites.

We take Ns = 2 × 2L (2 × 2L × 2L) sites for the two-orbital one-dimensional chain
(square lattice) Hubbard model with the antiperiodic-periodic boundary condition in
x (y) direction. The band filling is defined as number of electrons per orbital, namely,
n = Ne/Ns where Ne =

∑
iασ niασ. The half filling corresponds to n = 1 in the present

study.

6.3 Method

To study the ground state of these Hubbard models, we employ a mVMC method [70,71],
which can describe the strong correlation and various ordering fluctuations accurately.
Our variational wave function is defined as

|ϕ⟩ = PGPJ|ϕpair⟩, (6.3.1)

where PG,PJ are the multi-orbital Gutzwiller and Jastrow correlation factors, respec-
tively. The Gutzwiller factor is defined as

PG = exp

(
−1

2

∑
iα

giαniα↑niα↓

)
. (6.3.2)
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Fig. 6.5: (color online). Typical band structures of the two-orbital Hubbard model on the
square lattice without interorbital nearest neighbor hopping (t′ = 0) for various values
of the on-site energy; (a) ∆ = 0, (b) ∆ = 4t, (c) ∆ = 8t. The band originating from
orbital 0 (1) is depicted by the dashed blue (solid red) line.

Fig. 6.6: (color online). Upper panels: (a) Typical band structure and (b) Fermi surface,
(c) lattice structure of the two-orbital Hubbard model on the square lattice. In panel
(a), The red circles depicts the portion of the bands presumably contributing to the
interband pairing. In panel (b), the black arrows are nesting vectors. Lower panels: (d)
Typical band structure and (e) Fermi surface, (f) lattice structure of the bilayer Hubbard
model on the square lattice.
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6 Two-orbital Hubbard models on one-dimensional chain and square lattices

The Jastrow factor is defined as

PJ = exp

−1

2

∑
iα

∑
jβ

viα,jβniαnjβ

 , (6.3.3)

where niα =
∑

σ niασ. To study a possible superconducting state, we consider the
following BCS-type Hamiltonian,

ĤBCS =
∑
k

(
d†ka↑, d

†
kb↑, d−ka↓, d−kb↓

)

×


ξa(k) 0 ∆aa(k) ∆ab(k)
0 ξb(k) ∆ba(k) ∆bb(k)

∆∗
aa(k) ∆∗

ba(k) −ξa(k) 0
∆∗

ab(k) ∆∗
bb(k) 0 −ξb(k)




dka↑
dkb↑
d†−ka↓
d†−kb↓

 , (6.3.4)

where the operators {d†kbσ, d
†
kaσ} ({dkbσ, dkaσ}) are creation (annihilation) operators for

the electrons on bonding and antibonding bands respectively. ξp(k) is the band disper-
sion measured from the chemical potential µ (ξp(k) = εp(k)−µ) and ∆pq(k) are the gap
functions (p, q = a, b). After diagonalizing ĤBCS, the ground state of the superconduct-
ing state is given by

|ϕBCS⟩ =

(∑
k∈BZ

∑
p,q

φpq(k)d
†
kp↑d

†
−kq↓

)Ne/2

|0⟩. (6.3.5)

For actual calculations, the following real space representation is employed,

|ϕpair⟩ =

 Nc∑
i,j=1

∑
α,β

fiα,jβc
†
iα↑c

†
jβ↓

Ne/2

|0⟩, (6.3.6)

with

fiα,jβ =
1

Nc

∑
k

φ̃αβ(k) exp [ik · (ri − rj)] (6.3.7)

φ̃αβ(k) =
∑
p,q

φpq(k)[Λ
†
k]pα[Λ

†
−k]qβ , (6.3.8)

where Λ†
k are shown in Eqs. 6.2.4 and 6.2.6. Nc is the total number of cells in a supercell

and Ns is the total number of sites (Ns = 2Nc). fiα,jβ is assumed to have 2 (2x2)
sublattice structure or equivalently 2×Ns (4×Ns) independent variational parameters
for one-body part in the two-orbital one-dimensional chain (square lattice) systems. The
variational parameters are simultaneously optimized to minimize the variational energy
by using the stochastic reconfiguration method [73].
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6.4 Definition of physical quantities

6.4 Definition of physical quantities

To investigate the ground state properties of these Hubbard models, we calculate the
momentum distribution function and spin-structure factor, equal-time superconducting
correlation. The momentum distribution function is defined as

nαβσ(q) =
1

Ns

∑
i,j

⟨c†iασcjβσ⟩ exp [iq · (riασ − rjβσ)] , (6.4.1)

(6.4.2)

where α and β denote orbital indexes. The momentum distribution functions of the
bonding and antibonding bands are

nkbσ(q) = u2kc
†
k0σck0σ + v2kc

†
k1σck1σ + ukvk(c

†
k0σck1σ + c†k1σck0σ), (6.4.3)

nkaσ(q) = v2kc
†
k0σck0σ + u2kc

†
k1σck1σ − ukvk(c

†
k0σck1σ + c†k1σck0σ). (6.4.4)

The spin-structure factor is defined as

Sz
αβ(q) =

1

Ns

∑
i,j

⟨Sz
iαS

z
jβ⟩ exp [iq · (riασ − rjβσ)] , (6.4.5)

S±
αβ(q) =

1

Ns

∑
i,j

⟨S+
iαS

−
jβ⟩ exp [iq · (riασ − rjβσ)] , (6.4.6)

Sαβ(q) =
1

3Ns

∑
i,j

⟨Siα · Sjβ⟩ exp [iq · (riασ − rjβσ)] , (6.4.7)

with

Siα(q) =
1

2

∑
σσ′

c†iασσσσ′ciασ′ .

Further, the equal-time superconducting correlations are defined as

Pµ,αβ(r) =
1

2Ns

∑
ri

⟨∆†
µ,αβ(ri)∆µ,αβ(ri + r) + ∆µ,αβ(ri)∆

†
µ,αβ(ri + r)⟩.

where µ denotes the pairing symmetry. In actual calculations, the summation with
respect ri is restricted to ri = 0 to reduce the numerical cost. Superconducting order
parameters ∆µ(ri) are defined as

∆µ,αβ(ri) =
1√
2

∑
r

fµ,αβ(r)(criα↑cri+rβ↓ − criα↓cri+rβ↑).

Here fµ,αβ(r) is the form factor that describes the symmetry of the superconductivity.
For the d-wave superconductivity in the two-orbital one-dimensional chain, we define

fd,αβ(x) = δx,1 + δx,−1,
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6 Two-orbital Hubbard models on one-dimensional chain and square lattices

where δij denotes the Kronecker’s delta. For the s-wave superconductivity in the two-
orbital one-dimensional chain, we define

fs,αβ(x) = δx,0.

For the dx2−y2-wave superconductivity in the two-orbital square lattice, we define

fd,αβ(x, y) = δx,0(δy,1 + δy,−1)− sgnαβδy,0(δx,1 + δx,−1),

where sgnαβ denotes the sign change caused by the d-wave symmetry of the hybridization
between orbital 0 and orbital 1, namely, sgnαβ = +1 for α = β and sgnαβ = −1
otherwise. For the extended s-wave superconductivity in the two-orbital square lattice,
we define

fs∗,αβ(x, y) = δx,0(δy,1 + δy,−1) + sgnαβδy,0(δx,1 + δx,−1).

We calculate long-range average of the superconducting correlation, which is defined
as

Pµ,αβ =
1

M

∑
2<|r|<rmax

Pµ,αβ(r),

where rmax is L (
√
2L) for the two-orbital one-dimensional chain (square lattice) model

and M is the number of vectors satisfying 2 < r < rmax.

6.5 Results of two-orbital Hubbard models on the
one-dimensional chain

We begin with the two-orbital Hubbard model on the one-dimensional chain with U =
t, U ′ = J = 0 and ∆ = 0, which corresponds to the trestle two-leg Hubbard ladder
(see Fig. 6.3). Figure 6.8 shows the intrachain next-nearest hopping t′ dependence of
several physical properties at around half filling n = 0.875; the spin structure factor
Sαβ(π) and average value of superconducting correlation Pµ,αβ at long distance with
the d and s symmetries. We also plot the momentum distribution function at the
antibonding band minimum na(0) and that at the bonding band maximum nb(π), which
monitor whether or not the bonding and antibonding bands intersect the Fermi level.
For 0.6 ≤ t′/t ≤ 0.9, as t′/t increases, na(0) and nb(π), Sαβ(π) slightly change, and
both intrachain and interchain d-wave superconducting correlation functions P d,αβ are
enhanced while s-wave superconducting correlation functions P s,αβ are relatively small.
For 0.9 < t′/t, as t′/t increases, na(0) and nb(π) decrease rapidly but remain finite
and both intra and inter chain Sαβ(π) are strongly enhanced. Thus, both the bonding
and antibonding bands barely intersect the Fermi level. Just before this t′/t regime,
superconductivity is optimized. In the trestle two-leg ladder with large t′, the interchain
and diagonal pairings are enhanced (see Fig. 6.7), while in the two-leg ladder with the
large interchain hopping tr, only the interchain pairing is enhanced. If the site index
is regarded as the orbital index, the intra and inter chain pairings correspond to the
intra and inter orbital pairings, respectively. In fact, the interorbital pairing is not
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Fig. 6.7: Diagonal and interchain pairings in the trestle two-leg ladder Hubbard model
(∆ = 0, U ′ = J = 0)

common in unconventional superconductivity. For example, in some of heavy fermions,
an interorbital s-wave pairing between a conduction electron and a localized f electron
can be induced by an intraorbital on-site hopping [124]. Thus, the interorbital pairing
can be described in the context of the inter chain and layer pairing in the two-leg ladder
and bilayer square lattices.
Next we study the effect of interorbital interactions U ′ and J in the two-orbital Hub-

bard model on the one-dimensional chain with ∆ = 0 at around half filling. For U = t
and U ′ = 0.8t, J = 0.1t, t′ dependence of several physical quantities is similar to those
for U = t, U ′ = J = 0 as shown in Fig. 6.9. Both the intra and inter orbital pairings de-
velop for large t′/t. The regime of enhanced superconducting correlation slightly extends
to smaller t′/t as U ′ and J are induced (see Fig. 6.10). Further, we tried to investigate
the on-site energy dependence in order to make the antibonding band incipient, but the
optimization failed possibly due to the open-shell problem caused by the narrow band
(see section 4.14).
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Fig. 6.8: (color online). t′/t dependences of the momentum distribution function at the
narrow band minimum na(0) and that at the narrow band maximum nb(π), the spin
structure factor Sαβ(π), the averaged s-wave superconducting correlation Pµ,αβ and the
averaged d-wave superconducting correlation Pµ,αβ for the two-orbital one-dimensional
chain system with ∆ = 0 and U/t = 1, U ′/t = 0, J/t = 0, n = 0.875. The systems size is
2x48 sites and antiperiodic (AP) boundary condition is used. In the present plots and
the plots in the later figures, the error bars indicate the estimated statistical errors of
the Monte Carlo sampling.
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Fig. 6.9: t′/t dependences of na(0) and nb(π), Sαβ(π), Pµ,αβ and Pµ,αβ for the two-orbital
one-dimensional chain system with ∆ = 0 and U/t = 1, U ′/t = 0.8, J/t = 0.1, n = 0.875.
The systems size is 2x48 sites and AP boundary condition is used.
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Fig. 6.10: t′/t dependences of na(0) and nb(π), Sαβ(π), Pµ,αβ and Pµ,αβ for the two-
orbital one-dimensional chain system with ∆ = 0 and n = 0.875. The systems size is
2x48 sites and AP boundary condition is used.
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6.6 Results of two-orbital Hubbard models on the square
lattice

We next move on to the two-orbital Hubbard model on the square lattice with U =
2t, U ′ = J = 0,∆ = 0, which corresponds to the trestle bilayer Hubbard model on the
square lattice. Figure 6.11 shows the intraorbital nearest hopping t′ dependence of
several physical properties at around quarter filling n ∼ 0.889; the spin structure factor
Sαβ(π) and average value of superconducting correlation Pµ,αβ at long distance with
extended s and dx2−y2 symmetries. We also plot the momentum distribution function
at the narrow band minimum na(0). na(0) does not change and intraorbital Sαβ(π) de-
creases slightly as t′/t increases, because the DOS is finite near the Fermi level regardless
of t′/t as shown in Fig. 6.4. For t′/t ≤ 0.4, the intraorbital dx2−y2-wave and extended
s-wave superconducting correlations are enhanced, and the former one is larger than the
latter one. Further, there are the “diamond” shaped Fermi surfaces, which can result
in intraorbital dx2−y2 and interorbital extended s-wave pairing For t′/t > 0.4, various
superconducting correlations are close to each other. Thus, as in the trestle two-leg
Hubbard ladder, both the intra and inter layer pairings are strongly enhanced for large
t′/t, which are not seen in the bilayer Hubbard model with the strong interlayer nearest
hopping. Moreover, there are the “sharp” (#) shaped Fermi surfaces (see Fig. 6.6),
which can give rise to dx2−y2 and extended s-wave superconducting gaps.

Further, unlike the trestle two-leg ladder lattice, the superconducting correlation func-
tions do not rapidly change with respect to t′/t. These superconducting properties can
be attributed to the shape of the DOS (see discussion). We also study the effect of
interorbital interactions in the two-orbital Hubbard model on the square lattice with
∆ = 0 at around half filling. For U = 2t, U ′ = 1.6t, J = 0.2t and ∆ = 0, t′/t dependence
of several physical quantities is similar to those for U = 2t, U ′ = J = 0 at around half
filling as shown in Fig. 6.12.

Next, we study on-site energy dependence of several physical properties at around
quarter filling n = 0.375 and t′ = 0.8t, U = 2t, U ′ = J = 0 as shown in Fig. 6.13.
Actually, since the optimization becomes unstable for small t′, we set large t′. Around
∆/t ∼ 1, na(0, 0) decreases rapidly and S11(π, π) is slowly suppressed as ∆/t increases.
Thus, the incipient-band regime is estimated to be in a range of 1 ≤ ∆/t ≤ 2. Around the
incipient band regime, P s∗,11 is maximized and favored over d-wave pairing. For ∆/t > 1,
S00(π, π) gradually increases and P d,00 is strongly enhanced as ∆/t increases. This is in
fact reminiscent of the previous FLEX result of two-orbital systems [125–127]. Further,
at around half filling n = 0.781 and U = 2t, U ′ = J = 0, S11(π) decreases slowly while
P s∗,11 increases as ∆/t increases as shown in Fig. 6.14. For larger ∆/t, na(0, 0) should be
suppressed by the Lifshitz transition but one faces the open-shell problem then. We also
investigated the effect of intraorbital interactions in the two-orbital Hubbard model on
the square lattice. For U = 2t, U ′ = 1.6t, J = 0.2t, ∆/t dependences of several physical
properties are basically similar to those for U = 2t, U ′ = J = 0 as shown in Figs. 6.15
and 6.16. The regime where the superconducting correlation develops extends to lower
∆/t as interorbital interactions U ′, J are induced in the same as the two-orbital system
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Fig. 6.11: (color online). t′/t dependences of na(0, 0) and Sαβ(π, π), P s∗,αβ and P d,αβ for
the two-orbital square lattice Hubbard model with ∆ = 0 and U/t = 2, U ′/t = 0, J/t =
0, n = 0.889. The systems size is 6x6 sites and AP boundary condition is used.

84



6.6 Results of two-orbital Hubbard models on the square lattice

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0

n a
(0

,0
)

t′/t

0.00

0.01

0.02

0.03

0.04

0.0 0.2 0.4 0.6 0.8 1.0

S α
β(

π,
π)

/N
s

t′/t

α = 0, β = 0
α = 0, β = 1

0

5

10

15

20

25

30

0.0 0.2 0.4 0.6 0.8 1.0

− P
s*

,α
β 

× 
1

0
3

t′/t

α = 0, β = 0
α = 0, β = 1

0

5

10

15

20

25

30

0.0 0.2 0.4 0.6 0.8 1.0

− P
d
,α

β 
× 

1
0

3

t′/t

α = 0, β = 0
α = 0, β = 1

Fig. 6.12: (color online). t′/t dependences of na(0, 0) and Sαβ(π, π), P s∗,αβ and P d,αβ for
the two-orbital square lattice Hubbard model with ∆ = 0 and U/t = 2, U ′/t = 1.6, J/t =
0.2, n = 0.889. The systems size is 6x6 sites and AP boundary condition is used.
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on the one-dimensional chain. At n = 0.781, na(0, 0) decreases rapidly and S11(π, π)
becomes close to zero as ∆/t increases for 4 ≤ ∆/t ≤ 5. Thus, the incipient band
regime is estimated to be in a range of 4 ≤ ∆/t ≤ 5. Around the incipient band regime,
P s∗,11 is maximized. We also verified that the parameter dependence of various physical
quantities is qualitatively similar between the system with two system sizes, namely, 6x6
and 8x8 sites.In these calculations, we took relatively small U in order to circumvent
the unstable optimization. Effect of stronger correlation on superconductivity in these
two-orbital models is also left for future study [128].

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5

n a
(0

,0
)

t′/t

0.00

0.01

0.02

0.03

0.04

0 1 2 3 4 5
S α

β(
π,

π)
/N

s
∆/t

α = 0, β = 0
α = 0, β = 1
α = 1, β = 1

0

5

10

15

20

0 1 2 3 4 5

− P
s*

,α
β 

× 
1

0
3

∆/t

α = 0, β = 0
α = 0, β = 1
α = 1, β = 1

0

5

10

15

20

0 1 2 3 4 5

− P
d
,α

β 
× 

1
0

3

∆/t

α = 0, β = 0
α = 0, β = 1
α = 1, β = 1

Fig. 6.13: (color online). ∆/t dependences of na(0, 0) and Sαβ(π, π), P s∗,αβ and P d,αβ

for the two-orbital square lattice Hubbard model with t′/t = 0.8 and U/t = 2, U ′ = J =
0, n = 0.375. The systems size is 8x8 sites and AP condition is used.
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Fig. 6.14: (color online). ∆/t dependences of na(0, 0) and Sαβ(π, π), P s∗,αβ and P d,αβ

for the two-orbital square lattice Hubbard model with t′/t = 0.8 and U/t = 2, U ′ = J =
0, n = 0.781. The systems size is 8x8 sites and AP condition is used.
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Fig. 6.15: (color online). ∆/t dependences of na(0, 0) and Sαβ(π, π), P s∗,αβ and P d,αβ

for the two-orbital square lattice Hubbard model with t′/t = 0.8 and U/t = 2, U ′/t =
1.6, J/t = 0.2, n = 0.375. The systems size is 8x8 sites and AP condition is used.
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Fig. 6.16: (color online). ∆/t dependences of na(0, 0) and Sαβ(π, π), P s∗,αβ and P d,αβ

for the two-orbital square lattice Hubbard model with t′/t = 0.8 and U/t = 2, U ′/t =
1.6, J/t = 0.2, n = 0.781. The systems size is 8x8 sites and AP condition is used.

89



6 Two-orbital Hubbard models on one-dimensional chain and square lattices

6.7 Discussion

In this section, we will try to interpret the mVMC results for the two-orbital models
from the viewpoint of the relation between spin fluctuation and the density of states,
as in the case of the bilayer and two-leg Hubbard models discussed in section 3 [68].
In the two-orbital one-dimensional chain, the superconducting correlation is strongly
enhanced for large t′/t(∼ 0.8) when the edge of the narrow band is apart from, but close
to the Fermi level, while such an enhancement is not observed for the two-orbital square
lattice. These differences can be attributed to the shape of the DOS. In the two-orbital
one-dimensional chain, the diverging DOS at the band edge approaches the Fermi level
as t′/t increases, and when the diverging DOS is within a certain energy range, the
finite energy spin fluctuations effective for pairing develops (see Fig. 6.3). When t′/t
becomes too large, the diverging DOS comes too close to the Fermi level, resulting in
a strong development of low-lying, pair-breaking, spin fluctuations and the suppression
of superconductivity. This is a possible reason why superconductivity is optimized for
large t′/t where the spin correlation is small in the two-orbital two-leg ladder. If the
narrow band becomes incipient as ∆ increases, superconductivity can be enhanced. The
confirmation of this possibility is left for future study. By contrast, in the two-orbital
square lattice, the diverging DOS is transferred to higher energies from the center of
the band as t′ increases as shown in Fig. 6.4. For small t′/t the diverging DOS is
concentrated in the regime where it can contribute to the finite-energy spin fluctuations
effective for pairing. On the other hand, for large t′/t, the DOS near the Fermi level is
small, giving rise to relatively small superconducting correlations.

Further, we also discuss the relation between the two-orbital square lattice model and
the bilayer square lattice model. We studied the on-site energy ∆ dependence of var-
ious physical quantities in the two-orbital square lattice with the strong hybridization
t′ = 0.8t, where the DOS is diverging near the band edge as shown in 6.4. As ∆ increases,
the band bottom of the antibonding band approaches the Fermi level, and eventually, the
antibonding band loses its Fermi surface. The nesting between electron and hole Fermi
surfaces having orbital 1 weight, combined with the intraorbital Coulomb repulsion U ,
induces interband spin fluctuations, which result in the intraorbital extended s-wave
Cooper pairs of electrons in orbital 1 [17, 121–123]. When the edge of the antibonding
band is incipient, the intraorbital extended s-wave pairing is enhanced as in the bilayer
Hubbard model. Thus, the hybridization effect is crucial to induce superconductivity
in the present two-orbital systems on the square lattice, since it produces the different
Fermi surfaces originating from the same orbital . We note that this enhancement of su-
perconductivity is primarily caused by the intraorbital Hubbard U . By comparison with
results for the case with/without interorbital interactions, we find that the interorbital
interactions can make the bands narrower but they do not strongly affect the strength of
the pairing. At around half filling, the antibonding band becomes incipient for larger ∆
than the case at around quarter filling. For large band filling n, larger ∆ is required to
realize the incipient antibonding band because the Fermi level moves away from the an-
tibonding band minimum when n increases. At around quarter filling, for sufficient large
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∆, where the two-orbital system can be approximated as the single orbital system on
the square lattice, P s∗,11 is suppressed, and P d,00 is strongly enhanced, which is because
the filling of orbital 0 becomes close to optimal filling for d-wave superconductivity.
Therefore, in the present study, we showed that in the two-orbital system on the

square lattice with strong hybridization, the hybridization effect gives rise to the nesting
between proportions of the Fermi surfaces with common orbital weights, which induces
interband pair scattering. On the other hand, a FLEX study [120] reported that in the
two-orbital Hubbard model with medium hybridization, the s± wave pairing is enhanced.
There it has been argued that a “orbital site transformation” provides insight on the
possible pairing mechanism.
Let us consider a special case with U = U ′ = J ≡ U0/2, where the two-orbital model

is transfered to the two-leg ladder or bilayer Hubbard models by using the following
transformation [120] 

a†i0σ =
1√
2
(c†i0σ + c†i1σ)

a†i1σ =
1√
2
(−c†i0σ + c†i1σ)

, (6.7.1)

where a†imσ, aimσ creates/annihilates a fermion with spin σ(=↑, ↓) and mth(= 0, 1) chain
or layer. We call this the “orbital site transformation”. Using Eq. 6.7.1, the interaction
terms are rewritten as

U0

2

∑
i,α

niα↑niα↓ +
U0

2

∑
i,α<β,σ

niασniβσ̄,

+
U0

2

∑
i,α<β

(c†iα↑c
†
iβ↓ciα↓ciβ↑ + c†iα↑c

†
iα↓ciβ↓ciβ↑ +H.c.) = U0

∑
i,m

nim↑nim↓, (6.7.2)

where nimσ = a†imσaimσ. This interaction term breaks spin and orbital rotational sym-
metries, namely, U ′ = U − 2J . The large Hund coupling J cancels out the effect of the
intraorbital Coulomb repulsion U ′, resulting in the spin fluctuation. The kinetic term is∑

k,α,β,σ

εαβ(k)c
†
kασckβσ

=
∑
k,σ

(a†k0σ, a
†
k1σ)

(
εk + ε′k −∆
−∆ εk − ε′k

)(
ak0σ
ak1σ

)
(6.7.3)

≡
∑

k,m,n,σ

ε̃mn(k)a
†
kmσaknσ, (6.7.4)

where the constant term is omitted in the second equality. Therefore, for ε′k = 0, this
two-orbital Hubbard model with specific interorbital interactions is equivalent to the
bilayer and two-leg ladder Hubbard models, where s± pairing can be induced. Also in
the present two-orbital model, as t′ decreases, the s± pairing can be dominant.
The above observation suggests a possible new pairing mechanism in the moderate

hybridization regime of the two-orbital model, where not only the intraorbital but also
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interorbital interactions play important roles. Since we have studied the bilayer Hub-
bard model using mVMC in this thesis, it is an interesting future study to pursue this
possibility using mVMC.

6.8 Summary

To summarize, we have studied superconductivity in the two-orbital Hubbard model on
the one-dimensional chain and square lattices. In both systems, we found the intra and
inter orbital pairings with various symmetries, which can correspond to intra/inter chain
and layer pairings in trestle two-leg ladder and bilayer square lattice systems. On the
other hand, in the two-orbital Hubbard model on the square lattice, we also studied
on-site energy ∆ dependence of various quantities for near half and quarter fillings. For
large ∆, extended s-wave superconductivity can be optimized in a region around the
Lifshitz transition point, where one of the bands mainly originating from an orbital
with higher energy is (nearly) incipient. For small ∆, both the intra/inter orbital and
d (extended s/d)-wave pairings are enhanced for the two-orbital Hubbard model on the
one-dimensional chain (square lattice) lattice. Further, at around quarter filling, d-wave
superconductivity can be optimized for large ∆. The above results are reminiscent of
previous FLEX studies. This nontrivial resemblance shows that the spin-fluctuation
spectrum plays an important role regardless of the multiplicity of orbital of systems.
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Motivated by previous studies on the two-leg ladder, bilayer, and two-orbital Hubbard
models, which adopted FLEX, we have systematically investigated unconventional su-
perconductivity in two-band systems using mVMC. The mVMC is alternative and sup-
plmentary approach to weak coupling theories, which can describe strong correlation
effects and order competitions accurately.

Implement and performance of the mVMC method

The VMC method does not have the negative sign problem unlike the auxiliary field
quantum Monte-Carlo method, so that it can be applied to study relatively large sys-
tem sizes even at large amplitude of electron interactions and geometrical frustration at
reasonable computational cost. However, the result can be biased strongly depending
on the form and initial value of variational wave functions. In the conventional VMC
method, the number of variational parameters is several dozen. On the other hand, in
the mVMC method, one can employ thousands of variational parameters, which enables
us to describe various quantum fluctuations of order parameters and strong correlation
effects accurately. However, the mVMC method is difficult to handle. I implemented the
mVMC method by myself referring a previous work. Further, I mastered the method
and performed the mVMC calculations successfully. Later, we transfered from my own
program to an open software because it has the convenient flexible interface. We per-
formed all calculations in this thesis by using the open software. The initial values of
the variational wave functions are obtained from my own program.

Two-leg ladder and bilayer Hubbard models with an incipient
band

We studied superconductivity in the Hubbard model on the two-leg ladder and bilayer
square lattices. In both systems, superconductivity can be optimized in a region around
the Lifshitz transition point, where one of bands is (nearly) incipient. The parameter
dependence of the superconducting correlation function is reminiscent of the previous
FLEX results. What is noteworthy is the important role played by an incipient band in
the occurrence of superconductivity in the strong coupling regime. The present result
suggests that the following view holds not only in the weak coupling regime but also in
the strong coupling regime as well: superconductivity is enhanced by an incipient band
due to the suppression of the near-zero-energy spin fluctuations and enhanced finite
energy spin fluctuations working as an effective pairing glue. We also stress that the
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resemblance between these two approaches is nontrivial; FLEX takes into account the
spin fluctuations (in momentum space) explicitly in the effective interaction, whereas the
present mVMC method incorporates the electron correlation effect in a real-space-based
manner, which is expected to be more appropriate in the strong coupling regime.Since
it has been shown that incipient bands enhance superconductivity in other models, it is
an intriguing future problem to study those models using the mVMC method.

Two-orbital Hubbard models on the one-dimensional and
square lattices

The study on the two-leg ladder and bilayer Hubbard models was partially motivated
by recent studies on the iron-based superconductors with incipient bands. The bilayer
Hubbard model can be regarded as a single-orbital analogue of the iron-based super-
conductors. Thus, we have studied superconductivity in the two-orbital Hubbard model
on the one-dimensional chain and square lattices. In both systems, we found the intra
and inter orbital pairings with various symmetries, which can be regarded as intra/inter
chain (layer) pairings in the trestle two-leg ladder (bilayer square) lattice. Further, in
the two-orbital Hubbard model on the square lattice, superconductivity can be enhanced
by the incipient band as in the bilayer Hubbard model. Also, near quarter filling, d-
wave superconductivity can be enhanced as the energy difference between two orbitals
increases. The above results are also reminiscent of previous FLEX studies of a unique
type of cuprates and iron-based superconductors. We once again stress that the re-
semblance between these two approaches is a non-trivial problem. The above results
showed that the spin-fluctuation spectrum plays an important role in the occurrence of
unconventional superconductivity regardless of the multiplicity of orbital of systems.
We also discussed a possible new pairing mechanism where not only the intraorbital

but also interorbital interactions play important roles. It is an interesting future study to
pursue this possibility using mVMC. We have carried out these mVMC calculations on
the two-orbital models for relatively small U , where the difficulty of the optimization is
reduced. Effect of stronger correlation on superconductivity in these two-orbital models
is also left for future study.
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[103] A. Cayley, Sur les déterminants gauche, J. reine angew. Math. 38, 93–96 (1849),
reprinted in The collected mathematical papers of Arthur Cayley, Cambridge
[Eng.] The University Press, Cambridge, vol. 1, pp. 410-413 (1889).

[104] J. Sherman, W. J. Morrison, Adjustment of an inverse matrix corresponding to
a change in one element of a given matrix (abstract), Ann. Math. Stat. 20, 621
(1949).

[105] K. Kuroki, R. Arita, Possible high-T c superconductivity mediated by antiferro-
magnetic spin fluctuations in systems with Fermi surface pockets, Phys. Rev. B
64, 024501 (2001).

102



Bibliography

[106] The dx2−y2 pairing dominates over the s± pairing only for small t⊥(≤ 0.8t) if
d-wave states are employed as initial states.

[107] Some notations used in the present study are different from those in ref. [68]. t′

and t′⊥ in the present study correspond to −t′ in ref. [68]. Therefore, in the present
study, the antibonding band is the narrow band, whereas in ref. [68], the bonding
band is the narrow band. To make the narrow band incipient with band fillings
close to half filling, in the present study, band fillings smaller than half-filling are
taken to consider cases where the narrow antibonding band lies above the Fermi
level in the incipient band situation. On the other hand, in ref. [68], band fillings
larger than half-filling were taken so as to make the narrow bonding band lie
below the Fermi level. In short, the cases considered here and those in ref. [68] are
equivalent and connected by electron-hole transformation. Also, the definition of
the band filling is different ; n in the present study corresponds to n/2 in ref. [68].

[108] J. E. Han, Spin-triplet s-wave local pairing induced by Hund’s rule coupling, Phys.
Rev. B 70, 054513 (2004).

[109] S. Sakai, R. Arita, H. Aoki, Numerical algorithm for the double-orbital Hubbard
model: Hund-coupled pairing symmetry in the doped case, Phys. Rev. B 70,
172504 (2004).

[110] K. Kubo, Pairing symmetry in a two-orbital Hubbard model on a square lattice,
Phys. Rev. B 75, 224509 (2007).

[111] L. de’ Medici, S. R. Hassan, M. Caponne, X. Dai, Orbital-Selective Mott Transition
out of Band Degeneracy Lifting, Phys. Rev. Lett. 102, 126401 (2009).

[112] Y. Zhong, Y. Wang, S. Han, Y.-F. Lv, W.-L. Wang, D. Zhang, H. Ding, Y.-M.
Zhang, L. Wang, K. He, R. Zhong, J. A. Schneeloch, G.-D. Gu, C.-L. Song, X.-C.
Ma, Q.-K. Xue, Nodeless pairing in superconducting copper-oxide monolayer films
on Bi2Sr2CaCu2O8+δ, Sci. Bull. 61, 1239 (2016).

[113] T. H. Geballe, M. Marezio, Enhanced superconductivity in Sr2CuO4−v, Physica C
469, 680 (2009).

[114] Q. Q. Liu, H. Yang, X. M. Qin, Y. Yu, L. X. Yang, F. Y. Li, R. C. Yu, C. Q. Jin,
S. Uchida, Enhancement of the superconducting critical temperature of Sr2CuO3+δ

up to 95 K by ordering dopant atoms, Phys. Rev. B 74, 100506(R) (2006).

[115] Z. Hiroi, M. Takano, M. Azuma, Y. Takeda, A new family of copper oxide super-
conductors Srn+1CunO2n+1+δ stabilized at high pressure, Nature (London) 364,
315 (1993).

[116] W. M. Li, J. F. Zhao, L. P. Cao, Z. Hu, Q. Z. Huang, X. C. Wang, Y. Liu, G. Q.
Zhao, J. Zhang, Q. Q. Liu, R. Z. Yu, Y. W. Long, H. Wu, H. J. Lin, C. T. Chen,
Z. Li, Z. Z. Gong, Z. Guguchia, J. S. Kim, G. R. Stewart, Y. J. Uemura, S. Uchida,

103



Bibliography

C. Q. Jin, Superconductivity in a unique type of copper oxide, Proc. Natl. Acad.
Sci. USA 116, 12156 (2019).

[117] A. M. Olés, K. Wohlfeld, G. Khaliullin, Orbital Symmetry and Orbital Excitations
in High-Tc Superconductors, Condens. Matter 4(2), 46 (2019).

[118] K. Jiang, X. Wu, J. Hu, Z. Wang, Nodeless High-Tc Superconductivity in the
Highly Overdoped CuO2 Monolayer, Phys. Rev. Lett. 121, 227002 (2018).

[119] T. A. Maier, T. Berlijn, D. J. Scalapino, Two pairing domes as Cu2+ varies to
Cu3+, Phys. Rev. B 99, 224515 (2019).

[120] K. Yamazaki, M. Ochi, D. Ogura, K. Kuroki, H. Eisaki, S. Uchida, H. Aoki, Model
Construction and Fluctuation Exchange Study of a New Cuprate Superconductor
Ba2CuO3+δ, in: The 32nd International Symposium on Superconductivity, Miyako
Messe, Kyoto, Japan, 2019.

[121] K. Kuroki, H. Usui, S. Onari, R. Arita, H. Aoki, Pnictogen height as a possi-
ble switch between high-Tc nodeless and low-Tc nodal pairings in the iron-based
superconductors, Phys. Rev. B 79, 224511 (2009).

[122] S. Graser, T. A. Maier, P. J. Hirschfeld, D. J. Scalapino, Near-degeneracy of
several pairing channels in multiorbital models for the Fe pnictides, New J. Phys.
11, 025016 (2009).

[123] T. A. Maier, S. Graser, D. J. Scalapino, P. J. Hirschfeld, Origin of gap anisotropy
in spin fluctuation models of the iron pnictides, Phys. Rev. B 79, 224510 (2009).

[124] K. Masuda, D. Yamamoto, Formation of Cooper pairs between conduction and
localized electrons in heavy-fermion superconductors, Phys. Rev. B 87, 014516
(2013).

[125] H. Sakakibara, H. Usui, K. Kuroki, R. Arita, H. Aoki, Two-Orbital Model Explains
the Higher Transition Temperature of the Single-Layer Hg-Cuprate Superconduc-
tor Compared to That of the La-Cuprate Superconductor, Phys. Rev. Lett. 105,
057003 (2010).

[126] H. Sakakibara, H. Usui, K. Kuroki, R. Arita, H. Aoki, Origin of the material
dependence of Tc in the single-layered cuprates, Phys. Rev. B 85, 064501 (2012).

[127] H. Sakakibara, K. Suzuki, H. Usui, S. Miyao, I. Maruyama, K. Kusakabe, R. Arita,
H. Aoki, K. Kuroki, Orbital mixture effect on the Fermi-surface-Tc correlation in
the cuprate superconductors: Bilayer vs. single layer, Phys. Rev. B 89, 224505
(2014).

[128] As the on-site energy is large, the orbital with higher energy level becomes empty.
Especially for large U , the empty orbital gives rise to nearly-zero stochastic weights
in the MC method because electrons can not move due to U , so that the SR

104



Bibliography

method becomes unstable. In this way, unfortunately, the VMC method appears
not to deal with multi-orbital systems with strong interactions and large on-site
energies, where two-orbital systems can be regarded as bilayer and two-leg ladder
systems.

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor, Professor
Kazuhiko Kuroki, who provided helpful comments and suggestions throughout my doc-
toral course. I appreciate Takahiro Misawa and Kota Ido for providing us guidance in
the mVMC method. I would like to thank Professor Yasuhiro Akutsu, Professor Keith
Slevin, and Professor Mikito Koshino, Professor Jobu Matsuno for being members of my
committee. I also thank Masayuki Ochi, Karin Matsumoto, and Daisuke Ogura for fruit-
ful discussions. The numerical calculations were performed at the following institutions;
the Supercomputer Center, Institute for Solid State Physics, University of Tokyo and
Yukawa Institute Computer Facility, Kyoto University, the Cybermedia Center, Osaka
University. Last but not least, I would like to thank my family and friends for giving
me constant encouragements and supports.

Achievements

Publications related to the present theis

Submitted

1. Daichi Kato and Kazuhiko Kuroki, “Many-variable variational Monte-Carlo study
of superconductivity in two-band Hubbard models with an incipient band”,
arXiv:1912.11983

Conference presentations related to the present thesis

International conferences

Poster

1. Daichi Kato and Kazuhiko Kuroki, “Many-variable variational Monte-Carlo stud-
ies of superconductivity with incipient bands in two-band Hubbard models”, The
32nd International Symposium on Superconductivity (ISS2019), Kyoto, Japan
(2019).

2. Daichi Kato and Kazuhiko Kuroki, “Variational Monte-Carlo Study of the Bilayer
Hubbard Model”, The 12th International Conference on Materials and Mechanisms
of Superconductivity (M2S2018), Beijing, China (2018).

3. Daichi Kato and Kazuhiko Kuroki, “Variational Monte Carlo analysis on the po-
tential for high Tc superconductivity in the 2-leg Hubbard ladder model”, The

105



Bibliography

28th International Conference on Low Temperature Physics (LT28), Gothenburg,
Sweden (2017).

4. Daichi Kato and Kazuhiko Kuroki, “Variational Monte Carlo study on the pos-
sibility of high Tc　 superconductivity in the 2-leg Hubbard ladder model”, In-
terdisciplinary Symposium for Up-and-coming Materials Scientists (ISUMS2017),
Osaka, Japan (2017).

5. Daichi Kato and Kazuhiko Kuroki, “Potential for high-temperature superconduc-
tivity in ladder compounds”, The 2nd International Symposium on Interactive
Materials Science Cadet Program (iSIMSC-2), Osaka, Japan (2015).

6. Daichi Kato and Kazuhiko Kuroki, “Multi-Variable Monte-Carlo Study of the Hub-
bard Ladder Model”, Materials and Mechanisms of Superconductivity (M2S2015),
Geneva, Switzerland (2015).

Domestic conferences

Oral

1. 加藤大智, 黒木和彦, “多変数変分モンテカルロ法を用いた二層ハバード模型におけ
る超伝導の研究”, 京都大学基礎物理学研究所研究会 “電子相関が生み出す超伝導現
象の未解決問題と新しい潮流”, 京都 (2019).

2. 加藤大智, 黒木和彦, “多変数変分モンテカルロ法を用いた梯子系における超伝導の
研究”, 第 1回 SiMSxCadet合同シンポジウム, 大阪 (2016).

3. 加藤大智,黒木和彦, “Variational Monte-Carlo studies of the Hubbard ladder model”
, 超伝導ウィンターセミナー SIS2016, 山形 (2016).

4. 加藤大智, 黒木和彦, “Variational Monte Carlo in Hubbard Ladder Model”, 超伝導
サマーセミナー SSS2014, 静岡 (2014).

Poster

1. 加藤大智, 黒木和彦, “多変数変分モンテカルロ法を用いた二バンド・ハバード模型
における超伝導機構の研究”, 日本物理学会 2019年秋季大会, 岐阜 (2019).

2. 加藤大智, 黒木和彦, “変分モンテカルロ法による二本鎖型や二層型のハバード模型
における超伝導の研究”, 京都大学基礎物理学研究所研究会 “電子相関が生み出す新
規な秩序と超伝導現象：トポロジー、液晶状態、動的現象”, 京都 (2018).

3. 加藤大智, 黒木和彦, “梯子型ハバード模型における超伝導の多変数変分モンテカル
ロ法を用いた解析”, 日本物理学会第 72回年次大会, 大阪 (2017).

4. 加藤大智, 黒木和彦, “梯子型ハバード模型の多変数変分モンテカルロ法による解析”,
日本物理学会 2016年秋季大会, 金沢 (2016).

106



Bibliography

Other publications

Submitted

1. Haruno Kunioka, Kunihiro Kihou, Daichi Kato, Hidetomo Usui, Tsutomu Iida,
Hirotaka Nishiate, Kazuhiko Kuroki, Atsushi Yamamoto, and Chul-Ho Lee, “Ther-
moelectric properties of (Ba,K)Zn2As2 crystallized in the ThCr2Si2-type structure”

Other conference presentations

International conferences

Poster

1. Haruno Kunioka, Kato Daichi, Kunihiro Kihou, Hirotaka Nishiate, Atsushi Ya-
mamoto, Tsutomu Iida, and Chul-Ho Lee, “Thermoelectric properties of
Ba1−xKxZn2As2 crystallized in the ThCr2Si2-type structure”, 38th International
Conference on Thermoelectrics (ICT2019), Gyeongju, South Korea (2019).

2. D. Kato, M. Ochi, K. Kuroki, H. Kunioka, K. Kihou, H. Nishiate, C. H. Lee,
“Analysis of the thermoelectric property of Ba1−xKxZn2As2 with the ThCr2Si2-
type structure”, The 2nd Workshop on Functional Materials Science, Busan, South
Korea (2018).

Domestic conferences

Oral

1. 國岡春乃, 木方邦宏, 加藤大智, 西当弘隆, 黒木和彦, 李哲虎, “(Ba,K)Zn2As2の熱電
特性”, 日本物理学会 2019年秋季大会, 京都 (2019).

2. 加藤大智, 坂本拓矢, 椋田秀和, 八島光晴, 北岡良雄, 浅野駿, 鈴木謙介, 藤田全基,
Y.Krockenberger, 山本秀樹, “Cu-NMRによる銅酸化物 Pr2CuO4の電子構造測定”,
日本物理学会第 71回年次大会, 宮城 (2016).

Poster

1. 坂本拓矢, 加藤大智, 椋田秀和, 八島光晴, 北岡良雄, 浅野駿, 鈴木謙介, 藤田全基, Y.
Krockenberger, 山本秀樹, “Cu-NMRによる銅酸化物Pr2CuO4におけるアニール効
果”, 日本物理学会 2015年秋季大会, 大阪 (2014).

Prize & Internship

1. 大阪大学理学部日本 EGF協会奨励賞 (理学部 250名中 3名受賞).

2. 研修先: KAIST(韓国科学技術院) M. J. Han研究室, 研修期間: 2018年 9-11月, 研
究課題名: ラクナスピネル GaTa4Se8 におけるスピンと軌道のもつれた分子基底状
態の研究.

107



Bibliography

3. 研修先: 産業技術総合研究所,つくば中央第二事業所,省エネルギー部門熱電変換グ
ループ, 研修期間: 2017年 6-8月, 研修課題名: 熱電材料開発及び特性評価技術の
習得.

4. 研修先: 大阪大学大学院基礎工学研究科物質創成専攻北岡研究室, 研修期間: 2015年
4-10月, 研究課題名: Cu-NMRによる銅酸化物 Pr2CuO4の電子構造測定.

108


