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Abstract

Frustration is a situation where various optimization conditions compete with each
other, and thus the system cannot satisfy them simultaneously. The frustration in
magnetic materials is induced by competition of various interactions between magnetic
moments. Such frustration generates large and unusual fluctuations in magnetically-
frustrated systems. As a result, new ordered phases, thermodynamic states, and pe-
culiar non-equilibrium dynamics appear in frustrated magnetic materials. Thus, the
magnetically-frustrated system is one of the important research topics in modern con-
densed matter physics [1–4].

On the other hand, a research field “spintronics” is rapidly growing in recent years.
Spintronics is based on the conventional electronics with use of the spin degree of free-
dom. The most important concept of spintronics is “pure spin current” that is the flow
of spin angular momentum without a charge flow. Unlike a charge current, a pure spin
current cannot be detected by ordinary electrical measurements because it is not a con-
served quantity. The spin Hall effect (SHE) and its inverse (ISHE) enable us to generate
and detect the pure spin current [5–11]. In particular, the ISHE is modulated near the
magnetic transition temperature where spin fluctuations are strong [12]. This result
indicates that there is a strong correlation between spin fluctuations of the magnetic
moment and the pure spin current. By using this correlation, the pure spin current
can be used as a new probe to investigate the spin dynamics in frustrated magnetic
systems.

To demonstrate the impact of the pure spin current on magnetically-frustrated sys-
tems, we have chosen the following two frustrated magnetic materials. The first one is
the spin glass system. Spin glass is one of the magnetic ordering states with complex
spin structures. When magnetic atoms are randomly distributed in a host non-magnetic
metal, and this randomness induces magnetic frustration. As a result, a unique cusp
structure appears in the temperature dependence of magnetization at low temperatures.
The cusp temperature is called “spin freezing temperature Tf”. Since the discovery of
spin glasses in 1970s, various theories and experiments have been conducted and the
basic understanding of the system is well-established. It is commonly believed that
most of localized moments in spin glasses are frozen below Tf . However, according to
the recent work on the ISHE in Cu99.5−xMnxBi0.5 [13], the spin Hall (SH) signal, that
is the conversion yield between the spin current and charge current, starts to decrease
at a temperature, which is 4 times higher than Tf determined from the magnetization
measurement. Furthermore, the SH signal continuously decreases even below Tf . These
facts indicate that finite spin fluctuations exist even below Tf and are not intuitively
consistent with the conventional spin-glass picture. In order to deeply understand the
relation between the spin current and spin-glass state, further experiments are highly
desirable.



In this thesis, we have measured the ISHE of Cu99.5−xMnxBi0.5 (x = 4.2, 8.2, and
10.6) by using the spin absorption method [6]. With increasing the Mn concentration,
Tf shifts to the higher temperature side. This enables us to investigate the effect of
spin fluctuation below Tf in detail. We have observed a saturation of ISHE in the
low temperature regime. The saturation originates from the depolarization of conduc-
tion electron spins due to randomly frozen localized moments. We conclude that the
temperature at which the ISHE saturates corresponds to the real Tf of the spin-glass
nanowire. This result also demonstrates that the spin transport measurement is a
powerful method to determine the magnetic transition temperature of nanometer-scale
magnet which is difficult to measure by conventional magnetization measurements. In
addition, the temperature at which the ISHE starts to decrease is several times higher
than Tf . Between this temperature and Tf , the localized moments are cooperatively
fluctuated and this temperature region has never been characterized quantitatively in
previous magnetization measurements. Thus, the present result is a clear demonstration
that conduction electron spins can be used as a sensitive probe to detect fluctuations
of localized moments.

The second target is the triangular antiferromagnetic system. It is a typical frus-
trated magnetic system due to its geometry and has been studied for a long time both
from the experimental and theoretical viewpoints. Although most of the triangular
antiferromagnetic materials are insulators, here we focus on an electrically conductive
triangular antiferromagnet: Ag2CrO2. This material exhibits a unique thermodynamic
property, so-called partially disordered (PD) state, below the antiferromagnetic tran-
sition temperature TN = 24 K [14–16]. However, the magnetic structure of the PD state
is not still elucidated because the single crystal has not been synthesized yet.

In this thesis, we have fabricated a micrometer-size Ag2CrO2 device and measured its
magnetotransport in order to investigate the effect of PD spin fluctuations on the elec-
trical transport property. By establishing the mechanical exfoliation technique based on
the scotch tape method [17], we have been able to fabricate a micrometer-size Ag2CrO2,
which is almost a single crystal, from the Ag2CrO2 polycrystalline sample [18]. We ob-
served a clear butterfly-shaped magnetoresistance (MR) only when the magnetic field
direction was out-of-plane. We compared this result with a theoretical model. It turned
out that the unique MR originates from the strong spin fluctuations near TN. Such a
unique MR has never been observed in other antiferromagnets. We also measured a
Hall effect and found an anomaly which might be related to the magnetic structure of
the Ag2CrO2. These results provide important information for understanding the spin
state in the PD phase.

The results obtained in this thesis demonstrate the importance of electric and spin
transport measurements in frustrated magnetic systems, and also provide an experi-
mental milestone for investigating the magnetic dynamics.



Construction of thesis

First of all, we explain the research background of frustrated magnets in Part I.
Part II is devoted to explain brief backgrounds about spin transport measurements and
the motivation of our work. In Part III, we show experimental results on spin transport
measurements in spin glasses and electrical conductivity measurements in Ag2CrO2.
Finally, we summarize this thesis and mention some perspectives in Part IV.

Abbreviations

AH(E) anomalous Hall (effect)

AMR anisotropic magnetoresistance

DSHE direct spin Hall effect

EHE extraordinary Hall effect

ESR electron spin resonance

ISHE inverse spin Hall effect

MR magnetoresistance

NLSV nonlocal spin valve

NMR nuclear magnetic resonance

PD partially disordered

Py permalloy

SEM scanning electron microscope

SH(E) spin Hall (effect)

SDL spin diffusion length

SO(C) spin− orbit (coupling)

SOI spin− orbit interaction

STEM scanning transmission electron microscope

µSR muon spin rotation

(Z)FC (zero) field cooling
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Part I

Frustrated magnetic systems
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1 Spin glasses

Chapter 1

Spin glasses

In Part I, we review spin glasses (in this chapter) and two-dimensional (2D) triangu-
lar antiferromagnets with classical spins (in the next chapter) as two typical magnetic
frustrated systems.

Spin glasses are one of the magnetic ordering states with complex spin structures.
For several decades, spin glasses have been extensively studied as a prototype of com-
plex system characterized by frustration and randomness. Nowadays, the treatment of
randomness based on spin-glass theorem is used not only in condensed matter physics
but also in the field of quantum information such as quantum annealing [19] and neu-
romorphic computers.

In this chapter, we first review the history of spin glasses using some experimental
results and also theoretical models with the mean field theory. After that, we explain
the method to determine the spin freezing temperature Tf which is closely related to
the present thesis.

1.1 History of spin glasses

Spin glasses were first reported by Cannella and Mydosh in 1972 [20]. They measured
magnetic susceptibilities of diluted magnetic alloys Au100−xFex and found a sharp cusp-
like anomaly at low temperatures (see Fig 1.1). The cusp temperature is called “spin
freezing temperature” Tf . It depends on the concentration of magnetic impurities. For
instance, Tf is about 8 K for Au99Fe1 and increases with increasing the Fe concentration
x. Such a cusp structure was observed not only in AuFe but also in AuMn, AgMn and
CuMn. The combination of noble metals (Au, Ag, Cu) and magnetic impurities (Mn,
Fe, ...) are called “canonical spin glasses”. They have been investigated so far as a
prototype of complex system characterized by frustration and randomness.
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1.1 History of spin glasses 1 Spin glasses

Figure 1.1: Magnetic susceptibility χ of Au100−xFex as a function of temperature [20].

Another important character of spin glasses appears in the cooling process. As
shown in Fig. 1.2, the dc magnetization takes a different value between zero field cool-
ing (ZFC) process and field cooling (FC) process [21]. The reduction of χ in ZFC
below Tf indicates that there is an internal magnetic field whose direction is opposite to
the external magnetic field. This fact was confirmed from the Mössbauer spectroscopy
measurement in 1963 [22]. On the other hand, according to neutron scattering mea-
surements [23], there is no spin order at a typical wave number. Furthermore, the result
of ac magnetization measurement shows that a non-linear susceptibility of spin glass χ2

diverges at Tf [24]. These experimental facts imply that the spin-glass state is a new
magnetic ordering state and the spin-glass transition is a phase transition1.

1Whether the spin glass is really a phase transition or not is still controversial.
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1.1 History of spin glasses 1 Spin glasses

Figure 1.2: Magnetic susceptibility χ of Cu100−xMnx (x=1 and 2) alloys as a function
of temperature [21]. A clear difference appears below Tf . χ decreases with decreasing
temperature for the ZFC process, while it is constant for the FC process.

1.1.1 Randomness and frustration in spin glasses

In canonical spin glasses, the interaction between localized moments is mediated by
conduction electron spins, which is referred to as the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction:

Jij ∝
cos (2kFrij)

r3
(1.1)

where r is the distance between localized moments (i-th and j-th moments) and kF is
the Fermi wave number. Depending on r, the exchange coupling is either ferromagnetic
(Jij > 0) or antiferromagnetic (Jij < 0). Due to the random distribution of localized
moments in spin glasses, ferromagnetic and antiferromagnetic components coexist and
thus the ground state is multiply degenerate (Fig. 1.3).

Figure 1.3: Schematic image of canonical spin glasses. The solid arrows indicate local-
ized moments of magnetic impurities. The broken arrows indicate the RKKY interac-
tion between localized moments.
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1.1 History of spin glasses 1 Spin glasses

1.1.2 Mean field theory of spin glasses

The mean field theory is a standard theory to explain ferromagnetism and antiferro-
magnetism in macro spin systems. In 1975, Edward and Anderson (EA) first adopted
the mean field theory for the spin-glass transition [25]. By replacing site-randomness by
randomness in the exchange coupling J , the Hamiltonian of spin glass can be written
as

HEA = −
∑
<i,j>

JijSiSj −
∑
i

hiSi (1.2)

where Jij is the interaction between the i-th and j-th spins, and h is an external field.
Jij is a random variable and its probability is expressed by

P (Jij) =
( z

2πJ2

)1/2
exp

[
− z

2J2

(
Jij −

J0
z

)2
]
. (1.3)

z is the number of Jij acting on each spin. EA proposed that with decreasing tem-
perature, thermal fluctuations of spins are additionally suppressed by the spin-spin
interaction. The spins start to be randomly frozen just below a transition temperature.
As a result, the spin-glass phase appears. In general, the order parameter of general
magnetic system is magnetization (mq ≡ 1/N

∑N
t=1⟨Si⟩eiq·Ri). However, the order pa-

rameter of spin glasses should not be the same as general magnetic systems because
mq = 0 at T = 0. To explain the spin-glass properties, EA used the following order
parameters:

qEA ≡ lim
t→∞

1

N

N∑
t=1

⟨Si(0)Si(t)⟩ (1.4)

q ≡ lim
N→∞

1

N

N∑
t=1

⟨Si⟩2 (1.5)

where qEA is the order parameter of the ZFC process, and q is that of the FC process.
The EA model includes random variables. Thus, it is not easy to calculate Eq. (1.2)

directly. Sherrington and Kirkpatrick (SK) extended the EA model to an infinite range
[26]. The SK Hamiltonian is written as:

HSK = −
∑
i>j

JijSiSj −
∑
i

hiSi. (1.6)

There are roughly two methods for solving the SK model. The first one is a method
using a mathematical trick called the replica method. The second one is a method
evaluating a solution without using the replica method. In this subsection, we discuss
these two methods in Ising spin glasses.
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1.1 History of spin glasses 1 Spin glasses

Replica spin method

In actual spin glasses, the magnetic impurity site is fixed and its probability dis-
tribution does not change with time. This fact indicates that experimentally obtained
physical quantities originates from one probability distribution Jij. Thus, it is necessary
to specify each Jij value concretely in order to compare the experimental physical quan-
tities with thermodynamic quantities such as a magnetic susceptibility calculated from
the SK Hamiltonian. However, the thermodynamic quantities depend not on details of
the probability distribution, but on the averaged macroscopic quantities. In this case,
we are able to compare the free energy obtained from experiments with that calculated
from the SK Hamiltonian. However, the difficulty in treating random systems lies in
calculating the averaged value after taking the logarithm. EA replaced a logarithmic
component in the distribution function by the following factor:

lnx = lim
n→0

1

n
(xn − 1). (1.7)

When an external magnetic field is zero, the free energy and the distribution function
of the SK model can be represented as

βF = − [log (ZJ)]J = − lim
n→0

1

n
(|Zn

J |J − 1|) (1.8)

|Zn
J |J =

[
Tr(Sa

i ) exp (β
n∑

a=1

∑
i,j

JijSi
aSj

a)

]
J

= Tr(Si
a) exp

(
n∑

a,b=1

∑
<i,j>

β2J2

2N
(Si

aSi
b)(Sj

aSj
b) +

n∑
a=1

∑
<i,j>

βJ0
N

Si
aSj

a

)
(1.9)

where β = 1/kBT , and [· · · ]J is a sample averaging process. The key of this calculation
is the sample averaging process on the second equation of Eq. (1.8). The first term
of Eq. (1.9) expresses a replica-spin interaction characterized by J2. The second term
represents an energy due to a ferromagnetic (or an antiferromagnetic) interaction and its
value is proportional to an averaged value of distribution (J0). Due to this mathematical
technique, the virtual degree of freedom which is called “replica spin” as well as the
interaction between replica spins are defined.

The free energy (f) for one spin obtained with the SK Hamiltonian is expressed as

f ≡ lim
N→∞

F

N
= lim

n→0

1

n
min (fn{Qab,Ma}) (1.10)

βfn{Qab,Ma} = −β2J2

4
n+

βJ0
2

∑
a

Ma
2 +

β2J2

2

∑
ab

Q2
ab

− ln (Tr(Sa) exp (βHeff)) (1.11)

7



1.1 History of spin glasses 1 Spin glasses

Heff = −βJ2
∑
ab

QabS
aSb +

∑
a

(J0Ma + h)Sa. (1.12)

Equation (1.12) is an effective Hamiltonian for n replica spins. The saddle point con-
ditions of Eq. (1.10) can be obtained with the following self-consistent equations:

Qab = ⟨SaSb⟩eff , Ma = ⟨Sa⟩eff (1.13)

where ⟨· · · ⟩eff is the thermal average in the effective Hamiltonian Eq. (1.12). By using
the solution Qab, an order parameter q and an uniform magnetization m can be written
as follows:

q = lim
n→0

2

n(n− 1)

∑
a,b

Qab, m = lim
n→0

1

n

∑
a

Ma. (1.14)

Since the effective Hamiltonian Eq. (1.12) is symmetric with respect to an exchange of
replica indices (a and b), the SK solution also has a replica symmetry as follows:

Qab = q ≡ qSK, Ma = m. (1.15)

The SK model clearly explained critical phenomena in spin glasses such as a spin-
glass transition, divergence of nonlinear magnetic susceptibility, and the temperature
dependence of the specific heat. However, it had a fatal defect that the entropy became
negative at low temperatures. Parisi pointed out that the full description of the spin-
glass order in the SK model needed an order-parameter function [27, 28] instead of a
single order parameter. Parisi introduced Replica Symmetry Breaking (RSB) solution
whose structure is shown in Fig. 1.4.

Figure 1.4: A Qab structure in Parisi solution.

Parisi proposed the following nested solution. The original n× n (n : integer > 1)
matrix Qab is divided into m1×m1 (n < m1) sub-matrices. Elements of sub-matrices at

8



1.1 History of spin glasses 1 Spin glasses

the off-diagonal positions are all set as q0. Next, m1 ×m1 sub-matrices at the diagonal
positions are further divided into m2 × m2 (m2 < m1), where elements of subsub-
matrices at the off-diagonal positions are all set as q1. By repeating this operation until
the elements of the group become one replica (Qaa = 0), the Parisi solution can be
obtained. The Parisi solution satisfies the physical requirements for a correct solution,
such as the stability in the spin-glass phase and magnetic phase diagrams. Therefore,
the spin-glass phase has been considered as a thermodynamic phase to be described by
an infinite number of order parameters for each “replica pair” (a ̸= b). On the other
hand, whether the replica method can describe all the magnetic properties in the real
spin glasses is not a trivial issue.

Theoretical model without replica spin

To investigate the validity of the Parisi solution, it is necessary to compare the replica
spin with the spin in real space. Thouless, Anderson and Palmer (TAP) developed a
method to find the solution in the real spin space without introducing replica spins in
1977 [29]. In the TAP method, the first step is to examine the thermodynamic behavior
of the spins in each sample determined by one set of Jij, and then to treat the statistical
process. The argument by TAP is based on an equation that determines the thermal
mean value mi of each magnetization in one sample,

mi = tanh β

[
hi +

∑
j

Jijmj − βmi

∑
j

Jij
2(1−mj)

2

]
. (1.16)

The TAP free energy is then given by the following equation:

FTAP{mi} =
1

2β

∑
i

[
(1 +mi) ln

(
1 +mi

2

)
+ (1−mi) ln

(
1−mi

2

)]
−
∑
<ij>

Jijmimj −
β

2

∑
<ij>

Jij
2(1−m2

i )(1−m2
j)−

∑
i

himi. (1.17)

The second term on the right hand corresponds to the ordinary mean-field term, and
the third term is called Onsager’s half jump field which is the additional magnetization
produced by mi to the ordinary mean-field. One can directly calculate the freezing
direction of spins because mi obtained from the equation represents the thermal equi-
librium state. Although it is not easy to solve this equation, it is possible to evaluate
the number of solutions analytically. An important massage obtained from the TAP
solution is that the solution mi is a multiple solution. This fact means that there
are a large number of thermodynamic states separated by energy barriers as shown in
Fig. 1.5.

9



1.1 History of spin glasses 1 Spin glasses

Figure 1.5: Free energy of ferromagnets (left) and spin glasses (right). In ferromagnets,
there are only two pure states ±m connected by the Hamiltonian’s trivial symmetry.

The spin glass phase described by the TAP solution can only exist in one region
with a many-valley structure of free energy and a finely divided phase space. This
means non-ergodic and indicates a completely new type of phase transition, that is,
the transition from the high temperature ergodic phase to the low temperature non-
ergodic phase. By combining this TAP solution with the Parisi solution, replica spins
can be associated with real space spins, and thus the mean field theory of spin glasses
is completed.

10



1.2 Determination of Tf 1 Spin glasses

1.2 Determination of Tf

In this section, we review how to determine Tf from an experimental point of view.
Especially, this issue is closely related to one of the motivations of the present work
i.e., how to evaluate Tf for a spin-glass nanowire.

Tf is one of the important factors to characterize the spin-glass system. In the mean
field theory of spin glasses, this temperature corresponds to the energy scale of the
depth of many-valleys structure.

Experimentally, Tf is usually determined by magnetization measurements. In case
of dc magnetization measurements, Tf is defined as the temperature at which a dc mag-
netization starts to take a different value between the FC and ZFC processes. On the
other hand, in case of ac magnetization measurements, Tf is defined as the cusp tem-
perature because such a difference does not appear. However, because of the intrinsic
nature of spin glasses, Tf is not uniquely determined even by those magnetization mea-
surements. For example, in case of dc magnetization measurements, to obtain the clear
signal, an initially applied magnetic field should be large. However, with increasing this
initial magnetic field, it is known that the cusp structure becomes broader. Especially,
in a strong anisotropic system such as AuMn, Tf shifts to a lower temperature side with
increasing the applying initial magnetic field [30]. Even in ac magnetization measure-
ments, such a broadening effect is also observed. When a high frequency magnetic field
is applied, localized moments of spin glasses cannot follow the vibration of magnetic
field due to the slow dynamics of spin glasses. As a result, the observed Tf becomes
higher than the actual Tf . These features can be observed not only in spin glasses but
also in a super-paramagnet which has localized magnetic clusters. Therefore, it has
been argued whether spin-glass is a phase transition or not since 1980s.

To estimate the accurate spin-glass temperature, a non-linear susceptibility measure-
ment is usually performed. The nonlinear susceptibility χn exhibits a clearer divergent
behavior at Tf . One of the evidences that the spin-glass transition is a phase transi-
tion is a divergence of the nonlinear susceptibility at Tf . The linear and the nonlinear
susceptibilities χ0 and χ2 are defined by the following relation,

M

H
= χ0 + χ2H

2 + χ4H
4 + · · · , (1.18)

where M is the magnetization and H is the applied magnetic field. Figure 1.6 is the
demonstration of a nonlinear susceptibility measurement of spin-glass Au98.5Fe1.5 [24].
A clear singular divergence in χ2 was observed at the temperature where χ0 has a cusp.

11



1.2 Determination of Tf 1 Spin glasses

Figure 1.6: Linear susceptibility χ0 and nonlinear susceptibility χ2 measurements of
Au98.5Fe1.5. Reproduced with permission from Ref. [24]. c⃝(1983) The Physical Society
of Japan.

12



1.2 Determination of Tf 1 Spin glasses

A dynamical magnetization measurement is also an effective method to determine Tf .
By investigating Tf as a function of the frequency of magnetic field, the slow dynamics
of spin glasses can be suppressed. In fact, such a frequency (ν) dependence has been
studied in a variety of spin-glass materials. Hence, it is not a trivial matter to determine
whether the experimentally observed “spin-glass transition” is really a thermodynamic
second-order transition persisting in the ν → 0 limit.

Figure 1.7: The frequency ν dependence of the 1/Tf . Reproduced from Ref. [31], with
the permission of AIP Publishing.

Ferré et al. tried such an extrapolation by performing the ac susceptibility mea-
surement on nonmetallic spin glasses Eu40Sr60S [31]. Figure 1.7 shows the frequency ν
dependence of the inverse cusp temperature 1/Tf . This is a clear experimental method
to determine of equilibrium spin-glass temperature.

The cusp anomaly is also observed in specific heat measurements [32]. In canonical
spin glasses, however, it is difficult to estimate a magnetic specific heat quantitatively
because specific heat capacities of electrons and lattices in a host noble metal are larger
than those of magnetic impurities.

Neutron scattering, NMR and µSR measurements have been performed to investi-
gate local spin dynamics in spin glasses. However, these methods are not so suitable to
determine Tf by the following reasons. (1) These techniques involve intrinsic measure-
ment time constants. When the relaxation of localized moments is slower than these
time constants, it is indistinguishable from a real static contribution.2 (2) Spin glasses
are easy to have local magnetic clusters and thus short-range-order effects occur in these
alloys. However, we emphasize that these methods are invaluable tools to investigate a
magnetic ordering state above Tf and below Tf .

2The relaxation times of neutrons and muons are ∼ 10−9 s and 10−6 s, respectively. The Mössbauer
spectroscopy can be used only if the relaxation time is within ∼ 10−7.

13



1.3 Electrical conductivity in spin glasses 1 Spin glasses

1.3 Electrical conductivity in spin glasses

Canonical spin glasses have an electrical conductivity because those are based on
noble metals. Some groups investigated the effect of magnetic impurities on electrical
conductivity and the “impurity resistivity” (∆ρ(T ) ≡ ρalloy(T ) − ρpurehost(T )) varies
roughly linearly with temperature near Tf and has a broad maximum at a temperature
much higher than Tf [3]. Campbell et al. showed that ∆ρ(T ) of four canonical spin
glasses follows a T 3/2 law at low temperatures, a T -linear law near Tf , and a slower
temperature variation above Tf [33]. The initial T

3/2 dependence is well-explained by the
theory reported by River and Adkins based on an elementary excitation in spin glasses
[34]. However, their interpretation includes many assumptions in the theory of spin
glasses. Campbell et al. calculated ∆ρ(T ) based on the numerical simulation of specific
heat performed by Walker and Walstedt [35–37] and compared with experimental data
[33]. They obtained a good agreement between the resistivity data and a model using
the Walker-Walstedt excitation description. They derived a local spin-relaxation rate
from the resistivity data, which is consistent with that estimated with other techniques.

Taniguchi et al. measured the Hall effect and magnetization in AuFe simultaneously,
and showed that a cusp appeared both in the Hall effect and in the magnetization [38].

Figure 1.8: The simultaneous measurements of the Hall effect and the magnetization
[38].

The similar results were reported by Fabris et al. [39]. These experimental facts
indicate that electrical conductivity measurements can be a useful probe to detect the
information of spin-glass transition.
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With the recent development of microfabrication technology, it has become possible
to investigate submicrometer-size spin-glass samples where a characteristic length scale
such as the distance between two magnetic impurities is comparable.

Weissman et al. fabricated CuMn mesoscopic devices and measured the 1/f noise of
electrical resistance [40]. They discovered that the 1/f noise of CuMn increases rapidly
at Tf as shown in Fig. 1.9.

Figure 1.9: The first report of the 1/f measurement in spin glasses [40]. The vertical axis
corresponds to a normalized 1/f noise magnitude. The inset shows the relation between
Tf estimated by the noise measurements and Tf by the magnetization measurements.

The vertical axis α in Fig. 1.9 is a Hooge parameter that expresses the amplitude of a
spectral density. This noise originates from thermal fluctuations of Mn spins, reflecting
the transition between valleys of the free energy multi-valley structure in the mean field
theory. It is important to be able to directly detect the microscopic picture of spin
glasses by reducing the device size.
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In 2013, Capron et al. reported universal conductance fluctuations (UCFs) in AgMn
nanowire (Fig. 1.10(a)) [41]. They investigated the quantum coherence in the AgMn
nanowire near Tf .

Figure 1.10: The quantum coherence measurements reported by Capron et al. [41].
(a) A typical result of UCFs. The inset is the SEM image of the device. (b) The
temperature dependence of the fraction of free spins.

With decreasing temperature, the fraction of free spins monotonically decreases.
Surprisingly, however, the reduction of the number of free spins continues even below
Tf . This result indicates that spin fluctuations certainly exist even below Tf and it is
not intuitively consistent with a conventional mean field theory of spin glasses. We also
note that Tf of these experiments is determined by the film of AgMn, which could be
different from that of the nanowire.

As mentioned above, recent electrical conductivity measurements in nanoscale spin
glasses can directly detected the microscopic picture of spin glasses experimentally.
This fact indicates that the electrical measurement in nanoscale spin glasses would be
a strong method to elucidate the spin-glass dynamics.
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Chapter 2

Triangular antiferromagnet

In this chapter, we briefly review another frustrated magnetic system, i.e., triangular
antiferromagnet, and detail our target material Ag2CrO2.

2.1 Frustration on triangular antiferromagnet

Triangular antiferromagnet is one of the prototypes for studying the magnetic
frustration effect in materials. We consider a two-dimensional (2D) lattice in which
classical spins are arranged in an equilateral triangular lattice (Fig. 2.1(a)). When the
antiferromagnetic interaction works between the two adjacent Ising spins, the opposite
spin directions should be realized as the lowest energy state. However, the direction
of the third spin is not uniquely determined because the spin configuration does not
satisfy all antiferromagnetic interactions.

Figure 2.1: Schematic images of (a) geometrical frustrations in the Ising triangular
antiferromagnet, and (b) the 120◦ spin structure.

Triangular antiferromagnets have been studied for a long time as a prototype of
frustrated spin systems. Although it is the simple model, unique thermodynamic states
appear depending on the symmetry of the spins. For example, in the Ising antiferro-
magnetic spin system, there is no long-range order even in the ground state and its
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residual entropy is 49 % out of the total entropy of the system [42]. But when there is
a small anisotropy in a crystal symmetry, the spin configuration becomes non-collinear
due to competition between the small anisotropy and the frustration [43,44]. In a trian-
gular lattice with continuous degrees of freedom such as the XY model and Heisenberg
model, the ground state is the 120◦ spin structure as shown in Fig. 2.1(b).

However, the triangular lattice has another degree of freedom, i.e., vector spin chi-
rality (Fig. 2.2(a)). It is known that this can induce a topological phase transition.
The spiral spin structure is not able to be deformed continuously from an uniform
antiferromagnetic spin structure (Fig. 2.2(b)). Therefore, it can be regarded as a topo-
logical defect in the antiferromagnetic state, and vortices with opposite directions can
be considered as defects with topological charges. This topological phase transition
is called the Berezinskii-Kosterlitz-Thouless (BKT) transition [45–47] which occurs at
a finite temperature even in the 2D spin system. In a Heisenberg spin system, since
the spin can rotate freely in the three-dimensional space, the chirality vector also has
continuous degrees of freedom. Therefore, no phase transition should appear in the
XY model. However, it is theoretically predicted that the topological transition re-
lated to the generation of the vortex of chirality vector (Z2 vortex) similar to the BKT
transition appears at a finite temperature, and it has been confirmed by numerical cal-
culations [48]. Nevertheless, such thermodynamic states and a phase transition have
never been observed in real materials.

Figure 2.2: Schematic images of (a) the chirality originated from the spin configuration
and (b) the BKT transition.
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2.2 Ising triangular antiferromagnet

Here, we focus on the Ising triangular antiferromagnetic model because our ex-
periment is related to the Ising triangular antiferromagnet. There are so many Ising
triangular model materials such as hexagonal ABX3 type compounds. Therefore, there
have been actively studied both from the theoretical and experimental aspects. As a
theoretical study of this triangular lattice Ising spin model, we introduce the simula-
tion by molecular field approximation by Mekata [43]. Mekata considered the triangular
Ising model with the antiferromagnetic nearest neighbor interaction J (< 0) and the
antiferromagnetic next-nearest neighbor interaction J ’(> 0). In this case, the triangular
lattice is divided into three sublattices as shown in Fig. 2.3(a).

Figure 2.3: Schematic images of (a) the sublattice in the 2D triangular Ising lattice, (b)
the ferrimagnetic structure and (c) the partially disordered antiferromagnetic structure.
Broken lines indicate a magnetic unit cell. The red arrow and blue arrow indicate the
nearest neighbor interaction and the second nearest neighbor interaction, respectively.

The Hamiltonian for the l-th sublattice can be written as:

H = −6J (⟨Sm⟩+ ⟨Sn⟩)
∑
i

Si
l − 12J ′⟨Sl⟩

∑
i

Si
l − gµBH

∑
i

Si
l (2.1)

where the subscripts l, m, and n are used to specify the sublattices and i is the number
of unit cell. By substituting Sl by Sσl, the relative magnetization ⟨σl⟩ can be obtained
in the following equation:

⟨σl⟩ = tanh {β (α⟨σl⟩+ ⟨σm⟩+ ⟨σn⟩+ γ)} (2.2)

where α = 2J ′/J , β = 6S2J/kT and γ = gµBH/6SJ (g: g-factor, µB: Bohr magnetron).
Equation (2.2) can be solved numerically as a function of α, β, and γ. He discovered two
magnetic transition temperatures when 0.8 > |J ′/J | > 0. The lowest energy state is the
ferrimagnetic state as shown in Fig. 2.3(b). On the other hand, an antiferromagnetic
state in which one of the three sublattices is completely disordered appears at the middle
temperature region (Fig. 2.3(c)). This state is called “Partially Disordered (PD) state”.

In 1995, Takagi and Mekata considered the two-dimensional Ising model with the
third neighbor interaction in addition to Eq. (2.1) in the 2D Ising model (Fig. 2.4) [49].
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The Hamiltonian can be written as:

H = −J1
∑
1st n

σiσj − J2
∑
2nd n

σiσj − J3
∑
3rd n

σiσj (2.3)

where σi is ±1 and J1, J2 and J3 are the 1st, the 2nd and the 3rd neighbor interaction
parameters, respectively.

Figure 2.4: Numerical calculations performed by Takagi and Mekata reproduced with
permission from Ref. [49]. c⃝(1995) The Physical Society of Japan. (a) Schematic image
of 1st, 2nd and 3rd neighbor interactions, J1, J2 and J3 in the triangular Ising lattice.
The solid lines, broken lines and bent dotted lines indicate J1, J2 and J3 interaction
bonds for the quoted sites, respectively. (b) Phase diagram of the ground state. Each
phase is labeled by the sublattice number n. (c) Phase diagram at T̃ = 0.75. Each
phase is labeled by the sublattice number n.

To evaluate Eq. (2.3), J2, J3 and the temperature are normalized with |J1| as follows:

J̃2 =
J2
|J1|

, J̃3 =
J3
|J1|

and T̃ =
kBT

|J1|
. (2.4)

Figure 2.4(b) shows the phase diagram of the ground state (T̃ = 0) obtained with the
Monte Carlo simulation. When J̃2 and J̃3 are larger than 1, the ferromagnetic state is
the ground state. On the other hand, the PD states with 2-, 3-, 4- and 8- sublattices can
be the lowest energy states when J̃2 and J̃3 are smaller than 1. Figure 2.4(c) shows the
phase diagram when J̃2, the J̃3 are negative and T̃ = 0.75. The three PD phases with
4-, 5- and 9- sublattices are located in between the more stable 3PD and 8PD states.
Therefore, the magnetic structure of the system depends on the type and magnitude of
the effective neighbor interaction and the temperature range.

Experimentally, some candidate materials with the PD state has been reported in
quasi-1D Ising chains which can be considered to have the same magnetic properties as
the 2D triangular lattice, for example, ACoX3 compounds (A = Cs, Rb, X = Cl, Br)
[50], the multiferroic material (CuFeO2) [51–53], alloys (SmPt2Si2 and GdInCu4) [54,55],
and strong correlation f -electron systems (CeSb and UNi4Be) [56, 57]. The PD phase
realized in the above materials has been confirmed by directly evaluating the magnetic
structure using neutron scattering, or by detecting the local magnetization using NMR,
µSR, and Mössbauer spectroscopy measurements.
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2.3 Basic properties of Ag2CrO2

In this section, we explain basic properties of Ag2CrO2, which is a triangular Ising
antiferromagnetic system with electrical conductivity and also studied in the present
thesis as we detail later on.

2.3.1 Crystal structure

The polycrystalline Ag2CrO2 sample was firstly fabricated by Yoshida et al. in
2011 [14]. It was obtained by encapsulating a mixture of Ag, Ag2O, and Cr2O3 powders
in a gold cell, and by baking them at 1200 ◦C for 1 hour under a pressure of 6 GPa. The
crystal structure is shown in Fig. 2.5. The CrO2 triangular antiferromagnetic layer and
the Ag2 conductive layer are alternatively stacked. Since Cr3+ (t32g) has the high-spin
electron configuration, no orbital degrees of freedom exist and the regular triangular
lattice is expected. According to the X-ray diffraction [14] and the neutron powder
diffraction [15], Ag2CrO2 has a trigonal structure (P3m1) with a = 2.9298 Å and c =
8.6637 Å at 200 K (Fig. 2.5(b)) and a monoclinic structure (C2/m) at low temperatures
(Fig. 2.5(c)).

Figure 2.5: The crystal structure of Ag2CrO2 [15]. (a) 2× 2× 2 unit cell of the trigonal
phase above TN. (b), (c) Schematic structures of the triangular Cr3+ spin lattice (b)
at T > TN (trigonal phase) and (c) at T < TN (monoclinic phase). The magnetic
interactions J1, J2 and J3 are shown in (b).
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2.3.2 Magnetization measurement

Figure 2.6(a) shows the magnetization measurement of Ag2CrO2 powder [14]. The
susceptibility (M/H) obeys the Curie-Weiss law at high temperatures. The inset of
Fig. 2.6(a) shows the line fitting to the χ−1 data between 200 and 350 K, from which
the effective moment peff and the Weiss temperature θW are estimated to be 3.55 and
θW = −97 K, respectively. This peff value is close to the high-spin state of Cr3+, S = 3/2
(peff = 3.87). On the other hand, at low temperatures, the magnetic susceptibility
abruptly increases at TN = 24 K and exhibits a small temperature hysteresis between
the ZFC and FC data below TN (Fig. 2.6(a)). Figure 2.6(b) shows the M -H curves of
Ag2CrO2 at 2 K (< TN) and 50 K (> TN). In contract with the linear magnetization at
50 K, the data at 2 K show a clear hysteresis loop with a spontaneous magnetization
whose value is 8.5% out of the full magnetic moment. Even at 7 T, the magnetization
is approximately only 12% of 3µB. These results indicate that the ground state of
Ag2CrO2 has an antiferromagnetic order with weak ferromagnetic moments.

Figure 2.6: The magnetic susceptibility of Ag2CrO2 [14]. Reproduced with permission
from Ref. [14]. c⃝(2011) The Physical Society of Japan. (a) Temperature dependence of
the magnetic susceptibility. The solid and open circles correspond to FC with H = 1 T
and ZFC data, respectively. The inset shows the inverse magnetic susceptibility and the
solid line indicates the Curie-Weiss fitting. (b) Magnetization divided by full-saturation
moment 3µB versus H curves at T = 2 and 50 K.
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2.3.3 Specific heat measurement

The specific heat has a sharp peak at T = 24 K as shown in Fig. 2.7. This peak
temperature corresponds to the magnetic transition temperature and this temperature
was determined as TN. The inset of Fig. 2.7 shows the relation between C/T and T 2.
Below 10 K, the specific heat obeys the conventional specific-heat formula: C/T = γ +
βT 2, where γ is the Sommerfeld constant and β is the lattice specific-heat constant. The
γ value of Ag2CrO2 (9.74 mJmol−1K−2) is relatively large and this value is consistent
with the γ of the other Ag2MO2 (M = Mn, Ni) [58,59]. The large γ indicates the large
effective mass of conduction electrons. Such a large effective mass in Ag2CrO2 would
originate from the strong hybridization of the Ag 5s and the Cr 3d orbital bands at the
Fermi level.

Figure 2.7: The specific-heat measurement of Ag2CrO2 [14]. Reproduced with permis-
sion from Ref. [14]. c⃝(2011) The Physical Society of Japan. The sharp peak appears
at TN. The inset shows C/T as a function of T 2. The red line indicates the fitting
result with the conventional specific-heat formula.
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2.3.4 Electrical conductivity

Figure 2.8 shows the resistivity of Ag2CrO2 as a function of temperature under
H = 0 and 9 T [14]. It has a metallic conductivity due to the itinerant electrons in the
quarter-filled Ag 5s band. The most interesting characteristic of Ag2CrO2 is the large
resistivity reduction at TN. This reduction corresponds to approximately 60 % of the
resistivity just above TN. The similar reduction has been observed in Ag2MO2 (M=Mn,
Ni) [58, 59], but the reduction in Ag2CrO2 is much larger than other Ag2MO2. These
facts indicate that the antiferromagnetic CrO2 layer and the conductive Ag2 layer are
strongly coupled.

Figure 2.8: The temperature dependence of the resistivity in Ag2CrO2 under H = 0 T
(circles) and 9 T (triangles) [14]. The arrow indicates TN determined from the specific-
heat measurement under H = 0 T. The inset shows a closeup of the resistivity near TN.
Reproduced with permission from Ref. [14]. c⃝(2011) The Physical Society of Japan.

In 2015, Kida et al. measured the electrical conductivity of polycrystalline Ag2CrO2

[60]. Figure 2.9 shows the magnetoresistance (MR: (ρ(H) − ρ(0))/ρ(0)) of Ag2CrO2

at several temperatures. Below TN, the MR curves are positive and almost linear with
respect to the magnetic field. With increasing temperature, the MR changes the sign
at around TN and becomes smaller above TN.
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Figure 2.9: MR of polycrystalline Ag2CrO2 at several different temperatures [60].

Figure 2.10(a) shows the Hall resistivity ρH(H) curves of Ag2CrO2 at several tem-
peratures. ρH(H) has a nonlinear behavior with H, and its magnitude increases with
increasing temperature. When the total Hall resistivity can be expressed as ρH =
R0µ0H + RsM (R0: ordinary Hall coefficient, µ0: vacuum permeability, Rs: anoma-
lous Hall coefficient and M : magnetization), the relation between ρH(H) and M(H)
is shown in Fig. 2.10(b) by assuming that R0 is very small due to the large carrier
concentration. Above TN, ρH follows the conventional anomalous Hall effect (T = 30,
50 K). In contrast, ρH deviates from the linear law below TN (T =20, 25 K). From these
results, the unconventional magnetotransport may originate from the spin fluctuations
related to the spin structure of Ag2CrO2.

Figure 2.10: The Hall measurement in polycrystalline Ag2CrO2 [60]. (a) Hall resistivity
as a function of magnetic field at several temperatures. (b) ρH vs M curves at several
temperatures. The arrows indicate the point where the Hall resistivity deviates from
the linearity.
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2.3.5 Neutron scattering measurement

The magnetic Bragg reflections obtained with the neutron scattering experiment [15]
are shown in Fig. 2.11(a).

Figure 2.11: Neutron powder diffraction patterns in Ag2CrO2 at 4 and 45 K [15]. The
data at low scattering angles show that some magnetic Bragg peaks develop below TN

(a), and those at high scattering angles show that a nuclear Bragg peak splits below
TN (b). The inset shows the temperature dependence of the magnetic intensity at 19.8◦

and nuclear intensity at 117.9◦ measured with increasing temperature.

The magnetic reflections with 1
5

1
5
L (L = 0) and 4

5
1
5
L (L = 1), were observed. This

fact indicates that the magnetic structure has a 5 sublattice structure in the triangular
plane, and the unit cell along the c-axis is the same as the chemical unit. Thus, Cr3+ has
an Ising anisotropy along the c-axis. The inset of Fig. 2.11(b) shows the temperature
dependence of the reflection intensity. The open and closed circles show the magnetic
and nuclear intensity, respectively. The magnetic intensity abruptly increases below
TN, whereas the nuclear intensity drops at TN. It indicates that the magnetic and
structural phase transitions occur simultaneously at TN. ¿From the neutron scattering
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results, as the stable state of Ag2CrO2 at finite temperature, a partially disordered
magnetic structure with 5 sublattices can be assumed (Fig. 2.12).

Figure 2.12: Schematic spin structure of the PD state with 5 sublattices [15]. The
orientation of ordered spins is perpendicular to the triangular plane. The broken line
indicates the magnetic unit cell.

Based on the neutron scattering experiment, the spin arrangement can be expected
to be up-down-up-down-disordered-... along the b-axis, as shown in Fig. 2.12. This
would originate from the small ferromagnetic moments at the disordered spins although
the detailed magnetic structure is not still unveiled. The validity of the PD model has
also been confirmed by µSR measurements performed by Sugiyama et al. [16]. They
studied the local internal magnetic field of Ag2CrO2 in detail, and revealed that this
antiferromagnetic transition is induced by the first-order structural phase transition at
TN.

To summarize these experiments, typical properties of Ag2CrO2 are listed as below:

1. Antiferromagnetic triangular lattice with S = 3/2 with strong Ising anisotropy
along the c-axis.

2. Magnetic transition appears at TN = 24 K accompanied with the structural tran-
sition.

3. Conduction electrons and localized moments are strongly coupled in Ag2CrO2.

On the other hands, since the single crystal has not been synthesized yet, the
following problems has not been clarified.

1. The origin of the residual magnetization at low temperatures

2. Ag ion valence

3. The origin of the structural transition below TN
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Spin transport measurement
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Chapter 3

Spintronics

In this chapter, we briefly explain the concept of spintronics. Especially, we intro-
duce what kind of physical quantities can be discussed from results of spin transport
measurements.

3.1 History of spintronics

Here, we review the history of spintronics. The first topic is the giant magnetore-
sistance (GMR) and tunnel magnetoresistance (TMR). These are the most successful
parts in spintronics. The second topic is nonlocal spin valve (NLSV) which is closely
related with the present studies.

3.1.1 Giant magnetoresistance

Spintronics is one of the central fields in modern condensed matter physics. The
aim of spintronics is to explore new spin-related phenomena and to create spintronic
devices by controlling the spin degree of freedom. Spintronics has been developed since
2000, but it is based on the electrical properties in magnetic materials that have a long
history. For example, researches on the electrical conductivity in ferromagnets have
been investigated for a long time, and a phenomenon that the electrical conductivity
depends on the direction of magnetization is known as the anisotropic magnetoresistance
(AMR) [61], where the resistance changes depending on the angle between a current
direction and an orientation of the magnetization. The origin of the AMR is the spin-
dependent scattering in the material. Mott discovered that in ferromagnets, electrons
with majority spin and those with minority spin do not mix and the total conductivity
can be expressed as a sum of each spin channel when the temperature is low enough
so that magnon scattering is negligible [62]. Such a two-current model is based on
recent spintronics studies. In 1880, Hall discovered an anomalous Hall effect (AHE)
in ferromagnetic materials (Fe, Co, Ni) even at zero magnetic field [63]. The AHE
is proportional to the magnetization of ferromagnetic material. In 1954, Karplus and
Luttinger first explained the AHE theoretically using the electron band structure [64].
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The GMR effect was discovered in 1988 by two independent groups [65, 66]. They
fabricated several tens multilayers, composed of a few nanometer thick Fe and Cr, where
the adjacent Fe layers are antiferromagnetically coupled via the Cr layer. When the
in-plane magnetic field is applied, the Fe layers align in parallel, and the MR shows
dramatically large values (Fig. 3.1). The MR ratio, which is defined as the ratio between

the resistances at zero field and at high magnetic field R(H)−R(0)
R(0)

, is a few orders of

magnitude larger than the conventional AMR ratio (∼ 1%). These GMR experiments
are a clear evidence of spin-polarized transport. Thus, the discovery of the GMR effect
stimulated intensive studies to enhance the MR ratio.

Figure 3.1: The first report of the GMR effect by Baibich et al. [65].
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The TMR effect was discovered by replacing the Cr layer by a thin insulating layer
[67,68].

In an early stage of the TMR experiments, amorphous AlOx was used and the MR
ratio stayed at ∼ 50 %. The next breakthrough is the use of MgO layer. The lattice of
MgO used as an insulating layer fits well with Fe and also allows only up-spin channel
to tunnel in the barrier. As a result, the MR ratio has increased dramatically, reaching
several hundred percent by the middle of 2000 [69, 70]. The TMR ratio is summarized
in Fig. 3.2 [71]. Thanks to the large TMR ratio, TMR devices are currently used as
HDD magnetic heads, Magnetoresistive Random Access Memories (MRAMs) [72, 73],
and magnetocardiography [74].

Figure 3.2: The history of the TMR ratio [71].
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3.1.2 Nonlocal spin valve

On the other hands, several years before the discovery of the GMR effect, Johnson
and Silsbee fabricated a lateral spin valve structure as shown in Fig. 3.3(a) and detected
the voltage signal related to spin accumulation in the lateral spin valve structure [75].
There are two types of spin valves. One is a vertical spin valve and the other is a lateral
spin valve. The vertical spin valve has a stacked structure along the film-thickness
direction like a GMR device. On the other hand, in the lateral spin valve device, two
small ferromagnetic NiFe (Py: Permalloy) pads were placed on an aluminum foil, as
shown in Fig. 3.3(a). These two pads work as a spin injector and detector. Using this
device, they detected a voltage difference related to the magnetization configuration
(parallel/antiparallel) of the two ferromagnets.

Figure 3.3: The demonstration of pure spin current injection and detection by Johnson
and Silsbee [75]. (a) The schematic image of the device structure. An electric current
flowed from the injector to one end of the foil and a nonlocal voltage was detected
between the detector and the other end of the foil. (b) A typical result of the detected
voltage. The inset shows the magnetic angle dependence of the nonlocal voltage.

The voltage signal in this study is small compared to the GMR effect, but the
importance of this work is that it was the first demonstration of the generation and
detection of “pure spin current” which is a flow of spin angular momentum without any
charge flow (Fig. 3.4).

Figure 3.4: The schematic image of pure spin current. When up-spin electrons and
down-spin electrons flow in opposite directions, a flow of only the spin angular momen-
tum is generated.
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As shown in the previous subsection, the thickness of multilayer structures in GMR
and TMR devices is of the order of nanometers. The biggest difference between a charge
current and a spin current is that the spin angular momentum is not a conserved quan-
tity, and the pure spin current decays within a characteristic scale (spin diffusion length:
SDL or spin relaxation time). Therefore, to perform the spin transport measurement,
we have to fabricate the device structure within the SDL (in metals, the SDL ranges
from a few nm to a few µm). The spin accumulation signal measured by Johnson and
Silsbee was small because the SDL of Al is ∼ 500 nm and it was much shorter than
their device. Compared to the layered structure for the GMR effect, it is more difficult
to fabricate a nano-scale lateral spin valve structure because the fabrication process
is restricted by the resolution of nano-technology, i.e., an electron beam lithography
method. Therefore, experiments of the lateral spin valve have been developed with the
progress of the microfabrication technology.
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About fifteen years after the first demonstration of the nonlocal spin injection by
Johnson and Silsbee, a controlled experiment on nonlocal spin injection and detection
was reported by Jedema et al. (Fig. 3.5) [76].

Figure 3.5: Nonlocal spin injection and detection reported by Jedema et al. [76]. (a) A
schematic image of the device. The charge current flows between the Py wire and one
of the arms in the Cu cross, and the voltage is detected between the other arm of the
Cu wire and the other Py wire. (b) Nonlocal spin signal at 4.2 K.

They prepared nanometer-scale lateral spin valves and generated spin currents by
passing a charge current from a ferromagnet to a nonmagnet. In their experiments,
a much larger spin signal compared with that measured by Johnson and Silsbee was
observed because of progress in the nanofabrication technique which enabled them to
make the distance between the two voltage probes less than the SDL of Al.

We note that this kind of lateral spin valve is one of the most powerful tools to
produce spin currents from charge currents. Inspired by the work by Jedema et al.,
many studies have been carried out to investigate spin transport properties for different
kinds of materials and to find good materials for an efficient spin current generation,
transport and detection.
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In 2007, Kimura and Vila et al. fabricated a NLSV device an insertion of a Pt
wire [77–79] in between two Py wires and put a Cu bridge on the three wires as depicted
in Fig. 3.6(a). This method is called as the spin absorption method which can be
measured not only the SDL of Pt but also the spin Hall effect (SHE). The detail of the
SHE is described in the next section.

Figure 3.6: The demonstration of the spin absorption method reported by Vila et al.
[79]. (a) Scanning electron microscope (SEM) image of a typical device for SHE mea-
surements. (b) The temperature dependence of the spin absorption rate η. The inset
shows NLSV signals measured at 5 K using the lateral spin valves with and without
the Pt wire, clearly indicating parallel (P) and antiparallel (AP) states. (c) Direct spin
Hall effect (DSHE) and inverse spin Hall effect (ISHE) measured at T = 10 K, together
with the AMR of the Py wire measured with the same condition.

They estimated η that is the ratio between the nonlocal spin signals with and without
the Pt wire. From η, the SDL λ can be estimated to be ∼7 nm. This method is called
the spin absorption method [6]. As detailed in the next subsection, the spin Hall effect
can be measured using the same device (Fig. 3.6(c)). Therefore, the spin absorption
method is recognized as one of the ways to investigate spin transport properties in
strong spin-orbit (SO) materials.
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3.2 Spin Hall effect

In addition to the lateral spin valve structure described above, there is another way
to generate a pure spin current from a charge current, that is the SHE (Fig. 3.7).

Figure 3.7: Schematic images of (a) SHE and (b) ISHE.

Between a charge current IC and a pure spin current IS, the following relation holds:

IS = αH
SHEIC, IC = αH

ISHEIS (3.1)

where αSHE
H and αISHE

H indicates a conversion efficiency called “spin Hall angle (SH an-
gle)”. Generally, αSHE

H is equal to αISHE
H using the Onsager reciprocal relation. The SHE

has attracted much attention since the 21st century, but it was originally predicted in
1971. D’yakonov and Perel proposed that when a charge current flows in a semicon-
ductor, spins with opposite angular momenta are spatially separated by the spin-orbit
interaction (SOI), and spin accumulation may take place at the edges of semiconduc-
tor [7]. However, this study was not so attracted at that time because there was no
experimental way to detect the pure spin current.

About 30 years later, how to measure the SHE was re-proposed by Hirsch in 1999 [8].
This mechanism was based on the SOI derived from the electron band structure, and
was equivalent to the intrinsic mechanism of the AHE in ferromagnets [64].

After that, Kato et al. observed spin accumulation at both edges of a semiconductor
GaAs thin wire using the optical Kerr effect. It was the first direct demonstration of
the SHE (Fig. 3.8) [9].
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Figure 3.8: The first observation of the SHE by Kato et al. [9]. Two-dimensional
mappings of (a) spin density ns and (b) reflectivity R for the unstrained GaAs sample
measured at T = 30 K and E = 10 mVµm−1.

In semiconductors, however, the SH angle was so small that this result was not
directly connected to spintronic application. The next breakthrough was the detection
of the SHE and its inverse in metal-based devices in 2006. Saitoh et al. fabricated a
Pt/Py (Ni81Fe19) bilayer film. By applying a microwave to the film, a ferromagnetic
resonance occurs and the pure spin current injected into Pt via the damping process
of ferromagnetic resonance. The injected pure spin current is converted into a charge
current through the ISHE and detected as a charge accumulation. This method is
known as the spin pumping method. They found a large ISHE in Pt [10]. At the same
time, Valenzuela and Tinkham measured the ISHE in Al, but the spin Hall angle was
relatively small (3 × 10−4) [11]. Since the discovery of the large ISHE in Pt, there
have been many reports to realize large SH angles because it is closely related to device
applications.
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In 2008, Tanaka et al. theoretically studied the SH conductivity based on the intrin-
sic mechanism [80]. They calculated electrical band structures of 4d and 5d transition
metals by using the multi-orbital tight-binding model and obtained the SH conductiv-
ity by using a linear-response theory. They revealed that the SH conductivity strongly
depends on the electron number n = ns+nd, where ns is the number of electrons in the
s-orbit and nd is the number of electrons in the d-orbit, respectively, regardless of the
detailed crystal structures. They also predicted that large positive SH conductivities
should be obtained in Pt(5d96s1) and Pd (4d105s0), whereas large negative SH conduc-
tivities in Ta(5d36s2) and W (5d46s2). These predictions were experimentally confirmed
in the SH measurement in 4d and 5d transition metals using the spin absorption method
(Fig. 3.9) [81].

Figure 3.9: SH conductivities of 4d and 5d transition metals obtained with the spin
absorption technique by Morota et al. [81]. The closed and open symbols show the
experimentally and theoretically obtained SH conductivities of experimental (closed
symbols) theoretical (open symbols) as a function of d electrons for 4d (circle) and 5d
(square) transition metals.
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A similar tendency has been observed even in 3d transition metals. Du et al. ob-
served the SH angles of 3d transition metals as a function of the number of 3d-electrons
by means of the ferromagnetic resonance (FMR) (Fig. 3.10) [82]. They revealed that
the d-orbital filling rather than the atomic number Z plays a dominant role in the SHE
in 3d transition metals, reminiscent of the behavior in 4d and 5d transition metals.

Figure 3.10: (a) Measurement setup for the ISHE using the FMR technique by Du
et al. [82]. (b) The SH angle θSH as a function of the number of the atomic number Z.
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As mentioned above, the SHEs in single elements have been experimentally inves-
tigated by many groups [11, 79, 81–83]. However, the reported SH angle, for example
of a typical SH material Pt, is widely distributed from 0.003 to 0.2. The origin of this
distribution has been revealed recently. Segasta et al. studied the impurity effect on the
SHE in Pt, and claimed that the SHE strongly depends on the purity of material [83].

Figure 3.11: The scaling plot of the SH angle of Pt reported by Segasta et al. [83].

As shown in Fig. 3.11, the SH angle θSH increases with decreasing the longitudinal
conductivity. This fact indicates that the scattering at impurities or grain boundaries
is essential to the SHE in Pt. On the other hand, some binary alloys also show large SH
angles [84–87]. For instance, by adding a small amount of strong spin-orbit impurities
such as Ir or Bi, into a host weak spin-orbit metal Cu, these alloys show huge SHEs
compared to the single element alone [85, 86]. Especially, the SH angle of CuBi is
−24% [86]. This is much higher than those of 4d and 5d transition metals. The origin
of the large SHE is different from the SHE in transition metals. We will describe the
mechanism of the SHE in the next chapter.
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3.2.1 Spin Hall effect in magnetic materials

It has been commonly believed that the SHE and its inverse occur only in non-
magnetic material with strong SOI. But recently, these effects even occur in magnetic
materials. In this subsection we introduce some examples of spin transport measure-
ments in magnetic materials.
In 2013, Miao et al. reported the ISHE of Py by using the spin Seebeck effect [88]. The

device was composed of a thin Py film on a polycrystalline Y3Fe5O12 (YIG) substrate
(Fig. 3.12(a)). They applied a thermal gradient perpendicular to the YIG substrate
and detected the transverse voltage at the two ends of the of Py film.

Figure 3.12: The first demonstration of ISHE in Py reported by Miao et al. [88]. (a)
The schematic image of the device. (b) The spin Seebeck effect of Py/YIG device,
Py/MgO/YIG and Py/surface-etched YIG, respectively.

The measured voltage is shown in Fig. 3.12(b). They estimated the SH angle αH

of Py is about ∼ 0.5%. They claimed that this observation paved the way to exploit
ferromagnetic metals as superior pure spin current detectors. The ISHE was even ob-
served in CoFeB [89] and Co [90].

Tian et al. reported the relation between the SHE and the magnetization orientation
of ferromagnets [90]. They fabricated Co/Cu/YIG devices and controlled the magneti-
zation directions of Co and YIG by applying a magnetic field. By using the spin Seebeck
effect, the ISHE of Co was evaluated. They found that the ISHE of Co is independent of
the magnetization direction of Co. The result indicates that the SHE in ferromagnets
are uniquely determined by its band structure independent of the its magnetization
direction which is known as the intrinsic mechanism of the AHE [64]. On the other
hand, Das et al. studied the relation between the ISHE and the magnetization direction
of Py [91]. They discovered the magnetization-dependent SHE (Anomalous spin Hall
effect: ASHE) for Py. According to their report, the ASHE originates from a lower
magnetization of Py than that of Co. The ASHE was also observed in FeGd/CoFeB
bilayer devices [92]

Very recently, the magnetic spin Hall effect was also observed in Mn3Sn which is
known as one of the triangular antiferromagnetic material [93].
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3.2.2 Spin Hall effect near the magnetic transition

Just before the discovery of the ISHE in Py, Wei et al. reported the ISHE in PdNi by
using the spin absorption method [12]. PdNi is known as a weak ferromagnet and its TC

can be controlled by the Ni concentration. They prepared the Pd100−xNix (x = 7, 8, and
9) alloys by implanting Ni ions into Pd. TC was determined from AHE measurements.
Far above and below TC, a standard ISHE signal was detected. However, an anomaly
in the ISHE signal appeared only in the vicinity of TC; the ISHE signal was suppressed
and enhanced below and above TC respectively, as shown in Fig. 3.13(a).

Figure 3.13: The ISHE of PdNi reported Wei et al. [12]. (a) The ISHE signals of Pd92Ni8
at T = 10, 20, 22, 30 K. (b) The anomalous component ∆RISHE for Pd100−xNix as
a function of the reduced temperature (T − TC)/TC. The black square, red circle and
blue triangle indicate the ∆RISHE for x = 7, x = 8 and x = 9, respectively. The solid
line shows the uniform second-order nonlinear susceptibility χ2.

To focus on the anomaly near TC, they subtracted the normal ISHE component and
plotted only the anomaly part as a function of the reduced temperature (T − TC)/TC

(Fig. 3.13(b)). A universal curve (see the solid curve in Fig. 3.13(b)) independent of
the Ni concentration has been observed. This behavior can be explained qualitatively
by higher-order magnetic susceptibility. In 1962, Kondo calculated the AHE in a fer-
romagnet including the second perturbation of the s-d Hamiltonian and revealed that
the anomaly of ρH in the AHE appears from the third-order magnetic fluctuation of
localized moments χ1 ∼

∑
⟨(M − ⟨M⟩)3⟩ [94]. In the case of the AHE, up-spin and

down-spin conduction electrons are scattered to opposite directions and the anomaly
of ρH is proportional to the difference of scattering amplitudes between up-spin and
down-spin electrons, that is, χ1. On the other hand, in the ISHE, both up-spin and
down-spin electrons are scattered to the same side. Thus, the obtained RISHE is propor-
tional to the sum of scattering amplitudes between up-spin and down-spin electrons,
that is, χ2 = χ2 ∼

∑
⟨(M − ⟨M⟩)4⟩ [12, 95].
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Followed by the result that the SHE reflects the nonlinear magnetic susceptibil-
ity, Niimi et al. measured the SHE in ternary alloy spin glasses: Cu99.5−xMnxBi0.5(x =
0.5, 1.0, and 1.5) by means of the spin absorption method in the lateral spin valve struc-
ture (see Fig 3.14) [13]. According to the previous result on the SHE in ferromagnetic
material [12], an anomaly in the SHE can be expected at the spin glass temperature Tf

because χ2 diverges at Tf .

Figure 3.14: DSHE and ISHE in Cu98Mn1.5Bi0.5 [13].

However, the expected anomaly was not observed at Tf estimated from the magneti-
zation measurement of the thin film as shown in Fig. 3.14. Instead, the SHE in ternary
alloys starts to decrease at about 4 times higher temperature than Tf and continues
to decrease even below Tf . This behavior is qualitatively different from the previous
SHE in magnetic materials. The generated current IC via the SHE can be expressed
as I⃗C ∝ I⃗S × s⃗ where s⃗ is the spin polarization of conduction electrons. Therefore, the
decrease of ISHE indicates the reduction of I⃗S or the reduction of s⃗. According to their
results of the spin absorption rate, which allows to evaluate the absolute value of I⃗S
quantitatively, |I⃗S| does not strongly depend on temperature. Thus, the origin of the
reduction of SHE is due to the reduction of the spin polarization. In order to understand
the reduction of ISHE theoretically, they performed a numerical calculation based on
an extended Kubo-Toyabe model [96] and quantitatively reproduced the experimental
results. However, the relation between T ∗ at which the SHE starts to decrease and Tf

has not been elucidated yet.

43



3.2 Spin Hall effect 3 Spintronics

The ISHE was also measured in an antiferromagnetic material IrMn near the mag-
netic transition temperature. Frangou et al. performed the spin pumping measure-
ment around the magnetic transition temperature of IrMn [97]. They fabricated the
NiFe/Cu/IrMn trilayer device (inset of Fig. 3.15(a)), and estimated the magnetic damp-
ing factor of NiFe as a function of temperature with various IrMn thicknesses (Fig. 3.15(b)).

Figure 3.15: Spin pumping in NiFe/Cu/IrMn trilayer devices with various IrMn thick-
nesses [97]. (a) Typical differential absorption spectrum at the resonance field. The
inset is a diagram of the spin pumping experiment. (b) Temperature dependence of the
effective dumping factor αp. (c) Thickness dependence of the critical temperature of
IrMn. The red line shows a fitting based on a formula shown by Zhang et al. [98] and
Cv is taken from a paper by Petti et al. [99]. The inset is a wider scale of the critical
temperatures as a function of IrMn thickness.

The effective dumping factor (αp(T ) = α(T ) − α0(T )) has a peak at low temper-
atures (Tcrit). With decreasing the thickness of the IrMn layer, the peak amplitude
becomes larger and the width becomes narrower. According to a recent theory, the
peak height δαp (see the definition in Fig. 3.15(b)) is proportional to the interfacial
spin conductance which depends on the dynamic transverse spin susceptibility [100].
Therefore, the peak of δαp indicates that the dynamic spin susceptibility of IrMn has
a peak at low temperatures. Figure 3.15(c) shows that Tcrit of the IrMn layer deduced
from Fig. 3.15(b) has a linear relation to the thickness. This behavior is consistent with
theoretical calculations where the finite size effect of Néel temperature is taken into
account [98]. However, it has been an open question whether Tcrit is equivalent to TN.
Similar results were also observed in YIG/NiO/CoO/Pt trilayers [101]. These results
indicate that the spin transport measurements can be used for the further investiga-
tion of nontrivial magnetic orders, such as antiferromagnetism, with no net magnetic
moment.
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3.3 Theory of anomalous Hall effect

It is widely recognized that the SHE and the AHE share the same origin. Since
the AHE has a much longer history and is well-studied, we start with the theoretical
descriptions of the AHE.

The Hall effect is the transverse voltage generation by the electric field under a
finite magnetic field. In such a situation, the Hall current is generated due to the
Laurentz force, and the Hall conductivity is represented as σxy = jCy /Ex where jCy is a
transverse current and Ex is an applied electric field. Since the conductivity tensor σ
and resistivity tensor ρ are connected with their inverse matrices, the following relation
can be derived:

ρxx =
σxx

σ2
xx + σ2

xy

, ρyx =
σxy

σ2
xx + σ2

xy

. (3.2)

The AHE is one of the most fundamental and important electrical transport proper-
ties in magnetic materials. The first report of the AHE is 1880 [63]. Further systematic
examinations of the AHE were performed by Kundt. He measured Hall resistance in
Fe, Co and Ni and found that the saturation magnetization was roughly proportional
to the magnetization Mz [102]. Pugh has proposed the following relationship:

ρyx = R0Hz +RsMz, (3.3)

where ρyx is the Hall resistance, Hz is the external field, and Mz is the magnetization
[103]. The first term of the right side is the ordinary Hall effect which is inversely
proportional to the carrier density. The second term is the AHE which is proportional
to the spontaneous magnetization of magnetic materials. There are many researches
about the origin of the AHE. In the following, we discuss an intrinsic mechanism and
an extrinsic mechanism [104].

3.3.1 Intrinsic mechanism

The first argument of anomalous Hall (AH) coefficient Rs in Eq. (3.3) was reported
by Karplus and Luttinger (KL) [64]. In a ferromagnetic material, conduction electrons
are coupled to the magnetization through a SOI. When an external electric field E is
applied to the material, the whole Hamiltonian HT can be written as follows:

HT = H0 +HSOI +HE. (3.4)

The first term is H0 =
p2

2m
+ V (r), where p is the momentum of the electron, m is the

mass of the electron, and V (r) is a periodic potential energy of crystal. The second
term is the SOI term and HSOI = [σ×∇V (r)] · p

4m2c2
where c is the speed of light. The

third term is the perturbation term under the electrical field and HE = −E · r where
r is the position of the electron. KL computed the effect of the spin-orbit coupling
(SOC) on the transverse conductivity of material. They showed that when an external
electrical field is applied to a ferromagnetic material, electrons obtain an additional
contribution to the group velocity. This KL’s anomalous velocity perpendicular to the
electrical field could explain the Hall voltage.
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The longitudinal electrical conductivity and ordinary Hall conductivity can be char-
acterized by an electrical relaxation time τ because electrons in each band are accel-
erated by an applied electrical field. On the other hand, the KL intrinsic mechanism
originates from interband scatterings. Thus, the AH conductivity does not depend on
τ but on the band energy difference. This indicates that the KL AH conductivity is
uniquely determined by an intrinsic value independent of crystal disorder and impu-
rities. In other words, it is possible to determine the AH conductivity by the band
structure of material through the first principle calculation.

However, the KL’s theory had not been attracted for a long time because of its in-
tuitive difficulty. The perturbation term of σxy in terms of the SOI energy ESO ∼ ξM ,
where ξ is the SOC and M is the magnetization, is usually much smaller than the band-
width. Therefore, it had been thought that KL theory cannot capture topological nature
involved in the intrinsic AHE. However, recent reports revealed that the KL’s general
expression for the intrinsic band contribution actually corresponds to the topological
properties of its band structure, i.e., Thouless-Kohmoto-Nightingale-den Nijs (TKNN)
formula [105], and showed that each band contains a finite Chern number [106,107].

Berry curvature in anomalous Hall effect

Recently, the intrinsic mechanism has attracted renewed interest from the viewpoint
of Berry curvature. Before discussing the relation between the intrinsic mechanism
in the AHE and topological nature, we mention the topological property in the Hall
effect. The quantum Hall effect is the first trigger for introducing topological nature
into the Hall effect. The quantum Hall effect was first discovered using semiconductor
heterostructure devices, where the two-dimensional electron gas is formed, under a
strong magnetic field [108]. In a perfect crystal, the Hall conductivity can be written
as

σTKNN
ij =

(
e2

h

)
NCh (3.5)

NCh =
1

2π

∫
d2k[∇k × a(k)]z, (3.6)

where NCh is called the Chern number and a(k) = i⟨n,k|∇k|n,k⟩ is the Berry phase
connection of the occupied band. The sum of NCh over the occupied bands determines
the integer ν for the quantization of the Hall conductivity σxy = νe2/h. It is noted
that the quantized Hall conductivity depends not on impurities in materials but on
the topological feature of a band structure. The intrinsic contribution to the Hall
conductivity depends only on the perfect crystalline band structure. Therefore, it can
be calculated directly from the simple Kubo formula, given the eigenstates |n,k⟩ and
eigenvalues ϵn(k) of the Bloch Hamiltonian H0 in Eq. (3.4),

σAH−int
ij = e2ℏ

∑
n̸=n′

∫
dk

(2π)d
[f (ϵn(k))− f (ϵn′(k))]

× Im
⟨n,k|vi(k)|n′,k⟩⟨n′,k|vi(k)|n,k⟩

[ϵn(k)− ϵn′(k)]2
.

(3.7)
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The velocity operator v(k) is defined by using the k-dependent Hamiltonian H for the
periodic part of the Bloch functions:

v(k) =
1

iℏ
[r, H(k)] =

1

ℏ
∇kH(k). (3.8)

What makes this contribution quite unique is that it is directly linked to the topological
properties of the Bloch states like the quantum Hall effect. It is proportional to the
integration over the Fermi sea of the Berry curvature of each occupied band or equiva-
lently to the integral of the Berry phases over cuts of the Fermi-surface segments. By
using the above expression, one obtains:

⟨n,k|∇k|n′,k⟩ = ⟨n,k|∇kH(k)|n′,k⟩
ϵn′(k)− ϵn(k)

. (3.9)

Equation (3.7) can be represented as

σAH−int
ij = −ϵijl

e2

ℏ
∑
n

∫
dk

(2π)d
f(ϵn(k))b

l
n(k), (3.10)

where ϵijl is the antisymmetric tensor and bn(k) = ∇ × an(k) is the Berry curvature
for the |n,k⟩ state. This result corresponds to the TKNN formula given in Eqs. (3.5)
and (3.6).
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3.3.2 Extrinsic mechanism

As mentioned in the previous subsection, the intrinsic mechanism proposed by KL
had been forgotten for a while. On the other hand, to explain the AHE in ferromagnets,
some extrinsic mechanisms due to impurity scattering processes were proposed in the
middle of the 20th century. Here we review the extrinsic mechanisms in the AHE.

Skew scattering mechanism

Contrary to the intrinsic mechanism proposed by KL, Smit considered the effects of
impurities and phonons on the AHE [109]. Within the framework of the linear response
theory, the steady-state current is balanced by the acceleration of electrons due to the
electric field E and the relaxation of momentum due to scattering by impurities and
phonons. Smit pointed out that there is no argument in the KL theory for maintaining
this equilibrium, and showed the disappearance of the KL term by the following proce-
dure [109].

The acceleration k̇ ≡ dk/dt should be averaged and disappear in the steady state
because the force from the electrical field is canceled by that from the impurity poten-
tial. In addition, this k̇ is proportional to an anomalous velocity va, which was thought
to be negligibly small. Therefore, there should be no AHE according to the KL theory.
On the other hand, Smit argued that the skew scattering mechanism was responsible
for the AHE. “Skew scattering” means that conduction electrons are scattered by the
potential of impurities in the system and bent to the opposite transverse direction, de-
pending on the spin direction. The matrix element of the impurity scattering potential
used in the skew scattering mechanism can be written as follows:

⟨k′s′|V |ks⟩ = Ṽk,k′

(
δs,s′ +

iℏ2

4m2c2
(⟨s′|σ|s⟩ × k′) · k

)
. (3.11)

The microscopic equilibrium condition is that a transition probability Wn→m from n-
th state to m-th state is equal to the inverse transition Wm→n. This equilibrium is
guaranteed by the Fermi’s golden rule:

Wn→m =
2π

ℏ
|⟨n|V |m⟩|2δ(En − Em), (3.12)

where V is a perturbation including the transition n to m. However, such a microscopic
equilibrium state is not so universal. For example, in the calculation within the second-
order Born approximation using the third-order term of V , the equilibrium is broken.
Considering a simple model in which electrons are scattered once at an impurity site, a
skew scattering can be described by the asymmetric part of the transition probability:

W ′
kk

A
= −τA

−1k × k′ ·Ms, (3.13)

τA is a relaxation time of the asymmetric part. When such an asymmetric scatter-
ing process is included, the scattering probability Wk→k′ takes a different value from
Wk′→k. The electron scattering from impurities produces a momentum whose direction
is perpendicular to the incident momentum k and the magnetization M . This is the
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origin of the transverse current proportional to the longitudinal current induced by the
electric field E. Therefore, the Hall conductivity σH is proportional to the longitudinal
conductivity σ and thus the elastic scattering time τ . Furthermore, by assuming that
σH ≪ σ, it turns out that the Hall resistivity ρH is also proportional to the resistivity ρ.
This extrinsic mechanism described fairly well the experimental result of Hall effect in
a diluted magnetic alloy. Diluted magnetic alloys can be produced by dissolving small
amounts (≈ several ppm) of magnetic impurities such as Fe, Mn, and Cr in a host metal
such as Au and Cu. In diluted magnetic alloys, magnetic impurities have an isolated
local moment in the temperature range higher than the Kondo temperature TK. Thus,
the magnetic susceptibility simply follows the Curie law. Hurd et al. measured the
magnetic field dependence of Hall resistivity ρH in the temperature range higher than
TK [110]. The Hall coefficient RH is represented as:

RH = R0 +
A

T
, (3.14)

where R0 is the ordinary Hall coefficient and A is a constant. The second term of the
right-hand indicates the Curie law χ(T ) ∝ 1/T in the magnetic susceptibility of the
localized moment. After the Hund’s work, the magnetic impurity concentration depen-
dence was investigated (see Fig. 3.16) [110–115]. It turned out that that ρH strongly
depends on the concentration of magnetic impurities. These experiments suggest that
the Hall conductivity of diluted magnetic alloys can be well-described by the skew scat-
tering theory. Thus, the skew scattering mechanism has been recognized as a typical
theory for the AHE [104].
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Figure 3.16: Initial Hall coefficient (left axis) and magnetic susceptibility (right axis)
as a function of T−1 reported by Tholence and Tournier [114].
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Hall conductivity in CuMnX dilute alloy

The Hall conductivity of diluted magnetic alloy was studied in detail by Fert et al. in
1981 [115]. They fabricated Cu-host alloys with several ppm Mn and transition metal
(X). Here, the Mn impurity works as a spin polarizer to produce a spin polarized current
and the X impurity works as a spin scatterer due to its strong spin-orbit interaction.
In the CuMnX ternary alloys, as described in the skew scattering mechanism, the Hall
resistance RH behaves as shown in Eq. (3.14). The origin of this Hall effect is that
a spin polarized current produced at the Mn site is scattered at the X site and the
scattering angle depends on the direction of spin. Fert et al. further investigated the
relation among the anomalous term A, and the species and concentrations of X (see
Fig. 3.17).

Figure 3.17: Anomalous term of Hall effect in CuMnX reported by Fert et al. [115].
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They found that the amplitude of A depends on the species of X, and its sign is
changed in case of X = Lu. Here, we consider the two-current model where up-spin
(σ = +) and down-spin (σ = −) electrons have different current densities, i.e., j+ and
j− [13]. The electric field E can be written as follows:(

Eσ
x

Eσ
y

)
=

(
ρxx −ρyx
ρyx ρyy

)(
jx
jy

)
, (3.15)

where ρ is the resistivity and j is the current density. Since there is no current flow in
the y direction, j+y + j−y = 0. By combining with other two conditions, E+

x = E−
x = Ex

and E+
y = E−

y = Ey, one obtains

ρAHE
yx ≡ Ey

jx
+ + jx

− =

(
ρ−xx

ρ+xx + ρ−xx

)2

ρ+yx +

(
ρ+xx

ρ+xx + ρ−xx

)2

ρ−yx. (3.16)

When the concentration of Mn is small enough to ignore the interaction between the Mn
spins, the contribution of up-spin and down-spin is equivalent and ρ+yx = −ρ−yx ≡ ρyx.
By substituting this condition into Eq. (3.16), the following expression can be obtained:

ρAHE
yx =

ρ−xx − ρ+xx
ρ+xx + ρ−xx

ρ+yx = pρyx (3.17)

where p is the spin polarization due to the Mn impurities. To obtain the Hall con-
ductivity, we calculated a scattering process by using Born approximation. The s-d
Hamiltonian can be written as

H = (VMn − Jsdσ · S)
Mn∑
i

δ(r − r′), (3.18)

where VMn is the Mn impurity potential, Jsd is the s-d interaction, and S and ri are the
Mn spin and its position, respectively. In this case, the matrix element can be expressed
as:

⟨k, σ|H|k′, σ′⟩ = VMn

(
δσ,σ′ − Jsd

VMn

σσ,σ′ · S
) Mn∑

i

ei(k
′−k)·ri . (3.19)

When the Mn concentration is small enough and Jsd/VMn ≪ 1, the resistivity can be
written as follows:

ρ±xx ≈ ρ∗Mn

[
1∓ 2

Jsd
VMn

⟨Sz⟩
]
. (3.20)

By adding the resistivity induced by the nonmagnetic impurity X, the total resistivity
can be written as

ρ±xx ≈ ρ∗Mn

[
1∓ 2

Jsd
VMn

⟨Sz⟩
]
+ ρ∗X, (3.21)
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where ρ∗Mn and ρ∗X are not actual resistivities and we have to convert them by using

ρ∗xx = ρ+xxρ
−
xx

(ρ+xx+ρ−xx)
[118]. By substituting them into Eq. (3.21), one obtains:

pAHE
yx =

[
2

(
ρMn

ρMn + ρX

)
Jsd
VMn

⟨Sz⟩
]
ρyx. (3.22)

When µB ≪ kBT , ⟨Sz⟩ = qµBS(S+1)H
3kBT

(g: g-factor, µB: Bohr magnetron, and S: the

magnitude of the Mn spin) [115], ρAHE
yx is proportional to 1/T , which corresponds to

Eq. (3.14). By comparing Eq. (3.22) with Eq. (3.17), p can also be estimated by using
the relation Jsd/VMn = 0.133 [115]. Furthermore, ρyx corresponds to the SH resistivity
due to the skew scattering. In 1981, the SHE was not established, but in fact the SH
resistivity was already measured in the diluted alloy systems. This has been confirmed
by Niimi et al. recently [85].

Side jump mechanism

The side jump mechanism is one of the extrinsic mechanisms which is different
from the skew scattering, as detailed below [116,117]. Smit discovered this effect when
investigating the skew scattering mechanism, but he regarded it as a relatively small
effect. Berger first provided the physical meaning to the side jump mechanism [117]. In
the skew scattering mechanism, the trajectory of electron wave packet is bent due to the
impurity potential with strong SOI and the bent angle depends on the spin direction as
depicted in Fig. 3.18(a). In the side jump mechanism, on the other hand, the trajectory
of electron wave pocket splits into two transverse directions at the impurity center, as
shown in Fig. 3.18(b). The skew scattering is an inelastic process. In other words,
the momentum is not conserved in the scattering process: k ̸= k′. On the other hand,
the side jump is an elastic process where k = k′ is kept in the scattering process.
Furthermore, the Hall conductivity obtained by this mechanism does not depend on
the elastic scattering time τ unlike the skew scattering mechanism. Since there are
some similarities to the intrinsic mechanism, it is difficult to experimentally distinguish
between these two mechanisms, and that is the reason why the intrinsic mechanism has
not been recognized for a long time.

Figure 3.18: Schematic images of (a) the skew scattering mechanism and (b) the side
jump mechanism.

53



3.3 Theory of anomalous Hall effect 3 Spintronics

The mechanisms of the AHE can be categorized into three contributions: the in-
trinsic mechanism, the extrinsic skew scattering mechanism and the extrinsic side jump
mechanism. Using the resistivity language, the AHE is formulated as follows:

ρxy
AH = ρxy

AH−int + ρxy
AH−skew + ρxy

AH−sj, (3.23)

where ρxy
AH−int ∝ ρ2 is the intrinsic component which can be obtained for a bulk

crystal using the first principle calculations, ρxy
AH−skew ∝ ρ is the skew scattering

component coming from an inelastic scattering due to impurities with strong SOI.
ρxy

AH−sj ∝ ρ2 is the side jump mechanism, coming from an elastic impurity scattering.
The longitudinal resistivity dependence of ρAHE

xy is quite similar for the intrinsic and side-
jump contributions, but we note that for the extrinsic mechanisms, ρAHE

yx depends on the
residual resistivity ρ0, instead of the total resistivity ρ. In other words, ρxy

AH−skew ∝ ρ0
and ρxy

AH−sj ∝ ρ20 [119].

3.3.3 Scaling relation

As mentioned in the previous section, the AHE can be distinguished into the intrinsic
and extrinsic components. The key factor to characterize the AHE is the number of
impurities and the longitudinal resistivity dependency. Onoda, Sugimoto and Nagaosa
investigated the effect of impurities on the AHE and found the crossover region between
the intrinsic and extrinsic mechanisms [120]. They performed numerical calculations of
σxy based on the Keldysh formalism using the self-consistent T -matrix approximation.
The results of theoretical curves and experimental data are shown in Fig. (3.19). In
particular, there is a crossover from the predominant skew-scattering region, named
“superclean limit” (σxy ∝ σxx), to the intrinsic-dominated metallic region (σxy ∼const),
named “moderately dirty metals”. The calculations also suggest another crossover to
a regime, which is referred to as the incoherent regime [121], where σxy decays with
the disorder following the scaling relation σxy ∝ σ1.6

xx . However, the physical meaning
of this scaling is still controversial.

This scaling relation is universal even in the dirty limit, but some localization effects
such as the Anderson localization and the weak localization are not considered in the
above scaling law. If there are the localization effects, electrons can pick up additional
Berry curvatures and thus the scaling does not hold.
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Figure 3.19: The scaling relation between σxy and σxx. Both experimental and theo-
retical results are superimposed on the same graph [121].
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3.3.4 Relation between anomalous Hall effect and spin Hall
effect

As mentioned in the previous section, the AHE originates from three distinct micro-
scopic mechanisms: the skew scattering, the side jump, and the intrinsic mechanisms.
The SHE can also be explained by these three mechanisms. However, the difference
between the SHE and the AHE is that a pure spin current is not a conserved quan-
tity, unlike the case of charge current. Therefore, in order to formulate the SHE, it is
necessary to introduce a decoherence of the pure spin current [5].

For the intrinsic mechanism, a qualitative interpretation of the difference between
the AHE and the SHE in a ferromagnet was reported by Zhang et al. [122]. They
considered a double-exchange term which described itinerant s electrons interacting
with local d magnetic moments. In the absence of SOC, the spins can be rotated
independently of the lattice because the symmetry of the magnetic systems is higher
than that contained in the magnetic space groups. In this case, the Hamiltonian is
written as:

H = t
∑
⟨ij⟩α

c†iαciα − J
∑
iαβ

(σ · ni)αβc
†
iαciβ, (3.24)

where α and β express an up-spin and a down-spin, respectively. The first term is
the nearest neighbor hopping term with ⟨ij⟩ denoting electron numbers on nearest
neighbor lattice sites. In the second term, J is the Hund’s coupling strength between
the conduction electron and the spin moment, σ is the vector of Pauli matrices, and
ni is the magnetic moment on site i. Here a spin current operator Ĵγ

α = 1
2
{v̂α, ŝγ} is

introduced to take into account the decoherency. v̂α and ŝγ are the velocity operator
and the spin operator, respectively. Thus, the SH conductivity σγ

αβ and the Berry
curvature bγn,αβ(k) can be calculated as:

σγ
αβ =

e

ℏ
∑
n

∫
BZ

d3k

(2π)3
fn(k)b

γ
n,αβ(k), (3.25)

bγn,αβ(k) = 2iℏ2
∑
m̸=n

⟨nk|Ĵγ
α |mk⟩⟨mk|v̂β|nk⟩
(Enk − Emk)2

, (3.26)

where n and m are band indices, |nk⟩ and Enk denote the Bloch wave functions and
eigenvalues, v̂ is the velocity operator, and fn(k) is the temperature dependent Fermi-
Dirac distribution. The AHE’s Berry curvature bAHE(k) can be calculated by replacing
the spin current operator with the velocity operator. In the following, we explain
whether the AHE and the SHE become zero or remain finite, based on Fig. 3.20.
(i) AHE without SOC

In the absence of SOC, the time reversal symmetry of the system is maintained,
and v̂αβ becomes −v̂†αβ for the time reversal operation T . Thus, the Berry curvature for

the AHE becomes bAHE(k) = −bAHE(−k) and σγ
αβ = 0. In a magnetic material without

SOC, the time reversal symmetry is broken be its magnetic order, but the combination
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of time reversal symmetry and spin rotation symmetry (S) is maintained. The AHE
does not occur in collinear magnetic materials and even in a coplanar system because
the coplanar configuration has a TS symmetry. On the other hand, in a non-coplanar
magnetic material, the TS symmetry is broken and the AHE appears.
(ii) SHE without SOC

In the case of the SHE, it is necessary to consider the time reversal symmetry of
Ĵγ
α . When there is no SOC, not only v̂αβ but also Ĵγ

α has the time reversal symmetry.
For collinear magnetic materials, the SHE does not take place because an extra S
symmetry exists along the z direction (see Fig. 3.20), but it appears in coplanar and non-
coplanar magnetic materials even without the SOC [124,125] because the TS symmetry
is naturally broken and a finite Berry curvature remains.
(iii) AHE and SHE with SOC

In case of a finite SOC, we must consider the symmetry of the spin operator in
Ĵγ
α . If S is a rotation around the z axis, the system has a TS symmetry for the xy

plane, but the symmetry is broken along the z direction because of the SOC, and thus
a Berry curvature is kept finite. Therefore, the SHE appears both in coplanar and
non-coplanar magnetic configurations. This is also true for the AHE: the AHE can
exist in magnetic systems which are not symmetric under time reversal combined with
translational reversal (e.g., conventional collinear antiferromagnet).

Figure 3.20: The AHE and the SHE in collinear ferromagnet, collinear antiferromagnet,
coplanar, and non-coplanar magnetic lattices with and without SOC [122]. ◦ and ×
indicate the existence and the absence of the AHE/SHE, respectively.

In the case of the extrinsic mechanism, the results of the semi-classical Boltzmann
equation with the decoherence of pure spin current explain fairly well the scaling relation
of the SHE [126]: ρSH = aρ + bρ2 where the first term is the contribution of the
skew scattering mechanism and the second term is that of the side jump mechanism.
The scaling behavior in the SHE was experimentally confirmed by Segasta et al. [83].
They investigated the impurity concentration dependence of the spin Hall angle of Pt,
and experimentally observed the crossover from the moderately dirty regime to the
superclean regime. This fact guarantees the similarity between the SHE and the AHE.
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3.4 One-dimensional Spin diffusion model

In this section, we will explain the spin injection and detection with NLSV device.
As already mentioned before, the spin current is not a conserved quantity. Thus, to
treat the spin current quantitatively, some well-investigated structure is needed and the
NLSV device is suitable for the quantification [127].

3.4.1 Nonlocal spin valve

The NLSV device based on the lateral spin valve structure consists of two ferromag-
netic wires and a nonmagnetic wire, as shown in Fig. 3.21(a). The non-magnetic wire
N is connected with a ferromagnetic injector F1 and a ferromagnetic detector F2. In
order to formulate spin-dependent transport in the NLSV device, we define the origin
at the junction between F1 and N, and take the x- and y-axes along the N and F1
wires, respectively. The z-axis is perpendicular to the x-y plane. Figure 3.21(b) shows
the three-dimensional image of a NLSV device. When a charge current is injected from
F1 to N, the spin accumulation is generated between F1 and N. This spin accumulation
results in a pure spin current only the right side of the N strip. Figure 3.21(c) shows the
electrochemical potential in the N channel. For 0 < x < L, j↑N flows the +x direction
and j↓N flows along the −x direction. As a result, a pure spin current jS ≡ j↑ − j↓

flows along the +x direction. The dimension (thickness tF and width wF) of F1 and F2
is the same and the distance between F1 and F2 is L. In general, the electric charge
follows the Ohm’s law, i.e., jσ = σσE where jσ and σσ are the current density and the
electrical conductivity for spin σ, respectively, and E is the electric field. In addition
to the Ohm’s law, there is an additional term, i.e., a drift current which is expressed
as eDσ∇δnσ. δnσ is a deviation from the equilibrium state of charge density and Dσ is
the diffusion constant. Thus, the total current is written as jσ = σσE − eDσ∇δnσ.
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Figure 3.21: Schematic image of the NLSV device. (a) Top view, (b) the 3D illustration,
and (c) the electrochemical potential distribution in the N channel. The up-spin electron
flows along the +x direction, while the down-spin one does along −x direction. As a
result, there is no charge flow but the pure spin current j↑N − j↓N flows in the region of
x > 0.

Here we introduce an electrochemical potential µσ = ϵσ + eϕ. By using the two
equations, i.e., δnσ = Nσδϵσ and σσ = e2NσDσ (Nσ: the density of state for spin σ
and δϵσ: an energy deviation from the Fermi energy), the total current density jσ can
be represented as jσ = −(σσ

e
∇µσ). Thus, the continuous equations for charge and spin

currents in a steady state can be written as:

∇ · (j↑ + j↓) = 0 (3.27)

∇ · (j↑ − j↓) = −
eδn↑

τ↑↓
+

eδn↓

τ↓↑
(3.28)

where τσσ′ is the spin scattering time from σ to σ′. By using Eqs. (3.27) and (3.28) as

well as detailed balancing
N↑
τ↑↓

=
N↓
τ↓↑

, the following differential equations can be obtained:

∇2(σ↑µ↑ + σ↓µ↓) = 0 (3.29)
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∇2(µ↑ − µ↓) = λ−2(µ↑ − µ↓) (3.30)

where the SDL λ is derived from λ =
√
Dτsf , τsf

−1 = 1
2
(τ↑↓

−1 + τ↓↑
−1), and D−1 =

N↑D↓
−1+N↓D↑

−1

N↑+N↓
.

Figure 3.22: 5 different segments to calculate the electrochemical potential using the
1D spin diffusion model.

To calculate the electrochemical potentials and the current densities for up-spin and
down-spin using Eqs. (3.29) and (3.30), we divide the NLSV device into 5 parts as
shown in Fig. 3.22. By considering the boundary conditions at all the junctions, the
spin accumulation between F2 and N can be obtained as follows: The spin accumulation
is represented as:

Rs ≡
V2

I
=

2pF
2RNe

− L
λN

(RN

RF
+ 2)2 − (RN

RF
)2e

− 2L
λN

(3.31)

where pF is the spin polarization and RX (X = N, F) is the spin resistance defined as
RX ≡ λX

σXAX
and AX is the cross-section area. In an actual device, we measure the spin

signal, that is ∆R ≡ 2V2

I
as shown in Fig. 3.23

Figure 3.23: Spin signal ∆R expected in the NLSV device. The arrows in the figure
indicate the magnetization directions of F1 and F2.
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3.4.2 Nonlocal spin valve with a middle wire

In order to estimate the SDL and the SH angle of strong spin orbit material, the
target strong SO material is placed between the F1 and F2 wires (see Fig. 3.24). As
already discussed in the previous subsection, the pure spin current generated at the
F1/N interface is absorbed perpendicularly to the M wire because of its stronger spin
orbit interaction. By comparing NLSV signals with and without the M wire, we can
estimate how much of the pure spin currents generated at the F1/N interface is absorbed
into the M wire.

Figure 3.24: The NLSV device with a middle wire.

Although we omit the detailed calculation process, the following formula can be
obtained by following the same calculation procedure as in the previous section.

∆Rs
with =

4pF
2QF

2QMRN

cosh
(

L
λN

)
− 1 + 2QM sinh

(
L
λN

)
+ 2QF{e

L
λN (1 +QF)(1 + 2QM)− 1}

(3.32)

η ≡ ∆Rs
with

∆Rs
without

=
2QM{sinh

(
L
λN

)
+ 2QFe

L
λN + 2QF

2e
L
λN }

cosh
(

L
λN

)
− 1 + 2QM sinh

(
L
λN

)
+ 2QF{e

L
λN (1 +QF)(1 + 2QM)− 1}

(3.33)

where QX =
RX

S

RN
S
(X = M,F). We note that Eq. (3.32) includes only one fitting param-

eter, i.e., λM. It means that the spin diffusion length of M, λM can be estimated by
measuring ∆Rwith

s and ∆Rwithout
s .
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3.4.3 Spin Hall measurement using Spin Absorption Method

In case of the ordinary Hall effect, the Hall angle is determined by the Ohm’s law:

E = ρj =

(
ρxx −ρyx
ρyx ρyy

)(
jx
jy

)
=

(
Ex

Ey

)
. (3.34)

Thus, the Hall angle is defined as αH ≡ Ey

Ex
= ρyx

ρxx
as an analogy of the Hall angle.

Before discussion about the SH angle obtained in the spin absorption method, let us
first consider the SH angle in the Hall cross device (Fig. 3.25).

Figure 3.25: Schematic image of a typical Hall cross device.

The Hall cross device consists of a ferromagnetic wire F and a nonmagnetic wire N.
When a charge current is injected from F to N, spin accumulation is generated between
F and N. This spin accumulation induces a pure spin current only on the right side of
the N strip. When the magnetization of F is along to the z-axis, the spin accumulation
is generated at the edges of the N wire due to the SHE in the N wire. In case of the
SHE, a transverse electrical field is Ey = −ρyxjs and EH = ρHjs where ρyx ≡ ρH (or
ρSHE). According to the 1D spin diffusion model, js and RSHE can be written as

js =
Is

wN tN
= ρH

IQFpFe
− L

λN

wNtN(2QF + 1)
(3.35)

RSHE = ρH
IQFpFe

− L
λN

tN(2QF + 1)
(3.36)

where wN is the width of N wire and tN is the thickness of N wire.
Next, we explain the ISHE in the spin absorption device. Figure 3.26(a) is the

top image of the device. It consists of an F wire, a strong spin-orbit material M wire
bridged by a N bridge. When the magnetic field is applied to along the x-axis, the
absorbed pure spin current is converted to the charge current due to the ISHE. In case
of the ISHE using the spin absorption method, the pure spin current must be treated
as an average value along the thickness direction of the M wire because js exponentially
decays (Fig. 3.26(b)).
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Figure 3.26: (a) The top view of the spin Hall device. (b) The cross-sectional image at
the interface between N and M.

The averaged spin current density js is expressed as js = 1
tM

∫ tM
0

dzjs, Thus, the

averaged spin current Is is obtained by multiplying js by the sample dimension [85]:

Is
IC

=

∫ tM
0

dzjs

tM
=

λM

tM

(1− e
− tM

λN )
2

1− e
− 2tM

λN

× Is(z = 0)

≈ λM

tM

(1− e
− tM

λN )
2

1− e
− 2tM

λN

× 2pFICQFsinh (L/2λN) +QF exp (L/2λN)

cosh (L/λN)− 1 + 2QM sinh (L/λN) + 2QFexp (L/λN)(1 +QF)(1 + 2QM)− 1
.

(3.37)

By using the relation VSHE = wNEyx, Eyx = ρSHEjs = ρSHE
Is

wNwM
, the SH angle can be

written as:

αH ≡ wM

ρM

VSHE

Is
. (3.38)

In the actual device, it is necessary to correct the shunting effect when N is connected
to the surface of the M wire (Fig. 3.27). This correction factor x was obtained from the
additional experiment and found to be x ≈ 0.36 for tM = 20 nm [85]. It is an essential
issue because this value is not negligible and also depends on the resistivities of N and
M.

Figure 3.27: Schematic image of the interface between N and M. The pink arrow indi-
cates the pure spin current, which is converted to the charge current due to the ISHE.
The black arrows indicate the charge current pass.
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Chapter 4

Purpose of this thesis

As described above, frustrated magnetic materials have attracted much attention
because of their unique magnetic states and dynamics caused by spin frustrations, and
have been studied intensively using magnetization, heat capacity, neutron scattering,
NMR, ESR, and so on. However, since those are so complex, another experimental
method is desirable to unveil the complex system.

Here we focus on spin transport measurements as detailed in Chapter 3. Especially,
it has been revealed that the SH angle is strongly affected by magnetic fluctuations near
the magnetic transition temperature of nanoscale magnets. This fact indicates that the
spin transport measurements can be a useful method to elucidate the magnetic dynam-
ics of nanoscale magnets.

In this work, we have aimed to study the magnetic dynamics of nanoscale frustrated
magnet from the viewpoint of electric and spin conductivity. For this purpose, we chose
two types of frustrated magnetic materials: ternary alloy spin glass CuMnBi and tri-
angular lattice antiferromagnet Ag2CrO2.

In spin glasses, according to the previous report of SHEs in spin-glass nanowires,
little is known about the quantitative relation between spin-glass dynamics and the
SHE. Furthermore, the physical picture of SHE in the spin-glass phase still has not
been clear yet. In order to elucidate it, we have prepared CuMnBi alloys whose Mn
concentrations are one order higher than the previous work and aimed to investigate
the quantitative relation between spin glasses and the SHE.

In triangular antiferromagnet Ag2CrO2, the PD cite should be treated as a para-
magnetic spin as detailed in Chapter 2, but there is a finite magnetic moment. This
mystery has not been solved yet because all the experiments mentioned in Chapter 2
were performed with polycrystalline samples. In this study, we have aimed to establish
a nanofabrication technique to extract a single crystal thin film from the polycrys-
talline sample and to elucidate the physical properties of Ag2CrO2 from the viewpoint
of electrical conductivity.
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Part III

Experimental results
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Chapter 5

Experimental setup

In this chapter, we explain the fabrication process of NLSV devices with a spin-glass
middle wire and show some experimental results on reference devices, i.e., NSLV devices
without the middle wire. The fabrication process is relatively complicated and there
are many notes with the fabrication procedures. Those are detailed in the following
section.

5.1 Nanofabrication method

5.1.1 Lift off method

Originally, “lithography” means a method of printing. If limited to electronic de-
vices, it is a method of fabricating patterns on various substrates and is an indispensable
technology for today’s electronics based on semiconductor integrated circuits such as
large-scale integrated circuits (LSI). In general lithography, a photosensitive organic
material (resist) is uniformly put on a substrate and irradiated with ultraviolet rays
or an electron beam. After that, the resist is denatured and treated with an appropri-
ate solvent (developer) to produce a mask (protective film) and to design the pattern.
We use different kinds of resists. For the photolithography, we use S1813G (SHIPLEY
Co. Ltd.). For the electron beam (EB) lithography, we use polymethyl-methacrylate
(PMMA, molecular weight 950A4, Microchem Co.Ltd.) or ZEP520A (ZEON Co. Ltd.).
We use the two EB resists, depending on the evaporation method: the former is used
for the EB evaporation or Joule heating evaporation, while the latter is used for the
Ar sputtering. The typical parameters for fabricating nanoscale patterns are listed in
Table 5.1.
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Table 5.1: List of some parameters for different kinds of resists.
Resist Rotational speed (rpm) Thickness Dose

S1813G 5000 1200 nm Mercury lamp 30 sec.
PMMA 3000 240 nm 860 µC/cm2

PMMA/PMMA 3000 480 nm 1000 µC/cm2

ZEP/PMMA 4000/5000 570 nm 900 µC/cm2

ZEP 4000 350 nm 220 µC/cm2

Note that while treating resists, we have to pay attention to the environment
because the rests are easy to degrade by the humidity. Photolithography is used for
large patterns with a single exposure, but is not suitable for patterns on nanometer scale.
On the other hand, EB lithography is used for highly accurate patterns with a resolution
of several 10 nm, but enormous time is required to draw a large area. Therefore, we
need to choose a proper method, depending on the situation: for instance, the former
is often used when a large area pattern is required, and the latter is often used when a
precise pattern is required. In this thesis, we use the so-called lift-off method where (1)
materials are deposited by EB evaporation, Joule heating evaporation, or Ar sputtering
on the substrate with resist, (2) only desired patterns are left on the substrate and (3)
any other unnecessary parts are removed after dipping the substrate in a proper solvent
(Fig. 5.1).
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Figure 5.1: Schematic images of lift-off process. (a) Cover a resist on a Si substrate.
(b) Exposure an electron beam (or an ultraviolet light) on the resist. (c) Remove the
denatured resist by a developer. (d) Deposit a metal film. (e) Remove the extra metal
by using a proper solvent.
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5.1.2 Evaporation methods of thin films

In this subsection, we introduce different evaporation methods, depending on the
situation.

Joule heating evaporation

The Joule heating evaporation is the easiest method to evaporate a target metal on
a high melting temperature metal boat such as tungsten or molybdenum (Fig. 5.2(a)).
The boat is heated up by passing a large current to the resistive boat (that is why
this method is called “the Joule heating”). Since the melting temperature of the target
material is much lower than that of the boat, the target material is melt and evaporated
in a vacuum chamber. There is an advantage that any contaminations from the boat to
the target are avoided. On the other hand, there are some disadvantages that (1) only
low melting materials such as Au, Ag, Cu can be handled: it is difficult to handle high
melting temperature materials such as Pt, Ta, W, (2) most of magnetic materials cannot
be deposited by this method since those make alloys with the boat, (3) alloys cannot also
be deposited by this method because the melting temperatures of composing elements
are sometimes quite different and thus it is difficult to keep the same composition ratio
as the original target.

Electron beam evaporation

The electron beam (EB) evaporation is a method to heat a target placed in a
crucible by irradiating the EB to the target (Fig. 5.2(b)). To heat the target locally,
the EB is focused on a small part of the target by applying a high voltage and a magnetic
field, while the crucible is always kept cool by flowing water from the outside of the
vacuum chamber. Contrary to the Joule heating evaporation, magnetic materials and
also high melting temperature materials can be deposited by this method. On the other
hand, even this technique, it is difficult to deposit alloys such as spin-glass materials,
keeping the same composition ratio as the original one. As a crucible material, we use
a copper or carbon hearth liner.
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Figure 5.2: Schematic images of (a) Joule heating evaporation and (b) electron beam
evaporation. The electron beam is emitted from the electron gun, bent by the magnetic
field, and hits the target to avoid the contamination of the gun.

Ar sputtering method

To deposit insulating materials and also alloys, the Ar sputtering is a quite useful
method. When an inert gas such as Ar is accelerated and bombarded to the surface
of target material at high speed, the constituent atoms and molecules are flied away in
vacuum and deposited on the substrate (Fig. 5.3(a)). Since the deposited atoms and
molecules have a higher energy than those evaporated by the Joule heating and the EB
methods, they have a stronger adhesion to the substrate. There is another advantage
that the deposited composition ratio is almost the same as the original target. On the
other hand, the purity of the deposited film is worth than that of the vapor deposition
method.
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Figure 5.3: Schematic images of the magnetron sputtering system. The magnetron
makes the plasma density increase.

5.1.3 Fabrication of nonlocal spin valve device

Our SH device is based on the LSV structure with a strong spin-orbit material in
the middle, which allows us to inject a spin current into the middle wire, as shown in
Fig. 5.4. In this section, we explain the fabrication procedure of our SH devices.

Figure 5.4: The scanning electron micrograph of a typical SH device.
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Large electrodes

1. Cut a SiO2/Si substrate into 30 mm square and clean it by a ultrasonic cleaner
with acetone for 3 minutes.

2. Clean the substrate by using ozone ashing for 3 minutes at 90 ◦C with the oxygen
flow rate of 0.5 l/min.

3. Turn on the yellow light in the experimental room to avoid the degradation of
resist.

4. Put the Si substrate on a spin coater and coat the S1813G resist at a rotation
speed of 1000 rpm for 5 seconds with a 5 second slope1, and 4000 rpm for 40
seconds.

5. Bake the substrate on a hot plate at 120 ◦C for 10 minutes to remove moisture
on the surface of the substrate.

6. Set a pattern mask on the mask aligner, and the Si substrate with the resist is
exposed to a mercury lamp for 30 seconds.

7. Develop with MF319 for 30 seconds and rinse with pure water for 30 seconds to
remove the residual developer.

8. Deposit Ti by 5 nm and Au by 100 nm using an EB evaporation.
9. Before the lift-off process, bake the substrate on a hot plate at 120 ◦C for 10 min.
10. After dipping it in acetone at 60 ◦C, the lift-off process is performed using a

dropper.

Small electrodes

1. Coat the PMMA950A4 resist at a speed of 3000 rpm for 60 seconds with a 5-
second slope.

2. Bake the substrate on a hot plate at 120 ◦C for 10 minutes.

3. Draw fine electrodes and cross marks using the EB lithography. This cross mark
is used for further pattern drawings using the EB lithography.

4. Develop the patterns with a PMMA developer (isopropyl alcohol (IPA): methyl
isobutyl ketone (MIBK) = 3: 1) for 30 seconds and rinse with IPA for 30 seconds.

5. Post-bake the substrate for 4 minutes on a hot plate at 100 ◦C to remove the
developer and rinse solution remaining on the substrate.

6. Deposit Ti by 5 nm and Au by 100 nm using an EB evaporation.

7. After dipping it in acetone at 60 ◦C, the lift-off process is performed using a
dropper.

1The slope time affects the height of the resist peak formed at the edge of the substrate. With
shorting the slope time, the height of edge peak becomes lower.
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Middle wire

The EB evaporation and Joule heating evaporation are not suitable for multi-
component alloys such as CuMnBi. We used a dc magnetron sputtering equipment for
deposition of the alloys. However, the resist may be denatured by the argon plasma
during sputtering. Therefore, one should choose a resist tolerant of Ar plasma. In this
work, we used PMMA resist, ZEP resist or ZEP/PMMA bilayer resist2.

PMMA

1. Coat the PMMA950A4 resist at a speed of 3000 rpm for 60 seconds with a 5-
second slope.

2. Bake the substrate on a hot plate at 120 ◦C for 10 minutes.

3. Draw patterns by an electron beam lithography.

4. Develop the patterns with a PMMA developer for 30 seconds and rinse with IPA
for 30 seconds.

5. Post-bake the substrate for 4 minutes on a hot plate at 100 ◦C.

ZEP

1. Coat the ZEP520A resist 4000 rpm for 60 seconds with a 5-seconds slope.

2. Place the substrate on a hot plate at room temperature and heat the hot plate
up to 180 ◦C for 6 minutes.

3. Draw patterns by an electron beam lithography.

4. Develop the patterns with n-pentyl acetate for 30 seconds and rinse with ZEP
rinse solution (IPA: 4M2P = 1: 9) for 30 seconds, and second rinse with IPA for
20 seconds.

5. Post-bake the substrate for 4 minutes on a hot plate at 140 ◦C.

ZEP/PMMA

1. Coat the PMMA950A4 resist at a speed of 5000 rpm for 60 seconds with a 5-
second slope.

2. Bake the substrate on a hot plate at 120 ◦C for 10 minutes.

3. Coat the ZEP520A resist at a speed of 4000 rpm for 60 seconds with a 5-second
slope.

2Since ZEP resist is particularly sensitive to the humidity, PMMA was used during the summer or
on a raining day. The ZEP/PMMA bilayer resist may be useful when you deposit thick (∼100 nm)
electrodes by an Ar sputtering system.
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4. Place the substrate on a hot plate at room temperature and heat the hot plate
up to 180 ◦C for 6 minutes.

5. Draw patterns by an electron beam lithography.

6. Develop with n-pentyl acetate for 30 seconds, rinse with ZEP rinse solution for
30 seconds, and second with IPA for 20 seconds.

7. Post-bake the substrate for 4 minutes on a hot plate at 140 ◦C.

Hereafter, the above resist conditions are used unless noted. After fabricating resist
patterns, deposit a multi-component alloys by Ar sputtering process. Next, we show
the procedure to deposit the alloys and the lift-off process.

1. Before set the substrate on a sample holder, pre-deposit the alloys on the sample
holder to avoid the contamination.

2. Deposit the alloy with Ar atmosphere (vacuum level is 0.70 Pa) and the sputtering
power is 50 W 3.

3. After dipping it in 1-methyl 2-pyrrolidone (1M2P) at 60 ◦C, the lift-off process is
performed using a dropper.

4. Rinse with acetone at 60 ◦C for 30 seconds to remove the 1M2P.

Especially, when we use the PMMA resist, some burrs are formed at the edges of
the patterns because of the Ar sputtering. To remove the burrs, we use an ultrasonic
cleaner with 1M2P for a few seconds.

Py wire

1. Coat the PMMA950A4 resist at a speed of 5000 rpm for 60 seconds with a 5-
second slope.

2. The fabricating pattern process is the same as the PMMA condition for middle
wire.

3. Deposit a 30 nm thick Py by using the electron beam evaporation.

4. After dipping it in acetone at 60 ◦C for 10 min, the lift-off process is performed
using a dropper.

3The deposition rate is proportional to the sputtering power.
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Cu bridge

1. Coat the PMMA950A4 resist at a speed of 3000 rpm for 60 seconds with a 5-
second slope.

2. The fabricating pattern process is the same as that for Py wire. Before the
deposition of Cu, perform an Ar milling to remove the oxidized layers. The
schematic image of the Ar milling is shown in Fig. 5.5. The Ar milling was
performed under the Ar atmosphere with the Ar flow rate of 1.0 sccm4. The
parameters of the milling process are Beam: 600 V, 12 mA, Accelerator: 400 V
and the milling time is 55 seconds.

Figure 5.5: The schematic image of the Ar milling system. The cathode and anode at
the bottom part generate an Ar plasma. The generated plasma is neutralized at the
neutralizer and bombarded to the sample.

3. Deposit a thick 100 nm Cu by using a Joule heating evaporation. During the
deposition of Cu, we use a liquid nitrogen trap to remove moisture in the chamber
using liquid nitrogen.

4. After dipping it in acetone for a night, the lift-off process is performed using a
dropper at 60 ◦C.

4Standard Cubic Centimeter per Minute
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5.1.4 Measurement setup

To perform electrical and spin transport measurements in a wide temperature
range, we use a 4He flow cryostat with an electromagnet, as shown in Fig. 5.6(a). The
prepared device is mounted on a chip carrier at the bottom of a dip stick. By pumping
the He line with a rotary pump, cold He gas flows in the cryostat and thus the device is
cooled down from room temperature to T = 1.5 K. The magnetic field can be applied
to the device in the range of ±1.2 T. The electrical measurements are performed by the
standard lock-in technique as shown in Fig. 5.6(b).

Figure 5.6: Schematic drawings of (a) our cryostat with an electromagnet and (b) the
measurement circuit for the standard lock-in method.
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5.2 Nonlocal spin valve measurements without mid-

dle wire

To characterize the SHE in a middle wire measured with the spin absorption method
in the LSV structure, we need to obtain some important parameters about ferromagnets
(F) and non-magnetic (N) wire bridge. For this purpose, we first measured NLSV
without the middle wire. As mentioned in subsection 2.3.1, spin accumulation in the
1D spin diffusion model can be written as:

Rs =
2pF

2RNe
− L

λN

(RN

RF
+ 2)2 − (RN

RF
)2e

− 2L
λN

, (5.1)

where RX (X = N, F) is a spin resistance defined as RX = λX

σXAX(1−p2X)
. AX is the area of

cross section and pX is a spin polarization of the material. When the device dimension
is fixed, parameters which determine ∆RS are the spin diffusion lengths of Py (λPy)
and Cu (λCu) and the spin polarization of Py (pF). λPy and λCu depends on the quality
of the materials and pF depends on the quality of the interface between Py and Cu5.

The inset of Fig. 5.7(a) shows the SEM image of our NLSV device. When a charge
current flows from the upper Py wire to the Cu bridge, spin accumulation is generated
at the interface between Py and Cu. The generated spin accumulation induces the
spin current in the Cu strip. When another Py detector is attached to the Cu strip, a
finite nonlocal voltage is generated and changes the sign, depending on the magnetic
configuration of the two ferromagnets.

Figure 5.7: (a) A typical spin signal at 10 K. The inset shows the SEM image of the
NLSV device. (b) Temperature dependence of ∆RS.

In Fig. 5.7(a), we show a typical spin accumulation signal (or we simply call “spin
signal”) of our device. The nonlocal voltage divided by the injection current, i.e., RS

changes the sign, depending on the parallel (P) and antiparallel (AP) states of the two

5The quality of the interface depends on its roughness or the number of impurities.
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Py wires. The switching field is 0.05 T. This field is determined by the dimension and
configuration of the Py wires. We defined ∆RS as show in Fig. 5.7(a). The temperature
dependence of ∆RS is plotted in Fig. 5.7(b). ∆RS takes a maximum at T = 40 K and
decreases with increasing the temperature. The reduction of ∆Rs at T > 40 K is due to
the spin relaxation induced by the electron-phonon scattering in the Cu wire. According
to the Elliott-Yafet mechanism [128–130], ∆RS should monotonically increase with
decreasing temperature and takes a constant value at low temperatures where there are
much less phonons. Below T = 40 K, however, ∆RS decreases again. Such a reduction
was reported several groups [131–133]. So far, some scenarios have been proposed:
oxidation [131], Kondo alloys [132], and spin reabsorption [133] at the interface between
F and N, but the origin of the reduction has not been elucidated yet. At least, our
experimental results are consistent with the previous reports.

Figure 5.8 shows ∆RMAX
S (measured at T = 40 K) as a function of the resistivity of

Py measured at T = 300 K (a) and as a function of the residual resistivity ratio (RRR)
of Cu (b).

Figure 5.8: (a) The Py resistivity dependence of ∆RS. (b) ∆RS as a function of the
RRR of Cu. The broken line is a guide for the eye.

It seems that there is no relation between ρPy and ∆RS (Fig. 5.8(a)). Although ρPy
at T = 300 K has a distribution from 22 to 62 µΩcm, the RRR value is almost constant
(∼ 1.5). On the other hand, there is a clear relation between ∆RS and the RRR of Cu
(Fig. 5.8(b)). This fact indicates that the amplitude of ∆RS strongly depends on the
number of impurities in Cu. To reduce the impurities, we used 99.9999 % Cu for the
target. In addition, during the deposition of Cu, we used a cryopump with liquid N2

to remove H2O in the vacuum chamber. As a result, we can obtain a high-quality Cu
(RRR∼ 2.56).
The quantitative analysis of the interface is difficult, but the interface can be evaluated

with the measurement setup shown in Fig. 5.9.

6In our experience, the RRR of Cu changes by a factor of 1.5 with using and without the cryopump.
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Figure 5.9: (a) The measurement setup for the estimation of the interface quality. (b)
The cross-sectional image of the green region in (a).

By flowing a charge current perpendicular to the interface and measuring the voltage
across it, we can check the interfacial resistance qualitatively (Fig. 5.9(b)). If the
interface is an Ohmic contact, the detected voltage should be negative, reflecting an
inhomogeneous current density [134]. ¿From this measurement, however, it is difficult
to determine whether the entire interface is uniformly Ohmic.

As mentioned before, we perform the Ar milling to make an Ohmic interface between
F and N. In this milling process, not only the surface of the device but also the holder
where the device is mounted are also etched. To investigate the effect of interfacial
impurities from the holder, we inserted five different materials (Al, Py, Cu, Al, Au and
stainless-steel (SUS)) in between the sample and the holder for the Ar milling process
(the inset of Fig. 5.10(a)).

In Fig. 5.10(b), we show ∆R10 K
S /∆Rmax

S for the five different insertion materials.
Apparently, ∆R10 K

S /∆Rmax
S takes a large value for Cu and Al, while it is small for Py

and SUS.
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Figure 5.10: The Ar milling process for the NLSV device. (a) The schematic image of
the sample holder and the insertion metal for the Ar milling. The gray circle is the
sample holder, the red circle is the insertion metal, the yellow broken line shows the
beam spot of Ar milling, and the blue square is the Si substrate where the device is
prepared, respectively. (b) The relation between the insertion metal and the reduction
rate ∆R10 K

S /∆Rmax
S .

Especially, ferromagnetic and strong SO materials can induce an additional spin
flip process. Therefore, those impurities at the interface would reduce the spin signal.
These facts indicate that the reduction of ∆RS at low temperatures are strongly affected
by impurities at the interface between Py and N, and the amplitude of the reduction
rate is determined by the spin-orbit interaction of the impurities. It is difficult to make
further discussion, i.e., why the reduction takes place below 40 K, from these data, but
at least, we can clarify that the impurities at the interface is important to obtain the
high-quality SH device, and we should be careful about the Ar milling process to avoid
the impurities at the interface.
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Chapter 6

Spin transport measurement in
Spin Glass

6.1 dc magnetization of CuMnBi

First of all, we performed dc magnetization measurements of CuMnBi to determine
the spin freezing temperature (Tf) of bulk and film samples. We used a commercial
type superconducting quantum interference device (SQUID) magnetometer MPMS-
7 (Quantum Design). We asked Prof. Toshifumi Taniguchi (Department of Earth
and Space Science, Graduate School of Science, Osaka University) to measure the dc
magnetization of CuMnBi.

In Fig. 6.1, we show the magnetization M of bulk Cu99.5−xMnxBi0.5 (x = 4.2, 8.2,
and 10.6). With decreasing temperature, M increases since the magnetic moment of
Mn follows a Curie law (∝ 1/T ). In the ZFC process, M starts to decrease with a cusp
structure. This cusp position (indicated by the arrows in the figure) corresponds to Tf .
We have estimated Tf of bulk Cu95.3Mn4.2Bi0.5, Cu91.3Mn8.2Bi0.5, and Cu88.9Mn10.6Bi0.5
to be 26 K, 36 K and 44 K, respectively. These values are almost the same as Tf of
CuMn binary alloys [137,138]. This fact clearly shows that the Bi impurities in CuMnBi
does not affect to the spin glass transition.
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Figure 6.1: The temperature dependence of the magnetization in bulk Cu99.5−xMnxBi0.5.
The arrows indicate the spin glass temperatures. (a) x = 4.2, (b) x = 8.2, and (c)
x = 10.6.
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The RKKY interaction, the origin of the spin glasses, is a long-range interaction
and strongly depends on the distance between magnetic impurities. Therefore, to check
the thickness (or size) effect of spin glasses, we deposited a CuMnBi thin film by using
an Ar sputtering and performed the similar dc magnetization measurement. Figure 6.2
shows a dc magnetization of Cu88.9Mn10.6Bi0.5 thin film whose thickness is 138 nm. Tf

( = 35 K) of the film is lower than that of bulk. According to the previous work about
the size effect of spin glasses [139], Tf of 100 nm film is 80 ∼ 90 % of bulk Tf . Thus, the
present Tf obtained with the 138 nm film is quantitatively consistent with the previously
reported size effect for CuMn [139].

Figure 6.2: The temperature dependence of the magnetization of a Cu88.9Mn10.6Bi0.5
thin film. The arrow indicates Tf of the thin film, which is about 0.8 times smaller than
that of bulk.
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6.2 Extraordinary Hall effect of CuMnBi

The AHEs in binary spin glass systems such as Au92Fe8 and Au92Mn8 bulk samples
have been studied in Refs. [38] and [39] where the AHE and the magnetization are
measured at the same time and both show a typical cusp structure at Tf [27]. We
have measured the AHE for Cu99.5−xMnxBi0.5. We fabricated a Hall-bar device whose
thickness is 20 nm by using the photolithography technique and the Ar sputtering, as
shown in the inset of Fig. 6.3(a).

Figure 6.3: (a) Hall resistivity (ρyx) of Cu95.3Mn4.2Bi0.5 at typical temperatures. The in-
set shows an optical microscope image of the Hal-bar device. (b) ρyx of Cu95.3Mn4.2Bi0.5
at T = 80 K. The blue and orange lines indicate the Hall slopes in the vicinity of B = 0
T and at B = 1 T, respectively.

The magnetic field dependence of Hall resistivity of Cu95.3Mn4.2Bi0.5 is shown in
Fig. 6.3. At T = 80 K, the Hall slope near B = 0 is larger than that in the high
magnetic field region Fig. 6.3(b). The origin of this behavior is related with the skew
scattering mechanism in the AHE as mentioned in Chap. 2. A carrier density calculated
from the Hall slope at B = 1 T is ∼ 8.7 × 1022 cm3 and this value is consistent with
a carrier density of Cu at room temperature (∼ 8 × 1022 cm3) [140]. By adopting the
previous method reported by Fert [115], we took the difference between the slope at
high magnetic field and the slope near the zero magnetic field region. At high magnetic
field, the influence of skew scattering was negligible. Near zero magnetic field, on the
other hand, the effect of skew scattering was dominant. The temperature dependence
of the skew scattering term (EHE) is shown in Fig. 6.4.
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Figure 6.4: The temperature dependence of a skew scattering term (EHE) in
Cu95.3Mn4.2Bi0.5. The arrow indicates the temperature at which EHE takes local mini-
mum value.

At high temperatures (≫ Tf), the EHE term is proportional to A/T where A is
a coefficient including the SH angle αH. In CuMnBi, the sign of αH is negative due
to the SOI of Bi. Therefore, the sign of EHE is consistent with the previous work on
the SHEs in CuBi [86] and CuMnBi [13]. The EHE takes a local minimum at ∼70 K
(TEHE) which is 4 times higher than Tf . The value of TEHE corresponds to T ∗ estimated
from the ISHE measurement as detailed in Sec. 6.

At low temperatures especially below T = 30 K, the sign of EHE is changed. The
origin of the positive EHE is still open question. The Fert’s theory [115] assumed that
magnetic impurities could be treated as isolated localized spins because they treated
diluted magnetic impurity systems. The Mn concentration of our system is 100 times
higher than that of Fert’s report [115]. Therefore, to understand our EHE results at
low temperatures, we need a new theory including the correlation between magnetic
impurities. To investigate the effect of Mn concentration, we measured the EHE in
Cu99.5−xMnxBi0.5 (x = 4.2 and 10.6). The temperature dependence of the EHE is
shown in Fig. 6.5.
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Figure 6.5: The temperature dependence of the EHE in Cu99.5−xMnxBi0.5 (x = 4.2 and
10.6) For comparison, the EHEs in Cu99.5−xMnxBi0.5 (x = 0.5, 1.0, and 1.5) taken from
Ref. [13] are also plotted in the same graph.

With increasing the Mn concentration, TEHE shifts to the higher temperature side.
For x = 4.2 and 10.6, the EHE takes a maximum value at low temperatures. This
temperature is very close to Tf measured in ISHE as detailed in the next section. It
implies that the EHE can also detect the magnetic fluctuation of localized moments.
However, to investigate the physical meaning of the EHE in the higher Mn concentration
region, we need a new theory with the correlation between localized moments.
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6.2.1 The surface effect of Bi impurities

Bi is known to exhibit surface and interface effects such as Edelstein effect [141]
due to its strong SOI. In order to show that various phenomena of CuMnBi measured
in this study are not interfacial effects but bulk effects, we fabricated a bilayer Hall
bar consisting of insulating Bi2O3 and spin glass Cu97Mn3 thin films. The bilayer is
continuously deposited in an ultrahigh vacuum, and the interface between Cu97Mn3 and
Bi2O3 is kept clean. In this Hall-bar device, Bi could exist only at the bottom of the
CuMn film. We measured the Hall resistance of the device. By using the same analysis
as before, the temperature dependence of the EHE is shown in Fig. 6.6.

Figure 6.6: The temperature dependence of the EHE in a Bi2O3/Cu97Mn3 bilayer
device. The yellow line shows the EHE of Cu95.3Mn4.2Bi0.5 for comparison.

The EHE signal is almost zero in the whole temperature range. Therefore, this
is a strong evidence that the measured signals do not originate from the surface or
interfacial effect but bulk effect.
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6.3 Inverse spin Hall effect in CuMnBi

In order to observe the ISHE in spin glasses below Tf , we fabricated the SH device
based on the LSV structure with a CuMnBi wire. The typical device is shown in Fig. 6.7.
The device consists of two ferromagnetic Py wires and a middle Cu99.5−xMnxBi0.5 wire,
which are bridged by a Cu stripe.

Figure 6.7: The scanning electron micrograph of a typical SH device.

By flowing an electric current from one of the Py wires (top wire) to the Cu stripe,
spin accumulation is generated at the interface between Py and Cu. A spin current
flows in the Cu stripe (downward) as a result of the diffusion process of spin accumu-
lation. When a strong SO material (in the present case, Cu99.5−xMnxBi0.5 (x = 4.2,
8.2, and 10.6) is placed underneath the Cu stripe within the SDL of Cu (∼1 µm at
low temperatures), a part of spin current is injected into Cu99.5−xMnxBi0.5 because of
its stronger spin-orbit interaction due to the Bi impurities. When the magnetization of
the Py wire is polarized along the Cu stripe, a spin-to-charge conversion is generated
along the Cu99.5−xMnxBi0.5 wire direction.

The typical ISHE resistances (detected ISHE voltage divided by the injection cur-
rent from Py to Cu) of Cu88.9Mn10.6Bi0.5 are shown in Fig. 6.8(a) When B > 0.2 T
(or < −0.2 T), RISHE is fully saturated. This saturation field corresponds to the sat-
uration field of an AMR of Py wire (Fig. 6.8(b)). At 100 K higher than Tf of bulk
Cu88.9Mn10.6Bi0.5, a clear negative ISHE signal (∆RISHE ∼ −20 µΩ) is observed. The
negative ISHE originates from the ISHE at Bi impurities in Cu. The sign of ISHE
is consistent with previous measurements in CuBi and CuMnBi [13, 86]. However, at
low temperatures, the ISHE signals significantly vanishes at 20 K. To investigate the
amplitude of ISHE, we define ∆RISHE, as shown in Fig. 6.8.
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Figure 6.8: (a) ISHE resistances (RISHE) of Cu88.9Mn10.6Bi0.5 measured at typical tem-
peratures. The amplitude of the ISHE resistance ∆RISHE is defined as the black arrow.
(b) An AMR of one of the Py wires. The arrows indicate the magnetization directions.

The temperature dependence of ∆RISHE in a Cu88.9Mn10.6Bi0.5 nanowire is shown
in Fig. 6.9.

Figure 6.9: The temperature dependence of ∆RISHE in Cu88.9Mn10.6Bi0.5. The black
arrows indicate T ∗ and also Tf of film, respectively.

At high enough temperatures, ∆RISHE increases with decreasing temperatures be-
cause the SDL of the Cu channel becomes longer with temperatures. In other words, the
absolute value of the injected pure spin current into the CuMnBi wire becomes larger
with decreasing temperature. ∆RISHE takes a maximum value at T ∗ which is similar
behavior in the previous work [13]. For T < T ∗, however, ∆RISHE starts to decrease and
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becomes almost zero at low temperatures especially below T film
f which is determined by

the magnetization measurement with the thin film, as detailed in Sec. 6.1. Such a large
suppression of ISHE has never been seen for lower Mn concentrations [13]. In addition,
there is no difference on ∆RISHE between FC process and ZFC process. It is intuitively
not consistent with magnetization measurements of spin glasses. However, according to
the previous work about ISHE [13] and electrical conductivity of spin glasses [137], the
difference between ZFC and FC does not appear in CuMn. The origin of no difference
between FC and ZFC may be related to the SOI of the host metal.

To investigate the Mn concentration dependence of the ISHE, we measured the
ISHE in Cu99.5−xMnxBi0.5 with three different concentration: x = 4.2, 8.2, and 10.6
(Fig. 6.10). Here, the temperature at which ∆RISHE becomes zero is defined as T0.

Figure 6.10: The temperature dependence of ∆RISHE of Cu99.5MnxBi0.5 (x = 4.2, 8.2,
and 10.6). The solid arrows indicate T ∗ and the open arrows indicates the temperature
T0 at which ∆RISHE vanishes, respectively.

With increasing the Mn concentration, T ∗ and T0 shift to the higher temperature
side This behavior is consistent with the property of spin glasses.

What is the origin of the reduction in ∆RISHE? A generated current by the ISHE
can be written as:

jc ∝ js × s (6.1)

where jc is the converted charge current, js is the injected spin current into CuMnBi
and s is the spin polarization of conduction electron spins. The reduction of ∆RISHE

means the reduction of either js or s. When there is a SO material underneath the
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Cu bridge, js is always perpendicular to the plane and should have a finite value even
though the SOI of the middle wire is quite weak. In addition, according to the previous
report on CuMnBi [13], js does not strongly depend on temperature. This indicates
that it is natural to consider that the direction of s is randomized in the spin glass
material.

6.3.1 Spin Hall angle of CuMnBi

As mentioned above, ∆RISHE contains not only the contribution of the ISHE in
CuMnBi but also the SDL of the Cu channel. Thus, in order to discuss only the
effect of the ISHE in CuMnBi, we need to calculate the SH angle. The SH angle can
be obtained by using λCuMnBi in the spin absorption method as detailed in 6.3.4. By
substituting all the detailed parameters into Eq. (3.38) in Sec. 3.4, we can calculate
the SH angle αH of Cu99.5−xMnxBi0.5 (x = 4.2 and 10.6). To focus on the effect of Mn,
αH of Cu99.5−xMnxBi0.5 is normalized by αH of Cu99.5Bi0.5: η ≡ αCuMnBi

H /αCuBi
H .

Figure 6.11: Temperature dependence of η, the SH angle of Cu99.5−xMnxBi0.5 (x = 4.2
and 10.6) normalized by that of Cu99.5Bi0.5. Solid and open arrows indicate T ∗ and T0,
respectively.

We note that the SHE of Cu99.5Bi0.5 is originated from the skew scattering at the Bi
impurity sites [13,86]. In other words, αCuMnBi

H is independent of the Mn concentration.
In such a situation, the skew scattering contribution from the Mn impurities in Cu is
expected to be negligibly small, as indicated in Ref. [13]. Therefore, in principle, η
should be 1 at any temperature. This is realized in the high temperature region for all
the Mn concentrations, as shown in Fig. 6.11. T ∗ is defined as the lowest temperature
at which the condition η(T+∆T )−η(T )

η(T )
< 5% is fulfilled. With decreasing temperature, on

the other hand, η starts to deviate from 1 at T ∗ and eventually reaches 0.
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6.3.2 Discussion: origin of reduction of inverse spin Hall effect

As mentioned above, the reduction of ∆RISHE originates from the randomization of
the spin direction s. In CuMnBi, Cu and Mn have weak SOIs and these do not work
as the spin scatterers in ISHE. Thus, the amplitude of the ISHE is determined by the
Bi impurities. Based on these facts, the microscopic image of conduction electron spin
can be illustrated as shown in Fig. 6.12.

When the Mn concentration is much higher than the Bi one, the injected conduction
electron spin is firstly correlated with the Mn moments. During this process, the con-
duction electron spin loses its coherence. Thus, the scattering angle becomes smaller,
compared to that without any correlations with the Mn moments.

Figure 6.12: A microscopic picture of the ISHE in CuMnBi.

Furthermore, the spin scattering process at the Bi impurities does not depend on the
temperature [13]. The temperature dependence of s can be explained by the following
scenario:

At high enough temperatures (Fig. 6.13 (a)), the Mn moments fluctuate with high
frequencies and the conduction electron spins cannot follow this fast motion. Thus,
the ISHE signal is simply determined by the skew scattering at the Bi impurity sites.
With decreasing temperature, the fluctuation of the Mn moments is getting slower.
The conduction electron spins can feel the fluctuation and the directions of conduction
electron spins are randomized. Since the Mn moments are randomly frozen for T < T0

(Fig. 6.13 (c)), the directions of conduction electron spins become completely random
and thus the ISHE signal disappears well below T0.

Comparing the freezing behavior of this Mn moments with the magnetic dynamics
of spin glasses, T0 should be equivalent to Tf of the spin-glass nanowire.
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Figure 6.13: Illustrations of ISHE in CuMnBi spin glass at different temperature regions:
(a) T > T ∗, (b) T0 < T < T ∗, and (c) T < T0. Black arrows with red and blue
spheres are conduction electrons with spin-up and spin-down, respectively, and red and
blue arrows show those trajectories. The shadows indicate fluctuations of conduction
electron spin (shorter arrows) and magnetic moments of Mn (longer arrows). Yellow
and gray arrows indicate the charge current density jc generated at the Bi sites (green
spheres) due to ISHE and a magnetic interaction between the Mn sites, respectively.
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6.3.3 Spin treacle region

Finally, we relate two different temperatures T0 = Tf , and T ∗ of the nanometer-scale
spin glasses. The two temperatures are plotted as a function of Mn concentration x in
Fig. 6.14.

Figure 6.14: Relations of Tf and T ∗ with the Mn concentration x for Cu99.5−xMnxBi0.5.
Tf and T ∗ are indicated by the solid blue triangle and the solid red square respectively.
Open circle indicates the spin freezing temperature T bulk

f of bulk Cu99.5−xMnxBi0.5 de-
termined from the magnetization measurements. The data for x = 0.5, 1.0, and 1.5
(red open square) are taken from the previous work [13].

Tf increases linearly with x, as in the case of bulk spin glass [137, 138]. The spin
glass phase is located at the low temperature and high magnetic impurity concentration
regions, but shifted to the lower temperature side compared to the bulk spin glass phase
because of the size effect of spin glasses [139]. ¿From magnetization measurements, only
a boundary between the spin glass state and the paramagnetic state is assigned. But
as clearly demonstrated in this work, we have found a new regime, that is “spin treacle
region”, where the magnetic moments are fluctuating before they start to freeze. The
spin treacle region increases with x . Here we see that Tf linearly increases with increas-
ing x, while T ∗ seems to be proportional to xa where a ≈ 1/3. We need further data
to determine a precise exponent. This result shows how quantitative characterization
of magnetic fluctuations on nanometer-scale samples is possible using spin current.
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The similar behavior would seem to correspond to the results of µSR measurements
by Campbell et al. in AgMn and AuFe alloys (Fig. 6.15) [145].

Figure 6.15: β in Eq. (6.2) of Ag93Mn7 obtained from µSR measurements as a function
of temperature [145].

The muon spin correlation function P (t) could be fitted by a stretched exponential
with 1

3
< β < 1:

P (t) = ⟨Sz
µ(0)S

z
µ(t)⟩ ∝ exp

[
−(λt)β

]
(6.2)

where Sz
µ(t) is the muon spin component along the direction z. At high enough temper-

ature, β = 1 which indicates the usual simple exponential decay expected in a normal
paramagnetic phase. β decreases with decreasing temperature and β = 1

3
below the

freezing temperature. Based on these results, Niimi et al. tried to extend this model
to the evaluation of the depolarization of conduction electron spins theoretically [13].
The original theory was based on Kubo-Toyabe theory for the evaluation of an effective
muon spin polarization, but they assumed that the conduction electron spin had the
same analogy as muon spin: the spin current also fluctuated a characteristic frequency
ν(T ) ∝ (T − Tf)

2 which was referred from the µSR data in Ref. [142] above Tf , and
ν vanished below Tf . Figure 6.16 shows the simulated results on the effective spin
polarization rate Gz(τsk, ν(T )) where τsk is the skew scattering time: ρSHE = m/ne2τsk.
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Figure 6.16: Gz calculated with the Kubo-Toyabe model [13]. t0 represents the product
of τsk and the Gaussian distribution width for the randomly fluctuating field in spin
glasses.

At enough high temperature, ν(T ) is large and Gz = 1. On the other hand, Gz

starts to decrease with decreasing temperature and saturates at low temperatures. The
result seems to be consistent with our experimental data. However, it does not give
zero value for the spin current depolarization below Tf . This is presumably because a
spin current propagates diffusively while a muon spin passes through the material bal-
listically. Therefore, to understand the ISHE in CuMnBi deeply, we have to investigate
the relation between spin fluctuations and the SDL.
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6.3.4 Spin diffusion length of CuMnBi

The spin absorption method enables us to measure not only the ISHE but also
to estimate the SDL on the same device [6]. To estimate the SDL, we measure spin
accumulation signals with and without the CuMnBi wire: ∆Rwith

S /∆Rwithout
S (≡ η).

From the relation, λCuMnBi can be estimated using Eq. (3.32). In Fig. 6.17, we show
the NLSV signals with and without the Cu95.3Mn4.2Bi0.5 wire at 10 K.

Figure 6.17: Typical NSLV signals with and without the Cu95.3Mn4.2Bi0.5 wire mea-
sured at 10 K. The red and blue curves show the spin signals without and with the
Cu95.3Mn4.2Bi0.5 middle wire, respectively.

The results exhibit a clear spin absorption effect, assuring that the spin currents
are really absorbed into the CuMnBi middle wire via the Cu strip. From the experi-
mental results, we can calculate the spin absorption rate η: in other words, how much
of spin current flowing in the Cu channel is really absorbed in the CuMnBi middle
wire. ¿From the 1D spin-diffusion model in Eq. (3.32), we can estimate the SDL of
CuMnBi (λCuMnBi). Note that λCuMnBi is the only fitting parameter in Eq. (3.32), since
L, RN, RF, ρCuMnBi, etc. are already obtained from other transport measurements.

In Fig. 6.18, we show the temperature dependence of λCuBi and λCuMnBi. λCuBi is
almost constant (∼ 30 nm) in this temperature region. λCuMnBi is two times smaller
than λCuBi at 160 K. The difference of the SDL originates from the difference of the re-
sistivity between CuBi and CuMnBi. With decreasing temperature, on the other hand,
λCuMnBi becomes gradually shorter, and at 10 K, λCuMnBi is 3 times smaller than that
at 160 K and almost one order smaller than λCuBi at 10 K. Furthermore, there is no
anomaly near Tf . From this result, the large reduction of λCuMnBi originates from the
Mn impurities. The result indicates that the random field generated by frustration of
Mn moments affects conduction electron spins.
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Figure 6.18: Temperature dependence of λ for CuBi and Cu88.9Mn10.6Bi0.5.

The SDL λS can be rewritten with the spin relaxation time τS by using the following
relation:

λS =
√
DτS, (6.3)

where D is the diffusion constant. The temperature dependence of 1/τCuMnBi is shown
in Fig. (6.19). The 1/τCuMnBi increases with decreasing temperature.
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Figure 6.19: The temperature dependence of 1/τCuMnBi for two Mn concentrations. The
black curve is the fitting line which is proportional to (T − Tf)

−2.

The black curve indicates the curve fitting with C/(T − Tf)
2, where C is a constant

value. The fitting works in the temperature region of 3Tf < T < T ∗, but the relation
does not work, as T approach Tf . According to the Elliott-Yafet (EY) mechanism
[129, 130], τS is proportional to T in a dirty (metallic) system, and in a clean such as
semiconductors, D’yakonov-Perel (DP) mechanism is dominant where τS ∝ 1/T [7].
However, τCuMnBi meets neither the EY nor DP mechanisms. This fact indicates that
1/τCuMnBi includes the effect of spin fluctuations. The similar temperature dependence
has been discussed in the depolarization rate of AgMn in µSR [142] and also in the
linewidth of ESR spectrum in CuMn alloys [143, 144]. While the ESR detects spin
dynamics of the Mn atom, the µSR and spin transport measurement detect the motion
of muon spin and conduction electron spin, respectively. At high enough temperatures,
the muon and the conduction electron spins do not feel the fast motion of Mn impurities.
With decreasing temperature, the fluctuation of Mn becomes slower and the muon and
conduction electron spins start to couple with this fluctuation, resulting in the further
reduction of λCuMnBi. However, ESR and µSR should be not suitable to estimate τS near
Tf because of their intrinsic time constants. Thus, a quantitative theory demonstrating
this spin relaxation time is needed: ideally it should incorporate both the diffusive
motion of the spin current and the effect of slow dynamics at the vicinity of Tf .
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Chapter 7

Detection of Spin Fluctuations in
Ag2CrO2

In the following section, we explain how to make the Ag2CrO2 thin film device.
There are various methods to make a crystal thin, but there are a few reports on
the fabrication of a thin film crystal from a tiny polycrystalline sample. Thus, it was
necessary to establish a new method to fabricate a thin film device.

7.1 Fabrication of Ag2CrO2 thin film

The mechanical exfoliation technique so-called “scotch tape technique” is one of
the methods to produce a thin film by exfoliating a layered crystal with a scotch tape.
When the interaction between the layers, i.e., van der Waals interaction, is weaker than
the adhesive strength of the scotch tape, the layered material can be exfoliated by the
scotch tape. This method has been well-known since Novoselov et al. succeeded in
making a single layer of graphite with the scotch tape [17]. The method has attracted
much attention as an easy technique to produce a clean two-dimensional system. Our
fabrication process of Ag2CrO2 thin films is also based on the scotch tape method. In
the case of Ag2CrO2, however, the interlayer interaction is stronger than usual van der
Waals materials because the exfoliation layer is the Ag2 layer, which is close to metallic
coupling. Therefore, we have established two procedures to fabricate the Ag2CrO2 thin
film. The polycrystalline Ag2CrO2 was provided by Prof. Hiroyuki Yoshida at Hokkaido
University.

The first procedure is as follows. First of all, we pounded Ag2CrO2 samples on a
glass plate, in order to obtain smaller pieces of Ag2CrO2. We picked up the small grains
of Ag2CrO2 with a scotch tape (Nitto SPV363) and then pasted them onto a thermally
oxidized silicon substrate with several 100 nm thick gold marks. After removing the
scotch tape from the substrate, we prepared another silicon substrate without any gold
marks and pushed it onto the silicon substrate with the Ag2CrO2 flakes and the 100 nm
thick gold marks (see Fig. 7.1). While these procedures, the specimen and the substrate
were warmed at 60 ◦C in order to weaken the bonding between the Ag2 and CrO2 layers
and to make the exfoliation easier.
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Figure 7.1: Schematics of the procedure to fabricate thin films of Ag2CrO2.

In this process, some of the Ag2CrO2 flakes become thinner than 100 nm and
relatively thick Ag2CrO2 flakes are attached to the substrate without the gold marks.
As a result, a few thin Ag2CrO2 flakes remain on the substrate with the gold marks,
as shown in Fig. 7.2(a). We then deposited Cu electrodes by using EB lithography
(Fig. 7.2(b)). These thicknesses have been confirmed by a commercially available atomic
force microscope, as shown in Fig. 7.2(c).

Figure 7.2: (a) Optical microscope image of an exfoliated thin Ag2CrO2 film. (b)
The scanning electron microscope image of a fabricated device. (c) Cross section of the
Ag2CrO2 thin film along the red arrow in (b) measured with an atomic force microscope.
The thickness of the film is about 100 nm.

Thanks to this procedure, we were able to fabricate ∼ 100 nm films. However,
the thickness of the film is limited by the thickness of the gold mark. Thus, to fabricate
a thinner film, we have to use the other procedure. The second procedure is based
on the previous paper about an exfoliation method for materials that are difficult to
cleave [146]. First of all, we put polycrystalline Ag2CrO2 samples on Nitto No. 311 and

1The adhesive strength of Nitto No. 31 tape is stronger than that of Nitto SPV363 tape.
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cleave them with Nitto No. 31 about 100 times. Next, we rubbed the Nitto No. 31
tape (including thin films of Ag2CrO2) with a Nitto SPV363 tape in order to transfer
Ag2CrO2 thin film onto the Nitto SPV363 tape. After that, we pasted the tape onto a
thermally oxidized silicon substrate with several 100 nm thick gold marks in order to
transfer the thin film onto the Si substrate. While these procedures, the specimen and
the substrate were kept at 60 ◦C because of the same reason as the previous exfoliation
procedure.

7.2 STEM

In order to investigate a quality of device and also the crystal orientation, we observed
a cross-sectional image of our Ag2CrO2 device with the scanning transmission electron
microscope.

Figure 7.3: STEM images of a typical Ag2CrO2 device. (a) Bright-field STEM image
of a wide area. (b) High angle annular dark-field STEM image in the area shown with
the solid square in (a). The bright and dark spheres correspond to Ag and Cr atoms,
respectively. (c) High angle annular dark-field STEM image in the area shown with the
broken square in (a).

Figure 7.3(a) shows a typical cross-sectional image of our device. The STEM image
clearly shows that the c-axis of Ag2CrO2 is perpendicular to the Si substrate. Fig-
ure 7.3(b) is a closeup STEM image of the Ag2CrO2 device. We can see the clear
stacked Ag2 and Cr layers which is consistent with the schematic drawing of crystal
structure shown in Fig. 2.5. At the surfaces of the Ag2CrO2 film, there are some Ag
(or Ag2O) grains as shown in Figs. 7.3(a) and 7.3(c). This indicates that a part of Ag
is segregated, although there is no segregation of Ag inside the crystal. As shown in
the upper-left side of Fig. 7.3(c), the segregated Ag part is continuously connected to
the most top surface of the Ag2CrO2 flake, showing that the Ag layer is exposed after
the fabrication.
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7.3 Electrical transport measurements

7.3.1 Transport properties of Ag2CrO2 thin film

Our device is too tiny to perform the X-ray diffraction. Therefore, we checked the
quality of the film by performing the transport measurement. Figure 7.4(a) shows the
resistivity of the thin Ag2CrO2 film in Fig. 7.2(b) as a function of temperature. We
note that this is a typical result among ten different thin Ag2CrO2 film devices. As in
the case of normal metals, the resistivity decreases with decreasing temperature, but
there is a large resistivity reduction at around T = 25 K. At 5 K, the resistivity ρxx of
the thin Ag2CrO2 film reaches about 3 µΩcm. Surprisingly, this resistivity is about ten
times smaller than that (∼ 36 µΩcm) of the polycrystalline samples.

In order to see the difference between the thin film and the polycrystalline sample
more clearly, the temperature dependence of ρxx(T ) normalized with ρxx(T = 5 K)
is plotted in Fig. 7.4(b). Apparently, the normalized resistivity for the thin film is
much larger and sharper at TN compared to the polycrystalline sample. To characterize
the sudden reduction of ρxx at around TN, we plot the derivative of the normalized
resistivity for both the thin film and the polycrystalline sample in Fig. 7.4(c) [18].

The peak positions indicated by arrows are located at almost the same temperature
(about 25 K), which is very close to TN = 24 K determined from heat capacity mea-
surements [14]. The peak width for the thin film is narrower compared to that for the
polycrystalline sample. All the above results clearly show that the crystalline nature
of the exfoliated thin Ag2CrO2 film is much better than that of the polycrystalline
samples. Thus, the demonstrated fabrication process of the thin film Ag2CrO2 paves
the way for device applications of layered antiferromagnetic materials.

Figure 7.4: (a) Resistivity ρxx of 100 nm thick Ag2CrO2 film as a function of tempera-
ture. The inset is a closeup of the drastic change of ρxx near TN. (b) Comparison of the
normalized resistivity (ρxx(T )/ρxx(5 K)) between the thin film and the polycrystalline
sample shown in Ref. [14]) (c) ∂[ρxx(T )/ρxx(5 K)]/∂T vs T curves for the thin film and
the polycrystalline sample. The arrows show the peak positions of the derivatives.
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7.3.2 Magnetoresistance

For the Ag2CrO2 device, we performed MR measurements with three different
magnetic field (B) directions, i.e., x (in-plane along the current direction), y (in-plane
perpendicular to the current direction), and z (out-of-plane along the c-axis, i.e., z∥c)
directions. Figure 7.5(a) shows the temperature dependence of the MRs, ρxx(B)−ρxx(0)

ρxx(0)
,

along the z axis.

Figure 7.5: (a) MR curves along the z-axis at several different temperatures. The
arrows and numbers in (b) indicate the order of the field sweep direction.

At T = 5 K (≪ TN), a clear positive MR is observed at high magnetic fields. With
increasing temperature, the positive slope becomes flatter. At 25 K (≈ TN), the MR
shows the negative sign. This trend is explained by the competition of two different
mechanisms for MR, i.e., the ordinary MR and the MR related to spin fluctuation.
The positive MR at T ≪ TN is related to the ordinary MR by the Lorenz force because
the magnetic fluctuation is suppressed in this temperature region. On the other hand,
when T ∼ TN, the magnetic scattering by thermal fluctuation of spins is enhanced.
This contribution to the resistivity is suppressed by the magnetic field perpendicular
to the plane, producing the negative MR.
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Another unique feature is the butterfly-shaped MR at B ≈ ±0.5 T. The am-
plitude of the butterfly-shaped MR is small when T ≪ TN. As we approach TN, it
becomes larger and takes a maximum at 25 K (≈ TN). The maximum value reaches
more than 10% at B = 0.5 T, which is unusually large for conventional ferromagnetic
materials [147, 148]. As we raise the temperature further, the amplitude of the MR
suddenly decreases and becomes zero above Tm = 32 K.

Figure 7.6 shows the MRs along the three directions measured at several different
temperatures. In contrast to the MR along the z direction, such a drastic temperature
dependence of MR has not been observed when B∥x and B∥y, although a small negative
MR can be seen below TN. The B-angle dependence of the MR, which has never been
studied for polycrystalline Ag2CrO2, is another evidence that the micrometer-size thin
Ag2CrO2 flake is most probably a single domain. This is also consistent with the STEM
in Fig. 7.3.
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Figure 7.6: (a)-(h) MR curves at several different temperatures (T = 5, 10, 14, 22, 25,
27, 32, and 36 K). The red, blue, and green curves show the MRs when B is applied
along the x, y and z axes, respectively. The axes are defined as shown in (i).
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To evaluate the butterfly-shaped MR observed only for B∥z, we define the am-

plitude of the buttery-shaped MR, i.e., Γ ≡ ρupperxx (Bc)−ρlower
xx (Bc)

ρxx(0)
and the corresponding

magnetic field (Bc), as illustrated in the inset of Fig. 7.7(a). Γ has a small value at
low temperatures and takes a maximum (15%) at around TN. It still has a finite value
even above TN and finally disappears at Tm. Bc in Fig. 3(b) is almost constant up to
T ≈ 22 K, and starts to decrease with increasing temperature and disappears at Tm.

Figure 7.7: (a) The amplitude of the buttery-shaped MR (Γ ) as a function of tempera-
ture. The inset shows the definitions of Γ and Bc. The red and blue curves show ρupperxx

and ρlowerxx , respectively. (b) Temperature dependence of Bc.

Similar MR effects are often observed in ferromagnetic [147] and even antiferro-
magnetic materials [149], but the present butterfly-shaped MR is essentially different
from them. MRs in conventional magnetic materials depend on the relative angle of
magnetic domains, which is tuned by B. The amplitude of the MR is at most less
than 1 % [148] at B = 0.5 T. It decreases with increasing temperature and becomes
zero above the transition temperature. In the butterfly-shaped MR, however, Γ has a
maximum value of 15 % near the transition temperature, which cannot be expected in
conventional magnetic materials [147–149].
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Figure 7.8: Temperature dependence of Γ and MR at B = 1.2 T.

Figure 7.8 shows Γ and MR at B = 1.2 T as a function of temperature. Apparently,
the temperature at which Γ takes a maximum value corresponds to that at which the
MR takes a minimum value. These experimental facts indicate that spin fluctuations
of the PD state are strongly related to the butterfly-shaped MR.

7.3.3 Discussion: origin of the magnetoresistance

What is the origin of the butterfly-shaped MR? One naive consideration is that the
PD spin switches at B = Bc. However, to polarize the PD spin with the external mag-
netic field, one needs more than 50 T, which is 100 times higher than the present Bc.

2

Here we recall that the ordered state has a finite magnetization below TN. The nonzero
magnetization is manifested in the MR curve proportional to B when B ≪ 1 T, which is
prohibited in an antiferromagnet with a combination of time-reversal and translational
symmetry (Onsager’s reciprocal theorem). We also recall that the butterfly-shaped MR
in the present work appears only when B∥c. These features imply that the uniform
magnetic moment is along the c-axis and has a strong uniaxial anisotropy. In such a
situation, B suppresses the spin fluctuations when it is parallel to the moment direction,
while B causes a spin flip when it is antiparallel to the moment direction. Thus, a neg-
ative and butterfly-shaped MR can be explained by the suppression of spin fluctuation
and the spin-flip process induced by B, respectively.

2T. Kida and M. Hagiwara, private communications.
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To verify the above argument, we consider a 2D ferromagnetic spin system with the
Ising anisotropy. The experiments indicate that Ag2CrO2 has a finite magnetic moment
with a strong anisotropy (Fig. 7.9).

Figure 7.9: Schematic image of CrO2 planes. If we assume a strong exchange interaction
between the PD spins along the c-axis, the PD spins would behave as a quasi-one-
dimensional chain along the c-axis.

Therefore, under a small magnetic field ∼ 1 T, we assume that the ferromagnetic
magnon well approximates the low-energy excitation states of Ag2CrO2. The Hamilto-
nian is given by

H = −J
∑
<i,j>

Si · Sj −∆
∑
i

Sz
i S

z
i −B

∑
i

Sz
i , (7.1)

where J(> 0) is the ferromagnetic exchange coupling between the nearest neighbor
sites, ∆(> 0) is the Ising anisotropy, and i and j are the site numbers. B is applied
perpendicular to the 2D plane (i.e., B∥c). The uniaxial anisotropy lifts the Goldstone
mode, producing a spin gap proportional to the anisotropy energy ∆ (∝ |Bc|) (see
the Appendix). For the positive magnetization, the spin gap increases (decreases) by
applying the positive (negative) magnetic field and becomes zero when B = Bc(< 0).
The suppression of the magnetic fluctuation for B > 0 and the spin flip at B = Bc(< 0)
are intuitively explained by the spin gap modulated by B. The exactly same scenario
is valid for the negative magnetization just by inverting the sign of B.

To see howB suppresses the MR, we compute the elastic scattering rate 1/τmag ∝ ρxx
due to spin fluctuations at finite T by Born approximation:

1

τmag

∝ T

{
F1

(
2 +

2∆ + µeffB

2Jk2
Fa

2
0

)
− F2

(
2 +

2∆ + µeffB

2Jk2
Fa

2
0

)}
, (7.2)
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where kF is the Fermi wave number, µeff is the effective ferromagnetic moment,
a0 is the lattice constant between the neighboring effective ferromagnetic moments,

F1(x) =
1√

x2 − 1
and F2(x) =

x√
x2 − 1

− 1. A fit to the experimental data with

Eq. (S8) is shown in Fig. 7.10; the butterfly-shaped MR near TN is well-reproduced
by the present theoretical model. The strong exchange interaction along the c-axis
develops strong correlation of spins along the c-axis. Therefore, we assume that the
quasi-one-dimensional chain along the c-axis behaves as a large single spin in our 100
nm thick sample. Since the lattice constant of the c-axis is 0.866 nm, the total effective
magnetic moment µeff along the c-axis is estimated to be 100

0.866
× 0.4µB ∼ 45µB where

0.4µB is the effective magnetic moment per unit cell [14]. By assuming kFa0 ∼ 1 (as in
the case of a typical metal), both J and ∆ are estimated to be about 10 K, which is
comparable to TN.

Figure 7.10: The fitting result of MR at T = 25K with Eq. (S8).
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7.3.4 Hall effect

Next, we fabricated Hall-bar devices and measured the Hall resistivity as shown in the
inset of Fig. 7.11(a). The obtained Hall resistivity included a small component of the
longitudinal resistivity, similar to the curve in Fig. 7.4. Thus, we plot the asymmetric
component of the Hall resistivity ρasymyx at three representative temperatures in Fig.
7.11(a). Note that ρasymyx is quantitatively consistent with ρyx of polycrystalline Ag2CrO2

samples [60]. As mentioned in the introduction, a small fraction of magnetization in
Ag2CrO2 was reported below TN. Nevertheless, ρasymyx = 0 at B = 0 in the whole
temperature range. As shown in Fig. 7.11(b), on the other hand, ρasymyx at B = 1 T has
a cusp structure at Tm = 32 K where the butterfly-shaped MR disappears. The spin
fluctuations also explain the enhancement of anomalous Hall resistivity near TN.

Figure 7.11: (a) ρasymyx at typical temperatures (T = 5, 32, 55 K). The inset shows an
SEM image of Ag2CrO2 device for the Hall measurement. (b) Temperature dependence
of the derivative of ρasymyx at B = 0. The broken line in (b) shows the contribution from
the normal Hall effect, which is obtained from the data at the lowest temperature.

111



7.3 Electrical transport measurements 7 Detection of Spin Fluctuations in Ag2CrO2

The similar AHE was observed in PdCrO2 (Fig. 7.12) [150]. The crystal structure
of PdCrO2 is shown in the inset of Fig. 7.12.

Figure 7.12: AHE in PdCrO2. The inset is the crystal structure of PdCrO2.

PdCrO2 has a 120◦ spin structure with the canted Cr spins along the c-axis (>
5◦). The net magnetization of PdCrO2 along the c-axis is small, but a canted spin
component (or a spin scalar chirality) at the Cr sites generates such a large AHE.
It is also known as the extrinsic topological Hall effect [151]. On the other hand,
such a canted spin is not allowed in a conventional Ising model. However, a recent
numerical study has found that the spin canting can be produced by the interfacial
Dzyaloshinskii-Moriya interaction and the thermal fluctuation [153]. The temperature
dependence of the extrinsic topological Hall conductivity shows the maximum around
TN. This temperature dependence is consistent with our Hall results (Fig. 7.13).
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Figure 7.13: (a) Hall conductivity of Ag2CrO2. ∆σxy has been calculated by subtracting
the contribution of the ordinary Hall effect at T → 0 from σxy at finite T . (b) The
numerically calculated result of the extrinsic Hall effect [153]. nel is the carrier density.

In the case of Ag2CrO2, the uniaxial anisotropy is expected to suppress the canting,
preserving the collinear state as the ground state, i.e., no intrinsic topological Hall effect
appears. In contrast, at finite T under a small B, the fluctuation of spins produces a
finite scalar chirality because of the interfacial Dzyaloshinskii-Moriya interaction [152].
Since the crystal structure of Ag2CrO2 has a center symmetry, Dzyaloshinskii-Moriya
interaction at the interface of crystals cannot be expected [154]. But a recent report
on a Heisenberg magnet, the interfacial Dzyaloshinskii-Moriya interaction produced by
the interface between the sample and the substrate cants the spin, potentially inducing
a magnetic order with a finite scalar chirality [155]. Thus, the thickness dependence of
the Hall effect is needed to investigate the interface effect between Ag2CrO2 and the Si
substrate.
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Chapter 8

Conclusions and perspectives

In this thesis, in order to clarify the magnetic dynamics of nanoscale frustrated
magnets from the viewpoint of electric and spin conductivity measurements, we have
performed spin transport measurements in ternary alloy spin-glass CuMnBi and mag-
netotransport measurements in Ag2CrO2 thin films. The following knowledge was ob-
tained from the present work.

First of all, spin transport measurements have been performed using CuMnBi ternary
alloy spin glasses to elucidate the relation between the spin current and spin fluctua-
tions. For this purpose, we have investigated carefully the Mn concentration dependence
of the ISHE and SDL. The SH angle of Cu99.5−xMnxBi0.5 is constant in the temperature
range T > T ∗ corresponding to the paramagnetic state, but starts to decrease below T ∗

and eventually vanishes at the spin freezing temperature Tf of the spin glass nanowire.
The determined Tf linearly increases with increasing the magnetic impurity concentra-
tion, as in the case of bulk spin glasses. In the temperature region of Tf < T < T ∗, we
have found the “spin treacle” regime, which has not been distinguished by other con-
ventional experimental techniques for bulk spin glasses. This result is a demonstration
of the usefulness of spin transport measurements in frustrated magnetic materials.

In addition, we found that the SDL of CuMnBi monotonously decreases with de-
creasing temperature regardless of some characteristic temperatures such as T ∗ and Tf .
At much higher temperatures than Tf , the spin relaxation time τS follows a (T − Tf)

2

law which is different with the conventional spin diffusion theory in a metal. The origin
of the temperature law has not still been unveiled, but the present result shows how
quantitative characterization of magnetic fluctuations on nanometer-scale samples is
possible using spin current, and raises an important issue about the role of magnetic
localized moments in the spin diffusion process.

Secondly, we have established the fabrication procedure of Ag2CrO2 thin film device
from the polycrystalline Ag2CrO2 sample. This method enables us to obtain a single
crystal like material from the polycrystalline one and is useful for studying mesoscopic
physics using such a complex material. The MR of the Ag2CrO2 sample have been
measured. It turns out that the butterfly-shaped MR can be seen only when the mag-
netic field is applied along the c-axis. This fact indicates that the PD spins have a
strong uniaxial anisotropy in Ag2CrO2. The butterfly-shaped MR takes a maximum
value of 15 % at around the transition temperature, suggesting that spin fluctuations
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are essential. The result is well-explained by the theoretical model based on the 2D
magnetic system with the Ising anisotropy.

We have also found the additional Hall component in Ag2CrO2 to the ordinary
Hall effect although the AHE does not appear in the conventional Ising system. The
temperature dependence of the Hall coefficient has the same tendency as that of the
butterfly-shaped MR. Thus, rich physics is further expected in such a magnetically
frustrated system coupled to conducting electrons.

As the perspectives, the detailed origin of the spin treacle regime and the relation
between Tf and T ∗ have not been fully understood yet. The origin of the temperature
dependence of the SDL has not been explained either. To elucidate them, we need the
detailed Mn concentration dependence of T ∗.

In present work, we only investigated the CuMnBi ternary alloy system. Therefore,
to check the universality of the spin treacle region, spin transport measurements in
other spin glass systems are required. Recently, we have measured the inverse spin Hall
effect in Au78Fe22 and the similar saturation has been observed (Fig. 8.1).

Figure 8.1: (a) Dc magnetization measurement of 20 nm thick Au78Fe22 film. The
arrow indicates Tf . (b) The temperature dependence of ISHE in Au78Fe22. The open
and solid arrows indicate Tf of nanowire and T ∗, respectively.

This is a supportive result of the realization of the spin treacle region. To further
establish the universality of the spin treacle regime in spin glasses, one has to make
a test for the other concentrations of AuFe and also other combinations of host and
impurity materials.

As for the 2D triangular antiferromagnetic system, we need to check whether the
present theoretical model can explain a similar butterfly-shaped MR realized in other
antiferromagnetic materials. We will also elucidate the mechanism of the Hall effect by
measuring the film thickness dependence of the MR and the Hall effect.

We will integrate the Ag2CrO2 thin film into the SH device to perform the spin
transport in the Ag2CrO2 thin film. Figure 8.2 is an SEM image of the prototype of
the SH device with Ag2CrO2.
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Figure 8.2: SEM image of the SH device with Ag2CrO2.

An etching method such as Ar milling is usually used to produce a nanowire, but
in order to avoid any damage by the Ar milling, a nanowire in this device has been
formed by exfoliating Ag2CrO2 with the scotch tape. By measuring the spin transport
in Ag2CrO2, we will be able to obtain more information about the relation between a
spin current and PD spins from the viewpoint of spin fluctuations. The SDL of Ag2CrO2

would also be an interesting issue.
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Appendix

Theoretical calculation of magnetoresistance of Ag2CrO2

In this Appendix, we show detailed explanations on our theoretical calculation. As
mentioned in the main text, we start with a 2D ferromagnetic spin system with the
Ising anisotropy (see Eq. (7.1)). Due to this uniaxial anisotropy, a spin gap with the
anisotropy energy 2∆ is generated, as shown in Fig. S3. For the positive magnetization,
the spin gap increases (decreases) by applying the positive (negative) magnetic field.
At B = Bc(< 0), the spin gap becomes zero and the spin flip takes place.

Figure S3: Dispersion relation of magnons with the uniaxial anisotropy for the positive
magnetization. Because of the anisotropy energy 2∆, the energy band is shifted and
becomes zero when B = Bc(< 0).

We expand the model in Eq. (7.1) to the quadratic order in Sx and Sy, assuming
the Sx and Sy components are sufficiently small. Within this approximation, Eq. (7.1)
reads:

H ∼
∑
k⃗

[2J {2− cos(kx)− cos(ky)}+ 2∆+B]
(
Sx
k⃗
Sx
−k⃗

+ Sy

k⃗
Sy

−k⃗

)
,

∼
∑
k⃗

ωk⃗

(
Sx
k⃗
Sx
−k⃗

+ Sy

k⃗
Sy

−k⃗

)
, (S1)

where J > 0 is the ferromagnetic exchange coupling between the nearest neighbor sites,
∆ > 0 is the Ising anisotropy, B is the applied magnetic field along the z direction, k⃗ is
the wave vector, and ωk⃗ = Jk2+2∆+B is the energy of the spin wave with momentum

k⃗. Using Eq. (S1), we calculate the relaxation time originating from spin fluctuations,
i.e., τmag. The magnetoresistance (MR) due to the spin fluctuations is theoretically
expressed with the B dependence of τmag:

ρxx(B)− ρxx(0)

ρxx(0)
= τ(0)

(
1

τmag(B)
− 1

τmag(0)

)
, (S2)
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τmag(B) is the relaxation time originating from the magnetic scattering and 1
τ(B)

=
1

τmag(B)
+ 1

τimp
is the quasi-particle relaxation time (τimp is the relaxation time by impurity

scatterings). We here assumed that the impurity scattering is insensitive to B; the MR
is a consequence of the B dependence of τmag(B).

τmag is obtained by using the scattering matrix Wk⃗α→k⃗′β:

1

ταmag(B)
=
∑
β,⃗k′

Wk⃗α→k⃗′β

(
1−

vx
k⃗′β

vx
k⃗α

)
. (S3)

where vx
k⃗α

= kx/m is the velocity of electrons with momentum k⃗ and spin α (m is
the mass of an electron and ℏ = 1). Here we assume that the electric field is applied
along the x direction and the electron dispersion εk⃗ = k2/(2m). Within the first Born
approximation, Wk⃗α→k⃗′β reads:

Wk⃗α→k⃗′β ∼2πJ2
K

N

⟨(
δS⃗k⃗−k⃗′ · σ⃗βα

)(
δS⃗k⃗′−k⃗ · σ⃗αβ

)⟩
δ
(
εk⃗α − εk⃗′β

)
,

∼2πJ2
K

N
δαβ̄

⟨
Sx
k⃗−k⃗′

Sx
k⃗′−k⃗

+ Sy

k⃗−k⃗′
Sy

k⃗′−k⃗

⟩
δ
(
εk⃗α − εk⃗′β

)
,

where δS⃗k⃗ ≡ S⃗k⃗ − Sẑ, S⃗k⃗ ≡
1√
N

∑
i S⃗ie

i⃗k·R⃗i , and JK is the Kondo coupling between the
itinerant electrons and the localized moments. The magnitude of spin fluctuation can
be calculated within the linear spin wave approximation:

⟨Sx,y

k⃗
Sx,y

−k⃗
⟩ = 1

2βωk⃗

,

where β = 1/T is the inverse temperature (kB = 1) and a relation ωk⃗ = ω−k⃗ is assumed.
Therefore, Wk⃗α→k⃗′β becomes:

Wk⃗α→k⃗′β ∼ 2πJ2
KS

Nβωk⃗′−k⃗

δαβ̄δ
(
εk⃗α − εk⃗′β

)
. (S4)

By substituting Eq. (S4) into Eq. (S3), the relaxation time due to spin fluctuation
can be obtained as follows:

1

ταmag(B)
=2πJ2

KST

∫
dk′2

(2π)2
1

ωk⃗′−k⃗

(
1−

vx
k⃗′ᾱ

vx
k⃗α

)
δ(εk⃗α − εk⃗′ᾱ). (S5)

By integrating over the Fermi surface, Eq. (S5) reads:

1

ταmag(B)
=
J2
KSmT

2π

∫
dθ

J{(kα
F )

2 + (kᾱ
F )

2 − 2kα
Fk

ᾱ
F cos θ}+ 2∆+B

(
1− kᾱ

F

kα
F

cos θ

)
,

=
J2
KSmT

2Jkα
Fk

ᾱ
F

[
F1

(
kα
F

kᾱ
F

+
kᾱ
F

kα
F

+
2∆+B

2Jkα
Fk

ᾱ
F

)
− kᾱ

F

kα
F

F2

(
kα
F

kᾱ
F

+
kᾱ
F

kα
F

+
2∆+B

2Jkα
Fk

ᾱ
F

)]
.

(S6)
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Figure S4: (a) Fitting result of the MR at T = 25 K. (b) A and (c) a obtained from
the fitting with Eq. (S8).

Here the two functions F1 and F2 are F1(x) =
1√

x2 − 1
and F2(x) =

x√
x2 − 1

− 1,

respectively; α(= ↑ or ↓) and ᾱ(= ↓ or ↑) denote the spin directions, and kα
F is the

Fermi wave number for spin α. Equation (S6) shows that the relaxation time due to
spin fluctuation depends only on the Fermi wave number.

Since Ag2CrO2 has a small magnetic moment, it is reasonable to assume k↑
F ∼ k↓

F ∼
kF . Therefore, we obtain the following expression for τmag:

ℏ
τmag(B)

∼J2
KSmkBT

2Jk2
Fa

2
0

{
F1

(
1 +

2∆ + µeffB

2Jk2
Fa

2
0

)
− F2

(
1 +

2∆ + µeffB

2Jk2
Fa

2
0

)}
, (S7)

which is the same as Eq. (7.2) in the main text. kF is the Fermi wave number, µeff is
the effective ferromagnetic moment, a0 is the lattice constant between the neighboring
effective ferromagnetic moments, In Eq. (S7), ℏ and kB are explicitly written here to
compare the experimental data. To fit the experimentally obtained MR curves with
Eqs. (S2) and (S7), the following expression is useful:

ρxx(B)− ρxx(0)

ρxx(0)
= A

{√
aBc

aBc + 2
−

√
a(B +Bc)

a(B +Bc) + 2

}
, (S8)

where A and a are fitting parameters. As shown in Fig. S4(a), the experimental data
can be nicely fitted using Eq. (S8). We note that in principle Eq. (S8) can be used
only in the vicinity of TN. Figure S4 shows the obtained A and a values as a function
of T . A is small below TN and rapidly increases near TN. On the other hand, a is more
or less constant below TN and rapidly decreases above TN.
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J and ∆ can be estimated by using the following relations:

J =
µeff

2ak2
Fa

2
0

, (S9)

∆ =
Bcµeff

2
. (S10)

It should be stressed that Eqs. (S9) and (S10) give rough estimations for J and ∆,
since in principle J and ∆ should depend on all the microscopic details. As mentioned
in the main text, the uniform magnetic moment is along the c-axis. In addition, we
assume that the exchange interaction along the c-axis is much larger than that in the
plane. Such a situation is common for antiferromagnets with partially disordered phases
[156–158] and is necessary for a stable PD phase in Monte Carlo simulations [159,160].
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