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Abstract

We study infrared dynamics in quantum electrodynamics to construct the well-defined S-
matrix without infrared divergences. S-matrix is a fundamental quantity for the scattering
theory of particles in quantum field theories. However, the conventional S-matrix for
theories with massless particles is not well-defined due to the infrared divergences. This
problem originates in the fact that the interactions mediated by low energy massless
particles create infinitely long-range forces between charged particles. Therefore, the
better understanding of the infrared dynamics is necessary for improving the S-matrix.
In the first half of this thesis, we focus on the following subjects that capture the universal
features of the infrared dynamics: asymptotic symmetry, soft theorem, and memory effect.
We elucidate the fundamental properties of the charge conservation law associated with
the asymptotic symmetry and also develop the new relations among the three subjects. In
the last half, the proper asymptotic states for the infrared finite S-matrix is investigated.
The Faddeev-Kulish(F-K) dressed state has been known as a candidate for such a state.
However, there was an argument that the F-K dressed states are not gauge invariant. We
resolve the problem by deriving a correct gauge invariant condition and showing that the
F-K dressed state is a solution of the condition. We also discuss the relation between the
asymptotic state and the asymptotic symmetry for QED.
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Chapter 1

Introduction and Summary

1.1 Introduction: IR triangle and IR finite S-matrix

This thesis is devoted to a better understanding of infrared structures of scattering the-
ory in gauge theories, in particular, quantum electrodynamics (QED) in four-dimensional
asymptotically flat spacetime. The investigation of scattering phenomena in the gauge
theories describing our world at low energy, such as QED, has a long history since the
early nineteenth century. The comparison between theoretical predictions and experimen-
tal data of scattering cross-sections has been one of the main sources of ideas in developing
the models explaining our world. Nowadays the Standard Model of particle physics has
demonstrated tremendous successes in explaining the data provided by collider experi-
ments with great accuracy, at least with the current experimental resolution.

However, the infrared dynamics in the gauge theories involving long-range forces has
recently turned out to be worth reinvestigating, which was first triggered by the discov-
ery of the asymptotic symmetry in Maxwell and Yang-Mills theory coupled to massless
charged matters [1]. Moreover, the discovery of these new symmetries led to the discover-
ies of a triangle equivalence of seemingly unrelated following three subjects that concern
the infrared dynamics in QED, QCD, gravity: asymptotic symmetry, soft theorem, and
memory effect. This equivalence, called infrared triangle, is one of the main subjects in
this thesis.

Asymptotic symmetry transformations, which I will define precisely later, refers to a
gauge transformation which changes boundary conditions on asymptotic spacetime re-
gions while keeping physically reasonable fall-offs behaviors of gauge fields. Although
asymptotic symmetry is local symmetry, this is physical symmetry. The history of the
asymptotic symmetry analysis goes back to the seminal work in gravity by Bondi, van
der Burg, Metzner and Sachs (BMS) [2, 3] in 1962. They found the infinite-dimensional
subgroup of diffeomorphisms of asymptotically flat spacetime that act non-trivially on
the boundary data, which is now called the BMS group. On the other hand, as already
mentioned, the asymptotic symmetries in gauge theories in asymptotically flat spacetime
were revealed recently [1, 4, 5, 6]

The soft theorems describe the universal property of scattering amplitudes with external
soft particles i.e. massless particles whose energies are much less than the energies of
external charged matters. For example, the soft photon theorem [7, 8, 9, 10, 11, 12, 13, 14]
in QED simply says that the scattering amplitude of the process α → β, say Mβα, and
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the one with an additional external soft photon of momentum kµ = (ω,~k), say Mβα(k),
are proportional to each other as

Mβα(k) =Mβα

N∑
n

ηnenε(k) · pn
pn · k

+O(ω0), (1.1.1)

where en and pn are the charge and the four-momentum of n-th particle in the initial state
α and the final state β, εµ(k) is the polarization of the soft photon, and ηn is a sign factor
which takes +1 for particles in β and −1 for particles in α. The factor of proportionality,
called the (leading) soft factor, diverges as the energy of soft photon tends to zero, since
it is order O(ω−1). This fact reflects one of the important property of infrared dynamics;
the slight acceleration of a charged particle results in the radiation of infinite number of
low energy photons.

The memory effect is concerned with the detection of waves coming from faraway
sources. It has been investigated mainly as a mechanism for the observation of gravi-
tational waves, called the gravitational memory effect. It originates in a proposal in 1974
by Zel’dovich and Polnarev [15], and developed by many others [16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26]. The gravitational memory effect claims that the passage of gravitational
waves coming from faraway sources produces a permanent displacement of the metric
and results in a permanent displacement of relative position of freely falling particles
(viewed as detectors). Detection of the memory effect at LISA [27] and at LIGO [28] has
been proposed recently. Although the gravitational memory effect has a long history, the
electromagnetic analog of the memory effect was first studied recently [29, 23, 30]. The
electromagnetic memory effect is a phenomenon: the total net charge that has passed
through at an local angle is given by a permanent displacement of the gauge field at the
corresponding angle, instead of the metric in gravity.

The infrared (IR) triangle reveals the surprising fact that the above three subjects,
describing seemingly different aspects in infrared (long distance) physics, are just different
perspective of one subject. The equivalence of those was first discussed in the Yang-Mills
theory [1], and extended to gravity [31, 32, 33] and also to QED [4, 6, 5]. The equivalence
has also been extended to higher orders of the soft expansion (e.g. [34, 35, 36, 37]) to
higher spacetime dimensions (e.g. [38, 39]), and also to other theories (e.g. [40, 41, 42]) by
many others 1. The IR triangles are not just about the mathematical equivalence among
the three things already known because the IR triangles are universal equivalences valid
for many theories including massless particles and there were a few theories in which all
corners of the triangle were fully understood. In fact, the insight from the viewpoint of
the infrared triangle has led to the many discoveries of new corners in many different
theories in the last several years, for example, see [35, 34, 42, 37, 36]. Furthermore, the
application goes beyond just finding the new corners of the triangles. The investigation
of asymptotic symmetries had led to many interesting applications to various directions:
flat space holography [43, 44, 45, 46], black hole information paradox [33, 47, 48], and IR
finite S-matrix [49, 50]. In particular the last one, construction of IR finite S-matrix in
gauge theories, is one of our main motivation for pursuing the infrared physics.

The study of infrared dynamics involving the soft particles has played the important role
in quantum field theory (QFT) and collider physics. As suggested by the soft theorems

1We have just referred to relatively old references here because there are too many. We will refer to
the references directly related to our works in the later chapters.
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in QED and (perturbative) gravity, the emissions of infinite number of soft photon and
graviton are inevitable in any scattering process of charged particles. In other words,
charged particles should be accompanied by the cloud of soft photons and gravitons in
any scattering process. As a result, the S-matrix elements with a definite number of soft
particles have infrared divergences in QED and gravity. Therefore, such S-matrix is not
a well-defined object. This problem is sometimes referred as the infrared problem. There
are two possible prescriptions for curing this problem: the inclusive formalism and the
dressed state formalism. Here I will review the two prescriptions and their problems very
briefly in the following.

The first one, the inclusive formalism, has been used as a standard prescription. In
this formalism, observables are the inclusive transition probabilities that are given by sum
over all the possible transition probabilities with emitted soft particles compatible with
energy resolution of the detector. As is well known, the inclusive transition probabilities
give finite results (at least for charged particles with definite momenta) and have been
consistent with the experimental data so far. However, the S-matrix remains ill-defined
in this formalism. Again, the origin of this problem would be the fact that charged
particles are not accompanied by any clouds of soft particles. More concretely, we use
free states, which are not surrounded by any cloud of soft particles, as the asymptotic
states of charged particles. This seems unnatural or even illegal because the interactions
mediated by photons and gravitons are long-range forces that cannot be ignored even
when the charged particles are very far apart from each other.

The second one, the dressed state formalism, is a main subject in this thesis. This
formalism tries to cure the S-matrix by using the modified asymptotic states surrounded
by the cloud of soft particles, called dressed states. In other words, this formalism tries
to compute the inclusive quantity at the level of S-matrix, instead of the transition prob-
ability. Our hope is that the S-matrix with properly constructed dressed states will give
IR finite results and describes the scattering processes with hopefully higher precision. A
dressed state was first introduced in the work by Chung [51] in 1965. The dressed state,
which we call the Chung’s dressed state, for a single electron with momentum pµ = (Ep, ~p)
is given by

|p〉Ch = exp
{
− 1

2

∑
l=1,2

∫
λ

d̃3k|S(l)(k)|2
}

exp
{∑
l=1,2

∫
λ

d̃3kS(l)(k)a(l)†(k)
}
b†(p)|0〉 (1.1.2)

with

S(l)(k) =
ep · ε(l)(k)

k · p (1.1.3)

where kµ = (ω,~k) is a four-momentum of a photon and ε
(l)
µ (k)(l = 1, 2) is the transverse

polarization vectors of a photon. The measure d̃3k is the Lorentz invariant measures for

the integration of the spatial momentum which is defied as d̃3k ≡ d3k
(2π)32ωk

, and λ is the
photon mass introduced as an IR cutoff that is taken to zero at the end of the calculation.
a(l)†(k) and b†(p) are the creation operators for a photon and an electron, respectively, and
|0〉 is a Fock vacuum. The electron in Chung’s dressed state is surrounded by the coherent
photon cloud. He computed the S-matrix for Chung’s dressed states and showed that all
the IR divergences are canceled out at all orders of perturbative expansion in the S-matrix.
This was a rather surprising observation. However, the function S(l)(k) for k > 0 can be
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chosen in any manner which makes the integral in (1.1.2) convergent as k → ∞ because
Chung’s dressed states were given just by requiring to cancel out the infrared divergences.
Therefore, these states do not have the ability to predict real scattering processes due
to the non-specification of the hard momentum part of the dressing. After the Chung’s
discovery, Faddeev and Kulish in 1970 derived another version of dressed states by solving
the infrared QED dynamics [52]. The dressed state, nowadays called the Faddeev-Kulish
(FK) dressed states, is given by

|p1, · · · , pN〉FK = lim
t→±∞

eR(t)eiΦ(t,ts)|p1, · · · , pN〉 (1.1.4)

with

R(t) ≡
∑

e

∫
d̃3p ρ(~p)

∫
d̃3k

pµ

p · k
[
aµ(~k)e

i p·k
Ep

t − a†µ(~k)e
−i p·k

Ep
t
]
, (1.1.5)

Φ(t, ts) = − e
2

4π

∫
d̃3p d̃3q : ρ(~p)ρ(~q) :

p · q√
(p · q)2 −m4

sgn(t) ln
|t|
ts
, (1.1.6)

where eρ(~p) ≡ e(b†(~p)b(~p) − d†(~p)d(~p)) is the charge density operator for electrons and
positrons 2, and |p1, · · · , pN〉 is a Fock state of electrons and positrons with the momenta
p1, · · · , pN . If we extract the soft momentum region k ∼ 0 for the dressing operator
(1.1.5), the operator takes the form

Rsoft ∼
∑

e

∫
d̃3p ρ(~p)

∫
soft

d3k

(2π)3(2ω)

pµ

p · k
[
aµ(~k)− a†µ(~k)

]
, (1.1.7)

because e
i p·k
Ep

t ∼ 1 at k ∼ 0. This reproduces the cloud of soft photons used in Chung’s
dressed state (1.1.2). Once this approximation is justified, the IR finiteness of the S-matrix
for the F-K dressed states follows from the proof by Chung. However, we need more careful
analysis for the complete understanding of the contributions from the dressing factors.
In addition, the contribution of the hard momentum region (k > 0) of the photon cloud
(1.1.5) to physical observables is still not clear. Futhermore, Faddeev and Kulish argued
in [52] that the dressed state in (1.1.4) is not gauge invariant because the state does not
satisfy the Gupta-Bleuler condition. In order to make the state gauge invariant, they
modified the dressed state by adding new terms in the dressing factor (1.1.5). However,
such ad-hoc modification seemed unnatural because the dressed state (1.1.4) was derived
from the QED dynamics. These problems in the dressed formalism should be resolved
towards the complete formulation of the IR finite S-matrix theory.

Recently, one important relation between the IR divergences in S-matrix and the
asymptotic symmetry was pointed out in [49]. In [49], it was argued that the appear-
ance of IR divergences in the conventional S-matrix is a consequence of the conservation
of the charges associated with the asymptotic symmetries. This relation strongly sug-
gests that the asymptotic symmetry is one of the key ingredients for the construction of
IR finite S-matrix.

2b(†)(p) and d(†)(p) is the annihilation (creation) operator for an electron and a positron, respectively.
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1.2 Summary of the author’s results

We present the following results in this thesis:

(I). The asymptotic symmetry gives the charges that are conserved between
the asymptotic future and past. [in Chapter 2]

We derive the charges associated with the asymptotic symmetry in QED defined on
the asymptotic Cauchy slices. We also show that the charges can have nontrivial
values for physical solutions and the charges are conserved between the asymptotic
future and past Cauchy slices by analyzing the asymptotic behaviors of classical
fields and confirming that the contribution from the spatial infinity to the charge
conservation vanishes.

(II). The asymptotic symmetry is a physical symmetry in the canonical quan-
tization and also in the BRST quantization. [in Chapter 2]

We show that the charges that generate the asymptotic symmetry act on the phys-
ical Hilbert space nontrivially both in the canonical quantization and in the BRST
quantization, although the symmetry is a local symmetry.

(III). Equivalence between the soft photon theorem and the asymptotic sym-
metry at subleading order. [in Chapter 2 & Chapter 4]

We find that the subleading photon theorem is equivalent to the charge conservation
in massive scaler QED. We also find the relation between the conserved charge and
the subleading component of the charge of asymptotic symmetry.

(IV). The F-K dressed state is gauge invariant. [in Chapter 5]

We show that the F-K dressed state (1.1.4) is gauge invariant by finding the BRST
condition incorporating the asymptotic interaction and showing that the F-K dressed
state satisfies the condition.

(V). The F-K dressed state carries the asymptotic charges for the classical
free charged particles with their relativistic Coulomb fields. [in Chapter 5]

We show that the dressing operator in F-K dressed state carries asymptotic charge,
and the eigenvalue is given by the classical asymptotic charge for the classical free
charged particles with their relativistic Coulomb fields.This result leads to the quan-
tum analog of the electromagnetic memory effect.

These results are mainly based on the following two author’s works in collaboration with
Sotaro Sugishita:

[53] H.Hirai and S.Sugishita,

“Conservation Laws from Asymptotic Symmetry and Subleading Charges in QED”,

JHEP 07 (2018) 122.

[54] H.Hirai and S.Sugishita,

“Dressed states from gauge invariance”, JHEP 06 (2019) 023.
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The result (I), (II), (III) are based on [53] and the result (IV) is based on [54].

1.3 Organization of this thesis

In the first three chapter, the fundamental results about the asymptotic symmetries,
the soft theorems, and the memory effects are shown and their relationships are also
discussed. In Chapter 2, we first explain the definition of the physical symmetry and
the trivial symmetry, and then show that the asymptotic symmetry in QED is physical
symmetry both in the classical theory and in the quantum theory. In Chapter 3, we
review the definition of S-matrix, the soft photon theorem and the infrared divergence.
Chapter 4 starts with the review of the equivalence between the asymptotic symmetry
and the leading soft photon theorem. After that, we derive the charge whose conservation
law is equivalent to the subleading soft photon theorem. In Chapter 5, we treat the
construction and the properties of the asymptotic states for IR finite S-matrix and also
discuss its relation to asymptotic symmetry. We conclude with further discussion in
Chapter 6.
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Chapter 2

Asymptotic symmetry

2.1 Physical symmetry and trivial symmetry

Symmetry is one of the most fundamental concepts in physics. Why are symmetries so
important? Mostly, it is because symmetries constrain the property of dynamics or char-
acterize the states of the system under consideration. For classical systems, the existence
of a symmetry gives a conserved charge as a consequence of the Noether’s theorem. The
conservation law of the charge constrains the dynamics of the observables in the system.
For example, a time translation symmetry in a system of multiple particles constrains
the motion of the particles in such a manner that the total energy of the particles do
not change during the time evolution, or in other words, the physical solutions can be
characterized by the total energy. Also in quantum systems, a symmetry of Hamiltonian
gives a conserved charge and it constrains the observables of the system. More generally,
the constraint from a symmetry is given by the Ward-Takahashi identity. For example, if
a system has a translation symmetry, the correlation functions are restricted to the func-
tions that are invariant under the translation of the positions of fields. Once we recognize
a symmetry in a system, it tells us nontrivial information of the observables and states in
the system. In this sense, it would be natural to call a transformation a physical symme-
try if it gives a nontrivial constraint to the theory. According to the definition, most of
gauge (local) transformations are not physical symmetries both in classical theories and
in quantum theories. Before explaining the reason for it, we first review some basic things
about symmetry in classical theories.

Suppose we have a local conserved current Jµ in a theory. By integrating ∂µJ
µ = 0

over a closed spacetime region B with boundary Σ (Σ = ∂B), we can define a charge
Q(Σ) as

Q(Σ) ≡
∫
B

dV ∂µJ
µ =

∫
Σ

dSµJ
µ. (2.1.1)

This charge is trivially zero because of ∂µJ
µ = 0. Since we can freely change the spacetime

region B in (2.1.1), the charge Q(Σ) does not depend on the closed surface Σ, i.e.

Q(Σ) = Q(Σ′) (2.1.2)

holds for any closed surface Σ′. The conventional conservation of charges between different
time slices follows from (2.1.1) by taking Σ as follows. Take Σ as a closed surface composed
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of the three surfaces, ΣF , ΣR, ΣI . ΣF and ΣI are the spatial surfaces at t = tF and t = tI
with the radius 0 ≤ r ≤ R, respectively. ΣR is the timelike surface at r = R with
tI ≤ t ≤ tF . Then the conservation of charge in (2.1.1) gives

0 = Q(ΣF ) +Q(ΣR)−Q(ΣI), (2.1.3)

with Q(Σa) =
∫

Σa
dSµJ

µ where we choose dSµ as the future-directed surface element when
the surface is spacelike. In particular, Q(ΣR) is given by

Q(ΣR) = R2

∫ tF

tI

dt

∫
d2Ω Jr(t, R, Ω̂), (2.1.4)

where Ω̂ is a two-dimensional angular coordinate. Here, we usually drop this terms by
assuming that the amplitude of the current falls off rapidly enough as r →∞. Under the
assumption of limR→∞Q(ΣR) = 0, (2.1.3) gives

Q(tF ) = Q(tI) (2.1.5)

where Q(tF ) = limR→∞Q(ΣF ) and Q(tI) = limR→∞Q(ΣI) are the charges on the time
slices at t = tF and t = tI , respectively.

2.2 Classical asymptotic symmetry

Let us define the classical asymptotic symmetry group (cASG) as 1

cASG =
classical allowed gauge transformations

classical trivial gauge transformations
. (2.2.1)

Here, the classical allowed gauge transformations are any gauge transformations whose
charges (generators) have well-defined and nontrivial values. The classical trivial gauge
transformations are the ones whose charges (generators) are zero. Under this definition,
we will see that nontrivial charges have one-to-one correspondence with the asymptotic
symmetries.

Let’s see what happens for the conservation of charges for gauge symmetries. Consider
QED for concreteness. The Lagrangian is

LQED = −1

4
FµνF

µν + iψ̄ /Dψ −mψ̄ψ, (2.2.2)

with /Dψ = γµ(∂µψ + ieAµψ). The gauge symmetry is the following local U(1) transfor-
mation,

ψ(x)→ eieε(x)ψ(x) , ψ̄(x)→ e−ieε(x)ψ̄(x) , Aµ(x)→ Aµ(x) + ∂µε(x). (2.2.3)

with an arbitrary function ε(x). The Noether current for this transformation is

Jµ = F µν∂νε+ jµmatε, (2.2.4)

where jµmat = ψ̄γ0ψ is the matter current density for U(1) global symmetry. The local
current conservation ∂µJ

µ = 0 is guaranteed by the equation of motion (∂µF
µν = −jνmat)

1Here, A/B is the quotient group of A by B.
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and the conservation of the matter current (∂µj
µ
mat = 0). If we set ε(x) to be constant,

the the above current reduces to the U(1) global current, since ∂νε vanishes. Using the
equation of motion, we can write the current in the form of total derivative as

Jµ = ∂ν(F
µνε). (2.2.5)

Then the charge on a time slice Σ is given by

Q[ε] =

∫
d3ΣµJµ(x)

=

∫
d3x

(
~∂ε(x) · ~E(x) + ε(x)j0

mat(x)
)

(2.2.6)

=

∫
d3x∂ν

(
F 0ν(x)ε(x)

)
= lim

r→∞

∫
d2Ω r2F 0r(x)ε(x) . (2.2.7)

Here, we know that the radial component of the electric field, F 0r(x), generally falls off
like r−2 so as to have a finite amount of the charge. Therefore, if we choose ε(x) such
that it falls off enough rapidly as r →∞, the charge vanishes, Q[ε] = 0, for any physical
configurations. In this case, the conservation law is trivial in the sense that all physical
solutions trivially satisfy the constraint. (In other words, we cannot use the charge to
characterize physical solutions.) We call such gauge transformations trivial (or small)
gauge transformations. In contrast, if ε(x) behaves like r0 at spatial infinity, Q[ε] can
have nontrivial finite value. We call such transformations large gauge transformations.
The global symmetry is a special case of the large gauge symmetry because the charge in
(2.2.7) reduces to the global U(1) charge in the case of ε =constant.

In (2.2.7), we can see that the charge depends on the gauge parameter only by the
value at R =∞. Therefore, two large gauge transformations generated by two gauge pa-
rameters with the same values at R =∞ are identified as the same asymptotic symmetry
transformation, even though they have different values at R <∞.

We have seen that the charge in (2.2.7) can have a nontrivial value for a large gauge
parameter ε. However, it does not necessarily lead to the usual charge conservation
between arbitrary different time slices. As already mentioned, Q(ΣR) = 0 with R = ∞
must vanish in order for the usual charge conservation (2.1.5) to hold. In the case of
global U(1) transformation, Q(ΣR) in (2.1.4) with R =∞ for the current (2.2.4) is given
by

lim
R→∞

Q(ΣR) = lim
R→∞

R2

∫ tF

tI

dt

∫
d2Ω [F rν∂νε+ jrmatε] = 0 . (2.2.8)

Here, we have used limR→∞ j
r
mat = 0 because the matter current is localized at the position

of the charged particles, and also ∂νε = 0 for the global transformation. Thus

Q(tF ) = Q(tI) (2.2.9)

holds for the global symmetry. For the general large gauge transformations, we should
be careful about the charge conservation laws because whether Q(ΣR) = 0 with R = ∞
vanishes or not is nontrivial. From now, we will study the charge conservation between
infinitely past and future Cauchy slices because our purpose to study the asymptotic
symmetry is to study the properties of S-matrix that is defined as the transition amplitude
between two asymptotic states on infinite past and future. In order to do that, we will
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review the asymptotic structure of Minkowski spacetime in the next section and study
the charge conservation between asymptotic regions in Section 2.4.

2.3 Asymptotic structure of Minkowski spacetime and

useful coordinates

In this section, we review the asymptotic structures of Minkowski spacetime and introduce
several kinds of coordinates that are useful to study the dynamics of massive and massless
fields at the asymptotic past and future. To talk about the asymptotic regions, introducing
the Penrose diagram is very useful. Because the Minkowski spacetime has infinite volume,
the asymptotic regions like t→ ±∞ surface can not be visualized easily. Therefore, it is
useful to scale the spacetime to some spacetime with finite volume so that we can draw
the entire spacetime diagram on my thesis. The Penrose diagram of a spacetime is a
diagram of a spacetime that is obtained by scaling the original spacetime in a way that
the scaled spacetime has finite volume and all light-rays propagate at ±45 degree in the
diagram. The Penrose diagram of the Minkowski spacetime is given by the right figure
in Fig.2.1. The red lines correspond to the trajectories of massless point particles (or
the trajectories of the wave fronts of massless waves) and green lines correspond to the
trajectory of a massive point particle (or of the wave front of massive wave). We typically
have five kinds of asymptotic regions that have different qualitative features as follows;

• future timelike infinity (i+): place where massive particles reach as t→∞.

• future null infinity (I+): place where massless particles reach as t→∞.

• spacelike infinity (i0): place where any particles can not reach and only long range
forces, like Coulomb force and gravitational force, can exist.

• past null infinity (I−): place where massless particles come from as t→ −∞.

• past timelike infinity (i−): place where massive particles come from as t→ −∞.

In other words, the past/future timelike infinity is the Cauchy slice at the infinite past/future
for the massive particles, and the past/future null infinity is the Cauchy slice at the infinite
past/future for the massless particles.

The standard Minkowski coordinates are given by

ds2 = −dT 2 + dR2 +R2γABdΩAdΩB , (2.3.1)

where ΩA (A = 1, 2) can be any coordinate of a unit two-dimensional sphere with a metric
γAB. This coordinate are not useful ones to analyze the physics around the asymptotic
regions due to the following reasons. First, both i± and I± are the region with t = ±∞,
so we can not deal with them separately in the constant-T surface in (2.3.1). Secondly,
I± can not be parametrized properly by T and R because both R and T are infinite on
I+. Therefore we will use the following coordinates to study the physics around each
asymptotic region.
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I+

I�
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i+

i0
I+
�

I�
+

u

v

Figure 2.1: The left diagram is the usual Minkowski spacetime diagram, while the right diagram
is the Penrose diagram of the Minkowski space. Every point in both diagrams corresponds to
S2 (except for r = 0), since the angular directions are not represented. In both diagrams, the
green lines represent the trajectories of massive point particles, while the red lines represent the
trajectories of massless point particles. The grey regions represent the effective regions where
the scatterings occur.

The coordinates for i±

• (τ, ρ,ΩA) coordinates.

The coordinates (τ, ρ,ΩA) with the Minkowski line element,

ds2 = −dτ 2 + τ 2
[ dρ2

1 + ρ2
+ ρ2γABdΩAdΩB

]
, (2.3.2)

are useful for focusing on the physics around the timelike infinity i+ These coordinates can
be obtained by the following coordinate transformation from the Minkowski coordinate
in (2.3.1),

τ 2 = T 2 −R2 , ρ =
R√

T 2 −R2
. (2.3.3)

For τ 2 > 0, the constant-τ hypersurfaces are 3-dimensional hyperbolic surfaces H3 (or
Euclidean AdS3). For τ 2 < 0, the hypersurfaces are three-dimensional de Sitter space
dS3.

For later convenience, we introduce the following notation for τ > 0,

ds2 = −dτ 2 + τ 2 hαβdσ
αdσβ, (2.3.4)

where σα = (ρ,ΩA) are the coordinates of the unit 3-dimensional hyperbolic space H3
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Figure 2.2: The left diagram is the usual Minkowski spacetime diagram, while the right diagram
is the Penrose diagram of the Minkowski space. In both diagram, the green lines represent the
constant-ρ surfaces, while the red lines represent the constant-τ surfaces.

with the line element

hαβdσ
αdσβ =

dρ2

1 + ρ2
+ ρ2γABdΩAdΩB. (2.3.5)

The reason why these coordinates are useful is the following. Solving (2.3.3) inversely
for τ > 0, we have

T = ±τ
√

1 + ρ2 , R = τρ . (2.3.6)

The second equation in (2.3.3) can be rewritten as

R = ±
√

ρ2

1 + ρ2
T , (2.3.7)

where 0 ≤
√

ρ2

1+ρ2 ≤ 1. This means that the constant-ρ line corresponds to the trajectory

of a massive particle with the constant velocity v = ±
√

ρ2

1+ρ2 , which is the asymptotic

trajectory of massive particle as |t| → ∞. In other words, ρ has one-to-one correspondence
to the trajectory of a massive particle, therefore ρ is a natural coordinate for parametrizing
the spacetime region that massive particles reach as t→∞. In (2.3.6), we can easily see
that τ → ∞ with the fixed ρ corresponds to T → ∞. Therefore τ = ∞ surface spanned
by (ρ,ΩA) corresponds to the future timelike infinity. The constant-τ hypersurfaces and
the constant-ρ hypersurfaces are presented in Figure 2.2.

The surface element on the constant-τ hypersurface is given by

dΣi+ ≡ dρd2Ω
√−g = d3στ 3

√
h = dρd2Ω

τ 3ρ2√γ√
1 + ρ2

(2.3.8)
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We define an infinitesimal vector field dΣi+µ as

dΣi+µ = n(i+)
µ dΣi+ with n(i+)

µ = δµτ , (2.3.9)

where n
(i+)
µ is defined as the unit vector orthogonal to the constant-τ surface. The metric

in the matrix representation is given by

gµν =

 −1 0 0

0 τ2

1+ρ2 0

0 0 τ 2ρ2γAB

 , gµν =

 −1 0 0

0 1+ρ2

τ2 0
0 0 1

τ2ρ2γ
AB

 . (2.3.10)

The nonzero components of the Christoffel symbols2 are given by

Γτρρ = − τ

1 + ρ2
, ΓτAB = τρ2γAB , Γρτρ =

1

τ
, Γρρρ =

ρ

1 + ρ2
, (2.3.11)

ΓρAB = −(1 + ρ2)ργAB , ΓAτB =
1

τ
δAB , ΓAρB =

1

ρ
δAB , ΓA

′

AB = Γ̃A
′

AB, (2.3.12)

where Γ̃A
′

AB is the Christoffel symbols on unit S2 defined as

ΓA
′

AB ≡
1

2
γA
′B′ (∂AγB′B + ∂BγB′A − ∂B′γAB) . (2.3.13)

The coordinates for I±

To study the asymptotic behavior of massless fields in Minkowski spacetime, it is useful
to introduce the retarded coordinate u and the advanced coordinate v,

u = T −R , v = T +R . (2.3.14)

The constant-u line corresponds to

R(T ) = T − u , (2.3.15)

which is the outgoing trajectory of a massless particle with R(0) = −u. Therefore,
the retarded coordinate u is a natural coordinate that spans the future null infinity I+.
Similarly, The v = constant line corresponds to

R(T ) = −T + v , (2.3.16)

which is the incoming trajectory of a massless particle with R(0) = v. Then the advanced
coordinate v spans the past null infinity I−.

We will use the following coordinates to study the physics around I±.

• (u, r,ΩA) coordinates.

The line element is given by

ds2 = −du2 − 2dudr + r2γABdΩAdΩB . (2.3.17)

This coordinates are related to the Minkowski coordinates in (2.3.1) by the coordinate
transformations, u = T −R , r = R .

2∇βV α = ∂βV
α + ΓαρβV

ρ,∇βVα = ∂βVα + ΓραβVρ.
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Figure 2.3: Both diagrams are the Penrose diagram of the Minkowski spacetime. The red
lines represent the constant-u surfaces in the left diagram and constant-v surfaces in the right
diagram. In both diagrams, the constant-r surfaces are represented by the green lines.

The matrix representation of the metric (2.3.17) is given by

gµν =

 −1 −1 0
−1 0 0
0 0 r2γAB

 , gµν =

 0 −1 0
−1 1 0
0 0 r−2γAB

 . (2.3.18)

The nonzero components of the Christoffel symbols are given by

ΓuAB = rγAB , ΓrAB = −rγAB, ΓArB =
1

r
δAB , ΓA

′

AB = Γ̃A
′

AB . (2.3.19)

The future null infinity (I+) is parametrized by (u,ΩA) with r = ∞. The infinitesimal
surface element of the constant-r surface is given by dΣI+ ≡ r2√γdud2Ω. We define a
infinitesimal vector field dΣI+µ as

dΣI+µ ≡ n(I+)
µ dΣI+ with n(I+)

µ = δrµ , (2.3.20)

where n
(I+)
µ is a unit normal vector orthogonal to the constant-r surface.

• (v, r,ΩA) coordinates.

The metric is give by

ds2 = −dv2 + 2dvdr + r2γABdΩAdΩB . (2.3.21)

These coordinates are related to the Minkowski coordinates in (2.3.1) by the coordinate
transformations, v = T +R , r = R . The matrix representation of the metric is given by

gµν =

 −1 1 0
1 0 0
0 0 r2γAB

 , gµν =

 0 1 0
1 1 0
0 0 r−2γAB

 . (2.3.22)
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The past null infinity (I−) is parametrized by (v,ΩA) with r = ∞. The infinitesimal
surface element of the constant-r surface is given by dΣI− ≡ r2√γdvd2Ω. We define a
infinitesimal vector field dΣI−µ as

dΣI−µ ≡ n(I−)
µ dΣI− with n(I−)

µ = δrµ , (2.3.23)

where n
(I−)
µ is a unit normal vector orthogonal to the constant-r surface.

Finally, we introduce the two places I+
− and I−+ (see Figure 2.1). The I+

− is defined as
the infinite past of future null infinity which is parametrized by ΩA with u = −∞, r =∞,
and the I−+ is defined as the infinite future of past null infinity which is parametrized by
ΩA with v = +∞, r =∞. Note that I+

− , I−+ , and i0 are not the same places. For example,
I+
− can be reached by first taking the limit r →∞ with fixed u and then taking the limit
u → −∞, whereas i0 can be reached by taking the limit r → ∞ with fixed T . In fact,
we will see that the Coulomb field at I+

− and the one at I−+ are not the same but those
are generally related to each other, and the relation is important for the conservation of
charges associated with the asymptotic symmetry.

2.4 Classical asymptotic charge

In this section, we study the charge associated with the classical asymptotic symmetry
on the asymptotic Cauchy slices, i+ ∪ I+ and i− ∪ I−, in QED.

We first study the charge on future infinity, which is given by integrating the local
gauge current in (2.2.4) on i+ ∪ I+:

Q+[ε] ≡ Q+
H [ε] +Q+

S [ε] . (2.4.1)

Here,

Q+
H [ε] ≡

∫
i+
dΣi+µ (F µν∂νε+ εjµmat) , (2.4.2)

Q+
S [ε] ≡

∫
I+

dΣI+µF
µν∂νε . (2.4.3)

where we have dropped the matter current term in Q+
S [ε] because the matter current

does not reach the null infinity. We call Q+
H [ε] the hard charge and Q+

S [ε] the soft charge.
Plugging (2.3.9) into (2.4.2), we have

Q+
H [ε] =

∫
i+
dΣi+ (F τν∂νε+ εjτmat) (2.4.4)

Plugging (2.3.23) into (2.4.3), we have

Q+
S [ε] =

∫
I+

dΣI+F rν∂νε

= lim
r→∞

∫
dud2Ω

√
γr2

[
F ru∂uε+ F rB∂Bε

]
. (2.4.5)

Here, we study the fall-off behaviors of field strength for physical solutions. By the
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“physical solutions”, we mean that field strength is a solution of Maxwell equation and
have nonzero but finite amounts of conserved charges e.g. energy, angular momentum,
and electric charge. The electromagnetic energy momentum tensor is given by

T µν =
−1

2π

[
F µρF ν

ρ −
1

4
gµνF ρλFρλ

]
. (2.4.6)

The electromagnetic energy flux on I+ is then given by∫
I+

dΣI+µT
µ
νδ
ν
u = lim

r→∞

∫
dud2Ω

√
γr2 T ru

= lim
r→∞

∫
dud2Ω

√
γ
γAB

2π
[FuAFuB − FrAFuB] (2.4.7)

To have a finite amount of the energy flux, the field strength should fall off as

γAB [FuAFuB − FrAFuB] ∼ O(1) as r →∞ . (2.4.8)

The total momentum flux of the radial direction on I+ is then given by∫
I+

dΣI+µT
µ
νδ
ν
r = lim

r→∞

∫
dud2Ω

√
γr2 T rr

= lim
r→∞

∫
dud2Ω

√
γ
r2

4π

[
FurFru +

γAB

r2
FrAFrB

]
(2.4.9)

To have finite amount of the momentum flux, the field strength should fall off as

Fur ∼ O(r−1) , FrA ∼ O(1) (2.4.10)

Moreover, in order to have finite amount of electric charge, the radial component of electric
field should fall off as r−2,

F tr = F ur = −Fur ∼ O(r−2) (2.4.11)

Here, we rewrite the above fall-off conditions for field strengths as the ones for gauge
fields. We expand gauge fields by power series of r as

Aµ(u, r,Ω) =
∞∑
n=0

A
(n)
µ (u,Ω)

rn
(2.4.12)

From now, we work in the Lorenz gauge by imposing

∇µAµ = 0 . (2.4.13)

In this gauge, there are residual gauge transformations 3 that are generated by the gauge
parameter ε(x) satisfying

2ε(x) = 0 . (2.4.14)

3The residual gauge transformations are defined as gauge transformations such that the transformed
fields satisfy the gauge fixing condition.
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This condition is written as follows in (u, r,ΩA) coordinates,

0 = ∇µA
µ =

1√
g
∂µ (
√
gAµ)

= ∂uA
u +

1

r2
∂r
(
r2Ar

)
+

1√
γ
∂B
(√

γAB
)

= −∂uAr + ∂r(Ar − Au) +
2

r
(Ar − Au) +

γAB

r2
DAAB , (2.4.15)

where we have used the metric given in (2.3.18). Plugging (2.4.12) into the above con-
straint, we have

∂uA
(0)
r = 0 , −∂uA(1)

r + 2(A(0)
r − A(0)

u ) = 0 (2.4.16)

Moreover, plugging (2.4.12) into (2.4.11), we have

∂uA
(0)
r = 0 , ∂uA

(1)
r = 0 . (2.4.17)

Combining (2.4.16) and (2.4.17), we find

∂uA
(0)
r = 0 , ∂uA

(1)
r = 0 , A(0)

r − A(0)
u = 0 . (2.4.18)

Further constraints do not come from the fall-off conditions (2.4.8) and (2.4.10). Now we
express the soft charge defined in (2.4.5) in term of the gauge fields. Under the fall-off
conditions of (2.4.18), the field strengths can be expanded as

F rA =
γAB

r2
(FuB − FrB) =

γAB

r2
(∂uAB − ∂BAu − ∂rAB + ∂BAr)

=
γAB

r2
∂uA

(0)
B +O(r−3) , (2.4.19)

where the second and the third terms cancel each other because of the third condition in
(2.4.18). The residual gauge parameter can be expanded as (A.0.13):

ε(u, r,Ω) = ε(0)(Ω) +
u log 2r

|u|

2r
∆S2ε(0)(Ω) +O(r−1). (2.4.20)

See Appendix A for the detail of the expansion. Then inserting (2.4.19) and (2.4.20) into
the soft charge (2.4.5), we find

Q+
S [ε] =

∫
dud2Ω

√
γγAB ∂Aε

(0)∂uA
(0)
B . (2.4.21)

This expression coincides with the soft charge that was first introduced in [4, 6].

2.5 Classical charge conservation associated with the

asymptotic symmetry

In this section, we illustrate the existence of an infinite number of asymptotically conserved
charges associated with large gauge transformations in the classical electromagnetism.
(Precise meaning of “asymptotically conserved charges” will be given later.) We represent
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the matter current for massive charged particles by jµmat, which is the source in Maxwell’s
equation ∂νF

νµ = −jµmat. Here, we assume that the charged particles behave as free
particles except in a small region where they scatter, and we ignore the back-reaction.
We also impose the initial condition that there is no radiation before the scattering of
charged particles just for simplicity.

The conserved current for the gauge transformation with gauge parameter ε(x) is given
by (2.2.4), which is

Jµ = F µν∂νε+ jµmatε. (2.5.1)

In order to study whether Q(ΣR) = 0 at R =∞ vanishes or not, we first consider a closed
surface with a finite area in Minkowski spacetime and then take the limit that makes the
area infinite. Consider the integration of the current conservation equation ∂µJ

µ = 0 over
the region represented in Fig. 2.4. The region is parametrized by two parameters T and U ,

Figure 2.4: The region where we consider the current conservation. The directions along
the two-dimensional sphere S2 are suppressed in this figure. The blue lines represent tra-
jectories of massive charged particles, which scatter at a small region. The red line repre-
sents a direction of the radiation emitted from this scattering. The region is parametrized
by two parameters T and U . The parameter T is so large that all of the given massive
particles go through the surface Σi and Σf , and U is also so large that any radiation
coming from the scattering region passes through Σ+.

and has five boundaries, Σf ,Σi,Σ+,Σ−,Σ0. Σf and Σi are time slices at the distant future
and past, t = ±(T +U) with 0 ≤ r ≤ T −U . Σ0 is a timelike surface r = const. = T +U
with −T + U < t < T − U . Σ± are null surfaces where ±t + r = const. = 2T . We set
the parameter T to be so large that the massive matter current jµmat vanishes on Σ± and
Σ0. We also set U to be so large that any electromagnetic radiation coming from the
scattering region goes through the null surface Σ+. Later, we take the limit first T →∞
and then U →∞ such that Σ± becomes the future and the past null infinities I±, where
I+ (I−) is parametrized by the retarded (advanced) time u = t − r (v = t + r) and the
angular coordinates ΩA. The ordering of the limits, T →∞ before U →∞, is crucial for
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our derivation of the memory effect formulae. The integration of the current conservation
proves that the sum of the surface integral of the current over each boundary vanishes:

0 =

∫
dV ∂µJ

µ = Qf +Q+ +Q0 −Q− −Qi (2.5.2)

with

Qa ≡
∫

Σa

dSµJµ , (a = f, i, 0,+,−) , (2.5.3)

where we choose the surface element dSµ to be future-directed when the surface is spacelike
or null.

2.5.1 The asymptotic charge conservation and memory effect at
leading order

We now see that Q0, which is defined on Σ0 as

Q0 =

∫ T−U

−T+U

dt d2Ω
√
γr2Jr|r=T+U , (2.5.4)

vanishes in the limit T →∞ without the limit U →∞. As the current can be represented
as a total derivative Jr = ∂µ(F rµε), Q0 splits into the integrations over two spheres on
the future and the past boundaries of Σ0 as

Q0 =

∫
d2Ω
√
γr2Ftrε|t=T−U,r=T+U −

∫
d2Ω
√
γr2Ftrε|t=−T+U,r=T+U . (2.5.5)

Since any radiation cannot reach Σ0 due to our choice of the region, the field strength
Ftr is the Coulombic electric field created by free-moving charged particles before the
scattering. The behavior of the fields are analyzed in Appendix B. The leading term of
Ftr in the large T expansion is O(T−2), and the leading terms are represented as

lim
T→∞

r2Ftr(t, r,Ω)|t=T−U,r=T+U ≡ F
+(2)
tr (Ω) , (2.5.6)

lim
T→∞

r2Ftr(t, r,Ω)|t=−T+U,r=T+U ≡ F
−(2)
tr (Ω) . (2.5.7)

The important facts are that they are independent of U and they satisfy the antipodal
matching condition (see Appendix B.1) ,

F
+(2)
tr (Ω) = F

−(2)
tr (Ω̄) . (2.5.8)

where Ω̄ = (Ω̄1, Ω̄2) is the antipodal angle of Ω = (Ω1,Ω2) 4. We thus obtain

lim
T→∞

Q0 =

∫
d2Ω
√
γF

+(2)
tr (Ω)ε(0)(Ω)−

∫
d2Ω
√
γF
−(2)
tr (Ω)ε(0)(Ω̄) (2.5.9)

4The importance of this condition in the context of the asymptotic symmetry was first emphasized in
[31] (see also [55] for the detailed explanation).
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where we used the fact that ε(x) approaches ε(0)(Ω) near I+ and ε(0)(Ω̄) near I−. There-
fore, due to the matching condition (2.5.8), Q0 vanishes in the limit T →∞:

lim
T→∞

Q0 =

∫
d2Ω
√
γ[F

+(2)
tr (Ω)− F−(2)

tr (Ω̄)]ε(0)(Ω) = 0 . (2.5.10)

Thus in the limit T →∞, the conservation equation (2.5.2) indicates

lim
T→∞

(Qf +Q+) = lim
T→∞

(Qi +Q−) . (2.5.11)

The Qf and Qi are given by

Qf =

∫ T−U

0

drd2Ω
√
γr2(F ti∂iε+ jtmatε)|t=T+U , (2.5.12)

Qi =

∫ T−U

0

drd2Ω
√
γr2(F ti∂iε+ jtmatε)|t=−T−U . (2.5.13)

The field strength F ti in the above integrands is the Coulombic electric field created by
free-moving charged particles, since the radiation does not reach Σf and Σi. Thus Qf

and Qi are the usual gauge charges for free-moving charged particles and their Coulomb-
like potential in the three-dimensional ball with radius T − U at time t = ±(T + U).
In particular, if ε is a constant, Qf and Qi equal to the total electric charges (×ε).
Eq. (2.5.11) just means that such gauge charges do not conserve for the nontrivial large
gauge parameters ε(x) unless we include the contributions from the radiation Q±.5 Let us
call the conservation laws (2.5.11) “asymptotic conservation”, since it only holds in the
limit T →∞. Since we can take arbitrary functions ε(0)(Ω) on unit two-sphere, we have
an infinite number of the asymptotic conserved charges.

Using the retarded time u = t− r, we can write Q+ as

Q+ =

∫ 2U

−2U

dud2Ω
√
γr2(F ru∂uε+ F rA∂Aε)|r=T−u/2 . (2.5.14)

In the large T limit, the integration region becomes the subregion −2U ≤ u ≤ 2U in I+.
Using the condition (2.4.18) and expansion (2.4.20), we obtain

lim
T→∞

Q+ =

∫ 2U

−2U

dud2Ω
√
γγAB∂uA

(0)
B ∂Aε

(0)

=

∫
d2Ω
√
γγAB[A

(0)
B (u = 2U)− A(0)

B (u = −2U)]∂Aε
(0) . (2.5.15)

On the other hand, for our setup or our initial condition, there is no radiation at Σ−, and
thus limT→∞Q− = 0. Therefore, we obtain

−
∫
d2Ω
√
γγAB[A

(0)
B (u = 2U)− A(0)

B (u = −2U)]∂Aε
(0) = lim

T→∞
(Qf −Qi) . (2.5.16)

This equation holds for any function ε(0)(Ω) on the two-sphere. It implies that the shift of

A
(0)
B on I+ is related to the change of the gauge charges between Qf and Qi.

6 In particular,

5A similar statement was given for the case without massive charged fields in [56].
6The Ω-independent part of the shift cannot be determined from this formula.
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when we perform the partial integration for the angular integral, (2.5.16) becomes∫
d2Ω
√
γγABε(0)[∂AA

(0)
B (u = 2U)− ∂AA(0)

B (u = −2U)] = lim
T→∞

(Qf −Qi) (2.5.17)

Moreover, if we define the local electric charge at timelike past and future infinity, ρi(Ω)
and ρf (Ω) for every angle Ω, by

Qi ≡
∫
d2Ω
√
γ ε(0)ρi(Ω) (2.5.18)

Qf ≡
∫
d2Ω
√
γ ε(0)ρf (Ω) , (2.5.19)

we find

γAB[∂AA
(0)
B (u = 2U)− ∂AA(0)

B (u = −2U)] = ρf (Ω)− ρi(Ω) (2.5.20)

This means that the total charge that has passed through the angle Ω after all particles
have left is memorized by the shift of γAB∂AA

(0)
B on I+ . This is called the electromag-

netic memory effect formula [57, 29, 30]. Note that the shift is gauge invariant although

γAB∂AA
(0)
B is not. Thus we have found the equivalence between charge conservation as-

sociated with the asymptotic symmetry and the electromagnetic memory effect.

If we take the limit U → ∞, the charge from the radiation (2.5.15) becomes the soft
charge given in (2.4.21),

Qlead,+
S ≡ −

∫
I+

dud2Ω
√
γγAB∂uA

(0)
B ∂Aε

(0). (2.5.21)

Although limT→∞Q− vanishes in our setup, if we consider the general situation where
electromagnetic radiation exists initially, limU→∞ limT→∞Q− becomes the soft charge
Qlead,−
S defined on I−. The Qf and Qi become the so called hard charges Qlead,±

H in
the limit. Note that the hard charges include not only matter currents but also the
contributions from the Coulombic electric field produced by the charged matters. We will
study the expression of those charges concretely in Section 2.8 and 2.9 (for example see
(2.8.8) and (2.9.76).)

In the limit U →∞, we thus obtain

Qlead,+
S +Qlead,+

H = Qlead,−
S +Qlead,−

H . (2.5.22)

We note again that the conservation laws (2.5.22) come from the fact that the charge on
spacelike infinity, limT→∞Q0, vanishes due to the antipodal matching condition. In other
words, the total asymptotic charge Qlead,+

S +Qlead,+
H is equal to the integral on two-sphere

at the past boundary of I+ at u = −∞ as

Qlead,+
S +Qlead,+

H = −
∫
I+
−

d2Ω
√
γF

+(2)
tr (Ω)ε(0)(Ω) , (2.5.23)

because the current Jµ is a total derivative, and Qlead,−
S +Qlead,−

H also equals to the integral
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on two-sphere at the future boundary of I− as

Qlead,−
S +Qlead,−

H = −
∫
I−+
d2Ω
√
γF

+(2)
tr (Ω)ε(0)(Ω̄) , (2.5.24)

which is equal to (2.5.23). We also remark that the surface Σ±∪Σf/i becomes the Cauchy

surface in the limit U →∞ after T →∞. Therefore, Qlead,±
S +Qlead,±

H is actually a charge
defined on the asymptotic Cauchy surface.

2.5.2 Asymptotic charge conservation and memory effect at sub-
leading order

We have seen that the current conservation equation (2.5.2) leads to the formula of the
leading memory effect (2.5.16) in the large T limit because the charge from spacelike
infinity, Q0, vanishes in the limit due to the antipodal matching. The subleading memory
effect can also be obtained by considering the corrections in the large T expansion.

We first consider the correction to Q+ defined as eq. (2.5.14). By using the formula
(A.0.13), we can expand the gauge parameter ε(x) on Σ+ in the large T limit as

ε(u, r = T − u/2,Ω) = ε(0)(Ω)− u log |u|
2T

2T
∆S2ε(0)(Ω) +O(T−1) , (2.5.25)

where ∆S2 is the Laplacian on the unit two-sphere. Note that the correction to ε(0)(Ω)
starts from O(T−1 log T ). In Appendix C, we give general expansions of radiation fields
which are compatible with this large gauge parameters. Using the expansions (2.5.25),
(C.0.1), (C.0.2) and (C.0.3), we find that the first correction to Q+ is O(T−1 log T ), and
Q+ takes the form

Q+ = −
∫ 2U

−2U

dud2Ω
√
γ∂uA

(0)
B γBA∂Aε

(0) − (Qlog
+ +Qlog′

+ )
log T

T
+O(T−1) , (2.5.26)

where the first term is just the leading soft charge (2.5.15), and the second term is the
first correction. Here, Qlog

+ and Qlog′
+ are given by

Qlog
+ =

1

2

∫ 2U

−2U

dud2Ω
√
γu∂uA

(0)
B γBA∂A∆S2ε(0)

= −1

2

∫ 2U

−2U

dud2Ω
√
γε(0)u∂u∆S2∇BA

(0)
B , (2.5.27)

Qlog′
+ = −1

2

∫ 2U

−2U

dud2Ω
√
γ
[(
A(1)
r +∇BA

(0)
B + 2C(1)

u

)
∆S2ε(0) + 2γAB

(
∂uC

(1)
A − ∂AC(1)

u

)
∂Bε

(0)
]
,

(2.5.28)

where ∇B denotes the covariant derivative on the unit two-sphere w.r.t. the metric γAB,
and the derivative with the upper index is defined as ∇A ≡ γAB∇B. The definition of
C

(1)
u , A

(1)
r and C

(1)
A are given in (C.0.1), (C.0.2) and (C.0.3).

On the spatially distant surface Σ0, the leading part of the charge Q0 in the large T
expansion is O(T−1) as shown in eq. (B.1.12) in Appendix B.1, and it does not have
any O(T−1 log T ) term. Thus the coefficient of T−1 log T is also conserved without the
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contribution from Σ0 like the leading memory. The contributions of the future and past
timelike infinities are extracted as

Qlog
f,i = lim

T→∞

T 2

log T

dQf,i

dT
. (2.5.29)

When we use these symbols, the finite U version of the subleading memory effect formula
takes the form

−1

2

∫ 2U

−2U

dud2Ω
√
γε(0)u∂u∆S2∇BA

(0)
B = −Qlog′

+ −Qlog
f +Qlog

i . (2.5.30)

In the limit U →∞, the subleading radiation charge Qlog
+ becomes

Qsub,+
S ≡ lim

U→∞
Qlog

+ = −1

2

∫
I+

dud2Ω
√
γε(0)u∂u∆S2∇BA

(0)
B , (2.5.31)

which agrees, up to a numerical factor, with the electric-type subleading soft charge in
[36], and it is shown that the charge also agrees with that in [35] by taking their vector
field Y A on unit two-sphere as Y A ∝ ∇Aε(0). We also represent the other contributions
in the limit U →∞ including the initial radiation on Σ− by7

Qsub,−
S ≡ lim

U→∞
Qlog
− , Qsub,+

H ≡ lim
U→∞

(Qlog′
+ +Qlog

f ) , Qsub,−
H ≡ lim

U→∞
(Qlog′
− +Qlog

i ) .

(2.5.32)

We then obtain the subleading charge conservation

Qsub,+
S +Qsub,+

H = Qsub,−
S +Qsub,−

H . (2.5.33)

Unlike the leading memory effect, this equation does not directly relate a shift of the
radiation field to the change of the configuration of hard charges. Nevertheless, the
existence of a nonzero shift Qsub,+

S −Qsub,−
S is known for causing a permanent displacement

of the position of a probe charged particle [58]. Thus this is the memory effect. It can
also be detectable as a permanent change of the direction of the spin of a heavy probe
particle with the magnetic moment [59].

Before closing this section, we briefly comment on the sub-subleading order. We have
seen that the charge Q0 on spacelike infinity is O(T−1), which is the same order as the
sub-subleading corrections to Qa (a = +,−, f, i). Therefore, we conclude that there is no
asymptotic conservation at the sub-subleading order without including the contribution
from Q0 (see also similar discussions in [36, 60]).8 This conclusion is probably related to
the fact that there is no sub-subleading soft photon theorem in QED as we will see in
Section 3.4(see also [61] for the discussion that the soft expansion of amplitudes is not
associated with a universal soft factor at the sub-subleading order).

7As shown in Appendix B.2, Qlog′
+ generally diverges in the limit U →∞, and Qlog

f also does. Never-

theless, the combination (Qlog′
+ +Qlog

f ) is finite as far as we know.
8The arguments that there is no subsubleading charge were given in [36, 60]. However, the reason seems

to be different from ours. Their reason is that the sub-subleading charge has an inevitable divergence. On
the other hand, from our construction, the charges for the large gauge transformations are “conserved”
if we take account of the contributions from spacelike infinity.
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2.6 Asymptotic symmetry in quantum field theory

In this section, we argue about the asymptotic symmetry and its charge in quantum field
theories. Here, we define the asymptotic symmetry transformations (AST) in QFT as

AST =
allowed gauge transformations

trivial gauge transformations
. (2.6.1)

The allowed gauge transformations are any gauge transformations generated by the well-
defined charge. The allowed gauge transformations are the ones generated by the charge
that acts trivially on any physical states in the given theory.

In classical cases, the charge associated with the gauge symmetry was just given by
integrating the local gauge current on a Cauchy slice. In contrast, the procedure become
subtle in quantum theories due to the following reason. In quantum case, we first need to
quantize the theory. In the case of gauge theories, the quantization becomes subtle due to
the existence of gauge (redundant) degrees of freedom, and we need to fix them to quantize
the theory. There are two well-known procedures for the quantization of gauge theories:
the canonical quantization and the BRST quantization. In both procedures, we need to
add some new terms to the original Lagrangian to eliminate the gauge degrees of freedom.
More concretely, we change the Lagrangian by introducing Lagrangian multipliers in the
canonical quantization. In the BRST quantization, we add BRST exact terms. After the
gauge fixing, the gauge symmetries of the original Lagrangian are no longer symmetries
and there is no Noether current of gauge symmetries. Therefore we need different ways
to find the conserved charge associated with the asymptotic symmetries. We explain
asymptotic symmetries and their charges in QED, first in the canonical quantization in
the next section, and in BRST quantization in Section 2.9.

2.7 Asymptotic symmetry in canonical quantization

Consider QED again for concreteness. The Lagrangian for QED (2.2.2) has the following
two first class constraints (see Appendix D for the derivation),

φ0 ≡ Π0(x) = 0, (2.7.1)

φ1 ≡ ∂iΠ
i(x)− j0

mat(x) = 0, (2.7.2)

where Π0 = −F 00 = 0 and Πi = −F 0i = −Ei are the canonical conjugate variables for A0

and Ai, respectively. In quantum theory, the first class constraints are imposed on any
physical state |ψ〉 as

Π0(x)|ψ〉 = 0, (2.7.3)(
∂iE

i(x)− j0
mat(x)

)
|ψ〉 = 0. (2.7.4)

These conditions make the physical states gauge invariant because the first class con-
straints are the generators of gauge transformations. The second constraint (2.7.4) is
called the Gauss law constraint. Multiplying (2.7.4) by ε(x) and integrating over space,

27



we get

0 =

∫
d3x ε(x)

(
∂iE

i(x)− j0
mat(x)

)
|ψ〉 (2.7.5)

= lim
r→∞

∫
d2Ω r2ε(x)Er(x)|ψ〉 −

∫
d3x

(
∂iε(x)Ei(x) + ε(x)j0

mat(x)
)
|ψ〉, (2.7.6)

where we have performed a partial integration in the second equality. Thus we find for
any physical state |ψ〉,

Q[ε]|ψ〉 = lim
r→∞

∫
d2Ω r2ε(x)Er(x)|ψ〉, (2.7.7)

where Q[ε] was defined in (2.2.7).

The trivial (small) gauge transformations are the gauge transformations such that ε(x)
falls off so rapidly that the righthand side in (2.7.7) vanishes:

Q[ε]|ψ〉 = 0 (2.7.8)

The trivial gauge transformation actually does not act on anything, in other words, we
can call it “do-nothing transformations”. Therefore it is not the physical transformation.
Once the physical Hilbert space is restricted to an invariant subspace for the trivial gauge
transformations, physical observables are also restricted to the set of invariant opera-
tors under the transformations due to Elitzur’s theorem. Therefore, the Ward-Takahashi
identity for the trivial gauge transformation is

〈Q[ε](· · · )〉 = 〈δ(· · · )〉 = 0, (2.7.9)

where (· · · ) can be any physical observables. All physical observables trivially satisfy this
equation by definition, so the Ward-Takahashi identity actually constraints nothing.

On the contrary, the large gauge transformations can act on physical states by (2.7.7)
nontrivially as

Q[ε]|ψ〉 = lim
r→∞

∫
d2Ω r2ε(x)Er(x)|ψ〉 6= 0 (2.7.10)

Thus the physical states can be characterized by these charges. Note that we have the
charges for each choice of the large gauge parameter ε. However these charge operators
do not act on any observable O with a finite spatial support because

〈ψ|[Q[ε],O]|ψ〉 = lim
r→∞

∫
d2Ω r2ε(x)〈ψ|[Er(x),O]|ψ〉 = 0 , (2.7.11)

where we have used the causality for observables in the second equality. Therefore, these
charges can not be changed by acting any quasilocal operators. (See [62] for the rigorous
proof.) Thus the charges associated with the large gauge transformations decompose the
Hilbert space into superselection sectors. In the next section, we give more systematic
definition for the asymptotic symmetries.
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2.8 Charges associated with asymptotic symmetry in

QED

The Gauss law constraint in (2.7.4) can be written in (τ, ρ,ΩA) coordinates defined in
(2.3.2) as

0 =
(
∇iE

i − j0
mat

)
|ψ〉 (2.8.1)

=

(
∇ρE

ρ +
1

τ 2ρ2
∇AE

A − j0
mat

)
|ψ〉 , (2.8.2)

where we used the metric in (2.3.10) and ∇AE
A ≡ γAB∇AEB. The Gauss law constraint

in (2.7.4) can be written in the retarded coordinates as

0 =
(
∇iE

i − j0
mat

)
|ψ〉 (2.8.3)

=

(
∇rE

r +
1

r2
∇AE

A − j0
mat

)
|ψ〉 , (2.8.4)

where we have used E0 = g0µE
µ = −Eu in the final equality. Multiplying (2.8.3) by ε(x)

and integrating it over I+, we have

0 = lim
τ→∞

∫
i+
d3Σi+ ε

(
∇ρE

ρ +
1

τ 2ρ2
∇AE

A − j0
mat

)
|ψ〉

+ lim
r→∞

∫
I+

d3ΣI+ε

(
∇rE

r +
1

r2
∇AE

A

)
|ψ〉 (2.8.5)

where we have dropped the matter current term in the second term, since the massive
matter current asymptotically goes to the time-like infinity and can not reach to the
null infinity. Performing the partial integrations and using ∇rE

r = ∂rE
r , ∇ρE

ρ =
∂ρE

ρ + 1
τ
Eτ + ρ

1+ρ2E
ρ, we obtain

Q+[ε]|ψ〉

=

[
lim
ρ→∞

lim
τ→∞

∫
d2Ω

ρ2
√
γ(Ω)√

1 + ρ2
τ 3 εEρ

+ lim
u→∞

lim
r→∞

∫
d2Ω

√
γ(Ω) r2εEr − lim

u→−∞
lim
r→∞

∫
d2Ω

√
γ(Ω) r2εEr

]
|ψ〉 , (2.8.6)

where Q+[ε] is defined as

Q+[ε] ≡ Q+
H [ε] +Q+

S [ε] (2.8.7)

with

Q+
H [ε] ≡

∫
i+
d3Σi+

(
(∂ρε)E

ρ +
1

τ 2ρ2
(∂Aε)E

A + εj0
mat

)
, (2.8.8)

Q+
S [ε] ≡

∫
I+

d3ΣI+

(
(∂rε)E

r +
1

r2
(∂Aε)E

A

)
. (2.8.9)
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This is the charge that generates the asymptotic symmetry with the gauge parameter ε
on the future asymptotic infinity, which is the quantum analog of the classical asymptotic
charge given in (2.4.1). In the right hand side of (2.8.6), the first term and the second
term must be canceled out with each other because the boundary of i+ and the boundary
of I+ at u =∞ are the same spacetime surfaces, and the outward vectors orthogonal to
each surface have opposite direction. Therefore, (2.8.6) becomes

Q+[ε]|ψ〉 = − lim
u→−∞

lim
r→∞

∫
d2Ω

√
γ(Ω) r2εEr|ψ〉

= −
∫
I+
−

d2Ω
√
γ(Ω) r2ε+Er|ψ〉 , (2.8.10)

where we have defined ε+(Ω) as

ε+(Ω) ≡ lim
u→−∞

lim
r→∞

ε(u, r,Ω) , (2.8.11)

It is important that the action of the asymptotic charge on physical states, given by
(2.8.10), only involves ε+(Ω). The charges with the gauge parameter ε+(Ω) = 0 act on
any physical state trivially and the charges with the gauge parameter ε+(Ω) 6= 0 act
on physical states nontrivially in general. Therefore, The latter ones are the physical
asymptotic charges and the transformations generated by the charges are the asymptotic
symmetries.

In the case of ε = constant, the asymptotic charge in (2.8.7) reduces to

Q+[ε] = ε lim
τ→∞

∫
i+
dΣi+ j0

mat , (2.8.12)

which is the usual global U(1) charge. The right hand side in (2.8.10) also reduces to the
total electric charge, since there exist only Coulomb forces at I+

− .

Repeating the same argument for the asymptotic past infinity, we have

Q−[ε]|ψ〉 = lim
v→∞

lim
r→∞

∫
d2Ω

√
γ(Ω) εr2Er|ψ〉

=

∫
I−+
d2Ω

√
γ(Ω) εr2Er|ψ〉 , (2.8.13)

where the asymptotic charge on the past infinity is given by

Q−[ε] ≡ Q−H [ε] +Q−S [ε] (2.8.14)

with

Q−H [ε] ≡
∫
i−
d3Σi−

(
(∂ρε)E

ρ +
1

τ 2ρ2
(∂Aε)E

A + εj0
mat

)
, (2.8.15)

Q−S [ε] ≡
∫
I−
d3ΣI−

(
(∂rε)E

r +
1

r2
(∂Aε)E

A

)
. (2.8.16)
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The conservation law for these asymptotic charges is

〈β|Q+[ε]S|α〉+ 〈β|T
[
Q0[ε]S

]
|α〉 = 〈β|SQ−[ε]|α〉 (2.8.17)

where Q0[ε] is the charge defined on i+. Here, we assume that the antipodal matching
condition also holds in QED and the second term in the left hand side of (2.8.18) vanishes.
We will see that this assumption has a support if we consider the dressed state formalism
in Section 5.7. The asymptotic charges then conserve between the future infinity and the
past infinity:

〈β|Q+[ε]S|α〉 = 〈β|SQ−[ε]|α〉 . (2.8.18)

We will see that this conservation law is equivalent to the soft photon theorem in the next
chapter.

2.9 Asymptotic symmetry in BRST formalism

We have seen why the large gauge transformations are physical symmetries in the canon-
ical quantization. However, we often quantize gauge theories by the BRST quantization
rather than the canonical quantization, especially for computing S-matrixes. In this sec-
tion, we argue that the asymptotic symmetry in QED is physical symmetry based on the
BRST formalism, although they are näıvely parts of the gauge symmetry. We first review
the covariant quantization of QED in the BRST formalism in Subsection 2.9.1. Next,
we look at the asymptotic behaviors of gauge fields and ghost fields in Subsection 2.9.2.
Finally, we see that the charges associated with asymptotic symmetry act on physical
Hilbert space nontrivially under the BRST condition.

2.9.1 BRST quantization in QED and the correct BRST charge

In this subsection we review the covariant quantization of massive scalar QED9 in the
BRST formalism10, and discuss the symmetries.

The Lagrangian in the Feynman gauge is given by

LQED = LEM + Lmatter + LGF + LFP , (2.9.1)

where

LEM = −1

4
FµνF

µν , Lmatter = −1

2
Dµφ

†Dµφ−
1

2
m2φ†φ , (2.9.2)

LGF = −1

2

(
∇µA

µ
)2
, LFP = i∂µc̄∂µc. (2.9.3)

Here, φ is a massive charged scalar field11 with charge e where Dµφ = ∂µφ− ieAµφ, and

9Although the arguments of this section can be straightforwardly applied to any kind of charged
particles such as massive or massless fermions and scalars, we explicitly write the expressions of a massive
scalar because we use them in Section 4.1.

10In QED, the ghost sector is completely decoupled. Nevertheless, we use the BRST formalism to
discuss what the physical states are.

11In this paper, we consider only a single species of charge for simplicity. The generalization to many
species is straightforward.
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c, c̄ are ghost fields 12. LGF +LFP 13 is a BRST exact term, which is added to the original
Lagrangian to eliminate the gauge symmetry. The equation of motions are given by

2Aµ = −jµ , 2c = 0 , 2c̄ = 0 . (2.9.4)

The canonical conjugate fields for each Aµ, c, c̄ are given by

Π0 =
∂L

∂(∂0A0)
= −∇µA

µ, Πi =
∂L

∂(∂0Ai)
= −F 0

i, (2.9.5)

π(c) =
∂L

∂(∂0c)
= −i∂0c̄, π̄(c) =

∂L
∂(∂0c̄)

= i∂0c. (2.9.6)

The Hamiltonian is then given by free part H0 and the other interacting part V :

H = H0 + V , (2.9.7)

where

H0 = HEM +Hmatter +Hghost, (2.9.8)

with14

HEM =

∫
d3x

[
1

2
ΠµΠµ + (∂iΠ0)Ai + (∂iΠi)A

0 +
1

4
FijF

ij

]
, (2.9.9)

Hghost = i

∫
d3x(π̄(c)π(c) − ∂ic̄∂ic), (2.9.10)

andHmatter is the free part of the Hamiltonian of matter fields. The equal-time (anti)commutation
relations for the gauge fields and the ghost fields are given by

[Aµ(~x),Πν(~y)] = iηµνδ
3(~x− ~y) , {c(~x), π(c)(~y)} = {c̄(~x), π̄(c)(~y)} = iδ3(~x− ~y). (2.9.11)

In the interaction picture, the equation of motions for them are given by free ones;
2AIµ(x) = 0. The general solutions of the equation of motions that can be expanded
by the Fourier expansions are given by

AIµ(x) =

∫
d̃3k
(
aµ(~k)eikx + a†µ(~k)e−ikx

)
,

cI(~x) =

∫
d̃3k

[
c(~k)eikx + c†(~k)e−ikx

]
, (2.9.12)

c̄I(~x) =

∫
d̃3k

[
c̄(~k)eikx + c̄†(~k)e−ikx

]
,

where kµ is massless on-shell momenta and d̃3k is the Lorentz invariant measures for
the integration of the spatial momentum which is defied as d̃3k ≡ d3k

(2π)32ωk
. The mode

expansions of the above operators in the Schrödinger picture can be given by taking t = ts

12Both c and c̄ are Hermitian fields. This Hermicity is required to make the Lagrangian Hermite.
13We already integrated out the Nakanishi-Lautrup field in LGF .
14 HEM given by (2.9.9) is different from the Hamiltonian obtained in a canonical way from Lagrangian

(2.9.1) by a total derivative term. We have eliminated the boundary term, and then this HEM commutes
with the BRST charge without a boundary term. This difference is not important except in sec 5.7.
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in the above expansion. The conjugate fields in (2.9.5) are then given by

ΠI
0(~x) = −i

∫
d̃3k

[
kµaµ(~k)eikx − kµa†µ(~k)e−ikx

]
, (2.9.13)

ΠI
i (~x) = −i

∫
d̃3k

[
(kia0(~k) + ωai(~k))eikx − (kia

†
0(~k) + ωa†i (

~k))e−ikx
]
, (2.9.14)

πI(c)(~x) = −
∫

d3k

(2π)3

1

2

[
c̄(~k)eikx − c̄†(~k)e−ikx

]
, (2.9.15)

π̄I(c)(~x) =

∫
d3k

(2π)3

1

2

[
c(~k)eikx − c†(~k)e−ikx

]
, (2.9.16)

The commutation relations (2.9.11) lead to the following equal-time (anti)commutation
relations between annihilation and creation operators:

[aµ(~k), a†ν(
~k′)] = (2π)3(2ωk)ηµνδ

(3)(~k − ~k′) , (2.9.17)

{c(~k), c̄†(~k′)} = i(2ω)(2π)3δ3(~k − ~k′), {c̄(~k), c†(~k′)} = −i(2ω)(2π)3δ3(~k − ~k′). (2.9.18)

The Hilbert space is just the Fock space HFock.

This Lagrangian has two kinds of symmetries: the residual gauge symmetry and the
BRST symmetry [63, 64] . The residual gauge symmetry is

δgφ(x) = ieε(x)φ(x) , δgφ
†(x) = −ieε(x)φ†(x) , δgAµ(x) = ∂µε(x), (2.9.19)

with

2ε(x) = 0. (2.9.20)

These residual symmetries are usually regarded as “gauge” redundancies, but we will
argue in the next subsection 2.9.2 that parts of them associated with the large gauge
parameters (A.0.4) are physical symmetries, which impose the nontrivial constraints on
the S-matrices as the Ward-Takahashi identities. Using the Lagrangian (2.9.1), we have
the Noether current associated with (2.9.19);

jµε (x) = jµS(x) + jµH(x), (2.9.21)

where

jµS(x) = ∇νε(x)F µν(x) +∇µε(x)∇νA
ν(x) , (2.9.22)

jµH(x) = ε(x)jµmat(x) , with jµmat(x) = ie
(
Dµφ†(x)φ(x)− φ†(x)Dµφ(x)

)
. (2.9.23)

The current is different from (2.5.1) due to the gauge fixing term. The charge that
generates the above symmetry on a spatial surface Σ is given by

Q[ε] =

∫
Σ

dSµ jµε (x) . (2.9.24)

The asymptotic charge on the future infinity is then given by

Q+[ε] = Qi+ [ε] +QI+ [ε] (2.9.25)
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with

Qi+ [ε] =

∫
i+
d3Σi+µ j

µ
ε (x) , QI+ [ε] =

∫
I+

d3ΣI+µ j
µ
S(x) . (2.9.26)

On the other hand, the BRST symmetry (in the case of scaler matter) is given by

δgφ(x) = iec(x)φ(x) , δgφ
†(x) = −iec(x)φ†(x) , δgAµ(x) = ∂µc(x) . (2.9.27)

We have the charge that generates the BRST symmetry called the BRST charge. The
BRST charge on a Minkowski time slice (x0 = t) is given by

QBRST =

∫
d3x

[
−(∂µc)Π

µ + cj0
]

=

∫
d3x

[
iπ̄(c)Π

0 − (∂ic)Π
i + cj0

]
. (2.9.28)

It is important that the last term involving the matter current is needed to generate the
BRST transformation (2.9.27) correctly, in particular,

[iQBRST , φ] = iecφ, (2.9.29)

although the term has been sometimes missed. We will see that the term becomes im-
portant for the gauge invariance of the dressed state in Section 5.5. This BRST charge
commutes with the total Hamiltonian and the matter current

[QBRST , H] = 0 , [QBRST , j
µ(~x)] = 0. (2.9.30)

The BRST charge on general Cauchy slice Σ is given by

QBRST =

∫
Σ

dSµ
[
(∂0c)g

µ0∇νA
ν + (∂ic)F

µi + cjµ
]
. (2.9.31)

When we take Σ as the usual time slice (t = const.) and substitute (2.9.12) into (2.9.28),
the BRST charge is expressed as

QI
BRST (t) = −

∫
d̃3k

[
c(~k){kµa†µ(~k) + e−iωtj̃0I(t,−~k)}+ c†(~k){kµaµ(~k) + eiωtj̃0I(t,~k)}

]
,

(2.9.32)

where j̃0I(t,~k) is the Fourier transformation of j0I(t, ~x) defined as

j̃Iµ(t,~k) =

∫
d3x e−i

~k·~xjIµ(t, ~x). (2.9.33)

In order to ensure that transition amplitudes are independent of the choice of gauge fixing,
we need to impose the BRST condition [65] on the physical Hilbert space:

QBRST |ψ〉 = 0 , (2.9.34)

where QBRST (= QI
BRST (ts)) is the BRST charge in the Schrödinger picture and |ψ〉 is any

physical state at t = ts. We will see in Section 5.5 that the BRST condition for the past
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asymptotic state |ψ〉0 for |ψ〉 15 is given by

lim
t→−∞

QI
BRST (t)|ψ〉0 = 0 . (2.9.35)

We usually assume that the ghost sector of physical Hilbert space is always the vacuum
state that is annihilated by c(~k), since the ghost fields are completely decoupled from the
other fields in QED. Moreover, in the conventional scattering theory, we assume that the
QED interaction can be ignored in the past and future infinities. Under these assumption,
the BRST condition for the photon sector is equivalent to the Gupta-Bleuler condition
[66, 67]:

kµaµ(~k) |ψ〉 = 0 , (2.9.36)

which ensures that the longitudinal modes of gauge fields do not contribute to the dy-
namics of QED. We will see in the next section that the above Gupta-Bleuler condition
is modified once the effect of QED interaction in the asymptotic regions is incorporated.

The subspace annihilated by QBRST is represented by Hclosed. Hclosed is not the same as
the physical Hilbert space from the following reason. For any state |ξ〉 ∈ HFock, QBRST |ξ〉
is included in Hclosed because of Q2

BRST = 0. The set of such states is called the BRST
closed subspace, which is defined as

Hclosed ≡ {QBRST |ξ〉 | |ξ〉 ∈ HFock} . (2.9.37)

However, all the state inHclosed are orthogonal to any state inHclosed because of the BRST
condition (2.9.34). Therefore, two closed states that differs by a BRST closed state as

|ψ′〉 = |ψ〉+ iλQBRST |ξ〉 , (2.9.38)

have the same inner products with all the physical states. It means that such two states
are physically indistinguishable. The true physical space is obtained by identifying such
equivalent states and thus given by the cohomology of QBRST :

Hphys ≡ Hclosed/Hexact . (2.9.39)

Therefore, the BRST transformation,

|ψ〉 → |ψ′〉 = eiλQBRST |ψ〉 = |ψ〉+ iλQBRST |ψ〉 , (2.9.40)

is a trivial transformation, since it just transforms a physical state into an identical
physical state.

In order for observable to be independent of the above BRST transformation, any
physical operator O acting on Hphys must satisfy the BRST invariant condition, namely

δBRSTO =
[
iλQBRST ,O

]
= 0 . (2.9.41)

We have observed that the BRST symmetry is not physical symmetry but trivial symme-
try because the BRST charge acts on any physical state and observable trivially.

15The definition of the asymptotic state is explained in Chapter 3.

35



2.9.2 Large r expansion of fields in QED

In this subsection, we consider the asymptotic behaviors of gauge fields to study the
expression of the BRST charge and the charge associated with large gauge symmetry on
the future and past infinities.

To investigate the asymptotic behaviors near future null infinity I+, we use the retarded
coordinates (u, r,ΩA). Near the asymptotic region I+, the radiation fields Aµ(x) would
be well approximated by the free field which has the free wave expansion (2.9.12). The
free field can be expressed in (u, r, θ, ϕ) coordinates as

Aµ(x) =

∫
d3k

(2π)32ωk

[
aµ(~k)e−iωku−iωkr(1−k̂·x̂) + (h.c.)

]
=

1

16π3

∫ ∞
0

dωkωk

∫ π

0

dθ sin θ

∫ 2π

0

dϕ
[
aµ(~k)e−iωku−iωkr(1−cos θ) + (h.c.)

]
, (2.9.42)

where we have used the polar coordinates (ωk, θ, ϕ) for ~k and performed the integration
of ϕ in the second line. Here we use the saddle point approximation at large r with fixed
u. The saddle point in θ space is given by

0 =
∂

∂θ
(ωku− ωkr(1− cos θ)) = −ωkr sin θ ⇒ θ = 0, π . (2.9.43)

At the saddle point at θ = π, the phase factor in (2.9.42) becomes ωku − 2ωkr. In this
case, the phase factor diverges as r → ∞ and the integration over ωk is expected to be
zero due to the Riemann-Lebesgue Lemma. The fact that the saddle point at large r
is given at θ = 0 justifies the intuitive picture that every wave can be seen as coming
from the center of space when we observe the waves at r = ∞. Then by expanding the
integrand in (2.9.42) around θ = 0 and we find

Aµ(x) = Ā(0)
µ +

1

8π2

∑
α=±

∫ ∞
0

dωkωk

[
aµ (ωkx̂) e−iωku

∫ π

0

dθθe−iωkr
2/2 + (h.c.)

]
+O

(
r−2
)

= Ā(0)
µ −

i

8π2r

∫ ∞
0

dω
[
aµ(ωx̂)e−iωu − (h.c.)

]
+O(r−2) , (2.9.44)

where Ā
(0)
µ is the exact zero mode which is given by

Ā(0)
µ ≡ lim

ω→0

1

16π3

∫
d2Ωk

√
γ(Ωk)

[
ωkaµ(~k) + (h.c.) .

]
(2.9.45)

We have separated the zero mode from other parts because the saddle point approximation
at large r is not valid for ωk = 0 mode in (2.9.42) 16. Accordingly, each component of the

16One may consider Ā
(0)
µ = 0, since it contains limω→0 ωkaµ(~k). However, we should be careful because

aµ(~k) is not a c-number but an operator. In fact, aµ(~k) gives a factor of order 1
ωk

when it acts on

out-states as we can see in the leading soft photon theorem (3.4.19). In this case, limω→0 ωkaµ(~k) gives
an order-one contribution in the S-matrix.
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gauge field in the (u, r,ΩB) coordinates is obtained as follows:

Au(x) =
∂xµ

∂u
Aµ(x) = Ā(0)

u +
A

(1)
u (u,Ω)

r
+O(r−2 log r), (2.9.46)

Ar(x) =
∂xµ

∂r
Aµ(x) = Ā(0)

r +
A

(1)
r (u,Ω)

r
+O(r−2 log r), (2.9.47)

AB(x) =
∂xµ

∂ΩB
Aµ(x) = rA

(−1)
B (Ω) + A

(0)
B (u,Ω) +O(r−1 log r) , (2.9.48)

with

A
(−1)
B (Ω) = ∂Bx̂

iĀ
(0)
i , A(0)

u = A
(0)
t , A(0)

r = A
(0)
t + x̂iA

(0)
i ,

A(1)
u (u,Ω) = − i

8π2

∫ ∞
0

dω
[
au(ωx̂)e−iωu − (h.c.)

]
,

A(1)
r (u,Ω) = − i

8π2

∫ ∞
0

dω
[
ar(ωx̂)e−iωku − (h.c.)

]
, (2.9.49)

A
(0)
B (u,Ω) = − i

8π2

∫ ∞
0

dω
[
aB(ωx̂)e−iωu − (h.c.)

]
,

where each annihilation operator is defined as

au(~k) = at(~k) , ar(~k) = qµaµ(~k) , aB(~k) = ∂Bx̂
iai(~k) , qµ ≡ (1, x̂) . (2.9.50)

Note that the first term in (2.9.48) diverge as r → ∞. However, it gives the finite
contribution when we compute the gauge (BRST) invariant operator like FrB.

We now see that the leading O(1) components A
(0)
B constitute the Cauchy data on the

future null infinity. In other words, the two components correspond to the two physical
degrees of freedom of photons.

We now consider the fall-off condition for the ghost field. Since the ghost field satisfies
the free equation of motion

2c(x) = 0, (2.9.51)

the saddle point approximation at large r for (2.9.12) can be used in the same way for
the gauge fields. We then obtain

c(u, r,Ω) = c(0) +
c(1)(u,Ω)

r
+O(r−2 log r) , (2.9.52)

where

c(0) = lim
ω→0

1

16π3

∫ π

0

d2Ωk

√
γ(Ωk)

[
ωkc(~k) + (h.c.)

]
(2.9.53)

c(1)(u,Ω) = − i

8π2

∫ ∞
0

dωk
[
c(ωkx̂)e−iωku − (h.c.)

]
+O(r−2 log r) . (2.9.54)
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2.9.3 Asymptotic BRST condition and asymptotic symmetry

Now we study the BRST charge on the future null infinity. Writing the BRST charge
(2.9.31) on the future null infinity, we obtain

Q
(+)
BRST = Q

(+)
BRST,H +Q

(+)
BRST,S . (2.9.55)

Here, the Q
(+)
BRST,H is given by

Q
(+)
BRST,H =

∫
i+
dΣi+µ

[
(∂0c)g

µ0∇νA
ν + (∂ic)F

µi + cjµmat
]
. (2.9.56)

If we adopt the assumption that the QED interaction can be ignored in the past and
future infinities, any electromagnetic field does not exist in i+. Then we can drop the first
term and second terms in (2.9.56) and we obtain

Q
(+)
BRST,H =

∫
i+
dΣi+cj

τ
mat. (2.9.57)

The Q
(+)
BRST,S is given by

Q
(+)
BRST,S =

∫
I+

dΣI+µ

[
(∂0c)g

µ0∇νA
ν + (∂ic)F

µi + cjµmat
]

=

∫
I+

dΣI+

[
∂uc∇νA

ν + (∂ic)F
ri
]
, (2.9.58)

where we have dropped the term cjµ in the first line since the matter fields do no reach
I+ and have also used dΣI+µ = dΣI+δrµ and the metric given in (2.3.18) in the second
line. Here, ∇νA

ν and (∂ic)F
ri can be written as

∇νA
ν = −∂uAr + ∂r(Ar − Au) +

2

r
(Ar − Au) +

γAB

r2
DAAB (2.9.59)

(∂ic)F
ri = giµ(∂ic)F

r
µ =

γAB

r2
∂Ac (FrB − FuB) . (2.9.60)

Inserting above ones with the expansions (2.9.46)-(2.9.47) and (2.9.52) into (2.9.58), we
have

Q
(+)
BRST,S =

∫
dud2Ω

√
γ(Ω)

[
∂uc

(1)
(
∂uA

(1)
r + 2(A(0)

r − A(0)
u )
)]

=
1

64π2

∫
dωd2Ω

√
γ(Ω)ω2

[
c(ωx̂)a†r(ωx̂) + c†(ωx̂)ar(ωx̂)

]
− 1

4π2
(A(0)

r − A(0)
u )

∫
dωd2Ω

√
γ(Ω) lim

ω→0

[
c(ωx̂) + c†(ωx̂)

]
(2.9.61)

The BRST condition (2.9.34) for the photon sector is then equivalent to

∂uA
(+)(1)
r |ψ〉 = 0 ,

(
A(0)
r − A(0)

u

)
|ψ〉 = 0 . (2.9.62)
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where A
(+)(1)
r is the part of A

(1)
r which includes the annihilation operators. The first

condition is equivalent to

0 = ar(ωx̂) |ψ〉 = ωqµaµ(ωx̂) |ψ〉 , (2.9.63)

which is the Gupta-Bleuler condition with the identification of the photon momentum
with qµ(= (1, x̂)).

The BRST condition for the matter sector is given by

0 = Q
(+)
BRST,H |ψ〉 =

∫
i+
dΣi+cj

τ
mat |ψ〉 , (2.9.64)

where Q
(+)
BRST,H was given in (2.9.57). Now we focus on the falloff behaviors of c and jτmat

near i+. By (A.0.19), the ghost field c at i+ is given by

cH3(ρ,Ω) ≡ lim
τ→∞

c(τ, ρ,Ω) = c(0) . (2.9.65)

The fall-off behavior of jτmat is given by

jτmat(τ, ρ,Ω) =
jτ(3)(ρ,Σ)

τ 3
+O(τ−3−δ) , (δ > 0) . (2.9.66)

This fall-off behavior is required to have a finite amount of electric charge because the
global U(1) charge can be written as

Q =

∫
i+
dΣi+j

τ
mat = lim

τ→∞

∫
H3

d3στ 3
√
h jτmat . (2.9.67)

The fall-off behavior (2.9.66) can be derived by the saddle point approximation and
the jτ(3) can be determined (see Appendix E). Then plugging (2.9.65) and (2.9.66) into
(2.9.64), we obtain the BRST condition for the matter sector as

0 = Q
(+)
BRST,H |ψ〉 =

∫
H3

d3σ
√
h c(0)j

τ(3)
mat |ψ〉 . (2.9.68)

To satisfy this condition, we have two choices: c(0) |ψ〉 = 0 or j
τ(3)
mat |ψ〉 = 0. However, the

latter condition is too strong because it restricts all the physical states onto the sector
with zero U(1) charge. We thus impose

c(0) |ψ〉 = 0 , (2.9.69)

on the physical Hilbert space and the matter sector is not restricted by any nontrivial
BRST condition.

On the other hand, the charge associated with the large gauge transformation was given
by (2.9.25), which can be written as

Q+[ε] = Qi+ [ε] +Q+
I+ [ε] (2.9.70)

with

Qi+ [ε] =

∫
i+
dΣi+εj

τ
mat , QI+ [ε] =

∫
I+

dΣI+ [∂rε∇νA
ν + (∂µε)F

rµ] . (2.9.71)
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Let us rewrite the expansion of the gauge parameter (2.4.20) as

ε(u, r,Ω) = ε(0)(Ω) +
1

r
ε(1) +O(r−2) , (2.9.72)

where ε(1) takes the form of ε(1) = ε(1)′(u,Ω) log r + ε(1)′′(u,Ω). Plugging (2.9.59) and
(2.9.60) into (2.9.71), with the expansions (2.9.46)-(2.9.48), (2.9.52), and (2.9.72), we
obtain

Qi+ [ε] =

∫
H3

d3σ
√
h εH3j

τ(3)
mat (2.9.73)

QI+ [ε] =

∫
I+

dud2Ω
√
γ(Ω)

[
2∂uε

(1)
(
A(0)
u − A(0)

r

)
+ γAB∂Aε (FrB − FuB)

]
(2.9.74)

where εH3(σ) is the gauge parameter on i+ represented as (A.0.18). With the BRST
condition (2.9.62), Q(+)[ε] acts on the physical Hilbert space as

Q(+)[ε] |ψ〉 =
(
Qlead,+
H [ε(0)] +Qlead,+

S [ε(0)]
)
|ψ〉 (2.9.75)

where

Qlead,+
H [ε(0)] = Qi+ [ε] =

∫
H3

d3σ
√
h εH3j

τ(3)
mat , (2.9.76)

Qlead,+
S [ε(0)] = −

∫
I+

dud2Ω
√
γ(Ω) γAB∂Aε

(0)∂uA
(0)
B . (2.9.77)

We thus have obtained the leading hard charge Qlead,+
H [ε(0)] and the leading soft charge

Qlead,+
S [ε(0)], which were first introduced in [4, 6, 5]. We also have found in the BRST

formalism that the charge associated with the large gauge symmetry acts on physical states
nontrivially and the charge can be represented on the physical Hilbert space in the same
form as the asymptotic charge in the classical case (2.4.21). Therefore, the asymptotic
symmetry is also physical symmetry in the BRST formalism and gives the quantum
version of the classical asymptotic charge conservation. Performing the integration over
u in (2.9.77) gives the delta function of ω, then the soft charge can be expressed as 17

(2.9.49)

Qlead,+
S [ε(0)] =

1

8π
lim
ω→0

∫
d2Ω

√
γ(Ω) γAB∂Aε

(0)
[
ωaB(ωx̂) + ωa†B(ωx̂)

]
. (2.9.78)

We will use this expression when we show the equivalence between the leading soft theorem
and the asymptotic charge conservation in Section 4.1.

17We use
∫∞
0
f(ω)δ(ω) = 1

2 limω→0 f(ω).
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Chapter 3

Infrared divergences

In this chapter, we first review the S-matrix in quantum field theories. We then review
the soft photon theorems up to the subleading order. In the last section, we review the
infrared divergences of the conventional S-matrix in QED.

3.1 S-matrix

The S-matrix is the most fundamental quantity in scattering theories in quantum me-
chanics. In this section, we review how to construct the S-matrix in general.

First of all, in order to construct physical quantities which can be compared with
experimental outputs, we should ask what we are supposed to observe in the scattering
experiment of elementary particles. In typical scattering experiments, the basic situation
is the following. We first prepare some spatially separated incoming particles at a initial
time t = ti. After that, the particles approach to each other and scatter to various
directions due to the interactions between them. Finally, the particle detectors located
far enough away from where the scattering occurred, measure the momentum of each
outgoing particle at final time t = tf . By repeating the same scattering event, we construct
the probability distribution of momentum of each outgoing particle for a given initial
state. In the real experiments, the momenta of particles are basically determined by
observing the trajectory of each particle under an homogeneous magnetic field. The
solution of the classical equation of motion for a point particle with the electric charge e
gives p = eRB where R is the curvature radius of the trajectory and B is the strength of
the magnetic field, therefore observing the trajectories of each particle leads to determining
the momentum of each particle.

In these sequential procedures, there are important assumptions about the dynamics.
A crucial assumption is

Assumption I Asymptotically well localized wave;
The wave functions of incoming and scattered particles, enough before or after the
collision, are localized enough in space and far way from each other so that the
interaction between them can be neglected effectively.

When considering how to measure the momentum of particles in the real scattering ex-
periment, we need a stronger assumption,
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Assumption II Asymptotically classical point particle;
The wave function of incoming and scattered particles, enough before or after the
collision, are well localized in both spatial and momentum space (= uncertainty
between position and momentum is enough small when compared to the resolution
scale of the detector used in the experiment), and its expectation values of position
and momentum obey the classical equation of motions.

The assumption I is needed to observe the quantum wave effectively as a collection of
individual particles in which each particle has the dispersion relation of a single particle in
the form of Ep =

√
m2 + ~p2. Assumption II justifies the classical mechanism to determine

the momentum of the particles which was already mentioned above.

On the other hand, the dynamics of elementary particles is described by quantum field
theory in which the fundamental dynamical degrees of freedoms are fields. The fields
behave as waves and of course they are not identical to the particles that satisfy the
above assumptions. Therefore, we should specify the states describing such particles.
The physical system can be specified by all possible states and their dynamics, in other
words, the Hilbert space and the Hamiltonian of the system, (H, H). We then usually
define particles as the eigenstates of the Hamiltonian H and spatial momentum operators
~P with eigenvalues pµ = (Eα, ~pα),

H|α〉 = Eα|α〉 , ~P |α〉 = ~pα|α〉 , (3.1.1)

where α stands for all parameters characterizing the state: total momentum, relative
momentum of different d.o.f, spins, charges, etc. However, the quantum states with
definite momentum are not spatially localized waves, rather spread out all over the space
due to the uncertainty principle. Therefore, they are not the particles observed in the
scattering experiments because they do not satisfy the assumption I. Moreover, they do
not change at all during the time evolution because the time evolution is generated by
U(t) = e−iHt and it just gives the irrelevant over all phase eiEαt to |α〉. Therefore, they
are not the states describing the scattering processes that generally involve complicated
time evolutions. To satisfy the assumption, the wave must be the wave packet that is the
superposition of many waves with different momentum(=wave length).

|f〉 ≡
∫
dαf(α)|α〉 . (3.1.2)

where f(α) is a smooth function of α. In Schrödinger picture, the time evolution of this
state is given by

|f, t〉 = U(t, ts)|f〉 =

∫
dαe−iEα(t−ts)f(α)|α〉 . (3.1.3)

where ts is an arbitrary finite time at which the Schrödinger operators are defined. As-
sumption I is equivalent to assuming the dynamics such that the effect of interaction in
U(t) becomes weaker as the wave packets become well spatially separated from each other
as t→ ±∞. Let us express Uas(t) as a time evolution operator that generates the effective
time evolution with the weaker interaction after a long time has passed since the collision
and each wave packet become well separated. Let us define the asymptotic Hamiltonian
Has(t) as the Hamiltonian which generates Uas(t) by i∂tUas(t) = Has(t)Uas(t), and the
asymptotic Hilbert space Has as a Hilbert space within which Uas(t) can act.
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Then Assumption I means the existence of the in-state |f〉in and the out-state |f〉out
such that they approach the well-separated wave packets evolved by Uas(t, ts) as t→ ±∞
:

lim
t→−∞

U(t, ts)|f〉in = lim
t→−∞

∫
dαf(α)Uas(t, ts)|α〉as , (3.1.4)

lim
t→+∞

U(t, ts)|f〉out = lim
t→+∞

∫
dβf(β)Uas(t, ts)|β〉as , (3.1.5)

where |α〉as ∈ Has. By (3.1.2) and(3.1.3), the in-state and out-state can be written in
terms of the asymptotic states as∫

dαf(α)|α〉in = lim
t→−∞

U †(t, ts)Uas(t, ts)

∫
dαf(α)|α〉as , (3.1.6)∫

dβf(β)|β〉out = lim
t→∞

U †(t, ts)Uas(t, ts)

∫
dβf(β)|β〉as (3.1.7)

For brevity, we formally represent (3.1.6) and (3.1.7) as

|α〉in = lim
ti→−∞

Ω(ti)|α〉as , |β〉out = lim
tf→∞

Ω(tf )|β〉as (3.1.8)

where Ω(t) is the Møller 1operator defined as

Ω(t) ≡ U †(t, ts)Uas(t, ts) . (3.1.9)

Since what we observe as incoming and outgoing particles in the scattering experiments
is supposed to be the asymptotic wave packets in the form of

lim
t→−∞

|f, ti〉0 ≡ lim
t→−∞

∫
dαf(α)Uas(t, ts)|α〉0 (3.1.10)

lim
t→∞
|g, tf〉0 ≡ lim

t→∞

∫
dβg(β)Uas(t, ts)|β〉0 , (3.1.11)

the transition amplitude that the incoming particle evolves into the outgoing particle is
given by

out〈g|f〉in =

∫
dβ

∫
dαg(β)∗f(α)out〈β|α〉in . (3.1.12)

Therefore, the S-matrix defined as

Sβα ≡ 〈β|α〉out in (3.1.13)

is the fundamental constitute of the transition amplitudes of scattering particles. Defining
the S-operator as

S ≡ lim
tf→∞

lim
ti→−∞

Ω†(tf )Ω(ti) = lim
tf→∞

lim
ti→−∞

U †as(tf , ts)U(tf , ts)Uas(ti, ts) , (3.1.14)

we can write the S-matrix in terms of the asymptotic states as

Sβα ≡ 〈β|α〉out in = as〈β|S|α〉as . (3.1.15)

1Usually the Møller operator is defined as limt→∞Ω(t). However, let us call Ω(t) Møller operator.
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3.2 Conventional S-matrix

In the conventional scattering theory for the QED and the low energy gravity in four
dimensional Minkowski spacetime, we make an important assumption that the interaction
between charged particles can be neglected in asymptotic regions. This means that the
asymptotic dynamics is generated by the free Hamiltonian H0, namely

Uas(t, ts) = U0(t, ts) = e−iH0(t−ts) , (3.2.1)

and the asymptotic Hilbert space is the Fock space H0. The incoming particle and the
outgoing particle in scattering experiment are assumed to be the wave packet evolved by
the free dynamics generated by H0. In this case, the in-state and out-state in(3.1.8) can
be expressed as

|α〉in = lim
ti→−∞

Ω(ti)|α〉0 , |β〉out = lim
tf→∞

Ω(tf )|β〉0 , (3.2.2)

where |α〉0 and |β〉0 are the eigenstates of H0 and the Møller operator is given by

Ω(t) = U †(t, ts)U0(t, ts) = eiH(t−ts)e−iH0(t−ts) . (3.2.3)

The S-matrix is defined as

Sβα = 〈β|α〉out in = 0〈β|S|α〉0 , (3.2.4)

where S-operator is

S = lim
tf→∞

lim
ti→−∞

Ω†(tf )Ω(ti) = lim
tf→∞

lim
ti→−∞

eiH0(tf−ts)e−iH(tf−ti)e−iH0(ti−ts) . (3.2.5)

If we define

S(t, t′) ≡ eiH0(t−t′)e−iH(t−t′)e−iH0(t−t′) , (3.2.6)

and divide the Hamiltonian into two parts as H = H0 + V , the time derivative of S(t, t′)
is then given by

i
∂

∂t
S(t, ti) = V I(t)S(t, ti) (3.2.7)

where V I(t) is the interaction operator in the interaction picture,

V I(t) ≡ U0(t, ts)
−1 V U0(t, ts). (3.2.8)

The solution of (3.2.6) can be represented as the Dyson series [68]

S(t, t′) = T exp

(
−i
∫ t

ti

dt′ V I(t′)

)
. (3.2.9)

where the symbol T represents the time-ordered product. Thus the S-operator is given
by

S = T exp

(
−i
∫ +∞

−∞
dt′ V I(t′)

)
. (3.2.10)
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However, this S-matrix is not well defined due to the infrared(IR) divergences. We will see
in Section 3.5 that when computing the S-matrix elements by the standard perturbation
theory, we encounter the IR divergences. This problem is sometimes referred to as infrared
problem. There are two possible prescriptions for this problem; the inclusive formalism
and the dressed state formalism. The inclusive formalism has been the conventional
prescription as seen in QFT textbooks such as [69, 70]. In this formalism, we give up
the well-defined S-matrix and compute IR finite inclusive cross section. On the other
hand, we try to construct the well-defined S-matrix in the dressed state formalism by
seeking the proper asymptotic states which are not the free wave packets. The dressed
state formalism is the main subject in Chapter 5.

3.3 Leading soft theorem

We first study the amplitudes for the emission of a single soft photon. Let us define the
scattering amplitude Mβα of the process α→ β as

Sβα = 0〈β|S|α〉0
≡ δ(α− β)− 2iπδ3 (~pβ − ~pα) δ (Eβ − Eα)Mβα (3.3.1)

We can drop the first term, since we are interested in the case of α 6= β. The amplitude
Mβα can be computed by the usual Feynman diagram in the standard perturbation theory.
Let us also write Mβα(k) as the amplitude with an additional external soft photon with

the outgoing momentum kµ = (ω,~k) and the polarization mode λ as

0〈β|aλ(k)S|α〉0 ≡ −2iπδ3 (~pβ − ~pα) δ (Eβ − Eα)Mβα(k) (3.3.2)

where aλ(k) is an annihilation operator of the soft photon. Since aλ(k) can be decomposed

as aλ(k) = ελ∗µ(k)aµ(~k), Mβα(k) can also be decomposed as

Mβα(k) = ελ∗µ(k)Mµ
βα(k) . (3.3.3)

where Mµ
βα(k) is defined as

0〈β|aµ(k)S|α〉0 ≡ −2iπδ (pβ − pα) δ (Eβ − Eα)Mµ
βα(k) (3.3.4)

To computeMµ
βα(k), we just need to attach one external soft photon line to the Feynman

diagram associated with Mβα. Consider attaching one external soft photon line to the
external line of a charged particle with charge e, momentum p and spinor mode u(p, σ),
then it gives an additional internal line of the charged particle with momentum p + k
together with a new vertex, as in Figure 3.1. Such a new contribution is given by

ū(p, σ)(−ieγµ)
i(/p+ /k) +m

(p+ k)2 +m2 − iε = ū(p, σ)(−ieγµ)
i/p+m

2p · k − iε +O(ω0) (3.3.5)

=
epµ

p · k − iε ū(p, σ) +O(ω0) , (3.3.6)

where we have used Ep � ωk
2 and the on-shell conditions for p, k in the first equality,

i/p+m = Σσu(p, σ)ū(p, σ) and ū(p, σ)γµu(p, σ′) = 2δσσ′p
µ in the second equality. On the

2We do not need pµ � kµ for the following reason. When we calculate the S-matrix element, (3.3.5) is
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Figure 3.1: This is the Feynman diagram for the scattering process in which the one of the
external charged particle emits a soft photon with momentum k.

other hand, attaching the soft photon line to the internal line of a charged particle gives
an additional term,

(−ieγµ)
i(/p± /k) +m

(p+ k)2 +m2 − iε = (−ieγµ)
i(/p± /k) +m

p2 +m2 ± 2p · k − iε . (3.3.7)

where p is the off-shell momentum of the internal charged particle. This kind of terms
does not give the additional contributions of order O(ω−1) to the amplitude since the
denominator in (3.3.7) does not have a pole at ω = 0, called a soft pole. If we attach
the soft photon line to an incoming charged particle of momentum p, the internal line of
charged particle after emitting the soft photon has the momentum p− k, instead of p+ k
in the previous case, the new contribution is given by

(−ieγµ)
i(/p− /k) +m

(p− k)2 +m2 − iεu(p, σ) = u(p, σ)
epµ

−p · k − iε +O(ω0) . (3.3.8)

Therefore, the amplitude for emitting a single soft photon with the momentum k and
the polarization εµ(k) in the process α→ β is given by

Mµ
βα(k) = Mβα

∑
n∈{α,β}

ηnenp
µ
n

pn · k − iηnε
+O(ω0), (3.3.9)

where en and pn are the charge and the four-momentum of n-th particle in the initial state
α and the final state β, and ηn is a sign factor which takes +1 for particles in β and −1 for
particles in α. The result (3.3.9) is called the leading soft photon theorem (for a single soft

contracted with another spinor and it gives a scalar function, like ū(p, σ)(−ieγµ)
i(/p+/k)+m

(p+k)2+m2−iε · · ·u(p′, σ′).

In this scalar function, the contribution coming from /k can be neglected if m � ωk. (More precise
condition is Emin � ωk where Emin ≡ min{Ep1 , · · · , EpN }).
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photon). The factor of proportionality, called (leading) soft factor, diverges as the energy
of soft photon goes to zero, since it is order ω−1. This fact reflects one of the important
property of infrared dynamics; the slight acceleration of a charged particle results in the
radiation of infinite number of low energy photons. Another important property is that
the leading soft photon theorem is universal in the sense that the soft factor is independent
of the details of scattering process and only depends on the information of the initial and
final states. After some technical calculations, the leading soft theorem can be generalized
to the case for emissions of multiple soft photons. The amplitudes Mµ1···µN

βα (k1, · · · , kN)
is for emitting N number of soft photon with momentum k1, · · · , kN and polarization
indices µ1, · · · , µN in the process α→ β is given by

Mµ1···µN
βα (k1, · · · , kN) = Mβα

N∏
r=1

 ∑
n∈{α,β}

ηnenp
µr
n

pn · kr − iηnε

+O(ω0) . (3.3.10)

In the next section, we will study the subleading term.

3.4 Subleading soft photon theorem

In this section, we review the derivation of the subleading soft theorem based on [71].

The scattering amplitude of a single soft photon with momentum k and N charged
scalar particles with the momentum pn and the charge en (n = 1, · · ·N) can be expanded
in terms of soft photon energy as

Mµ(k; p1, · · · , pN) =
N∑
n=1

ηnenp
µ
n

pn · k − iηnε
MN(p1, · · · , pn + k, · · · , pN) +Bµ(k; p1, · · · , pN) .

(3.4.1)

We have used the leading soft photon theorem (3.3.9) in the first and second terms is the
subleading term which is order O(ω0

k). We now use the Ward-Takahashi identity for U(1)
gauge symmetry (for example see subsec. 10.5 in [70]):

0 = kµM
µ(k; p1, · · · , pN) . (3.4.2)

Plugging (3.4.1) into (3.4.2), we have

0 =
N∑
n=1

ηnenMN(p1, · · · , pn + k, · · · , pN) + kµB
µ(k; p1, · · · , pN) . (3.4.3)

If we set ωk = 0, the above reduces to

0 =

(
N∑
n=1

ηnen

)
MN(p1, · · · , pN) . (3.4.4)

This ensures the conservation of the total electric charge,
∑N

n=1 ηnen = 0. Under the
assumption that MN(p1, · · · , pn + k, · · · , pN) and Bµ(k; p1, · · · , pN) are analytic around
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kµ = 0, we expand them around kµ = 0 in (3.4.3), and we obtain

0 =
N∑
n=1

ηnen

[
MN(p1, · · · , pn, · · · , pN) + kµ

∂

∂pnµ
MN(p1, · · · , pn, · · · , pN)

]
+ kµB

µ(k = 0; p1, · · · , pN) +O(ω2
k) (3.4.5)

=
N∑
n=1

ηnenkµ
∂

∂pnµ
MN(p1 · · · , pN) + kµB

µ(k = 0; p1, · · · , pN) +O(ω2
k) (3.4.6)

where we have used (3.4.4) in the second equality. Thus we have

kµB
µ(0; p1, · · · , pN) = −

N∑
n=1

ηnenkµ
∂

∂pnµ
MN(p1, · · · , pN) (3.4.7)

By solving this constraint, Bµ(0; p1, · · · , pN) can be written as

Bµ(0; p1, · · · , pN) = −
N∑
n=1

ηnen
∂

∂pnµ
MN(p1, · · · , pN) + Cµ(p1, · · · , pN) , (3.4.8)

where Cµ(p1, · · · , pN) is a function that satisfies kµC
µ(p1, · · · , pN) = 0. However, such

Cµ(p1, · · · , pN) actually does not exist because it is just a local (analytic) function of
p1, · · · , pN . Plugging this into (3.4.1) gives

Mµ(k; p1, · · · , pN)

=
N∑
n=1

ηnenp
µ
n

pn · k − iηnε
MN(p1, · · · , pn + k, · · · , pN)−

N∑
n=1

ηnen
∂

∂pnµ
MN(p1, · · · , pN) +O(ωk)

(3.4.9)

=
N∑
n=1

ηnenp
µ
n

pn · k − iηnε
MN(p1, · · · , pN)− i

N∑
n=1

ηnenkνJ
νµ
n

pn · k − iηnε
MN(p1, · · · , pN) +O(ωk)

(3.4.10)

where

Jνµn ≡ i

(
pµn

∂

∂pνn
− pνn

∂

∂pµn

)
(3.4.11)

is the orbital angular momentum operator of the n-th charged particle. Multiplying
both the sides of (3.4.9) by the polarization vector ελµ(k) of the soft photon, we thus
find the Low-Burnett-Kroll-Goldberger-Gell-Mann (or shortly Low’s) soft photon theorem
[8, 9, 10, 14]:

〈β|aλ(~k)S|α〉 =
(
J

(0)
λ + J

(1)
λ

)
〈β|S|α〉+O(

ωk
m

) , (3.4.12)

where

J
(0)
λ =

N∑
n=1

ηnen
ελ∗µ p

µ
n

pn · k − iηnε
, J

(1)
λ = −i

N∑
n=1

en
ελ∗µ kνJ

νµ
n

pn · k − iηnε
. (3.4.13)

It is important that the subleading soft factor J
(1)
λ is also universal in the sense that it
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only depends on the information of the external particles and independent of the detail
of the scattering processes.

If we expand (3.4.3) up to the second order, we obtain

1

2

N∑
i=1

eikµkν
∂2

∂piµ∂piν
MN (p1, . . . , pn) + kµkν

∂Bµ

∂kν
(0; k1, . . . , kn) = 0 . (3.4.14)

This can be rewritten as

N∑
i=1

eikµkν
∂2

∂piµ∂piν
MN (p1, . . . , pn) + kµkν

[
∂Bµ

∂kν
+
∂Bν

∂kµ

]
(0; k1, . . . , kn) = 0 . (3.4.15)

Therefore, the only symmetric part of the ∂Bν

∂kµ
(0; k1, . . . , kn) can be fixed by the gauge

invariance. It implies that the antisymmetric part depends on the detail of the scattering.
In this sense, the sub-subleading soft photon theorem does not exist.

Now let us rewrite the Low’s soft photon theorem (3.4.12) for later convenience. Ap-
plying limω→0(1 + ω∂ω) to the both sides of (3.4.12) and using the properties below,

(1 + ω∂ω)ω−1 = 0 , (1 + ω∂ω)1 = 1 , lim
ω→0

(1 + ω∂ω)O(ω) = 0 , (3.4.16)

we have

lim
ω→0
〈β|(1 + ω∂ω)aB(ωx̂)S|α〉 = J

(1)
λ 〈β|S|α〉 . (3.4.17)

This is what we call the subleading soft photon theorem in scaler QED.

As we have already seen in subsec 2.9.2, in the mode expansion of the gauge fields
Aµ(x), the mode with kµ = qµ(= (1, x̂)) only remains on the null infinity. In this case,
the transverse modes of polarization vectors can be chosen as

εµB(x̂) = ∂Bq
µ . (3.4.18)

With these bases, the leading soft photon theorem can be rewritten as

lim
ω→0

0〈out|ωaB(ωx̂)S |in〉0 =

[∑
k∈out

ek~pk · ∂Bx̂
pk · q

−
∑
k∈in

ek~pk · ∂Bx̂
pk · q

]
0〈out| S |in〉0 , (3.4.19)

where we omit the iε factors. The subleading soft photon theorem can also be rewritten
as

lim
ω→0

0〈out| (1 + ω∂ω)aB(ωx̂)S |in〉0 = −i
∑

k∈in,out

ekq
µJkµB

pk · q 0〈out| S |in〉0 . (3.4.20)

3.5 Infrared divergences in S-matrix

The radiative loop corrections involving soft particles give universal contributions to scat-
tering amplitudes. Here, we see that the loop diagrams involving virtual soft photons
cause infrared divergences.

We now calculate all the orders of loop-corrections involving virtual soft particles in
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the process α → β. Such loop diagrams can be given by attaching additional photon
propagators to the Feynman diagram of α → β. If we attach at least one of the ends of
a photon propagator to internal line of a charged particle, such diagrams do not have in-
frared divergences because such attachment does not give the new internal line with a soft
pole, as already mentioned in the below of (3.3.7). (We will see it more concretely later.)
Therefore, we focus on the diagrams with the loops of virtual soft photons exchanged only
among the external charged particles. We evaluate the leading infrared contributions of
such loops by using the soft photon theorem in (3.3.10). Since the theorem is valid only
when every soft photon momentum k1, · · · , kN is smaller than the minimum of the energy
of the charged particles in the initial and final states, p1, · · · , pN , we introduce an energy
scale Λ . min{Ep1 , · · · , EpN}. The upper bound cut-off Λ is just a convenient dividing
scale chosen low enough to justify the soft photon theorem and then a soft photon is
defined as the one with energy smaller than Λ. We also introduce the low bound energy
scale λ of photon momentum to regulate the infrared divergent integrals. The dependence
of λ must be removed at the end of calculations by taking λ→ 0.

We can evaluate the diagram with additional M photon loops connecting the external
charged particles from a given amplitude Mβα as follows. In (3.3.10) with N = 2M , we
first make M pairs among 2M soft factors and set the soft momenta in s-th pair to be
the same momentum, say ks. Secondly, we multiply it with N photon propagators,

N∏
s=1

−iηµsµ′s
k2
s − iε

, (3.5.1)

and contract photon polarizations indices and integrate over the soft photon four-momenta.
Then each pair gives the contribution,

enemηnηmJnm ≡
∫
λ≤|~k|≤Λ

d4k

(2π)4

−ienemηnηmpn · pm
[k2 − iε] [pn · k − iηnε] [−pm · k − iηmε]

, (3.5.2)

where pn and pm are the momenta of the two charged particles exchanging the virtual
soft photons in each pair. Summing over all the contributions from all the possible
combinations of the pairs, the effect of adding N virtual soft photon loops to the diagram
of Mβα ends up with multiplying Mβα by a factor

1

N !2N

 ∑
n,m∈{α,β}

enemηnηmJnm

N (3.5.3)

where N !2N is the symmetric factor of the diagram. This symmetric factor comes from
the fact that rearranging N virtual photon lines (N ! combinations) and exchanging the
two ends of the each line (2N combinations) are duplicated by a part of rearranging the
vertices. Summing over N , we find that the amplitude Mλ

βα for a process including any

number of photon loops with momenta |~k| ≥ λ is given by

Mλ
βα = MΛ

βα exp

1

2

∑
n,m∈{α,β}

enemηnηmJnm

 (3.5.4)

where MΛ
βα is the amplitude including any number of virtual photons only with the mo-

menta greater than Λ. Note that the contributions of virtual soft photons do not depend
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on the details of the scattering process because of the universality of the soft theorem.
The dimension analysis tells us that Jnm in (3.5.2) has a logarithmic divergence as λ→ 0
3. In fact, performing the integration (see Appendix F for the details) gives

Jnm = − 1

8π2βnm
ln

(
1 + βnm
1− βnm

)
ln

(
λ

Λ

)
+
iδηnηm
4πβnm

ln

(
λ

Λ

)
(3.5.5)

where βnm is the relativistic relative velocity of particles n and m:

βnm ≡
√

1− m4

(pn · pm)2 . (3.5.6)

Then the matrix element can be written as

Mλ
βα =

(
λ

Λ

)Aβ,α/2
eiPβαMΛ

βα (3.5.7)

where

Aβ,α = −
∑

n,m∈{α,β}

enemηnηm
8π2βnm

ln

(
1 + βnm
1− βnm

)
, (3.5.8)

Pβα ≡
∑

n,m∈{α,β}

δηnηm
enemηnηm

8πβnm
ln

(
λ

Λ

)
. (3.5.9)

Because of the non-negativity of Aβ,α (proved in appendix F), most matrix elements go to
zero as λ→ 0 4 except in the case where the initial state and the final state are identical
[72]. This is what we call infrared suppression. The Pβα gives an infrared-divergent phase
factor for the matrix elements. We do not usually pay attention to the phase factor
because it drops out when we take the absolute value of the matrix element with definite
momenta so as to compute the transition rate.

3Then attaching an end point of a virtual soft photon line to an internal line of a charged particle
gives no infrared divergent contributions.

4Whether the matrix elements really go to zero as λ→ 0 is not perfectly clear because the perturbation
series are not a convergent series but a asymptotic series.
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Chapter 4

Equivalence between soft theorem
and asymptotic symmetry

As we have already explained in Chapter 1, the infrared triangle equivalence refers to the
mathematical equivalence among the asymptotic symmetry, the soft theorem, and the
memory effect. The equivalence of those was first discussed in the Yang-Mills theory [1],
and extended to gravity [31, 32, 33] and also to QED [4, 6, 5]. The equivalence has been
also extended to higher orders of the soft expansion, to higher spacetime dimensions, and
also to other theories by many others. In particular for QED, it is known in [4, 6] that the
Ward-Takahashi identities for the large transformations result in the leading soft photon
theorem. The similar analysis for the subleading soft theorem was done in [35, 36, 60]
for massless scalar QED. In [36, 60] it was found that the symmetries are nothing but
the large gauge transformations 1. In [53], we extended the discussions to massive scalar
QED, and obtained the expression of the charges associated with the subleading soft
theorem. Since we have already seen the equivalence between the charge conservation
associated with the asymptotic symmetry and the electromagnetic effect, we focus on the
equivalence between the asymptotic symmetry and the soft theorem.

First, we review the equivalence between the leading soft photon theorem and the
asymptotic symmetry in Section 4.1 based on [53] 2. We then proceed to the subleading
order, and review the soft part of the subleading charges along the work [35] in subsec-
tion 4.2. In subsection 4.2.1, we derive the expression of the hard part of the subleading
charges defined on the future (or past) timelike infinity.

1The large gauge transformations are slightly different in two papers [36, 60]. In [36], the gauge
parameter is O(r) at I+, and thus the generator is divergent but includes the subleading finite part,
which is relevant to the subleading soft theorem. On the other hand, in [60], it is shown that the
subleading part of O(1) gauge parameter is related to the subleading soft theorem. Our argument is
similar to the latter, although the gauge fixing condition is different.

2The equivalence between the asymptotic symmetry and the soft theorem was derived by using the
specific angular coordinates in [4, 6], and we generalized it more covariantly in [53].
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4.1 Soft photon theorem ⇔ Asymptotic charge con-

servation, at leading order

In this section, we review the equivalence between the leading soft photon theorem and
the asymptotic symmetry based on [53]. For simplicity, we concentrate on future infinities
and omit the analysis for past infinities because it is just a repeat of the similar argument.

The charge associated with the asymptotic symmetry defined on I+ is given by (2.9.75);

Q(lead,+)[ε] |ψ〉 = Q+
H [ε(0)] +Qlead,+

S [ε(0)] (4.1.1)

where

Qlead,+
H [ε(0)] = Qi+ [ε] =

∫
H3

d3σ
√
h εH3j

τ(3)
mat , (4.1.2)

Qlead,+
S [ε(0)] = −

∫
I+

dud2Ω
√
γ(Ω) ∂Aε

(0)∂uA
(0)
B . (4.1.3)

Here, εH3(σ) is a limit of large gauge parameter ε(x) on i+ given by (A.0.18) , which is
defined as3

εH3(σ) ≡ lim
τ→∞

ε(τ, ρ,Ω) =

∫
d2Ω′

√
γ(Ω′)GH3(σ; Ω′)ε(0)(Ω′) (4.1.4)

with

GH3(σ; Ω′) =
1

4π
[
−
√

1 + ρ2 + ρ q̂(Ω′) · x̂(Ω)
]2 . (4.1.5)

Besides, j
τ(3)
mat (σ) in (4.1.2) is defined as

j
τ(3)
mat (σ) ≡ lim

τ→∞
τ 3 : jτmat(τ, σ) : , (4.1.6)

which is the leading coefficient at large τ of the matter current with the normal ordering.
It is given by

j
τ(3)
mat (σ) =

em2

2(2π)3

[
b†(~p)b(~p)− d†(~p)d(~p)

]
|~p=mρx̂(Ω) . (4.1.7)

See Appendix E for our convention of the quantization of the scalar field. From this
expression, one can easily find that the hard charge operator Qlead,+

H [ε(0)] acts on an
asymptotic future state 0〈out| containing charged particles with momenta ~pk = mρkŷ(Ω̃k)
and charge ek as4

0〈out|Qlead,+
H [ε(0)] =

∑
k∈out

ekεH3(ρk, Ω̃k) 0〈out| . (4.1.8)

3In fact, in the coordinates (τ, ρ, σ), Green’s function (A.0.6) does not depend on τ . Hence, εH3(σ) =
ε(τ, σ).

4ŷ(Ω̃) is a unit three-dimensional vector parametrized by spherical coordinates Ω̃A, and ek is +e for
particles and −e for antiparticles.
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Similarly, the past hard charge Qlead,−
H [ε(0)] acts on asymptotic past states as

Qlead,−
H [ε(0)] |in〉0 =

∑
k∈in

ekεH3(ρk, Ω̃k) |in〉0 . (4.1.9)

As explained in section 2.5, the leading charges associated with the large gauge transfor-
mations are “asymptotically conserved”. Therefore, we should have the following Ward-
Takahashi identity for the physical S-matrix:

0〈out|
[(
Qlead,+
S +Qlead,+

H

)
S − S

(
Qlead,−
S +Qlead,−

H

)]
|in〉0 = 0. (4.1.10)

We now show that the conservation law (4.1.10) is equivalent to the leading soft photon
theorem (3.4.19);

lim
ω→0

0〈out|ωaB(ωx̂)S |in〉0 =

[∑
k∈out

ek~pk · ∂Bx̂
pk · q

−
∑
k∈in

ek~pk · ∂Bx̂
pk · q

]
0〈out| S |in〉0 , (4.1.11)

where qµ = (1, x̂).

Integrating the l.h.s. of the soft theorem (4.1.11) w.r.t. the direction x̂(Ω) of the
momentum of the soft photon, we obtain a S-matrix element with the insertion of soft
charge (2.9.78) as follows:

lim
ω→0

1

4π

∫
d2Ω
√
γγAB∂Aε

(0)
0〈out|ωaB(ωx̂)S |in〉0 = 0〈out|

(
Qlead,+
S S − SQlead,−

S

)
|in〉0 ,
(4.1.12)

where we have used the fact

lim
ω→0

0〈out|ωaB(ωx̂)S |in〉0 = − lim
ω→0

0〈out| Sωa†B(ωx̂) |in〉0 . (4.1.13)

The soft theorem (4.1.11) equates (4.1.12) with

1

4π

∫
d2Ω
√
γγAB∂Aε

(0)
∑
k

ηkek~pk · ∂Bx̂
pk · q 0〈out| S |in〉0 , (4.1.14)

where we have introduced the symbol ηk which is +1 (−1) for k ∈ out (k ∈ in). Performing
a partial integration and using the formula

∇A

[
γAB

~pk · ∂Bx̂(Ω)

pk · q(Ω)

]
= 4πGH3(ρk, Ω̃k; Ω)− 1 with ~pk ≡ mρkŷ(Ω̃k) , (4.1.15)

we then have

1

4π

∫
d2Ω
√
γγAB∂Aε

(0)
∑
k

ηkek~pk · ∂Bx̂
pk · q

= −
∑
k

ηkek

∫
d2Ω
√
γε(0)(Ω)

[
GH3(ρk, Ω̃k; Ω)− 1

4π

]

= −
∑
k

ηkekεH3(ρk, Ω̃k) +
1

4π

(∑
k

ηkek

)∫
d2Ω
√
γε(0) . (4.1.16)
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Since
∑

k ηkek = 0 due to the total electric charge conservation, we finally obtain

(4.1.12) = −
∑
k

ηkekεH3(ρk, Ω̃k) 0〈out| S |in〉0 = − 0〈out|
(
Qlead,+
H S − SQlead,−

H

)
|in〉0
(4.1.17)

where we have used (4.1.8) and (4.1.9). Therefore, we have confirmed that we can ob-
tain the Ward-Takahashi identity (4.1.10) from the soft theorem (4.1.11), and vice versa
because (4.1.10) holds for any ε(0).

4.2 Soft photon theorem ⇔ Asymptotic charge con-

servation, at subleading order

Like the leading soft theorem (4.1.11), the subleading soft photon theorem gives the fol-
lowing relation between an amplitude containing a soft photon and an amplitude without
that:

lim
ω→0

0〈out| (1 + ω∂ω)aB(ωx̂)S |in〉0 = S
(sub)
B 0〈out| S |in〉0 with S

(sub)
B ≡ −i

∑
k

ekq
µJkµB

pk · q
,

(4.2.1)

where the sum in S
(sub)
B is taken for all of the incoming and outgoing charged particles

which are labeled by k, and Jkµν is the total angular momentum operator of k-th particle
(with momentum ~pk and charge ek) defined as

Jkµν = −i
(
pkµ

∂

∂pνk
− pkν

∂

∂pµk

)
, (4.2.2)

and qµ = (1, x̂) represents the direction of the soft photon.

On the other hand, we have already seen that the asymptotic symmetry leads to the
subleading asymptotic charge conservation (2.5.33):

0〈out|
[(
Qsub,+
S +Qsub,+

H

)
S − S

(
Qsub,−
S +Qsub,−

H

)]
|in〉0 = 0. (4.2.3)

As noted below eq. (2.5.31), the soft part is given by

Qsub,+
S = −1

2

∫
I+

dud2Ω
√
γε(0)u∂u∆S2∇BA

(0)
B , (4.2.4)

and by using eq. (2.9.49), we can write as

Qsub,+
S = − i

16π
lim
ω→0

∫
d2Ω
√
γ∆S2ε(0)∇B

[
(1 + ω∂ω)(aB(ωx̂)− a†B(ωx̂))

]
. (4.2.5)

The soft part of the past charge, Qsub,−
S , also takes the same expression. Hence, Qsub,±

S

contains (1 + ω∂ω)[aB(ωx̂) − a†B(ωx̂)] which corresponds to the subleading soft photons.

55



The subleading soft theorem (4.2.1) thus states that

0〈out| (Qsub,+
S S − SQsub,−

S ) |in〉0 = − 1

8π

∫
d2Ω
√
γ∆S2ε(0)

∑
k

∇B

[
ekq

µ∂Bx̂
i

pk · q
Jkµi

]
0〈out| S |in〉0 .

(4.2.6)

If operators Qsub,±
H exist such that the r.h.s. of (4.2.6) is equal to

− 0〈out| (Qsub,+
H S − SQsub,−

H ) |in〉0 , (4.2.7)

then we can establish the equivalence between the subleading soft theorem and the sub-
leading charge conservation (4.2.3).

For massless QED, such hard operators Qsub,±
H were obtained [35, 36, 60], where the

operators are defined on the future and past null infinities I±. What we want to do is to
obtain the expression of Qsub,±

H for massive charged particles. This is the subject of the
next subsection.

4.2.1 Hard part of the subleading charges

Unlike massless QED, Qsub,±
H is an operator on timelike infinities i± acting on the asymp-

totic states of massive particles. Thus like the leading case (4.1.2), it should be expressed
as an integral over three-dimensional hyperbolic space H3 with gauge parameter εH3(σ)
on the space. We now obtain such an expression for the future part Qsub,+

H .

First, let us parametrize an on-shell momentum by (p, Ω̃A) as pµ = (Ep, pŷ(Ω̃)) where

Ep =
√
p2 +m2 and ŷ · ŷ = 1. With this parametrization, the angular momentum

operators are expressed as

J0i = i

[
ŷiEp∂p +

Ep
p
γ̃AB(∂̃Aŷ

i)∂′B

]
(4.2.8)

Jij = −i
[
ŷi(∂̃Aŷ

j)− ŷj(∂̃Aŷi)
]
γ̃AB∂′B, (4.2.9)

where ∂̃A ≡ ∂
∂Ω̃A

is the derivative with respect to the direction of on-shell momentum of

massive particle. Here, γ̃AB is the inverse of the induced metric γ̃AB ≡ (∂̃Aŷ) · (∂̃B ŷ).
Note that if we parametrize the on-shell momentum as ~p = mρ~y(Ω̃), Ep = m

√
1 + ρ2, the

angular momentum operators can also be represented as

J0i = i
√

1 + ρ2

[
ŷi∂ρ +

1

ρ
γ̃AB(∂̃Aŷ

i) ∂̃B

]
, (4.2.10)

Jij = −i
[
ŷi(∂̃Aŷ

j)− ŷj(∂̃Aŷi)
]
γ̃AB∂̃B. (4.2.11)

We then define the following operator Qsub
B (Ω) with angular index B as

Qsub
B (Ω) =

e

2

∫
d3p

(2π)32Ep

qµ(Ω)∂Bx̂
i(Ω)

p · q(Ω)

× [(Jµib
†(~p))b(~p)− b†(~p)(Jµib(~p))− (Jµid

†(~p))d(~p) + d†(~p)(Jµid(~p))].
(4.2.12)
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One can confirm, by performing some partial integrations5, that the first term and the
second term in (4.2.12) are the same when they act on the physical states. The third
term and the forth term are also the same. Accordingly, one can find that Qsub

B acts on
the 1-particle state as

Qsub
B (Ω) |pk〉 = ek

qµ(Ω)∂Bx̂
i(Ω)

pk · q(Ω)
Jkµi |pk〉 , (4.2.13)

〈pk|Qsub
B (Ω) = −ek

qµ(Ω)∂Bx̂
i(Ω)

pk · q(Ω)
Jkµi 〈pk| . (4.2.14)

Therefore, if one defines the hard charge operator as

Qsub,±
H = − 1

8π

∫
d2Ω
√
γ∆S2ε(0)∇BQsub

B (Ω) , (4.2.15)

it satisfies the desired property

0〈out| (Qsub,+
H S − SQsub,−

H ) |in〉0 =
1

8π

∫
d2Ω
√
γ∆S2ε(0)

∑
k

∇B

[
ekq

µ∂Bx̂
i

pk · q
Jkµi

]
0〈out| S |in〉0 .

(4.2.16)

Next, we now express Qsub
B in terms of the local matter current of charged particles

in the asymptotic region i+. The matter current jmatµ asymptotically decays as O(τ−3)
with τ -dependent oscillations. Assuming that the charged scalar is free in the asymptotic
region, one can extract τ -independent finite parts of jmatµ (see appendix E) as

Imatα (σ̃) ≡ lim
τ→∞

(
1

4m2
∂2
τ + 1

)
τ 3 : jmatα (τ, σ̃) : (4.2.17)

=
iem

4(2π)3

[
∂αb

†(~p)b(~p)− b†(~p)∂αb(~p)− ∂αd†(~p)d(~p) + d†(~p)∂αd(~p)
]
|~p=mρŷ(Ω̃) ,

(4.2.18)

where σ̃α = (ρ, Ω̃A) are the coordinates on H3. In addition, using this and also eqs. (4.2.10),
(4.2.11), one can obtain the following equations:

[(J0ib
†(~p))b(~p)− b†(~p)(J0ib(~p))− (J0id

†(~p))d(~p) + d†(~p)(J0id(~p))]|~p=mρŷ(Ω̃)

=
4(2π)3

em

√
1 + ρ2[ŷiImatρ (ρ, Ω̃) +

1

ρ
γ̃AB∂̃Aŷ

iImatB (ρ, Ω̃)] , (4.2.19)

[(Jijb
†(~p))b(~p)− b†(~p)(Jijb(~p))− (Jijd

†(~p))d(~p) + d†(~p)(Jijd(~p))]|~p=mρŷ(Ω̃)

= −4(2π)3

em
(ŷi∂̃Aŷ

j − ŷj ∂̃Aŷi)γ̃ABImatB (ρ, Ω̃). (4.2.20)

5These partial integrations involve not only the creation and annihilation operators but also soft
factors and the integration measure.
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From these equations, (4.2.12) can be rewritten as

Qsub
B (Ω) =

∫
H3

d3σ̃
√
h̃

[√
1 + ρ2∂Bx̂(Ω) · ŷ(Ω̃)

q · Y Imatρ (ρ, Ω̃)

+
1

q · Y

{√
1 + ρ2

ρ
∂Bx̂ · ∂̃Aŷ − (x̂ · ŷ)(∂Bx̂ · ∂̃Aŷ) + (x̂ · ∂̃Aŷ)(∂Bx̂ · ŷ)

}
γ̃ACImatC (ρ, Ω̃)

]
,

(4.2.21)

where d3σ̃
√
h̃ = dρd2Ω̃ ρ2√

1+ρ2

√
γ̃ and Y µ = (

√
1 + ρ2, ρŷ(Ω̃)).

Therefore, the hard charge Qsub,+
H can be expressed in terms of the asymptotic matter

current Imatα by inserting (4.2.21) into (4.2.15). However, the expression seems to be
unnatural because Qsub,+

H is given by an integral over S2 with parameter function ε(0),
not εH3 . Since Qsub,+

H is associated with the large gauge transformation acting on massive
particles, Qsub

B (Ω) should be written as an integral over the surface at timelike infinity
H3 with parameter function εH3 on that surface, like the leading case (4.1.2). In fact,
after some computations (see Appendix G), one can express Qsub,+

H in such an integral as
follows:

Qsub,+
H =

1

2

∫
H3

d3σ
√
h

√
1 + ρ2

ρ

[
ρ2hαβ(∇(h)

α ∇(h)
ρ εH3)Imatβ + 2ρhαβ(∇(h)

α εH3)Imatβ

]
, (4.2.22)

where ∇(h)
α denotes the covariant derivative compatible with the metric hαβ on H3. The

obtained charge is written as an integral over the three-dimensional hyperbolic space at
timelike infinity H3, and the integrand takes a local form and contains the components
of matter current Imatα which is defined in (4.2.17). This is a similar form to the massless
case [35, 36, 60].
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Chapter 5

Towards the IR finite S-matrix

5.1 Motivations for seeking IR finite S-matrix

As we have already seen in Chapter 3, the conventional S-matrix is not well defined due
to the infrared divergences, and this infrared problem can be avoided by computing only
the inclusive transition probability. However, the fact that the inclusive amplitudes are IR
finite does not mean that the infrared problem is perfectly resolved because the S-matrix
is still not well-defined in the inclusive formalism. Moreover, there are several points which
seem unnatural or even problematic in the inclusive formalism. The first point is about
the assumption that the effect of the interaction becomes zero at the large time limit and
the asymptotic states are just the Fock states with the free dynamics. This assumption
may be too strong because the interaction mediated by massless particles create infinitely
long-ranged force between charged particles. In fact, it is known in quantum mechanics
that the asymptotic state with the Coulomb potential is not a free state. Based on the
principle of quantum theories that all physically possible history are superposed at the
level of wave function, it would be natural to expect that the asymptotic state is not a
free state but a superposition of charged states surrounded by emitted soft particles in all
possible ways.

The dressed state formalism is the approach to the infrared problem based on the
expectation mentioned above. This formalism tries to construct the IR finite S-matrix
by using the asymptotic states surrounded by soft particles. The history of the dressed
state formalism goes back to the 60’s. In 1965, Chung first proposed a asymptotic state
of electrons surrounded by a cloud of coherent soft photon and showed that the infrared
divergences are canceled out in all order perturbation theory at the level of S-matrix if
we employ the state as the asymptotic state of the standard S-matrix [51]. We call the
dressed state the Chung’s dressed state. The scattering theory with the asymptotic state
state dressed by the coherent soft cloud was developed by others in [73, 74, 75, 76, 52].
In particular, Faddeev and Kulish [52] in 1970 proposed another version of dressed states,
which is the same as Chung’s dressed states except for oscillating phase factors, by solving
the infrared QED dynamics. The dressed states are nowadays called the Faddeev-Kulish
(FK) dressed states.

Although the dressed state formalism was proposed many years ago, it has recently
been reconsidered in the connection with the asymptotic symmetry (see, e.g., [77, 78, 49,
79, 50, 72, 80]). It was pointed out in [49] that the vanishing of the amplitudes due to
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the infrared suppression explained in Section 3.5 is related to the asymptotic symmetry
of QED. More concretely, they argued that the initial and the final states used in the
conventional S-matrix generally belong to different sectors with respect to the asymptotic
symmetry. Therefore, the amplitude between them should vanish, otherwise it breaks the
conservation law, and we need dressed states in order to obtain non-vanishing amplitudes.
Moreover, it was argued in [81, 82, 72] that the inclusive and the dressed state formalism
yields different answer to the cross section if the incoming state is a wave packet and the
difference is related to the conservation of asymptotic charge.

Motivated by these facts, we investigated the dressed state formalism in [54]. In par-
ticular, we revisited the gauge invariance of the dressed state. We argued that there
is a problem on the gauge invariant condition in [52], and resolved the problem. In
our method, the dressed states are obtained just from the appropriate gauge invariant
condition. We will also discuss the iε prescription for the dressed states. In addition,
the relation between the dressed state formalism and the asymptotic symmetry is also
discussed.

The outline of this chapter is as follows. We first briefly review Chung’s dressed states
and the IR finiteness of S-matrix for the states in Section 5.2. We then review the
derivation of the F-K state based on [52]. Section 5.4 explains the problem of the gauge
invariance for F-K dressed state and we resolve the problem in Section 5.5 based on [54].
in Section 5.6, the physical interpretation of the F-K dressed state is discussed. Section
5.7, we reveal the relation between the F-K dressed state and the asymptotic symmetry.

5.2 Chung’s dressed state

+ +

0e

0
e

0e

0
e

0e

0
e

+

0e

0
e

Figure 5.1: The tree level and its radiative corrections up to one-loop order under the usual
Feynman rule. The soft photon contributions in the one-loop integrals create infrared diver-
gences.

In [51], Chung introduced the following state, which we call Chung’s dressed state;

|p1, · · · , pn〉Ch

= exp
{∑
l=1,2

∫
d3p̃ ρ(p)

∫ Λ

λ

d3k̃
[
S(l)(k)a(l)†(k)− S(l)∗(k)a(l)(k)

}]
|p1, · · · , pn〉0 (5.2.1)

with

S(l)(k) =
ep · ε(l)(k)

k · p (5.2.2)
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where |p1, · · · , pn〉0 is an eigenstate of the free Hamiltonian (Fock state) with momentum
p1, · · · , pn. Here, λ is the infrared cutoff which we will take the limit λ→ 0 in the end of
the calculations, and Λ is an arbitrary constant that has the dimension of energy. These
states describe the states of electrons and positrons with the superpositions of no soft
photon state, one soft photon state, two soft photons state, · · · . In other words, Chung’s
dressed states are the states of electrons and positrons surrounded by a cloud of indefinite
number of soft photons.

Then it was shown that the new “S-matrix” given by

Ch〈p′1, · · · , p′n|S|p1, · · · , pm〉Ch (5.2.3)

where S is the Dyson’s S-operator (3.2.10), has no infrared divergence in the all orders of
perturbation series in QED. The structure for cancelling out the infrared divergences is
as follows. For concreteness, let us consider a single electron scattering under a external
potential. The tree level diagram and the radiative corrections by virtual photons to the
diagram up to the second order (e2) in the usual Feynman rule are represented in Figure
5.1. These one-loop virtual photon integrals give infrared divergences as we have seen in
Section 3.5. However, in the new S-matrix in (5.2.3), there are creation and annihilation
operators of soft photons in the cloud of soft photons in the asymptotic state (5.2.1).
Therefore, the creation and annihilation operators of soft photons in the cloud can also
be Wick-contracted with the creation operators in the interaction vertexes, and such
Wick-contractions give new one-loop corrections represented in Section 5.2. These new
diagrams describe the processes of the emissions or absorptions of real soft photons. In
[51], Chung showed that the infrared divergences coming from the new diagrams cancel out
the usual infrared divergences at any order of perturbation series for any QED processes.
More precisely, the λ dependence coming from Chung’s dressed state (5.2.1) cancels out

the λ dependence in the form of
(
λ
Λ

)Aβ,α/2 in the usual S-matrix (3.5.7) 1. The parameter
Λ (5.2.1) is not fixed in this discussion because it is not relevant for the IR finiteness. We
will comment this arbitrariness in Section 6.1.

5.3 Derivation of the Faddeev-Kulish dressed state

In this section, we review the derivation of the F-K dressed state based on [52]. The QED
Hamiltonian is given by

H = H0 + V with V = −e
∫
d3xAµ(~x)jµmat(t, ~x) . (5.3.1)

Here, H0 is the free Hamiltonian given by (2.9.8) with the matter free Hamiltonian

Hmatter =

∫
d3xψ

(
−iγi∂i +m

)
ψ (5.3.2)

1The infrared divergent phase factor in in the usual S-matrix (3.5.7) is not eliminated in the new
S-matrix (5.2.3).
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Figure 5.2: The new one-loop corrections coming due to exchange of soft photons between a
vertex and a cloud or a cloud and another cloud.

where ψ(x) and ψ(x) are the usual Dirac and conjugate Dirac fields. These fields can be
expanded as

ψ(x) =
∑
s=±

∫
d̃3p
[
bs(~p)us(~p)e

ipx + d†s(~p)vs(~p)e
−ipx] (5.3.3)

ψ(x) =
∑
s=±

∫
d̃3p
[
ds(~p)vs(~p)e

ipx + b†s(~p)us(~p)e
−ipx] , (5.3.4)

where d̃3p is the Lorentz invariant measure defined by d̃3p ≡ d3p
(2π)32Ep

. Here bs(~p), ds(~p)

(, b†s(~p), d
†
s(~p)) are the annihilation (creation) operators of the electron and the positron

with the commutation relations;{
bs(~p), b

†
s′ (~q)

}
= (2π)32Epδ

3 (~p− ~q) δss′ ,
{
ds(~p), d

†
s′ (~q)

}
= (2π)32Epδ

3 (~p− ~q) δss′ ,
others = 0 . (5.3.5)

The spinors and barred spinors satisfy

ūs′(~p)γ
µus(~p) = 2pµδs′s , v̄s′(~p)γ

µvs(~p) = 2pµδs′s (5.3.6)

The mode expansion of the gauge fields is given in (2.9.12). The matter local current
jµmat(t, ~x) is given by

jµmat(t, ~x) =: ψ(x)γµψ(x) : (5.3.7)
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where : O : is the normal ordering of the operator O. Plugging the mode expansions
(5.3.3) and (2.9.12) into the interaction operator in (5.3.1), we have

V I(t) =−
∑
s=±

∑
s′=±

∫
d3x

∫
d̃3k

∫
d̃p

∫
d̃q
[
aµ(~k)eikx + a†µ(~k)e−ikx

]
:
[
ds(~p)vs(~p)e

ipx + b†s(~p)us(~p)e
−ipx] γµ [bs′(~q)us′(~q)eiqx + d†s′(~q)vs′(~q)e

−iqx
]

:

(5.3.8)

Here we focus on the phase factor of each term. The spatial integration produces the
delta function in each term. For example, in the terms that involve b†s(~p)bs′(~q), the phase
factor is given by

exp (−i (Ep − Eq ± ωk) t) δ3(~p− ~q ± ~k) (5.3.9)

= exp

(
−i
(√

~p 2 −m2 −
√

(~p± ~k)2 −m2 ± ωk
)
t

)
δ3(~p− ~q ± ~k) (5.3.10)

For large time t → ±∞, the interaction operator acts on the asymptotic state in the
S-matrix and becomes c-number. The phase highly oscillates for large t and so one may
expect that the integration over ~k in (5.3.8) gives zero as t → ±∞ if the integrand is
a smooth function. However, when the soft photon creation or annihilation operator
with b†s(~p)bs(~q) or d†s(~p)ds(~q) acts on the asymptotic state, it corresponds to the Feynman
diagram in which a charged external line emits a photon and gives a singular contribution
by the soft factor as we have already seen in the soft theorem (3.4.12). Thus we expect
that for large t, the leading contribution in the QED interaction comes from the terms with
b†s(~p)bs(~q) or d†s(~p)ds(~q) multiplied by the photon creation and the annihilation operators
in (5.3.8). By extracting only such terms from the the QED interaction, we obtain 2

V I
as(t) =

∫
d̃3k

∫
d3p

(2π)3

pµ

Ep

[
aµ(~k)e

i p·k
Ep

t
+ a†µ(~k)e

−i p·k
Ep

t
]
ρ(~p)

(5.3.11)

where ρ(~p) is the electric charge density given by

ρ(~p) = − e

(2π)32Ep

∑
s=±

[
b†s(~p)bs′(~q)− ds(~p)d†s′(~q)

]
. (5.3.12)

To get the expression (5.3.11), we have used (5.3.6) and√
~p 2 −m2 −

√
(~p± ~k)2 −m2 ± ωk = ±p · k

Ep
+O

(
ω2
k

|~p|2
)
. (5.3.13)

If we define

jµas(t,−~k) ≡
∫

d3p

(2π)3
ρ(~p)

pµ

Ep
e
i ~p·

~k
Ep

t
, (5.3.14)

2The original explanation in [52] to derive (5.3.11) is different. In [52], it is argued that only the soft
modes of diagonal parts in the interaction contribute at t → ∞ because the phase factor (5.3.9) highly
oscillates. (The phase of the non-diagonal parts (involving d†s(~p)bs(~q) and b†s(~p)ds(~q)) do not become zero
even at ωk = 0.) However, ωk = 0 is not the stationary point of the phase, so the original explanation
seems not valid.
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we can express (5.3.11) as

V I
as(t) =

∫
d̃3k

[
aµ(~k)e−iωkt + a†µ(−~k)eiωkt

]
jµas(t,−~k) , (5.3.15)

which we call the asymptotic interaction. The expression of (5.3.14) in the position space
is

jµas(t, ~x) ≡
∫

d3k

(2π)3
ei
~k·~xjµas(t,

~k) =

∫
d3p

(2π)3

∫
d3k

(2π)3

pµ

Ep
e
i~k·(~x− ~p

Ep
t)
ρ(~p)

=

∫
d3k

(2π)3
ρ(~p)

pµ

Ep
δ3(~x− ~p

Ep
t) (5.3.16)

This expression is the same as the classical current for the point particle with the constant
velocity ~v = ~p

Ep
. Using this current, we can express (5.3.15) in the position space as

V I
as(t) = −

∫
d3xAµ(~x)jµas(t, ~x), (5.3.17)

We then expect that the time-evolution operator of the asymptotic state is given by

i
∂

∂t
Uas (t, ts) = HI

as(t)Uas (t, ts) (5.3.18)

where Has(t) = H0 + V I
as(t). If we write Uas (t, ts) as

Uas (t, ts) = e−iH0(t−ts)Z(t, ts) (5.3.19)

(5.3.18) is equivalent to

i
∂

∂t
Zas (t, ts) = V (I)

as (t)Zas (t, ts) (5.3.20)

The solution is given by

Zas(t, ts) ≡ T exp

[
−i
∫ t

t′
dt′V I

as(ts)

]
. (5.3.21)

Then Uas (t, ts) is given by

Uas (t, ts) = e−iH0(t−ts) T exp

[
i

∫ t

t′
dt′V I

as(t
′)

]
(5.3.22)

Furthermore, since the commutator [V I
as(t1), V I

as(t2)] commutes with V I
as(t) for any t, we

obtain

Uas(t, ts) = U0(t, ts) e
−i
∫ t
ts
dt′ V Ias(t

′)e−
1
2

∫ t
ts
dt1
∫ t1
ts
dt2 [V Ias(t1),V Ias(t2)], (5.3.23)

and by performing the t-integral, we have

−i
∫ t

ts

dt′ V I
as(t

′) = R(t)−R(ts) (5.3.24)

64



with

R(t) ≡
∑

e

∫
d̃3p ρ(~p)

∫
d̃3k

pµ

p · k
[
aµ(~k)e

i p·k
Ep

t − a†µ(~k)e
−i p·k

Ep
t
]
. (5.3.25)

The exponent including the commutator [V I
as(t1), V I

as(t2)] in (5.3.23) is a c-number func-
tion, and we represent it as iΦ(t, ts) where

Φ(t, ts) ≡
i

2

∫ t

ts

dt1

∫ t1

ts

dt2 [V I
as(t1), V I

as(t2)] . (5.3.26)

Plugging (5.3.11) into (5.3.26) and performing the integration, we find

Φ(t, ts) = − e
2

4π

∫
d̃3p d̃3q ρ(~p)ρ(~q)

p · q√
(p · q)2 −m4

sgn(t) ln
|t|
ts
, (5.3.27)

We show that the stationary point of this phase at the large time limit leads to the classical
trajectories of point charged particles under the relativistic Coulomb forces in Appendix
H. In [52], R(ts) in (5.3.24) was deleted by a requirement for an initial condition. Under
this assumption, The Møller operator defined in (3.1.9) is given by3

Ωas(ti) = U †(t, ts)Uas(t, ts) = eiH(t−ts)e−iH0(t−ts)eR(t)eiΦ(t,ts) . (5.3.28)

The S-operator defined in (3.1.14) is then given by

S = lim
tf→∞, ti→−∞

Ωas(tf )
†Ωas(ti)

= lim
tf→∞, ti→−∞

e−R(tf )e−iΦ(tf ,ts)

[
T exp

(
−i
∫ tf

ti

dt′ V I(t′)

)]
eR(ti)eiΦ(ti,ts). (5.3.29)

We also assume that the asymptotic Hilbert space Has is the Fock space HFock. As
a result, this S-matrix differs from the usual Dyson’s one (3.2.10) only in the dressing
factors eR and eiΦ. Thus if we formally introduce a dressed Hilbert space HFK as

HFK = lim
t→−∞

eR(t)eiΦ(t,ts)HFock, (5.3.30)

the S-matrix on HFK is given by the usual one (3.2.10)4.

The F-K dressing operator (5.3.25) is the same as the dressing operator in Chung’s

dressed state (5.2.1) up to the phase factor e
±i p·k

Ep
t
. If we see the kµ = 0 mode in The

F-K dressing operator, it is exactly the same as Chung’s one. Thus F-K dressed state is
believed to give IR finite S-matrix based on the Chung’s proof. in Section 6.1, we will
comment on a subtlety of the proof of IR finiteness.

3we have renamed the Møller operator to Ωas(t) to distinguish the conventional one (3.2.3).
4Even on HFK , the notion of particles for charged fields is still valid because jµcl(t, ~x) in the dressing

factor eR(t) is a diagonal operator on the Fock space. However, the standard interpretation of photons
on the Fock space seems to be lost because the dressing factor excites an infinite number of photons. As
we will see in subsec. 6.1, the energy of the excited photons by the dressing factor is soft in the limit
t→ ±∞. Hence, the particle notion for hard photons may be valid.
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5.4 Problem on the gauge invariance of Faddeev-Kulish

dressed state and our approach to this problem

We have to restrict HFK to the subspace by imposing a gauge invariant condition in order
to make sure that the physical observables are independent of the gauge choice. However,
the treatment for the gauge invariance in [52] seems inappropriate. The Gupta-Bleuler
condition (2.9.36) was imposed on HFK as the physical state condition, i.e., any physical
state, |ψ〉 ∈ HFK , was required to satisfy

kµaµ(~k) |ψ〉 = 0 for any ~k. (5.4.1)

However, we can easily see that the F-K state does not satisfy the condition because

kµaµ(~k) eR(t)eiΦ(t,ts)|α〉0 6= 0 (5.4.2)

In [52], to satisfy (5.4.1), the dressing operator R in (5.3.25) was modified by introducing

a null vector cµ(~k) satisfying kµc
µ = 1. More concretely, the dressing operator was altered

by shifting the coefficient pµ

p·k in (5.3.25) to pµ

p·k − cµ.

We will see that the artificial vector cµ is not needed if we impose an appropriate gauge
invariant condition. Our claim is that the contributions of long-range interactions should
also be incorporated into the gauge invariant condition, as the F-K dressed states are
obtained by taking account of such interactions. The Gupta-Bleuler condition (5.4.1) is
not adequate for the dressed states. In the next section, we will present the appropriate
condition.

Furthermore, we will show that the dressed Hilbert space can be obtained just by
requiring the gauge invariant condition. In our approach, it turns out that we do not need
to solve the dynamics of the asymptotic Hamiltonian Has as we reviewed in subsec 5.3. In
fact, although the Dyson’s S-matrix (3.2.10) is not a good operator on the usual Fock space
HFock, it may be well-defined on the dressed space HFK .5 The asymptotic Hamiltonian
Has is just an approach to deriving the dressing factor eR(t). We think that the using the
gauge invariant condition incorporating the asymptotic interaction is a simpler approach
to obtaining the factor, and the interpretation is clear. The condition essentially just says
that if there is a charged particle, there should exist electromagnetic fields around it by
Gauss’s law. The fields around the charge indeed make up the dress.

in Section 5.6, as a support of this interpretation and also another justification that we
do not have to introduce cµ, we will discuss the meaning of the original dressing operator
R(t) in eq. (5.3.25). As shown in [83], the dressing factor for a charged particle with
momentum ~p corresponds to the Liénard-Wiechert potential for the uniformly moving
charge with momentum ~p. We will reconfirm this fact especially taking care of the iε
prescription.

Besides, our method allows a variety of dressing factors, and HFK given by (5.3.30) is
just one of them. We will see that in our gauge invariant condition, the physical Hilbert
space Has on which Dyson’s S-matrix (3.2.10) acts takes the form

Has = eRasHfree, (5.4.3)

5In this paper, we do not take care of problems at ultraviolet regions. We assume that they can be
resolved by a standard renormalization procedure.
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where eRas is a dressing factor, and Hfree is a subspace of the Fock space HFock such that

the Gupta-Bleuler condition is satisfied (kµaµ(~k) |ψ〉 = 0, |ψ〉 ∈ Hfree). The operator
Ras can be R(t) + iΦ(t, ts), but not necessarily. We will discuss the relation between the
ambiguity of dressing and the asymptotic symmetry of QED in the subsection 5.7.

5.5 Gauge invariant asymptotic states

The BRST condition (2.9.34) is imposed on the physical Hilbert space Hphys as

Qs
BRST |α〉in = 0 , |α〉in ∈ Hphys (5.5.1)

where Qs
BRST and |α〉in are the BRST operator in (2.9.28) and the in-state in Schrödinger

picture defined at ts. Using (3.2.2), we have the BRST condition for an asymptotic state
|β〉0 as

0 = Qs
BRST |β〉in = lim

ti→−∞
Qs
BRSTΩ(ti) |β〉0 . (5.5.2)

where Ω(ti) is the Møller operator defined in (3.2.3). Since Qs
BRST commutes with the

exact Hamiltonian Hs, we have

Qs
BRSTΩ(t) = U(ts, t)Q

s
BRSTU0(t, ts) = Ω(t)QI

BRST (t), (5.5.3)

where QI
BRST (t) is the BRST operator in the interaction picture (2.9.32):

QI
BRST (t) ≡ U0(t, ts)

−1Qs
BRST U0(t, ts)

= −
∫
d̃3k

[
c(~k){kµa†µ(~k) + e−iωtj̃0I(t,−~k)}+ c†(~k){kµaµ(~k) + eiωtj̃0I(t,~k)}

]
.

(5.5.4)

Therefore, |β〉0 satisfies

lim
ti→−∞

QI
BRST (ti) |β〉0 = 0. (5.5.5)

By restricting the ghost-sector to the ghost-vacuum, this condition becomes

lim
ti→−∞

[
kµaµ(~k) + eiωti j̃0I(ti, ~k)

]
|β〉0 = 0. (5.5.6)

This means that the states satisfying the free Gupta-Bleuler condition kµaµ(~k) |ψ〉 = 0
are generally not the physical asymptotic states. Thus the charged 1-particle states in the
standard Fock space, such as b†(~p) |0〉, cannot be the asymptotic physical states if there
is the interaction.

We will show below that the states satisfying the condition (5.5.6) are dressed states.
In fact, if there is an anti-Hermitian operator R̃(t) such that

[kµaµ(~k), R̃(t)] = −eiωtj̃0I(t,~k), [j̃0I(t,~k), R̃(t)] = 0, (5.5.7)

then the states in eR̃(t)Hfree are annihilated by kµaµ(~k) + eiωtj̃0I(t,~k) where Hfree is a
subspace of HFock satisfying the free Gupta-Bleuler condition. Thus the Hilbert space

67



satisfying (5.5.6) is given by

lim
ti→−∞

eR̃(ti)Hfree. (5.5.8)

There are various choices of the dressing operator satisfying (5.5.7). One example is

R̃(t) =

∫
d̃3k

1

2ω2

[
eiωtj̃0I(t,~k)k̃µa†µ(~k)− e−iωtj̃0I(t,−~k)k̃µaµ(~k)

]
, (5.5.9)

where k̃µ = (ω,−~k).

Although one may use such a dressing operator R̃(t), we can simplify it by recognizing
that the current operator j0I can be approximated in the asymptotic regions (t ∼ ±∞)
by the classical current operator j0

as given by (5.3.16). For the time component of the
current, we can straightforwardly obtain (see Appendix E for details)6

lim
τ→±∞

j0I(t, ~x) = lim
τ→±∞

j0
as(t, ~x). (5.5.11)

Therefore, we can rewrite the condition (5.5.6) as

lim
ti→−∞

[
kµaµ(~k) + eiωti j̃0

as(ti,
~k)
]
|β〉0 = 0. (5.5.12)

For later convenience, we represent the operator in (5.5.12) by Ĝ(t,~k) as

Ĝ(t,~k) ≡ kµaµ(~k) + eiωtj̃0
as(t,

~k). (5.5.13)

Noting that the momentum representation of the classical current operator is given by

(5.3.14), and a trivial equation e
−i p·k

Ep
t

= eiωte
−i ~p·~k

Ep
t
, we can easily confirm that the Faddeev-

Kulish dressing operator R(t) in (5.3.25) satisfies

Ĝ(t,~k)eR(t) = eR(t) kµaµ(~k). (5.5.14)

Thus an asymptotic physical Hilbert space satisfying (5.5.12) is given by

lim
ti→−∞

eR(ti)Hfree. (5.5.15)

Since the phase operator Φ in (5.3.26) commutes with Ĝ(t,~k) and R(t), Φ is not relevant
for the gauge invariance (5.5.12). Therefore, the Faddeev-Kulish dressed space HFK in
(5.3.30) is gauge invariant without introducing a vector cµ, if we restrict HFock to the
subspace Hfree.

Besides the phase operator, there are other choices of the dressing operator Ras(t)
satisfying

Ĝ(t,~k)eRas(t) = eRas(t) kµaµ(~k). (5.5.16)

One example of Ras(t) other than the Faddeev-Kulish dressing operator (5.3.25) is ob-

6Other components of the current also satisfy similar equations:

lim
τ→±∞

jiIfree(t, ~x) = lim
τ→±∞

jias(t, ~x). (5.5.10)

Here, the subscript free means that the current is that of the free theory.
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tained by replacing j̃0I with j̃0
as in (5.5.9). Then we can define another asymptotic physical

Hilbert space:

lim
ti→−∞

eRas(ti)Hfree, (5.5.17)

which is a solution of the gauge invariant condition (5.5.12). Although the question that
what types of dressing operators cancel the IR divergences in the S-matrix is beyond the
scope of this paper, we will discuss in subsection 5.7 that the existence of many choices
is natural from the viewpoint of asymptotic symmetry.

5.6 Interpretation of the Faddeev-Kulish dresses

It is shown in [83] that the Faddeev-Kulish dressing factor for a charged particle with
momentum pµ corresponds to the classical Liénard-Wiechert potential around the particle.
This fact supports our statement that the Gauss’s law requires the dressing factor. In this
section, we will reconfirm this fact with taking care of the iε prescription, and see that
we should use different prescriptions for initial and final states, which might be useful for
the explicit computation of scattering amplitudes.

5.6.1 Coulomb potential by point charges in the asymptotic re-
gion

Here, we will recall the expression of the electromagnetic potential created by a charged
point particle with momentum pµ. The classical equation of motion for the gauge field in
the Lorenz gauge is given by

�Aµ(x) = −jµ(x) , jµ(x) = e

∫ ∞
−∞
dτ
dyµ(τ)

dτ
δ4(x− y(τ)), (5.6.1)

where yµ(τ) = pµ
m
τ = pµ

Ep
t is the trajectory of the charged particle, which is supposed

to pass through the origin at t = 0. The position at t = 0 is not relevant when we
consider the asymptotic region.7 With the use of the retarded Green’s function for the
Klein-Gordon equation,

Gret(x) = −
∫

d4k

(2π)4

1

(k0 − ω + iε)(k0 + ω + iε)
eik·x, (5.6.2)

the general solutions of (H.1.1) are given by

Aµ(x) = Ainµ (x) +

∫
d4x′Gret(x− x′)jµ(x′)

= Ainµ (x) + ie
pµ
Ep

∫
d3k

(2π)3

∫ t

−∞
dt′

1

2ω

(
e−iω(t−t′) − eiω(t−t′)

)
e−ε(t−t

′)e
i~k·
(
~x− ~p

Ep
t′
)

= Ainµ (x)− e
∫

d3k

(2π)3(2ω)

[ pµ
p · k + iε

e
i~k·
(
~x− ~p

Ep
t
)

+
pµ

p · k − iεe
−i~k·

(
~x− ~p

Ep
t
)]
. (5.6.3)

7However, the position at t = 0 can contribute to subleading orders, and it was shown in [59] that the
position is important for the subleading memory effect.
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where Ainµ (x) is the incoming free wave, which is specified at t → −∞, and the second
term is the Liénard-Wiechert potential created by the particle with momentum pµ and
charge e. We represent this second term by Aretµ (x; ~p) as

Aretµ (x; ~p) ≡ −e
∫

d3k

(2π)3(2ω)

[ pµ
p · k + iε

e
i~k·
(
~x− ~p

Ep
t
)

+
pµ

p · k − iεe
−i~k·

(
~x− ~p

Ep
t
)]
. (5.6.4)

5.6.2 Coulomb potential from dressed states with iε prescription

Let’s consider a dressed state of a single incoming electron with momentum pµ defined by

||p(t)〉〉 ≡ eRin(t)b†(~p) |0〉 , (5.6.5)

where Rin(t) is an operator dressing the incoming single particle state. The gauge field
in the interaction picture can be written as

AIµ(x) =

∫
d3k

(2π)3(2ω)

(
aµ(~k)eik·x + a†µ(~k)e−ik·x

)
. (5.6.6)

Then we demand that its expectation value for the above dressed state8 match the classical
gauge field (5.6.4) created by a charged point particle with momentum pµ as

〈〈p(t)||AIµ(x)||p(t)〉〉

= −e
∫

d3k

(2π)3(2ω)

( pµ
p · k + iε

e
i~k·
(
~x− ~p

Ep
t
)

+
pµ

p · k − iεe
−i~k·

(
~x− ~p

Ep
t
))
〈〈p(t)||p(t)〉〉. (5.6.7)

We can easily check that the following dressing operator satisfies the above condition,

Rin(t) = e

∫
d3p

(2π)3(2Ep)
ρ(~p)

∫
d3k

(2π)3(2ω)

( pµ

p · k − iεaµ(~k)e
i p·k
Ep

t − pµ

p · k + iε
a†µ(~k)e

−i p·k
Ep

t
)
.

(5.6.8)

This operator matches the dressing operator (5.3.25) up to the iε insertion. How to insert
iε in the dressing operator is determined by how the initial condition of gauge fields is
specified. Thus the dressed states stand for the states of (anti-)electrons surrounded by
relativistic Coulomb fields created by themselves. We have considered a single charged
particle state (5.6.5). The generalization to multi-particle states is trivial, and the ex-
pectation value of Aµ is given by the superposition of the Coulomb field created by each
particle. In other words, in the dressed state, the charged particles are properly dressed
by electromagnetic fields in the asymptotic region where the particles move at almost con-
stant velocities. This result is natural because our dressed states are obtained by solving
the BRST (gauge invariant) condition without ignoring the interaction in the asymptotic
regions. We also would like to comment that this expectation value changes if we mod-
ify the dressing operator by introducing a vector cµ as in [52]. This is another reason
for thinking that such a modification is unnatural. Note also that Rin is anti-Hermitian
(R†in = −Rin). Thus the dressing factor e−Rin is unitary.9

8More precisely, we should use a wave-packet, since the state (5.6.5) is not normalized.
9If we write e−Rin in the normal ordering, the normalization factor has an IR divergence if we set

ε = 0. Thus it is often said (see, e.g., [52]) that the dressing factor is not a unitary operator on the Fock
space in a rigorous sense. However, it does not matter if we keep ε nonzero. After computing IR finite
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Similarly, we can fix the iε prescription for the dressing operator Rout(t) for outgoing
states. We consider a dressed outgoing state

out〈〈p(t)|| ≡ 〈0| b(~p)e−Rout(t), (5.6.9)

and require that the expectation value of AIµ(x) agree with the advanced potential for the
point particle, which is given by

Aadvµ (x; ~p) = −e
∫

d3k

(2π)3(2ω)

[ pµ
p · k − iεe

i~k·
(
~x− ~p

Ep
t
)

+
pµ

p · k + iε
e
−i~k·

(
~x− ~p

Ep
t
)]
. (5.6.10)

The requirement

out〈〈p(t)||AIµ(x)||p(t)〉〉out = Aadvµ (x; ~p) out〈〈p(t)||p(t)〉〉out (5.6.11)

can be satisfied by the following dressing operator

Rout(t) = e

∫
d3p

(2π)3(2Ep)
ρ(~p)

∫
d3k

(2π)3(2ω)

( pµ

p · k + iε
aµ(~k)e

i p·k
Ep

t − pµ

p · k − iεa
†
µ(~k)e

−i p·k
Ep

t
)
.

(5.6.12)

Thus the sign of iε terms is opposite to that in the initial dressing operator Rin given by
(5.6.8).10 This Rout is also anti-Hermitian (R†out = −Rout), and the dressing factor e−Rout

is thus unitary.

The unitarity of the dressing factors, eRin and e−Rout , guarantees that the asymptotic
Hilbert space is positive definite. The asymptotic dressed states are given by acting
on the states satisfying the free Gupta-Bleuler condition with the unitary dressing fac-
tors. The dressed states thus have a positive norm, because the states satisfying the free
Gupta-Bleuler condition are positive definite and any unitary transformation preserves
the positive definiteness. Here, we also give a formal proof of the unitarity of S-matrix.
Including the dressing factors, the S-matrix acting on the Fock space takes the form (up
to phase operators)

S = lim
tf→∞,ti→−∞

S(tf , ti) with S(tf , ti) = e−Rout(tf )S0(tf , ti)e
Rin(ti), (5.6.13)

where S0 denotes the usual (finite time) S-matrix:

S0(tf , ti) = T exp

(
−i
∫ tf

ti

dt′ V I(t′)

)
= U †0(tf , ts)U(tf , ti)U0(ti, ts). (5.6.14)

The unitarity of S0(tf , ti) simply follows from the expression of eq.(5.6.14). Since Rin and
Rout are anti-Hermitian, we can show the unitarity of S(tf , ti) as

S†(tf , ti)S(tf , ti) = eR
†
in(ti)S†0(tf , ti)e

−R†out(tf )e−Rout(tf )S0(tf , ti)e
Rin(ti)

= e−Rin(ti)S†0(tf , ti)e
Rout(tf )e−Rout(tf )S0(tf , ti)e

Rin(ti)

= e−Rin(ti)S†0(tf , ti)S0(tf , ti)e
Rin(ti)

= 1. (5.6.15)

physical quantities, we can take ε to 0.
10This difference between the iε prescriptions for initial states and for final states may be related to

the prescription used to define in-out and in-in propagators in nonstationary spacetime [84].
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Therefore, the S-matrix is unitary.

5.7 Asymptotic symmetry in the dressed state for-

malism

We now discuss the relation between the asymptotic symmetry in QED and the dressed
states (see also [77, 78, 49, 79, 50, 72, 80] for related discussions). We will show that the
Faddeev-Kulish dressed states carry the charges associated with the asymptotic symmetry,
and investigate the conservation law of the asymptotic charges for the S-matrix in the
dressed state formalism.

The charge associated with the asymptotic symmetry was given by

Qs
as[ε] =

∫
d3x

[
−Π0s∂0ε− Πis∂iε+ j0sε

]
, (5.7.1)

where the gauge parameter ε(x) satisfies 2ε = 0 and the script s refers to the Schrödinger
picture. This charge Qs

as[ε] is BRST exact up to the boundary term:

Qs
as[ε] = −

∫
d3x ∂i(Π

isε) +

{
Qs
BRST ,

∫
d3x(−c̄s∂0ε+ iπs(c)ε)

}
. (5.7.2)

Therefore, if the gauge parameter ε(x) is the large gauge parameter, the charge does not
vanish in the asymptotic regions as we have already seen. All of the asymptotic charges
commute with the BRST charge:

[Qs
as, Q

s
BRST ] = 0, (5.7.3)

and they commute with the Hamiltonian Hs up to the BRST exact term 11 :

[Qs
as, H

s] = −i
∫
d3x

[
∂iε ∂iΠ

0s + ∂0ε (∂iΠ
is + j0s)

]
=

{
Qs
BRST ,−i

∫
d3x

(
∂iε∂ic̄

s + i∂0ε π
s
(c)

)}
. (5.7.4)

Therefore, the spectrum of the physical Hilbert space is infinitely degenerated.

This fact naturally leads us to classify the asymptotic states by QI
as in the interac-

tion picture. We now see how QI
as acts on the initial dressing operator Rin(t) given in

eq. (5.6.8). As in (5.7.2), the asymptotic charge QI
as in the interaction picture takes the

following form up to the BRST exact part:

QI
as[ε] = −

∫
d3x ∂i(Π

iIε) = −
∫
d3x [ΠI

i ∂
iε+ (∂iΠ

iI)ε]. (5.7.5)

11This is the reason why we adopted the Hamiltonian (2.9.9). As mentioned in footnote 14, the
canonical Hamiltonian Hs

can has extra boundary terms: Hs
can = Hs −

∫
d3x ∂i(Π

s
0A

is + ΠisA0s). The
boundary terms affect the commutator (5.7.4) as [Qsas,

∫
d3x ∂i(Π

s
0A

is + ΠisA0s)] = −i
∫
d3x ∂i(Π

0s∂iε +
Πis∂0ε) = {QsBRST ,−i

∫
d3x ∂i(c̄

s∂iε)} − i
∫
d3x ∂i(Π

is∂0ε). Since ∂0ε = O(r−1) at r →∞, we can neglect
the effect of boundary terms if the radial component of the electric field operator, x̂iΠi, decays as O(r−2).
This condition is probably satisfied for physical scattering states in a reasonable setup.
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The commutator of ΠI
i and Rin(t) is given by

[ΠI
i (t, ~x), Rin(t)]

= ie

∫
d3p

(2π)3(2Ep)
ρ(~p)

∫
d3k

(2π)3(2ω)

Epki − ωpi
p · k

(
e
−i~k·(~x− ~p

Ep
t) − ei~k·(~x−

~p
Ep
t)
)
, (5.7.6)

where we have set ε = 0 because the integrand is not singular at ~k = 0. On the other
hand, the classical electric field for the classical configuration Aretµ (x; ~p) given by (5.6.4)
is computed as

∂0A
ret
i (x; ~p)− ∂iAret0 (x; ~p) = ie

∫
d3k

(2π)3(2ω)

Epki − ωpi
p · k

(
e
−i~k·(~x− ~p

Ep
t) − ei~k·(~x−

~p
Ep
t)
)
,

(5.7.7)

where we have also set ε = 0. Hence, one can say that the commutator of ΠiI and Rin(t) is
given by the “classical operator” which represents the classical Liénard-Wiechert electric
field as

[ΠI
i (t, ~x), Rin(t)] =

∫
d3p

(2π)3(2Ep)
ρ(~p)[∂0A

ret
i (x; ~p)− ∂iAret0 (x; ~p)] ≡ F cl

0i(x). (5.7.8)

Similarly, the commutator of ∂iΠ
iI and Rin(t) is given by the classical current as

[∂iΠ
iI(t, ~x), Rin(t)] = −e

∫
d̃3p ρ(~p) δ3(~x− ~pt/Ep) = −j0

as(x). (5.7.9)

Therefore, the asymptotic charge QI
as[ε] in (5.7.5) acts on eRin as

[QI
as[ε], e

Rin ] = eRin
∫
d3x [F 0i

cl ∂iε+ j0
asε]. (5.7.10)

The integral

Qcl
as[ε] ≡

∫
d3x [F 0i

cl ∂iε+ j0
asε] (5.7.11)

is in fact the asymptotic charge operator on the Fock space of charged particles. In
the limit t → ±∞, the eigenvalues agree with the classical leading hard charges (2.4.4).
The leading hard charges are the contributions to the asymptotic charges from uniformly
moving charged particles and their Coulomb-like electric fields. Therefore, eq. (5.7.10)
represents that the charged Fock particles with the dressing operator (5.3.25) carry the
asymptotic charges for the classical free charged particles with their Liénard-Wiechert
electric fields. This result is natural because the dressing corresponds to creating the
Liénard-Wiechert potential as we have seen in Section 5.6. The result also suggests that
the antipodal matching condition (2.5.8) also holds in QED.

At the classical level, the conservation of asymptotic charges lead to the electromagnetic
memory effect. Let us see the implication at the quantum level. To make our discussion
simple, we suppose that the radiation sector is given by eigenstates of asymptotic charges
at t = ±∞; that is, we consider the asymptotic states |Λin〉 and 〈Λout| such that they
contain only transverse photons and satisfy

QI,−
as [ε] |Λin〉 = Λin[ε0] |Λin〉 , 〈Λout|QI,+

as [ε] = 〈Λout|Λout[ε
0], (5.7.12)
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where QI,±
as [ε] = limt→±∞Q

I
as[ε], and Λin, Λout are arbitrary (c-number) functionals of ε0

to which ε asymptotically approaches. We then prepare the following dressed states by
exciting charged particles on |Λin〉 and 〈Λout| as

|in〉 = eRin(t=−∞)Ψ̂†in |Λin〉 , 〈out| = 〈Λout| Ψ̂oute
−Rout(t=+∞), (5.7.13)

where Ψ̂†in is an arbitrary product of creation operators b†, d† of charged particles and Ψ̂out

is any product of annihilation operators b, d. The asymptotic symmetry implies

〈out| (QI,+
as S0 − S0Q

I,−
as ) |in〉 = 0, (5.7.14)

where S0 is given by (5.6.14) with limits tf →∞, ti → −∞. From (5.7.10) and a similar
computation for e−Rout , we have

QI,−
as |in〉 = (Q−H + Λin) |in〉 , 〈out|QI,+

as = 〈out| (Q+
H + Λout). (5.7.15)

Here, Q−H and Q+
H represent the hard charge eigenvalues for the states Ψ̂†in |0〉 and 〈0| Ψ̂out

respectively as(
lim
t→−∞

Qcl
as

)
Ψ̂†in |0〉 = Q−HΨ̂†in |0〉 , 〈0| Ψ̂out

(
lim
t→∞

Qcl
as

)
= 〈0| Ψ̂outQ

+
H . (5.7.16)

Thus (5.7.14) becomes

(Q+
H + Λout −Q−H − Λin) 〈out|S0 |in〉 = 0. (5.7.17)

This means that the S-matrix elements can take non-zero values only when the asymptotic
charges are conserved,

Q+
H + Λout = Q−H + Λin, (5.7.18)

between the out states and the in states [49]. We would also be able to interpret it as
the quantum analog of the classical memory effect. In a scattering event, if the hard
charges are not conserved Q+

H 6= Q−H , there should be a change in the radiation sector
|Λin〉 → |Λout〉 so that (5.7.18) holds for any ε0. Conversely, a change in the radiation
sector, Λout − Λin, is memorized in the change of the hard charges Q+

H −Q−H .

We here comment on the possibility of other dressing operators. The standard Fock
vacuum is not the eigenstate of QI

as.
12 Roughly speaking, the eigenstates in (5.7.12)

would consist of clouds of soft photons without charged particles. However, the Faddeev-
Kulish dressing operator R(t) in (5.3.25) makes a photon cloud only when there are
charged particles. Thus we need other dressing operators than Faddeev-Kulish’s in order
to prepare eigenstates (5.7.12). As we have already argued in subsection 5.5, the dressing
operators are not uniquely fixed from the gauge invariant condition. We think that this
variety is related to the asymptotic symmetry, and leave it for a future work to classify
gauge invariant dressed states in terms of the asymptotic charges.

12The asymptotic symmetries for general gauge parameters ε are spontaneously broken in the standard
Fock vacuum [4].
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Chapter 6

Conclusion and further discussion

In Chapter 2, we have derived the classical charges associated with the asymptotic sym-
metry up to the subleading order. We have also shown that the contribution from the
charge in the spatial infinity to the conservation law vanishes and therefore the charges
are conserved between the asymptotic future and past time slices. We have then derived
the quantum leading charge associated with the asymptotic symmetry in the BRST for-
malism and shown that the charge has the same expression as the one of the leading
classical charge if the BRST condition is imposed on the physical Hilbert space. In Chap-
ter 3, we have reviewed the S-matrix theory, the soft photon theorems, and the infrared
divergences of the conventional S-matrix. In Chapter 4, we have derived the subleading
charge conservation law from the subleading photon theorem in massive scaler QED. In
Chapter 5, we have shown that the Faddeev-Kulish dressed states can be obtained just
from the gauge-invariant condition without solving the asymptotic dynamics. In addition,
we have shown the possibility of other types of gauge-invariant dressed states. We have
also shown that the Faddeev-Kulish dressing operator carry the charges associated with
the asymptotic symmetry and the S-matrix obeys the conservation law of the charges.

In the analysis in Chapter 2 and Chapter 4, we have assumed that massive particles are
the free particles in the asymptotic region. Therefore the contributions from electromag-
netic potential created by the massive charged particles to the hard charges have been
neglected in the analysis. However, the hard charges should contain such contributions
because the effect of long-range interactions would not be ignored even in the asymptotic
region. In fact, the asymptotic charge carried by the dressed charged particles (5.7.10)
contains not only the contribution from the charge density of massive particles but also the
contribution from the electromagnetic potential created by the charged particles. Once
the asymptotic interactions in the asymptotic regions are taken into consideration, the
subleading charge and also the soft theorems would be modified. Therefore it would be
interesting to study the subleading charge of asymptotic symmetry, the soft theorems,
and their relations in the dressed state formalism because they may give some important
constraints to the IR finite S-matrix.

We close this chapter with further discussion and comments on future directions.
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6.1 Softness of dresses and infrared scales

In the derivation of the F-K dressed state, there were several assumptions and subtle
points. We assumed that the interaction in the dynamics of the asymptotic state is gen-
erated by the asymptotic interaction in (5.3.15) 1. We also assumed that the asymptotic
Hilbert space is the Fock space. This assumption seems not so natural, since electrons and
photons in the asymptotic state interact with each other by the asymptotic interaction
in the dressed state formalism. The difficulty originates from the fact that the asymp-
totic interaction is time-dependent even in the Schrödinger picture. The time-dependence
itself would be natural because the short range modes in the QED interaction among
charged particles are decoupled as the distance of the wave packets of the charged parti-
cles increases in the time evolution. However, the notion of “particle” and vacuum states
become subtle due to the time-dependence because the stable state does not exist for the
time-dependent Hamiltonian.

The infrared finiteness of the F-K dressed state is based on Chung’s analysis reviewed
in Section 5.2. The argument is as follows. If we extract soft momentum region k ∼ 0 for
the dressing operator (5.3.25) in the F-K dressed state, the operator takes the form

Rsoft ∼
∑

e

∫
d̃3p ρ(~p)

∫
soft

d3k

(2π)3(2ω)

pµ

p · k
[
aµ(~k)− a†µ(~k)

]
, (6.1.1)

because e
i p·k
Ep

t ∼ 1 at k ∼ 0. Roughly, this is the dressing operator in Chung’s dressed
state (5.2.1). Since ω > 0 region is not relevant to the proof of the IR finiteness, the
behavior of the dressing operator was specified only at ω → 0 in [51]

However, we should pay attention to the contribution of the nonzero soft momentum in
(5.3.25) because it would affect the physical observables. We can make a rough argument
that the contribution vanishes in the limit |t| → ∞ as follows. First, note that p · k =
−ω(Ep − ~p · k̂) can be zero only when ω = 0 because pµ is an on-shell momentum of a

massive particle (Ep > |~p|). Then owing to the oscillating factor e
i p·k
Ep

t
, the contributions

from nonzero momenta (ω > 0) can be ignored in the limit t → ±∞. This statement
can be made more rigorous with the use of ε-inserted dressing operator eq. (5.6.8) or
eq. (5.6.12). We use the following identity as a distribution:

lim
ε→0

lim
t→±∞

eiαt

α± iε = ∓iπδ(α). (6.1.2)

From this identity, we have

lim
ε→0

lim
t→−∞

Rin(t) = −iπ
2

∑
e

∫
d̃3p ρ(~p)

∫
d3k

(2π)3

pµ

p · k
[
aµ(~k) + a†µ(~k)

]
δ(ω), (6.1.3)

lim
ε→0

lim
t→∞

Rout(t) =
iπ

2

∑
e

∫
d̃3p ρ(~p)

∫
d3k

(2π)3

pµ

p · k
[
aµ(~k) + a†µ(~k)

]
δ(ω). (6.1.4)

Therefore, we can say that the only soft photons constitute the dresses in the asymptotic
limit t → ±∞. However, the above limit is dangerous or even nonsense in the following
sense.

1The time component of the asymptotic current (5.3.16) can be derived more precisely as in (E.0.10).
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First, the large time limit for the F-K-type S-matrix is given by

lim
tf→∞, ti→−∞

e−Rout(tf ) T exp

(
−i
∫ tf

ti

dt′ V I(t′)

)
eRin(ti). (6.1.5)

Thus we should first compute the finite time conventional S-matrix element and then
take the limits tf → ∞ and ti → −∞ with the dressing factors. In addition, the phase
operator such as (5.3.26) might be needed to make the S-matrix well-defined because the
conventional S-matrix in (3.5.7) suffers from an infinitely oscillating phase factor.

Secondly, tf and ti are finite in the real scattering experiments. It may be needed to
introduce the infrared scale 1/t with t = ti, tf in the infrared finite S-matrix. The soft
expansion used to derive the soft theorem (3.3.9) is valid for ω . m (ω: soft photon
energy, m: electron mass.) In this sense, it is expected that the “soft region” in the
dressing operator (5.3.25) is ω . m. Moreover, the energy range of the soft photons that
effectively contribute in the dressing factor to be roughly restricted to ω . 1/t due to the
oscillating factor 1

p·k exp(ip·k
Ep
t). For these infrared scales, we usually have the hierarchy

1/t� m in the real experiment 2.

In order to solve the above issues and construct the proper IR finite S-matrix, we need
to further study the physical Hilbert space of asymptotic state at the appropriate large
time limit.

6.2 Extension to Gravity

It is important to extend our analysis to other theories. In the perturbative gravity,
there are soft graviton theorems up to sub-subleading order [13, 85, 86, 87, 34, 88, 89].
Our analysis about the derivation of asymptotic charge conservation and its relations to
soft theorems would be extended to gravity. It may be more interesting to work in the
(dynamical) black hole backgrounds [48, 90].

The dressed state formalism for the perturbative gravity was also developed in [91]
(see also [79, 50]). However, a tensor cµν , which is an analog of a vector cµ in [52],
was introduced by imposing a free “gauge invariant” condition which is a gravitational
counterpart of the free Gupta-Bleuler condition (5.4.1). As in QED, we should impose
an appropriate physical condition on the physical Hilbert space, and we expect that the
tensor cµν is unnecessary.

6.3 Other future directions

We would like to comment on other future directions.

Mandelstam developed a manifestly gauge-independent formalism of gauge theories
[92, 93]. In the formalism, the dynamical variables of QED are the field strength Fµν and
path-dependent charged fields such as

φ(x; Γ) ≡ e−ie
∫ x
Γ dξµAµ(ξ)φ(x). (6.3.1)

2For example, the time for moving 1µm at the speed of light gives the infrared energy scale ~c/10−6 =
2× 10−7 MeV , which is much smaller than the electron mass me = 0.5 MeV.
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Such fields attached with Wilson lines are also considered in the context of the bulk
reconstruction in the AdS/CFT correspondence (see e.g. [94, 95, 96]). A similarity
between Mandelstam’s formalism and the dressed state formalism was discussed in [97].
However, the dressing operator constructed in [97] has the additional terms depending on
the choice of the path Γ. Thus the dressing operator seems not to be related directly to
Faddeev-Kulish’s one (5.3.25). Furthermore, we should also investigate the relation to the
asymptotic symmetry. As explained in [98] for gravitational theories in AdS, the operators
like (6.3.1) are transformed under the asymptotic symmetry, and the behavior of the path
Γ near the asymptotic boundary is important in determining the transformation law of
the symmetry. In [92, 93], the behavior of Γ near the asymptotic region was not specified.
Thus it is interesting to understand more precisely the relations among Mandelstam’s
formalism, the dressed state formalism and the asymptotic symmetry.

We hope to come back to these issues in the non-asymptotic future.
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Appendix A

Asymptotic behavior of the residual
gauge parameter

The residual gauge transformations in Lorenz (Feynman) gauge are generated by the
gauge parameter ε(x) satisfying ∇µ∇µε = 0. In the retarded (u, r,Ω) coordinates, the
condition can be written as

0 =

[
∂2
r − 2∂u∂r +

2

r
(−∂u + ∂r) +

1

r2
∆S2

]
ε . (A.0.1)

We assume that the gauge parameter is O(1) at large r and we expand it as

ε =ε(0)(u,Ω) +O(r−1) . (A.0.2)

Inserting this expansion to (A.0.1), we have ∂uε
(0) = 0. This means that the leading

boundary condition at r →∞ is given by u-independent function, and the residual gauge
parameter can expanded as

ε =ε(0)(Ω) +O(r−1) . (A.0.3)

The solution can be expressed by the following integral form [6, 55]:

ε(x) =

∫
d2Ω

√
γ(Ω)G(x; Ω)ε(0)(Ω) , (A.0.4)

where G(x; Ω′) is the Green function which satisfies

�G(x; Ω′) = 0 , lim
r→∞
u fixed

G(x; Ω′) = δ2(x̂− q̂) . (A.0.5)

This Green function is given by

G(x; Ω′) = − 1

4π

xµxµ
(qµxµ)2

with qµ = (1, q̂(Ω′)), (A.0.6)
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where q̂(Ω) is a three-dimensional unit vector parametrized by ΩA1. The first property in
(A.0.5) is easily checked as

�G(x; Ω′) = − 1

4π
∂ν

[
2xν

(q · x)2
− 2xµxµ

(q · x)3
qν
]

= − 1

4π

[
8

(q · x)2
− 4

(q · x)2
− 4

(q · x)2
+

6xµxµ
(q · x)4

q2

]
= 0 . (A.0.7)

The second property is also shown as follows. In (u, r,Ω) coordinate, the Green function
can be written as

G(u, r,Ω; Ω′) = − 1

4π

xµxµ
(qµxµ)2

= − 1

4π

t2 − r2

(t− rq̂ · x̂)2

= − 1

4π

u(u+ 2r)

(u+ r(1− x̂ · q̂))2 . (A.0.8)

We then easily find

lim
r→∞
u fixed

G(x, q̂) = − lim
r→∞
u fixed

1

4π

2ur

r2 (1− q̂ · x̂)2 = 0 for q̂ · x̂ 6= 1 , (A.0.9)

and ∫
d2Ω

√
γ(Ω)G(x; Ω) = − 1

4π

∫
d2Ω

√
γ(Ω)

u(u+ 2r)

(u+ r(1− q̂ · x̂))2

= −u(u+ 2r)

2

∫ 1

−1

d(cos θ)
1

(u+ r(1− cos θ))2

=
u(u+ 2r)

2

[
1

r(u+ r(1− x))

]∣∣∣∣1
−1

= 1 . (A.0.10)

The Green function thus satisfies the second condition in (A.0.5).

For the Green function (A.0.8) in the limit that r →∞ with u = t− r fixed, we have∫
d2Ω′

√
γ(Ω′)G(u, r,Ω; Ω′)Y`m(Ω′) = Y`m(Ω) +

`(`+ 1)u log |u|
2r

+ s`u

2r
Y`m(Ω) +O(r−1−ε) ,

(A.0.11)

where Y`m(Ω) are the spherical harmonics, and the coefficients s` are2

s` =
1

2`

b`/2c∑
j=0

(−1)j(2`− 2j)!

j!(`− j)!(`− 2j)!
c`−2j with cn = −1 + (−1)n + n

4
n∑
k=1

1

k
− 2

bn/2c∑
k=1

1

k

 .

(A.0.12)

As a result, the large gauge parameter ε(u, r,Ω) has the following large-r expansion,

ε(u, r,Ω) = ε(0)(Ω) +
u log 2r

|u|

2r
∆S2ε(0)(Ω) +O(r−1). (A.0.13)

1More precisely, Green’s function is defined as G(x; Ω̃) = − 1
8π limε→0

[
xµxµ

(qµxµ−iε)2 +
xµxµ

(qµxµ+iε)2

]
.

2c0 = 0, c1 = 2.
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Similarly, in the limit that r →∞ with v = t+ r fixed, it is expanded as

ε(v, r,Ω) = ε(0)(Ω̄)−
v log 2r

|v|

2r
∆S2ε(0)(Ω̄) +O(r−1), , (A.0.14)

where Ω̄ is the antipodal angle of Ω. Therefore, if we define the coefficients of large-r
expansion of ε(x) as

lim
r→∞,u:fixed

ε(x) = ε(0)(Ω) + ε(log,+)(u,Ω)
log r

r
+O(r−1), (A.0.15)

lim
r→∞,v:fixed

ε(x) = ε(0)(Ω̄) + ε(log,−)(v,Ω)
log r

r
+O(r−1), (A.0.16)

then ε(log,+)(u = −2U,Ω) = ε(log,−)(v = 2U, Ω̄) holds.

Now we study the behavior of the residual gauge parameter on timelike infinity i+. In
(τ, ρ,ΩA) coordinates, the Green function can be written as

G(τ, ρ,Ω; Ω′) = − 1

4π

1[√
1 + ρ2 − ρx̂ · q̂

]2 . (A.0.17)

Note that G(τ, ρ,Ω; Ω′) have turned out to be independent of τ . It means that the residual
gauge parameter (A.0.4) is independent of τ . Then the residual gauge parameter at i+ is
given by

εH3(σ) ≡ lim
τ→∞

ε(τ, ρ,Ω) =

∫
d2Ω′

√
γ(Ω′)GH3(σ; Ω′)ε(0)(Ω′) (A.0.18)

with GH3(σ; Ω′) ≡ G(τ, ρ,Ω; Ω′). If we take ε(0)(Ω′) = ε(0)(=constant), it reduces to

εH3(σ) = ε(0) . (A.0.19)
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Appendix B

Electromagnetic Fields in null
infinity

B.1 Electromagnetic fields by uniformly moving charges

If there is a charge e moving with a constant velocity ~v as

~x = ~x0 + ~v(t− t0) , (B.1.1)

the gauge potential produced by the charge in the Lorenz gauge is

A0(x) =
e

4π `(x)
, ~A(x) =

e~v

4π `(x)
, (B.1.2)

where

`(x) =
√

(1− |~v|2)(|~x− ~x0|2 − [v̂ · (~x− ~x0)]2) + (v̂ · (~x− ~x0)− |~v|(t− t0))2 (B.1.3)

with

v̂ =
~v

|~v| . (B.1.4)

At the point t = T − U, r = T + U with large T , the electric flux Ftr is expanded as

Ftr(t, r,Ω)|t=T−U,r=T+U (B.1.5)

= − e(1− |~v|2)

4π(1− ~v · x̂(Ω))2T 2
+
e(1− |~v|2)f(U,Ω;~v, t0, ~x0)

4π(1− ~v · x̂(Ω))4T 3
+O(T−4) (B.1.6)

with

f(U,Ω;~v, t0, ~x0) ≡2U(1− |~v|2 − 2|~v⊥|2) + [1− ~v · x̂(Ω)− 3(1− |~v|2)]~x0 · x̂(Ω)

+ 3[1− ~v · x̂(Ω)]~v · ~x0 + [2(1− |~v|2)− 2(1− ~v · x̂(Ω))− |~v⊥|2]t0 ,
(B.1.7)
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where ~v⊥ ≡ ~v − [~v · x̂(Ω)]x̂(Ω). At the point t = −T + U, r = T + U with large T , the
electric flux Ftr is

Ftr(t, r,Ω)|t=−T+U,r=T+U (B.1.8)

= − e(1− |~v|2)

4π(1 + ~v · x̂(Ω))2T 2
+
e(1− |~v|2)f(U,Ω;−~v,−t0, ~x0)

4π(1 + ~v · x̂(Ω))4T 3
+O(T−4). (B.1.9)

Thus the antipodal matching condition eq. (2.5.8) at the leading order

F
+(2)
tr (Ω) = F

−(2)
tr (Ω̄) (B.1.10)

holds where Ω̄ denotes the antipodal point of Ω. Thus if we have initially charges en
moving as

~x(n) = ~x
(n)
0 + ~vn(t− t(n)

0 ) , (B.1.11)

Q0 given by eq. (2.5.5) is computed as

Q0 =
∑
n

en(1− |~vn|2)

2πT

∫
d2Ω

√
γ(Ω)

ε(0)(Ω)

(1− ~vn · x̂(Ω))4

{
[1− ~vn · x̂(Ω)− 3(1− |~vn|2)]~x

(n)
0 · x̂(Ω)

+3[1− ~vn · x̂(Ω)]~vn · ~x(n)
0 + [2(1− |~vn|2)− 2(1− ~vn · x̂(Ω))− |~vn⊥|2]t

(n)
0

}
+O(T−2) .

(B.1.12)

Therefore, we have confirmed that the log T/T term doesn’t appear in Q0 at least in this
setup.

B.2 Computation of memories

Here, we check the memory effect formulae (2.5.16) and (2.5.30) for a concrete example.
We consider the following trajectory of a charged particle with charge e such as it first
rests at ~x0 and moves with a constant velocity ~v after a time t0:

~x = ~x0 + Θ(t− t0)~v(t− t0). (B.2.1)

We represent the matter current for this trajectory by jµmat, which is the source in
Maxwell’s equation ∂νF

νµ = −jµmat. The retarded electromagnetic field created by this
particle is written in the Lorenz gauge ∂µA

µ = 0 as

A0(x) = Θ(|~x− ~x0| − t+ t0)
e

4π|~x− ~x0|
+ Θ(−|~x− ~x0|+ t− t0)

e

4π `(x)
, (B.2.2)

~A(x) = Θ(−|~x− ~x0|+ t− t0)
e~v

4π `(x)
, (B.2.3)

where `(x) is given by eq. (B.1.3).

We first consider the charge Qf . It is given by

Qf =

∫
d2Ω
√
γ
(
r2F trε

)
|t=T+U,r=T−U . (B.2.4)
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At t = T + U, r = T − U with large T , electric field F tr is expanded as

F tr|t=T+U,r=T−U =
e(1− |~v|2)

4π(1− ~v · x̂)2T 2
+O(T−3) . (B.2.5)

Since our gauge parameter has the expansion as eq. (2.5.25), Qf is expanded as

Qf =
e(1− |~v|2)

4π

∫
d2Ω
√
γ

ε(0)

(1− ~v · x̂)2
+
U log T

T

e(1− |~v|2)

4π

∫
d2Ω
√
γ

∆S2ε(0)

(1− ~v · x̂)2
+O(T−1) .

(B.2.6)

Thus we have

lim
T→∞

Qf [ε
(0)] =

e(1− |~v|2)

4π

∫
d2Ω
√
γ

ε(0)

(1− ~v · x̂)2
, (B.2.7)

Qlog
f [ε(0)] = −Ue(1− |~v|

2)

4π

∫
d2Ω
√
γ

∆S2ε(0)

(1− ~v · x̂)2
= −U lim

T→∞
Qf [∆S2ε(0)] . (B.2.8)

Note that Qlog
f diverges in the limit U → ∞ although Qlog

f + Qlog′
+ is finite as we will see

later. Similarly, the charge Qi is computed as

lim
T→∞

Qi[ε
(0)] =

e

4π

∫
d2Ω
√
γε(0) , (B.2.9)

Qlog
i [ε(0)] = −Ue

4π

∫
d2Ω
√
γ∆S2ε(0) = 0 . (B.2.10)

Next, we compute the future null infinity charge limT→∞Q+ given by (2.5.15). Since
the angular components of the gauge field is expanded as

AB(x) = Θ(u+ ~x0 · x̂− t0)
e~v · ∂Bx̂

4π(1− ~v · x̂)
+O(T−1) , (B.2.11)

the charge is given by

lim
T→∞

Q+ =

∫
d2Ω
√
γε(0)γAB∇A

[
e~v · ∂Bx̂

4π(1− ~v · x̂)

]
. (B.2.12)

With the use of the formula

γAB∇A

[
~v · ∂Bx̂
1− ~v · x̂

]
=
−2~v · x̂
1− ~v · x̂ +

|~v|2 − (~v · x̂)2

(1− ~v · x̂)2
= 1− 1− |~v|2

(1− ~v · x̂)2
, (B.2.13)

the charge has the form

lim
T→∞

Q+ =
e

4π

∫
d2Ω
√
γε(0) − e(1− |~v|2)

4π

∫
d2Ω
√
γ

ε(0)

(1− ~v · x̂)2
= − lim

T→∞
(Qf −Qi) .

(B.2.14)

This certainly agrees with the leading memory effect (2.5.16).

Finally, we compute the subleading charges Qlog
+ and Qlog′

+ . Since we now have

∂uA
(0)
B = δ(u+ ~x0 · x̂− t0)

e~v · ∂Bx̂
4π(1− ~v · x̂)

, (B.2.15)
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the charge Qlog
+ given by eq. (2.5.27) is computed as

Qlog
+ = −1

2

∫
d2Ω
√
γγAB(~x0 · x̂− t0)

e~v · ∂Bx̂
4π(1− ~v · x̂)

∇A∆S2ε(0)

=
e

8π

∫
d2Ω
√
γ

[
(~x0 · x̂− t0)

(
1− 1− |~v|2

(1− ~v · x̂)2

)
+
~x0 · ~v − (~v · x̂)(~x0 · x̂)

1− ~v · x̂

]
∆S2ε(0) .

(B.2.16)

Note that this does not depend on U . As shown in [59], this charge is related to the soft
factor in the subleading soft photon theorem. The momentum of the charged particle
is initially pµ = m(1, 0) and finally p′µ = ω(1, ~v) with ω = m/

√
1− |~v|2. The angular

momentum is initially Jµν = xµ0p
ν − xν0p

µ and finally J ′µν = xµ0p
′ν − xν0p

′µ. They read
pu = m = −q · p, p′u = ω(1 − ~v · x̂) = −q · p′, p′B = ω~v · ∂B~x, JuB = −pu~x0 · ∂B~x and
J ′uB = −(~x0 · x̂− t0)p′B − p′u~x0 · ∂B~x where qµ = (1, x̂). Using them, we have

(~x0 · x̂− t0)
~v · ∂Bx̂
1− ~v · x̂ =

1

r

[
J ′uB
q · p′ −

JuB
q · p

]
. (B.2.17)

Thus Qlog
+ can also be written as

Qlog
+ = − e

8π

∫
d2Ω
√
γ lim
r→∞

(
rJ ′uA

q · p′ −
rJuA

q · p

)
∇A∆S2ε(0) . (B.2.18)

The charge Qlog′
+ given by (2.5.28) is computed as follows. The radial component Ar in

(u, r,Ω) coordinates is

Ar = − e

4πr
+O(r−2), (B.2.19)

and we thus have A
(1)
r = −e/(4π), which does not contribute to the charge Qlog′

+ because∫
d2Ω
√
γA(1)

r ∆S2ε(0) = − e

4π

∫
d2Ω
√
γ∆S2ε(0) = 0 . (B.2.20)

We also have C
(1)
u = 0, C

(1)
A = 0 and

∇BA
(0)
B =

e

4π
Θ(u+ ~x0 · x̂− t0)

[
1− 1− |~v|2

(1− ~v · x̂)2

]
+

e

4π
δ(u+ ~x0 · x̂− t0)

[
~x0 · ~v − (~v · x̂)(~x0 · x̂)

1− ~v · x̂

]
. (B.2.21)

Therefore,

Qlog′
+ = − e

8π

∫
d2Ω
√
γ(2U + ~x0 · x̂− t0)

[
1− 1− |~v|2

(1− ~v · x̂)2

]
∆S2ε(0)

− e

8π

∫
d2Ω
√
γ

[
~x0 · ~v − (~v · x̂)(~x0 · x̂)

1− ~v · x̂

]
∆S2ε(0) , (B.2.22)
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and for any ε(0)(Ω), we have

Qlog′
+ +Qlog

f = − e

8π

∫
d2Ω
√
γ(~x0 · x̂− t0)

[
1− 1− |~v|2

(1− ~v · x̂)2

]
∆S2ε(0)

− e

8π

∫
d2Ω
√
γ

[
~x0 · ~v − (~v · x̂)(~x0 · x̂)

1− ~v · x̂

]
∆S2ε(0) (B.2.23)

= −Qlog
+ . (B.2.24)

This is the subleading memory effect.
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Appendix C

Asymptotic expansion of radiation
fields

We here investigate the large-r expansion of radiation fields in the Lorenz gauge ∂µA
µ = 0.

We suppose that gauge fields are generally expanded as follows:1

Au =
log |u|

2r

r
C(1)
u (u,Ω) +

1

r
A(1)
u (u,Ω) +

log |u|
2r

r2
C(2)
u (u,Ω) +

1

r2
A(2)
u (u,Ω) + · · · , (C.0.1)

Ar =
1

r
A(1)
r (u,Ω) +

log |u|
2r

r2
C(2)
r (u,Ω) +

1

r2
A(2)
r (u,Ω) + · · · , (C.0.2)

AB = A
(0)
B (u,Ω) +

log |u|
2r

r
C

(1)
B (u,Ω) +

1

r
A

(1)
B (u,Ω) + · · · . (C.0.3)

Inserting them into the Lorenz gauge condition

−∂uAr + ∂r(−Au + Ar) +
2

r
(−Au + Ar) +

1

r2
∇BAB = 0, (C.0.4)

we find

∂uA
(1)
r = 0 , C(1)

u + ∂uC
(2)
r = 0 , −∂uA(2)

r −
1

u
C(2)
r + C(1)

u − A(1)
u + A(1)

r +∇BA
(0)
B = 0 ,

(C.0.5)

where ∇B is the covariant derivative associated with the two-sphere metric γAB, and
∇B = γBA∇A.

Eq. (2.5.28) is obtained by expanding F rB and F ru in (2.5.14) with (C.0.1), (C.0.2)

1The expansion is more general than that in [55], because we allow log r terms like the gauge parameter

ε(x) [see (2.5.25)]. In particular, log r terms with coefficients C
(1)
u , C

(2)
r and C

(1)
B are included because

these terms are generated by the large gauge transformation with the gauge parameter (2.5.25).
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and (C.0.3). With the use of the above expansion, F rB and F ru are computed as

F rB = −∂uAB + ∂rA
B +

γBC

r2
∂C(Au − Ar)

= − 1

r2
γBC∂uA

(0)
C −

log |u|
2r

r3
γBA

(
∂uC

(1)
A − ∂AC(1)

u

)
+O(r−3) , (C.0.6)

F ru = ∂uAr − ∂rAu =
1

r2

(
A(1)
r +∇BA

(0)
B + 2C(1)

u

)
+O(r−2−ε) , (C.0.7)

and the expansions lead to (2.5.28).

The free equations of motion 2Aµ = 0 in the Lorenz gauge can be written in the
retarded coordinates as[

∂2
r − 2∂u∂r +

2

r
(−∂u + ∂r) +

1

r2
∆S2

]
Au = 0 , (C.0.8)[

∂2
r − 2∂u∂r +

2

r
(−∂u + ∂r) +

1

r2
∆S2

]
Ar −

2

r2
(−Au + Ar)−

2

r3
∇BAB = 0 , (C.0.9)[

∂2
r − 2∂u∂r

]
AB +

1

r2
∆S2AB +

2

r
∂B(−Au + Ar) = 0 . (C.0.10)

Inserting the expansions (C.0.1), (C.0.2) and (C.0.3), we obtain

∂uC
(1)
u = 0, ∂uC

(2)
u = −1

2
∆S2C(1)

u , ∂uA
(2)
u +

1

u
C(2)
u = −1

2
C(1)
u +

1

2
∆S2

(
C(1)
u − A(1)

u

)
,

(C.0.11)

∂uC
(2)
r = −C(1)

u , ∂uA
(2)
r +

1

u
C(2)
r = C(1)

u − A(1)
u + A(1)

r −
1

2
∆S2A(1)

r +∇BA
(0)
B , (C.0.12)

∂uC
(1)
B = ∂BC

(1)
u , ∂uA

(1)
B +

1

u
C

(1)
B = −∂B(C(1)

u − A(1)
u + A(1)

r )− 1

2
∆S2A

(0)
B . (C.0.13)

Using the condition (C.0.5), we find that A
(1)
r is a constant.
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Appendix D

Gauss law constraint in canonical
quantization of QED

In this appendix, we briefly review how the Gauss law constraint appears in the context
of the canonical quantization of QED. The following argument holds without specifying
the concrete metric.

We consider the following QED Lagrangian,

L = −1

4
FµνF

µν + Aµj
µ + Lmat , (D.0.1)

where

Fµν = ∂µAν − ∂νAµ , (D.0.2)

and Lmat is the kinetic term of the matter sector and jµ is the current of global U(1)
charge. Here we try to quantize the gauge fields in the covariant manner. The conjugates
are given by

Πµ =
∂L

∂(∂0Aµ)
= −F 0µ (D.0.3)

Here we find a primary constraint,

Π0 = 0 . (D.0.4)

The Poisson brackets are given by

[Aµ(x),Πν(y)]P = iδνµδ
3(~x− ~y) , (D.0.5)

[Aµ(x), Aν(y)]P = [Πµ(x),Πν(y)]P = 0 (D.0.6)
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where x0 = y0. We define a Hamiltonian H on a time slice Σ as

H =

∫
d3Σ

(
ΠkȦk − L

)
=

∫
d3Σ

(
Πk(F0k +∇kA0) +

1

2
F0kF

0k +
1

4
FijF

ij − Aµjµ
)

=

∫
d3Σ

(
1

2
ΠkΠk −∇kΠ

kA0 +
1

4
FijF

ij − Aµjµ
)
, (D.0.7)

where we have performed a partial integration and dropped out the boundary term∫
dSkΠ

kA0 in the final line. To impose the primary constraint (D.0.4), we define a new

Hamiltonian H̃ by adding a new degree of freedom λ(x) as a Lagrangian multiplier:

H̃ ≡ H +

∫
d3Σ λ(x)Π0(x) . (D.0.8)

Because the constraint (D.0.4) must hold during the time evolution, we have a following
secondary constraint as a consistency condition,

0 = iΠ̇0 = [Π0, H̃]P = ∇kΠ
k + j0 . (D.0.9)

Thus we find (the local) Gauss law:

−∇kF
0k + j0 = 0 , (D.0.10)

as a secondary constraint. The consistency condition for the Gauss law constraint is given
by

0 = [−∇kF
0k + j0, H̃]P = ∇i∇kF

ik , (D.0.11)

which is trivially satisfied by the antisymmetry of the indices of F ik. Therefore, further
constraints do not come up. We have the Poisson bracket relation for the constraints,

[−∇kF
0k + j0,Π0]P = 0 . (D.0.12)

This means that the both constraints, (D.0.4) and (D.0.10), are the first class constraints,
which generate the flows along the gauge orbits. When we quantize the theory, we need
to impose the first class constraints on any physical state |ψ〉 as

Π0|ψ〉 = 0 , (D.0.13)(
−∇kF

0k + j0
)
|ψ〉 = 0 , (D.0.14)

to make the physical states gauge invariant. The constraint (D.0.14) is called the Gauss
law constraint.
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Appendix E

Asymptotic behaviors of the massive
particles

In this appendix, we show the concrete expressions of the matter current of a massive
scalar in the asymptotic regions.

A free massive complex scalar φ(x) can be expressed as

φ(x) =

∫
d3p

(2π)32Ep

(
b(~p)eipx + d†(~p)e−ipx

)
, (E.0.1)

where b(~p) and d(~p) are the annihilation operators for particles and antiparticles, respec-
tively. The nonzero commutation relations of the creation and annihilation operators are
given by

[b(~p), b†(~p ′)] = [d(~p), d†(~p ′)] = (2π)3(2Ep)δ
(3)(~p− ~p ′) . (E.0.2)

All massive particles go to the future timelike infinity i+, not the null infinity in the
asymptotic future time. When we work around the timelike infinity, it is convenient to
use the coordinates (2.3.2):

τ 2 = t2 − r2 , ρ =
r√

t2 − r2
. (E.0.3)

The Minkowski line element then takes the form

ds2 = −dτ 2 + τ 2 hαβdσ
αdσβ, (E.0.4)

where σα = (ρ,ΩA) are coordinates of the unit three-dimensional hyperbolic space H3

with the line element

hαβdσ
αdσβ =

dρ2

1 + ρ2
+ ρ2γABdΩAdΩB. (E.0.5)

In the large τ limit (τ → +∞), using the saddle point approximation [6], we can obtain
the asymptotic form of the scalar field as

φ(τ, ρ,Ω) =

√
m

2(2πτ)3/2

(
b(~p)e−imτ−3πi/4 + d†(~p)eimτ+3πi/4

)
|~p=mρx̂(Ω) +O(τ−

3
2
−ε). (E.0.6)
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Therefore, in the asymptotic region, φ(τ, ρ,Ω) only creates (or annihilates) the (anti-
)particle with localized momentum,

~p = mρx̂(Ω) , Ep = m
√

1 + ρ2 (E.0.7)

at the leading order.

Then if we ignore the interaction near the timelike infinity, the global U(1) current of
the massive charged scalar with the normal ordering is given by

jmatµ (τ, ρ,Ω) = ie :
(
∂µφ

†(x)φ(x)− φ†(x)∂µφ(x)
)

: (E.0.8)

=
j

(3)
µ (τ, ρ,Ω)

τ 3
+O(τ−3−ε), (E.0.9)

where

j(3)
τ (τ, ρ,Ω) = j(3)

τ (σ) = − em2

2(2π)3

(
b†b− d†d

)
, (E.0.10)

j(3)
ρ (τ, ρ,Ω) =

iem

4(2π)3

[(
∂ρb
† b− b†∂ρb

)
+ i
(
b†∂ρd

†e2imτ − ∂ρb de−2imτ
)
− (b↔ d)

]
,

(E.0.11)

j
(3)
A (τ, ρ,Ω) =

iem

4(2π)3

[(
∂Ab

† b− b†∂Ab
)

+ i
(
b†∂Ad

†e2imτ − ∂Ab de−2imτ
)
− (b↔ d)

]
.

(E.0.12)

Here, we have represented b = b(mρx̂(Ω)), d = d(mρx̂(Ω)) for brevity. Then one can

extract the diagonal parts from the j
(3)
ρ and j

(3)
A by multiplying the projection operator

1
4m2 (∂2

τ + 4m2),

∂ρb
†b− b†∂ρb− ∂ρd†d+ d†∂ρd =

−i(2π)3

em3
(∂2
τ + 4m2)j(3)

ρ , (E.0.13)

∂Ab
†b− b†∂Ab− ∂Ad†d+ d†∂Ad =

−i(2π)3

em3
(∂2
τ + 4m2)j

(3)
A . (E.0.14)

Since 1
4m2 (∂2

τ + 4m2)j
(3)
ρ and 1

4m2 (∂2
τ + 4m2)j

(3)
A are independent of τ , we represent them

by Imatα (σ) as

Imatα (σ) ≡ lim
τ→∞

[
1

4m2
∂2
τ + 1

]
τ 3jmatα (τ, σ) (E.0.15)

=
iem

4(2π)3

[
∂αb

†b− b†∂αb− ∂αd†d+ d†∂αd
]
. (E.0.16)
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Appendix F

Integration of Jnm and
non-negativity of Aβα

In this appendix, we perform the integration of Jnm in (3.5.2) and also show the positivity
of Aβα in (3.5.8).] The proof of the positivity of Aβα is based on [81].

The Inm is defined as

Jnm ≡
∫
λ≤|~k|≤Λ

d4k

(2π)4

−ipn · pm
(k2 − iε) (pn · k − iηnε) (−pm · k − iηmε)

. (F.0.1)

We first perform the integration of k0 in this integral. The integrant has poles at

k0 = |~k| − iε , k0 = −|~k|+ iε , (F.0.2)

k0 = ~vn · ~k − iηnε , k0 = ~vm · ~k + iηmε , (F.0.3)

where ~vn ≡ ~pn/p
0
n. We can calculate the integral over k0 by picking up the contributions

from a subset of the above four poles as follows. In the case of ηn = −ηm = ±1, we can
close the contour in either upper half or lower half k0-plane to avoid the contributions
from poles at k0 = ~vn · ~k − iηnε , ~vm · ~k + iηmε and then pick up a single residue at either
k0 = |~k| − iε or −|~k|+ iε. In this case, we have

Jnm =

∫
λ≤|~k|≤Λ

d3k

(2π)3

pn · pm
(2|~k| − iε)(pn · k − iηnε) (−pm · k − iηmε)

∣∣∣∣∣
k0=|~k|−iε

=
1

2

∫
λ≤|~k|≤Λ

d3k

(2π)3

pn · pm
|~k|3(pn · k̂)(pm · k̂)

= ln

(
λ

Λ

)
anm . (F.0.4)

In the final line, we have defined

anm ≡
1

16π3

∫
d2k̂

pn · pm
(pn · k̂)(pm · k̂)

(F.0.5)

where k̂µ ≡ kµ/|~k| and d2k̂ is the integral measure on unit 2-dimensional sphere.

In the case of ηn = ηm = ±1, both the upper half and the lower half planes have two
poles, so we close the contour in either the upper half or the lower half plane and pick up
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those two residues. In this case, we have

Jnm =

∫
λ≤|~k|≤Λ

d3k

(2π)3

[
pn · pm

(2|~k| − iε)(pn · k − iηnε) (−pm · k − iηmε)

∣∣∣∣∣
k0=|~k|−iε

+
pn · pm

(k2 − iε) (−p0
n) (−pm · k − iηmε)

∣∣∣∣
k0=~vn·~k−iηnε

]

= ln

(
λ

Λ

)
ηnηmenem(anm + ibnm) (F.0.6)

where we have defined

bnm ≡
−i

16π3

∫
d2k̂|~k|2 pn · pm

(k2 − iε) p0
n (−pm · k − iηmε)

∣∣∣∣
k0=~vn·~k−iηnε

=
i

16π3

pn · pm
p0
np

0
m

∫
d2k̂

1(
1− (~vn · ~̂k)2

)(
~vn · ~̂k − ~vm · ~̂k − iηmε

) . (F.0.7)

We have left the iε in the last term to make the integral well-defined in the case of m = n.
This integral gives a real-valued result because the complex conjugate of bnm with the

change of the variable ~̂k → −~̂k goes back to itself. Combining the results (F.0.4) and
(F.0.6), the integration (F.0.1) is given by

Jnm = ln

(
λ

Λ

)
(anm + iδηnηmbnm) (F.0.8)

Aβα =
∑

n,m∈{α,β}

ηnηmenemanm =
1

16π3

∑
n,m∈{α,β}

∫
d2k̂

ηnηmenempn · pm
(pn · k̂)(pm · k̂)

=
1

16π3

∫
d2k̂ t(k̂) · t(k̂) , (F.0.9)

where we have defined

tµ(k̂) ≡
∑

n∈{α,β}

ηnenp
µ
n

pn · k̂
(F.0.10)

This vector is orthogonal to k̂ :

tµ(k̂) · k̂ =
∑

n∈{α,β}

ηnen = 0 (F.0.11)

where the final equality is ensured by the conservation of the U(1) global charge. Then
tµ(k̂) can be expanded by the three orthogonal vectors perpendicular to the null vector

k̂µ. We can choose such three vectors as k̂µ itself, and k̂
(1)µ
⊥ , k̂

(2)µ
⊥ that are normalized

spacial vectors. Then we have

tµ(k̂) = c0(k̂)k̂ +
∑
i=1,2

ci(k̂)k̂
(i)µ
⊥ (F.0.12)
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with some real coefficients c0(k̂), c1(k̂), c2(k̂). Putting this decomposition (F.0.12) back to
(F.0.9), we find

Aβα =
1

16π3

∫
d2k̂

(
|c2(k̂)|2 + |c2(k̂)|2

)
≥ 0 . (F.0.13)
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Appendix G

Derivation of eq. (4.2.22)

In this appendix, we explain some details of computation to derive (4.2.22). Inserting

(4.2.21) into (4.2.15), Qsub,+
H is written as a sum of two parts Q

sub,(ρ)
H and Q

sub,(ϕ)
H as

follows:

Qsub,+
H = Q

sub,(ρ)
H +Q

sub,(ϕ)
H (G.0.1)

Q
sub,(ρ)
H ≡ − 1

8π

∫
d2Ω
√
γ

∫
H3

d3σ̃
√
h̃∆S2ε(0) Imatρ (ρ, Ω̃)∇B

[√
1 + ρ2 ∂Bx̂(Ω) · ŷ(Ω̃)

q · Y

]
,

(G.0.2)

Q
sub,(ϕ)
H ≡ − 1

8π

∫
d2Ω
√
γ

∫
H3

d3σ̃
√
h̃∆S2ε(0) γ̃CDImatD (ρ, Ω̃)

×∇B

[
1

q · Y

{√
1 + ρ2

ρ
∂Bx̂ · ∂̃C ŷ − (x̂ · ŷ)(∂Bx̂ · ∂̃C ŷ) + (x̂ · ∂̃C ŷ)(∂Bx̂ · ŷ)

}]
,

(G.0.3)

where d3σ̃
√
h̃ = dρd2Ω̃ ρ2√

1+ρ2

√
γ̃. We now show that

Q
sub,(ρ)
H =

1

2

∫
H3

d3σ
√
h

√
1 + ρ2

ρ

[
ρ2hρρ(∇(h)

ρ ∇(h)
ρ εH3)Imatρ + 2ρhρρ(∇(h)

ρ εH3)Imatρ

]
, (G.0.4)

Q
sub,(ϕ)
H =

1

2

∫
H3

d3σ
√
h

√
1 + ρ2

ρ

[
ρ2hAB(∇(h)

A ∇(h)
ρ εH3)ImatB + 2ρhAB(∇(h)

A εH3)ImatB

]
,

(G.0.5)

where ∇(h)
α denotes the covariant derivative compatible with the metric hαβ on H3. If

these (G.0.4) and (G.0.5) are obtained, eq. (4.2.22) is obvious.

In the following calculations, the formulae

∂Ax̂ · ∂Bx̂ = γAB, γAB∂Ax̂i ∂Bx̂j = δij − x̂i x̂j, ∆S2x̂i = −2x̂i (G.0.6)

are useful.
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We first derive eq. (G.0.4). The key equation is

∇B

[
∂Bx̂(Ω) · ŷ(Ω̃)

q(Ω) · Y (ρ, Ω̃)

]
=

4π

ρ
GH3(ρ, Ω̃; Ω)− 1

ρ
, (G.0.7)

where GH3(ρ, Ω̃; Ω) was defined by eq. (4.1.5). Furthermore, GH3(ρ, Ω̃; Ω) satisfies the
following property

∆S2GH3(ρ, Ω̃; Ω) = ∆̃S2GH3(ρ, Ω̃; Ω), (G.0.8)

since GH3(ρ, Ω̃; Ω) depends on angle ΩA only through the inner product x̂(Ω) · ŷ(Ω̃). We
thus have∫

d2Ω
√
γ [∆S2ε(0)(Ω)]GH3(ρ, Ω̃; Ω) = ∆̃S2

∫
d2Ω
√
γ ε(0)(Ω)GH3(ρ, Ω̃; Ω) = ∆̃S2εH3(ρ, Ω̃),

(G.0.9)

where εH3 was defined by (4.1.4). By virtue of the above equations, Q
sub,(ρ)
H can be written

as

Q
sub,(ρ)
H = −1

2

∫
H3

d3σ̃
√
h̃

√
1 + ρ2

ρ
Imatρ (ρ, Ω̃)

∫
d2Ω
√
γ∆S2ε(0)

[
GH3(ρ, Ω̃; Ω)− 1

4π

]
(G.0.10)

= −1

2

∫
H3

d3σ̃
√
h̃

√
1 + ρ2

ρ
Imatρ (ρ, Ω̃)∆̃S2εH3(ρ, Ω̃) . (G.0.11)

where we have used (G.0.9) and
∫
d2Ω
√
γ∆S2ε(0) = 0 in the second equality. In addition,

since εH3(σ) is a solution of the Laplace equation on H3 as ∆H3εH3(σ) = 0, it satisfies

∆S2εH3 = −(1 + ρ2)ρ2∇(h)
ρ ∇(h)

ρ εH3 − 2(1 + ρ2)ρ∇(h)
ρ εH3 . (G.0.12)

Using this equation and noting that hρρ = 1 + ρ2, we can obtain eq. (G.0.4).

We next consider eq. (G.0.5). In (G.0.3), performing a partial integration, one encoun-
ters the following quantity:

∆S2∇A

[
1

q · Y

{√
1 + ρ2

ρ
∂Ax̂ · ∂̃C ŷ − (x̂ · ŷ)(∂Ax̂ · ∂̃C ŷ) + (x̂ · ∂̃C ŷ)(∂Ax̂ · ŷ)

}]
.

(G.0.13)

Performing the derivative, we have

(G.0.13) = ∆S2

[
x̂ · ∂̃C ŷ
(q · Y )2

(
2

ρ
+ ρ−

√
1 + ρ2x̂ · ŷ

)]
. (G.0.14)

Performing the Laplacian, it further becomes

(G.0.14) = −2x̂ · ∂̃C ŷ
(q · Y )4

(
2

ρ
− ρ+

√
1 + ρ2x̂ · ŷ

)
= −4π

√
1 + ρ2

ρ

[
∇(h)
ρ ∇̃(h)

C GH3(ρ, Ω̃; Ω) +
2

ρ
∇̃(h)
C GH3(ρ, Ω̃; Ω)

]
. (G.0.15)
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Therefore, (G.0.3) can be written as

Q
sub,(ϕ)
H =

1

2

∫
H3

d3σ̃
√
h̃

√
1 + ρ2

ρ
γ̃CDImatD (ρ, Ω̃)

×
∫
d2Ω
√
γε(0)

[
∇(h)
ρ ∇̃(h)

C GH3(ρ, Ω̃; Ω) +
2

ρ
∇̃(h)
C GH3(ρ, Ω̃; Ω)

]
=

1

2

∫
H3

d3σ̃
√
h̃

√
1 + ρ2

ρ
γ̃CDImatD (ρ, Ω̃)

[
∇(h)
ρ ∇̃(h)

C εH3(ρ, Ω̃) +
2

ρ
∇̃(h)
C εH3(ρ, Ω̃)

]
=

1

2

∫
H3

d3σ
√
h

√
1 + ρ2

ρ
hCDImatD (ρ,Ω)

[
ρ2∇(h)

ρ ∇(h)
C εH3(ρ,Ω) + 2ρ∇(h)

C εH3(ρ,Ω)
]
,

(G.0.16)

where we have just renamed the integration variables and also used γAB = ρ2hAB in the
last line. Thus we have obtained eq. (G.0.5).
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Appendix H

Particle trajectory under the
Coulomb force and phase factor in
F-K dressed state

H.1 Particle trajectory under the Coulomb force

The relativistic equation of motion (e.o.m) for a point particle with its trajectory yµ(τ)
with the electric field F µ

ν is

m
d2yµ

dτ 2
− eF µ

ν

dyν

dτ
= 0 . (H.1.1)

We consider the case where the particle is moving in the static Coulomb potential,

Aµ(x) = − Q
4π

1

r
δµ0 . (H.1.2)

Then we drive the asymptotic trajectory at t → ±∞ by solving the e.o.m. First, the
electric fields is given by

F 0
i = ∂0Ai − ∂iA0 =

Q

4π

ri
r3

. (H.1.3)

Then we decompose yµ(τ) into two parts as

yµ(τ) = yµ0 (τ) + δyµ(τ) (H.1.4)

where

yµ0 (τ) = aµ + vµτ (H.1.5)

with arbitrary constant vectors aµ and vµ(= pµ/m). yµ0 (τ) is the trajectory of the free
particle that is the solution of the equation of motion without the Coulomb potential.
Since it is expected that the trajectory ~y(τ) approaches the free trajectory ~y(τ) in large-

τ region, we assume |δ~y(τ)|
|~y0(τ)| → 0 as τ → ∞. Plugging (H.1.5) into (H.1.1), the time
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component of e.o.m is given by

m
d2δy0

dτ 2
= − eQ

4π

1

r2

~r

r
· (~v + δ~̇y)

∣∣∣∣
~r=~y(τ)

= −eQ
4π

1

(~y0 + δ~y)2

~y0 + δ~y√
(~y0 + δ~y)2

· (~v + δ~̇y)

= −eQ
4π

1

(~y0)2

~y0 · ~v√
(~y0)2

+O(
|δ~y(τ)|
|~y0(τ)| )

= −eQ
4π

1

|~v|τ 2
+O(

|δ~y(τ)|
|~y0(τ)| ) . (H.1.6)

We can easily solve this equation and the solution is given by

δy0(τ) =
eQ

4πm|~v| ln τ + cτ + d , (H.1.7)

with two integration constants c and d. Since we used |δ~y(τ)|
|~y0(τ)| → 0 as τ → ∞, c is set to

be zero and d can also be neglected as τ →∞. Then we have found the leading solution
in asymptotic region,

δy0(τ) =
eQ

4πm|~v| ln τ . (H.1.8)

The e.o.m of the spatial component is

m
d2δ~y

dτ 2
= − eQ

4π

1

r2

~r

r
(v0 + δẏ0)

∣∣∣∣
~r=~y(τ)

= −eQ
4π

v0~v

|~v|3τ 2
+O(

|δ~y(τ)|
|~y0(τ)| ) . (H.1.9)

The solution is

δ~y(τ) =
eQv0~v

4πm|~v|3 ln τ , (H.1.10)

where we have already set the integration constant to zero for the same reason as the
solution of time component. Thus we found the asymptotic trajectory of a point particle
in the static Coulomb potential:

yµ(τ) = vµτ +
eQ

4πm|~v|3
(
|~v|2~v
v0~v

)
ln τ +O(

ln τ

τ
) . (H.1.11)

The subleading term means that the particle is pulled off to the source if the charges
have the opposite signs (eQ > 0) and the particle is repulsed away from the source if the
charges have the same signs (eQ < 0).

Now we try to find the fully covariant solution of the asymptotic trajectory. Since
yµ(τ) is a covariant four-vector, it should be composed of the covariant vectors existing
in our system; the velocity four-vector of the particle vµ and the velocity four-vector of
the source particle wµ. In previous case, since we supposed that the source particle with
the charge Q is at rest, wµ is given by wµ = (1,~0). Using this vector, we can write |~v|
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and v0 in Lorentz invariant forms as

|~v| =
√
v2 + (v · w)2 =

√
(v · w)2 − 1 , (H.1.12)

v0 = −v · w . (H.1.13)

With the use of these expressions, the four-vectors appeared in (H.1.11) can be written
as (

|~v|2
v0~v

)
=

(
(v · w)2 − 1
−(v · w)~v

)
= −(v · w)vµ − wµ . (H.1.14)

Plugging (H.1.12) and (H.1.14) back into (H.1.11), we find the covariant solution,

yµ(τ) = vµτ − eQ

4π

(v · w) vµ + wµ(
(v · w)2 − 1

)3/2
ln τ +O(

ln τ

τ
) . (H.1.15)

We can trivially generalize this solution to multi-particles case. The result is

yµi (τ) = vµi τi −
N∑

j=1(j 6=i)

eiej
4πmi

(vi · vj) vµi + vµj(
(vi · vj)2 − 1

)3/2
ln τi +O(

ln τi
τi

) , (H.1.16)

where τi, y
µ
i (τ) and vµi are the proper time, the position and leading velocity four-vector

of the i-th particle with the charge ei.

Now let us write this spacial trajectory in terms of the reference time t. The time
component of (H.1.16) is

t(τ) = v0
i τi −

N∑
j=1(j 6=i)

eiej
4πmi

(vi · vj) v0
i + v0

j(
(vi · vj)2 − 1

)3/2
ln τi +O(

ln τi
τi

) . (H.1.17)

Solving this equation in terms of τi, the proper time for i-th particle then is given by

τi =
t

v0
i

+
N∑

j=1(j 6=i)

eiej
4πmiv0

i

(vi · vj) v0
i + v0

j(
(vi · vj)2 − 1

)3/2
ln t+O(

ln t

t
) . (H.1.18)

Plugging (H.1.18) into the spatial component of (H.1.16), we have

~yi(τ) = ~vi

 t

v0
i

+
N∑

j=1(j 6=i)

eiej
4πmiv0

i

(vi · vj) v0
i + v0

j(
(vi · vj)2 − 1

)3/2
ln t


−

N∑
j=1(j 6=i)

eiej
4πmi

(vi · vj)~vi + ~vj(
(vi · vj)2 − 1

)3/2
ln t+O(

ln t

t
)

=
~vi
v0
i

t+
N∑

j=1(j 6=i)

eiej
4πmiv0

i

v0
j~vi − v0

i ~vj(
(vi · vj)2 − 1

)3/2
ln t+O(

ln t

t
) (H.1.19)
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H.2 Stationary trajectory of phase factor in F-K dressed

state

In this section, we consider the wave function with the dressing phase factor (5.3.27)
in the F-K state, and show that the stationary point of the phase of the wave function
corresponds to the trajectory of electrons and positrons under the Coulomb force (H.1.19).

For simplicity, let us consider the wave packet of two charged particle with the dressing
phase factor (5.3.27) in QED in the one-dimensional space, which is given by

|ψ(t)〉 =

∫
dp1dp2f(p1, p2) eiΦ(t,t0)|p1, s1; p2, s2〉 (H.2.1)

where |p1, s1; p2, s2〉 = b†s1(~p1)b†s2(~p2)|0〉, and f(p1, p2) is a smooth function of p1, p2. We
consider the wave function in the position space which is given by

ψ(x1, x2) =

∫
dp1dp2f(p1, p2)〈0|ψ(x1)ψ(x2)eiΦ(t,t0)|p1, p2〉

≡
∫
dp1dp2f(p1, p2) [us1(~p1)us2(~p2) exp (iF (t;x1, p1;x2, p2)) + (p1 ↔ p2)]

(H.2.2)

where ψ(x) is the free Dirac field operator (5.3.3) and F (t;x1, p1;x2, p2) is given by

F (t;x1, p1;x2, p2)

= ip1x+ ip2x2 + iΦ(p1, p2; t, t0)

=
(
p0

1 + p0
2

)
(t− t0)− ~p1 · ~x1 − ~p2 · ~x2 +

eiej
4π

−p1 · p2(
(p1 · p2)2 −m2

1m
2
2

)1/2
log

t

t0
(H.2.3)

The stationary phase is then given by

0 =
∂

∂~p1

F (t;x1, p1;x2, p2) =
~p1

p0
1

(t− t0)− ~x1 +
eiej
4π

m2
1m

2
2

(
p0

2

p0
1
~p1 − ~p2

)
(
(p1 · p2)2 −m2

1m
2
2

)3/2
log

t

t0
.

(H.2.4)

This solution corresponds to the following particle trajectry,

~x1 =
~p1

p0
1

(t− t0) +
eiej
4πp0

1

m2
1m

2
2 (p0

2~p1 − p0
1~p2)(

(p1 · p2)2 −m2
1m

2
2

)3/2
log

t

t0
(H.2.5)

=
~v1

v0
1

t+
e1e2

4πm1v0
1

v0
2~v1 − v0

1~v2(
(v1 · v2)2 − 1

)3/2
ln t+O(

1

t
) (H.2.6)

where we have used pµi = miv
µ
i in the final equality. We can trivially generalize this

trajectory to the trajectory in N charged particle case as

~xi =
~vi
v0
i

t+
N∑

j=1(j 6=i)

eiej
4πmiv0

i

v0
j~vi − v0

i ~vj(
(vi · vj)2 − 1

)3/2
ln t+O(

1

t
) (H.2.7)

This trajectory is exactly the same as the asymptotic trajectory of point particles with
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the relativistic Coulomb interactions (H.1.19). This means that if the wave packet is
effectively localized at p1, · · · , pN in the momentum space (f(P1, · · · , PN) has the peaks
at p1, · · · , pN), the wave function of the dressed state is effectively localized at the classical
trajectories (H.1.19) of point particles under the Coulomb force at the large time limit.
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