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1. Introduction

Let G be a finite group, and % a field of characteristic p. Let n denote the
Jacobson radical of the group algebra kG, and r(n) the right annihilator ideal of
n. In this paper we shall show some connections between 7(1t) and p—elements
of G. One of them will state that (1) contains the sum of all p—elements of G
(including the identity). This may be regarded in a sense as a refinement of Mas-
chke’s theorem. In fact, if p does not divide the order of G then the identity is the
only p—element, which implies #(n)>1 and hence n=0. On the other hand, as
is easily seen from a theorem of T. Nakayama on Frobenius algebras (see §2),
r(n) is a principal ideal. We shall show that it is generated by an element which
is left invariant by every automorphism of kG induced by that of G. As an appli-
cation of this fact, we shall give a lower bound for the first Cartan invariant in
terms of the chief composition factors of G. The present study owes heavily to
some general results on Frobenius algebras and symmetric algebras, which will
be summarized in the next section.

NoraTtioN. If A4 is a ring, rad(4) will denote the Jacobson radical of 4. For
a subset T of 4, r(T) and /(T will denote respectively the set of right annihilators
and the set of left annihilators of T"in A. If M is a subset of a finite group G, then
Ay=3cex cc=kG.

2. Preliminary results

Let A(=1) be a finite dimensional algebra over a field k.

DEFINITION. A linear function A (€ A*=Hom(4, k)) is called non-singular
if its kernel contains no left or right ideals other than zero. While, X is called
symmetric if M(ab)=x\(ba) for all a, b= A.

If ) is a linear function and a 4, we denote by A, the linear function defined
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by A (x)=\(xa), x& A. One may remark here that f: a— 2\, is a left A-homo-
morphism from 4 into 4*. It is an (onto) isomorphism if and only if is non-
singular. A is a Frobenius [symmetric] algebra if and only if it has (at least) one
non-singular [symmetric, non—singular] linear function.

Theorem A (T. Nakayama [6], [8], see also [2]). Let A be a Frobenius [sym-
metric) algebra, \ a non-singular [symmetric, non-singular) linear function on A, and
% a two-sided ideal of A. If A[j is Frobenius [symmetric], and p a non-singular
[symmetric, non-singular] linear function on A[3 then there exists an element [central
element] ce A such that y\p=n,_ and r(§)=cA, where \r is the natural map A—A[3.
Conversely, if there exists an element [central element] c& A such that r(3)=cA then
A3 is Frobenius [symmetric].

Proof. As was noted above, there exists an element c=A such that
pr=2x,. We shall show 7(3)=cA4. Since A(3¢)=»x.(3)=0 and A is non-singular,
it follows at once cAC 7(3). On the other hand, if xc=0 then A (A4x)=»x(Axc)=0.
Since A, is non-singular as a linear function on A4/, it follows x=3 and hence
l(cA)C 3. Recalling here that A4 is Frobenius, we have then cA=r(l(cA))Dr(3).
Now, suppose further both A and p are symmetric. Then A(xyc)=2x (xy)=
N (yx) =N(yxc) = NMxcy) for all x, y= 4. Therefore, yc=cy and c is central.
Next, we shall prove the converse. Suppose 7(3)=cA. Then A, gives rise to a
non-singular linear function on 4/3. If ¢ is central, the linear function is evidently
symmetric.

Theorem B (T. Nakayama [6]). If 3 is a two-sided ideal of a symmetric
algebra A then r(3)=1(3).

Proof. Let A be a symmetric, non-singular linear function on A. Then

r(5)= {x€ A|Mpx)=0}={xE 4| Mx3)=0}=1(3).

3. The generator of r(n)

From now on, k will denote a field of characteristic p, and G a finite group of
order |G|=p"g,, where (p, g,)=1. Let v, (/) denote the exponent of p in the
primary decomposition of an integer /. Let nt be the radical of the group algebra
kG as before. To be easily seen, kG is a symmetric algebra through the follow-
ing linear function A which will be fixed throughout the subsequent study:
AMZsec 4,0)=a,, where a, =k and 1 denotes the identity of G.

REMARK 1. Since there exists a splitting field for G which is finite separable
over k, kG[n is a separable algebra over k. In particular, if K is an arbitrary
extension field of k& and ng denotes the radical of KG, then ng=Kn and

ngNkG=n. Similar relations hold for (1) and the right annihilator ideal of
ng in KG.
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Let ¢,, ¢, -+, ¢, be the distinct irreducible characters over a suitable split-
ting field for G containing &, and let $=3}_, $;. Then, it is clear that ¢(o) is
contained in the prime field for every o= G.

Proposition 1. If v=3,c; ¢(o 7)o then r(n)=(kG)v.

Proof. By the above remark, we may assume that & is a splitting field for
G. Then, kG/n is a direct sum of total matrix algebras over k: kG/n=237_,(k)a;-
Let yr and p; denote respectively the natural map G —kG/n and the projection
kG[n—(k),;. Since the trace map #r;: (k),;,—k is a symmetric, non-singular
linear function, so is u=37}_, tr;p; on RG/n. Therefore, by Theorem A4, there
exists a central element v =3, a,0 kG such that uyr=»x, and r(n)=v(kG).
Noting here that uy»=¢ on G, we obtain a,=M\(o"'v)=2,(¢")=¢(c*). This
completes the proof.

REMARK 2. Let f be an arbitrary automorphism of G. Then, it permutes
the irreducible characters by ¢, — ¢7, where ¢J(c) = dpi(c”), o € G. In parti-
cular, it follows ¢(o/)=¢’(c)=4¢(c) for all = G. Hence, regarding f naturally
as an automorphism of kG, we obtain v/=3, ¢(c o/ =3, ¢((¢/) No/=
2, (17 r=0.

Now, let H be a normal subgroup of G, and m=rad kH. Then I=(kG)m
=m(kG) is a nilpotent two-sided ideal of kG.

Corollary 1. Under the above notation, there holds the following :

(1) kG|lis a symmetric algebra over k.

(2) Let (I: n)={xckG|nxCl}. Then, for an arbitrary primitive idempotent
e of kG there holds (kG)e[ne=(I: n)e/le.

Proof. (1) Let7x(m) be the right annihilator ideal of m in kH. Let v be as
in Proposition 1 applied to kH. Since G induces an automorphism group on H,
Remark 2 proves that v lies in the center of 2G. Hence, r(I)=kG 74 (1)=(RG)v
is a principal ideal generated by a central element. Theorem A4 proves therefore
kG|l is a symmetric algebra.

(2) Evidently, the residue class & of ¢ modulo [ is a primitive idempotent
of the symmetric algebra kG/l. Since (I: n)/l is the right annihilator ideal of
n/l=rad(kG/l), there holds then (RG/l)¢/(n/)é==((1:n)/l)e, which proves
(kG)e[ne=(1: n)e/le.

Under the above notation, if H is a non-trivial p-group, then it is well-known
that m coincides with the augmentation ideal I(H)= {3,cya,0 |3, a,= 0}, so
that 7 y(m)==~kH - A y=kAy. We obtain therefore r(n)Cr(I)=kG-AxCL.

Lemma 1. Let P,2H, be normal subgroups of G such that P,/H, is a
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p-group. Let \,=kG-rad kP,, and %),=ker (kG — k(G|H,)). Then, there holds the
Sfollowing :

(1) If e is a primitive idempotent of kG mnot contained in B, then
(L+9,: n)e/(,+9,)e = (kG)e[ne and (1,+9,)e contains a submodule isomorphic to
(kG)e[ne.

(2) If P,2H, are normal subgroups of G containing P, such that P,[H,is a
p-group then 1,49, D(1,+9,: nt), where [,=kG -rad kP, and Y,=ker (kG—k(G/|H,).

Proof. (1) Since I,-+Y, = k(G/H,)-rad k(P,/H,) and P,/H, is a non-trivial
p-group, the above remark proves 7(rad k(G/H,))C,+5,/5,. Leteé be the residue
class of e modulo §,. Then, it is still primitive by assumption, and the former is
evident by Corollary 1. Further, noting that (I,+%,/H,)e=+0, it follows at once
0= (1,+5,)eDr(n)e=(kG)e/ne, proving the latter.

(2) Asin (1), we obtain r(rad k(G/H,))C |, +9,/5,. If p,=ker (kG—k(G|P,))
then (L, +9,: n)+p,/p,C (L+P,/b;: n+-p,/p,)=7(rad k(G/P,)). Since the natural
map k(G/P,)—k(G/H,) is an epimorphism, it sends r(rad k(G/P,)) into
r(rad k(G/H,)). Therefore, (I,49,: n)+9,/5,Cr(rad k(G/H,))C1,-+5,/5,.

Theorem 1. Let m be the number of the chief composition factors of G which
are (non-trivial) p-groups. Then the first Cartan invariant c,, is at least m+-1.

Proof. We take a primitive idempotent e of kG such that (kG)e/ne is iso-
morphic to the trivial <G-module k=~kA;. Then, eA; being non-zero, e is not
contained in ker (kG— k(G|N)) (= the ideal generated by {1l —»|n& N}) for any
normal subgroup N of G. Hence, by Lemma 1, we can easily see that (kG)e pos-
sesses at least m+1 composition factors isomorphic to k, namely, ¢;,>m--1.

4. The sum of all p-elements

First, we shall introduce some notations. Let & be a primitive g,~th root
of unity over the prime field of characteristic p. In what follows, whenever we
consider Brauer characters, it is assumed that there is defined (and fixed)a homo-
morphism Z[€] — k[€] such that & is the image of a primitive g,-th root of unity
€ in the complex number field. As is well-known, there exists a unique (up to
isomorphisms) indecomposable projective module P; such that P;/nP; affords
the irreducible character ¢;. Let #; be the character of the representation
afforded by P; and u; the dimension of P;. As is well-known, %; is divisible by
p". Let u;=p™h;. We may assume, after a suitable change of index if necessary,
the first u,, u,, ++-, u, are all such that »,(u;)=n. Let ¢; and »; be the Brauer
characters of ¢; and #;, respectively.

Noting that #;=0 in k for < j <r and ¢,(c)=¢,(c”) for the p-regular part
o’ or o, the orthogonality relation ([3] p. 561)
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C if o is conjugate to 7,
Ziami(oT)i(7) = { |Co)l . ) jug
0 otherwise
implies
_ £ ol .
(*) 2€=1 h,'q'),'(T) = { &o 1718 a p-elemen
0 otherwise.

Lemrtha 2. Assume that k is a splitting field for G. Let 3=3, (kG)e-+n,
where e runs over the primitive idempotents such that v, (dim, (kG)e)>n. Let
¢ be the sum of all p-elements of G. Then there holds r(3)=(kG)c.

Proof. We use the same notation as in the proof of Proposition 1. Then,
RGn=3{_, (R)n;+Z5=t+1 (k),,’. (direct sum), where n; =dim, P;/mP;. It is clear
that 3 is the inverse image of =}_,.,(R),, by the natural map . Hence, it is
a two-sided ideal and there holds AG[3=Z{_, (k),,. We set here u=3{_, k; tr; p;.
Since /;+0 in &, u is a symmetric, non-singular linear function on 2G/3. Then,
by Theorem 4, there exists a central element ¢/ kG such that yy’=2\_ and
r(3)=(kG)c’, where 4’ is the natural map kG —kG/3. Now, by making use of
(%), we can prove ¢’=g,c in the same way as in the last part of the proof of
Proposition 1. This completes the proof.

Since 3 Dn, we obtain in particular 7(n)=c. However, in virtue of Remark 1,
this holds without assuming that % is a splitting field. Thus, we have shown

Theorem 2. 7(n) contains the sum of all p-elements of G.

Corollary 2. Let x=3., a,0 be an element of kG, and x(p) the sum of the
coefficient a, of p-elements o. If x is in n then x(p)=0.

Proof. Note that x(p) is equal to the coefficient of 1 in xc. If x is in 1t then
x¢=0, and hence x(p)=0.

If e is a primitive idempotent of kG, then r(n)e is a minimal left ideal of kG
and contains (RG)ce.

Corollary 3. Let e be a primitive idempotent of kG. If v, (dim,(RG)e)=n
then r(n)e=(kG)ce. The converse holds, provided k is a splitting field for G.

Proof. First, we assume that % is a splitting field. By Lemma 2, if ce=0,
or what is the same, if e=/(c)=3, then »,(dim, (kG)e)>>n, and coversely. We
have seen therefore that ce==0 and v, (dim, (kG)e)=n are equivalent.

Secondly, we assume that v ,(dim, (kG)e)=n. Let K be a splitting filed for
G containing k, and e=7X;e; a decomposition of e into orthogonal primitive
idempotents of KG. Then, by assumption there exists at least one ¢; such that
v,(dim, (KGe;)=n. Since ce;+0 by the first step, we have ce+0, completing
the proof.
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Now, if G is p-solvable then v,(dim, (kG)e)=n for every primitive idem-
potent e (P. Fong [5]), whence it follows 3=1 and therefore r(n)=7(3)=(kG)c.

Corollary 4. If G is p-solvable then r(n)=(kG)c.

5. Some nilpotent ideal of kG

The present section is independent of the preceding ones. Let T be a sub-
group of G, and m a left nilpotnet ideal of kT. Let m°={¢ 'xo|x&m} for
o€ G, and r,(m) the right annihilator ideal of m in k7.

Proposition 2. Let fii= () ,ec RKG-m°. Then there hold the following :
(1) 1t is a nilpotent two-sided ideal of kG.

(2) r(M)=3,cc r(m)°kG.

(3) If mis a two-sided ideal of KT, then fii= () ,ec Mm”-kG.

Proof. (1) For every 7€ G, there holds fiirC (], kG- m°"=iii, and hence
fit is a two-sided ideal. Accordingly, m’c m(kG-m)=m-mCkG-m’, so that
M*CkG-m' for every positive integer . We see therefore fii is nilpotent.

(2) Since kT is Frobenius, there holds m=1I,(r;(m)). Then, one will
easily see that kG -m=[(r(m)-kG) and kG -m°=[(r,(m°)-kG)=I(r 7(m)’- kG).
Hence, fii={), (ry(m)’-kG)=I=,rr(m)°-kG). Since kG is Frobenius, our
assertion is clear by the last.

(3) Using freely the fact that the left annihilator ideal of a two-sided ideal
in a symmetric algebra coincides with the right one (Theorem B), we obtain
M=UZ, r (M) -kG)=r(Z, I(m) - kG)=r(Z, kG- 1(m)")= (], m°- kG.

Theorem 3. Let Q be the set of all Sylow p-subgroups of G. Then,
r(M)C Zseq AskG.

Proof. In proposition 2, we set T=S €Q and m=rad (kS)=I(S). Since
every Sylow p-subgroup is conjugate to each other, Proposition 2 proves

that fii= () secq kG-I(S) is contained in n. We obtain therefore r(n)Cr(fit)
=T seaAs kG.
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