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Thermal degradation mechanisms in package materials 

for high-temperature power modules 
 

Abstract 

 

Wide-bandgap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN), are 

being increasingly used, and provide significant opportunities to develop power electronic systems with high 

power densities, high reliability in extreme environments, and high integration. The development of high-

temperature-operating power devices enables the use of power modules at high temperatures (>250 °C). The 

aforementioned power modules have a multi-layered packaging structure that comprises four main components, 

namely, semiconductors, joints, substrates, and wires. Under high-temperatures, large thermal stress occurs in the 

power module as coefficients of thermal expansion (CTE) mismatch among multiple layers, resulting in thermal 

damage. This thesis describes thermal degradation mechanisms in joints and substrates under high-temperature. In 

addition, a novel real-time monitoring method for damage via acoustic emission (AE) technique is presented. 

First, to evaluate the thermal degradation mechanisms in sintered micro-porous silver (Ag), which is regarded 

as a promising joint material for fabricating high-temperature power modules because of its mechanical/electrical 

properties, its deterioration and microstructural variations were investigated under high-temperature and correlated 

with each other. Sintered Ag was fabricated in a specimen shape of a tension test by printing and sintering at 250 °C 

for 1 h in air without pressure. The sintered Ag was exposed to 250 °C for 1000 h. Subsequently, its tensile strength 

and electrical resistivity were measured. The tensile strength of the sintered Ag decreased initially, but recovered 

subsequently during the high-temperature exposure, while its electrical resistivity decreased. For microstructure 

evolution, sintered Ag grains, their porous structure and fracture surface were characterized by SEM and EBSD. 

The relationship between their microstructural variations and mechanical/electrical properties was discussed. 

The thermal shock damage mechanisms in direct bonded aluminum (DBA) and active metal brazing (AMB) 

substrates with two types of plating—Ni electroplating and Ni–P electroless plating—were evaluated by thermal 

shock tests between −50 °C and 250 °C. The AMB substrates with Al2O3 and AlN fractured only after 10 cycles, 

but with Si3N4 ceramic, they retained good thermal stability even after 1000 cycles, regardless of the metallization 

type. The Ni layer on the surviving AMB substrates with Si3N4 was not damaged, while a crack occurred in the 

Ni–P layer. For the DBA substrates, fracture did not occur up to 1000 cycles for all kinds of ceramics. However, 

the Ni–P layer roughened and cracked because of the severe deformation of the aluminum layer, while the Ni layer 

was not damaged after the thermal shock tests. In addition, the deformation mechanism of an Al plate on a ceramic 

substrate was investigated both by microstructural observation and finite element method (FEM) simulation, which 

confirmed that grain boundary sliding was a key factor in the severe deformation of the Al layer. The deformation 

resulted in the cracking of the Ni–P layer. The fracture suppression in the Ni layer on DBA/AMB substrates can 

be attributed to its ductility and higher strength compared with those of Ni–P layer. 

Finally, the wear-out damage mechanism in discrete SiC power devices was evaluated by performing a power 

cycling test (PCT), and acoustic emission (AE) technique was applied to monitor the damage in real-time for the 

first time. AE is an excellent method to monitor material damage during operation. The discrete devices were 

fabricated using a SiC diode, Ag sintering die-attachment, and Al ribbon interconnection. PCT was carried out 

with a harsh junction temperature swing of ∆ 150 °C to accelerate the damage occurrence, and AE signals were 

collected simultaneously using an AE sensor that attached to the discrete devices. The AE cumulative counts, 

which represent the main characteristic of AE signals, were increased with the number of cycles during PCT, while 

the thermal fatigue crack propagated in the Al ribbon. The relationship between the AE count rate and the observed 

fatigue crack propagation was confirmed. The result demonstrates that AE evaluation can be used not only for 
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understanding the fatigue progress of Al ribbons but also for monitoring the failure of power electronic devices. 

In this thesis, the results suggest new damage mechanisms for sintered micro-porous Ag and Ni metalized 

DBA/AMB substrates under high-temperature, and additionally, propose a novel AE monitoring method for 

analyzing the thermal fatigue damage in power modules. 
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1.1.1 Next generation wide bandgap power semiconductors 

Power electronic modules, such as converter and inverter systems, have been widely used 

in transportation applications, such as electric vehicles, aircrafts, and high-speed trains. Owing 

to the increasing demand for power density, efficiency, and switching frequency, traditional 

power modules based on Si materials cannot satisfy these demands because of the theoretical 

performance limit of Si materials [1–3]. Therefore, to address the high-performance challenges 

of power modules, Si devices have been replaced with wide bandgap (WBG) devices containing 

materials such as silicon carbide (SiC) and gallium nitride (GaN) because of their remarkable 

physical properties, as listed in Table 1.1 [4–6]. 

Many researchers have reported the high performance of power modules that are based on 

WBG devices. Compared with Si IGBTs, SiC MOSFETs achieve higher efficiency and 

switching frequency, since they reduce the switching loss. Although the converters based on Si 

IGBTs and Si MOSFETs are operated at a switching frequency less than 10 kHz, converters 

based on SiC MOSFETs can be operated at a frequency higher than 150 kHz using the same 

power [7, 8]. 

In addition, WBG semiconductors conveniently perform high temperature and high power 

density operations because of their higher breakdown temperature and voltage. Fig. 1.1 shows 

the minimum junction temperature at which breakdown failure occurs. WBG semiconductors 

enable operations at high-voltages up to 100 kV, as they can perform even at the high-

temperature of 400 °C without device breakdown failure. However, Si devices are limited to 

only a few hundred voltages and lower junction temperature because of their breakdown failure 

[9–11]. 
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Table 1.1 Physical properties of Si and WBG semiconductors [4, 6]. 

 

 

 

 

Fig. 1.1 Junction temperature limits according to the breakdown voltage of Si and WBG 

semiconductors [5].   

  Si 3C-SiC 4H-SiC 3C-GaN 2H-GaN Diamond 

Bandgap energy, Eg (eV) 1.12 2.2 3.26 3.27 3.39 5.45 

Critical electric field, Ec (Vcm−1) 11.8 9.6 10 1 3.3 5.6 

Electrical mobility, µn (cm2∙V−1∙s−1) 1350 900 720 1000 900 1900 

Saturation velocity, νsat (cm∙s−1) 1.0 2.0 2.0 2.6 2.5 2.7 

Thermal conductivity, λ (W∙cm-1∙ K –1) 1.5 4.5 4.5 1.3 1.3 20 

Dielectric constant, εr 11.8 9.6 10 9.9 8.7 5.5 
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1.1.2 Package structure of power modules and reliability issue 

Generally, conventional power modules have a multi-layered packaging structure that 

includes five main components, namely, wires, semiconductor devices, die-attach joints, 

substrates, and baseplates, as shown in Fig. 1.2. Power devices are soldered to ceramic 

substrates such as direct bonded copper (DBC) and direct-bonded aluminum (DBA). Wires are 

interconnected between the devices and the metal layer in patterned substrates. Subsequently, 

the fabricated modules are bonded on a base plate by soldering. 

Multilayered package structures are effective in reducing the volume of modules and 

dissipating heat. However, as seen in Fig. 1.1. To maximize the advantages of the power 

modules of WBG semiconductors, the modules must operate at a higher junction temperature 

of approximately 250 °C. In addition, its applications, such as automobiles, aircrafts, and space 

exploration, currently require power modules to operate in ambient thermal cyclic 

environments. In automobile industries, environment temperatures under the hood can reach or 

exceed 150 °C. It can also drop to − 40 °C and the temperature swing is repeated [12]. In 

aircrafts, the modules are thermally cycled using a wide temperature range from –55 °C to 

300 °C and more [13, 14]. In such a high-temperature operating environment, high thermal 

stress occurs repeatedly at the interface of mutilated structure in a power module because of the 

mismatch of the coefficients of thermal expansion (CTE) among multiple layers, resulting in 

significant thermal damage and reliability problem. However, the existing conventional 

package materials are not appropriate, as they are limited to the maximum junction temperature 

of 175 °C. 

To ensure the reliability of modules, new packaging materials with high damage resistance 

in extremely severe operation conditions must be developed, and their failure mechanism must 

be evaluated. 
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Fig. 1.2 Packaging structure, materials, and their coefficients of linear thermal expansion (CTE) 

property in high-temperature power modules.  
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1.1.3 High-temperature packaging material and its failure mechanisms 

For high-temperature interconnection materials, several materials with excellent thermal 

and electrical properties, such as silver (Ag), gold, and copper (Cu), have been proposed as 

sinter joining pastes. Additionally, these materials have higher melting points than solder 

materials. Among them, Ag sinter pastes have been considered as the most promising joining 

materials because of their excellent characteristics. Ag sinter pastes exhibit a higher bonding 

strength, lower resistivity, and higher thermal reliability than Au–Sn solder and transient liquid 

phase (TLP) materials, which can be used at higher temperatures (> 250 °C). Additionally, low-

cost micron- and submicron-sized Ag pastes have been developed, thereby widening the 

possibility of using Ag sinter pastes in power electronics industries [16]. Recently, Ag pastes 

have been attempted to be widely used not only as joining materials but also for wire 

interconnections in the form of Ag clip bonding [17] and printed Ag sinter wire [18], as shown 

in Fig. 1.3. 

The mechanism of property deterioration and microstructural changes in sintered Ag joints 

has been investigated under high temperature. In addition, grain growth, pore coarsening, and 

increasing porosity of sintered Ag joints in die attach have been studied as the mechanism of 

the strength decrease [19]. In a thermal shock environment, it was reported that a vertical crack 

occurred in a sintered Ag joint layer during a thermal shock test for temperatures from − 50 °C 

to 250 °C [20]. 

For power package substrates, both direct bonded aluminum (DBA) and active metal 

brazing (AMB) substrates have been considered as promising substrates for fabricating high-

temperature power electronic modules because of their good thermal conductivity, low 

electrical resistance, and high insulation voltage. The aforementioned advantages are attributed 

to the metal/ceramic/metal sandwich structure of DBA/AMB substrates. Notably, DBA/AMB 
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substrates have a ceramic insulator plate composed of materials such as Al2O3, AlN, and Si3N4. 

Both the sides of the insulator plate are metalized using aluminum (Al) or copper (Cu) to 

function as a thermal and electrical conductor layer. The as-prepared metal layer not only 

improves thermal conductivity but also creates electrical circuits on the insulator plate. 

However, the sandwich structure of DBA/AMB substrates also results in high 

thermomechanical stress, which is induced by the difference of CTEs between metal and 

ceramic in the sandwich structure during temperature cycling. Particularly, AMB substrates, 

which are bonded using a brazing process, have high thermal resistivity than that of the widely 

used direct bonded copper (DBC), which is bonded using eutectic bond. Although the need for 

high-temperature packaging technologies has been increasing, the reliability issues of 

DBA/AMB substrates still remain unaddressed. 

 

 

 

 

 

Fig. 1.3 Applications of the Ag sinter paste: (a) joint and clip bonding and (b) printed Ag sinter 

wire [17, 18].  
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1.2 Real-time monitoring of thermal fatigue damage 

1.2.1 Traditional failure precursor monitoring 

Two types of lifetime prediction methods have been studied for power modules. The first 

method is based on failure mechanism. The lifetime prediction models are based on various 

failure mechanisms and describe the number of cycles to failure (Nf) as a function of failure-

relevant temperature parameters such as the junction temperature swing (ΔTj) and mean 

junction temperature (Tm). The second method is based on failure precursor parameters. 

Compared to the first method, this method is typically used to predict remaining useful life 

(RUL) and to monitor damage progress. Several studies have focused on thermal fatigue 

damage monitoring in both devices and packaging components, as listed in Table 1.2. However, 

there are certain disadvantages of second method: 

1. It needs an additional electric circuit for monitoring [21]. 

2. It cannot predict the status of fatigue damage and time of failure [22]. 

3. Variation in one precursor parameter can affect the other parameters [23]. 
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Table 1.2 Mechanism, causes, and precursors of failure in packaging components. 

Components Failure mode Mechanism 
Precursor 

parameter 
Ref 

Semicond

uctor 

Die 

- Short circuit 

- Burn-out 

- Loss of gate control 

- Latch-up 

- Break- down 

- VCE(ON) 

- toff 

- GE(th) 

[24] 

Bond pad  - Void/Crack 
- Metallization 

reconstruction 
-  - 

Wire 

Bond 

interface 
- Liftoff 

- Fatigue 

- Reconstruction 

- ton/toff 

- VCE(ON) 

- VGE 

[25-28] 

Heel - Heel cracking - Fatigue - VCE(ON) [29] 

Body 
- Wire burnout - Joule heating - VCE(ON) [30] 

- Void - Stress corrosion - - 

Solder joint 
- Crack 

- Delamination 
- Fatigue or grain growth 

- Rth 

- VCE(ON) 

- toff 

[31-33] 

Ceramic substrates - Fracture - Fatigue, Brittle fracture - Rth  
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1.2.2 Definition and application of acoustic emission monitoring 

Acoustic emission is defined as a physical phenomenon that elastic energy is dynamically 

released as a result of material damage, as shown in Fig. 1.4. The released elastic energy 

propagates in the form of elastic waves inside the material. The waves that reach the surface 

cause surface deformations and can be detected using piezoelectric transducers. The detected 

elastic waves are transferred to electric signals called AE signals. AE signals contain damage 

information, as they result from a specific damage. The AE signals analysis enables various 

assessments. In the widest sense, acoustic emission is a technique for evaluating material 

damages by collecting and analyzing the released elastic waves [34, 35]. 

In metallurgical fields, the AE phenomenon was first studied in 1933 to evaluate the 

martensite transformation of Ni steel [36]. Thereafter, the AE system and method have been 

developed and extensively used for monitoring the damage of large structures such as bridges, 

pressure vessels, and wind turbines [37, 38]. Most AE methods have been standardized based 

on American Society for Testing and Materials (ASTM) standards (ASTM E 569, E 749, E 751, 

E 1067, E1139) [39]. In addition, several recent studies have applied the AE methods to evaluate 

fracture and cracks in advanced microelectronics such as ceramic-metal joints [40], lithium-ion 

batteries [41–43], multi-layered ceramic capacitors [44], and fuel cells [45]. 

An AE method is a nondestructive technique related to the passive monitoring of ultrasound. 

Passive-type AE methods offer significant advantage over other nondestructive techniques. 

Firstly, a sensor can measure damage in a wide area and the measurement system is much 

simpler. The AE signals arising from the damage can be detected by a sensor attached to the 

surface of a test object as the signals can spread in all directions within a solid. Secondly, 

standby power consumption is much lower for monitoring. Most nondestructive techniques 

usually input energy and collect the input energy after the reaction with test objects. The AE 
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method is a passive-type of technique, and thus, does not need to input energy. Thirdly, AE 

system is composed of fewer elements. Thus, it is easy to implement in industries. On the other 

hand, a modified scanning acoustic tomography (SAT) system was proposed to observe the 

degradation of power modules under power cycling test [46]. However, this system is still 

limited for the damage monitoring application of power modules in industries, as it is complex 

and bulky. 

 

 

Fig. 1.4 AE signal generation, propagation, and detection [46]. 
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1.2.3 Sources and characteristics of AE signals 

The AE signals are obtained from sources that rapidly release elastic energy. Based on the 

source mechanism, the AE sources can be broadly classified into three types: the primary source, 

the secondary source, and noise [48]. The following section describes the AE source mechanism 

and the characteristics of AE signals arising from the sources.  

The primary sources produce AE signals when materials undergo permanent changes. The 

AE activity resulting from permanent changes can be explained based on the Kaiser effect [49]. 

Significant AE activity can be observed under a certain load. However, AE activity is not 

observed when a material is unloaded and reloaded, until the previous maximum load is reached. 

This indicates that permanent deformation in materials can release energy through elastic waves. 

Permanent changes are represented in the form of dislocation, deformation, crack initiation, and 

crack propagation. Such damages usually generate AE signals in the form of a discrete transient 

burst, as shown in Fig. 1.5(a). Burst AE signals have different characteristics depending on the 

source type. In particular, the amplitude of signals can significantly vary depending on both the 

deformation mechanism and material properties. The factors that affect the amplitude of an AE 

event are listed in Table 1.3 [50]. In secondary source mechanism, the AE signals are a result 

of frictional rubbing and bubbling, which accompany damages such as leaks and corrosion. 

These signals are commonly characterized by low amplitude and long duration as shown in Fig. 

1.5(b). 

Noise is defined as an elastic wave generated from a source that is not related to the purpose 

of AE monitoring. The noise cancelling technique for eliminating the signals arising from the 

noise sources is explained in section 1.3.4. 
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Fig. 1.5 Burst and continuous AE signals [41]. 

 

Table 1.3 Factors Affecting AE Response [50]. 

 

  

Factors that increase the AE amplitude Factors that decrease the AE amplitude 

High strength Low strength 

High strain rate Low strain rate 

Low temperature High temperature 

Anisotropy Isotropy 

Non-homogeneity Homogeneity 

Thick sections Thin sections 

Brittle failure (cleavage) Ductile fracture (shear) 

Crack propagation Plastic deformation 

Large grain size Small grain size 
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1.2.4 AE system configuration 

The acoustic emission system consists of three parts: sensors for detecting the elastic waves, 

a preamp for amplifying the collected low-level signals, and a signal processing board for 

characterization and noise cancellation of the signals. 

In general, elastic waves arising from these sources have frequencies from several kHz to 

1 MHz. Elastic waves are detected by the AE sensor, which is usually fabricated using 

piezoelectric elements. Further, they are converted into electrical signals. Since the sensing 

characteristics of the sensors vary depending on the material of the piezoelectric element and 

its internal structure, it is important to use appropriate sensors considering the target damage 

event. Two types of AE sensors are used: broadband and narrowband (wideband) sensors. This 

division is based on the detectable frequency range of the elastic wave. The resonant sensor is 

used to collect the AE signals at certain frequencies with high sensitivity. However, the 

sensitivity characteristics of a particular frequency domain can also result in waveform 

deformation. Broadband sensors have sensitivity in a wide frequency band. They are used for 

waveform and frequency analysis without waveform deformation. 

A preamplifier increases the sensitivity of the AE signals in the form of electrical signals 

(voltage-time curve), as shown in Fig. 1.5, compared to noise. The unit used for AE signals is 

μV, which can be expressed in decibels (dB). This is calculated using the logarithmic equation 

(1.1) based on the minimum perceived amplitude (𝑉0) of 1 μV (0 dB). 

dB = 20log
𝑉

𝑉0
 (1.1)                             (1.1) 

The AE signals are analyzed in the final signal processing board, which is described in 

section 1.2.5. 
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1.2.5 AE signal characteristics and noise cancelling process 

The characteristics of the AE signals can be used to evaluate material damage since these 

signals have an abundant amount of damage information. Fig. 1.6 shows an example of a signal 

waveform in time domain and the characteristic parameters extracted from the signal. The point 

at which the sound pressure is highest is defined as the peak and the sound pressure at this point 

is called amplitude. In particular, a signal is recorded when its amplitude is greater than or equal 

to the threshold value (i.e., threshold), which is the criterion for an effective signal. The 

recorded signal is called a hit. The number of times that a hit signal waveform exceeds the 

threshold is termed as counts. Counts and amplitude indicate the number and degree of damage, 

respectively, and are most often used as parameters for acoustic emission assessment. In 

addition, the length of time for which a sound pressure exceeds the threshold and stays above 

it is termed as duration.  

Additionally, the frequency-domain characteristics of the AE signals can be analyzed using 

a fast Fourier transform (FFT) algorithm. Ideally, it is used to determine the AE source with the 

time-domain characteristics and to eliminate noise. In general, AE sources emit elastic waves 

with broadband frequencies ranging from 10 kHz to 1 MHz [51]. However, for common AE 

signals in metallic materials, the frequencies range from 100 kHz to 500 MHz [50]. The AE 

events arising from non-detrimental sources such as hydraulics and bearing movement are 

regarded as “background AE” or “noise”. These noise often occur at low frequencies (< 100 

kHz) due to the nature of the source. Table 1.4 lists the frequency ranges of noise arising from 

various sources in nature and vehicle. The frequency for most of the noises ranges from several 

Hz to 100 kHz.  

The noise cancelling method is performed in the following sequence: Firstly, the noise 

source is identified and fundamentally eliminated. Secondly, it should be noted that noise has a 
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lower level of amplitude compared to that of damage. Thus, when it is difficult to eliminate the 

noise sources, the noise is collected and noise amplitude is analyzed. Based on the amplitude 

of the collected noise, a reference voltage (i.e., threshold) is set. The signals are recorded when 

the amplitude of the signals exceeds this threshold. Thirdly, frequency range of the collected 

noise is analyzed. Noise can be filtered by using an analog high-pass filter (HPF) and low-pass 

filter (LPF) in a signal processing board. The filtering frequency value is set based on the 

frequency range database of the collected noise. The de-nosing process is most important in AE 

monitoring, as it can lead to major errors during accurate assessment of material damage. 

 

Fig. 1.6 Illustration of commonly used AE parameters [41]. 

 

Table 1.4 Typical frequency range of noise in common industries. 

 

Source Frequency range (Hz) 

Suspension and wheels 5–10 

Engine 11–17 

Electric motor 50–80 

Human motion 0–40 

Human voice 100–9500 

Music 30–12000 
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1.3 Objective and outline of the thesis 

As mentioned in the previous sections, WBG power modules have demonstrated excellent 

potential toward achieving high efficiency and high power density performance for high-

temperature operations. To ensure the reliability of WBG power modules at such high 

temperatures, the thermal degradation mechanism of high-temperature package materials such 

as sintered micro-porous Ag and DBA/AMB substrates must be understood. Therefore, this 

thesis focused on the study on the thermal degradation mechanism of package materials for 

high-temperature power modules. In addition, the real-time monitoring method for analyzing 

thermal damages in power modules was studied using the AE technique. 

In Chapter 1, a brief description of the background of power electronics and emerging 

issues associated with the use of WBG semiconductors is introduced. The current candidates 

for high-temperature package materials and their reliability issues are also introduced. The 

current understanding on AE monitoring is also briefly discussed. 

In Chapter 2, the thermal aging mechanism of sintered micro-porous Ag, which is a 

promising high-temperature joint material, is explored. The tensile strength and electrical 

resistivity of sintered Ag are evaluated during the thermal exposure at 250 °C. In addition, the 

changes in the grain and porous structure of sintered Ag are quantitatively characterized. 

Thermal aging mechanisms in sintered micro-porous Ag are discussed on the basis of the 

relationship between microstructural variations and mechanical/electrical properties. 

In Chapter 3, the thermal shock damage mechanisms of DBA/AMB substrates with three 

types of ceramic plates and two types of Ni metallization are studied. The thermal shock 

resistance of DBA/AMB substrates is evaluated according to various material combinations. 

The mechanism of fractures, which are attributed to the Al creep deformation in DBA substrates, 

in Ni and Ni–P plating layers are discussed. 
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In Chapter 4, an attempt was made to monitor the fatigue damage occurring in the Al ribbon 

interconnection of discrete SiC Schottky barrier diode devices for the first time. The electrical 

switching noise signals are eliminated by a noise-cancelling process. During the power cycling 

test, AE signals were successfully collected. In addition, AE counts, which represent one of the 

time-domain parameters of AE signals, increased with the number of power cycles while fatigue 

cracks propagated in the Al ribbon. The AE count rate was significantly correlated with crack 

growth rate. On the basis of the relationship between AE activities and fatigue crack 

propagation, it is discussed that AE monitoring can be used for not only for understanding the 

fatigue propagation in Al ribbons but also monitoring the failure of power electronic devices. 

In Chapter 5, a summary of the failure mechanisms in high-temperature power modules 

was presented. In addition, a real-time AE monitoring method was proposed as a novel 

monitoring technique for next-generation power modules.  
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2.1 Introduction 

To address high performance challenges of power modules, Si devices have been replaced 

with wide band-gap (WBG) semiconductors including silicon carbide (SiC) and gallium nitride 

(GaN), which allow power modules to be operated at high power densities and high 

temperatures above 250 ºC [1][2]. Normally, power modules are manufactured by bonding 

semiconductors on power substrates with interconnect materials. However, the existing 

conventional solders are not suitable for WBG interconnect materials due to their poor 

reliability at high temperatures [3]. To ensure high temperature operation of WBG 

semiconductors, numerous joint materials with high melting points, excellent thermal and 

electrical properties such as silver, gold and copper have been proposed. 

Silver (Ag) sinter pastes have been considered as promising joint materials due to various 

advantages such as high bonding strength, low resistivity and excellent thermal reliability, 

compared with Au-Sn solder and nano copper sinter paste, all of which can be used at higher 

temperature (>250 °C) [4][5]. Additionally, low-cost micron- and submicron-sized Ag pastes 

have been developed in recent [6] compared to high-cost nano Ag sinter paste, enlarging the 

possibility of Ag sinter paste in the power industries. However, a large amount of thermal stress 

induced by the mismatch in coefficients of thermal expansion (CTE) causes various 

microstructural changes and properties deterioration in sintered Ag joints during long-term high 

temperature exposure. 

The mechanism of properties deterioration and microstructural changes in sintered Ag 

joints have been investigated under high temperature exposure [7][8]. Grain growth, pore 

coarsening, increasing porosity of sintered Ag joints in a die-attach have been studied as the 

mechanism of strength decreases [9][10][11]. However, the strength decreases of a die-

attachment structure can be affected by degradation of sintered Ag joints as well as the other 
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components including chips, metallization and substrates. For this reason, it is difficult to 

certainly understand relationship between strength decreases, and observed microstructure 

changes. Moreover, changes in grain and pore structure were also related with electrical 

properties which is another most important properties for joint materials. However, the effect 

of thermal exposure on electrical properties were not reported. Therefore, it is important to 

investigate relationship between mechanical/electrical properties deterioration and 

microstructure variation during high temperature exposure by using sintered Ag specimens, in 

order to eliminate other component effect and understand the relationship. 

In this work, the effect of thermal exposure on mechanical and electrical properties and 

microstructural changes on sintered porous Ag during thermal exposure was demonstrated. The 

tensile strength and electrical resistivity of sintered Ag were evaluated. Changes in grains and 

porous structure of sintered Ag were quantitatively characterized. This relationship between 

microstructural variations and mechanical and electrical properties were discussed. 
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2.2 Experimental 

2.2.1 Fabrication of sintered porous Ag specimens 

Two types of Ag particles with different sizes and shapes were mixed to be a “Hyblid paste”. 

Ag flakes have an average lateral length of 5 μm and thickness of 260 nm (Fukuda metal Co.). 

The others are Ag spherical particles with an average diameter of 400 nm (Mitsuimining and 

smelting Co.) [6]. The Ag paste was made by mixing them and ethylene glycol (EG) at a weight 

ratio of 5:5:1 to control paste viscosity. Fig. 2.1 (a-c) show the manufacturing process of Ag 

specimens for tensile strength and electrical resistivity measurements. First, Cu plates were 

sprayed with boron nitride lubricant to prevent bonding between Ag paste and Cu plates during 

a sintering process (Fig. 2.1 (a)). Ag paste was printed in the shape of a test specimen by using 

screen mask on the pre-treated Cu plates as shown in Fig. 2.1 (b). Afterwards, the Ag paste was 

sintered at 250 °C for one hour without pressure on the hot plate as shown in Fig. 2.1 (c). After 

sintering, Ag specimens were easily detached from Cu plates. The width and thickness of the 

sintered Ag specimens were 5 mm and 0.5 mm, respectively. The micro-porous structure of 

sintered Ag specimens was confirmed by SEM observation, as shown in Fig. 2.1 (d). 
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2.2.2 Characterization of mechanical/electrical properties 

To characterize changes in sintered Ag during thermal exposure, Ag specimens were 

exposed at 250 °C for different exposure times of 0, 50, 200, 500, and 1000 hours in air. To 

evaluate the deterioration of mechanical and electrical properties, tensile tests and electrical 

resistivity measurements were conducted on the aged Ag specimens, as shown in Fig. 2.2 (a) 

and (b), respectively. Tensile strength was tested by a universal testing machine (Tytron 250, 

MTS Co.) at a strain rate of 1.0×10-5/s. Electrical resistivity was measured by a four probe test 

with span distance of 5 mm. Source currents were supplied from 500 mA to 1,000 mA. 

 

2.2.3 Microstructural observation 

To observe microstructural changes, Ag grains and porous structure of the aged Ag 

specimens were evaluated. The cross-section of each Ag specimen being aged for different 

thermal exposure times was prepared by ion-milling. The Ag grain size and number was 

characterized by electron backscatter diffraction (EBSD). EBSD data for aged Ag specimens 

was collected using a step size of 0.1 µm. The porous structure including pore size, number and 

porosity was observed by a field emission scanning electron microscope (FE-SEM) as shown 

in Fig. 2.1 (d). To automatically distinguish between sintered Ag and pores, the observed SEM 

images were processed into black and white by using image-processing software (IPWin) as 

shown in Fig. 2.3. The sintered Ag and pore area were transformed to black and white, 

respectively. Afterwards, pore size, number and porosity were measured. The average area of a 

pore was used as pore size. To evaluate fracture mode, fracture surface was observed by FE-

SEM after tensile test. 
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Fig. 2.1 Fabrication process of Ag specimens for tensile and four probe tests (a-c) and its micro-

porous structure observed by SEM (d). 

 

 

Fig. 2.2 Configuration of a tensile test (a) and four probe resistivity measurement (b) for 

sintered Ag specimens. 

(a)

(b)
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Fig. 2.3 Automatic measurement of pore area and number of sintered Ag. 
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2.3 Results and discussion 

2.3.1 Deterioration of tensile strength and electrical resistivity 

Fig. 2.4 shows changes in tensile strength and electrical resistivity under high temperature 

exposure. Initial porous Ag has a tensile strength of 42 MPa and an electrical resistivity of 8.5 

× 10-6 Ωcm after being sintered at 250 °C for 1 hour. The tensile strength was altered during 

thermal exposure time. According to the strength change trends, the change in the tensile 

strength was divided into three distinct stages. Tensile strength gradually decreased during 

thermal exposure time up to 200 hours. However, the reduced strength of aged Ag almost fully 

returned to its initial value during thermal exposure time from 200 hours to 500 hours. The 

recovered strength was maintained for up to 1000 hours of thermal exposure time. On the other 

hand, the electrical resistivity of sintered Ag did not change during the first 200 hours of thermal 

exposure, but significantly decreased from 200 to 500 hours and kept the reduced resistivity. 

This change trendency of both strength and resistivity occurs in the same exposure time of 200 

and 500 hours. To investigate the reason of properties change, microstructure after each 

exposure time was observed. 

 

Fig. 2.4 Deterioration of tensile strength and resistivity of sintered Ag during thermal exposure.  
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2.3.2 Changes in Ag grains and porous structure 

Fig. 2.5 shows grains of sintered Ag at different thermal exposure times. Pores were 

indicated in white areas. At the initial state, sintered Ag had numerous fine Ag grains as shown 

in Fig. 2.5 (a). After thermal exposure, the Ag grains became bigger and fewer. To quantitatively 

evaluate microstructure changes including Ag grains and pores, their size and number were 

measured and the results are shown in Fig. 2.6 and Fig. 2.7, respectively. 

Fig. 2.6 quantitatively shows the changes in grain size and number of sintered Ag in thermal 

exposure. The average Ag grain size increased with thermal exposure time up to 500 hours, 

while the grain number decreased. The Ag grain growth indicated an exponential increase, and 

its trend was similar with that of general fine-grained materials. Fig. 2.7 shows the changes in 

pore average area and number of sintered Ag during thermal exposure time. The average area 

of pores was used to represent pore size. The pore number at different thermal  

 

Fig. 2.5 EBSD observation of Ag specimens after different exposure times; (a) 0 h, (b) 200 h, 

(c) 500 h and (d) 1,000 h. 
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Fig. 2.6 Variation in Ag grain size and number with thermal exposure time. 

 

 

 

Fig. 2.7 Variation in average pore area and number with thermal exposure time. 

  



 

 

Chapter 2 Thermal degradation mechanism of micro-porous silver die-attach 

 
 

 

35 

 

exposure time was automatically counted in 17μm x 25 μm area, and it was expressed in 

percentiles based on the initial pore number. This pore size increased with increasing thermal 

exposure time, while the pore number decreased. Although the most pore coarsening occured 

before 200 hours, pore coarsening with pore number reduction occurred until 500 hours. 

Fig. 2.8 shows the change in porosity of sintered Ag during thermal exposure time. Porosity 

was measured by calculating the ratio of pore area to observed area of 425 μm2 [12]. The 

porosity of sintered Ag that was exposed for 0, 200, 500 and 1000 hours was 38 %, 37 %. 29 % 

and 31 %, respectively. The porosity of sintered Ag decreased with exposure time up to the first 

500 hours. In the whole of thermal exposure period, most of the porosity reduction of sintered 

Ag occurred from 200 hours to 500 hours of thermal exposure time. 

Grain growth, pore coarsening and porosity reductions occurred in thermal exposure. 

Among them, the size of grain and pore simultaneously increased with thermal exposure time. 

When polycrystalline materials are exposed to high temperature, grain size grows to reduce the 

interface energy of numerous grain boundaries through the migration of these grain boundaries 

[13]. During this grain growth process, pores also simultaneously migrate along with the 

migration of grain boundaries, resulting in pore coarsening [14]. This driving force to reduce 

the surface energy promotes Ag grain growth as well as pore coarsening. As a result, Ag grain 

growth and pore coarsening seems to occur at the same time. 

On the other hand, the most porosity reduction in sintered Ag occurred in the thermal 

exposure period from 200 to 500 hours. Such silver porosity reduction was observed in sintered 

Ag joints [8]. The porosity in sintered Ag joins decreased with thermal exposure time, especially 

from 100 to 500 hours, which is similar with that observed in bare sintered Ag from 200 to 500 

hours. When sintered Ag is exposed to high temperatures, its porosity reduction is generated by 

a driving force to reduce surface energy [15]. The driving force is the same with those of grain 
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growth and pore coarsening. The porosity reduction in sintered Ag seems to be related with 

grain growth and pore coarsening. 

The grain growth, pore coarsening and porosity reduction occurred between exposure times 

of 200 and 500 hours, similarly with deterioration trends in mechanical/electrical properties as 

shown in Fig. 2.4. 

 

 

 

 

Fig. 2.8 Variation in porosity of sintered Ag with thermal exposure time. 
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2.3.3 Relationship between mechanical/electrical properties and microstructural 

variation 

The tensile strength gradually decreased up to 200 hours of thermal exposure time. The 

grain growth and pore coarsening remarkably occurred during this thermal exposure period, 

which well known as the mechanism of strength decreases in polycrystalline porous materials. 

Normally, the grain growth with grain number reduction generally leads to strength decreases 

due to an decrease in the Hall–Petch strengthening effect of grain boundaries [16]. In addition, 

pore coasening in sintered Ag also can contributed to tensile strength deterioration, because it 

can offer the site for stress concentration and crack generation. Thus, strength deterioration was 

caused by grain size and pore size growth during thermal exposure by 200 hours. 

On the other hand, the decreased strength of sintered Ag recovered from 200 to 500 hours. 

In this period, porosity was remarkably reduced from 36 % to 29 %. The decreasing porosity 

indicates the reduction of total pore volume which will lead to a strength increase. It was 

reported that the tensile strength of porous Ag will be influenced by the microstructure and is 

inversely proportional to the porosity of porous Ag [10]. Thus, the porosity reduction in sintered 

Ag from 200 to 500 hours seems to results in the strength recovery occurring for the same 

period. After 500 hours, tensile strength as well as microstructure did not altered. 

Although in the previous studies, a relationship between the porosity reduction and shear 

strength was reported in the sintered Ag joining structure [8], it is difficult to eliminate the 

interference of other factors such as metallization oxidation and substrate roughening. In this 

study, based on the confirmed relationship between tensile strength and porosity of bare sintered 

Ag, it was considered that the reported shear strength recovering phenomenon [7][17]in Ag 

joints also was caused by the porosity reduction of sintered Ag joints in a die-attachment. 
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Electrical resistivity was not changed in the early exposure period before 200 hours, while 

the grain size growth and pore coarsening significantly occurred in the same period. Grain size 

growth and pore coarsening did not significantly affect electrical resistivity. On the other hand, 

the electrical resistivity of sintered Ag was significantly decreased from 200 to 500 hours. Most 

of the porosity reduction of sintered Ag occurred in the same period. Thus, porosity and 

resistivity have a proportional relationship. It is supported by previous study[18]. In metal 

foams, relative electrical resistivity decreased in a non-linear way with relative density. 

Although various microstructural factors such as porosity, pore size, pore shape, and grain size 

can affect the electrical resistivity in porous material systems [19-21], porosity more sensitively 

influences electrical resistivity [20-22]. In this chapter, the porosity reduction in sintered Ag 

also was a dominant microstructural change for electrical resistivity decreases, compared to 

grain growth and pore coarsening. 
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2.3.4 Evaluation of fracture surface 

Fig. 2.9 shows the tensile fracture surfaces of sintered Ag that was exposed for different 

thermal exposure time. The fracture surface at an initial state indicated a brittle fracture pattern 

without apparent plastic deformation. However, small dimple patterns appeared after thermal 

aging of 50 hours. Dimple size increased up to 200 hours. The grain size and pore size increased 

up to 200 hours as in section 2.3.2. The fracture mode changes from brittle fracture to ductile 

fracture. Normally, a dimple fracture pattern presents ductile fracture due to plastic deformation 

than brittle fracture. This fracture strength decrease after a thermal exposure time up to 200 

hours reflects on the fracture mode. 

 

 

 

Fig. 2.9 SEM observations of the fracture surface of Ag specimens aged for different 

exposure times; (a) 0 h, (b) 50 h, (c) 200 h, (d) 500 h and (d) 1000 h. 

 

  

(c) 200 hr

(a) 0 hr (b) 50 hr

Dimple
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2.4 Conclusion 

In this chapter, thermal aging effects on tensile strength, electrical resistivity and 

microstructural changes in sintered porous Ag were investigated at 250 °C during different 

duration of 0, 50, 200, 500, and 1000 hours. The relationship between microstructural changes 

and mechanical/electrical properties was discussed. 

1. Tensile strength and electrical resistivity of sintered Ag was varified with thermal exposure 

time. Strength processed via three steps including deterioration, recovering, and maintaining 

during the thermal exposure. Electrical resistivity decreased in the middle of the thermal 

exposure period. 

2. Accompanied with the decreasing number of Ag grains and pores, the size of the Ag grains 

and pores was increased with with thermal exposure time. Grain growth and pore coarsening 

occurred until 500 hours. On the other hand, porosity mostly reduced from 200 to 500 hours. 

3. The decreasing tensile strength results from Ag grain growth and porous coarsening which is 

well-known as a strength deterioration mechanism. On the other hand, the decreased strength 

recovered by the porosity reduction during the long-time thermal exposure from 200 to 500 

hours. 

4. Electrical resistivity decreased with exposure time especially from 200 to 500 hours. It was 

dominantly affected by porosity reduction that occurred in the same period. 
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3.1 Introduction 

Power electronic modules, such as converter and inverter systems, have been widely used 

in transportation, including electric vehicles, aircraft, and high-speed railroads. Usually, the 

power module simply consists of five main components: wires, semiconductor devices, joints, 

substrates, and heat sink. With the increasing use of wide-bandgap (WBG) semiconductor 

devices, such as silicon carbide (SiC) and gallium nitride (GaN), which provide great 

opportunities to develop power electronic systems with increased power densities, high 

reliability in extreme environments, and higher integration, the development of high-

temperature-operating power devices allows for the use of power electronic modules at high 

temperatures (>250 °C) [1,2]. In this case, large thermal stress occurs in the power electronic 

module due to coefficients of thermal expansion (CTE) mismatch in multiple layers, leading to 

a reliability issue for its high-temperature application. 

To dissipate much heat that causes power electronic module failure, a power electronic 

substrate plays an important role. A power electronic substrate is located between a 

semiconductor die and heat sink and transfers heat generated in semiconductors to cooling 

plates [3–5]. Direct bonded aluminum (DBA) and active metal brazing (AMB) substrates have 

been considered as the most promising ceramic substrates for power electronic modules due to 

their good thermal conductivity, low electrical resistance, and high insulation voltage [6,7]. The 

advantage comes from the metal/ceramic/metal sandwich structure of DBA/AMB substrates. 

DBA/AMB basically has a ceramic insulator plate composed of materials such as Al2O3, AlN, 

and Si3N4. Both sides of an insulator plate are metalized by aluminum (Al) or copper (Cu) to 

function as a thermal and electrical conductor layer [8]. Such a metal layer enables not only 

improved thermal conductivity but also creates electrical circuits on an insulator plate. 
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However, the sandwich structure of DBA/AMB substrates also results in a large amount of 

thermomechanical stress induced by the difference in CTEs between metal and ceramic in the 

sandwich structure in changing temperatures [5,9–11]. Repeated thermomechanical stress 

finally induces the total fracture of DBA/AMB substrates [12]. Thermomechanical stress in 

DBA/AMB substrates at high temperatures depends on the material properties of ceramic and 

metal components. In addition, Ni metallization, fabricated by two principally different process 

techniques—the electroplated Ni plating and electroless Ni–P plating—is most generally plated 

on the surface of DBA/AMB substrates as a metallization layer to protect the oxidation of Cu 

and Al. Additionally, electroplated Ni and electroless-plated Ni–P also have different 

mechanical properties. Electroplated Ni has good ductility and high tensile strength [13,14], 

while electroless Ni–P has good hardness and a simple manufacturing process because of its 

chemical reduction process without any need of electric connection [15–22]. 

The thermal shock performance of the DBA/AMB substrates as well as the Ni metallization 

layer determines the whole lifespan of the power electronic module [9,21,22]. Therefore, the 

material design of DBA/AMB substrates became an important issue, since it determines their 

thermal cycling reliability of power electronic modules. However, thermal cycling reliability of 

Ni-plated DBA/AMB substrates with various ceramics has been rarely studied. 

In this chapter, a thermal shock cycling test of DBA/AMB substrates with various ceramics 

plated with Ni and Ni–P layers was carried out to investigate their high-temperature reliability 

for a WBG power electronic module. The cracking and roughening of Ni–P layer on DBA/AMB 

substrates were evaluated by field-emission scanning electron microscopy (FE-SEM), scanning 

acoustic tomography (SAT), and laser profile microscopy. The fracture suppression mechanism 

in a Ni layer on DBA/AMB substrates was also examined with the aid of a stress analysis by 

finite element method (FEM) simulation.  
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3.2 Materials and methods 

In this work, DBA and AMB substrates were supplied from Mitsubishi Materials Co., Japan. 

Table 3.1 shows all the material combinations of DBA/AMB substrates, such as substrate types 

and plated layers. The dimensions of the ceramics of Al2O3, AlN, and Si3N4 were 32 × 32 × 

0.65 mm and the dimensions of the Al and Cu metal were 30 × 30 × 0.31 mm, which was 

bonded on both sides of a ceramic plate. Ni metallization layer on DBA/AMB substrates was 

conducted by electro and electroless plating methods. The electroplated Ni film was deposited 

at the current density of 2 A/cm2. Ni–P electroless deposition was plated at 85 °C for pH 6.4. It 

was confirmed that the Ni–P plating layer contained 1 wt% phosphorus. Two different 

metallization times were respectively adjusted to achieve an average thickness of around 7 µm. 

Fig. 3.1a shows the image of the DBA substrate coated with a Ni–P layer with electroless plating. 

The dimensions and structure of the DBA/AMB substrate coated with a Ni metallization layer 

are shown in Fig. 3.1b. Fig. 3.1c,d show the SEM image of the surface of the Ni metallization 

layer by electro and electroless plating, respectively. The electroplated Ni layer had a pyramid-

like crystal morphology, which is generally observed [23]. On the other hand, the Ni–P 

electroless plating layer had a smoother surface than the Ni electroplating layer. Fig. 3.1e,f show 

the microstructure of Al and Cu with a few hundred micrometer-sized grains in the DBA and 

AMB substrates, respectively. Two samples per material combination were fabricated to check 

the experiment’s reproducibility. 

To evaluate the high-temperature reliability of the DBA/AMB substrates with Ni 

electroplating and Ni–P electroless plating layers, a thermal shock cycling test between −50 °C 

and 250 °C was performed up to 1000 cycles by using a thermal shock chamber (TSE-110-A-

S, ESPEC Corp., Japan). The dwelling time at the upper and lower temperatures was 30 min. 
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Table 3.1 Materials and dimensions of multilayered specimens. 

Substrates 

Metallization 

(Thickness: 7 μm) Type 
Metal 

(30 × 30 × 0.31 mm) 

Ceramic 

(32 × 32 × 0.65 mm) 

DBA Al 

Al2O3 Ni electroplating or Ni–P electroless plating 

AlN Ni electroplating or Ni–P electroless plating 

Si3N4 Ni electroplating or Ni–P electroless plating 

AMB Cu 

Al2O3 Ni electroplating or Ni–P electroless plating 

AlN Ni electroplating or Ni–P electroless plating 

Si3N4 Ni electroplating or Ni–P electroless plating 

 

 

 

Fig. 3.1 (a) Macrograph of a typical substrate specimen, (b) cross-section diagrams of the 

DBA/AMB substrates plated by Ni and Ni–P layers, surface morphology of Ni (c) and Ni–P (d) 

layer on the substrates, and surface microstructure of Al (e) and Cu (f) of the DBA/AMB 

substrates. 

  



 

 

Chapter 3 Thermal shock damage mechanism of DBA/AMB substrates plated with Ni and with Ni–P layers 

 
 

 

49 

 

Regarding to the industry standards for the harsh environmental testing of microelectronics 

[24,25], the temperature range of a thermal shock test is set between low temperatures of −50 °C 

to −40 °C and high temperatures of 125 °C to 150 °C. However, advanced SiC power electronic 

modules are generally expected to be used at a temperature up to 250 °C. For this reason, the 

upper temperature of 250 °C was chosen for this study. In addition, two samples per type were 

tested after 100 cycles. 

To characterize fracture in the metallization and substrates during thermal shock cycling 

test, the thermally aged specimens were taken out at 0, 50, 100, 200, 600, and 1000 cycles. The 

surface change of the electro and electroless plating layers was analyzed by FE-SEM (SU8020, 

HITACHI, Tokyo, Japan) and SAT (FineSAT FS300, HITACHI, Japan). The surface roughness 

of the plated specimens was measured using laser profile microscopy (VK-9510, Keyence 

Corp., Osaka, Japan). In order to investigate the failure mechanism, the cross-section of the 

aged plating layer was prepared by focused ion beam (FIB, FIB-2100, HITACHI, Japan) milling 

and observed using FE-SEM. 

To understand thermal stress distribution, stress distribution in Ni- and Ni–P-plated 

DBA/AMB substrates at a high temperature of 250 °C during a thermal shock cycling test was 

investigated by a two-dimensional FEM simulation. The model was fabricated by commercial 

FEM code (ANSYS 15.0). Al and Cu metals in DBA/AMB substrates were considered as a 

polycrystalline face centered cubic structure consisting of hypothetical grains of (111), (110), 

and (001) orientation. Fig. 3.2 representatively shows the FEM model of a Ni-plated AMB 

substrate with Si3N4 ceramic, where the Cu metal consisted of Cu (111), Cu (110), and Cu (001) 

orientations. In this simulation, the angular point of the model was fixed in the X, Y directions. 

The stress-free temperature for the model was assumed to be 25 °C. FEM was used for elastic–

plastic deformation analysis. Because there was no additional stress in this model, it was 
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considered that the FEM analysis exhibited a plane stress state. The properties of the materials 

used for this model of plated DBA/AMB substrates are summarized in Table 3.2. 

 

 

Fig. 3.2 FEM model for thermal stress distribution simulation of an AMB substrate with Si3N4. 

 

Table 3.2 Mechanical and thermal properties of the various materials in Ni- and Ni–P-plated 

DBA/AMB substrates. 

Materials 

Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Coefficient of 

linear thermal 

expansion 

(µm·m−1·K−1) 

Yield 

strength 

(GPa) 

Tensile 

strength 

(MPa) 

Fracture 

toughness 

(MPa·m1/2)  

Cu (001) 

[27,28] 
75.7 0.28 17.7 0.7 -  

Cu (110) [27,28] 101.8 0.3 17.7 0.93 -  

Cu (111) [27,28] 123.4 0.3 17.7 1.2 -  

Al (001) [29] 63.7 0.34 21.3 0.59 -  

Al (110) [29] 72.59 0.34 21.3 0.52 -  

Al (111) [29] 76.1 0.34 21.3 0.51 -  

Al2O3 280 0.23 7.9 - - 4 

AlN 320 0.24 4.6 - - 3 

Si3N4 290 0.27 2.9 - - 7 

Ni [30, 31] 220 0.31 14.1 0.08 500–1000 53 

Ni–P 

[30, 30-32] 
50 0.31 13.0 0.23 50–150 1.1–2.1  
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3.3 Results and discussion 

3.3.1 Thermal shock behavior 

3.1.1.1 Active metal brazing (AMB) 

Fig. 3.3 shows Ni- and Ni–P-plated AMB substrates with Al2O3 and AlN ceramic after 10 

cycles and those with Si3N4 ceramic after 1000 cycles. AMB substrates with Al2O3 and AlN 

ceramic fractured regardless of the type of metallization. The fracture of Al2O3 and AlN ceramic 

of AMB substrates occurred along vertical and horizontal directions, as shown in Fig. 3.3g. The 

horizontal fracture occurred inside the Al2O3 and AlN ceramic, while the interface delamination 

was never observed. On the other hand, AMB substrates with Si3N4 survived until 1000 cycles, 

regardless of the metallization type. Although Si3N4 ceramic has the biggest CTE mismatch 

with Cu among three types of ceramic, as shown in Table 3.2, the superior thermal cycling 

lifetime of the Si3N4 substrate was confirmed, which agrees with a report in a recent study [26]. 

This is due to Si3N4 having a larger fracture toughness of 7 MPa·m1/2, which provides the ability 

of a material to resist crack initiation and extension leading to fracture, while the other ceramics 

does not. Among three types of AMB substrates, AMB substrates with Si3N4 showed the best 

thermal shock resistance. 

Fig. 3.4 shows SEM images of the surface of the Ni electroplating and Ni–P electroless 

plating layers on AMB substrates with Si3N4 at the initial state and after 1000 cycles. A thin 

cracks were observed in the Ni–P electroless plating layer, as shown in Fig. 3.4d, which was 

not visible through visual inspection, see Fig. 3.3f, while a crack did not occur in the Ni 

electroplating layer after 1000 cycles. Crack generation and propagation of the Ni–P layer on 

the AMB substrates with Si3N4 were investigated by SAT observation. Fig. 3.5 shows SAT 

surface images of the Ni–P layer on AMB substrates with Si3N4 during a thermal shock cycle 

test up to 1000 cycles. The dark area in the SAT surface images indicates surface defects such 
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as cracks, voids, and roughening, which were made by the diffused reflection of the acoustic 

wave at the surface defect. It is difficult to definitively distinguish cracking from roughening 

but SAT image clearly indicates that the surface defects gradually increased with thermal shock 

cycles. 

 

 

 

Fig. 3.3 Destructed AMB substrates with Al2O3 (a, d) and AlN (b, e) after 10 cycles, 

nondestructed AMB substrates with Si3N4 (c, f) after 1000 cycles plated with Ni (a-c) and Ni–

P (d-f), and (g) fracture pattern of AMB substrates. 
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Fig. 3.4 Surface variation of Ni (a,b) and Ni–P (c,d) layers on AMB substrates with Si3N4 before 

and after 1000 cycles. 

 

 

 

 

Fig. 3.5 Scanning acoustic tomography (SAT) observation of the surface morphology of the 

Ni–P layer on AMB substrates with Si3N4 after different thermal shock tests: 0, 50, 100, and 

1000 cycles. 
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3.1.1.2 Direct bonded aluminum (DBA) 

All DBA substrates survived until 1000 cycles, regardless of ceramic material used, as 

shown in Fig. 3.6. Three types of ceramics in DBAs were the same as those for AMB. Unlike 

DBA substrates, AMB substrates with Al2O3 and AlN were fractured. This clearly indicates that 

thermal stress in the DBA with Al2O3 and AlN ceramics is much smaller than that of AMB. The 

thermal stress dependence of metal types in DBA/AMB substrates was studied by Hamilton et 

al. [4]. It was reported that DBA substrates have lower stress than AMB substrates due to lower 

yield strength of aluminum. This contributes to DBA having longer thermal shock resistivity 

compared to AMB in spite of the bigger CTE mismatch of aluminum in DBA. 

On the other hand, the Ni–P layer on the DBA substrates severely cracked after 1000 cycles, 

regardless of type of ceramics, as shown in Fig. 3.6d–f, while the Ni layer retained a sound 

surface. Unlike AMB substrates, see Fig. 3.3d–f, cracking in Ni–P on DBA was evident even 

upon visual inspection. Fig. 3.7 shows the SEM images of the surface of the Ni and Ni–P layers 

on a DBA substrate with Si3N4 at the initial state and after 1000 cycles. The surface of the Ni 

and Ni–P layers was roughened compared to the initial state. The Ni–P layer was cracked and 

the crack was thicker than that of the Ni–P layer on a AMB substrate, see Fig. 3.4d. Moreover, 

the cracks completely opens for the Ni–P layer and even Al surface appeared in side open cracks 

In contrast, the electroplated Ni layer with the higher fracture toughness showed a more stable 

thermal shock reliability. 

To investigate the Ni–P crack evolution on DBA substrates with three kinds of ceramic, 

SAT images were acquired. Fig. 3.8 shows the SAT surface images of the Ni–P layer on DBA 

substrates with Al2O3, AlN, and Si3N4 up to 1000 cycles. The Ni–P layer on all  
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Fig. 3.6 DBA substrates with Al2O3, AlN, and Si3N4 after 1000 cycles, plated with Ni (a–c) and 

Ni–P (d–f). 

 

 

 

Fig. 3.7 Surface morphology of Ni (a,b) and Ni–P (c,d) layers on DBA substrates with Si3N4 

before and after 1000 cycles. 
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DBA substrates cracked and roughened even after 50 cycles. The cracks propagated and new 

cracks appeared up to 1000 cycles. The roughening also became more remarkable after 1000 

cycles. Compared to DBA substrates with AlN and Si3N4, cracks were fewer generated in the 

Ni–P layer on DBA substrates with Al2O3. The surface defects of the cycled specimens were 

analyzed by laser profile microscopy. Fig. 3.9 shows the Ni–P layer on DBA substrates with 

Si3N4 at the initial state and after 1000 cycles. The surface of the Ni–P layer at the initial state 

was relatively flat. After 1000 cycles, cracks occurred on the roughened surface of the Ni–P 

layer, as see in Fig. 3.9b,e. The depth of the cracks was about 15–20 μm. This means that the 

cracks open through the Ni–P layer of a thickness of 7 μm and they extend into the Al surface 

beneath. The surface roughening of the Ni–P layer, as see in Fig. 3.9c,f, was observed on the 

entire layer, regardless of cracks. 

Using laser profile microscopy, the roughness of the Ni and Ni–P layers on the DBA/AMB 

substrates was evaluated during thermal shock cycling test, and the results are shown in Fig. 

3.10a,b, respectively. The AMB substrates with Al2O3 and AlN, which fractured only after 10 

cycles, were excluded from the roughness evaluation. The roughness of the Ni and Ni–P layers 

on the AMB substrates gradually increased. Regarding the DBA substrates, the roughness of all 

Ni layers increased by a few micrometers, regardless of type of ceramic plates. Ni–P layer 

roughness increased up to 600 cycles at different rates, and then remained nearly constant. 

Roughening in the Ni–P layer on a DBA substrate with Si3N4 ceramic was most remarkable, 

revealing that the Ni–P layer on DBA substrates with Si3N4 was most roughened among only 

DBA substrates. Compared to the other ceramics, Si3N4 has the biggest CTE mismatch with Al 

metal, which induces the largest stress. Based on these results, the roughening in the Ni–P layer 

is closely related to thermal stress. 
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Fig. 3.8 SAT observation of the surface morphology of a Ni–P layer on DBA substrates with 

Al2O3 (a–d), AlN (e–h), and Si3N4 (i–l) after different thermal shock tests: 0, 50, 100, and 1000 

cycles. 

 

 

Fig. 3.9 Laser surface observation of the Ni–P layer on DBA substrates with Si3N4 at the initial 

state (a) and after 1000 cycles (b,c). Local area with cracked (b) and roughened (c) area, and its 

roughness profile (d–f) measured by a line profile corresponding to (a–c), respectively. 
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Fig. 3.10 Variation in surface roughness of Ni (a) and Ni–P (b) layers on DBA/AMB substrates 

with Al2O3, AlN, and Si3N4 up to 1000 cycles. 
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3.3.2 Cracking mechanism of Ni–P Layer 

Fig. 3.11a,d show surface and cross-section images, respectively, of the Ni–P layer on DBA 

substrates with Si3N4 at the initial state. A FIB image of a cross-section was taken at an ion 

beam angle of 30°. The Ni–P layer was uniformly plated on a flat Al surface of the DBA 

substrates. Fig. 3.11e,f shows the cross section of cracks in the Ni–P layer after 100 and 1000 

cycles, respectively. The flat Al face was deformed only after 100 cycles. The crack in the Ni–

P layer occurred just on the deformed Al surface. Thus, the deformation of Al metal layer in 

DBA substrates caused cracking and roughening of the Ni–P layer. After 1000 cycles, the 

deformation of Al metal layer became more serious. It caused deep cracking in the Ni–P layer 

and even crack opening. 

To confirm the reason for cracking of the Ni–P layer on DBA substrates, a bare DBA 

substrate with no plating layer was also observed after a thermal shock cycling test. The flat Al 

surface at the initial state, as shown in Fig. 3.12a, was significantly roughened after 100 cycles, 

see Fig. 3.12b. Al roughening occurred relating to grain boundary of Al layer. Some grains 

protruded from an aluminum surface after cycle tests, as shown in Fig. 3.12c. A grain boundary 

was always observed under the roughened surface of an Al layer, especially at the interface 

between the protruding grain and the nondeformed grain. Normally, grain boundary sliding 

(GBS) deformation of polycrystalline metal, one of the creep plastic deformation mechanisms, 

occurs under high temperatures and tensile/compressive stress [35]. During the thermal shock 

cycling test, Al metal layer on DBA was suffered from compressive and tensile stress caused 

by CTE mismatch between Al and ceramic. 

The deformation occurring in an Al layer, see Fig. 3.12c, was considered as GBS 

deformation. For AMB substrates, it was also reported that copper in AMB substrates is 

roughened through grain boundary sliding after thermal cycling from −55 °C to 250 °C [26], 
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which is similar to the condition of the thermal shock test in this study. Metallic deformation 

can result from GBS deformation as well as simple homogeneous deformation. The observed 

Al GBS deformation and the referred Cu GBS deformation indicates that GBS is one of the 

main deformation mechanisms of the metallic layers, resulting in the cracking of the Ni–P layer 

on the DBA/AMB substrates. 

 

 

Fig. 3.11 Variation in surface roughness of Ni (a) and Ni–P (b) layers on DBA/AMB substrates 

with Al2O3, AlN, and Si3N4 up to 1000 cycles. 

 

 

Fig. 3.12 SEM observation of bare aluminum surface in DBA substrates with Si3N4 at the initial 

state (a) and after thermal shock tests of 100 cycles (b), and FIB-milled cross section (c) at the 

location of surface deformation. 
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3.3.3 FEM simulation 

Fig. 3.13 shows the maximum principal stress distribution of DBA and AMB with the same 

Si3N4 plated with Ni and Ni–P layers. The FEM simulation of the maximum principal stress 

distribution was conducted at the thermal shock cycling test from −50 °C to 250 °C. In the case 

of DBA, the stress concentration at the interface between the polycrystalline Al grain layer and 

the plated Ni and Ni–P layers is shown in Fig. 3.13a,c. The maximum stress was 69 and 30 

MPa for the Ni- and Ni–P-plated layers, respectively. In the case of AMB, the maximum 

principal stress was also concentrated at the interface between the crystalline Cu layer and the 

Ni and Ni–P layers, as shown in Fig. 3.13b,d, respectively. The maximum stress at the interface 

of Ni/Cu was also larger than that of Ni–P/Cu. This result is caused by the differences of 

materials properties between Ni and Ni–P layers, especially Young’s modulus, as shown in 

Table 3.2. In addition, although the maximum stress at the interface between the Ni layer and 

Cu/Al layers was larger than that between the Ni–P layer and Cu/Al layers, the surface 

deformation and crack occurred at the Ni–P layer on DBA and AMB substrates, as shown in 

Fig. 3.4d and 7d. The cracking of the Ni–P layer can be explained by the difference in fracture 

toughness between electroless-plated Ni–P and electroplated Ni layers. The fracture toughness 

of a crystalline Ni–P electroless plating layer is between 1.1 and 2.1 MPa·m1/2 [32–34], while 

an electroplated Ni layer is around 53 MPa·m1/2 [31]. High fracture toughness is closely related 

to crack initiation resistance and slow crack growth under the same stress conditions [36]. 

Ductile Ni layer with a higher fracture toughness likely suppressed crack initiation as well as 

growth by absorbing cracking energy. This is the reason why the electroplated Ni layer showed 

better crack resistivity during thermal shock test. The FEM simulation result indicates that the 

fracture toughness of the plating layer on DBA substrates is a key factor, which strongly 

influences crack generation and propagation. 
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Compared with the maximum stress that appears in the DBA substrates, the maximum 

stress increased in AMB substrates for both plating layers; although, Al in DBA had a bigger 

CTE mismatch with ceramic compared with Cu in AMB. The stress changes from 69 MPa to 

85 MPa in the case of Ni plating, while it changes from 30 MPa to 57 MPa in the case of the 

Ni–P plating substrate. Since Al has lower Young’s modulus as well as yielding stress, stress 

relaxation during thermal shock test becomes effective. The results also supports the 

experimental results, which demonstrates that AMB substrates with Al2O3 and AlN ceramics 

fractured easily, as shown in Fig. 3.3. In addition, it was also found that the stress distribution 

accumulated at the grain boundary and triple points in Al and Cu layers. Thermal stress 

concentration at grain boundaries and triple points due to material and geometrical singularities. 

As explained in Section 3.3.2, GBS deformation occurred in Al and Cu layers along with grain 

boundaries, leading to deformation and crack generation of a Ni–P layer plated on DBA and 

AMB substrates. 

 

 

Fig. 3.13 Maximum principal stress distribution for Ni and Ni–P layers on DBA/AMB 

substrates with Si3N4 at 250 °C during thermal shock cycling test. 
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3.4 Conclusion 

In this chapter, a thermal shock cycling test of DBA/AMB substrates with three types of 

ceramic plates and with two types of Ni metallization was presented. The material combination 

for high thermal shock resistance was confirmed. The failure mechanism for Ni and Ni–P 

plating layers on ceramic substrates was also discussed. 

1. AMB substrates with AlN and Al2O3 fractured only after a thermal shock test of 10 cycles 

between −50 °C and 250 °C, while AMB with Si3N4 survived after a thermal shock test up to 

1000 cycles. On the other hand, all DBA substrates survived up to 1000 cycles. However, after 

1000 cycles, Ni–P electroless plating layer on DBA/AMB substrates became rough and cracked, 

regardless of ceramic and metal type after 1000 cycles, while Ni electroplating was not cracked. 

This is because ductile Ni layer had a higher fracture toughness than Ni–P layer, which can 

suppress crack generation by absorbing cracking energy. 

2. Beneath a cracked Ni–P layer of DBA substrates, severe GBS deformation of Al was 

observed. Such deformation resulted in cracking and roughening of a Ni–P layer. Thermal stress 

distribution simulation indicates that tensile stress was concentrated at the interface between 

polycrystalline metal layers and a plated Ni–P layer, along with grain boundary. The cracking 

mechanism of a Ni–P layer is well explaned by the GBS deformation of metals. 

3. Ni-plated AMB substrates with Si3N4 as well as Ni-plated DBA substrates with Al2O3, AlN, 

and Si3N4 are promising material combinations for high-temperature power substrates based on 

the proper ductility of an electroplated Ni layer. 
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4.1 Introduction 

In general, the wear-out failure of power electronics devices has been evaluated by Physics-

of-Failure (POF) analysis after power cycling test (PCT) or thermal shock test (TST) [1][2][3]. 

However, the POF analysis is much complex and expensive to be applied in field reliability and 

it cannot predict the lifetime of power electronics. Recently, many studies have focused on the 

real-time monitoring methods using various failure precursor parameters, which allowing to 

analyze the wear-out failure mechanism and lifetime during a reliability test. The value of 

failure precursor parameters such as ON-state resistance, collector-emitter voltage, forward 

voltage, junction temperature and thermal resistance are well related and changed with the 

wear-out failure of packaging components during device operation, and thus can provide the 

information for final failure [4][5]. However, the current failure precursor monitoring was 

limited to apply in real power electronic devices [6] because it needs an additional electric 

circuit and high-resolution measurement to sense a small deviation under a high-voltage high-

current operation [7]. Additionally, failure precursor parameters are sensitive to final failure, 

while it cannot detect the failure progress [8]. Finally, the variation in one of the failure 

precursor parameters can affect another parameter, which results in an incorrect understanding 

of wear-out damage mechanism and lifetime prediction [9][10]. Therefore, it is still needed to 

modify failure precursor monitoring. 

An acoustic emission (AE) monitoring has been used as a real-time evaluation technique 

for material damage in bulk materials [11] as well as various microelectronics such as a 

lithium-ion battery [12], multi-layered ceramic capacitor [13], and fuel cell [14]. An AE sensor 

is attached to the test object and collects the elastic waves released from materials when they 

are damaged such as cracking, delamination and fracture simultaneously during a reliability 

test. Fig. 4.1 shows the occurrence and propagation process of elastic waves from the wear-out 
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failure of power electronic devices as an example. The collected elastic waves were called as 

AE signals, which include various damage information such as the amount, size, and growth 

ratio of damage. By analyzing the time-domain and frequency-domain characteristics of AE 

signals including counts, amplitude, and a central frequency, the damage and final failure 

information can be defined. Recently, Tommi et al. tried to conduct an AE sensor on a half-

bride power module which consists of power semiconductors, capacitor and inductors during 

PCT [15]. Although AE signals were collected during power module switch, it could not be 

confirmed these AE signals are released from wear-out failure or just generated from the power 

on-off switch. Therefore, in order to apply AE to monitor the wear-out failure of power 

electronic devices, the relationship between collected AE signals and damage should be 

confirmed. In addition, for accurate AE assessment, background AE noise, such as the power 

on-off switch noise and surroundings noise, need to be filtered during PCT. 

In this chapter, AE was the first time applied to real-time monitor the wear-out failure of 

discrete SiC Schottky barrier diode (SiC-SBD) devices during PCT. The structure of discrete 

SiC-SBD devices, PCT setups and a real-time AE monitoring system were explained. The 

forward voltage of discrete devices was monitored during power cycling. The Physic-of-Failure 

(POF) analysis of tested power discrete devices by field emission scanning electron microscopy 

(FE-SEM) and X-ray inspections was performed. Background AE noise was filtered by the 

noise cancelling process for accurate AE assessment. AE signals were collected during PCT 

and the relationship between the observed damage and the collected AE signals was discussed. 

Finally, based on the relationship, the ability of proposed real-time AE monitoring was 

demonstrated. 
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Fig. 4.1 Generation, propagation, and collection process of acoustic emission signals (i.e. elastic 

waves) in power electronics during PCT.  
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4.2 Experiment 

4.2.1 The tested discrete devices 

Power semiconductors such as MOSFET, IGBT, diode are commonly packaged in two kind 

structures such as discrete devices and power electronic modules. Compared with modules, 

discrete devices have a simpler packaging structure including one power semiconductor, a 

substrate, die-attachment (i.e. joints), and wire interconnection. In this work, as the first attempt 

of AE monitoring, a discrete device having a simpler packaging structure was used. Fig. 4.2 

shows the tested discrete device, which was fabricated using one 1200V/50A SiC Schottky 

barrier diode (SBD) with a dimension of 4.77 mm × 4.77 mm × 0.235 mm. The SiC-SBD device 

was die attached on an active metal brazing (AMB) substrate by using micron Ag sinter paste 

and was interconnected by Al ribbons. The AMB consists of a Si3N4 ceramic plate of 0.32 mm 

thickness and two Cu metallized layers of 0.30 mm thickness. Among three types of ceramic 

including Al2O3, AlN, and Si3N4 in AMB substrates, the Si3N4 based AMB substrate was 

selected due to which possessed the highest thermal damage resistance [16][17]. To focus on 

failure monitoring of Al ribbons in the discrete device, Ag micro-particles sinter paste [18] was 

chosen as the die attach materials because it has a higher thermal resistance than that of 

traditional high-temperature solder [19–21]. For Ag sinter joints, the backside of the SBD 

device and the top side of AMB substrates were metallized with a 100 nm Ti barrier layer and 

2 µm Ag adhesion layer in order. The Ag paste was printed on the AMB substrates with 100 µm 

by using a stainless screen mask. The devices were placed onto the printed paste and heated at 

250 °C for one hour without sintering pressure. Afterward, two Al ribbons with each cross-

section area of 1.5 × 0.2 mm2 were bonded on the SiC-SBD device and the Cu layer of an AMB 

substrate using an ultrasonic ribbon bonder (HB-30, TPT Co.) with ultrasonic power of 20 W 

for 2 s [22].  
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Fig. 4.2 Fabricated discrete SiC-SBD devices; (a) optical image and (b) its cross-section SEM 

image.  



 

 

Chapter 4 Real-time Al ribbon fatigue monitoring by using AE 

 
 

 

74 

 

4.2.2 Power cycling test (PCT) system and setup 

PCT were carried out using a power cycle test system (PST-2404, ESPEC Co.), consisting 

of power supply, switching circuit, 𝑉𝐹  measurement circuit, heatsink, and an air cooling 

system. The discrete device was mounted on the heatsink as shown in Fig. 4.3(a). A 50 µm-

thick silicon film was placed between the modules and the heatsink to reduce interfacial thermal 

resistance. The heatsink was cooled by a rotating fan, where the temperature was maintained at 

approximately 25 °C.  

During PCT, the discrete device was heated by a constant stress current (Is) of 45 A, as 

shown in Fig. 4.4. The heating ON time and OFF time were fixed at 2 s and 30 s respectively, 

performing an initial junction temperature swing (∆𝑇𝑗) of 150 °C. This PCT condition was listed 

in Table 1. The harsh temperature swing was chosen for this accelerate PCT test, which was 

larger than general Tj of 100 °C [23]. Before and after carrying the stress current, the junction 

temperature (𝑇𝑗) was measured using temperature dependent forward voltage (𝑉𝐹). The value 

of Tj was calculated by 

 

𝑇𝑗 = K𝑉𝐹 + 𝑚                               (4.1) 

 

where 𝑉𝐹 was measured under low measurement current (𝐼𝑚) of 400 mA, K is the linear 

association constant between 𝑉𝐹 and 𝑇𝑗, which is referred to as K-factor [24], and m is the 

material constant. K and m could be calculated by measuring 𝑉𝐹  at several different 

temperatures from 25 °C to 200 °C prior to PCT. 

   During PCT, 𝑉𝐹_𝑂𝑁 and 𝑇𝑗 were recorded at each cycle and monitored as a failure 

precursor parameter, which was well known as a good indicator for detecting the wear-out 

failure in bond-wire and die-attachment [6]. The temperature swing was repeated up to failure 

https://endic.naver.com/enkrEntry.nhn?entryId=db3a99bd21ea489cad1c3809ced68702&query=%EA%B4%80%EA%B3%84+%EC%83%81%EC%88%98
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based on failure criteria, which was defined as a rise of the 𝑉𝐹 by 20 % compared to its initial 

value to protect the tested discrete devices against catastrophic failure [25]. 

 

 

Fig. 4.3 Configuration of power cycling test system and real-time acoustic emission monitoring 

system. 

  



 

 

Chapter 4 Real-time Al ribbon fatigue monitoring by using AE 

 
 

 

76 

 

Table 4.1 Power cycling test condition. 

Stress 

current 

(𝐼𝑠) 

Stress 

time 

Measurement 

current (𝐼𝑚) 

Cooling 

time 

Junction temperature  

Temperature 

swing (∆𝑇𝑗) 
Minimum 

(𝑇𝑗_𝑚𝑖𝑛) 

Maximum 

(𝑇𝑗_𝑚𝑎𝑥) 

45A 2 s 0.4 A 30 s 25 ºC 175 ºC 150 ºC 

 

 

 

Fig. 4.4 Profile of voltage and current during power cycling test. 
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4.2.3 Acoustic emission (AE) monitoring system and setup 

The AE monitoring was suggested as a new wear-out failure monitoring method. During 

PCT, AE signals were detected from discrete devices and used to monitor the progress of failure. 

As shown in Fig. 4.3(a), the experimental apparatus was specially designed to simultaneously 

detect AE signals during PCT. AE signals were collected by a wideband piezoelectric AE sensor 

(AE-900S-WB, NF Electronics Co.), which was directly mounted onto the AMB substrate in 

discrete devices by using ultrasonic couplant and acrylic jig. The AE sensor is electrically 

insulated from the AMB substrate by an insulating ceramic layer on the bottom of the sensor. 

The wideband type sensor was chosen for frequency analysis of collected AE signals due to its 

high and uniform sensitivity in the large frequency range from 100 kHz up to 1 Mhz. The 

collected AE signals were amplified by a preamplifier (2/4/6, Physical Acoustic Co.) at a gain 

of 40dB and recorded at a sampling rate of 2 MHz by the AE acquisition system (PCI-2, 

Physical Acoustic Co.), as shown in Fig. 4.3(b). 

The characteristics of AE signals can be used to evaluate material damage. Fig. 4.5 shows 

the representative waveform of AE signals and its time-domain characteristic parameters [12]. 

The highest sound pressure is defined as amplitude. Basically, a signal is recorded when its 

amplitude is higher than or equal to the threshold value, which is the criterion for effective 

signals. The number of times that waveform exceeds the threshold is defined as AE counts and 

its time derivative. In addition, the frequency-domain characteristics of AE signals can be 

analyzed through a Fast Fourier Transform (FFT). It is commonly used not only to determine 

AE source with time-domain parameters but also for eliminating noise. 
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Fig. 4.5 Waveform of a collected AE signal and its characteristic including counts and 

amplitude. 
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4.2.4 Background AE noise cancelling process and setup 

Noise cancelling method often has been applied to filter out the unnecessary noise and to 

collect the AE signals corresponding to the wear-out damage [26][27], which is considered as 

the most important step for accurate AE assessment. In noise cancelling, background noise must 

be collected under the same environment as an actual test and noise can be filtered out based 

on the investigated noise level including frequency. In this chapter, a noise levelling test was 

investigated using dummy specimens. The specimens were specially fabricated without the 

SiC-SBD chip and Ag sinter joints to avoid joule heating of a diode. The patterned Cu islands 

on substrates were interconnected by Al ribbons as shown in Fig. 4.6 (a). PCT was carried out 

on the dummy specimens under the same condition including high current and fan cooling 

introduced in table 1. During PCT, all AE noise signals were recorded with no filtering. 

Fig. 4.6 (b), (c), and (d) show the representative surrounding noise signals from cables, a 

rotating fan, and switching on-off signals of high-current carrying circuits in the PCT system 

for the background AE noise cancelling process, respectively. The recorded noise signals did 

not include AE signals from the damage of discrete devices, since the used dummy specimen 

without a chip could not be heated and damaged even under high current. The cables in AE 

system had very low amplitude noise below 25 kHz. The mechanical vibration of a cooling fan 

(below 30 kHz) and the electromagnetic interference (EMI) of current switching (below 87 kHz) 

also generated noise signals. The frequency level of collected AE noise is ranged less than 87 

kHz. Based on these results, the high-pass frequency filter at 100 kHz was employed to 

eliminate noise in PCT and AE system. In addition, low-pass filter the amplitude thresholds was 

set at 30 dB. Afterward, the noise levelling test using dummy specimens was repeated with 

these setup of low-pass filter and thresholds. AE signals were not detected and no occurrence 
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of AE signals during PCT clearly proves that the noise cancelling process completely eliminates 

the background AE noise. 

This demonstrates that noise signals from the current PCT system were completely 

eliminated by high pass filter. Afterward, true AE signals were collected during PCT and the 

characteristics of signals were monitored as failure indicator. In addition, most industrial 

machinery vibration including motor and engine has the frequency response characteristic 

below 10 kHz. Thus, the AE system can be used for various power electronics in industrial 

environment without noise problem. 

 

 

Fig. 4.6 Dummy specimens designed for noise cancelling and (b-d) Typical waveform and 

frequency spectrum of three types of collected noise; (a) cable noise, (b) cooling fan movement 

noise and (c) electromagnetic induction noise. 
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4.3 Power cycling test 

4.3.1 Voltage precursor parameter monitoring in power cycling test 

Fig. 4.7 shows the 𝑉𝐹 measurement results of discrete SiC-SBD devices during the power 

cycling test under a test condition as listed in Table 1. After 4,060 cycles, there was a sudden 

increase in 𝑉𝐹 and then the 𝑉𝐹 increased by 20 % from its initial value after 5,123 cycles. 

Based on the failure criteria of a 𝑉𝐹 increase, lifetime of devices could be determined. 

  Fig. 4.8 shows the comparison of current-voltage (I-V) characteristics of discrete devices 

before and after PCT. The I-V curves was measured at room temperature by a curve tracer (CS-

3200, IWATSU Co.). The electrical resistance (𝑅𝐹) of discrete devices was measured form I-V 

curves and it increased after PCT. The measured 𝑅𝐹 is the sum of the individual resistance in 

chip and packaging and can be simply expressed as 

 

𝑅𝐹 =  𝑅𝑐ℎ𝑖𝑝 + 𝑅𝑝𝑎𝑐𝑘𝑎𝑔𝑒                           (4.2) 

 

where 𝑅𝑐ℎ𝑖𝑝  and 𝑅𝑝𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔  represent the resistance of the chip and the resistance of 

packaging elements including ribbons, die-attachment, metallization, and substrates, 

respectively. In general, an increase in 𝑅𝑐ℎ𝑖𝑝 occurs due to the oxidation of Si diodes’ leads. 

In the case of SiC diodes, no remarkable change was noticed in the electrical characteristic up 

to maximum exposure temperature of 240 °C [28]. On the other hand, failure in die-attachment 

and bond wire makes the noticeable increase in 𝑅𝐹 after PCT with ΔTj from 80 °C to 160 °C, 

due to the reduction of cross-section area in packaging elements acting as the current path leads 

to an increase of 𝑅𝑝𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔  [29]. Therefore, 𝑅𝐹  increased after power cycling, which 

resulting from the failure such as cracks, delamination, and lift-off failure in die-attachment or 

in ribbon bonding. In addition, 𝑉𝐹_𝑂𝑁 variation shown in Fig. 4.7 can be explained as 
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𝑉𝐹_𝑂𝑁 =  𝐼𝑠 ∙ 𝑅𝐹 =  𝐼𝑠 ∙ (𝑅𝑐ℎ𝑖𝑝 +  𝑅𝑝𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔)                   (4.3) 

 

where 𝐼𝑠 represents the stress current for heating in power cycling test. 𝐼𝑠 was fixed at 45 A. 

For maintaining the constant stress current, the increase of 𝑅𝐹 after PCT lead to an increase of 

𝑉𝐹_𝑂𝑁. 

 

 

 

Fig. 4.7 Variation in forward voltage of a diode during PCT tests. 
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Fig. 4.8 I-V characteristics before and after PCT tests. 
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4.3.2 Physics-of-failure analysis of tested discrete devices 

   The failure mode of tested discrete devices was evaluated by FE-SEM observation and X-

ray transmission inspection. Fig. 4.9 shows the inspection results of the appearance and fracture 

surface of devices after PCT. One of two Al ribbons was totally fractured by lift-off and another 

was still bonded on a chip as shown in Fig. 4.9 (a). Ratchet marks were observed on the fracture 

surface of the ribbon lift-off as shown in Fig. 4.9 (b). These marks, which are often observed 

on a fatigue fracture surface, indicate that this lift-off failure was induced by fatigue. In general, 

fatigue fracture has three steps including crack initiation, crack propagation and final fracture. 

The sharp fatigue cracks firstly occurred at the edge of Al ribbon bonding as shown in Fig. 4.9 

(c). The cracks propagated into the center as the direction of ratchet marks as indicated in Fig. 

9 (b) followed by the final lift-off failure. Striation marks in the vertical direction to ratchet 

marks were observed as shown in the magnified images of Fig. 4.9 (d), which also indicates the 

propagation direction of fatigue cracks. 

   Fig. 4.10 shows the cross-section of one unfractured ribbon of the tested discrete device 

after PCT. More than half of the bonded interface between an Al ribbon and a SiC-SBD chip 

was delaminated, which caused by fatigue cracks as shown in Fig. 4.10 (a). On the other hand, 

after PCT, any delamination did not occur at the interface between sintered Ag and the substrate 

or between sintered Ag and a SiC-SBD chip as shown in Fig. 4.10 (b). The Ag sinter joints 

maintained a micro-porous network structure without any obvious cracks, which attributed to 

robust die shear strength of around 40 MPa as well as the low resistivity of 3.9 × 10−6 Ω cm 

[18]. Fig. 4.11 shows the micro-focused X-ray inspection results of Ag sinter joints in the 

discrete device before and after PCT. There are some voids after sintering but which did not 

expand and not any new voids appeared after PCT. Although the thermal shock resistant of Ag 

sinter joints depends on manufacturing conditions, chip size and used Ag paste [30][31][32], 
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the results in the present study revealed that Ag sinter joints have an excellent high temperature 

reliability for this PCT.  

   Based on these results of Al ribbons and Ag sinter joints after PCT, fatigue cracks and lift-

off in Al ribbons were the dominant failure mode for the discrete devices in the current study. 

The results also were similar with the previous studies where bond wire lift-off is the main 

failure mechanism. 𝑉𝐹 of diodes goes up with the bond wire lift-off [33][34][35]. Therefore, 

Al ribbon’s lift-off was the main reason of the increases in 𝑉𝐹 as shown in Fig. 7 and it can be 

evaluated by the 𝑉𝐹 measurement. However, although the observed fatigue cracks propagate 

gradually before final lift-off failure, 𝑉𝐹 was not changed before the sudden increase which is 

caused by lift-off failure. In this case, 𝑉𝐹_𝑂𝑁  measurement cannot monitor the progress of 

fatigue cracks in the Al ribbon resulting in the final ribbon’s lift-off failure. 

 

 

Fig. 4.9 Failure analysis results of failed discrete SiC-SBD devices after PCT tests; (a) lift-off 

failure of one Al ribbon, (b) fracture surface of lift-off ribbon, (c) magnified observation of 

crack initiation, and (d) magnified observation of fatigue fracture marks.  
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Fig. 4.10 (a) Cross-section observation of another unfractured ribbon portion after PCT tests 

and (b) a magnified cross-section image of Ag sinter joint. 

 

 

 

Fig. 4.11 Micro-focused X-ray inspection results of Ag sinter joint in devices before (a) and 

after (b) PCT tests. 
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4.4 Acoustic emission monitoring test 

4.4.1 The source of acoustic emission 

AE monitoring was simultaneously performed with PCT and a number of AE signals were 

collected during PCT. Fig. 4.12 shows typical waveforms and their frequency spectrum. Fig. 4. 

12 (a) and (b) presented a signal waveform and amplitude, respectively. They indicate that the 

AE signals were burst type waveform, which was completely different compared to the noise 

signals as shown in Fig. 4.6. It is known that the burst type signals are often emitted by a sudden 

energy release when damage such as cracks and delamination occurs [36]. Based on the typical 

source of burst type and the observed fatigue cracks in Al ribbon bonding shown in Fig. 4.9, 

the source of collected AE signals from discrete devices during PCT can be attributed to fatigue 

cracks in Al ribbon bonding. 

The frequency components of collected AE signals were estimated by fast Fourier 

transform (FFT) as typically shown in Fig. 4.12 (c) and (d). The signals were composed of 

various frequency components. A central frequency defined by the arithmetic mean of 

frequency components in the spectrum was used for characterizing the representative frequency 

of each AE signal [37]. The distribution of estimated central frequency has a bell-shaped curve 

as shown in Fig. 4.13. A peak in the distribution curve was around 500 kHz. The frequency 

component depends on the type of fracture, which is the source mechanism of AE signals [38]. 

The bell-shaped distribution with a single peak also supports that the collected AE signals are 

emitted just from the fatigue cracks in Al ribbon bonding. 

https://endic.naver.com/enkrEntry.nhn?entryId=16904709e8da4c3a99cfcb19da1e2be1&query=simultaneously
https://en.wikipedia.org/wiki/Arithmetic_mean
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Fig. 4.12 Waveform (a-b) and its corresponding frequency spectrum (c-d) of typical AE signals 

collected during PCT tests. 

 

 

Fig. 4.13 Histogram of the measured central frequency of collected AE signals.  
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4.4.3 Monitoring by acoustic emission parameter 

Two kinds of time-domain characteristic parameters of collected AE signals, including total 

AE counts and amplitude, were monitored during PCT and which were compared with 𝑉𝐹_𝑂𝑁 

monitoring results (Fig. 4.7) as shown in Fig. 4.14 and Fig. 4.15, respectively. Fig. 4.14 (a) 

shows the monitoring results of total AE counts in PCT. The total number of AE counts (i.e. 

total AE counts) increased at a different rate during PCT. The increase of total AE counts 

proceeded through three stages according to a count rate, which is equal with the inclination of 

the total count curve. Total AE counts steeply increased with a high count rate at first (stage 1), 

then increased smoothly with a low count rate (stage 2), and was as-followed by an abrupt 

increase (stage 3). The AE counts are generally considered to best reflect material damage and 

total AE counts are proportional to the progress of materials damage corresponding to AE 

source. Thus these results indicate that fatigue cracks propagated according to three stages at a 

different rate during PCT. 

To clearly divide the progress of fatigue by the AE stage, an AE count rate was calculated 

as the total count number per cycle as shown in Fig. 4.14 (b). The change of count rate more 

clearly shows that the progress of fatigue crack can be divided into three stages as indicated by 

a red dashed line; into the highest count rate at the early step of PCT (stage 1), low count rate 

(stage 2), and re-high count rate (stage 3). The stage 2 and stage 3 were divided at around 4,060 

cycles where a count rate started to increase again.  In fatigue tests of bulk metals, high AE 

count rates are found when fatigue cracks are initiated, cracks are rapidly propagated, and 

metals are finally fractured [11][39][40][41]. Based on these previous study results, stage 1 is 

attributed to the crack initiation as shown in Fig. 4.9 (c). AE signals in stage 2 occur from the 

crack extension at the crack tip during the crack propagation as shown in Fig. 4.9 (d). In stage 

3, crack propagation made catastrophic fractures, leading to an increase in an AE count rate. 
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Based on the relationship of the AE count rate and fatigue progress, it can be concluded that 

AE offers the ability to accurately not only detect fatigue crack but also crack propagation and 

catastrophic fracture. It demonstrates that the monitoring of the AE count rate can provide early 

warning before final lift-off fracture by evaluating the progress status of fatigue cracks. 

Fig. 4.15 shows variation in the amplitude of collected signals during power cycling. One 

dot indicates the amplitude of one AE signal and a lot of AE signals with amplitude range from 

30 dB to 71 dB occurred before lift-off failure. Low amplitude signals below 40 dB occurred 

through the whole process of fatigue damage but the high amplitude signals ranged from 41 to 

71 dB were emitted in the early and in the middle of total power cycling. In a bulk metal, it was 

reported that high amplitude signals are generated by the plastic activities ahead of a crack tip 

when fatigue cracks initiate as well as rapidly propagate [42][43][44]. Thus high amplitude 

signals in stage 1 occurred from crack initiation in Al ribbons and those in stage 2 can be 

attributed to the accelerated crack propagation before ribbon’s lift-off failure, which supporting 

the relationship of an AE count rate and fatigue progress. 

Fig. 4.16 shows the cumulative counts of collected AE signals during switching ON and 

OFF period in PCT. The number of cumulative AE counts during the ON period of power 

cycling, which defined as the total amount of fatigue crack initiation and propagation, is 

significantly smaller than for that during the OFF period. AE occurrence suggests that the 

fatigue cracks of Al ribbon bonding almost nucleated and grew during the cooling stage in 

power cycling. 

Future work will proceed with damage position identification in multichip IGBT modules. 

AE signals, which generated from the damage of numerous die-attachment and wire-bond in 

power modules, will be detected using four AE sensors. Based on the time delay of the detected 

AE signals from four sensors, damage position identification will be studied. 
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Fig. 4.14 Monitoring result of total AE counts (a) and AE count rate (b) during PCT with the 

monitoring results of forward voltage. 
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Fig. 4.15 Monitoring result of amplitude of collected AE signals during PCT with the 

monitoring results of forward voltage. 

 

 

 

Fig. 4.16 Cumulative counts of collected AE signals during switching ON and OFF period of 

PCT. 
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4.5 Conclusion 

This chapter presents that the application of AE monitoring can detect the progress of 

failure in power discrete SiC-SBD devices during power cycling test as follows. 

Various AE noise including power switching noise was completely eliminated through 

noise cancelling process using the specially designed blank specimens. A number of AE signals 

were successfully detected during PCT before reaching final failure. By physics-of-failure 

analysis, the initiation and propagation of fatigue cracks of Al ribbons bonding were observed, 

while there was no thermal damage in Ag sinter joints. The source of AE signals is attributed to 

the initiation and propagation of fatigue cracks of Al ribbons. This demonstrates that AE 

monitoring has excellent sensitivity to fatigue cracking. AE acquisition can be used for a 

sensitive early warning method by detecting fatigue cracks leading to catastrophic ribbon’s lift-

off failure. 

The variation of an AE count rate was divided into three stages, which highly correlated 

with three-step process of fatigue crack propagation observed in Al ribbon bonding, defined as 

initiation, propagation, and catastrophic lift-off fracture. The amplitude of collected AE signals 

supports the correlation between AE activities and the fatigue process. Thus, it can be concluded 

that AE monitoring offers not only detecting fatigue crack initiation and propagation but also 

an early warning before catastrophic lift-off fracture. 
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In this thesis, thermal degradation mechanism of advanced package materials for high-

temperature power modules, involving sintered micro-porous Ag and Ni-metalized DBA/AMB 

substrates, were presented. Additionally, a novel damage real-time monitoring method for 

power modules was developed. 

In Chapter 1, the reliability issues of advanced package materials for high-temperature 

power electronics were summarized. The recent research trends of real-time failure monitoring 

as well as the used AE technique in this thesis were blifely described. The research objectives 

of the present thesis were also presented. 

In Chapter 2, sintered micro-porous Ag was fabricated to evaluate its thermal aging 

mechanism. The changes in tensile strength, electrical resistivity and microstructural variations 

in sintered porous Ag were investigated during thermal exposure at 250 °C. The relationship 

between microstructural variations and mechanical/electrical properties was discussed. Tensile 

strength and electrical resistivity of sintered Ag was varified with thermal exposure time. 

Strength processed via three steps including deterioration, recovering, and maintaining during 

the thermal exposure up to 1000 hours. Electrical resistivity decreased in the middle of the 

thermal exposure period. On the other hands, Grain growth and pore coarsening occurred until 

500 hours, while porosity mostly reduced from 200 to 500 hours. As it can be seen from the 

results, the decreased and recovered tensile strength results from Ag grain growth and porosity 

reduction in the different exposure time, respectively. Electrical resistivity decreased with 

exposure time especially from 200 to 500 hours. It was dominantly affected by porosity 

reduction that occurred in the same period. 

In Chapter 3, DBA/AMB substrates with three types of ceramic plates and with two types 

of Ni metallization were fabricated. The thermal shock resistance and failure mechanism for 

substrates as well as metallizaion layers on substrates was evaluated under thermal shock test 
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between −50 °C and 250 °C. AMB substrates with AlN and Al2O3 fractured only after a thermal 

shock test of 10 cycles, while AMB with Si3N4 survived after a thermal shock test up to 1000 

cycles. On the other hand, all DBA substrates were not fractured up to 1000 cycles. However, 

after 1000 cycles, Ni–P electroless plating layer on DBA/AMB substrates roughened and 

cracked, regardless of ceramic and metal type after 1000 cycles, while Ni electroplating did not 

cracked. As the result, the Ni-plated AMB substrates with Si3N4 as well as the Ni-plated DBA 

substrates with Al2O3, AlN, and Si3N4 are proposed as the most promising material designs for 

high-temperature power substrates. In addition, beneath a cracked Ni–P layer of DBA substrates, 

severe GBS deformation of Al was observed. It is presented that the GBS deformation of metal 

layers results in cracking and roughening of the Ni–P layer on metals. 

Chapter 4 presents that the application of AE monitoring can detect of failure in power 

discrete SiC-SBD devices during power cycling test. A number of AE signals was successfully 

detected during power cycling test before reaching final failure. The initiation and propagation 

of fatigue cracks were observed in Al ribbon bonding, while there was no thermal damage in 

Ag die-attach joints. As it can be seen from the failure analysis results, the source of AE signals 

is attributed to the initiation and propagation of fatigue cracks leading to ribbon’s lift-off failure. 

Thus, it demonstrates that AE has excellent sensitivity to fatigue cracking. AE acquisition can 

be used for a sensitive early warning method by detecting fatigue cracks leading to catastoplic 

ribbon’s lift-off failure. The variation of AE count rate was divided into three stages. It was 

highly coreleated with the three step process of fatigue crack in Al ribbon bonding, defined as 

intiation, propagation, and catastrophic frature. The amlitiude of collected AE signals supports 

the corelation between AE activities and fatigue process. It can be concluded that AE 

monitoring offers not only to detect fatigue crack initiation and propagation accurately but also 

to provide early warning before catastrophic lift-off fracture. 
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Consequently, the thermal degradation mechanisms of Ag die-attach joints and DBA/AMB 

substrates were presented in this thesis. The most durable material designs were suggested for 

WBG power devices that require to operate at extremely high temperatures. In addition, novel 

AE monitoring was proposed as early warning method before catastrophic lift-off fracture of 

Al ribbon bonding. 
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