

Title	Development of CuNWs based conductors with high reliability and stretchability for wearable electronics
Author(s)	張, 博雲
Citation	大阪大学, 2020, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/76533
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (ZHANG BOWEN)	
Title	Development of CuNWs based conductors with high reliability and stretchability for wearable electronics (ウェアラブル電子機器向けの高い信頼性と伸縮性を備えたCuNWベースの導体の開発)
Abstract of Thesis	
<p>Copper nanowires (CuNWs) have become an irreplaceable conductive material in the field of flexible electronics due to their cost-effective as well as high conductivity and transparency. However, the fast degradation of CuNWs in ambient conditions largely overshadows their practical applications. Therefore, three strategies have been provided in this dissertation to enable CuNWs based conductors with outstanding conductivity, oxidation resistance, as well as flexibility: encapsulating or embedding CuNWs into a plastic substrate to achieve a composite structure; formation of the core-shell structure that encapsulates Cu with an inert shell; the combination of embedded structures and core-shell structures.</p> <p>At first, CuNWs are fully embedded into the surface layer of poly(dimethylsiloxane) (PDMS) and followed with a high-intensity pulsed light technique. The light energy absorbed by the film not only removes the oxides on the surface of nanowires but also enhances the inter-nanowire connection to achieve high conductivity. Due to the outstanding stretchability of PDMS matrix and the strong adhesion between CuNWs and PDMS substrates, CuNWs/PDMS conductors could maintain high conductivity after 1000 stretching cycle tests. Compared with traditional semi-embedded conductors, the fully embedded CuNWs/PDMS conductors could maintain their high conductivity unchanged even at a high temperature of 85 °C and high humidity of 85 % for 12 h.</p> <p>After that, a facile adsorption and decomposition process is developed for galvanic replacement free and large-scale synthesis of highly stable Cu@Ag core-shell nanowires. The introduced Ag-ammonia complex ($\text{Ag}[(\text{NH}_2\text{R})_2]^+$) as silver source adsorbs on the surface of CuNWs to form Cu@Ag-ammonia core-shell structure and block the traditional galvanic replacement between Ag^+ and CuNWs. Through a simple thermal annealing process under air, the Ag-ammonia complex shell can easily decompose into pure Ag shell, and form Cu@Ag core-shell nanowires. The thickness of the Ag shell can easily be controlled by adjusting the concentration of Ag-ammonia. The obtained core-shell nanowires exhibit high stability for at least 500 h at high temperature (140 °C) and high humidity (85 °C, 85% RH) due to the protection of Ag shell.</p> <p>Finally, CuNWs-core/Ag-shell nanowires are fabricated first and then transformed into Cu@Ag alloy nanowires with dense surfaces and strong interfaces between CuNWs-core and Ag-shell by using high-intensity pulsed light (HIPL) technique. The HIPL also selectively softens the surface layer of the stretchable substrate and results in fully embedded structures of Cu@Ag alloy nanowires. The combination of alloy nanowires and embedded structures greatly improve the thermal stability of the transparent electrodes that keep high conductivity unchanged in both high temperature (140 °C) and high humidity (85 °C, 85% RH) for at least 500 h, which is much better than previous reports. The transparent electrodes also exhibit high electro-mechanical stability due to the strong adhesion between alloy nanowires and substrates, which remain stable after 1000 stretching-relaxation cycles at 30% strain.</p> <p>To sum up, this dissertation proposes feasible and effective strategies to greatly improve the stability, conductivity, and flexibility of CuNWs-based transparent conductors, which is promising for the application in next-generation wearable electronics.</p>	

論文審査の結果の要旨及び担当者

氏名 (Zhang Bowen)			
論文審査担当者	(職)	氏名	
	主査 教授	菅沼 克昭	(産業科学研究所)
	副査 教授	能木 雅也	(産業科学研究所)
	副査 教授	平田 勝弘	
	副査 教授	中谷 彰宏	
	副査 准教授	古賀 大尚	(産業科学研究所)
	副査 准教授	長尾 至成	(産業科学研究所)
	副査 准教授	菅原 徹	(産業科学研究所)

論文審査の結果の要旨

高伝導率で透明な銅ナノワイヤ (CuNW) 膜は、コスト対効果が高く、酸化インジウムスズ (ITO) 透明導電膜の有望な代替材料として期待されている。しかし、銅ベースの透明導電膜の実用化は大気中での急速な酸化のため難しいのが現状である。そこで本論文では、CuNWベースの透明導電膜の実用化に向け、高伝導性・高耐酸化性・フレキシブル性を確保する3つの方法を提案した。

1. CuNW をポリ・ジメチルシロキサン (PDMS) の表面層に完全に埋め込み、その後、強力な光照射を施した。CuNW と PDMS 基板間の優れた接着力と、PDMS マトリックスの抜群の伸縮性が有効に働き、CuNWs/PDMS 透明導電膜は 1000 回の伸縮サイクル試験後にも高伝導性を維持した。従来の半埋め込み導電膜に比べ、完全埋め込み CuNW/PDMS 透明導電膜は、12 時間の過酷な環境試験でも高い導電率を維持した。
2. CuNW の安定化のために、Cu@Ag コアシェル・ナノワイヤを Ag アンモニア塩の分解プロセスにより開発した。Ag シェルの厚さは、Ag の濃度を調整することで容易に制御可能になる。作製したコアシェル・ナノワイヤは、Ag シェルの保護により、高温 (140°C) および高湿度 (85°C-85%RH) の環境で 500 時間まで高い安定性を示した。
3. CuNWs コア/Ag シェルナノワイヤを合成し、ポリウレタン樹脂表面に埋め込み強力な可視光照射を施することで、CuNWs コアと Ag シェル構造間に強い結合を持つ Cu@Ag 合金ナノワイヤ透明導電膜を作製した。合金ナノワイヤと埋め込み構造の組み合わせにより、透明電極の熱安定性と電気機械的安定性が大幅に向上することが示された。

以上のように、本論文は、ウェアラブルデバイス分野で必要な導電性、フレキシブル性、更に、高信頼性を有する透明導電膜を実現するために、CuNW を導電材料として CuNW の安定化手法として新たな Ag コート法を提案し、得られる透明導電膜の優れた特性と安定性を示している。

よって本論文は博士論文として価値あるものと認める。