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Fig. 1.1 Ductile properties of various kinds of steels associated with ductile crack initiation and

growth resistance ™!
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Fig. 1.2 Schematic of the history of equivalent plastic strain and stress triaxiality ahead of crack-tip

up to ductile crack growtht%
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Table 1.1 Summary of conventional ductile damage model

Damage model

Feature

Stress triaxiality
effect

Critical value
Independent of material

Cockcroftet. al [44]

+ Based on plastic work per

* Clear fracture criteria
+ Assume linear damage

evolution

Ef
j Omaxde = C¢ unit volume for gy, No No
0
Brozz_o et al [45] * Modify Cockcroft's model
J'f' 201 dF=C « Consider stress state by No No
b 30— ow) 8 aand ay,
Clift et. al [43]
&3 + Based on plastic work per
f ade=Cq, unit volume for & No No
o
Ayada et. al [46]
. + Consider stress state by
J’ I ge=c, g Yes No
o O
McClintock [4
N (471 + Based on theoretical
V3 sinh V3(1-n) g, + 0, analysis under equiaxial
o |2(1—n) 2 transverse stress state No No
30, -0y . + Consider stress state by
3 de = Cy aand o,
Oh et. al [48], Kim et. al [49] + Reflect ductility and
B consider stress state by
f_d‘gli =1 Ep.er() Yes Yes
Ep.cr(’.’)
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Fig. 1.4 Research approach for developing the method for predicting ductile crack growth

resistance using mechanical properties of material
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Fig. 1.5 Structure of this research work

_15_



F2E NA FREFECESSERS A —VETNVORE

N
H
=
il

G OIENEBZGERIRHTO TRNZIE, BRSO SRR IG CloAR A Ak
BEBPHEUICKMENTZ L A—VETNVRLETH D, AETIE, FERAMER X OPUANE
DBRENDREGIENES A — VT VCER L, BSHHTHRERRNRE A —VET Vi
E SRR

RS S A — T VL TIE, 131 HTORLE X I ICINE THRA 2 ET AN
REIN TSP, HERANPICERTE, MEIOEEFERAVWOTWD 1311
() TRLEETADRNLT VY, Z DX A =TT VTS SHIE & AFT D IRAOT
B AL O TR O EBREERESE LTEDbL, ThERBEL TV ETLTH
D, BSR4 5 D IR R AE IR AR (R B O BB SIS TN
USHEL = 2 TRV BN B IR OT DI ) S8 RAF R0 K & LR T 2 Vv
51 aRFRER & HIRME FEM fEHTIC K 0 BUG T &, MBIOEMHERMER KBS N2 b D &> T
5. L L, ZORBOSBRULHZ XA — T LT OT L0t U CHREDIIZIIIC B2
SNTWS ZLZHMEE LTEBY, 4T LbZOEMAENHIREESNTWND LITFE AR
VY,

17 RA RORE « AREEERERE L E 212546, BEIX0THOBEMIx LT
FEMIERIICERET 5 2 L 3 ST p P = o3 i 7 RIS JE IR L D AP BHK
xR AhZZAEMEOXY A —YETF L E LT GIN
(Gurson-Tvergaard-Needleman) & 7 /L8073 % <, T %, GTN BF 4% V7= i L 2
MRS I 2 L—3 2 »Ofil & LT Computational cell EF /L AER X T v BIBY sepkfe
G4t R AT 2 RBA TR OB BAE S ORBIRH ST e, 7z, [k
GTN ET VA BB, BRAOTHOIE I ZMERTFRMEE OEGEBEX T A—
ETABMEINTEY, NTRA—FT 4T 4 T HMLELEET, R MO FIL-OM IR
BEFEMAN FTRETH B Z L AME STV AP =k 51z, R #iERERL THIT 5
COITITIE N ZE BRI IG U2 R A RORRZBDBEII KB SN A —VFT V%
RS DL NEELE D,

AA REEZFE A2 T ICRE T 2 FEEE LT, WA A R&E7 1L L7z Unitcell 12 X
% BBV 238 0 5N — OFHREBRR A FIRREROZ LR ENMERTE 5, %

_16_



ZC, ARFE T Unit cell 12 X 2 RFAVR A A FREMT 2 F2hi L, A PIcs U 2GS
N—=OFTHERRRA FERZEINI T 2SN LM E OB 2RHET 5, S5, Zhb
DIRFTHERN DGO D RA PR 2B 2 ek L7ZBERENZEH L, RAOTHOIS
NEERIFRE 2 VT SENE S A — DT V2R ET 5,

22 WEMA A= TNARROT T a—F

ARETIE, ERAEOBLEND, AT OIS HLMERRENEZE T, MEBIOIEMEEME%
M ATRE 7R FE D RIENE 7 A — BT LA R— R, RA ROREXE% KMk L= ET L%
BETDIL LU, 21 @iCHERELSE, KATRIMENRIA—VETARLY,
IEMERSMER S S 2 L— g AV BT B HEEEL

w' = jdw’ = Je‘pfl(on) =1 (2.1)

ZIT, o THEE, doFEREERS, de, IO RS, &) MITRATRE
DI N pl KA T 2 BRI Y O B T D

Om _ (0, + 0,+03)/3 2.2)

7 \/1/2{(01 —03)? 4 (0, — 03)% + (03 — 01)?}
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BB £=114% & LEBAITIE, EFAOBENC L AR A REEEBOAT/NSL
52 LERELTEY, fhahSW0E E Unitcell DET /LD EIT/ NS < 72 D RETIE
f0 Zﬁd\é“@*ﬁﬂﬁﬂ%ﬁ%& LT f=001%D5 G & ARy —2 52 L L L, BixtT

EVARA R EZEHZ+0ETE LD EERT,
I ) — OFT BHBHRICIFRA TR S D Swift Bl Z Y, 53T A —X 28 S8 TEEOR

A R BB ~DOFB LA LT,
ép
0 = oy (1 + —) (24)
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Fig. 2.1 Schematic of modelling of unit cell with a void

o

Ro

Fig. 2.2 Unit cell model used in this chapter (Ho=Ry)

Table 2.1 Summary of each parameter in Swift law used for unit cell analyses

Case n oy (MPa) |«
Base case [0.20

Case-1 0.10 300

Case-2 0.05 0.010
Case-A 450

Case-B 0.20 650

Case-a 300 0.005
Case-b 0.002
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Fig. 2.3 Stress-strain relationships used for unit cell analyses shown in Table 2.1

Figure 2.2 {2777 Unit cell X AT AT CTEHZE 2R, @S 2HIZAE LI2SGG, 7 2 E0
THEy, By E3 EMHYOTHEFZNZENLUTOLIICEKDEND,

H

E, =In (H_o) 2.5)
R

_ 2

E= 3 |Ey — Ey| (2.7)
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F7o, FEPET) Zn B L O Mises HHYIS N Z I~ 7 v 15, =5 2V TEhEnk
TRbEIND,

1
Im =501 +22) (2.8)

T=15 -5 (2.9)
WEoT, Iy EZDTRDOINDIGNZHEE T ITRATERSND,

Im (B +25)

T="S=—- =
2 3|3 -5

(2.10)

AREETIE, BAEM OB BIGERETIO THIIE I WiEe 2 A —VET NV OREZ HY

L LThY, BREMDISS (0> 0 o) & E LI>5(=%) &5, KIBREDRA NEFE
S XML ST O RTEIE 4y AV, & BBV IS BT D IR 2 BB L ks kv kb &
n 5P,

Vo AV,
f=1-50=fo) -~ (2.11)

3(1 - 2v)

AV, =V0(1_f0) E m

(2.12)

Z 2T, VolIZTERIO Unitcell (K78, V IZEE%O Unitcell (KfETH D, EIZTP 7%, v
IEART Y bR L, ENE SR B2 AR E L7l & AV 72 (E=206000MPa,  v=0.3),

2.3.2  fiRHTHER
(@) Unitcell DZEZE) &R A FKFEROZEA L

IR A RIRFER £,=0.01% & L 7-fEHTR Roof & LT, Base case D /i — O A% %
W, IS ZWIE T 2 T=1.0, 2.0 & L7ZREOFER % Fig. 2.4 \Z~ 7, £, BEIRIET oy
TIERL L2 LEDRR E ARA FMERERf OZE R L THD, £72, Fig. 2.4 FIZKHIT
RLTZOTHR LUV, B, COIZEIT D Unitcell DEEX %, ZFRATOIR & il L < Fig.
25 17T, FIXOT HOENIx U CIERIER 2@ 27~ L, Fig. 2.4 10 B siE Tl
Unit cell &RDIBVELTE 2 LR B AR A REEDSEIT L, B RILF CIXRA MY A v b
HCEENETT D, 2O BMRT, ZIXAEL f X85, oI ERAEES K
bbb L aE%RTLLEEZLN, fOAMEL Fig. 25 OEEEH 2 EETDH L, BREZE
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FNCEBWTEED A 9 Unit cell TR L72ARA REDBERBHIGESND B2 BND, KR
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Unit cell & FAV 7= FEM fi#dT % 32kt L 7= & % Fig. 2.6 127”7, Fig. 2.6 Tl Base case D)t~/
—OT AR A W T=2.0 DFTHER Z R0, A ROEEZEE R LG — 07 4B
RRFDOEIZITA v a A XN EAERE LW LR TE, Fig. 22 TRLE
ETINVCTRA ROREZEE 2+ i fTiE TH D Z L Mal 2 b, F£7z, Fig. 2.4 ®© C HLIKE
T, IEA—OFREES FITMIcR>TW5A 23, ZHuE Kuna 5P k~Tna X9,
UTAL FEBIZBWTEEDPRESSELRELEZZ NS, BT 2 X 91T, KETIX Fig.
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Fig. 2.4 Results of unit cell analyses using stress-strain relationship of Base case shown in Table 2.1

in the case of f,=0.01%
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i

Initial (=0.0, f=0.01%)  A(E=0.79,f=0.18%) B (E=1.32,f=1.9%)  C (E=1.33, f=3.9%)

(a) Stress triaxiality T=1.0 (Fig. 2.4(a))

mu AR

Initial (E=0.0, f=0.01%) A (E=0.20, f=0.22%) B (E=0.34, f=1.9%) C (E=0.38, f=6.1%)
(b) Stress triaxiality T=2.0 (Fig. 2.4(b))

Fig. 2.5 Deformation of unit cell for each stage (A, B, C) shown in Fig. 2.4

_23_



Unit cell model | Unit cell model
shown in Fig. 2.2| with fine mesh !

- i 014
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(a) Normalized stress and void volume fraction as a function of equivalent strain

LLL

Initial (£=0.0) A (E=0.20) B (E=0.34) C (E=0.38)

(b) Deformation of unit cell shown in Fig. 2.2 for each stage (A, B, C)

LLL

Initial (£=0.0) A (E=0.20) B (E=0.34) C (E=0.38)

(c) Deformation of unit cell with fine mesh for each stage (A, B, C)

Fig. 2.6 Effect of mesh size on the results of unit cell analyses using stress-strain relationship of

Base case in the case of f;.=0.01% and T=2.0
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T5L, WUTTH-TH, nDV/PEWVIEE EFT/NEL Y, nITEFELTRA RERESHE)
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_32-



iy

0.8
3
g E 06
[
g
£ 0.4
0]
fa
0.2

(Normalized void volume fraction, £/ £)
o

g e
o o -

Damage, w, &
(Normalized void volume fraction, / £)
o o
Y i

o

| | ——Base case (n=0.2)
- — Case-1 (n=0.1) rd
v
L | =--Case-2 (n=0.05) Vd
//
H=0.1%
L ’ 0 w'//
s w
. Ve p
| Linear 7 Y.
damage y/
e #~Eq. (216
s ; g. (2.16)
7 Unit cell(7=1.0, 2.0)
0 02 04 0.6 0.8 1

Normalized equivalent strain, E /E,,

(2) f5=0.1%

——Base case (n=0.2)

= = Case-1(n=0.1) Ve

L | ---Case-2 (n=0.05) Ve
7

£ = 0.001% s

| Linear Ve
rd
damage/

0 0.2 0.4 0.6 0.8 1
Normalized equivalent strain, E/E,,

(c) £5=0.001%

nit cell(7=1.0, 2.0)

Damage, o, @'
(Normalized void volume fraction, / £)

0.8

0.6

04

0.2

——Base case (n=0.2)

= = Case-1 (n=0.1) Ve
w 7
L | =--Case-2 (n=0.05) e
e
£=001% 7
r 7
~Eq. (2.13)
) s 5
| Linear /
damage ,~
Ve
r s
s
i , nit cell(7=1.0, 2.0
0 0.2 0.4 06 0.8 1

Normalized equivalentstrain, £ /E,

(b) 1,=0.01%
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for different initial void volume fraction (f;=0.1%, 0.01% and 0.001%) using stress-strain
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Table 2.2 Coefficient y in equation (2.20) and initial damage @y used for nonlinear damage

accumulation model

Initial void volume fraction |Coefficient in eq.(2.20) Initial damage
fo (%) 4 @o

0.1 3.83 0.033

0.01 5.27 0.005

0.001 6.91 0.001
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Table 2.3 Comparison of coefficient C in eq. (2.31) with yin eq. (2.20)

D, D. Cineq. (231) |y ineq. (2.20)
0.001 (0.1%) 0.03 (3%) 3.43 3.83 (f=0.1%)
0.0001 (0.01%) 0.02 (2%) 5.32 5.27 (f ;=0.01%)
0.00001 (0.001%) {0.01 (1%) 6.92 6.91 (f ;=0.001%)
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PRI ONT A CHER Sk L 72 O B O 33 2 1S OB LR PEX, 16 T) 28 o8
BEOIST) — O T HRERITIEAF L7 WE THEETE 5, ZOFREZFIH L CEH I 59
PRIERI 221815 D&M 2 RBLATRE R B3 AN, IR A MARESRITREFET 2,

(3) Unit cell IZ kX A4 FallRf#t 2 645 b 2 EF R Z AW T, B OIEMERHEZ R
TS S SR TSR T D RSB O P A E VIR R RS T L
R LT,

_37-



HIE FRERBERETT NV ORYMERIE

w
H
=
il

A O IENE BRI A SR E R TRIT 2 FEOMEL B L, AiE
TIE, A FpREEZ Unit cell 2 W2 H8EME FEM EATIC L VR L, ZhnnbiEi L
TR R EZ VT, IERBH RGO ERZ R LB RBEREET V2 REL
oo T OIEET NVIMEIOIEPEREE A 7R T IR IVOT B OIS ) 2 b AR TR M & AR Y M
OFT R DR S TEY, HHNTHRERNRT A—VET L THD,

RETIE, BET IR EBBEETT L O L MRIED T, HEMEMEER RS 2
FEEH DRI BE 2 T, JEMBRRFEAERADFETE 5 2 L 2R T 5, BRI,
BRI BT IR ZME OB A E L, MEIR XM AERBR T &2 HWTZDIRT)
S O EALE SR U725 BB 2 T 5, ZHUcL Y, IEHZHEEN K E L
BT D5 E OEBROFERR 2, IREREREETALEANTTRITE 2L %
RL, BEETNVOREEERET 5,

32 ZFEBRTIEA

LRI, TREC IS KOV LAV REAS F70 2 FRHeti & M AESf A4S SMA00B J5 L UN&Ei3R )
8l HT780 % IV 7=, Table 3.1 33 X OF Table 3.2 (2 &M Dbk /0y 88 K OO 4 7R
T Fig. 3.1 ICART THAMERER T & 01K X 4% R 0 572 5 PG & (A AUHRERT (R=1, 2,
smm) & (8 U7z, B R T B ORI S & Uiz, TR & e B
G HRRBRIE IS Z 2241 IR L THME L, YO & FHLBRRRBR T & FV 72 B R Tl
BSOS C, ZEADBEE Imm/min CERIBAKT CHIEAR % 527, B, FHEP &
B ICHD AT 72 ORHE K 285 28R D Z3HA L7z, SR & RugaER i oz
OGO A RIEERE S 20mm & L7z, Zh b OAERERR &2 7o 5 [RaRERR R & 5%k
% BIETE FEM AT Ot R & VT, IR SIS R AT DR AE R ORR O 2%
B L7, $7o, IEVERRIS LKA FORARIE MRS D HIOT, BIBTHTCERGT L7
B % Fig. 3.2 (TR FIE CWE B -,

_38-



Table 3.1 Chemical compositions of materials used (mass%o)

Material |C Si Mn [P S Mo [V Ni Cr Ti B
SM400B 0.15 0.19] 1.00| 0.009( 0.003|- - - - - -
HT780 0.13] 0.34| 1.34| 0.010{ 0.003| 0.14( 0.04| 0.02 0.17( 0.013| 0.001
Table 3.2 Mechanical properties of materials used
Material Yield stress Tensile strength |Uniform elongation |Reduction of area | Yield ratio
Oy (Mpa) oT (MPa) ET (%) ¢ (0/0) YR (:O'y/O'T)
SM400B [252 424 14.8 70.8 0.59
HT780 655 757 55 71.9 0.87
59 M6
93
T
15

(a) smooth round bar specimen for SM400B

82

=

(b) smooth round bar specimen for HT780

165

46

#10

\
R1, R2, RS

$16

(c) notched round bar specimen

Fig. 3.1 Specimen configurations used for tension test (unit: mm)

E:> i’llll:pi’lllllm E>

observation

Fig. 3.2 Preparation of cross section observation
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RET DI RERETT NV OZSYERGERR & LT, YIRE R 2T
IS ZHE % RE LSRR ZFEM L=, —MKIZ, UIRESCBHEEZET HEHMICE
F D PR R T O AT CIIRANC @IS IS EE IS T O A E % T, &
SOER ISR 2 IS LB MR T T 240, Z 0 X5 R hZMEOE{ A2 8E L, Fig.
3.1(C) T T Rl FE721% R2 OUIR & A Fupalli A (78 )i 1 Z il EE R RE) 2 T OO il 7 1 257 %
THIRAMN & 5 2 T%ICBRM L, Fig. 3.3 (2R3 80K & 2188 5mm(RE) DK X fof uasakg i
(RIS ) Z R BENC BN L U CREWT 2 £ CHlRAR 2 5 X T2, 2 ORF OB S mink
ORIERBE F L Th D, Z OUIKREFIN LSRRI X 2 30807 Wi o i o) 7) 2 il
FEnDEALDA A —V X% Fig. 3.4 |2/~ 7, Table 3.3 1ZRL b L < I1E R2 DUIK = {F Futsilhi
R T2 AR LSV R T, R DE, o exp 135 BIR & HUERERBR A O M B ZTE AL RO
IRFGAYEBIEOT A (%89 % Fig. 3.10 12857 1 v 1), &3R4 % FEM T TH 5
ALH R A PRI T DY EEOTHZRL, BFILDL~NVORZE L TORLT,

165

¢4 ¢8
A= - ——— |9 16

R5
Fig. 3.3 Configuration of re-machined notched round bar specimen with notch radius of 5mm (unit :

mm)

1st test 2nd test
<
Q‘ 1
I unloaded
- R1(R2) i
£
_g re-machined i
o R
% Sharp notch Dull notch
a
et
[
% e R1(R2)
= Unloaded
8_ Re-machined
L

Stress triaxiality, 7

Fig. 3.4 Schematic of stress triaxiality history for tensile test using re-machined R5 round bar

specimen after loading in sharp notched round bar specimen
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Table 3.3 Testing conditions for round bar specimens with sharp notch and re-machined dull notch

1% test (sharp notch) 2" test (dull notch)
. |Specimen Loading target
Material . . .
No. Notch radius |Axial displacement |_ _ Notch radius [Loading target
D (mm) & p/8 p.cr.exp
SM-1 1.62 0.68
SM400B |SM-2 R1 1.47 0.54
SM-3 117 0.28
HT-1 0.56 0.89 R5 Rupture
HT-2 R1 0.45 0.54
HT780
HT-3 0.3 0.23
HT-4 R2 0.35 0.37

3.3 RN HIE

FERAAT o T A GIK & A B T 0 JEME BT AR D IG S 2 n & A4 B O
Fr&y % BT % B BTN FEM AT 2 S0 L 7=, 91K & 4 AUHERER T Ofiftr €7 113 4
iR OB Y U v FEEZAWTER L, BIrE7 L oObmmmCmbl BN 2 5 2 72, T
E7 VOB % Fig. 35 2R T, MHT = — FIITPLHABRERMHT = — N ABAQUS Ver. 6.12-1
MWz, o, EMRADPEET D LD RREVHERE THETE 5 X 5 [T&M 7RIk
W B8 Uiz, MITICAV B EIE ) —EOTRERICONTIE, ks £ TIHHE
PO ERBAE R E O FEEMMA L, ZNLBEITRATRT Swift AilC XV, & infE@3/4 &
5 er OOTHFH)DEIEH — EOTHEROAE 2 FHET 25 X 5 ICHE L-BfR &6 H
ToHrZEE LT

n

a:q(1+%) (3.1)

ZIT, olg lEZENENEIGS EEPEOTHRTHY, oy IFMRIGT, I EHER, n
IXOT A LR TH 5, Fig. 3.6 IZ FEM fiEHTICH W= HIS ) — BEBEOT 2R 2R L,
Table 3.4 (Z1ZRBL) THW K RTG A =X LIER L= Y VREBIORT Vo thvk g &
HCRY, £/, Fig. 3.6 OEIGH—BEEMEOT IR 2 - B0 B 5 3RS % 7
Mt R & Felg U C Fig. 3.7 (Z- ¥ 78, farfE — AL il X — BRI ONTHR Y 3 2 I R B DA &
MHE TR LT D,
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1/2 model Displacement

Fig. 3.5 Example of analytical model (unit : mm)

1200

1000 | HT780
A
= SMA4008B
© 600 |
]
(]
Qo
® 400 |
(0]
2
F oo | — SM4008B

- - —HT780
0 1 1 1
0 02 04 06 08

True plasic strain, g,
Fig. 3.6 Stress-strain relationships used for FE-analyses

Table 3.4  Summary of material properties used for analyses
Material Young’s modulus |Poisson’s ratio |Yield stress [Material constant |Strain hardening exponent
E (MPa) v oy (MPa) |« n
SM400B 206000 0.3 252 0.0045 0.19
HT780 206000 0.3 655 0.0040 0.077
5 30
SM4008B o Experiment HT780 o Experiment
25
4 —Analysis — — Analysis
Z 2
g 3 g
;] T 15
o o
T2 T
z 2
! D 5 <G T3>
Smooth round bar specimen Smooth round bar specimen
0 1 1 1 1 0 1 1 1 1 1

2 3 4 5 6

Axial displacement, D (mm)

(a) SM400B

0 1 2 3 4 5 6

Axial displacement, D (mm)

(b) HT780

Fig. 3.7 Experimental and analytical P-D curves obtained by monotonic tensile tests for each

material
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32 fHi /R L-UIR E AN LA 8ERERICR LTI, RL % L <IER2 OYIK & Audakin
DBREIEDIE S - OFTHdkBE%, ABAQUS 0 Mapping #REP™ % FIW\CHEAN T4 @ R5 Bk
XA HIEERRER T OFEATET VICHIIIRRE L L Ch 2 72, YIR E BN LE|9ERER O FEM figdT
T, BB RO n L &, b2 20)DIFFLREHREGET V2 VTR S S Aw
DEEGE oD BIEAZ TG LTz, 7B, #2 B Tik~7 Xk 912, I REREGE T L TIEy)
HIARA FIEFER o 2 RET DHENRH LD, RKETHN S SMA00B 5 LT HT780 D X 5 72
BRI T, — kAR A o mPPL LTE 2 55 MnS &3 Table3.1 72 5 FEH
(hSWEBESND 2D, fllldHa/hSuvMEE LT 0.01% % V5, 7725, £=0.01%
(269 5 IERIE BAEHR G E 7 L & FAV /= (Table2.2 T/ ¥ £,=0.01%I2 81T 5485 y=5.27 & 4]
HHAISIE @,=0.005 % I\ ) %), 7233, MnS DERROHEER L LTk PInigRsn s
D, Table3.1 IZ/REFL TV D S & Mn DEH &) B MnS DIRFER fiyns(%) % sk 5 &, SM400B
& HT780 DWW 4142 0.01% T - 7=,

0.001

futns = 0.054(8% — 31—

) (3.2)

ZIT, S%E MNn%IEENFNS E MNnDEHETH 5D,

3.4 FERIEREHREGE T /TN T DM EHRRIE DR E

RET DI RBERETT N EZEAT2ICH0, UM B O RO B0 £ i
FEARTFRE AR E T D, T ORFIENE, SRR 2 7o B RGBS L & FEM MENTHE R4
DR L CBUST %, Fig. 3.8 ICUIR & ALRRBR T 2 FIV C1572 P-D iR 2 B0 5L & fighr
fE R A bk U CoR g, P-D #HARIZ 38\ T B 2B (Fig. 3.8 HRHT) T J L B JEM A%
A RPN TR R TR RII R —BL TV D 2 E b D, £, REUIREAIA
FeakB & IV C, Fig. 3.8 O KHIToxd P-D #ifR O fif B AR ST CThafar L, Fig. 3.2 @
JiVE TR 21T o 72, Fig. 3.9 I[ZWrmBlszofE R & LT, R il oA L7k
BAL ZOIFITAER L TR A ROBIZERIZ 7R3, Fig. 3.9 Tr L7z Wil 2345 Rk
X, Fig. 3.8 TORHITR LIIEMEAKOFAERIC BT 2R P R dnL &,% FEM fi#
BB BG4 %, Fig. 3.7 TR Lo YRR A IZ OV T B FEERIC L T2 SM400B &
HT780 DIEMEBAFE AR DL g, % Fig. 3101272y b CRT, 2T, ISIEHE T
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BIE N om EMEIENGDITER DS, RATELESND,

Om (01 + 05,+03)/3

o _ (3.3)

T T 120 -0 + (05 — 092 + (03 — 0B

o, 0 GIIEIEND =S TH D, Fig. 3.10 HOEBUTAM T OnL e, DBIEE R L, ¥
Z TR R E R T,

25 50
SM400B Experiment  Analysis HT780 Experiment Analysis
Notched round bar specimen O Rl R1 Notched round bar specimen O Rl ——R1
20 ¢ R2 ----R2 40 | © R2  ---- R2
< ' <
Q Q
o o
© ©
e o
o 5
0 0.5 1 15 2 25 3 0 02 04 06 08 1 12 14 16 18
Axial displacement, D(mm) Axial displacement, D(mm)
(a) SM400B (b) HT780

Fig. 3.8 Comparison with experimental and analytical P-D curves of notched round bar specimens

for each material

Detail of A

Detail of B

Ductile crack Ductile crack

Loading direction Loading direction
<> <>

(2) SM400B (b) HT780

Fig. 3.9 Cross section observation after unloading near inflection point in P-D curve for R5notched

round bar specimen
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18 @® SM400B
& HT780

16 F
14 F
12

smooth  cmoath

08 Y
.
/
06
,

Equivalent plastic strain, &,

z '
04 r .0 ' ’ RQ*
4 7
A ' !
02 "Lt ,' 4 ’ ]
L4 -7 -

0 02 04 06 08 1 12 14 16 18 2

Stress triaxiality, 7

Fig. 3.10 Relationships between 7 and &, at ductile crack initiation for SM400B and HT780

RET LI RBBIEETT AV TIE, AR TR UL D ISHBHEE LT &S 1% il
FEJEIRE T2 3615 2 RIS O T Bre, oo () & IV 223, Fig. 3.10 TREN TV D RF O
IMTBAMHII R T DRI N THE LR TH Y, Z ORI YEEOT A LS
DI HhE DBIR & 2, (1) & L OBRIERBHREE T VN2 Z LI3ET T2,
AR UK & MR T T, RFTR OTAETIC LD R v X T Dw,
—E DRI L IRREIC TR 2 Fhi ) 5 = LR CchH 5, =T, AETIE, I
BRERBHEGE T /WIHE S By, nODZAbZE - TIEMRZFE LT Fig. 3.10 IZ8B1T 4%
RER o7 v N E(Fig. 3.8 F ORI TR HEM: B ZRE LR OHl 7 M ZENL D L)L ZFH )
THEE =1 L7225 X 5 WIS —E IR ) 2 il B8 T C O RRFAE 2 M 09" 7
GoaMERETDHIL L Lz, T2bb, & miT exp HOFEHBEHTERDOEDL L LT,
FEABLUB &2 AN RATRT,

g_p,cr(n) = Aexp(Bn) (34

KIZ, FEM b AR Onl g2 WA L, Fig. 3.10 1o A4 il > THREENEDR O o
IR RBHGET L2 MW CEHET 5, 0o, £ I2HV T, EMRZIE A (Fig.
07y MRETICBEB SN0l 1 EDOENKR /NS 25 X912, X(B4)TF Dk
BABLOBZRHET D, ZOX DI L TRE LIS B OE, (1) % Fig. 3.11 & kA
Y,
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&pcr(m) = 1.68exp(—0.75n)  for SM400B (3.5)

&pcr(m) = 5.29exp(—2.33n) for HT780 (3.6)

Fig. 3.11 121, Hl D 7212 Fig. 3.10 T/R L7251 3EBR O R(AM I n BT 28560
BRAFR L EBPEOT 718, cr exp) B FIRFIR L TH 5, 72, Fig. 3.12 12 EXDE, () ZHNT,
BB IC BT DRI AR, T70bh, =1 L7725 TN D O TR % KR
R & Hl U CORd, TR RITERE R E B —H L TRV, {(B5)BLUVAB6)IL—E
SIS EEEIE TIC R D IRFAALIBMEOT A L L THVICRES N TV LI bDEERD
N5,

2
1 | Critical strain under constant  history 18 L Critical strain under constant 7 history
154 " [ B, () = 1.68exp(—0.75n) 15" [ &, () = 5.29exp(—2.33n)
=16 £16 |
Sa \ y _ _ St N . .
7 V Critical strain obtained 7] \e Critical strain obtained
L 12 ¥ bytensiletests £12 r ¥ by tensile tests
g 1 & 1t FaY4
Zos ;‘ 08 | O\ ez
S o6 996 | "
© g . ; \
2 04 504
=2 (=2
0.2 FHT780 -
w _ _ ‘ SM400 W 0.2
0 — T S OO i i L 0 H _ e
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
Stress triaxiality, 7 Stress triaxiality, »
() SM400B (b) HT780

Fig. 3.11 Critical strain under constant stress triaxiality history determined by inverse analyses for

SM400B and HT780
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smooth

smooth

Predicted axial displacement
at ductile crack initiation, L, (mm)

RS
2 R
= Rl
L 4
1 F ,;Q/ ® SM400B
| RIs® ¢ HT780
0 i i i i
0 1 2 3 4 5

Experimental axial displacement
at ductile crack initiation, 2, (mm)

Fig. 3.12 Comparison of experimental axial displacement at ductile crack initiation with predicted
results for smooth and notched round bar specimens (Predicted axial displacements are obtained

using nonlinear damage accumulation model and &, .(7) shown in equations (3.5) or (3.6))

3.5 IR E N LSRRI & 2 HEMUE R EHRE T 7 L o I PEREE

B AAE L, IS MEIRENEAT D856 O MEMER IR EEAN ~ O I 2
FEHRETT L O A O EBERGE LS LT, 3.2 §i Tk 7= 81K & {015 9EHER O B EMAT
% LSRR & T 5,

F9, UIREHINLEEERBRIZI T 2 AR OIS ZHE nD b & iR L7z, Fig. 3.13
WZBIE LT, SM-1BEOHT-1LICE T 28R A T REICE T D nL & DR Z7R7, Fig. 3.4
TRLIZEL DS, BHID RL YK X AHAURGRER b ClT sl @ ) 2 E T O3 %%
=T, EOBOFI L% O RS UK X A HEERER T I TRIE I ZHHE T Tl OT 4%
2D 2 E R TE (I DOISNEMEOLEERE, 5§ 5 mETHRARLBEEMICEIT S
IS NEME OB LRk CThoT2), £z, YIREFIMNLIRRBROBIELEL AT 5 H
(T, BIRZ B Imm OEIR X AR O [BRAM D%, HIR X 0 5mm [ZFINL
L7z SM-1 3 L OV HT-1 Ok Bl 217 - 7=, B 7 i o SEM Blasfi R % Fig. 3.14 (R
T2, BN L% O RS GIR & FBERER A O 21X ST « T ABBES L TEY, &
NEENRKE S BT DRMTBNTH, KA RIS EMEGIC X 0 iiEicE
STWNWDZENDbND,
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1
& —— Notched round N —— Notched round
= bar specimen (SM-1) = bar specimen (HT-1)
'S 08 = 038
g P m— nE g Pm— 0,5
7] 'TP 7] ’P
) o o -
] s &
a o
T 04 PE— T 04
2 Unloading ] R5
© ©
2 2
=] S !
5 0.2 Rj 2 02
SM4008 “Unloading y/ HT780
0 . . 0 A . . A
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 2.5

Stress triaxiality, 7 Stress triaxiality, »

(a) SM400B(SM-1) (b) HT780(HT-1)

Fig. 3.13 Examples of stress triaxiality history for tensile test using re-machined R5 round bar

specimen after loading in sharp notched round bar specimen

N 5%
(a) SM400B(SM-1)
Fig. 3.14 Appearance of fracture surface for re-machined notched round bar specimen with notch

(b) HT780(HT-1)

radius of 5 mm

FBR TR B ALV AT E P-E OV A e Bl A ST RS B & Bbfge L C Fig. 3.15 127”7, Fig. 3.15 12
BWTH, SMA00B OFEREDH]E LT SM-1, HT780 OflE LT HT-1 DfEREZ TR
L, HERERMBEET LV EAVCRB SR P REBOeDZEALbRT, o 1 XakBRAT
DYIR ZEDELR dy & FHRBFFHI L 72K S JEOE R d % AV TR L7z (e=2In(dy/d)).
PN T#O RS BIR X AR T ICB W TH, MBRATOUIR X JRERZ dy & LI T%D
SIIERBRBRAAR 2 =0 & LCT my R LIz, £, P-c HIBUCERT D L, FBESR & AT
b RAL N A% O RS BIR & AR T OMESEME E TR L TND Z L3R T
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X5, £2, olXOT HOHINK U TIFBECEE SN TO LTI/ REN TV S, Fig.
31575, FINTLA%D RS BIR &M HLERER A O ESHEA, T7hbb, EHEAZEAERT
FEiEw=1 L7220, IEMERBBETT VL 0 EEAZRAERRANS TR ARETHD Z &N
RENTWD, Table 3.3 TR L7cMOFRERENFIZHOWN T RBROFM 21TV, FINTE%D
R5 GIR & A AR A 1231 DIEME BRI AERFOE O Frg (2D T, EERFER & TRl
RaEE L7 D% Fig. 3.16 (259, Fig. 3.16 F O 2 71E Table 3.3 T/r L7=#ABR A No.
T b, Fig. 3.16 15, EERFER L PRIBERE 20D BW—%%2 /R L TEBY, M RREEA
55 7 /L IRV 00 5L 70 2 BREAABE O SEPE ARG IR S RRAG 26 L ClE I rREThH D Z &
DNFERES LT,

R1 notched round bar Re-machined RS notched round bar
25 - 1
O experiment I
—— analysis R1 ' RS 4 0.8
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(b) HT780(HT-1)
Fig. 3.15 Comparison of experimental P-& curves with analytical results and damage accumulation

calculated by nonlinear damage accumulation model
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Experimental fracture strain, &5,

Fig. 3.16 Comparison of experimental true strain at ductile crack initiation with predicted results for

re-machined R5 notched round bar specimen
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B CIIHR B S 72 2 2 T ORI B 2 x5 & L, 55 2 B CRE LZIFRER
FBHEEGET AN, BIEIMEZE LIS 2 MEOZBREO b & THEMHEG RIS
HHATRE TH D Z L ORGFEE T 72, L TIZ, RETHLNIEEROETZ T,

(1) LT 2IEREREREET LTI, MR L L CT—EIG ) S8R IE N ORI Y
MUEOT HRRENT/R DN, RETIE, BIREAARERBR T O5ERBRNHH D06
DI DIALIBIE & IERIE BRI T V%2 - C, T 2 ORRF O B %2k
O,

(2) B OIS ZEE DAL A il L7 fli S p9 703 Bk & LT, SM400B 45 L TUF HT780
DYIR & AT HERER 2 728 R & BI85 3R B 2 R L 7=, 2 O8IR & T8
BRARBRIZ I DI IS AR & < B b 2856 O IEMER A AR, FERIERREE
BET ML VEERLS THIRRETH D Z & PR S, JREE - N THELREAS B2 % —
FEOR B CIARE BREHRIEE 7L O AR REE S Tz,

LLEX Y, %5 20 REHRET T L OEMERERATAM ~O @ ArEN RS, R
ROF B OIS LR R L HERIE REEBG T 7 VIS S BE SN S BEGEZ v

T, BIEIM OIEMEBISE RGO TR TR rIRE T 2 Z L AR Sz,
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il

AT TIE, 55 2 B CRE LILIERERBEEEGET L & UK & M LERER A O 5 3RS
RAZHEASNWTRE SN D RAOT L OIS ZEERAE R Z VT, BEEHM 2T LT
IS ZEEIBIEOZVBIREDO b &, EHEREGRAOFMEARBERS ERTE 52 L &R0
T2o THUC XY, BRIOT B DI H LU AR RE 2 AP & LTIV 2 JEHRE SRR
5ET V% FEM fRITICHLA AT 2 & T, BRI OEMAINER Y I = L— 9 U )VATRE
2725 2 &SRR STz,

—J7, MEOIEM R % R T BRI O B DI 1) BRI EARAFRE TN L 0 Be 5729
O SEAmRE AN LT OB, FI9EmBREs L OB FEM AT 2 %M L CTIRIE4 %
VERSH D, 15T, ZORROTHOIE N ZEERIFREOMEHER A Z, FiEs IR
BB DG O N DM ELOBBIEHEO 0 B FRITEVEER EAEHTH Y, _BEL
T2 I BAEHRAG E 7 L O IEMEBRG IR RS EM ~ O FAEO H 2 D b HIE TH D,

AETIL, HAOHEER RS 3 OB RMEHI T LT, IR E RN D M)EY)
REMHERER R & A5 ERBR Z FE M U, EVERRIRE AR OIS ) S & O
THTEEINDBRAOT OIS I ZEERERIEEZ RS T 5, EHAROFEAEEZLTH
TRA ROERL - lE - AERITRIMEENEITT 50T R L~V TEL L0, FIFAE
RERTIZHB T D < Ok OETEHB LUK & A4 URsE i O B B9 2 it 1 28
FEDIBREN, MEOMTHLEICEET S 2 SICER L, FRAESERBR TE LN D1
PR D & BRI OT OIS ) BRI R E IS B 2 KT T SRR 2 L. S 51,
THUCESE, B 2 EORE LIEMBRBHREE T AVE ] O 72 O — IR ) 2R
FIZBT DRAOT ORI LKA RO 5 TR FIEERET 5,

4.2 FEBRHE

BRI TIE, RS FHEAEEAS SM400B, misk /18l HT780 B L O\T Vv = v 4564
A5083-0 # V7=, Table 4.1 35 X U Table 4.2 |23 DR 38 L OBEM AT 2 7=
4, SM400B 35 JLTVHT780 12OV T, Fig. 4.1 1R IR AR A L UIR R D5

72 2% M AR & A Ui (R=1, 2, smm) &AL L7z, F 7z, A5083-0 (22 Tid, Fig. 4.2
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R A & FE BIR & A AU A (R=2, 5, 10mm) & /ERLL 7=,
TR O JESE ST 1] & U7z, g LB i & 72
THEM L, YIXREAERRR 2 B0z ERER T
1.0mm/min THlEAME G272, WTho

R A C 12mm, R=10mm OiRER /T 25mm

L7,
Table 4.1 Chemical compositions of materials used (mass%)
(a) SM400B and HT780
Material |C Si Mn [P S Mo |V Ni Cr Ti B
SM400B 0.15] 0.19( 1.00| 0.009| 0.003(- - - - - -
HT780 0.13| 0.34| 1.34| 0.010] 0.003| 0.14 0.04f 0.02| 0.17] 0.013] 0.001
(b) A5083-0
M aterial Si Fe Cu Mn Mg Cr Zn Ti
A5083-O ]0.15 ]0.26 [0.05 [0.65 449 |0.11 [0.01 (0.02
Table 4.2 Mechanical properties of materials used
Material Yield stress Tensile strength  [Uniform Elongation [Reduction of area |Yield Ratio
oy (MPa) ot (MPa) 7 (%) $ (%) YR (=ovy / o7)
SM400B 252 424 14.8 70.8 0.59
HT780 655 757 55 71.9 0.87
A5083-0 163 319 16.7 32.4 0.51
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(a) smooth round bar specimen for SM400B

82 M12

I w— |-

(b) smooth round bar specimen for HT780
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\
?61 R1 R2, RS

(c) notched round bar specimen

Fig. 4.1 Specimen configurations used for SM400B and HT780 (unit: mm)
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(b) notched round bar specimen

Fig. 4.2 Specimen configurations used for A5083-O (unit; mm)
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4.3 ML

B  NEB OIS ]« O Bk BB OO HE 1 8 20 A W D I 11 2 il & AH XY SEPE O3 7
I 2 BT, PN FEM fRAT 4 5855 L 7o, fRPTE T VI 4 JR OB Fr Y U > REE
FEHWTER L, T L ONGHEICTRBIZEN A 5 2 72, BITET L ORl% Fig. 4.3 127
T AT = — RICITUAA TR ESE T = — K ABAQUS Ver. 6.12-1 # i/, 7o, fEHA
NFEAT B K 5 I RIETUHEIR £ CIRAT T 5 723, S e & & f LR 220
BB D TR & Fohie LT, fRATIC A 2 BUG ) — B O B BIER IZ AR O g LR 5 | 3R
BROFERNORETLHHDE L, — e £ TITRBREREZZOEEMEHL, TNLKE
FRECCRT Swift BN L0, e TEBE(CRRAITIX 3/4 e ~ et DOT HEIPH) DO EIE ) — EHO
FTHBRONEE FET 5 X9 ICRE LEBEREHAT L & L,

o =oy(1+=2) (4.1)

ZIT, olg lEENENEIGS EEBEOTHATHY, oy RIS, adbBELk, n
T LHEE T H B Fig. 4.4 12 FEM AT IV 72 BLIS ) — BUBME O3 21 B4R 205 L, Table
43 IZIFKEBLTHRELIZENRNTA—FZEMFH LY 7R E BIORT YV UthvEE L O TR
. £z, Fig. 4.4 OEIG)—EIBWEOT B BAMR 2 I T2 BR oo B 5 | e R 4 firs ) &t
# L C Fig. 4527928, faf 8 — N2 dh#R(P-D i) 13— ONTHE 24 3 2 Fe K B LARE & i &
TR —HLTWD,

1/2 model Displacement

1.5

(@) Smooth round bar specimen shown in Fig. 4.1(a)

1/2 model Displacement

(b) R1 notched round bar specimen shown in Fig. 4.1(c)

Fig. 4.3 Example of analytical model (unit : mm)
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Fig. 4.4 Stress-strain relationships used for FE-analyses

Fig. 4.5 Experimental and analytical P-D curves obtained by monotonic tensile tests for each

material

Table 4.3  Summary of material properties used for analyses
Material Young’s modulus |Poisson’s ratio |Yield stress |Material constant |Strain hardening exponent
E (MPa) v oy (MPa) |« n
SM400B 206000 0.3 252 0.0045 0.19
HT780 206000 0.3 655 0.0040 0.077
A5083-0 71800 0.3 163 0.0010 0.16
5 30
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(b) A5083-0
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%, Fig. 4.7 |2, i o ST R O BIEEAE R O F] & L THIR & 448 smm OfER %777, 22T
B

DM EHZ BT, AREICIT A 72258 ¢ o 7 VISR S 3T,

25 50
SM400B Experiment Analysis HT780 Experiment Analysis
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20 & R --=-R2 40 | O R ----R2
— O RS =-=R5 =
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Axial load, P (kN)

0 02 04 06 08 1 12 14 16 18

Axial displacement, O (mm)

(c) A5083-0

Fig. 4.6 Comparison with experimental and analytical P-D curves of notched round bar specimens

for each material
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Fig. 4.7 Appearance of fracture surface (Examples of specimens with notch radius of 5mm)
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Fig. 4.8 Relationships between 7 and &, at ductile crack initiation for each material (Solid marks
show ductile crack initiation and open marks show uniform elongation for smooth round bar

specimens)
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Figure 4.1(b) D3 dutEakBi A3 X OVFig. 4.1(c) D R5 BI/R & 1 ALEERER A & IV, #(4.1)
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Fig. 4.9 Stress-strain relationships used in Fig. 4.10 and Fig. 4.11
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Fig. 4.10 Effect of material properties on 7 histories with increasing &, for smooth round bar
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Fig. 4.11 Effect of material properties on 7 histories with increasing &, for RS notched round bar

specimen
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Fig. 4.12 Relationships between &, —er and 7 obtained from Fig. 4.10(a) for smooth round bar

specimen

(gp,cr,exp/(gs,cr - ‘E‘T))_?I

14
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1 yn’i/ﬂ./
08 - “n
(—_S‘"“‘e"" ) =0.257 + 0.77
06 | (e —er)
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Stress triaxiality, »

Fig. 4.13 Ductile crack initiation limit of notched round bar specimens based on proposed method

considering strain hardening exponent and ductility

Table 4.4 Summary of strain hardening exponent to be determined in the different strain range using

Swift law
Material Case Region to determine n n by Swift law

Case-S1 |3/der~ e+ 0.19
SM400B Case-S2 |ey~1U2 ¢+ 0.50
Case-S3 |ey~é€t 0.37

Case-H1 |3/de;~ e+ 0.077
HT780 Case-H2 |ey~12 ¢+ 0.13
Case-H3 |ey~e+t 0.11
Case-Al |3/der~¢e1 0.16
A5083-0 Case-A2 |ley~12 &+ 0.37
Case-A3 |ley~¢7 0.30
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Fig. 4.14 Comparison of experimental with analytical P-D curves obtained using different

stress-strain relationship determined in Table 4.4
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(c) Using n determined between 3/4&r to er
Fig. 4.15 Prediction results of stress triaxiality dependence of ductile crack initiation limit using

equation (4.9)
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EBIT, RN K D5 crenp PRIROBAME X MRS 2 BIOT, XIKT—# 2T,

Table 4.5 (27”3 HEMAOMEE 23 ¥ 70 5 7 FFE O EREA BHI X L THGEA 1T > 72, Table 4.5 |2
(T, FEAES R O 15 DN DB ORIV TH D n, B L Ve RLTH
Do ZALH ORI ERE A O TR K0 T U 72 BRI ONT D I ) M AR A7 R
Z Fig. 416 IZ/”" T, TNENDOKIZIE, SIHRERIC X 0 S L7248k ORFOT A b
7ry FTORLTHY, WA FIERBRATIRERT, Fig. 416 225, KSR B O HAER:
P2 AV TEp crenp PIS N Z B IR F R 2 MER T RITEETH Y, RE9)DBAM: L L bz,
N, &S & er OBRAREMED BRIVOT B DG T M BE (R TR PRI S8 % BT RORHREME
D LR TET,

Table 4.5 Summary of mechanical properties of each stee| 7} (3511381, [401.(62]-[63]

Yield Tensile Uniform Strain hardening |Critical strain for
M aterial stress strength elongation  |exponent smooth round bar specimen Reference
oy (MPa) |or(MPa) |er n &pcr
STPT370 315 438 0.192 0.15 112 [17]
SM490YB 344 540 0.176 0.19 1.23 [40].[62]
X80 class (A) 620 721 0.085 0.11 1.39 [35]-[37]
X80 class (B) 650 735 0.051 0.11 1.68 [35]-[37]
HT780 (A) 829 879 0.058 0.10 1.26 [17]
HT780 (B) 827 868 0.068 0.17 1.07 [63]
STPG370 261 449 0.195 0.19 1.07 [38]
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Fig. 4.16 Comparison of predicted critical strain of round bar specimens with experimental results

for each steel
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46 —EILNZHERBIE TIZBIT 5 RAOT A0S 7l Fik

B2 EBEBIUE 3 ETHERTELL I, A CTRET DMV AHRETT VA2
T BB8IE, MBI OIEME 2 R & L C—EIS I 2R TR 2 RN
VO 728 e (M DILERIZ 22 D, —T5, Fig. 48 TREN TV D L HIT, UIRE LR
R OFBERBR CIXRFTZOTHETICL 2Ry X 7O, ARSI 280 nh 2
LT 285G OBRAOT BB/ HILTND Z L1222, AT CTR L728, orexp P ZHURH
T o9 %8 MOl TN E LTERE, Hnd I &iFTaRvy, —J, 34/ T
AR S IERE BREREE T VICHE D £ LT, TRENOYIR X A AU OBRA O
FTHUNNVTHEE o=l L7225 X912, WTNICE, N BisT 5 hika R Lz, 22
T, GIR E A AUEERER AT O BRI S B O 8 o enp 13 3(4.9) &2 N T FHITE 5D T,
Fig. 4.17 (7R3 715 THRI O BARE R PE & SHEEYE FEM 74T 20> & W IRHTEDIC &, o (n) 2 T
5 HiEERTEIERBRO R ONLBAOTHOT 7y b EEHEAWTHIGTE 528,
REDERE D> LI B OBMAY AL & TRIT 2 FiEZ~T), BENRFEEZ LD TIORT,
(1) FRRESIRRBROFE RS, HISH —HOTHERIIINZAT, n, §o88 0 21
(SRR

(2) () THIMEOBMAI RN & X(4.9) % M TE, rexp @ THIT 2, 51T, ®AeDUIK
ETERER T HEBOUR X AR T O FEM f#T &2 FEi L, AR oo
JBIEZ TGS 5 & &b, IMBRBBEGET VICESZox it T 5,

@) TNETNORENT CTa=l &7 2 8NR@.9E AN T TR L8, crexp T BT 72D K
& e MERET Do

ZDE DT, & crexp P TR L EEDOUIR E AT HUbEERER O FEM EHTIC &V &, () 7%
ETE 20, AETIELDMBEICE M EBIGT 2 TIEOREERR D, Wi TRLIZL
T, RO HOIE N Z AR RAEIIA B O O BB AR EL & —HRAh O AR O SE MLy
PEICHEL SND Z L BB LT, &MV TH IS OBMRIOREZ FV THEHZK
5P —FMICFHENTE 2 b D LEZ, FEM T Z I & FITEHEE, o () & THIT 2 Hik%
R %,
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(1) Conduct monotonic tensile test

v'S&-Scurve
< 1 3 \/n, EE’CT' &1

True stress, o

True plastic strain, &,

-n

&,

(H) =0.25n+0.77 (Equation (4.9))
p.cr

(2) Predict E[,,(r.nxp and obtain # histories from FE
analyses of various notched round bar specimens

Ductile crack
initiation (&=1)

'
’
S J'
/ ' T
/ ] i
1 i
i
' ’ ’
L i z

Stress triaxiality, Elasto- plastic FE-analyses

1 histories

Equivalent plastic strain, &,

(3) Determine &, .-(n) for @ to become unity at ductile
crack initiation for various notched round bars specimens

Stress triaxiality,

Equivalent plastic strain

Fig. 4.17 Determination approach of critical equivalent plastic strain under constant stress triaxiality

history based on mechanical properties and elasto-plastic FE-analyses

4.6.1  PRIFR Y VBME O T 00 WEAEAT I S 7 1k

4.2 i C/r L7= SM400B, HT780 3 L O A5083-0 (22T, Fig. 4.17 O FNEIZHEWV—TE N
DL RBIE T H61T 2 RAA S I OT 708, o () Z EST 5, FEM fEHTIC IV 2 EGT)
—HOT HHHRIT Fig. 44 (R LT2EY TH Y, B ELOBMAYRHE®N, &, er) % Table 4.6
VRS, 2D OB ARHE & (4.9) 2 FH W TRl & 3 D U)K & A HLEERER F O BRI AH Y Y8
PEOT 5y crexp & Fig. 4.18 I — MR TR DT, £z, FUIREAHERE O FEM fi#
B> B 15 7= BLar W DR ) 28 nod JETRE 2 s Con 3 (FEM FEMT 2 i L 72 3RBR T TR 1% 4.2
Hi O LI SEE AR A & 3 TR O UIR AR A TH Y, Fig. 4.18 O nD BRI,
BT D LG Ee=1 L5 LNV ETRRLTH D),
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Table 4.6 Summary of mechanical properties for SM400B, HT780 and A5083-O

Strain hardening |Critical strain for Uniform
M aterial exponent smooth round bar specimen  |elongation

n 5S,cr &1
SM400B 0.19 1.26 0.148
HT780 0.077 1.25 0.055
A5083-0 0.16 0.42 0.167

Eper() t/:letermined by inverse analyses

N
N

1§ 4 | &,cr(1) determined by inverse analyses g | ) %, er.exp Predicted
£ 1} \ _ . £ 15t L7 byeq. (4.9)
E ol \ echr’exppredlcted E ol \
B ‘\ by eq. (4.9) i ‘\
o 12 F /- o 12t
@© ©
- 08 6_0.8 F
= 06 | ; = 06 ‘
g ] ; % smooth,’ HT780
L ost p ;R o a v ;
L / N H \ L p R5 ¢ 3
g % {4 Y SM400B g %2 SR s
o 0 1l (== = =Ty =—E L I L I o 0 L P L Al aZ - L L
L 0 02 04 06 08 1 12 14 16 18 2 Ll 0 02 04 06 08 1 12 14 16 18 2
Stress triaxiality, 7 Stress triaxiality, 7
(a) SM400B (b) HT780
2
1§y L A5083-O
£ 16 |
@
S 14}
b 12
.f;_,’ ' &p,or(17) determined by inverse analyses
» 1 Ty
@ /
et 08 | _ .
= os | €, crexp Predicted by eq. (4.9)
: /
QD g4 | >/
(>U 02 + smoothJ,’ RS,L/‘{ s~ .
=] i R RLY
o o0 Ly e P,
(i8] 0 02 04 06 08 1 12 14 16 18 2

Stress triaxiality, »
(c) A5083-0
Fig. 4.18 &, crexp Predicted by equation (4.9) and &, (1) determined by inverse analyses using

proposed nonlinear damage accumulation model for each material
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WU, M RRRIGET V2 AW TAMHRDoZ 3R T 57, Z 2T, SM400B & HT780
DYIHIRA REFEE 1220 TiE, 33 H T2 L S I+ EViE & LT £=0.01%% 4
W%, ¥7-, A5083-0 @ fy ZFRET 572012, Fig. 4.19 (TR T 1L THIK X 4% 2mm DY)
R & A AUARERER T ORI O W B % b L, BRI O R A RAERCIRILZ el LTz,
Z DORER A, SMA00B 5 L NHT780 DR & Go¥ T Fig. 420 IR L, BIEINIZAA R
Z AL TBH > TR L7z, Fig. 420 5, WIHNOMEHZB W T A E AT TRAE L TV DHARA
Ridbd0nTthsd Z &ovh, AB083-0 IZHBWWTH f=0.01%& L7z, WENTHICRET D
&per(MIE Mohr-Coulomb i 7 7 4 7 ) 7 b H2KAT) TER L, FRBRAICHIT 2
Epcrexpll CONID LIS R D X DI B BLUC 2RE LT, £ORIREZHN(4.10)~
#X(4.12)F L Y Fig. 4.18 HIC R TR,

1

&,r(n) = (0.167+0.89)™"  for SM400B (4.10)
1

&,(1) = (0.197+0.86) ™" for HT780 (4.11)
1

&per(m = (0247 4+ 1.07) n for A5083 -0 (4.12)

ZZ T, OFAME{LFER n 1 Table 4.6 (IR TS EOME A AV 5, Fig. 4.18 TR T ndJE
BRI, (410~ (4.12) TR LI BB D&, () & FEREREREGET V&2 AV CTo=1 & 72
HETHINTH Y, BUREAAHERBRI ORROTHIEE CTo=l Lo TNDHIEMN
RENTWD, E7z, Fig. 421 12X (4.10)~R@.12) TEDLEND & (M EHNT, HEHERZ
RN, Thbbe=l L7222 4RBA O RZN D OTRIRE R4 FZEEER & g UOR
TA, WHFIFTRS —HLTEY, X(4.10)~X(4.12)1F—EIs LM T2 &) 2 BRAAE 243
PEOTHE L THUICRESNTNDLIED EEZ HILD,
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Cut
Fracture :
surface

Cut ----

(a) SM400B (b) HT780

(c) A5083-0
Fig. 4.20 Observation of micro-voids near fracture surface at center of R2 notched round bar

specimen
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Predicted axial displacement
at ductile crack initiation, L%, (mm)

Predicted axial displacement
at ductile crack initiation, 2}, (mm)

| SM4008B

mooth|

G

Load, P

Agial displacement, O
1 L 1 s i s

0 1 2 3 4 5
Experimental axial displacement

at ductile crack initiation, 2, (mm)

(a) SM400B

smeath

L AS083-0

Axilal dlsp\acelment D
s H 3

0o 1 2 3 4 5 8§ 7
Experimental axial displacement
at ductile crack initiation, 2, (mm)

(c) A5083-0

Predicted axial displacement
at ductile crack initiation, £}, {mm)

smoath

| HT780 "

I3
mﬁfo/

Axial displacement, D
I L I L 1 L 1 L 1

0 1 2 3 4 5
Experimental axial displacement
at ductile crack initiation, 2, (mm)

(b) HT780

Fig. 4.21 Comparison of experimental axial displacement at ductile crack initiation with predicted
results for each material (Predicted axial displacements are obtained using proposed nonlinear

damage accumulation model and &, ..(r) shown in equations (4.10) ~ (4.12))
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462 [RFMHYBHEOTHOMES TR ORSE

RO B DIE ) 8 EE RIS X, O L FE e n & — B OV AR o S 1 ek
(& er —er) WRE BT D Z LITHEA, Fig 418 HOER TR LIz ()b, L b Ok
MREEEEZ DT —BMICFTHE T 2 b D LB X T, Thbb, X(4.8)LFEERICES B7H
FOC "MW TE, (MERT L & LI,

<( gp,Cr(n) ) — B”T’ + C// (4.13)

gg,cr - ET)

Z I T, Fig. 4.18 H O ERLHN(4.10)~R(4.12) TRTEMEIDE, (M EFT L 5 IS 5
ERADBGELINLD,

Eer) \
<ﬁp°+n> =0.157 + 0.91 (4.14)
(‘Sp.cr - ET)
1
&per(M) = (&5cr — &) (0157 + 0.91) " n (4.15)

X(4.15)% AN THE S D &, () % Fig. 4.18 T/ L72F5# & Ll L T Fig. 4.22 (Z R TR T
Fig. 422 05, X(@A15)ITFHMEDE, (N DI 5 THIA L LTRIAATRE L B X b, R

BERIRRBRIZE Y n, 8L 0 g BEONSZTIUE, FRERBEGET VICHND

& er (M Z MBI TR TX B,
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-
I~

& ——— &pr (17) determined
! 12 by inverse analyses
£ — == predicted &, ¢; (7)
= 1
w
o
» 08 SM400B
© HT780
0 06
= A5083-0
D 04
©
=
S 02
o
LLl
0

0 02 04 06 08 1 12 14 16 18 2
Stress triaxiality, 7
Fig. 4.22 Comparison of &, ..(n) determined by inverse analyses (equation (4.10)~(4.12)) with one

predicted using on equation (4.15) and the mechanical properties of each material

47 FEE

2 ECIRET IR BRIETT S, MEHFE & L THW 2 —EIG /) 20 R I
TICHIT 2 RIFHLBIEOT 78, (DO TRITFEDORE L AL LT, BRI N2
% 3 FHEOSBMEE AT, RREOTHOIST) SRR & i3 2 MR 2 7
HLZ, £LT, TNOOMEBREZ N TE DS THXZRE L, ITIC, &
BETHRLNIMRROERTEZRT,

(1) SM400B, HT780 33 & (Y A5083-0 % FV THEMEEZL DI A R % i S 228l B L& k24 9k
O HTERL, RRAOTHOISSEERFREIIMENC L0 B2 D Z L3R S
77

(2) WIBME FEM MEETIC LY, AP OIRNZEMEIRREL, MEO O bis o8 %
KELZIT D Z EDMeR SN TZ, £7=, Mohr-Coulomb W7 T4 5 UV 7 2R+ 5 2
& T, RAOT BOIE I S ERIFRFEC S LT, O B LA T 7= 20 MR &
R0GH T ENRB I N,

(3) RA FORE - AT 2 EMBRHORARTE, BRI OLIEO M BHEE M S
EH, RO OB 28 2 IEREICRBL T X 2 O Bl 54 & — BRI O R O 4
PERFEDS BRI O OIS S SR PR EIC R E S BT D Z E A A SR, 2hb
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OB RO MR % VAT, B & AUHERRI A D B SRR 2B O 708 e, np B P
I B F— R T B,

(4) Eperenpd5 £ O FEM MRAT 2513 5L B IS H S RIE A I C, IR0 BRHRGE T L
I B RIS ) S R TR T V2301 2 BRI 2 B O 7 £, o0 () % MOARAT O 3R
+ 5 FEE R L,

(6) BT, &V MNARE (NOREHEL LT, TR ERROMSENHE LN LM
BIOMBMIEHETH S, n, 5035 & Wer 2 VT8, o () OIS TR ARE L,
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=
il

92 T, WA BRI RRENRUENE S A — VT L E LT, KA RREZSE)
W LTI BRI E T VAR E L, B 3 BTIE, S 2 W TIRET 53k
MG RREREET LV OWEAMEZ R L, EHEREGRATHEEER S EirffeTh D 2 &
AR LTCER, E£72, 4 BT, BRROTHOIGN) SREEKFRAE 2 3B 3 2 M B
WZOWTHHE L, AL ERRD 15 D DB OB R E O B 2 VT, FERVE
RIERET T VKB — B S ERIE T2 2RAOTHOM S PRI ERE L
Tz 12T, ZOf5 TN EIIERBEREET V& FEM T2 AT 2 & T, 8
DBEBIEED LS, VX 2 b—3 3 TR EHEZIS S E DAL & £F 5 B2
DIEMRINEREZ THITE 5 L9512k D,

T, KETIE, HMLZFMdRE L, AiEE CICREL CEAFIELHEA LT
PERZERIKIO THT 7' r —F 2 87ET 5, T7hbb, FEEIIRRBRNOELNLD
B OSBRI REIE D 70> & A OIEM BRI 2 L —Y a V2 FEhE L, EMERR
HEERBR ORGSR & 21T 5 2 & C, RS CTRET 2 FIEDMH 5 I TRE O B EVESR,
FHEREIO TR RE 520D THDHZ EE2RT,

5.2 MEMSILERKIIOTRT S —F

ARECTRET DEMEAZERIKIIOTHT 7 a—F % Fig. 5.1 12" L, LFICZDOFIAE
wRD,

(1) “FiEAESIRRBR A M L, FEM fTICH WD EIS) — B80T 2R e, 4=
TR LRI O B 05 ) i AR AERE O i 5 T V5 BRIV Y P O3
P oy —HEI Der 38 L OOT R LI n 2 BFT 5,

(2 OTHAELEE .y eaBLOnzHWT, §4HTRLEZRNA@LB)O FRIANS, —E
N S IEIRE T2 361T 2 BRAUH MM O g, o () & T2 (& 0 @\ RS EE & Bk
THEAICIE, Fig. 5.1 FIZ@)yELTORLEL DI, 461 HTORLE LY ICUIR &N
FURSERER i & T 52 S & ONHEYE FEM Mt 2 SE M35 2 & T, WEATEIIZE, o (1)
ERETDHZEBARETH D),
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(B) X A—VETMIUIE 2 EOX(Q2.20) TRT I RBEREET VA AW, 158k
SR 2 D355 OWIAR A RRFESE f 1%, +9/hSWMEE LT =0, 01%% fEH3
%o EEBRNEHTHD MnS BPIHIARA RoAE2H5EI21E, KB2)TRLE
MnS DIRFER fyps DHEERN SR TE 2, ZOMOITEIC LY fo MR ETE D
Gt oz fo &3 2, NQR20)DEELANMIHEREG L w1, f7225 Table 2.2 L <
1T Fig.2.16 X° Fig. 2.17 ORAREZ AW TERET D, £72, QTTM LIZ&, () & HHE
RIEHRETT AV THOWDMEEE LTS 2,

(4) Q) CTEEL-EREREBEGETT V22—~V T L—F &AW TFEME T L/
IATe, T N—F N T RERET T VICESWTHESh A HE o 1 &
72 EHRENERHEIGR LTV 2 & CRAMER 21 LIt R s I 2L — 3
VEER L, FEMASHERESUREE TR S,

(1) Mechanical properties of material
(Required data)

v Conduct monotonic tensile test

©

g Stress-strain curve

g =

@ N, Epcrs €T

g [ <iT—T3> P

=

True plastic strain, &
]
l n, Epcrs €T
L. — . . I y T — .
(2) Prediction of g, () by mechanical properties | 1 (2’) Prediction of g, (1) by inverse analyses
o g i
=l | = _ - N ; ﬂe
5 T Ep,cr (1) = (Ep,cr —er) (0157 +0.91) n I o \ - Eperexp =
o [ .
B - W [=% initiati —
© S : £ (’)Q\mltlatlon (o=1) .
- 2'® O of A
o1 &% 1S L X~ .
g Stress triaxiality, 7 = A
O l [ - - =
= I i
o : - ' Stress triaxiality, 7 Elasto- plastic FE-analyses
(3) Nonlinear damage accumulation model | e e e e -
dEp 1
w=|yw- = =1 - = —— — - - — -
Ep,cr(n)

(4) Ductile crack growth simulation
Analytical model Simulated R curve

Application of
damage model

cTOoD, §

Ductile crack extension, Aa,,,x

Fig. 5.1 Proposal approach of ductile crack growth simulation using mechanical properties of

material
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LM, 2 4 ORIV IEBAE IS FEAEMAT SMA00B & L, FKF OB R 2 BUS
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\PIIIMZ, 7V v 77—y % HOTRERIRE D20 Ve 2300 L7, TUSE3RER O R
R & EORBR T &2 W CTHEE L, RPN CENMEE 1.0mmimin CHTE O
CTOD L~UL %k THM « BT L7=#%, Fig. 5.5 R 7 & 9 ISR 2 510 THatEmE <4,
R ALEC £ 0 BB I O SE R LS R B A, & FHAI L7, CTOD &%, —suhidat
B> CTOD % Hi 23 S ik BRI b aTRER ¢ 5 = & 0 B, 150 121352 gL L T
Vg & AW TIRATR S5 W BRI RBE A AN CER LT,

K21 -v?)  04W —ag)l;

5.1
ZayE 0.6a0 + 04W + z ( )

2T, KIISTIERRE, oy 1ERIRIET), E XY 73, vIIART Y b, Void Vg o¥
PRy, 213 A 72y VEETHOAETIL =0 Th D, B, ThThoiFB A I
BWT, BIUERG MBI OIS M & BEEIC/R D X5 ICOH L,
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Unloaded specimen

C T N

[W=10

Cut Cut

rja=2 /B=10 Mid-thickness section

R0.25
a=2
/R Apay

Detail of notch

Fig. 5.2 Schematic of static three-point bending test Fig. 5.3 Procedure for observing the ductile
(unit : mm) crack extension of static three-point bending
test
Unloaded specimen

—"

Brittle fracture
at liquid nitrogen atmosphere

Post test fracture
Fatigue pre-crack ~—, w0 uctile Aa,
n_[ a,=30 racture Imax
B=30

R15 - —
(1)/ 5,=200 Stretggﬁg_ Fatigue pre-crack

Fig. 5.4 Schematic of four-point bending test Fig. 5.5 Procedure for observing the ductile

(unit : mm) crack extension of four-point bending test

5.4 fEMTITIA

JEMEBELER Y I 2 L— a VIOV OB R & 263 5 CYN B A Ofiftr £ 7 L &
Fig. 5.6 |Z, TRVME S TR AT 2 WA T3R5 F Ot €5 L % Fig. 5.7 ICENEIURT,
WThOET LY 8 Him =ty Uy REREEZHWTERL, R OXIFEEZZE LT
V4 BTV & Uiz, HMEIR & Jebiids K OYE 7 T 820 00 i/ NEFE AR 30umx30um &
U 7= AT = — FI2i3 ABAQUS Ver. 6.12-1 % FiU, A2 IR 4 % 58 L 7- S8 HE FEM
FRAT % ot U7z, FRATIC W IS ) — H O A BfRITEE 4 = CTES L7z Fig. 4.4 (2"
SM400B D EALR 2 IV Tz, 3RBR A ~ DA MHITIE L 245 L7 MR R 408 U Cfil2fr L L
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ThH5z7,

\

EMERAGER Y S 2 L — g I, 52 BORE L IERE R ERET T L %2 ABAQUS
@ User Subroutine % N CTHEHTE T /VICHAGA A T HERu L7z, Afr, JE(Z 200 CRb I
5B REREGE T V> TR ERICTHEE 0% 3 H L, o=l ITELEERZHIRT
5 L CEtRANER A LT, 7R, MEHRILIZEZE L ThRn,

Application of damage model

w=10

1/4 model
S/2 =20

Detail of notch root
Fig. 5.6 Analytical model of static three-point bending test using CVN specimen with a machined

notch for simulating ductile crack growth (unit: mm)

Application of damage model

30um -
S,/2 =42.5

Fatigue
pre-crack

=30 1/4 model

5,/2 =100

Fig. 5.7 Analytical model of four-point bending test using specimen with a fatigue pre-crack for

Detail of crack tip

simulating ductile crack growth (unit: mm)
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f 5.27 45 1 (5.2)
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WIZ, RWET TRAEZGT 2R R R IC o T, BRfERE v Ial—va
BSR4 bl U7z, Fig. 5.10 12 P-Vy Bi#R, Fig.5.111C R #ifk & LT CTOD & Aayex D BR % %
NEIRT, Fig. 510 7205, CVYNRERF & [FER, BB EDZRKER < PAET
b2 Lnbhd, £z, Fig. 5.11 TIHE T TRREH D D OEMBRERIRHIAVRE B <
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25
P, LLD SM400B
20
=
x 15 |
Q.
el
8 10
—1
5 O Experiment
— Simulation
0 i 1 1 1 1 1
0 1 2 3 4 5 6

Load line displacement, LLD (mm)
Fig. 5.8 Experimental and simulated P-LLD relationships for three-point bending test of CVN
specimen with a machined notch

8

ol Iiéﬁ SM400B

8  With machined notch

e

3 10 500um
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for simulating ductile crack growth (unit: mm)
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Fig. 6.5 Analytical models of standard three-point bend specimen with a fatigue pre-crack for
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Fig. 6.6 Comparison of experimental P-Vy curves with simulated results for steel A and B with a

deep fatigue pre-crack (a,/W=0.5)

_94_



Experiment
12 + al/W
05| 02
10 L| @ O | SteelA .
E A | A | StelB ol B
E o8 | tee
w -
S o6 |
= A
° 3
0.4 .
Simulation
0.2 - - - ay =02
ay/ WE0.5
OO 1 1 L L

0.0 0.2 0.4 0.6 0.8 1.0 12 1.4

Maximum ductile crack extension, Aay,a, (Mm)

Fig. 6.7 Comparison of experimental R curves with simulated results for steel A and steel B

20

SM490YB @000 ===-- Experiment
ao/ W=0.5 — Simulation

TS
(o))
T

Load A, (kN)
a

B=13 <>
5 ag/ W=05
we2e| | ™ fla=13

(Unit : mm) T/ S=104

0 ;
0 1 2 3 4 5
Crack mouth opening displacement, V5 (mm)
Fig. 6.8 Comparison of experimental P-V, curve with simulated result for SM490YB with a deep
fatigue pre-crack (ap/W=0.5)

1.4

¢ Experiment SM490YB

1.2 —— Simulation agl W=0.5

1.0

w=0.75mm

08

Aa,,

06 r

—_— -

Aa,,,=0.23mm

CTOD &, (mm)

04

02 R

(Unit : mm)
1 1

0.0 L .
00 02 04 06 08 10 12 14

Maximum ductile crack extension, Aapmay (Mm)

Fig. 6.9 Comparison of experimental R curve with simulated result for SM490YB

_95-



PLEXDY, Fig. 5.1 TR L EHBESERESIO P77 7o —F 2 H\WT, RERAFFIRO
BV K D MR ZNE RIRHT~ DR L R T 7 0 —F OBMRAEE 75 732 2 SRaisrE
~OWAYE - WHAMEORGEEZIT o7, BB RICKB T 2 EARER Y I 2 L —
VAYDAET 4D, BET T =TI L0 EMEREROE O E RBLUATRETH DR
bivTe, S HIT, BERAMEE 3572 2 BREAEHT Jo U T b A R FR AT A A A 7 I AT RE
ThHY, RBRATROBENZ L ZPERROPBLHITEX L2 E03bhoTe, ZRHD
i RAT AL  IRFRBR O FE R O 15 O 1L DM B OB R D % f 7y b & LTz
Ralb—va SR THY, ZNEEBET L L, BET Vv —FIC LV EMaZRERE
EASTHYRBEECTHTE 2 b0 EBE2 NS, MEDOEWZESRBAOTHOIE
DL AR RO TS EENAT DA, EM AR D1E WA D i 1 2l D 28I
B 2 AEMEIR G R R N IR R REET L CRIATE TN D ZLILKDLI D EE XD
N5, KiwXO7 7a—F&#ERTHZ LT, Bz, BRAOT A0TSR RE
B E 5 2 DB D, SEMERZGERIRET 2 ) | S 26 RHRTE - MBI O —B)
LB LR, B LIaA v 7 TR ¥ ORIEVERE « BIEEIR AR 2 bR O MR R D
FHEHM - TRT D Z LR AREIC AR D,

6.4 FEiE
ARETIE, 5 5 BCRE LCEMAKERESIO TR v —F O ALK D729,

IAMEFR SR OO DV MR 2 IEE B RIRTI~ D B LR Lz, T72bb, R’

B TR N B e 2 BT IOV Ty R 2 b— 3 IS K D Hl - Bt 21T, SCRT —

& Ze I TSRO MR 75 B 70 2 SRR BHI T D48 R T 7 e —F OB R L7z, LA

TIAETHONZERERT,

(1) IEMEAZIERIRTUC T 5 BAE SH(@/W)RAmEEORE L VI 2 L— 3 Itk
VIR L, BETDHTT 7o —FIC L0 R AROE NS L DB RO P EE F
BAHETH D Z ENbhoT,

(2) RET Fr—FITESE, X80 fHYHHE & SMA00YB DIEMAHER Y I 2L — 3
ZATWEBRGGE R & Ok Z Il L7z, £ ORR, W VoS EHI s LT b g tLiE
BIIRFBROFE R D > D SEME B ZGER ISR TRIFRETH 0, B TR OEWIC
£ D VEVERR DR S FREBLRTRE T b DS R G D ALT,

() TN D DORERIT, MEIOET K 2 RO B DI ) Sl B AR AR O T 23 8 824 T

!

_96-



b, EMIR OENSLEAT T O IR 0l D I B 9 2 SEE B 55 R 3 AT
BHEET L TREATETNDLZLIEKDLI D EEZLND, Thbb, KX TRE
T DB OB REIE & AR S I 2 L— 3 3 b 7R D IEME B A R o Tl
77 —F O A FIETE 2,

_97-



BITE R

AFSCTIRERBI B 265 & L, @5 O RSGERIRI 2 i S OB ERL TP
W 2FEEAEET L2 HE LT EITo 7, 16K BT TN D IEME At
B Ialb—ra B2 EA L, AA NREEE A2 Rk L2 B imi i S
IRIENE A — DTV LR IR ERBR D D15 5 N DM E OB D V2 2 L —
va Nl K0 ERSZLERKPE THIT AT e —F 2 RE Lz, £, GBS THSGR
FY7RENE X A — VT L E LT, Unitcell 12X 5 A A REREMNTIC RS < FEE REERGT
TERRE LU, ERERBEEEET VT, MEHRE & L CRRAOT B OIS ik
FREZ V22, iR K ONAEOBLRN S, ZORROT HOIE ) 28R K77
PEZ SIS THT 2 FiEZ R Uiz, BRI, RO H O 2l R 77 Rt &
KELT DR R Z L L, I AL S | 3RARER OFE R0 B 15 5 D A OB R D F
ERWEESPHREAZRE L, £LTC, ZOFPHREERT LI REBREET V%2
FEM BT ICHASA AT IEVERZERE Y S 2 L —3 3 TRV, @ELE O JENE f 2 R
PEBHHINORER S THT 2 FIEOHEL AT, LLTICAMETH LN R E £
L5,

BRI OIEMRIGERKIIZ > 2 L— N 57O, BAREROIG 2 ihE g
WIS CTe AR A RECEZEN D E UK SN X A=V F T ADBRETH Y, F 2 =TI
G TR RIEVE X A — VBT VAR LT,

(1) Unit cell Z A7 RFERYZRGHBNE FEM fiftr 2 H 8 A RERZEIZHA L, R4 N0
FHITH U CHMBRICRET D 2 &, £72, YIS ORBAICE W TRA R
RIZBWT 5 Z LR INT, YIRS FEEERF U ThHIHA, A1 FIEREE
R DIRIA A RIS ZEECHE OIS ) — O F ZBMRIIK b —E &
2%,

(2) AA FMABROSH N L IEMAZFEERN (RA FOAE - #F5RA) LR L
T, RROTHTERITA LIZOT A0 2 BEEOZLREL, 572
FERMBIOIS T — O T HRBMRICIKFE L RWE CTEITE 5, ZORMEEZFIA L CEH
SN DI H RGO FR & RBUTRE R BERIEANT, IR A FMEBERICERAET
Do

(3) Unitcell i X 2R A REREMNTH B 5 2 HEFEAIZ FW T, MR IEMFEE AR
BN NS R IE T2 360 2 BRIV S MO 708, o () & JH W T2 0T SRR

_98-



ETNERE L,

LIEDRA R R8N 2 [k U 72368 BRHRG T 7 NV O R U MERGED 720, % 3 BT
I, BEREOMEE SRR D 2 R OB B A g L L, BREM A IRE LTos 2 EE O
ZACIBRED b & CIEMEBRE IR #E A vRE CTh 5 Z & DMGEEIT - 7,

(4) FEREIMEE N2 D 2 FHOERIM B2 AV, G OIS 28 D2l A A5HE L
TS E 7R E LT, IR E AR A 2 W7o U0k & BN LS| 9EaER 2 S0 L
7=

(5) IR & BINLIIRAERIT I T D M ARFE A RFULIEME B BEHREGE T VI LIS
B THIFRETH D 2 & MR SNz,

Pk v, BRI IERIE ARG T T L OB G IR A GG~ S R Sh-,
ZhEY, AR OMYEIEOT 2 LIS E 02 kA FEM fffric THRIS L, BRAOT
B DT MEARF AR & I RERGE T VMICESE BB SN2 BEEZ AW T, &
SEAM OIEMVE B ZHE RGO TRIA ERATRETH D Z R Sz, —77, MR
BEET VK ERRAOT B OIS LKA FRIEIIM RN L0 B 5720, G5
MEHZXE L T2 o#RE, 5lakaERIS L OV FEM T 2 %0 L CHUG T 2 LERH 5, £ 2T,
¥4 BT, RAOT OIS ZHERAF Rt 2 3T 2B 2 A L, Zh b g
WIZBRA O B DS ) AR R O 5 TR Z 12 2 LT,

(6) HYEME FEM fRATIC LY, AT OIS ZEIEIRIEL, MEtOOT R b iE R 08 %
KRELZTDHZ EDNMERES N, F£7=, Mohr-Coulomb 3£ 7 A 7 U 7 2 R4 25 =
&T, BRAOT B OISR R LT, OF AR L850 B 7 72 AP A
ERVIGEHZ EDRRE I N,

(7) AA FOME - BRICER T 2 EMERROF AR, —HMOLIEOMBHREIEIZ
Fl S 4L, —HRIFOLIE O A58 2 IEMICRBLCE 200 B bfEs n & —ER(HOLL
W D IENERFE (SR FAH S BBPE O 285 o & — BRI Drer D 22) SR OF B DS ) Sl 2R
FRPEICRE KRBT 2 Z PR &N, 20 OMEIOBRAFHEZ IV T, 4]
IR & A HLRRRIR T DB IR Y FE O T8, o exp & M EHIIE B T —FBANFHE T X 5,

(8) &pcrexpds KU FEM IEHTH B 1G5 5 IG5 ZHh B I 2 W C, IR BREREGE T L
(Z B —E LRI T2 5 RFUA L BIEOT P8, () & RTINS TR 2
FHExER LT,

(9) EBIT, RVMHARE O TRHEE LT, FRIES I ERBROME RN HELND
MBI OBEBREVRFETH D n, 8536 K Der Vg, o () Dl 5 TR A RE LTz,

_99-



PLEX Y, SEEAAELIERERD 515 DL DM B OB ED H S, 5 2 ETREL
TR BRI E T VAT U g, (N & TRIT 5 Z L AIREIC R o 72, - T, BET
% RGOS B DIS I AR R DO i 5 T IR & FERE SRR E 7 v & FEM fiR#T IHE
FAT Z & T, FIRIHELIIERBROBROLDOERNO I 2 L—T g T kv EAR
EREENZ PHITE L9105, £2C, 5 5 ETIE, AIEE TIREL TS LAFIE
R U i ZSE IR O TR 7 70 —F A4RR L, MRS L DL Ak
BRI OIEME R ZNERIES L E, S5 TH R E T TRIFTRE TH 2 M REE LT,

(10) #REH A MY, IR AES | BRRER D> D 1% 5 I DM EFO B R E D 2 % F N C
oMz THL, ZhatfeiRtts U OB REREE T Ve flBriAEy I a b
— ¥ a VK DIEM RS RO T AR A T, 2T, IR X K OVE
55 TR O EARRIAE T2 B OAE M A 246 AR AR (R HhAR) 0 FEBRAE R & D bl %17
WV, WAL+ REETCTRIFETH D Z LA R ST,

(11) Z DIERSHER Y R 2 L— 3 K0, PR SR OE TR D R A R R T
~OEBHRBEATRETH D Z LRI I T,

LLEDORERNS, 1-ET 7o —FI2 LY, SFlAET R B 15 D 1 2 M RO M
REPE DGO Fr 0> b BRI OIEVE B EZSE R A TR Ch 5 Z L REiE S, £
ZT, 6 mTIE, BETIEMARERIKIO TRT 7 e —F O AL R A B L L,
B R O\ MK D BV A S RIS~ OB R I 2 L— hNA[fETH L 2 L &, AR
RTGR N B2 B BRI OV T Y R 2 b—y a VI K AR EIT o 1-, S BIT, kT
— & % P TR 28 B 7 2 BREMATEH 64 2R T 7 u —F O T & feER L 7=,
(12) MEME R AE R I 2 AR S (/W) RAMBEOREL v I a b —va It kY

B L, _ET LT 7o —FIZ X0 RBRATIROENZ X2 BIERROEELE
B TH D Z EBbnoT,

() MET v —F TS X, HAMEEN RS 2 T ORI BHI R L TRt fzbE
JBIRBLO TR ZAT 72, ERMEEEEC R RO EKBAE R & OB EITV, i
S ERBR ) 515 5N DML O B A RHE O OFF R D, FEME 240 R 2 R
THIFRETH D Z & Z i L7z,

(14) 2B OFERIT, MEIOEWIZ L D RFOT B DI 1 Z 8 EEAR AR O T 23 8 81
1Toi, TR OENCAMT T O R T2 D28 BT 2 JEMEHR 556 i 53 FEH
ERABEEGET VLV TRATE VWL Z LKL DD EEZLND,

LLED X ST, ARFsSCTIE, SRAMEIZ R E LT, KA RiERZFE & S L 7= 51

- 100 -



MOBRRBV RIS A=V T V& U TCIHRIBERBEREET LV EREL, 5618, Mk
DEERAVFFEDIE RO H 5, G BIDOREEE B < S5 o e 20t iyt 4 7l
DFEEWE L, KT 7a—F&2IEAT 52 LT, RBAOTHOIN SRR
WA G2 DMBHED G, MR ZLERIRGTZ 0 | S D MBRERE - MR O —B) &
DR, B UIEA VT Tk & OREEVERE - EEIR I 2 R4 B ) R 0D A
DOFHE - PHEIT A Z ERARRICARD EEZHND,

- 101 -



Appendix A
RS BEOT A —ERHE] 2BR L EHAZRERY I —va v

Blifk U 7o TR O E AT R0 BRI CIEMERA DR AT 258101, SIREEmD
BYEOTHRRIEICET 2L LT TRFMAYBEOT A —ERME] PRESh TN
BT 2 = o3, 455 = TAIVE SMA00B A xRz, [JRFTH YIS —E 4
W LB O RILER Y S 2 L — a3 ORERICOWTHEGR LT,

[RFTHE IO R —E 5 13, BRI L Fkg, Fig. 5.2 TRLEEREY ) v F
o VB — B A HUR O T ) =R RS TS L 72 5.3 Fi TR Le K DI, Flix
Dfaf EARRZENL LLD L~V CRRAr L 72508k i O Wil £2 70~ & BRJE 7 9 oD B R 2RR: S Admax
& LLD ORfR % K Fig. AL 2R, RS BIEOT B —E S & £ 2l % 30um
&L, FEMERZIR AR (Mans=30um)? LLD X 3.2mm & 72 %, Z @ LLD L ULzt HHIK
IR OAY I OT 2455 72012, Fig. 5.6 (SR T FENTE T /L& IV CHEENE FEM FEHT
% Ehii L7z, Fig. A.2 |2 FEM fifd T3 Hav7- LLD & YK X JEsm B3R O S O3 DB
a7, ZHED, SMA00B OJFFTH Y IO 713 1.28 & L7z,

E® E°

E 5| SM400B E L SM400B

2 S

~ 6 [ With machined notch ~ 8 | |

= = 30um

g 5 g s

£ g Notch root

g° §

% g s

© T

o 2 © 2

= 1 = !

® O R :

o ! 30um = 1 1.28

-1 o v L L -1 9 L ) . L 1 LY ! !
0 02 04 06 038 1 0 02 04 06 08 1 12 14 16 18 2
Maximum ductile crack extension, Aa,,., (mm) Equivalent plastic strain, &,

Fig. A.1 Relationship between LLD and Aamax Fig. A.2 Relationship between LLD and &,
for three point bending test of CVN specimen at notch tip obtained by FE-analysis of CVN
of SM400B specimen of SM400B
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(a) Static three-point bending test using CVN specimen with a machined notch
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(b) Four-point bending test using specimen with a fatigue pre-crack

Fig. A.3 Analytical model with local strain criterion and nonlinear damage accumulation model for

simulating ductile crack growth (unit: mm)
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Fig. A.4 Comparison of experimental R curve with simulated results with and without local strain
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