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Abstract

The purposes of this study are: to analyze the scattered transmitted light of skin as well as internal fingertip
tissues based on tissue optics; to develop a fingerprint sensor system that uses the influence of the fingerprint
surface to improve image quality; and to study other potential practical uses. Fingerprint verification has been
widely used as one of the most important biometric technologies due to fingerprint uniqueness and perma-
nence. However, the verification performance is strongly influenced by the image quality of a conventional
fingerprint sensor. A fingerprint pattern obtained by such a sensor is often discontinuous due to wrinkles and
wetting and sometimes even fails verification. To solve this problem, this study focuses on the fingertip tissues
of the epidermis. Various fingerprint optical coherence tomography (OCT) images were obtained and investi-
gated; as a result, a fine structure corresponding to light scattering intensity distribution in the stratum corneum
was discovered. I named it “submilli-structure”. The submilli-structure was confirmed to be present regardless
of the surface condition of the fingerprint by scrutinizing the OCT images. In other words, it was found that
there was another "fingerprint" under the skin. In order to detect the submilli-structure, | developed a novel
fingerprint sensor system composed of a red light source that illuminates the back of the fingertip and an
imaging device for detecting the scattered light transmitted through the fingertip tissues. Moreover, simula-
tions were performed to analyze the scattered transmitted light of the submilli-structure based on tissue optics
to verify the principle. Since the skin simulation models in tissue optics are layer models, a new simulation
model was constructed, which consists of small units with different light scattering intensity distributions. The
simulation produced the same brightness pattern as the images of the developed fingerprint sensor; therefore,
it was proved that the submilli-structure was actually detected. For practical applications of the developed
sensor system, the conditions of the light source and the imaging system are important. Good matching per-
formance requires a bright image with little shading and without saturation. The experiments also showed that
the light source must be placed so as to illuminate the nail fold vicinity. On the other hand, when the vicinity
of the center of the nail plate was illuminated, saturation occurred. The inner structure of the fingertip was
estimated by analyzing the scattered transmitted light based on tissue optics, and thus it was proved that the
internal structure contributed to the luminance distribution of the image. The two types of tissue found to have
an influence were hard and soft tissues.

In Chapter 1, the history of fingerprint verification and its drawbacks are discussed, and the purpose of this
study is described. Chapter 2 elucidates the submilli-structure by examining OCT images and verifying the
effect of fingerprint surface conditions, such as wrinkles and wetting, on the submilli-structures. In Chapter 3,
I develop a novel fingerprint sensor to detect the submilli-structure, and describe the verification experiments
with wrinkle and fingertip surface wetting conditions. Chapter 4 contains the descriptions of the submilli-
structure modeling and a Monte Carlo simulation based on tissue optics to prove the discovery. In Chapter 5,
I describe the experiments for determining the optimal conditions of the light source and the imaging system
for practical uses of the developed fingerprint sensor, and a Monte Carlo simulation to elucidate tissues oc-

curred shading. In Chapter 6, the conclusions of this study are drawn.
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/ Stratum corneum
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_——— Stratum guranulosum | Epidermis
T Stratum spinosum
T Stratum basale
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Secondary ridge  Primary ridge

Dermal papillae

Fig. 2-1. Structure of skin of a fingerprint*. There are the stratum corneum, stratum lucidum, stratum
guanulosum, stratum spinosum, stratum basale in the epidermis in order from the surface of skin. The der-
mis is under the epidermis. The primary ridge corresponds to the ridge on the surface of a fingerprint, the
secondary ridge corresponds to the valley. The dermal papillae in the dermis are the interface to the epider-
mis and two dermal papillae corresponds to one the ridge on the surface of a fingerprint. Hence it was
possible that there were some structures correspond to the concave-convex shape of the surface of a finger-

print.
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Ridge
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Fig. 2-2. The cross-sectional image of a fingerprint of a normal finger obtained by OCT: the wavelength
of the light source was 1.3um. The skin surface was represented as the brightest white line, the dark area
upper this line was the air, brighten white area under this line was the epidermis.

A structure was discovered in the stratum corneum and surrounding area, which exhibited weak (red dotted
circle) and strong (red circle) light scattering of the sites corresponding to the fingerprint protrusions, i.e.,
ridges and indentations, i.e., valleys respectively. In other words, this new structure was the fingerprint
inside a finger. The size of one period along horizontal direction of this structure was about 0.5mm accord-
ing to one period of fingerprint pattern. The depth of this structure was about 0.4mm or smaller according
to the thickness of the stratum corneum. Therefore, this new discovered structure was named as “submilli-

structure”.
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Stratum corneum

Epidermis

® SR

Fig. 2-3. (a) The cross-sectional image of a fingerprint of a normal finger obtained by OCT: the wave-
length of the light source was 1.3um; (b) an obtained location on the surface of the finger. The OCT image
was obtained along a black dotted line on the image of (b) perpendicular to the fingerprint pattern. The
submilli-structure was discovered in the stratum corneum, which exhibited weak and strong light scattering

of the sites corresponding to the fingerprint ridges, indicated red arrows on the image of (a), and valleys

respectively. Ridge Ridge

Valley | Valley

IStratum corneum

Epidermis

I 0.2mm

Fig. 2-4. The cross-sectional image of a fingerprint of a normal finger obtained by OCT: the wavelength
of the light source was 0.8um. There was the submilli-structure same as Fig. 2-3 in the stratum corneum,
which exhibited weak and strong light scattering of the sites corresponding to the fingerprint ridges, indi-

cated red arrows, and valleys respectively.
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Valley | Valley

Stratum corneumI

Epidermis

(@)

(b)

2

(©)

Fig. 2-5. OCT images from different point of normal finger. Three images of (a)—(c) were obtained
along arrows of (a)—(c) on a fingerprint schematic. Arrows of (a)—(c) were perpendicular to the fingerprint
pattern and picked up different area to cover throughout the fingerprint. There were weak and strong light
scattering of the sites corresponding to the fingerprint ridges and valleys respectively, which was the sub-
milli-structure. Hence, the submilli-structure were observed in images (a)—(c), it was appeared that the sub-

milli-structure existed throughout the fingerprint.
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Ridge Ridge
Valley | valley

(a)

Stratum corneum

Epidermis

OV -~ A L S

Wrinkle

Fig. 2-6. (a) The cross-sectional image of a fingerprint of a wrinkled fingerprint obtained by OCT; (b) an
obtained location on the surface of the finger. OCT image was obtained along a black dotted line in (b)
perpendicular to the wrinkle. The wrinkle indicated by a yellow dotted circle was appeared on a ridge
indicated by red arrow in the OCT image of (a). There were weak and strong light scattering of the sites
corresponding to the fingerprint ridges and valleys regardless wrinkle. Therefore, the submilli-structure was

existed in the wrinkled fingerprint.

12
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Valley ! Valley

@

$ Stratum corneum

Epidermis
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Fig. 2-7. (a) The cross-sectional image of a fingerprint of a flat fingerprint obtained by OCT; (b) an ob-
tained location on the surface of the finger. OCT image was obtained along a black dotted line in (b) per-
pendicular to the fingerprint. There were weak and strong light scattering of the sites corresponding to the
fingerprint ridges and valleys indicated red arrows regardless flat. Therefore, the submilli-structure was

existed in the wrinkled fingerprint.
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Valley Rldge

Imagmg device

Prism v /
0 < Critical angle ¢

i nght source

Fig. 3-1. Principle of light-path separated method. This method needs a prism, imager and a light source.
A finger is put on the surface of the prism and light irradiated to the finger surface, an imager is installed
against the angle larger than the critical angle. Light irradiated to a valley of a fingerprint is reflected in the
prism with the angle smaller than critical angle and cannot reach the detector. However a part of the light
irradiated to a ridge of a fingerprint goes through into the finger, the other light is total reflected and detected
by the imager. Thus, a fingerprint image obtained this method is represented that ridges are dark and valleys
are bright. The contrast of this method is better than the total internal reflection method because light irra-

diated to the valley always cannot reach to the imager.
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Fig. 3-2. Principle of thermal sensing method. It is a method of detecting a fingerprint by scanning the

finger on the semiconductor surface consisted of a heating element and a temperature sensor.

(© HERENX

JFEEX % Fig. 3-3 (2", RO RMANT < IZEBOEMm A MDA L, iR & FEfRm &
DZEMEarT oL LTRA L EREEZRET 5 TH D, BRIZEHSILD EM
(TR & DB SIEBIT D720, B R DI OMM AT D Z LN TE D,

Valley Ridge

Fixed
— _/

Capacitor electrodes " Insulating film

Detecting circuit

Fig. 3-3. Principle of capative sensing method. A large number of electrodes are embedded near the sur-
face of the semiconductor. The space between the electrode and the fingerprint surface are used as a capac-

itor, and detecting the capacitance by a circuit.
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Wrinkl% / A r I
" e
Sensor ; : i
Pimsm .
XX
(a) (b)

Fig. 3-4. Problems with conventional method: wrinkled fingerprint; (a) schematic diagram of wrinkled
finger on a sensor surface: (b) obtained image by light-path separated method shown the right side. Almost
everybody has wrinkled fingerprints. These skins may therefore present various ridges and valleys that are
not intrinsic to the fingerprints. However, the fingerprint sensors cannot distinguish the origin of the fin-

gerprint shapes. Consequently, the output images will have unexpected breaks on the fingerprint pattern.

: Valle
Ridge  Valley Rldgi e
\\/\_/ i
Sensor Sensor
(@) Normal fingerprint (b) Flat fingerprint

Fig. 3-5. Problems with conventional method: flat fingerprint. Normal finger with clear ridges and val-
leys is shown in (a) and flat finger with small distances between ridges and valleys is shown in (b). It is
rare for fingerprints not to have clear ridges and valleys. However, there are small distances between ridges
and valleys, almost flat, which significantly weakens the contrast of the signal detected by the fingerprint
sensors, because many of them depend on this distance difference to operate. As a result, the resulting

images of the fingerprint pattern may not be clear.
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Fig. 3-6. Problems with conventional method: wet fingerprint; (a) schematic diagram of wrinkled finger
on a sensor surface: (b) obtained image by light-path separated method shown the right side. ~ Once sweat,
water, and other liquids fill in the valleys, the fingerprint sensor will detect these valleys as if they were
ridges, because the fingerprint sensor cannot distinguish real ridges from the resulting fake ridges. In this

case, some parts of the fingerprint pattern images will blacken out intermittently.
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Fig. 3-7. Construction of the hardware of a novel fingerprint sensing system?2. The light from LED went
through the finger and the fingerprint in order to reach the imaging device. This approach differed from the
conventional methods in that there was not skin surface shape detection by contact. The light amplitude
reaching the imaging device carried information on the fingerprint pattern of the internal skin: the submilli
tissue. In the image, the ridge lines of the fingerprint appeared dark because the light strongly was scattered
by submilli tissue corresponding to the ridges, while the valley lines appeared bright because the light was

weak scattered by submilli tissue corresponding to the valleys.
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Fig. 3-8. Output image of wrinkled finger of (a) conventional sensor and (b) developed sensor.  Finger-
print images were obtained from 111 wrinkled fingers by the conventional sensor and developed sensor to
carry out the evaluation of the developed sensor. A pair of output image (a) and (b) was one example of
experimental output. Although fingerprint patterns appeared along horizontal, there were some vertical
bright lines across fingerprint patterns in the image (a). These vertical lines were wrinkles. Unlike the image
obtained using a conventional sensor, shown in (a), developed sensor can obtain a clear fingerprint pattern
without wrinkles, as illustrated in (b). These images indicated that the developed sensor could obtain the
fingerprint pattern from submilli tissue within the skin of the finger without the influence of the surface of
the finger. The developed sensor could obtain clear fingerprint without wrinkle from 110 fingers of 111

wrinkled fingers.
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@ (b)

Fig. 3-9. Output image of wet finger of (a) conventional sensor and (b) developed sensor. Fingerprint
images were obtained from 18 fingers wetted with hand cream by the conventional sensor and developed
sensor to carry out the evaluation of the developed sensor. A pair of output image (a) and (b) was one
example of experimental output. Unlike the image obtained using a conventional sensor, shown in (a),
developed sensor could obtain a clear fingerprint pattern without discontinuous, as illustrated in (b). These
images indicated that the developed sensor could obtain the fingerprint pattern from submilli tissue within
the skin of the finger without the influence of the surface of the finger. The developed sensor could obtain

clear fingerprint from all 18 wet fingers.
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Fig. 4-1. Skin model of the conventional layered model (a) and vertical structures of the submilli-structure
(b) appeared in OCT image. The conventional model consisted of several layers with different optical
properties. The number of layers was from two, epidermis and dermis, to nine, the largest number in the
latest study. On the other hand, although the submilli-structure that is the subject of this study existed inside

the skin, it had a horizontal distribution, so the concept of the layer model could not be applied.
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Fig. 4-2. Our simplified simulation model. Simple shapes of this model eliminated other effects such as
differences in the thickness of the structure so that the effects of light scattering characteristics can be easily
represented. Two submilli-structures were created as the smallest unit and arranged alternately. Each has
different optical properties, weak scattering and strong scattering. The length along the x-axis of the unit
0.25mm was estimated based on the typical widths of the fingerprint ridges and valleys. The length along
the z-axis of the unit 0.25mm was estimated based on considering OCT images and the experimental value
of the thickness of the stratum corneum. The simulated light source emitted red light distributed according
to a Lambertian distribution, as tissue is a strongly scattering medium. A detector was placed under the
submilli-structure 0.3mm away so that the light intensity distribution directly under the finger simulation
could be detected without an imaging system .In our simulation, the submilli-structure was placed between

an opposing light source and detector.
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Table 4-1

Optical properties for human skin in visible red range corresponding to the light source of developed sen-
sor. Optical properties excluding Zonios (2006) and Bashkatov (2007) were surveyed in review paper of
Lister (2012). Prahl (1988) was cited from Lister (2012) because of private accessed. The values of pa
and s of Bashkatov (2007) were graphical data and g was calculated from equations and parameters only
in the reference. Since eleven values of pg in Table 4-1 were less than 5 mm-, it was small relative to the
length of the smallest unit of the simulation model of the submilli-structure, there was a possibility that
the light was not scattered in the smallest unit in the simulation. Thus, Bashkatov (2007) was adopted in

this study because only this study represented s and g.

Tissue A Ma Us s g Mesurament Reference
[pm]  [mm?]  [mm?]  [mm?] situration
Dermis 630 2.7 18.73 - 0.867 in vitro Jacques (1987)%8
Skin 630 1.3 9 - - in vitro Prahl (1988)*
Skin 630 0.3 1.7 - - in vitro Chan (1996)%
Epidermis 630 0.25 5 - - in vitro Salomatina (2006)*°
Dermis 630 0.15 3 - - in vitro Salomatina (2006)
Dermis 630 0.12 5.25 - - in vitro Graaf (1993)*
Skin 630 0.035 2.8 - - in vitro Simpson (1998)#
Skin 630 0.06 3.2 - - in vivo Doegnitz (1998)*
Skin 630 0.019 1.44 - - in vivo Torricelli (2001)*
Epidermis 630 0.1 - - - in vivo Meglinski (2002)%°
Dermis 630 0.018 - - - in vivo Meglinski (2002)
Skin 630 0.003 1.45 - - in vivo Graaf (1993)
Skin(Arm) 630 0.017 0.91 - - in vivo Doornbos (1999)*
Skin 630 0.009 1.67 - - in vivo Doornbos (1999)
(Forehead)
Epidermis 630 0.45 - - - in vivo Svaasand (1995)*
Dermis 630 0.07 46 - - in vivo Svaasand (1995)
Skin 620 0.02 1.8 - - in vivo Zonios (2006)*
Epidermis 640 0.5 - 26 0.805 caliculated Bashkatov (2007)*
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Table 4-2
Optical parameters of the epidermis for Monte Carlo simulation. Two parameter sets were hypnotized
for both strong and weak scattering, to verify whether or not the difference in the | values of the weak and

strong scattering areas affects the image contrast.

Bashkatov Parameter set 1 Parameter set 2

(2007)¥  Strong scattering  Weak scattering ~ Strong scattering  Weak scattering

at 0.64um
| [mm] 0.0377 0.0577 0.0177 0.0477 0.0277
g 0.805 0.805 0.805 0.805 0.805
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Number of light beams
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Parameter set 1 Parameter set 2

Fig. 4-3. Simulation results with parameter sets 1 and 2 listed in Table 4-1.5* Total generated photons
were 5x108 The brightness distributions of greyscale images corresponded to the layout of strong scattering
and weak scattering of the submilli-structure simulation model in Fig. 4-2. These simulation results indi-
cated that when the light was transmitted through a structure with different scattering characteristics, an
image with a brightness distribution corresponding to the scattering characteristic distribution could be
obtained. Furthermore, the contrast of image with the parameter set 1 was greater than image of the param-
eter set 2. This indicated that the greater the difference between the | values of the weak and strong scatter-

ing areas, the greater the contrast in the obtained greyscale image
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Fig. 4-4. Horizontal profiles of images in Fig. 4-3. The contrast of the profile of parameter set 1 was

obviously higher than the parameter set 2.
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Fig. 4-5. Fingerprint image obtained from developed sensor and a profile of this image along a red line

Table 4-3
Peak to valley ratio calculated from each one peaks of profiles of simulation results in Fig. 4-4 and a pro-

file of fingerprint image in Fig. 4-5. The value of the ratio of parameter set 1 was obviously larger than
the parameter set 2. Besides, the value of the ratio of parameter set 2 closer to the value of fingerprint im-
age than parameter set 1. It was appeared that the optical properties of parameter set 2 were possible to

represent optical properties of the submilli-structure of a real finger better than parameter set 1.

Calculation source Peak to valley ratio
Simulation results (Fig. 4-4) Parameter set 1 1.16
Parameter set 2 1.07
Fingerprint image (Fig. 4-5) 1.10
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$ Stratum corneum: n=1.51+0.02

@ Stratum spinosum

Epidermis: n=1.34=20.01

Fig. 4-6. OCT image of a fingerprint. A curved structure was observed in the stratum spinosum. It was
possible that this curve was origin of a fingerprint pattern of developed sensor because is acted as a lens.
However, a wrinkle in the stratum corneum was not detected by developed sensor even if the large ratio of
the diffractive index of the stratum corneum to the air. The ratio of diffractive index the stratum corneum
to stratum spinosum according to the directive index of the epidermis. Therefore, it is unlikely that the

curve structure in the stratum spinosum was origin of a fingerprint pattern of developed sensor
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Fig. 5-1. Strongly shaded image obtained using the developed sensor.  This image consists of a saturated

area and an area that is too dark to detect minutiae.
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> /\_/\_/'\/'\/a ’g
w = 200 @ = 200
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Fig. 5-2. Profiles of an image in Fig. 5-1. The left profile was obtained along a yellow arrow on the dark
area and the right profile was obtained along a red arrow on the bright area. These two profiles represent

that contrast of the bright area is higher than the dark area.
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=P Direction in which finger was moved Irradiated point on the original position (a)

_ Light source (wavelength: 660 nm)

Fingertip
)

Nail fold \

—> (b)
L Shielded plate

_——_ Imaging system

/__._ //’\\ —— Lens (Customized, F#: 8.7)

|
—— Imaging device

Optical path length: 98.3 mm  (8-bit monochrome, Resolution: 640 x 480)

Fig. 5-3. Experimental setup. Arrangement of the optical system was configured based on the basic
configuration of the sensing system shown in Fig. 3-7 in Chapter 3, a light source was arranged to irradiate
the back side of a finger, an imaging system was arranged to detect the transmitted light from the finger.

Two black arrows were directions in which finger was moved in Fig. 5-5.

=P Direction in which finger was moved

Irradiated point on the original point (a)

(d)
©+—( @ <( — ()
Distal interphalangeal joint
1 Nail fold
()

Fig. 5-4. Irradiated position on the finger and direction of finger movement. Fingerprint images were
obtained in each position where the finger was present. These positions shifted 5 mm in steps of 1 mm

from their original position (red circle) in all four directions (black arrows (b)—(e))
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Aperture of a shielded plate . 12mm
<>

Fig. 5-5. Detection area on the position (a). ~ The aperture of a plate and detection area was shown by

red rectangle. A fingerprint image was obtained from this area when a finger put in the position (a)

(d)

(b) | (@ (©

Fig. 5-6. Fingerprint images of an index finger of twenties female obtained for the conditions in
Fig. 5-3. Images of (a)-(e) correspond to the positions and directions in which the finger was moved in
Fig. 5-4. Images of (b)-(e) were obtained on the position 5mm away from the position (a). The saturated
areas are shown in (b), (d) and (e); (c) and (e) appeared in the finger and outside the finger (red dotted
curved line) for each position. The saturated area outside the finger was due to the irradiated light reach-

ing the imaging device directly without passing through the finger.
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? "~ Light source: Laser diode

Nail fold \

— Fingertip

_ Shielded plate

__—"Imaging System
1
‘ '— Lens (Costumed)

|
__________ —L - Imaging device
(8-bit monochrome, Resolution: 640 x 480)

Fig. 5-7. Experimental setup. This setup was based on Fig. 5-3 and positions of irradiated area could be

moved. A laser diode was chosen to determine irradiated position easily because of its high directivity

Irradiated point .
Nail fold Side of a fingertip

(b)

_ (d) Distal
Nail plate interphalangeal

joint
Side of a fingertip

Fig. 5-8. Irradiated position on a finger. Red circles were irradiated spots. (a)—(€) were same position as

above experimental positions of Fig. 5-4.
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(d)

) () ()

(e)

Fig. 5-9. Output images obtained with the different irradiation positions in Fig. 5-8%°. These images
were correspond to images in Fig. 5-6: Saturation area was appeared not in (a) and (c), however,
appeared in (b), (d) and (e). Brightness of (a) tended to be higher than (b). There were no saturated

area outside finger in (d) and (e) different from images in Fig. 5-6(d) and (e).

Fig. 5-9 O %2513, Fig. 56 & [FERICLL FTOHRNBIER ST
- BT AR AT, EEO)( D) TR EAEL TS
- () ITFR JRU SRV A G (XA 2 WA & 5

L2rL, Hifg(d) & @IIZHE OAMI OB ERFIT RO N2 o7z, AERTIE, WiER L
OB A EE L, DO OXPEERBERICAL LWL D ICH#fit Li7ed LB b b,
AREBRIZEBNTH, B E O ORRN2H L S 20T 57200 A N7T KX D
W&, vo—T 4 T EMET 27200707 7 A4 MK DT E1To 72, 2 OFER., B
2 X 2 & [ USRS bz, i ENCEEM A R,

PLEMNS, BBIZED2FHMERS LI O A T T LT 07 7 A MWK DATIC L - T IR
MG E 2 BB ST 5A S, EEMEQ THEONZBERS, v x—T 1 IS,
AN NI RN LD Z Enborot,

IO DRERN G BHEIRE 3 5 EIRALE I & OHRIESRALE ORI R L THI Y
ST ERETT 5. 2 DOEBROoESIL, FRICK U TOUROBKNEZBE S E22 L Th
0. FESIL, RBEROEEDHEETH L,  EERQ@EITITEFNFEEET, EED) (D)

49



TIARIN AL T D 2 & Hifg @)X L 0 2EmMICH L WEmICH S Z L1 5.2.1
H, 5.22HOM S CHERTE 2, Z07d, BT 2BHEMEIZLD bOT, RO
MEICEDBDOTIEHRNZ ERbholz, —J7, EEOG(DIZ I S8 OSMI O E fafn
R & EE LTe Fig. 56 OATRLNT0, REROBENC L 5 OB ARG
DRKThoTe, EHIT, Yo—T 4 7&K T 5L, RIGRMELZEE L THELALL
Fig. 59 (b)~(e)D4akMi{g D S5 A, Fig. 56 L0 HL/hSWZ &b aoT-, Fig. 5-6 DES
BT, SBRO DK L THEEZE LI Z LI2 X0 SBRITHEN D OB LM
R ORES NN A ST Z ERFER EHERI L7z, LinL, RERER Y =—FT 4 7
MFEAE L0, JRROMIIZIZE B Rata 85 5,
VI boigim &k v ERMARAETTIC, v a—T 1 7S BENHDWERIC
RHEMEE LT, U EE HENT,
Gt EBUIE ORIV IR 2 X 0 IciE T 5,
PR ROBLEIIEEE L2\, 7270 L, 5235 LT SO RAF L2 L9
T 5,
W IREH A FEIN G- 2 5 8B A GET 5,

5.2.2.2 WA FE 33 B IR AF

Fig. 5-10 (& F2BRR OWEREAE AKX & FE~D B 4 B 2 7n 7, FEBRCRIZRUR A R 5
Bk Fig. 57 ZtIZ LTV DA, ARFEBRTITIEIRO IR E & YEIR o0 R G£4 FE % il 5 8 &%
TEDLLIICLEFEENTWD, BEHEIEZB~E O 4 51T, BEAE A IZIREALE 25
LCHEE FHE, B)~ENIZNZI 45N AE L Lz, BEMNIEIX Fig. 5-11 (2T
Xz EF 6 37— RE L=, K D (a)(e) (eI RS E M FEBR D Fig. 5-8 D (a)(c)(e)
ERICNMETHD, 2FD ., ME@IZHHA) TS L72G61%, FE R L OB E K
FVERER FZBR CONTE () & [F) U UL E - ST A D, FEBRIE, FBAIEKEIEER O
PBRE DD 20 A ktE L 30 B DB 1 AT oZNEN LIFED, (~ODRHKLEIZ
K LT ENEIFig. 5-11 ISR T KO ICHHAELE 5 "F — B2 TToTe & E LT,
BYEDONLE () THUS L 7= Eitg % Fig. 5-12 (27”7,

Fig. 5-12 OfRRCEIGIL, FEALEKAFVEMGR IR T 72 Fig. 5-6 & RURML B R FMERERE S
%fﬁth59k£&@ BRI REIR DS AR T, /i—74/7®%é%¢mf@ﬁ@f

FIERICTHD Z ENFERTE 2, BN Tide< . ERMICHERT 57201z, KF
ﬁm&ﬁpﬁm®7m774w%kw\@m%ﬁ%ﬁot&_%\u@_iéﬁﬁ&ﬁﬁw
FERNE LN, il ENCRT, Fig. 5-11 107 L7 BIHE o) ~O CIRE L7-mig s, BB
HAEICIDEEDEITIR NIRRT,

ULEORER IO RS AL, BROBEICREEL 522N ERbh o7,

50



=P |rradiated direction Irradiated point

. A
Light source E D
a52C \ 45° € 45°
N

A

04\5;]' P
/ Nail fold \
A ~_

Fingertip

____ Shielded plate —

Fig. 5-10. Experimental setup and irradiated directions to a finger.  This setup was based on Fig. 5-7 and
positions of irradiated area and irradiated directions could be moved. Five directions were determined:;

vertical downward.

Irradiated point

(9) (&) (h)

( @ ()

Fig.5-11. Irradiated position on afinger. Red circles were irradiated spots. Points of (a), (c) and (e) were

same position as above experimental positions in Fig. 5-8.
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(D)

(B)

©

(E)

Fig. 5-12. Output images obtained with the different directions on the position (a) in Fig. Fig. 5-11.
There were no saturated area in all image. Brightness distributions were the same even in different

irradiation directions.
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Nail fold
Distal interphalangeal joint
Soft tissue

Nail plate / Distal interphalangeal joint

|

Distal phalanx (Hard tissue)

_ Nail plate  Nail fold
Soft tissue
Distal phalanx (Hard tissue)

Fig. 5-13. The structure of the fingertip 5. The simplified model was created based on this anatomy
reference. Blue colored objects represented hard tissue, the distal phalanx, which was focused in this study

because of the largest tissue in the fingertip

Irradiated point

Nail plate Nail fold Distal interphalangeal joint
/ Distal interphalangeal joint ~ Soft tissue
@

8/

N\ ,
Distal phalanx (Hard tissue) Nail plate  Nail fold (d) /

(b)

Soft ti
ot tissue Distal phalanx (Hard tissue)
Fig. 5-14. Irradiated point in Fig. 5-8 in the previous experiment in 5.2.2 superimposed on Fig. 5-13
There was the distal phalanx under positions (a)—(c) and not under positions (d) and (e) corresponded. The

shape of the distal phalanx under the position (b) was a tip part and thinner than other parts.
Fig. 5-14 12 L % & | BEEERIFIA R & /(7 (e) & (A DOWNEBIZITE A | A7E (b) D NER I

F ORI Y HHI< 22> TWZ ERbN D, — 5T, BEIZAFIN R 5720 72T
E@) & CQDONEIITER D D, Z ZBLLFORGELZ L Tlz,
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Table 5-1
Optical properties of chicken’s muscle at A=630nm 27

bs [mm™] Ha [mm] g
345 0.012 0.965
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FEOENRKE WGEIE, $BINEREEE & TV Hgum BRI & U U 72 35508 St i o0 88 45 A
WCRERENHEET L LN TE D, 22T AV I 2 b—3 3 Tl BELTREE D ZED/N
SEWEA IR D EGIRE SR 2 MR T D720, BONFRHMEAZHAL Y 3T 25
BEOEIZRDEIITRE LT, £7T. gDEN»BRE LTz,

g DAL, TR CTIX 0.6-0.9, #FHAR T3 0.8:0.95 THDH Z ENMBI TS 32, B
ik & AR g DI KT 5 BRELIESR & BELA O BfR 2 R(2) L v HH L Fig. 5-15 1Z7R
L7223, AR 0D 7 S kAL 2 0 EEME MRS L XV RERAETHELT 2 Z L nbhd,
WO T AEIDOY I ab—a BT 5 E D gDfEix, Table 5-1 (278 L7ZfF A D g=0.965
F RN EL o, WD g DIY 5 HIEOHPANS 0.8 & 0.85 ERE L7z, KIZ
ps DINY 5 DIEZRETT 2. ARO K 91T, peDFEFAEITHEFAEOFT THH 4 5O E 2
570, KB)EY, ulImKRER/NTIOHEDEEIY 552 EXbnb, £7-, 4D
LIE 7 AN SWIGEITBELREEE A2 < 720, LV BELSND Z L E2R LTS, iR
WEELIRIC I T 2 1R, B8WVBELIRD 1 L0 /NSVMEEED Z &b, 22T, HO 1
ZRHAO 1ERBIC 05 EEEL, BD pa & pus ZRERIZHAO 1 f5E 0.5 5 EE L
7z, Table 52 |[ZARID Y I 2 L—3 3 » CHMAT B FFHEZ R T, KIZ, ZNHDONF
FetE 20 S 2 AR NEREE O T VIR 2 BEt LTz,

56



3.E+07 |
1.E+06 ‘
6.E+04 A
3.E+03 A 0.6
"\
) A
E 2.E+02 0.7
8.E+00 / \ 0.8
4.E-01 / \ 0.85
0.9
2.E-02 0.95
0.965
1.E-03
-180 -120 -60 0 60 120 180

6 [deg]

Fig. 5-15. Henyey-Greenstein scattering phase function calculated for typical and measured g values. Typ-
ical g values are 0.6-0.9 for hard tissues and 0.8-0.95 for soft tissues. The measured g value of chicken
muscle is 0.965 (Table 5-1).

Table 5-2
Optical parameters used in the Monte Carlo simulations the values for muscle were measured and the val-

ues for the bone were assumed by the authors

Muscle Bone
Parameter set I [mm] g | [mm] g
1 0.028975 0.965 0.028975 0.8
2 0.028975 0.965 0.014488 0.8
3 0.028975 0.965 0.028975 0.85
4 0.028975 0.965 0.014488 0.85
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SHEIR LT BN T T £ 728, 2 ZC, Fig. 513 TR LTSI T b7 A5 O
KM%ZEZIZL T, TIECREZHEL-TT LV EE->7-, Fig. 5-16 (-1, ZOET LT
R 2R o 7= R PR CHER ST v | AMAIO RN, Nl [ fE RS 2% LT
W5, MEIEFE R < | A FREIR BT A K< Lz, Z20v 2 b—va U T,
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BN < 7o - FRNLE & fafn N L o =i 2 fifH & L=, Fig. 516 D)L
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% NCE O R ITEE~O B 21 LT 5, £72, SEFIE, BilEOEROE » 7
v T HERSEIT, 96 DFATHEH N, KU =2 b— 2 0HMITERAROBE LR T
XN DO T E Lz, ZOFETAZHWEZY S 2 b—2 3 U R %A 5.3.3
[ N

Light source: Position (b)  Lightsource: Position (a)

____________________________________________________________

o

Detector .
% Distal phalanx Muscle

y Distal
Fingertipsidje € > interphalangeal
gertip joint-side

Fig. 5-16. Simulation model based on an anatomy reference illustrated in Fig. 5-13. This
model consisted of simple, concentric, tapered cylinders, with the outer cylinder representing
muscle, and the inner cylinder representing the bone. The cylinders were thinner towards the fin-
gertip and thicker towards the base. A detector was placed under the finger so that the light inten-
sity distribution directly under the finger simulation could be detected without an imaging system.
The detector size was set to be the same as the length of the finger. Also, the light source position
was set to be two locations on the nail side of the finger. Position (a) represents Fig. 5-8(a), and

position (b) represents Fig. 5-8(b). The parallel light with 6 mm diameter as the light source as
same as the experiment in 5.2.1
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Position (b) Position (a)

Parameter set 1

Position (b) Position (a)

Parameter set 2

Position (b) Position (a)

Parameter set 3

Position (b) Position (a)

Parameter set 4

Fig. 5-17. Simulation results with parameter sets 1-4 listed in Table 5-2.5  Positions of (a) and (b) rep-
resent the irradiation positions shown in Fig. 5-16(a) and (b). These results were converted from the number
of rays that reached the detector to 8-bit grayscale images. The number of rays generated each simulation
was 10 million. Each pixel was quantized into 8-bit data, the brightness was represented with the maximum
value 255 and the light detected in the simulation model are represented by white dots in In the simulation
results with parameter set 2, the smallest value of | and g of the bone, in Table 5-2, the largest difference

between the brightness of position (a) and position (b) appeared.
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Light source: Position (b)

Muscle Bone

Detector — —

Light source: Position (a)

Detector

Position (b)

Fig.5-18. Lighttrajectories simulated with parameter set 2 in Table 5-2. The number of rays was ten. The
light trajectories illustrated the optical path length and scattered angle in each path. In position (a), trajec-
tories appeared shorter and more complex, in other words, smaller optical path length and larger scattered

angles, than in position (b). It was speculated that these differences of trajectories between position (a) and

ity

Position (a)

(b) were depending on the differences in the values of | and g between (a) and (b).
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Fig. 5-19. Brightness profiles of experimental output images and simulation results with parameter set 1—

4 listed in Table 5-2. The positions (a) and (b) represent the irradiation positions shown in Fig. 5-8 (a) and

(b). The profiles of the experimental results were calculated from Fig. 5-9 (a) and (b), and the simulation

results were calculated from Fig. 5-17. All peak brightness of (b) of simulation results were brighter than (a)

and slopes of (b) were steeper than (a). These points corresponded to the differences of Fig. 5-13 (a) and (b).

Besides, the profiles of parameter set 2 represented the largest difference between the brightness of position

(a) and position (b).
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Fig. 5-20. The profiles of simulation results obtained using parameter set 1-4 listed in Table 5-2. The
positions (a) and (b) represented the irradiation positions shown in Fig. 5-8 (a) and (b), respectively. The
profiles were calculated from Fig. 5-19 and normalized using the normalization factors 4.29x102, 2.62x102,
5.04x102, 3.03x102 for parameter set 1, 2, 3, and 4, respectively. These were saturation areas in profiles (b)
same as the experimental results in Fig. 5-19(b). These simulation results represented that the simulation

model reproduced the experimental results in terms of saturation
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Vr—T 4 VT DRI SEWLEET 7012, 5.2 HOEROEL L FEIEKIC Fig. 520 O~
n7 7 ANVOEEEFEN L, BAEME D777 7 A VOMEEIXT 5@DHERDT-,
MEOG)OEBRIINE@DOHEBR LY v o —F ¢ I PREINZD, TN T 1 RIS 5.
ZZ T, Fig. 5-19 DEBRFE R L Fig. 520 DV 2L —a UEROTn 7 7 4 L DHE B
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Table 5-3

Slopes of the profiles in Fig. 5-20. The values of all slopes were negative because of monotonic de-
crease of profiles. The ratio of the slope of (a) to the slope of (b) was less than 1 both experimental results
and simulation results. The values of ratio of simulation results were close to the experimental results.
Furthermore, parameter set 2 was closest to the experimental results. Optical properties of parameter set 2

assumed to represent the real experimental properties better than other three parameter sets.

Slope of first-order approximation Ratio of the slope of

Calculation source @) (b) (a) to the slope of (b)
Experimental result (Fig. 5-19) -0.298 -0.720 0.41
Simulation result Parameter set 1 -0.675 -1.391 0.49
(Fig. 5-20) Parameter set 2 -0.750 -1.718 0.44
Parameter set 3 -0.616 -1.309 0.47
Parameter set 4 -0.738 -1.608 0.46
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Fig. 5-21. Vessels pattern represented by dark curved lines are superimposed on fingerprint pattern.
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(a) ERFAR

AR FHFRITE VTR EN R FAT, 204080 BRI Lotz 2R S8
DT EERREME LTS, —RIIC, U XA RBFEF. LR TS TEBY . B
FERISEDLIEDICINLDORENRD LN TS, Fig. A 1 ICHEKEZRT, 77U X AT
REeEmMIEs 2 VOREENEEKHN ST ERFORBOR FEH > TN,
BUL, 52BN T U R AW U7 e B 2 2 003 I BLE SH, RS 11T,
7V XL CEME SRS AT AEICEE SN D, PO 6 1370 XA EFRO#
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L EFER DM L COW B EFT T, 2 ToNaerE sh, RgHE - IcBES 5, 20
FER. FEROMERRH S <, AL WEB S LTRSS,

0 > Critical angle Light source

Fig. A. 1. Principle of total internal reflection method. This method needs a prism, imager and light
source. A finger is put on the surface of the prism and light irradiated to the finger surface, then light
irradiated to a valley of a fingerprint are total reflected and detected by the imager. However a part of the
light irradiated to a ridge of a fingerprint goes through into the finger, the other light is total reflected and
detected by the imager. Thus, a fingerprint image obtained this method is represented that ridges are dark

and valleys are bright.
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LIRS D, Fig. A, 2 ([T A 7R3, JERITEARER O LICERE S, 8~ a B
PRI %, FRICHRE SNk, FRONHARIE L, G 2%l L TRt 5, 5
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HwNRELFBFF~FIZESE L0, ZIRERIIADREIT RV DRV LR
%=y

Valle Ridge

A7 2 R

I 3 Light source

/I/ v v | .
) - Protective glass
Optical sensor chip

Fig. A. 2. Principle of in-finger light dispersion method. This method needs a peculiar plate, imager and
a light source. A finger is put on the surface of the plate and light irradiated to the finger surface, light
irradiated to the finger goes thorough the fingerprint and detected the imager. Light through a ridge of
fingerprint goes to the plate directory, however light through a valley of a fingerprint diffused in the air
between the plate and the valley. Thus, a fingerprint image obtained this method is represented that ridges

are bright and valleys are dark. Hence this method detect contact or un-contact to the sensor.
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FHODRET 28 oV LRBRICIENT ORBIE R AR L T D2, IS8 E
DI LD WG EEREDEDLZENMNETHY, 207D, B DEEOBEEONIRE .
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AR\
\«
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arizer

Fig. A. 3. Principle of multispectral method. This method is one of the optical sensing methods. In this
method, because of light sources of some different wavelengths, light are reflected from different depths in
a finger. These light coming out from the inside of the finger is detected by the imaging device, and the
fingerprint pattern is read out by superimposing it. Furthermore, since the light is polarized, it is possible

to emphasize the scattered light that came out outside through the finger
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JFELX % Fig. A. 4 IZ-T, B ORKIZIL, BRI A TRICHEA S 5 EMmMN 1}*7_%7}%(
BY, BV ORNEICIE, 800 TE BRI 2 3 2 EMmAME A 5T\ b, f/IC
AN SN BRI IE, FEOBEK L BRSNS SN s, Z0F M&%t
Y NERICERE SV EM TR T 2, RKlh b ELE TORBESTREOMNES & M CiE
5t (2, BRI EN N D Z AR L TRIDOMIY S Z — o Z i LT b, FENE
BRI ABE L TWAHN, BRIt o b SHRE R £ CORMETH 5,

Dermis

/B A 'T;W

Detecting circuit

Fig. A. 4. Principle of electric field method. Electrodes for injecting electromagnetic waves into the fin-
ger are embedded edges of a sensor and electrodes for detecting electromagnetic waves coming out of the
finger are embedded inside the sensor. Electromagnetic waves injected into the finger are emitted from the
finger by propagating a deeper part than the dermis of the finger. The electromagnetic wave is detected by
the electrode installed inside the sensor. Although electromagnetic waves have reached the inside of the

finger, a detection target of this sensor is the distance from the sensor to a valley and ridge of a fingerprint

(e) REEX
JREEX % Fig. A. 5 1273, MEMS #4712 X 0 -8{RICHhEM LA L Th D72, 5%
Pefih S H 5 LRI E DR LS AL T 5, I K > T L FiF bz iiss
TIEEIR O P 228y OFFEREICEEDN A U, MERIC L » TH L R b =821k
N2 FREUER & MR T E 5,
Valley Ridge

Pressure

Pressure-sensitive element

Fig. A. 5. Principle of Pressure Sensitive method. In the portion pushed down by a ridge of a fingerprint,
the capacitance of the hollow portion of the semiconductor change and the portion pushed down by a valley

of a fingerprint does not change. Therefore a ridge and valley can be detected.
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Bashkatov (2007) O3CHRIZFNHL S 417220 14 & Verkruysse (1997) 16 72 & DAl SCRRA>
SOEFENRT A—H—%5H L B2 ya us, gZBH LI, 0L, HEOENT
holgz, JBS, JEIrR, KoahaeE, hikafasE, ikczaE20EE 57Tnm ([ZB1T %
ps, MEDVEEEDONRT A—H—THREL, MK, A 7= Koy, AR CWRIL, Mk
IZ K DHEL & N LIAMT K D HGEL, MR DEFHER 772 ED D | WRITIKIE LTS pay ps.
g EHMNTHHLDOTHDH, Table A. 1 IZHEH LIZLE DT A —%—_ Table A. 2 IZ
A=0.64pm TOFEFERZRT, AEOHKIEHENT A —Z—Wr=0.1, 0.2 TOZLI
FNOMEZEFHE L, 72, NIt TR L7, TableA. 11k 5 &, AREITKE
BERVMREIZR > TWDHD, fMOBFEL D MAJE 2R TIEL 20Wt%f2E TH D Z LRI
T2 5455, LA L Table A. 2 DAEOFHHRFERTIE, We2ZEZTH, uslIFTENENT
EDND, IWERDL. ZOHFKXNTIIAKDGEAED pa DBHORIZHEEL TWDEINHTH
%o €5 T, Table A. 21ZrT X 9512, )&, living epidermis, HJEE Tl us. gl3E D
ST, pa DAHBEL LTS, ZOFRIE, REOABITK L THEZRD D Z LN TE DM
TREEBNLTODN, 7 I UAREMITICE W TEERER E B2 LTS AEOKYE
DIMNEEND,

Table A. 1

Parameters for skin model for calculations for optical propertiest*®

Skin parameters Stratum Living epi- Basal Reticular
corneum dermis layer dermis &

upper vessel

Thickness 20 100 15 200
[um]
Bk Volume fraction of blood 0 0 0 0.017
[vol/vol]
Wy Volume fraction of water 0 0.6 0.6 0.75
[vol/vol]
My 1: the melanin containing 0 1 1 0

layers including upper
and basal layers,

0 : for other layer

R [um] Mean vessel diame- 0 0 0 6
ter[um]
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Table A. 2

Optical properties at 640nm calculated from reference Bashkatov (2007)

Stratum Stratum Living Basal Reticular
corneum; corneum: epidermis layer dermis &
Wi=0 Wi =0.2 upper vessel
Ha [mm] 0.015 0.012 0.216 3.250 0.004
us [mm-] 27.047 27.047 27.047 27.047 11.572
g 0.81 0.81 0.81 0.81 0.82
I [mm] 0.0370 0.0370 0.0367 0.0330 0.0864
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L7, F7o, IEFHHELZR L, ZEAEHELLABAE LW ERE L IZEA Lz, 1
% Table A. 3 (23 ¢, FAENMATIT 1x108 & Lz, I 2L —v 3 UiEFIL Fig. A 7
WRT LIS, RN L ST, R OB RS 4y & RS oy OB R ARAY Fig. 4-3
FUHHMRIC A TSR, Ziud, BHBELOFE B BT InNEFIhS< 740
ESLIZERLOED, HEETITFEACHEELABREHNL WD, EBRBERTH
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Light source
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Fig. A. 6. Simlation model of sabmilli structure assumed from OCT image: (a) OCT image of fingerprint:
(b) simulation model. The submilli-structure of this simulation model was defined as a structure sith strong
and weak scattering unis in and around the stratum corneum. This structure consisted of three units de-
scribed by yellow rectangles on the OCT image of (a). The size of the model and optical properties were
determined by the OCT image. The strong scattering areas were illustrated two types of different shape
units with the same optical properties and the week scattering area was illustrated one type of shape and
the optical properties in three units were arranged as one set, and ten sets were arranged along the x-axis.

In our simulation, the submilli-structure was placed between an opposing light source and detector.
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Table A. 3
Optical properties for a model of Fig. A. 6.

Strong scattering (i)  Weak scattering (ii)
I [mm] 0.0377 0.6667
g 0.805 0.805

Fig. A. 7. Simulation result with parameters in Table A. 3. Total generated photons were 1< 10°. The
brightness distributions of greyscale images corresponded to the layout of strong scattering and weak scat-
tering of the submilli-structure simulation model in Fig. A. 6. Borders between the bright areas and darks
were clearer than the simulation results in Fig. 4-3. Since the value of | of weak scattering areas was ap-
proximately same as the value of thickness of the submilli model, it was assumed that the light almost went

through weak scattering area.
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X 5x106 & Lz, ¥ 2 b—ya URERIE Fig A9 IRT & 91, IREEEE G206 b
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(a) (b)

Fig. A. 8. Simlation model of sabmilli structure assumed from OCT image: (a) OCT image of fingerprint:
(b) simulation model. The submilli-structure of this simulation model was defined as a structure sith strong
and weak scattering unis in and around the stratum corneum. This structure consisted of three units de-
scribed by yellow rectangles on the OCT image of (a). The size of the model and optical properties were
determined by the OCT image. One strong scattering areas and two weak scattering area had three different
optical properties in Table A. 4. The three units were arranged as one set, and seven ten were arranged
along the x-axis. In our simulation, the submilli-structure was placed between an opposing light source and

detector.
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Table A. 4
Optical properties for a model of Fig. A. 8.

Strong scattering (i)  Weak scattering (ii)  Weak scattering (iii)
I [mm] 0.0377 0.6667 0.2857
g 0.805 0.805 0.805

Fig. A. 9. Simulation result with parameters in Table A. 4. Total generated photons were 5X 10°. The
brightness distributions of greyscale images corresponded to the layout of strong scattering and weak scat-
tering of the submilli-structure simulation model in Fig. A. 8 Borders between the bright areas and darks
were clearer than the simulation results in Fig. 4-3. Since the value of weak scattering areas was approxi-
mately same as the value of thickness of the submilli model, it was assumed that the light almost went

through weak scattering area.
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Fig. A. 10. Simlation model of sabmilli structure assumed from OCT image: (a) OCT image of fingerprint:
(b) simulation model. This simulation model was added the stratum cormeum to the submilli model in
Fig. A. 8. This simulation model consisted of five units described by yellow and red rectangles on the OCT
image of (a). The size of the model and optical properties were determined by the OCT image. One strong
scattering areas and two weak scattering area had same optical properties in Table A. 4 and optical proper-
ties of the stratum corneum in Table A. 5. The five units were arranged as one set, and seven sets were
arranged along the x-axis. In our simulation, the submilli-structure was placed between an opposing light

source and detector.
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Table A. 5
Optical properties for a model of Fig. A. 10

Strong scattering Weak scattering Weak scattering Strong scattering;
Q) (i) (iii) Stratum corneum, (iii)
I [mm] 0.0377 0.6667 0.2857 0.0488
g 0.805 0.805 0.805 0.805

Fig. A. 11. Simulation result with parameters in Table A. 5. Total generated photons were 5 10°. The
brightness distributions of greyscale images corresponded to the layout of strong scattering and weak
scattering of the submilli-structure simulation model in Fig. A. 9 Borders between the bright areas and
darks were more ambiguous than the simulation results in Fig. A. 9. Since the stratum corneum as strong

scattering units, it was assumed that the light was scattered and diffused.
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Fig. A. 12. Histograms of images in Fig. 5-6 (a) and (c). Histogram (a) was obviously brighter than (c).
Distribution widths of brightness of two histograms were same, approximately. However, one peak ap-
peared in (a) and two peaks appeared in (c), which suggested shading of (a) was smaller than (c). Further-
more, the lower peak of histogram of (c) seemed to originate from the fingertip area of the Fig. 5-6 (c) and

might be cause lack of fingerprint pattern.

Table A. 6
Statistical data of histograms in Fig. A. 12. This data represented (a) was brighter than (b)
Calculation source Statistical data of histograms
[Grayscale value]
Minimum Maximum Mean mode
histogram (Fig. A. 12) ©) 59 250 145.2 150
(©) 30 191 108.9 128
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Fig. A. 13. The locations of profiles obtained from Fig. 5-6. The horizontal profiles were obtained along

“

a yellow arrow and the vertical profiles were obtained along red arrow.
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Horizontal profiles of images of Fig. 5-6.  Profile of (b) was obtained along yellow arrow on

Fig. A. 13, other profiles were calculated along same position. Brightness of (a) tended to be higher than

(c). Shapes of profiles without saturation area of (b) and (d) were appeared steeper than (a).
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Table A. 7
Absolute value of slopes of linear approximation of profiles calculated within the range of negative slope.

Values of slopes decreased in the order of (b), (c), (a).

Calculation source Slope of first-order approximation
Profiles(Fig. A. 14) @ 0.387
(b) 1.211
() 0.668
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Fig. A. 15. Vertical profiles of images of Fig. 5-6. Profile of (d) was obtained along yellow arrow on
Fig. A. 13, the other profiles were calculated along same position. Brightness of (a) tended to be higher

than (c).
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Table A. 8
Absolute values of slopes of linear approximation of profiles calculated within the range of
negative slope in Fig. 5-9(d) and positive slope in Fig. 5-9(e). The slope of the profile of

Fig. 5-9(a) was not calculated, because this profile was downward convex contrary to expec-

tation.
Calculation source Slope of first-order approximation
Profiles (Fig. 5-8) (d) 1.773
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Fig. A. 16 Histograms of images in Fig. 5-9(a) and (c). The tendency of shapes of histograms were

correspond to histograms in Fig. A. 12. The histogram of (a) was obviously more bright than (c).

Table A. 9
Statistical data of histograms in Fig. A. 16 Values of Minimum, Maximum, Mean and mode of (a) were

higher than (b). This tendency represented that the image of (a) in Fig. 5-9 was brighter than the image
(b).

Calculation source Statistical data of histograms
[Grayscale value]
Minimum Maximum Mean mode
histogram (Fig. A. 16) @) 130 252 196.0 207
(c) 72 212 145.2 171
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Fig. A. 17. Horizontal profiles of images in Fig. 5-9. Profile of (b) was obtained along blue arrow on
Fig. 5-9(b), other profiles were calculated along same position. Brightness of (a) tended to be higher than

(c) same as profiles in Fig. A. 14. However, all profiles tended to more gentle than profiles in Fig. A. 14.
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Fig. A. 18. The locations of profiles obtained from Fig. 5-6. The horizontal profiles were obtained along

a blue arrow and the vertical profiles were obtained along red arrow.
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Table A. 10
Absolute values of slopes of linear approximation of profiles in Fig. A. 17. A value of (b) was
calculated during negative slope, the others were calculated during positive slope. A slope

of (c) was larger than (a).

Calculation source Absolute values of slope of first-order approximation

(Slopes of Table A. 9 were shown in parentheses)

Profiles (Fig. A. 17) @) 0.396 (0.387)
(b) 0.487 (1.211)
(c) 0.508 (0.668)
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Fig. A. 19. Vertical profiles of images in Fig. 5-9. Profile of (b) was obtained along red arrow on Fig.
A. 18, other profiles were calculated along same position. All profiles tended to more gentle than profiles
in Fig. A. 15.
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Table A. 11
Absolute values of slopes of linear approximation of profiles in Fig. A. 19. A value of (b) was
calculated during negative slope, the others were calculated during positive slope. A slope

of (c) was larger than (a).

Calculation source Absolute values of slope of first-order approximation
(Slopes of Table A. 10 were shown in parentheses)
Profiles (Fig. A. 19)  (d) 0.493 (1.773)
(e) 0.357 (1.571)
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Fig. A. 20. The locations of profiles obtained from Fig. 5-12. The horizontal profiles were obtained along

a blue arrow and the vertical profiles were obtained along red arrow.
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Fig. A.21. Horizontal profiles of images in Fig. 5-12. A profile of (B) was obtained along yellow arrow

on Fig. A. 20, other profiles were calculated along same position. There were no saturation area in profiles.

The brightness levels and shapes of profiles of (A)—(E) were similar.
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Fig. A. 22. Vertical profiles of images in Fig. 5-12. A profile of (B) was obtained along red arrow on the
image in Fig. A. 20, other profiles were calculated along same position. There were no saturation area in

profiles. The brightness levels and shapes of profiles of (A)—(E) were similar.
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