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Sur Certains Espaces Fibrés Principaux Holomorphes
admettant des Connexions Holomorphes

Par Shingo MURAKAMI

Ce mémoire est consacré a I’étude des espaces fibrés principaux holo-
morphes dont le groupe est abelien connexe et dont la base est un tore
complexe. Dans la premiére partie, on montre que pour ces espaces fibrés
I'existence d’une connexion holomorphe est équivalente a l'existence d’un
groupe transitif connexe d’automorphismes. On montre de plus que la
forme de courbure d’'une connexion holomorphe est alors déterminée par
I’espace fibré. Dans la seconde partie, on étudie le groupe ® des classes
d’éspaces fibrés dont le groupe est un groupe de Lie abelien connexe A
dont la base est un tore complexe T et qui possédent une connexion holo-
morphe. On démontre que ce groupe ® est canoniquement isomorphe a
la somme directe du sous-groupe ®° des classes d’espaces fibrés possédant
une connexion holomorphe intégrable et d’'un groupe abelien ®* qui
s’interpréte comme groupe des formes de courbure. On indique enfin la
structure de ces deux groupe facteurs ; alors que ®° est le quotient d’'un
groupe de Lie abelien complexe connexe par un sous-groupe de Lie
complexe connexe, ®* est un groupe abelien libre de rang fini.

On sait que pour les espaces fibrés principaux holomorphes dont la
base est une variété compacte kaehlérienne et dont le groupe est semi-
simple ou est un GL(#n, C) I'existence d’une connexion holomorphe im-
plique que toutes les classes caractéristiques (a coefficients complexes) de
I'espace fibré sont nulles [1]. La catégorie des espaces fibrés étudiés
ici donne des exemples d’espaces fibrés admettant des connexions holo-
morphes, mais dont les classes caractéristiques ne sont pas nulles et
qui n’admettent donc pas de connexion intégrable.

Je tiens a exprimer toute ma reconnaissance a M. J.-L. Koszul pour
ses précieux conseils ; je lui suis redevable de plusieures suggestions ainsi
que d’importantes améliorations de rédaction.

I. Connexions holomorphes et automorphismes.

\

§1. Algebres de Lie associées a un espace fibre.

On désigne par A un groupe de Lie complexe abelien connexe de
dimension 7 et par a l'algébre de Lie complexe des champs de vecteurs
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réels invariants sur A; la structure complexe de a est définie par le
tenseur I de la structure complexe de A. Désignons par T un tore
complexe de dimension z. Soit h I'algébre de Lie complexe des champs
de vecteurs conformes sur 7®, On sait que § est I'algébre de Lie du
groupe des homéomorphismes holomorphes de T [2]. Par conséquent,
h est abelienne et elle engendre le module des champs de vecteurs sur
I’anneau des fonctions réelles sur 7.

Dans tout ce qui suit, P désignera un espace fibré principal holo-
morphe de groupe A et de base T. Clest une variété complexe de
dimension #+47. La projection de P sur T sera notée p et les opérations
de A dans P seront écrites a droite; %(P) désignera le module sur
Panneau des fonctions réelles sur P constitué par les champs de vecteurs
réels sur P.

Soit g l'algébre de Lie des champs de vecteurs conformes sur P qui
- sont invariants par A. Puisque les opérations de A dans P conservent
la structure complexe de P, pour X€g on a IXe€g®, donc g est une
sous-algébre de Lie complexe de I'algébre de Lie complexe des champs
de vecteurs conformes sur P. Pour a€a, soit Z, le champs de vecteurs
sur P dont la valeur au point y € P est ya. L’application A de a dans
I'espace vectoriel réel des champs de vecteurs sur P qui transforme a
en Z, est un homomorphisme injectif de I’algébre de Lie a dans 1'algébre
de Lie des champs de vecteurs sur P. Puisque A opére holomorphique-
ment dans P, AMa) est conforme et AMIa)=IN(a) pour tout a€a. Puisque
a est abelienne, Ma) est invariant par A pour tout ¢ €a. Par conséquent,
A est un homomophisme injectif de I’algébre de Lie complexe a dans g.
Enfin, les champs de vecteurs sur P invariants par A étant les champs
de vecteurs X tels que [Z,, X]=0 pour tout @ca, I'image Aa) est
contenue dans le centre de g.

La projection p de P sur T définit d’autre part un homomorphisme
de l'algébre de Lie des champs de vecteurs sur P qui sont invariants
par A dans l'algébre de Lie des champs de vecteurs sur T. Cet homo-
morphisme a pour restriction a ¢ un homomorphisme = de 'algébre de
Lie complexe g dans l'algébre de Lie complexe §.

Lemme 1. La suite (0) — a 2 g = b est exacte.

1) Dans ce mémoire tous les champs de vecteurs, les fonctions et les formes différentielles
sont supposés différentiables.

2) Un champs de vecteurs X sur une variété complexe V est dit conforme si I[X, Y]
=[X, IY] pour tout champ de vecteurs Y sur V, ou I est le tenseur de la structure complexe
de V. L’ensemble des champs de vecteurs conformes sur V est une algébre de Lie complexe
ayant I comme structure complexe.

3) On désigne par [ le tenseur de la structure complexe de la variété complexe en question,
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Démonstration. On a déja observé que A était injectif. On munit
le module %(P) d’'une structure de module sur l'anneau des fonctions
complexes sur P en posant (f/++/—1f)X=f'X+f"IX lorsque f’ et f”
sont des fonctions réelles. La sous-algébre complexe A(a) de g engendre
dans X(P) le sous-module des champs de vecteurs tangents aux fibres
de P, et une base complexe {Z,, ---, Z,} de Ma) est une base de ce sous-
module. Soit X €g; supposons 7#(X)=0, alors X est tangent aux fibres
et

X=FZ+--+F,Z,

ou F,, -+, F, sont des fonctions complexes sur P. Puisque X, Z,, -+, Z,
sont invariants par A, il en est de méme de F,, ---, F,. Il existe donc
des fonctions Fi, -+, F'; sur T telles que F,(y)=Fi(p(y)) pour tout yc P
(1<i<r). Soit Y un champ de vecteurs sur P invariant par A. Puisque
[Z,, Y]=0 pour tout a€a, on a:

[X, Y] = —{YF)Z,+--+(YF,)Z,}.
Puisque X est conforme, il en résulte que
IY)F; = /—1UYF)

pour 1<i<r. Soit pY le champ de vecteurs sur T qui est la projec-
tion de Y. On a donc:

dF;I(pY)) = V/—1dF{(pY)

pour 1</<r. Puisque tout champ de vecteurs sur T est localement de
la forme pY, cela prouve que F{, ---, F; sont des fonctions holomorphes
sur T ;T étant compact, elles sont constantes. Par conséquent, F,, ---, F,
sont aussi constantes et X appartient donc a A(a). Le lemme 1 est ainsi
démontré.

Lemme 2. [g, g]| est dans le centre de g. En particulier, g est une
algébre de Lie nilpotente.

On a observé plus haut que A(a) est contenu dans le centre de g.
D’autre part, puisque ) est abelienne, le lemme 1 implique que [g, g] < ().

Lemme 3. Si Xeg et si X est nul en un point y de P, alors X=0.
En effet, si X est nul au point y € P, #(X) est nul au point p(y)e T.
Or, T étant un tore complexe, on sait que tout champ de vecteurs con-
forme qui est nul en p(y) est le champ nul. Donc #(X)=0et X=Ma)=Z,
avec a€a d’aprés le lemme 1. Puisque P est un espace fibré principal
de groupe A et que Z, est nul au point ¥, on a a=0 et par suite X=0.
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§ 2. Connexions holomorphes.

Comme le groupe structural A de P est abelien, une forme de con-
nexion o sur P est une a-forme® de degré 1 sur P invariante par A
telle que o(Ma))=a pour tout ¢ €a et la forme dw est I'image réciproque
OQp par p d'une a-forme Q de degré 2 sur T ; Q est la forme de courbure
de la connexion définie par.»®. Par définition, une connexion est holo-
morphe si la forme de cette connexion est holomorphe et une connexion
est intégrable si sa forme de courbure est nulle.

Theoréme 1. Pour que P admette une connexion holomorphe, il faut
et il suffit que I’homomorphisme = de g dans Y) soit surjectif. Dans ce
cas, les connexions holomorphes de P correspondent bijectivement aux relé-
vements de =, c’est-a-dire aux applications linéaives p de %) dans g telle
que w(u(h))="h pour tout heph®.

Démonstration. Supposons que = soit surjectif. D’aprés le lemme 1,
on a d’abord dim g=dim a+dimY)=dim P. Le lemme 3 implique alors
qu'une base réelle de g est une base du module %(P) sur l'anneau des
fonctions réelles sur P. Il en résulte qu'une fonction sur g a valeurs
dans a qui est linéaire sur les nombres réels est la restriction d’'une a-
forme de degré 1 sur P. De plus, puisque g est constituée par des
champs de vecteurs invariants par A, cette a-forme est invariante par
A. Cela dit, comme = est supposé surjectif, on a un relévement x de
7. D’aprés le lemme 1, il existe alors une fonction » sur g a valeurs
dans a telle que

(1) X = Mo(X))+ p(m(X)) quel que soit Xeg.

Puisque A, #, = sont les applications linéaires complexes, » est une
application linéaire complexe de g dans a. En particulier,

(2) o(IX) = Io(X) pour tout Xe€g.

D’aprés ce qu'on a vu plus haut, » est induite par une a-forme sur P,
désignée encore par o, qui est invariante par A. On voit immédiate-
ment que celle-ci est une forme de connexion. D’aprés la formule
(do)(X, V)=Xo(Y)—Yo(X)—o([X, X]), on a:

4) Une forme différentielle & valeurs dans a est dite une a-forme. Une 0-forme w de degré
b est holomorphe si w est de type (p, 0) et si dw est de type (p+1, 0).

5) Pour les notions concernant les connexions, on suivra [5] sauf pour la définition de la
forme de courbure d’'une connexion.

6) Linéaire et bilinéaire sont entendus sur les nombres complexes.
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(3) do(X, Y)= —o([X, Y] quels que soient X, Yé€g,
car o(X) et o(Y) sont constantes sur P. Il résulte de (2) et de (3) que
(4) do(IX, Y) = Ido(X, Y) quels que soient X, Ye€g.

(2) et (4) montrent que la forme de connexion « est holomorphe. On
a donc démontré que si = est surjectif un relévement de = définit une
connexion holomorphe. On observe que deux relévements différents dé-
finissent deux connexions holomorphes différentes.

Réciproquement, soit ® la forme d’une connexion holomorphe sur P.
Comme on sait, pour tout champ de vecteurs X’ sur T il existe un et
un seul champ de vecteurs X sur P qui se projete sur X’ et qui soit 4ori-
zontal, c’est-a-dire tel que o(X)=0. Ce champ X est invariant par A.
On va voir que si X’ €} alors X €gq, cest-a-dire que

(5) I[X, Y1=I[X IY]

pour tout Ye¥(P). Si Y=\a)=Z, avec a€aq, les deux membres de (5)
sont nuls, puisque X est invariant par A. Supposons que Y soit in-
variant par A et horizontal. On a do(X, Y)=—o([X, Y]), car o(X)=
o(Y)=0. Puisque la connexion est holomorphe, il en résulte que

o(I[X, Y]) = Io([X, Y]) = —ldo(X, Y) = —do(X, IY) = o([X, IY]).

D’autre part, I[X, Y] et [X, IY] sont invariants par A et, comme
X' eh, X’=pX est conforme ; par conséquent,

pILX, Y]=IplX, Y]=I[pX pY]=[pX, IpY]=[pX, pIY]=p[X IY].

La relation (5) pour le champ Y en question en résulte. Puisque les
champs de vecteurs Y des deux types considérés engendrent le module
¥(P) sur 'anneau des fonctions réelles sur P, il en résulte que (5) est
vraie pour tout Y€ X(P); on a ainsi montré que X e€g. Comme 7#(X)=
pPX=X/, cela signifie que = est surjectif. Enfin, si pX=X" et o(X)=0,
alors pIX=IX" et o(IX)=Io(X)=0, donc I'application qui transforme X’ en
X a pour restriction a H un relévement x de =. De plus, les formes
o et p vérifient la relation (1), car, pour Xe€g, X—Mw(X)) est le champ
de vecteurs horizontal qui se projete sur #(X). Cela désmontre que la
connexion dont la forme est o coincide avec celle qui est définie a partir
du relévement p par le procédé précédent. Le théoréme 1 est ainsi
démontré.

Cette démonstration montre que la formule (3) est valable pour toute
connexion holomorphe de P.
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On va maintenant considérer la forme de courbure d’une connexion
holomorphe de P.

Theoréme 2. Supposons que P admette une connexion holomorphe. La
Sforme de courbure Q d’uwe connexion holomorphe de P dépend uniquement
de P. Cette forme est déterminée par sa restriction a9 qui est une forme
bilinéaire antisymétrvique a valeurs dans a. On a de plus

AMU7(X), =(Y)) = —[X, Y]

quels que soient X, Y €q.

Démonstration. Soit o une forme de connexion holomophe sur P
. et soit Q sa forme de courbure. Remarquons d’abord que Q est déter-
minée par sa restriction a 9, car ) engendre le module des champs
de vecteurs sur T sur l'anneau des fonctions réelles sur T. Compte
tenu de (3), on a M2(7(X), 7(Y)) =AU pX, pY)=Ado(X, Y)=—ro([X, Y])
quels que soient X, Ye€g. Puisque %) est abelienne, le lemme 1 implique
que [X, Y] exa), donc Mo([X, Y])=[X, Y]. Par conséquent,

AU(X), m(Y)) = —[X, Y]

quels que soient X, Yeg. Or, = est surjectif d’aprés le théoréme 1 et
A est injectif. Cette formule montre alors que la restriction de Q a )
est une forme bilinéaire antisymétrique a valeurs dans a. Celle-ci ne
dépend pas du choix de la connexion holomorphe, puisque g est bien
déterminée par P. Par conséquent, d’aprés la remarque faite plus haut,
Q elle-méme est bien déterminée par P. Le théoréme 2 est ainsi
démontré.

Les deux corollaires suivants résultent immédiatement de ce théoréme
et du théoréme 1.

Corollaire 1. Si P admet une connexion holomorphe intégrable, toute
connexion holomorphe de P est intégrable.

Corollaire 2. Supposons que P ait une conmexion holomorphe. Pour
que P admette une connexion holomorphe intégrable, il faut et il suffit que
q soit abelienne.

§3. Le plus grand groupe connexe d’automorphismes.

Désignant toujours par P un espace fibré principal holomorphe de
groupe A et de base T, soit G le plus grand groupe connexe d’auto-
morphismes de P muni de la topologie compacts-ouverts. On sait que
G est un groupe de Lie complexe qui opére holomorphiquement dans P.
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De plus, un sous-groupe a un parameétre de G est le groupe de transfor-
mations engendré par un champ de vecteurs appartenant a g et 'algébre
de Lie de G peut ainsi étre identifiée avec g [4].

Puisque A est abelien connexe, les opérations de A dans P sont des
automorphismes de P qui appartiennent a G. L’application A qui trans-
forme un élément de A en lopération de cet élément dans P est un
homomorphisme injectif de A dans G qui induit ’homomorphisme A de
a dans g.

Soit d’autre part H le plus grand groupe connexe d’homéomorphismes
holomorphes de T muni de la topologie compacts-ouverts ; c’est un groupe
de Lie complexe abelien qui opére holomorphiquement dans T de maniére
simplement transitive. On sait que les sous-groupes a un parmeétre de
H sont les groupes de transformations de T engendrés par les éléments
de § et que l'algébre de Lie de H peut ainsi étre identifiée avec Y [2].
Faisant correspondre a4 un automorphisme de P I'homéomorphisme de T
qu’il induit, on a un homomorphisme = de G dans H ;7 induit ’homo-
morphisme = de g dans ). :

Theéoréme 3. Si P admet une connexion holomorphe, G opére transiti-
vement sur P. Réciproquement, si G opére transitivement sur ['ensemble
des fibres de P, alors P possede une connexion holomorphe.

Démonstration. D’aprés le théoréme 1, une condition nécessaire et
suffisante pour que P admette une connexion holomorphe est que =
soit surjectif. Pour que = soit surjectif, il faut et il suffit que = soit
surjectif. Puisque H est simplement transitif sur T, cette condition est
équivalente a la suivante: G opére transitivement sur l'ensemble des
fibres de P. Pour achever la démonstration, il suffit de remarquer que,
si cette condition est satisfaite, G opére transitivement sur P car le
sous-groupe MA) des opérations de A est transitif sur chaque fibre de P.

REMARQUE. La premiére partie de ce théoréme est un cas particulier
d’'un théoréme de Matsushima et de Morimoto [4]. Ce théoréme lui-
méme est géneralisé par Matsushima a tout espace fibré principal holo-
morphe de base T (a paraitre dans Nagoya Math. Journal vol. 14).

Théoréme 4. Supposons que P ait une connexion holomorphe. Alors
les conditions suivantes sur P sont équivalentes :

1) P a une connexion holomorphe intégrable.

2) G est un groupe abelien.

3) G opere sur P de manicrve simplement transitive.

Démonstration. Puisque g est l'algébre de Lie de G, P'équivalence
entre 1) et 2) résulte du corollaire 2 du théoréme 2.
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D’aprés le théoréme 3, G opére transitivement sur P. Par conséquent,
les sous-groupes de stabilité de G en différents points de P sont conjugués.
Si G est abelien, le sous-groupe de stabilité en un point de P opére donc
trivialement sur P. Puisque G est effectif sur P, il est réduit a 1’élément
neutre. Ainsi 2) implique 3).

Réciproquement, si G est simplement transitif sur P, pour tout point
ye P, s—>sy est une application bijective de G sur P. Puisque cette
application est holomorphe, c’est un isomorphisme de variétés complexes.
Cet isomorphisme induit celui de G/MA) sur T. En particulier, G/MA)
est compact. Soit C(G) le centre de G. Il est evident que C(G) contient
MA). Donc G/C(G) est compact. Or, la représentation adjointe de G
induit une représentation fidéle de G/C(G) et, G/C(G) étant compact,
cette représentation est semi-simple. D’autre part, d’aprés le lemme 2
G est nilpotent, donc I'image de la représentation adjointe de G consiste
en des transformations de g dont les valeurs propres sont toutes égales
a 1. La représentation de G/C(G) est donc triviale. On a alors G=C(G),
ce qui prouve que G est abelien. Par conséquent 3) implique 2) et le
théoréme 4 est démontré.

II. Groupe des classes d’espaces fibrés admettant des
connexions holomorphes.

§4. Groupe des classes d’espaces fibreés.

L’ensemble des classes d’espaces fibrés principaux holomorphes de
groupe A et de base T peut étre identifié avec le groupe de cohomologie
HYT, A) de T a coefficients dans le faisceau A des germes de fonctions
holomorphes sur T & valeurs dans A [3]. Soit ®(®°) le sous-ensemble
de HXT, A) formé par les classes qui contiennent des espaces fibrés
admettant des connexions holomorphes (resp. des connexions holomorphes
intégrable).

Theéoréme 5. & et ®° sont des sous-groupes du groupe H(T, A).

REMARQUE. Ce théoréme est valable pour toute variété complexe
T ; 1a démonstration ci-dessous se fera sans supposer que T soit un tore
complexe.

Démonstration. Soient P, et P, deux espaces fibrés de groupe A
et de base T et p, et p, leurs projections. Soit P,x P, le prodult direct
de P, et de P,; c’est un espace fibré de groupe AXA de base TxT
dont la projection est (p,, p,). Soit P,V P, ’espace fibré de groupe Ax A
et de base T qui est I'image réciproque de P,x P, par l'application
diagonale ¢ de T dans T x T; p’ désignera la projection de P,v P, sur
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T. 1l existe une application injective canonique #* de P,v P, dans
P, x P, qui commute avec les opérations de AxA et qui se projete
suivant £. Soit maintenant & 'homomorphisme de Ax A sur A défini
par a(a,, a,)=a.a, pour (a,, a,) ¢ Ax A. Soit Ble noyau de a. L’espace
quotient de P,v P, par les opérations de B est un espace fibré P,+ P,
de groupe A et de base T; soient p la projection de P,+ P, sur T et
q la projection de P,v P, sur P,+P,. On a pg=p et pya, a,))=
q(y)a(a,, a@,) pour tout ye P,v P, et (a,, a,) ¢ Ax A. 1l est facile de voir
que la classe [P,+ P,] de P,+ P, est la somme des classes [P.], [P,]
pour la loi d’addition dans HYT, A).

Supposons maintenant que P, et P, aient des connexions holomor-
phes dont les formes sont o, resp. »,. L’algébre de Lie de Ax A étant
la somme directe a+a, la (a+a)-forme (o,, ®,) sur P, x P, est une forme
de connexion holomorphe du produit P,x P, et cette forme induit une
forme de connexion holomorphe o' =(w,, ®,)#* de l'espace fibré P, v P,.
Désignons par « I'homomorphisme de a+a sur a induit par '’homomor-
phisme @ de Ax A sur A et considérons la a-forme aw’ sur P,vP,.
On constate facilement que @w’ est 'image réciproque oq d’une a-forme
o sur P,+ P, par la projection . De plus, » est alors une forme de
connexion holomorphe de P,+ P,. Puisque [P,+ P, =[P, ]+[P,], cela
démontre que, si [P,], [P,]e®, [P]+[P,] €.

D’autre part, P étant un espace fibré principal holomorphe de groupe
A et de base T, quand on fait opérer les éléments @€ A dans P par
y—ya~' pour tout y € P, ces nouvelles opérations de A dans P définissent
dans la variété P une autre structure d’espace fibré principal holomorphe
— P de groupe A et de base T et la classe [~ P] de — P est égale a
—[P] dans HYT, A). Or, si P admet une connexion holomorphe dont
la forme est o, la forme —w est une forme de connexion holomorphe
de —P. Par conséquent, si [P]€@® alors —[P]€®. On a ainsi démontré
que @ est un sous-groupe de HYT, A). .

Avant montrer que ®° est un sous-groupe de H'(T, A) on établira le

Lemme 4. Si Q; est la forme de courbure de la connexion holomorphe
w; de P;(i=1,2), la forme de courbure Q de la connexion holomorphe
de P,+ P, construite ci-dessus est égale a Q,+Q,.

En effet, puisque o' =(w,, ,)t*, do’'=(dw,, do,)t*=(Q,p,, Q,p,)t*=
(Q,, Q)(D,, P)EF)=(2,, Q)tp’, ou (2,, Q,) est une (a+a)-forme sur
TxT. Dautre part, puisque «@o’=wq, a(do’)=(dw)q. Par conséquent,
a(Q,, Q,)tp'=(dw)q. On a a(Q,, Q2,)t=0,+Q,. Comme p'=pq et do=01p,
il en résulte que (2, +Q,)p'=Qp’. On a ainsi Q,+2,=Q et le lemme 4
est démontré,
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D’aprés ce lemme, si P, et P, ont des connexions holomorphes
intégrables, P,+ P, a aussi une connexion holomorphe intégrable. Il est
clair que, si P a une connexion holomorphe intégrable, —P a une con-
nexion holomorphe intégrable. Donc ®° est un sous-groupe de HY(T, A).
Le théoreme 5 est ainsi démontré.

§5. Groupe des formes de courbure.

Supposons que P admette une connexion holomorphe. La classe
[P] de P appartient a ®. D’aprés le théoréme 2, la forme de courbure
d’'une connexion holomorphe de P est déterminée par P et par consequent
par [P]. On peut donc parler de la forme de courbure de la classe [ P].
Or, d’apreés le théoréeme 2, cette forme de courbure induit dans § une forme
bilinéaire antisymétrique a valeurs dans a. Il résulte du lemme 4 que
I'application qui fait correspondre a chaque classe [ P] la forme bilinéaire
antisymétrique sur 9 induite par la forme de courbure de [ P] est un homo-
morphisme du groupe ® dans le groupe des formes bilinéaires sur §) a
valeurs dans a. On se propose d’étudier 'image de cet homomorphisme.

Puisque A et H sont des groupes de Lie abeliens connexes, leurs
algébres de Lie a et §) sont, en tant que des groupes abeliens, les revéte-
ments universels de A resp. de H, les projections étant les applications
exponentielles. Désignons par II resp. A les noyaux de ces projections.
On a donc les suites exactes :

) —>T— a8 4 0),

(0) A b H ).

Les sous-groupes discrets Il et A de a resp. de §) sont des groupes abeliens
libres. Le rang de A est 2, puisque H est compact et que dim H=n.
Supposons que P admette une connexion holomorphe. Soit G le plus
grand groupe connexe d’automorphismes de P et soit G le revétement
universel de G; on désigne par p la projection de G sur G. On a défini
au §3 les homomorphismes M: A—G et #:G— H. 1l existe alors des
homomorphismes A:a—G et #:G—0 tels que le diagramme suivant
soit commutatif.

Cl——)é——”—)[)

(1) |
=l

Puisque M et 7 induisent les homomorphismes d’algebres de Lie A
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resp. 7, il en est de méme de M et de #. Les groupes a et § étant
identifiés avec leurs algébres de Lie, cela signifie que le diagramme
suivant est commutatif.

A 28
(2) a expl\b
i\)(;/

D’autre part, la suite

3) ) —> a2 6% 5— ()

est exacte. En effet, d’aprés le théoréme 1 = est surjectif et (2) implique
que # est alors surjectif. Puisque b est simplement connexe, le noyau
de # est connexe. Par conséquent, ce noyau est le sous-groupe de G
engendré par le noyau de = qui coincide avec A(a) d’aprés le lemme 1.
Il résulte de (2) que le noyau de # est égal a Ma). Enfin, Xa) étant
alors un sous-groupe fermé et invariant de G, Ma) est simplement connexe.
Puisque M est localement isomorphe, A est donc une bijection de a sur
Ma). On a ainsi montré que la suite (3) est exacte.

Puisque (2) est commutatif et que (3) est exacte, il en résulte que
exp: g— G est surjectif.

On fait maintenant opérer le groupe G dans P en posant:

Sy = p(3)y pour s€G et yeP.

De meéme, ) opére dans T par la formule
hx = (exp h)x pour hebh et xeT.

Choisissons un point y € P. Soit A le sous-groupe de stabilité de G en
ce point y. D’aprés le diagramme commutatif (1) et la suite exacte (3),
les opérations du sous-groupe Ma) de G dans P sont les opérations de
A et de plus un élément de A(a) opére trivialement dans P si et seule-
ment si cet élément appartient 2 AMII). Puisque I'opération d’un élément
de A qui laisse fixe le point y est 'opération triviale, il en résulte que

(4) Ma)nA = AIT).
D’autre part, on a:
(5) #(A) = A,

En effet, on a #$)p(y)=p(sy) pour tout s€G. Donc un élément de #(A)
laisse fixe le point p(y). Puisque H est simplement transitif sur 7, il
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en résulte que #(A)CA. D’autre part, d’aprés la suite exacte (3), tout
élément de 9§ est de la forme #(8) avec s§€G. S'il appartient a A,
#8)p(y)=p(y) donc p(sy)=p(y) et 8y appartient a la fibre de y. Il
existe donc un élément @ € a tel que (Ma)s)y=y, c’est-a-dire que M(a)s € A.
On a #(Ma)s)=#(s) d’aprés (3), par suite A C #A), ce qui démontre (5).

Lemme 5. Soit g une algébre de Lie telle que [ g, g soit dans le centre
de g. Alors, dans un groupe de Lie ayant g pour algébre de Lie, on a

(exp Y) (exp X) (exp Y) ' (exp X) ™' = exp (—[X, Y]

quels que soient X, Y €g.

En effet, (expY) (exp X)(exp Y) '=exp(ad(exp Y)X)=exp(exp(ad Y)X)
=exp (X+[Y, X]D=exp(LY, X])expX, les deux derniéres égalités résul-
tant de [Y,[Y, X]]=[X,[Y, X]]=0. La formule du lemme en résulte
immédiatement.

Le lemme 2 montre que l'algébre de Lie g de G vérifie les conditions
de ce lemme.

Cela fait, pour tout élément « € A, on choisit un élément X(u) € g tel
que exp X(u) € A et que =(X(u))=u. En effet, d’aprés (5), on a un élément
aeA tel que #@)=u. On a vu que exp: g— G était surjectif, donc il
existe un élément X(u)<€ g tel que exp X(u)=#. Alors #(exp X(u))=u et
donc =(X(u))=u d’aprés le diagrame (2). Or, si %, w €A, Q étant la
forme de courbure d’une connexion holomorphe de P, on a:

(exp X(«')) (exp X(u)) (exp X(«'))™* (exp X(u))™*

= exp (—[X(n), X@')]) (d’aprés le lemme 5)
= exp M2:u, u') (d’aprés le théoréme 2)
= M2, o) (d’apres (2)).

Par conséquent, A2(u, #’) €A. Le groupe § étant abelien, la suite exacte
(3) implique que le sous-groupe des commutateurs de G est dans Aa);
par conséquent, M2(u, ') € Ma). D’aprés (4), on a alors AM2(x, u’) € MII)
et, puisque A est injectif d’aprés (3), on a enfin

(6) Q(u, w')ell quels que soient u, ' €A.

Remarquons que (6) est une propriété de © qui ne dépend pas du choix
du point ye€ P.

Soit ®* le groupe des formes bilinéaires antisymétriques sur 5 a
valeurs dans a qui satisfont a la condition (6); ®* s’appelera le groupe
des formes de courbure. Compte tenu du début de ce §, on a ainsi le
résultat suivant.
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Theéoreme 6. L’application 0 qui fait correspondre a chaque classe
[Ple® la restriction ¢ Yy de la forme de courbure de [ P est un homo-
morphisme du groupe ® dans le groupe des formes de courbures ®*.

On désignera par 6(P) I'image de la classe [P] de P.

Theoréeme 7. Soit ¢ linjection de ®° dans ®. Alors,

0
0) —> @ —— ® —— P*— (0)

est une suite exacte.

Démonstration. 11 résulte du théoréme 2 que le noyau de € coincide
avec ®°. Afin de montrer que @ est surjectif, on construit pour chaque
Q € ®* un espace fibré P admettant une connexion holomorphe et tel que
0(P)=Q. Soit g un espace vectoriel complexe pour lequel il existe une

suite exacte:

T

A
(7) (0) a g ) 0).

Définissons dans g une structure d’algébre de Lie complexe en posant :

[X, Y] = —\=(X), =(Y)) pour X, Yeg.

Le centre de g contient A(a) et (3) est une suite exacte d’algébres de Lie.
Il en résulte en particulier que g vérifie ’hypothése du lemme 5. Soit
G le groupe de Lie simplement connexe ayant g pour algébre de Lie.
Il existe des homomorphismes A:§—G et #: G —Y tels que le diagramme

(8) / \
/

<———fx>

soit commutatif. Par le méme raisonnement qu’en haut il en résulte que
la suite

N
Bl

(9) ) a G b )

est exacte. Soit # un relévement de =. D’aprés le lemme 5, si u, w’ € A,
(exp m(u'))(exp p(u))(exp p(u’)) " (expp(u)) ' = exp(— [ p(u), p(w') ] = exprAQ(u, u’)
=MQ(u, w') et ceci appartient 2 MII) puisque Q€ ®*. Soit {u,, -, #,,}
une base du groupe abelien libre A et soit A le sous-groupe de G en-
gendré par {exp pu(u;): i=1, -+, 2n} et MII). Compte tenu de (8), il en
résulte que
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(10) Ma)nA = XID),
(11) w(A) = A,

Par conséquent, le sous-groupe A est discret et donc fermé dans G.
Soit maintenant P lespace homogéne G/A. Tout élément aca
opére dans P par la translation par Ma) € G. D’aprés (10), si a €11, alors
a opére trivialement dans P et on peut donc considérer que le groupe
A=a/Il opére dans P. D’autre part, d’aprés (9) et (11), 'application de
G dans T qui transforme §€G en #(8)x ou x€T induit une applica-
tion pde P sur T. On constate alors que les opérations de A dans P
et I'application p définissent dans P une structure d’espace fibré principal
holomorphe de groupe A et de base T. De plus, G opére sur P de
maniére transitive comme groupe connexe d’automorphismes de P, donc
P admet une connexion holomorphe d’aprés le théoréme 3. Enfin, d’aprés
le théoréme 2, on a 8(P)=L. Cela achéve la démonstration du théoréme 7.

§ 6. Homomorphisme .

On désigne par Hom (A, A) le groupe abelien des homomophismes
de A dans A ; la somme des éléments vy, ¥’ € Hom (A, A) est définie par
(y+v')Yw)=vyu)y' (u) pour tout #€A. De méme, Hom(h, A) désignera le
groupe des homomorphismes holomorphes de §) dans A. Un homomor-
phisme de %) dans A induit un homomorphisme de A dans A4 et on a
ainsi un homomorphisme n de Hom (), A) dans Hom (4, A).

A partir de maintenant on choisit un point x€ T et une base
{u,, -+, u,,} du groupe abelien libre A.

Supposons que P admette une connexion holomorphe. D’aprés le
théoréme 1, il existe un relevement x de =. Ce relévement g définit un
élément y de Hom (A, A) par le procédé suivant. On prend un point y € P
tel que p(y)=x. Considérons exp p(u,) € G pour 1=k=2xn. D’aprés le dia-
gramme commutatif (2) du §5, #(expp(u,)) == (p{n,) =u,, donc pl(exp rw(u,))y)
=u,p(y)=p(y) et il existe des éléments a, € A tels que

(exp p(u,))y = ya,  pour 1=k=2n.

Puisque A est un groupe abelien libre engendré par {«,, ---, u,,} et que
A est un groupe abelien, ces éléments a,, -, @,, définissent un élément
v de Hom (4, A) tel que y(u,)=a, pour 1<k<2xn. Si l'on prend un
autre point ¥ € P tel que p(y')=x, il existe un élément @, € A tel que
v =vya,. Par conséquent, on a (exp u(u,))y =ya.a,=yaa,=y'«, pour
1<k<2n, ce qui montre que y est bien déterminé par pu.

Il résulte du lemme 1 que tout relévement ' de = est de la forme
+Av ol v est une application linéaire quelconque de %) dans a. Puisque
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A(a) est dans le centre de g, [(k), Mr(h))]=0 et donc, compte tenu de
(2) du §5, exp p/(h)=exp p(IMu(h)) quel que soit 2€Y). L’application
v=(exp)r est un homomorphisme holomorphe de Y) dans A et, puisque
pAM=A(exp) d’aprés (1) du §5, on a:

(exp (/' (u,))y = (exp pw(u)Mo(u,)y = y(v(u,)a,) .

Par conséquent, si 'on part du relévement ' on aura ’homomorphisme
n(¥)+vy au lieu de y. Ainsi, P définit un élément =(P) du groupe
quotient Hom (A, A)/m(Hom(h, A)) représenté par y. Si 7(P)=0, alors,
par un choix convenable du relévement u, ’homomorphisms y défini par
# est nul.

Si P’ est équivalent a P, alors 7(P)==(P’). Par conséquent, I’applica-
tion P — =(P) induit une application = de ® dans Hom (A, A)/n(Hom (9, A)).

Theoréeme 8. L’application = est un homomorphisme du groupe @
dans le groupe Hom (A, A)/n(Hom (Y, A)).

Démonstration. On employera les notations définies dans la démons-
tration du théoréme 5. En outre, on identifie P,v P, avec son image
dans P,x P, par l'injection #*; les opérations de A x A4 dans P,V P, sont
induites par les opérations de Ax A dans P,x P,. Puisque [P,+ P,]=
[P]+[P,], il suffit de montrer que (P, + P,)=7(P)+r(P,).

Soit g;(g) l'algébre de Lie des champs de vecteurs conformes in-
variants par A sur P; (resp. sur P,+ P,); d’aprés le théoréme 1, on a
les homomorphismes surjectifs #;:q;,—) et #:g—9 (7=1, 2). La somme
directe g, +g, peut étre identifiée d’'une facon canonique avec une algebre
de Lie de champs de vecteurs conformes sur P,x P, qui sont invariants
par Ax A. Soit ¢’ la sous-algebre de Lie complexe de g,+g, des éléments
(X;, X,) tels que =, (X))==,X,). Les éléments de ¢’ induisent des champs
de vecteurs conformes dans la sous-variété P,v P, qui sont invariants
par Ax A, donc a fortiori par B. Ces champs-ci se projetent a leurs
tour sur des champs de vecteurs sur l’espace quotient P,+ P, de P,x P,
qui appartiennent a g. On obtient ainsi un homomorphisme ¢ de g’ dans
g. Or, le groupe simplement connexe G,XG, ayant g,+g, pour algébre
de Lie opére dans P,x P, et, G,x G, étant nilpotent et simplement con-
nexe, on sait que la sous-algébre de Lie ¢’ de g,+g, correspond a un
sous-groupe fermé et simplement connexe G' de G,xG,. Le groupe G/
transforme la sous-variété P, v P, en elle-méme et y opére comme groupe
d’automorphismes de I'espace fibré P,V P,. Soit d’autre part G le groupe
simplement connexe ayant g pour algébre de Lie. Puisque G’ est simple-
ment connexe, il existe un homomorphisme § de G’ dans G qui induit
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I'homomorphisme ¢ de g dans g. IlI résulte de ces définitions que
q(s'y)=qg(s’)q(y’) quels que soient y' € P,v P, et s’ €G'.

Soient maintenant ; un relévement de =; et y; 'élément de Hom(4, A)
défini par p;;vy; représente 7(P;) (=1, 2). Posant p'(h)=(g,(h), (k) pour
k€Y, on a w'(h)€g quel que soit £€Y, et I'application x=qgp’ de b dans
g est un relévement de =. Prenons y;€ P; tel que p(y,)=x(=1, 2).
Il est evident que (y,, .)€ P,v P, et que pq(y,, y,))=x. Daprés ce
qui précéde, on a (exp p(u:))q(y,, ¥,) =q((exp #'(#,))(¥1, ¥.) = Q((eXD 5, (%,)) ¥,

(eXD ,(#2)¥2) = Q(¥,Y,(w1), ¥2:(%))=aQ(Y,, ¥)(¥:(ur)yo(w)) pour 1=Fk=12n.
Cela montre que I’homomorphisme ¥,+y, représente =(P,+P,. On a
ainsi 7(P)+7(P,)=7(P,+ P,) et le théoréme 8 est démontreé.

Theéoreme 9. La restriction a ®° de I’homomorphisme v est bijective.
En particulier, on a [l'isomorphisme

(®° = Hom (A, A)/n (Hom (), A)).

Démonstration. Supposons que la classe [ P] de P appartienne 4 ®°
et que 7(P)=0. Puisque P admet une connexion holomorphe intégrable,
Palgebre de Lie g associée a P est abelienne d’aprés le corollaire du théo-
réme 2. Par conséquent, on a dans G

(1) (expX)(exp Y) = exp (X+Y) quels que soient X, Ye€g.

D’autre part, comme on l'a remarqué plus haut, ~(P)=0 signifie qu’il
existe un relévement x de = tel que (exp p(u,))y=y pour 1=k=<2n, y
étant un élément de P tel que p(y)=x. Puisque u,, ---, #,, engendrent
A, il résulte de (1) que

(2) (exp p(u))y =y quel que soit v €A,

Or, puisque H=Y%/A est simplement transitif sur 7, tout élément de T
est de la forme kx avec h€Y) et Ax=Hx pour h, W €} si et seulement si
W=h+u avec u€A. Alors, d’aprés (1) et (2), il existe une application f
de T dans P et une seule telle que

f(hx) = (exp p(h))y .

On constate facilement que f est une section holomorphe de l’espace
fibré P. Par conséquent, P est trivial et [ P] est donc I'élément neutre
de ®°.

Soit ¥y € Hom (A, A). On construit un espace fibré P de groupe A
et de base T qui admet un connexion holomorphe intégrable et dont
I'image par 7 est la classe de ¥ modulo n(Hom(p, A)). Puisque A est
un groupe abelien libre, il existe un homomorphisme ¢ de A dans a tel
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que exp y(u)=vy(u) pour tout # €A. Soit G le groupe somme directe de a
et de et soit A le sous-groupe discret de G constitué par les éléments
de la forme (v+«(u), u) avec v €Il et u € A. Puisque Ana=II, le groupe
A=a/Il opére dans l'espace quotient P=G/A et lapplication de G sur
T qui applique (@, #) en hx induit une application p de P sur T. Ainsi
P se munit d’'une structure d’espace fibré principal holomorphe de groupe
A de base T et dont la projection est p. Le groupe G=G/A opére dans
P par les translations et coincide avec le plus grand groupe connexe
d’automorphismes de P, car la dimension de ce dernier est < dim P=
dim G d’aprés le lemme 1. D’aprés les théorémes 3 et 4, il en résulte
que P admet une connexion holomorphe intégrable. Enfin, on constate
facilement que la classe 7(P) est représentée par y. On obtient ainsi
I'espace fibré requis, ce qui montre que 7 applique ®° sur le groupe
Hom (A, A)/a(Hom (), A)). Le théoréme 9 est ainsi démontré.

§7. Structure du groupe ®.

Le théoréme suivant détermine la structure du groupe .

Theéoréme 10. a) Le groupe ® est la somme directe du sous-groupe
®° et d’un sous-groupe qui est isomorphe ¢ ®*.

b) Le groupe des formes de courbure ®* est un groupe abelien [ibre
dont le rang est <n(n—1)r.

¢) Le groupe ®° est isomorphe au quotient du produit dirvect A? de
2n exemplaives de A par un sous-groupe de Lie complexe connexe de
dimension n.

Démonstration. a) Soit -#" le noyau de I'homomorphisme 7. Le
théoréme 9 implique que le groupe ® se décompose en somme directe
®°+ .4 Daprés le théoréme 7, I’homomorphisme € induit un isomor-
phisme de -/ sur ®*, ce qui démontre ).

Pour montrer b) et ¢) on suppose que les éléments u,, ---, u, de la
base {«,, -+, #,,} de A forment une base de l'espace vectoriel complexe
b ; c’est possible puisque #,, ---, u,, engendrent §) sur les nombres réels,
donc a fortiori sur les nombres complexes.

b) Une forme bilinéaire antisymétrique Q sur %) a valeurs dans a est
définie par ses valeurs pour (%, #;) avec 1k</<2n, qui peuvent étre

(g) points arbitraires de a. Le groupe de ces formes se munit donc
d’une structure d’espace vectoriel complexe isomorphe a4 la somme directe

a(g). Or, pour que Q soit dans ®*, il faut et il suffit que

(8) Q(u,, u,;) €1l pour 1<k<I<2n.
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Dans ce cas, on a en particulier Q(x;, »;) € Il pour 1=7<_j<#x. Par con-
séquent, ®* est isomorphe & un sous-groupe discret de a 2), donc c’est

un groupe abelien libre dont le rang est <2dim a(g)zn(n—l)r.

¢) Le groupe Hom(A, A) est isomorphe a A* par Iapplication
v—(y(w,), ---, ¥(#,,)). De méme, le groupe Hom (), a) étant le groupe des
applications linéaires de %) dans a, Hom(h, a) est isomorphe a a" par
lapplications v— (v(«,), ---, ¥(#,)). On identifira Hom (4, A) avec A* et
Hom (), a) avec a” au moyen de ces isomorphismes. D’autre part, 'homo-
morphisme exp: a— A induit des homomorphismes de Hom(, a) sur
Hom (b, A) et de Hom (A, a) sur Hom (A, A). Désignant encore par exp
ces homomorphismes et par ¢ I'homomorphisme de Hom(A, II) dans
Hom (A, a) induit par l'injection de II dans a, on a le diagramme suivant.

exp
(0)— Hom (9, a) —> Hom (), A) —— (0)
n

( 9 ) L K ex
(0) — Hom (A, II) — > Hom (A, a) — Hom (A, A) — (0)

I1 est clair que ce diagramme est commutatif et que les deux lignes sont
des suites exactes. De plus, » est injectif, car A engendre Y sur les
nombres complexes. Il résulte de ce diagramme que I'homomorphisme
composé mn(exp) est un homomorphisme holomorphe de Hom/(H, a)=a"
dans le groupe Hom (4, 4)=A"" dont le noyau est le sous-groupe discret
constitué par les éléments qui sont appliqués par » dans ¢(Hom (A, II)).
Le groupe n(Hom(h, A)) étant I'image m(exp)a”, c’est un sous-groupe
de Lie complexe connexe de dimension # de A*. Le théoréme 10 c¢) en
résulte, puisque ®°=~Hom (4, A)/n(Hom (9, A)) d’apres le théoréme 9. Le
théoreme 10 est ainsi démontré.

On va voir quand le sous-groupe de Lie du théoréme 10 c¢) est
fermé : Soit E le sous-groupe de Hom (A, a) formé par les éléments v tels
que (#;)=0 pour 1<i<n. On peut identifier £ avec a” en faisant
correpondre a v € E I'élément (y(%,.,), -, y(%,,)). D’autre part, le groupe
Hom (A, a) est la somme directe

(10) Hom (4, a) = 9 (Hom (9, a)) +E.

Cela fait, on obtient facilement d’aprés le diagramme (9) le résultat sui-
vant: Pour que n(Hom(}, A)) soit fermé dans Hom (4, A), il faut et il
suffit que I'image D de :(Hom (4, II)) par la projection de Hom (4, a) sur
E par rapport a la décomposition (10) soit un sous-groupe fermé. Dans
ce cas, D est un sous-groupe discret de E et ®°=~Hom(4, A)/n(Hom(}y, A))
est isomorphe a E/D. De plus, D contenant le sous-groupe II" de E=a”,
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®° est alors isomorphe au quotient de A" par un sous-groupe discret.

ExempLE 1. Le cas A=C* (le groupe multiplicatif des nombres
complexes non-nuls). En général, si Q € ®*, alors 'ensemble {Q(u, «’) ;
u, w’ € A} est un sous-groupe de II qui engendre sur les nombres réels
le sous-espace complexe {Q(k, #'); h, W €§}. Or, dans le cas o A=C*,
aucun sous-groupe de II n’engendre un sous-espace complexe ==(0) sur les
nombres réels. Par conséquent, ®*=(0) et ® =®° d’aprés le théoréme 7.
Par ailleurs, on sait que le groupe ®° est un tore complexe (la variété
de Picard de T'). Cela résulte aussi du résultat ci-dessus. Plus précisé-
ment, les groupes Hom (4, a), Hom (Y, a) et Hom (4, II) sont canoniquement
isomorphes aux groupes des formes de degré 1, des formes de type (1, 0)
resp. des formes de degré 1 et de périodes entiéres dans I’espace des formes
sur T, a valeurs complexes, qui sont harmoniques par rapport a une
métrique kaehlérienne de T invariantes par H. Il en résulte que la
structure complexe de ®° d’aprés le théoréme 10 coincide avec celle de
la variété de Picard au signe du tenseur complexe prés.

ExempLE 2. Soit {u,, -+, #,,} = {6y, =, Up, \/—1ti, -+, / —1u,}. La
condition (8) pour qu’une forme bilinéaire antisymétrique Q appartienne
a @* est alors: Qu;, u;) et /—10(u;, u;) €Il pour 1=i<j=n. Posons
II'={v;v et /—1v€Il}. Alors ®* est isomorphe a la somme directe

de (Z) groupes isomorphes a 1l'. Supposons de plus que A soit compact

et que II soit engendré par {v,, ---, v,, Bw,, -, B,v,} ou {v,, ---,v,} est
une base complexe de a et ou 83,, -+, B, sont des nombres complexes avec
Im B;4=0 pour 1=i<7. SiB,=--=8;=v/—1 et si Im B;=(0) mod. 1
pour i _>i,, un simple calcul implique que II’ est le sous-groupe de II
engenré par {v;, -+, v;,, \/—10;, **-, /—1v;,}. Par conséquent, le groupe

®* est alors de rang n(n—1)i,. Les cas i,=0 et i,=7» donnent les rangs
extrémes de ®P*.

On considére le groupe ®° au cas ou r=#n=1. Alors E=a et la pro-
jection D de «(Hom (A, II)) dans E selon (10) est le groupe engendré par
{v,, Bw,, v/ =1v,, ~/—18Bw,}. Si Im B, est un nombre irrationnel, D
n’est pas fermé dans E. On voit de plus que ®° est alors le quotient
de A* par un sous-groupe de Lie isomorphe au groupe a.

Université de Strasbourg, France
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Université d’Osaka, Japon
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