
Title Sur certains espaces fibrés principaux
holomorphes admettant des connexions holomorphes

Author(s) Murakami, Shingo

Citation Osaka Mathematical Journal. 1959, 11(1), p. 43-
62

Version Type VoR

URL https://doi.org/10.18910/7657

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Murakami, Shingo
Osaka Math. J.
11 (1959), 43-62.

Sur Certains Espaces Fibres Principaux Holomorphes
admettant des Connexions Holomorphes

Par Shingo MURAKAMI

Ce memoire est consacre a Γetude des espaces fibres principaux holo-
morphes dont le groupe est abelien connexe et dont la base est un tore
complexe. Dans la premiere partie, on montre que pour ces espaces fibres
Γexistence d'une connexion holomorphe est equivalente a Γexistence d'un
groupe transitif connexe d'automorphismes. On montre de plus que la
forme de courbure d'une connexion holomorphe est alors determinee par
Γespace fibre. Dans la seconde partie, on etudie le groupe (P des classes
d'espaces fibres dont le groupe est un groupe de Lie abelien connexe A
dont la base est un tore complexe T et qui possedent une connexion holo-
morphe. On demontre que ce groupe (? est canoniquement isomorphe a
la somme directe du sous-groupe (P° des classes d'espaces fibres possedant
une connexion holomorphe integrable et d'un groupe abelien (?* qui
s'interprete comme groupe des formes de courbure. On indique enfin la
structure de ces deux groupe facteurs alors que (?° est le quotient d'un
groupe de Lie abelien complexe connexe par un sous-groupe de Lie
complexe connexe, (P* est un groupe abelien libre de rang fini.

On sait que pour les espaces fibres principaux holomorphes dont la
base est une variete compacte kaehlerienne et dont le groupe est semi-
simple ou est un GL(^, C) Γexistence d'une connexion holomorphe im-
plique que toutes les classes caracteristiques (a coefficients complexes) de
Γespace fibre sont nulles [1]. La categoric des espaces fibres etudies
ici donne des exemples d'espaces fibres admettant des connexions holo-
morphes, mais dont les classes caracteristiques ne sont pas nulles et
qui n'admettent done pas de connexion integrable.

Je tiens a exprimer toute ma reconnaissance a M. J.-L. Koszul pour
ses precieux conseils je lui suis redevable de plusieures suggestions ainsi
que d'importantes ameliorations de redaction.

I. Connexions holomorphes et automorphismes.

§ 1. Algebres de Lie associees a un espace fibrέ.

On designe par A un groupe de Lie complexe abelien connexe de
dimension r et par α Γalgebre de Lie complexe des champs de vecteurs
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reels invariants sur A la structure complexe de α est definie par le
tenseur / de la structure complexe de A. Designons par T un tore
complexe de dimension n. Soit § Γalgebre de Lie complexe des champs
de vecteurs conformes sur T1)>2). On sait que Ij est Γalgebre de Lie du
groupe des homeomorphismes holomorphes de T [2]. Par consequent,
£) est abelienne et elle engendre le module des champs de vecteurs sur
Γanneau des fonctions reelles sur T.

Dans tout ce qui suit, P designera un espace fibre principal holo-
morphe de groupe A et de base T. Cest une variete complexe de
dimension n + r. La projection de P sur T sera noteejp et les operations
de A dans P seront ecrites a droite X(P) designera le module sur
Γanneau des fonctions reelles sur P constitue par les champs de vecteurs
reels sur P.

Soit g Γalgebre de Lie des champs de vecteurs conformes sur P qui
sont invariants par A. Puisque les operations de A dans P conservent
la structure complexe de P, pour X £ Q on a IXetf\ done g est une
sous-algebre de Lie complexe de Γalgebre de Lie complexe des champs
de vecteurs conformes sur P. Pour a e α, soit Za le champs de vecteurs
sur P dont la valeur au point y e P est ya. L'application λ de α dans
Γ espace vector iel reel des champs de vecteurs sur P qui transfer me a
en Za est un homomorphisme injectif de Γalgebre de Lie α dans Γalgebre
de Lie des champs de vecteurs sur P. Puisque A opere holomorphique-
ment dans P, \(a) est conforme et λ(fa) = /λ(0) pour tout <z6α. Puisque
α est abelienne, λ(<z) est invariant par A pour tout a G α. Par consequent,
λ est un homomophisme injectif de Γalgebre de Lie complexe α dans g.
Enfin, les champs de vecteurs sur P invariants par A etant les champs
de vecteurs X tels que \_Za, X~} = 0 pour tout a G α, Γimage λ(α) est
contenue dans le centre de g.

La projection p de P sur T definit d'autre part un homomorphisme
de Γalgebre de Lie des champs de vecteurs sur P qui sont invariants
par A dans Γalgebre de Lie des champs de vecteurs sur T. Get homo-
morphisme a pour restriction a g un homomorphisme π de Γalgebre de
Lie complexe g dans Γalgebre de Lie complexe ί).

Lemme 1. La suite (0) -» α —> g —» £) est exacte.

1) Dans ce memoire tous les champs de vecteurs, les fonctions et les formes differentielles
sont supposes differentiables.

2) Un champs de vecteurs X sur une variete complexe V est dit conforme si I[X, Y]
= [X, /Y] pour tout champ de vecteurs Y sur V, oύ / est le tenseur de la structure complexe
de V. L'ensemble des champs de vecteurs conformes sur V est une algebre de Lie complexe
ayant 7 comme structure complexe.

3) On designe par / le tenseur de la structure complexe de la variete complexe en question.
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Demonstration. On a deja observe que λ etait injectif. On munit
le module X(P) d'une structure de module sur Γanneau des fonctions
complexes sur P en posant (f'+\f^Λf")X=f'X+f"IX lorsque ff et/"
sont des fonctions reelles. La sous-algebre complexe λ(α) de g engendre
dans 3£(P) le sous -module des champs de vecteurs tangents aux fibres
de P, et une base complexe {Z19 ••• , Zr} de λ(α) est une base de ce sous-
module. Soit X G g ; supposons τt(X) = Q, alors X est tangent aux fibres
et

oύ Fj, •••, Fr sont des fonctions complexes sur P. Puisque X, Zly ~, Zr

sont invariants par A, il en est de meme de Fl , , Fr . II existe done
des fonctions Fί, •••, F'r sur T telles que Ff (y) = F5(p(y)) pour tout y e P
(1^/^r). Soit Fun champ de vecteurs sur P invariant par ^4. Puisque
\Za , y ] = 0 pour tout a G α, on a :

Puisque X est conforme, il en resulte que

pour l^i<^r. Soit pY le champ de vecteurs sur T qui est la projec-
tion de y. On a done :

pour 1< '̂̂ >. Puisque tout champ de vecteurs sur T est localement de
la forme pY, cela prouve que Fί, •••, Fί sont des fonctions holomorphes
sur T T etant compact, elles sont constantes. Par consequent, Fly --, Fr

sont aussi constantes et X appartient done a λ(α). Le lemme 1 est ainsi
demontre.

Lemme 2. [g, g] est dans le centre de g. En particulier, g est une
algebre de Lie nilpotente.

On a observe plus haut que λ(α) est contenu dans le centre de g.
D'autre part, puisque ξ) est abelienne, le lemme 1 implique que [g, g] C λ(α).

Lemme 3. Si X £ Q et si X est nul en un point y de P, alors X= 0.
En effet, si X est nul au point y G P, π(X) est nul au point p(y) G T.

Or, T etant un tore complexe, on sait que tout champ de vecteurs con-
forme qui est nul enp(y) est le champ nul. Done τr(X) = Q et X=\(a) = Za

avec a G α d'apres le lemme 1. Puisque P est un espace fibre principal
de groupe A et que Za est nul au point y, on a a = 0 et par suite X=0.
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§ 2. Connexions holomorphes.

Comme le groupe structural A de P est abelien, une forme de con-
nexion ω sur P est une α-forme4) de degre 1 sur P invariante par A
telle que ω(\(a)) = a pour tout # eα et la forme dω est Γimage reciproque

Ωp par p d'une α-forme Ω, de degre 2 sur T ίl est la forme de courbure
de la connexion definie par ω5). Par definition, une connexion est holo-
morphe si la forme de cette connexion est holomorphe et une connexion

est integrable si sa forme de courbure est nulle.

Thέoreme 1. Pour que P admette une connexion holomorphe, ίl faut
et il suffit que Γhomomorphisme π de g dans fy soit surjectif. Dans ce
cas, les connexions holomorphes de P correspondent bijectivement aux rele-
vements de π, c'est-ά-dire aux applications lineaires μ de ί) dans g telle
que π(μ(h)) = h pour tout h G £)6).

Demonstration. Supposons que π soit surjectif. D'apres le lemme 1,
on a d'abord dim g = dim α-}-dim £) = dim P. Le lemme 3 implique alors
qu'une base reelle de g est une base du module X(P) sur Γanneau des
fonctions reelles sur P. II en resulte qu'une fonction sur g a valeurs
dans α qui est lineaire sur les nombres reels est la restriction d'une α-
forme de degre 1 sur P. De plus, puisque g est constituee par des
champs de vecteurs invariants par A, cette α-forme est invariante par
A. Cela dit, comme π est suppose surjectif, on a un relevement μ de
π. D'apres le lemme 1, il existe alors une fonction ω sur g a valeurs
dans α telle que

(1) X= \(ω(X))+μ(*(X)) quel que soit Xe g .

Puisque λ, μ, π sont les applications lineaires complexes, ω est une
application lineaire complexe de g dans α. En particulier,

( 2 ) ω(/X) = Iω(X) pour tout Xe g .

D'apres ce qu'on a vu plus haut, ω est induite par une α-forme sur P,
designee encore par ω, qui est invariante par Λ. On voit immediate-
ment que celle-ci est une forme de connexion. D'apres la formule
(dω)(X, Y) = Xω(Y)-Yω(X)-ω(lX9X]), on a:

4) Une forme differentielle a valeurs dans α est dite une d-forme. Une α-forme ω de degre
p est holomorphe si ω est de type (p, 0) et si dω est de type (p-\-l, 0).

5) Pour les notions concernant les connexions, on suivra [5] sauf pour la definition de la
forme de courbure d'une connexion.

6) Lineaire et bilineaire sont entendus sur les nombres complexes.
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(3) dω(X, Y) = -ω(pf, y]) quels que soient X, F G g ,

car ω(JΓ) et ω(y) sont constantes sur P. II resulte de (2) et de (3) que

( 4 ) dω(IX, Y) = Idω(X, Y) quels que soient X, Y € g .

(2) et (4) montrent que la forme de connexion ω est holomorphe. On
a done demontre que si TT est surjectif un relevement de π definit une
conn'exion holomorphe. On observe que deux relevements differents de-
finissent deux connexions holomorphes different es.

Reciproquement, soit ω la forme d'une connexion holomorphe sur P.
Comme on sait, pour tout champ de vecteurs X' sur T il existe un et
un seul champ de vecteurs X sur P qui se projete sur X/ et qui soit hori-
zontal, c'est-a-dire tel que ω(X) = 0. Ce champ X est invariant par A.
On va voir que si X' E ϊ j alors XGg, c'est-a-dire que

( 5 ) Tpr, r] = pr, /rj

pour tout yeX(P). Si y=λ(#) = ZΛ avec #eα, les deux membres de (5)
sont nuls, puisque X est invariant par A. Supposons que Y soit in-
variant par A et horizontal. On a dω(X, Y)=—ω([_X, y]), car ω(X) =

) = 0. Puisque la connexion est holomorphe, il en resulte que

y]) - /ω([X, y]) = -Idω(X, Y) = -dω(X, IY) = ω([Jf, /y]) .

D'autre part, /[X, y] et [_X, IY~] sont invariants par A et, comme
JCXG£), X'=pX est conforme; par consequent,

y] = /ppr, y] = /[px, p.y] = [px, /py] = [px, p/y] =p[x,

La relation (5) pour le champ Y en question en resulte. Puisque les
champs de vecteurs Y des deux types consideres engendrent le module
X(P) sur Γanneau des fonctions reelles sur P, il en resulte que (5) est
vraie pour tout Y £ 3c(P) on a ainsi montre que X G g. Comme π(X) =
pX=X', cela signifie que TT est surjectif. Enfin, si pX=X' et ω(X) = Q9

alors pIX=IX' et ω(/X") = /ω(X) = 0, done Γapplication qui transforme X' en
X a pour restriction a ξ) un relevement μ de TT. De plus, les formes
ω et μ verifient la relation (1), car, pour X£g, X—\(ω(X)) est le champ
de vecteurs horizontal qui se projete sur π(X). Cela demontre que la
connexion dont la forme est ω coincide avec celle qui est definie a partir
du relevement μ par le procede precedent. Le theoreme 1 est ainsi
demontre.

Cette demonstration montre que la formule (3) est valable pour toute
connexion holomorphe de P.
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On va maintenant considerer la forme de courbure d'une connexion
holomorphe de P.

Theoreme 2. Supposons que P admette une connexion holomorphe. La
forme de courbure Ω, d'une connexion holomorphe de P depend uniquement
de P. Cette forme est determinee par sa restriction a ί) qui est une forme
bilineaire antisymetrique a υaleurs dans α. On a de plus

\Ω(π(X), τ t ( Y ) ) = -[X, F]

que Is que soient X, Feg.
Demonstration. Soit ω une forme de connexion holomophe sur P

et soit Ω sa forme de courbure. Remarquons d'abord que Ω est deter-
minee par sa restriction a ί), car ί) engendre le module des champs
de vecteurs sur T sur Γanneau des fonctions reelles sur T. Compte
tenu de (3), on a λΩ(τr(X), τr(Y)) = \Ω,(pX, pY) = \dω(X, F) = -λω([X, F])
quels que soient X, FGg. Puisque £) est abelienne, le lemme 1 implique
que [X, F]eλ(α), done λω([Z, F]) = [X, F]. Par consequent,

λftyr(X), τ r ( Y ) ) = -IX, F]

quels que soient X, FGg. Or, π est surjectif d'apres le theoreme 1 et
λ est injectif. Cette formule montre alors que la restriction de ίl a t)
est une forme bilineaire antisymetrique a valeurs dans α. Celle-ci ne
depend pas du choix de la connexion holomorphe, puisque g est bien
determinee par P. Par consequent, d'apres la remarque faite plus haut,
Ω, elle-meme est bien determinee par P. Le theoreme 2 est ainsi
demontre.

Les deux corollaires suivants resultent immediatement de ce theoreme
et du theoreme 1.

Corollaire 1. Si P admet une connexion holomorphe integrable, toute
connexion holomorphe de P est integrable.

Corollaire 2. Supposons que P ait une connexion holomorphe. Pour
que P admette une connexion holomorphe integrable, il faut et il suffit que
g soit abelienne.

§ 3. Le plus grand groupe connexe d'automorphismes.

Designant toujours par P un espace fibre principal holomorphe de
groupe A et de base T, soit G le plus grand groupe connexe d'auto-
morphismes de P muni de la topologie compacts-ouverts. On sait que
G est un groupe de Lie complexe qui opere holomorphiquement dans P.
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De plus, un sous-groupe a un parametre de G est le groupe de transfor-
mations engendre par un champ de vecteurs appartenant a g et Γalgebre
de Lie de G peut ainsi etre identifiee avec g [4].

Puisque A est abelien connexe, les operations de A dans P sont des
automorphismes de P qui appartiennent a G. L'application λ qui trans-
forme un element de A en Γoperation de cet element dans P est un
homomorphisme injectif de A dans G qui induit Γhomomorphisme λ de
α dans g.

Soit d'autre part H le plus grand groupe connexe d'homeomorphismes
holomorphes de T muni de la topologie compacts-ouverts c'est un groupe
de Lie complexe abelien qui opere holomorphiquement dans T de maniere
simplement transitive. On sait que les sous-groupes a un parmetre de
H sont les groupes de transformations de T engendres par les elements
de Ij et que Γalgebre de Lie de H peut ainsi etre identifiee avec ξ) [2].
Faisant correspondre a un automorphisme de P Γhomeomorphisme de T
qu'il induit, on a un homomorphisme π de G dans H π induit Γhomo-
morphisme 7t de g dans ϊ).

Theoreme 3. Si P admet une connexion holomorphe, G opere transiti-
vement sur P. Reciproquement, si G opere transitivement sur Γensemble
des fibres de P, alors P possede une connexion holomorphe.

Demonstration. D'apres le theoreme 1, une condition necessaire et
suffisante pour que P admette une connexion holomorphe est que π
soit surjectif. Pour que re soit surjectif, il faut et il suffit que π soit
surjectif. Puisque H est simplement transitif sur T, cette condition est
equivalente a la suivante: G opere transitivement sur Γensemble des
fibres de P. Pour achever la demonstration, il suffit de remarquer que,
si cette condition est satisfaite, G opere transitivement sur P car le
sous-groupe λ(A) des operations de A est transitif sur chaque fibre de P.

EEMARQUE. La premiere partie de ce theoreme est un cas particulier
d'un theoreme de Matsushima et de Morimoto [4]. Ce theoreme lui-
meme est generalise par Matsushima a tout espace fibre principal holo-
morphe de base T (a paraίtre dans Nagoya Math. Journal vol. 14).

Theoreme 4. Supposons que P ait une connexion holomorphe. Alors
les conditions suivantes sur P sont equivalentes:

1) P a une connexion holomorphe integrable.
2) G est un groupe abelien.
3) G opere sur P de maniere simplement transitive.

Demonstration. Puisque g est Γalgebre de Lie de G, Inequivalence
entre 1) et 2) resulte du corollaire 2 du theoreme 2.
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D'apres le theoreme 3, G opere transitivement sur P. Par consequent,
les sous-groupes de stabilite de G en differents points de P sont conjugues.
Si G est abelien, le sous-groupe de stabilite en un point de P opere done
trivialement sur P. Puisque G est effectif sur P, il est reduit a Γelement
neutre. Ainsi 2) implique 3).

Reciproquement, si G est simplement transitif sur P, pour tout point
yeP, s->sy est une application bijective de G sur P. Puisque cette
application est holomorphe, c'est un isomorphisme de varietes complexes.
Get isomorphisme induit celui de G/\(A) sur T. En particulier, G/λ(A)
est compact. Soit C(G) le centre de G. II est evident que C(G) contient
λ(A). Done G/C(G) est compact. Or, la representation adjointe de G
induit une representation fidele de G/C(G) et, G/C(G) etant compact,
cette representation est semi-simple. D'autre part, d'apres le lemme 2
G est nilpotent, done Γimage de la representation adjointe de G consiste
en des transformations de g dont les valeurs propres sont toutes egales
a 1. La representation de G/C(G) est done triviale. On a alors G=C(G),
ce qui prouve que G est abelien. Par consequent 3) implique 2) et le
theoreme 4 est demontre.

II. Groupe des classes d'espaces fibres admettant des
connexions holomorphes.

§4. Groupe des classes d'espaces fibres.

L'ensemble des classes d'espaces fibres principaux holomorphes de
groupe A et de base T peut etre identifie avec le groupe de cohomologie
Hl(T, A) de T a coefficients dans le faisceau A des germes de fonctions
holomorphes sur T a valeurs dans A [3]. Soit (?((P°) le sous-ensemble
de Hl(T, A) forme par les classes qui contiennent des espaces fibres
admettant des connexions holomorphes (resp. des connexions holomorphes
integrable).

Thέoreme 5. (? et (P° sont des sous-groupes du groupe ίΓ(T, A).

REMARQUE. Ce theoreme est valable pour toute variete complexe
T la demonstration ci-dessous se fera sans supposer que T soit un tore
complexe.

Demonstration. Soient P1 et P2 deux espaces fibres de groupe A
et de base T et p1 et p2 leurs projections. Soit P1 x P2 le prodult direct
de P! et de P2 c'est un espace fibre de groupe A x A de base TxT
dont la projection est (p^, p2). Soit Pί v P2 Γespace fibre de groupe Ax A
et de base T qui est Γimage reciproque de P1 x P2 par Γapplication
diagonale / de T dans TxT;pi designera la projection de PjvP 2 sur
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T. II existe une application injective canonique /* de P1v P2 dans
P! x P2 qui commute avec les operations de Ax A et qui se pro jete
suivant /. Soit maintenant a Γhomomorphisme άe AxA sur A defini
par ct(«!, α2) = α^ pour (αx, a2)eAxA. Soit B le noyau de «. L'espace
quotient de P xvP 2 par les operations de B est un espace fibre P! + PZ

de groupe A et de base T soient p la projection de Px + P2 sur T et
q la projection de P^ P2 sur Pl + P2. On a pq=p' et p(y(a^a2)) =
q(y)€i(al, α2) pour tout y e Pj v P2 et ( ^ , a 2 ) e A x A . II est facile de voir
que la classe [Pι + P2] de Pj + P2 est la somme des classes [PJ, [P2]
pour la loi d'addition dans Hl(T, A).

Supposons maintenant que P1 et P2 aient des connexions holomor-
phes dont les formes sont ω1 resp. ω2. L'algebre de Lie de A x A etant
la somme directe α + α, la (α + α)-forme (ωί9 ω2) sur P jXP 2 est une forme
de connexion holomorphe du produit P1xP2 et cette forme induit une
forme de connexion holomorphe ω/ = (ω1, ω2)/* de Γespace fibre P xv P2.
Designons par a Γhomomorphisme de α + α sur α induit par Γhomomor-
phisme ct de Ax A sur A et considerons la α-forme otω' sur P xv P2.
On constate facilement que #α/ est Γimage reciproque ωq d'une α-forme
ω sur Pj + P2 par la projection q. De plus, ω est alors une forme de
connexion holomorphe de Pl + P2. Puisque [Pι + P2] = [Pι] + [P2], cela
demontre que, si [PJ, [P2]e(P, [PJ + [P2] € (P.

D'autre part, P etant un espace fibre principal holomorphe de groupe
A et de base T, quand on fait operer les elements a^A dans P par
y->ya~l pour tout y G P, ces nouvelles operations de yl dans P definissent
dans la variete P une autre structure d'espace fibre principal holomorphe
— P de groupe A et de base T et la classe [ — P] de — P est egale a
— [P] dans Hl(T, A). Or, si P admet une connexion holomorphe dont
la forme est ω, la forme — ω est une forme de connexion holomorphe
de —P. Par consequent, si [P] e (P alors — [P] e (P. On a ainsi demontre
que (P est un sous-groupe de Hl(T, A).

Avant montrer que (P° est un sous-groupe de H\Ty A) on etablira le

Lemme 4. Si Ω, £s£ la forme de courbure de la connexion holomorphe
ωi de Pί(i = l, 2), la forme de courbure Ω de la connexion holomorphe ω
de P1

J

ΓP2 construite ci-dessus est egale a f^-f Ω2.
En effet, puisque ω/ = (α>1, α>2)/*, dω/ = (dωlj rfω2)<* = (Ω1p1, Ω2p2)t* =

(^i, ^2)((Pi, Λ)<*) = (ΩM ^/P', oύ (Ω,, Ω2) est une (α + α)-forme sur
TxT. D'autre part, puisque ctω' = ωq, a(dω') = (dω}q. Par consequent,
rtίΩj, Ω2)tp' = (dω)q. On a α^, Π2)/=O1 + Ω2. Commejy^pg et dω = Ω,p,
il en resulte que (Ω^ΩJjp'-Ω/y. On a ainsi Ωj + ίl̂ β et le lemme 4
est demontre.
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D'apres ce lemme, si P1 et P2 ont des connexions holomorphes
integrables, P1 + P2 a aussi line connexion holomorphe integrable. II est
clair que, si P a une connexion holomorphe integrable, — P a une con-
nexion holomorphe integrable. Done (P° est un sous-groupe de Hl(T, A).
Le theoreme 5 est ainsi demontre.

§ 5. Groupe des formes de courbure.

Supposons que P admette une connexion holomorphe. La classe
[P] de P appartient a (P. D'apres le theoreme 2, la forme de courbure
d'une connexion holomorphe de P est determinee par P et par consequent
par [P]. On peut done parler de la forme de courbure de la classe [P].
Or, d'apres le theoreme 2, cette forme de courbure induit dans ΐ) une forme
bilineaire antisymetrique a valeurs dans α. II resulte du lemme 4 que
Γapplication qui fait correspondre a chaque classe [P] la forme bilineaire
antisymetrique sur ϊj induite par la forme de courbure de [P] est un homo-
morphisme du groupe (P dans le groupe des formes bilineaires sur ϊj a
valeurs dans α. On se propose d'etudier Γimage de cet homomorphisme.

Puisque A et H sont des groupes de Lie abeliens connexes, leurs
algebres de Lie α et ^ sont, en tant que des groupes abeliens, les revete-
ments universels de A resp. de H, les projections etant les applications
exponentielles. Designons par Π resp. Δ les noyaux de ces projections.
On a done les suites exactes :

(0). >U >a

(0) > Δ > Ij —> H > (0).

Les sous-groupes discrets Π et Δ de α resp. de f) sont des groupes abeliens
libres. Le rang de Δ est 2n, puisque H est compact et que dim H=n.
Supposons que P admette une connexion holomorphe. Soit G le plus
grand groupe connexe d'automorphismes de P et soit G le revetement
universel de G on designe par p la projection de G sur G. On a defini
au § 3 les homomorphismes λ : A -> G et * : G -> H. II existe alors des
homomorphismes λ:α-^G et ^:G^ί) tels que le diagramme suivant
soit commutatif.

(1) exp p\ exp

Puisque λ et it induisent les homomorphismes d'algebres de Lie λ
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resp. 7τ, il en est de meme de X et de π. Les groupes α et ϊ) etant
identifies avec leurs algebres de Lie, cela signifie que le diagramme
suivant est commutatif.

( 2 )

D'autre part, la suite

est exacte. En effet, d'apres le theoreme 1 π est surjectif et (2) implique
que # est alors surjectif. Puisque ϊj est simplement connexe, le noyau
de # est connexe. Par consequent, ce noyau est le sous-groupe de G
engendre par le noyau de π qui coincide avec λ(α) d'apres le lemme 1.
II resulte de (2) que le noyau de ίr est egal a λ(α). Enfin, λ(α) etant
alors un sous-groupe ferme et invariant de G, λ(α) est simplement connexe.
Puisque λ est localement isomorphe, λ est done une bijection de α sur
λ(α). On a ainsi montre que la suite (3) est exacte.

Puisque (2) est commutatif et que (3) est exacte, il en resulte que
exp : g -> G est surjectif.

On fait maintenant operer le groupe G dans P en posant:

sy = p(s)y pour § e G et y e P.

De meme, £) opere dans T par la formule

hx = (exp h)x pour h G ^ et x G T .

Choisissons un point y G P. Soit Λ le sous-groupe de stabilite de G en
ce point y. D'apres le diagramme commutatif (1) et la suite exacte (3),
les operations du sous-groupe λ(α) de G dans P sont les operations de
A et de plus un element de λ(α) opere trivialement dans P si et seule-
ment si cet element appartient a λ(Π). Puisque Γoperation d'un element
de A qui laisse fixe le point y est Γoperation triviale, il en resulte que

( 4 ) λ(α)AΛ = λ(Π).

D'autre part, on a :

( 5 ) *(A) = Δ .

En effet, on a #($)p(y)=p(sy) pour tout sGG. Done un element de #(Λ)
laisse fixe le point p(y). Puisque H est simplement transitif sur T, il
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en resulte que #(Λ)cΔ. D'autre part, d'apres la suite exacte (3), tout
element de ί) est de la forme #($) avec SGG. S'il appartient a Δ,
«(s)P(y)=P(y) done p(sy)=p(y) et §y appartient a la fibre de y. II
existe done un element # G α tel que fa(a)s)y = y, c'est-a-dire que λ(#)3GΛ.
On a v(\(a)§) = π(s) d'apres (3), par suite Δc#(A), ce qui demontre (5).

Lenmie 5. Soit g une algebre de Lie telle que [g, g] soit dans le centre
de g. Alors, dans un groupe de Lie ayant g pour algebre de Lie, on a

(exp Y) (exp X) (exp Y)'1 (exp XΓ = exp (-[X, Y])

que soίent X, Y e g .
En eff et, (exp Y) (exp X) (exp Y)'1 = exp (ad(exp Y)X) = exp(exp(αc/ Y)X)

= exp(X+[Y, X]) = exp([Y, X])expX, les deux dernieres egalites resul-
tant de [Y, [Y, X]] = [X, [Y, X]] = 0. La formule du lemme en resulte
immediatement.

Le lemme 2 montre que Γalgebre de Lie g de G verifie les conditions
de ce lemme.

Cela fait, pour tout element u G Δ, on choisit un element X(u) G g tel
que expX(w) G A et que τr(X(u)) = u. En effet, d'apres (5), on a un element
w € Λ tel que π(u) = u. On a vu que exp: g->G etait surjectif, done il
existe un element X(U)£Q tel que expX(u) = u. Alors #(exp X(u)) = u et
done π(X(u)) = u d'apres le diagrame (2). Or, si «, w 'GΔ, Ω etant la
forme de courbure d'une connexion holomorphe de P, on a :

(exp X(uf)) (exp X(u)) (exp X(uf)Γl (exp X(u)Γl

- exp(-[X(w), X(wx)]) (d'apres le lemme 5)

= exp λ Ω(w, u') (d'apres le theoreme 2)

M7) (d'apres (2)) .

Par consequent, λΩ(w, w7) 6 A. Le groupe ΐ) etant abelien, la suite exacte

(3) implique que le sous-groupe des commutateurs de G est dans λ(α)

par consequent, λΩ(w, u'} G λ(α). D'apres (4), on a alors XΩ(α, «') e λ(Π)

et, puisque λ est injectif d'apres (3), on a enfin

( 6 ) Ω(w, w7) 6 Π quels que soient u, u' G Δ .

Remarquons que (6) est une propriete de Ω qui ne depend pas du choix
du point ye P.

Soit (P* le groupe des formes bilineaires antisymetriques sur £) a
valeurs dans α qui satisfont a la condition (6) (P* s'appelera le groupe
des formes de courbure. Compte tenu du debut de ce §, on a ainsi le
resultat suivant.
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Thέoreme 6. L'application θ qui fait correspondre a chaque classe
[P] € (P la restriction a ξ) de la forme de courbure de [P] est un homo-
morphisme du groupe (P dans le groupe des formes de courbures (P*.

On designera par Θ(P) Γimage de la classe [P] de P.

Theoreme 7. Soit L Γinjection de (P° dans (P. Alors,

L θ
(0) > (P° > (P > (P* > (0)

est une suite exacte.

Demonstration. II resulte du theoreme 2 que le noyau de θ coincide
avec (P°. Aim de montrer que θ est surjectif, on construit pour chaque
Ω E(P* un espace fibre P admettant une connexion holomorphe et tel que
β(P) = Ω,. Soit g un espace vectoriel complexe pour lequel il existe une
suite exacte :

( 7 ) (0) > α -Λ» g -̂  § > (0).

Defmissons dans g une structure d'algebre de Lie complexe en posant :

[X, y] - -λίl(7r(Jί), τr(y)) pour X

Le centre de g contient λ(α) et (3) est une suite exacte d'algebres de Lie.
II en resulte en particulier que g verifie Γhypothese du lemme 5. Soit
G le groupe de Lie simplement connexe ayant g pour algebre de Lie.

II existe des homomorphismes λ:ΐ)->{3et ΐr:G-^ξ) tels que le diagramme

(8)

soit commutatif. Par le meme raisonnement qu'en haut il en resulte que
la suite

( 9 ) (0) > α >G-^ § > (0)

est exacte. Soit μ un relevement de π. D'apres le lemme 5, si u, u' G Δ,
(expMwOXexpMwWίexpXwOί'XexpMw))"1 = exp(- \j*(u), μ(u')~] = expλί2(w, u')
= Xί2(«, uf) et ceci appartient a λ(Π) puisque Ωe(P*. Soit {u19 ••-, uzn]
une base du groupe abelien libre Δ et soit Λ le sous-groupe de G en-
gendre par {exp/*(#,-): f = l, •• ,2»} et λ(Π). Compte tenu de (8), il en
resulte que
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(10)

(11) *(A) - Δ .

Par consequent, le sous-groupe A est discret et done ferme dans G.
Soit maintenant P Γespace homogene G/A. Tout element # G α

opere dans P par la translation par λ(#)GG. D'apres (10), si <zGΠ, alors
a opere trivialement dans P et on peut done considerer que le groupe
A = d/H opere dans P. D'autre part, d'apres (9) et (11), Γapplication de
G dans T qui transf orme s G G en %($)x oύ x G T induit une applica-
tion p de P sur T. On constate alors que les operations de A dans P
et Γapplication p definissent dans P une structure d'espace fibre principal
holomorphe de groupe A et de base T. De plus, G opere sur P de
maniere transitive comme groupe connexe d'automorphismes de P, done
P admet une connexion holomorphe d'apres le theoreme 3. Enfin, d'apres
le theoreme 2, on a Θ(P) = Ω,. Cela acheve la demonstration du theoreme 7.

§ 6. Homomorphisme T.

On designe par Horn (Δ, A) le groupe abelien des homomophismes
de Δ dans A la somme des elements γ, y' G Horn (Δ, A) est definie par
(Ύ + y')M = Ύ(u)τ'(u) pour tout w e Δ . De meme, Hom(ϊ), A) designera le
groupe des homomorphismes holornorphes de ΐ) dans A. Un homomor-
phisme de ί) dans A induit un homomorphisme de Δ dans A et on a
ainsi un homomorphisme η de Horn (ί), A) dans Horn (Δ, A).

A partir de maintenant on choisit un point x 6 T et une base
{«ι» * * • > U2n} du groupe abelien libre Δ.

Supposons que P admette une connexion holomorphe. D'apres le
theoreme 1, il existe un relevement μ de π. Ce relevement μ definit un
element γ de Horn (Δ, A) par le procede suivant. On prend un point y G P
tel que p(y) = x. Considerons exp μ(uk) G G pour ί^k^2n. D'apres le dia-
gramme commutatif (2) du §5, π(expμ(uk)) = 7r(μ(uk)} = uk, done p((exp/*(%))y)
= ukp(y) =p(y) et il existe des elements ak e A tels que

(exp μ(uk))y = yak pour 1 ̂  k ̂  2n .

Puisque Δ est un groupe abelien libre engendre par {uί9 •••, u2n} et que
A est un groupe abelien, ces elements al9 •••, a2n definissent un element
γ de Horn (Δ, A) tel que y(uk) = ak pour 1<^&^2^. Si Γon prend un
autre point y G P tel que p(y') = x, il existe un element a0£A tel que
y=y«o Par consequent, on a (exp μ(uk))y'=yakaQ=ya0ak=y'ak pour
lfg[&<^2;?, ce qui montre que γ est bien determine par μ.

II resulte du lemme 1 que tout relevement μ/ de TT est de la forme
oύ v est une application lineaire quelconque de ΐ) dans σ. Puisque
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λ(α) est dans le centre de g, \_μ(h), λ(v(/z))] = 0 et done, compte tenu de

(2) du §5, exp μ'(h) = exp μ(h)\(v(h)} quel que soit A e ΐ ) . L'application
est un homomorphisme holomorphe de ί) dans A et, puisque

d'apres (1) du §5, on a:

(exp μf(uk})y = (exp μ(uk)%(»(uk))y = y(*(uk}ak) .

Par consequent, si Γon part du relevement μ! on aura Γhomomorphisme
fj(ί>)4-γ au lieu de γ. Ainsi, P definit un element τ(P) du groupe
quotient Hom(Δ, A)/ιj(Ή.om(f)9 A)) represente par γ. Si τ(P) = 0, alors,
par un choix convenable du relevement μ, Γhomomorphisms γ defini par
μ est nul.

Si P' est equivalent a P, alors τ(P) = τ(P'). Par consequent, Γapplica-
tion P-»τ(P) induit une application T de (P dans

Theoreme 8. U application T est un homomorphisme du groupe (?
dans le groupe Hom(Δ, A)/ιj(Rom(f), A)).

Demonstration. On employ era les notations definies dans la demons-
tration du theoreme 5. En outre, on identifie P! v P2 avec son image
dans P! x P2 par Γinjection /* les operations de A x A dans P1 v P2 sont
induites par les operations de Ax A dans P1xP2. Puisque [Pι + P2] =
[PJ + [P2], il suffit de montrer que τ(P1 + P2) = τ(P1) + τ(P2).

Soit gz (g) Γalgebre de Lie des champs de vecteurs conformes in-
variants par A sur P, (resp. sur P1 + P2) d'apres le theoreme 1, on a
les homomorphismes surjectifs τ r / : g , -*£) et TT : g->ΐ) (ί = l, 2). La somme
directe QI + g2 peut etre identifiee d'une f aςon canonique avec une algebre
de Lie de champs de vecteurs conformes sur P1 x P2 qui sont invariants
par ^1x^4. Soit g' la sous-algebre de Lie complexe de gx + g2 des elements
(Xl , X2) tels que τc^(X^ = τr2(X2). Les elements de g' induisent des champs
de vecteurs conformes dans la sous-variete P1 v P2 qui sont invariants
par Ax A, done a fortiori par B. Ces champs-ci se projetent a leurs
tour sur des champs de vecteurs sur Γespace quotient Pl + P2 de Pj x P2

qui appartiennent a g. On obtient ainsi un homomorphisme q de g7 dans
g. Or, le groupe simplement connexe G1xG2 ayant gx + g2 pour algebre
de Lie opere dans P1 x P2 et, G1 x G2 etant nilpotent et simplement con-
nexe, on sait que la sous-algebre de Lie g' de gx + g2 correspond a un
sous-groupe f erme et simplement connexe G' de Gj x G2 . Le groupe G
transforme la sous-variete Pλ v P2 en elle-meme et y opere comme groupe
d'automorphismes de Γespace fibre P1 v P2 . Soit d'autre part G le groupe
simplement connexe ayant g pour algebre de Lie. Puisque G/ est simple-
ment connexe, il existe un homomorphisme q de G/ dans G qui induit
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Γhomomorphisme q de g' dans g. II resulte de ces definitions que
q(s'y') = q(s')q(yf) quels que soient y' GP 1vP 2 et s' eG'.

Soient maintenant μ{ un relevement de τri et y, Γelement de Hom(Δ, A)
defini par μ, y, represente τ(Pz ) (i = l, 2). Posant μ'(h) = (μ1(h), μ2(h)) pour
AGlί), on a μ'(ti)£.§' quel que soit A e ϊ j , et Γapplication μ = qμ' de £) dans
g est un relevement de π. Prenons y£ G Pf tel que p.(y.) = χ(i = l9 2).

II est evident que (yi, y2) £Pι vP2 et que p(β(y!, y2)) = *. D'apres ce
qui precede, on a (expM%))^(y1,y2)-g((expX(wJ)(y1,y2))-^((exp/^1(^))y1,
(expμ2(uk))y2) = q(y1yl(uk), y2Ύ2(uk)) = q(yly y2)(γ1(uk)γ2(uk)) pour !<&<2w.
Cela montre que Γhomomorphisme y! + y2 represente TίPj + Pg). On a
ainsi τ(P1) + τ(P2) = τ(P1 + P2) et le theoreme 8 est demontre.

Thέoreme 9. La restriction a (P° de Γhomomorphisme r ^5^ bijective.
En particulier, on a Γisomorphisme

(P° β Horn (Δ, A) In (Horn (ή, Λ)) .

Demonstration. Supposons que la classe [P] de P appartienne a (P°
et quer(P) = 0. Puisque P admet une connexion holomorphe integrable,
Γalgebre de Lie g associee a P est abelienne d'apres le corollaire du theo-
reme 2. Par consequent, on a dans G

( 1 ) (exp X) (exp Y) = exp (X+ 30 quels que soient X, F£ g .

D'autre part, comme on Γa remarque plus haut, τ(P) = 0 signifie qu'il
existe un relevement μ de π tel que (exp μ(uk))y=y pour l^&^£2w, y
etant un element de P tel que p(y) = x. Puisque u19 •••, w2« engendrent
Δ, il resulte de (1) que

( 2 ) (exp μ(u))y = y quel que soit u G Δ .

Or, puisque fϊ=ϊj/Δ est simplement transitif sur T, tout element de T
est de la forme hx avec A £ £ ) et hx=hfx pour A, λ ' E l j si et seulement si
h' = h + u avec «€Δ . Alors, d'apres (1) et (2), il existe une application f
de T dans P et une seule telle que

f(hx) = (expμ(A))y .

On constate facilement que / est une section holomorphe de Γespace
fibre P. Par consequent, P est trivial et [P] est done Γelement neutre
de (P°.

Soit γ£Hom(Δ, A). On construit un espace fibre P de groupe A
et de base T qui admet un connexion holomorphe integrable et dont
Γimage par T est la classe de y modulo f|(Hom(^, A)). Puisque Δ est
un groupe abelien libre, il existe un homomorphisme γ de Δ dans α tel
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que expγ(w) = y(&) pour tout u GΔ. Soit G le groupe somme directe de α
et de § et soit Λ le sous-groupe discret de G constitue par les elements
de la forme (v + j(u), u) avec v GΠ et & G Δ . Puisque Λnα^Π, le groupe
A = a/H opere dans Γespace quotient P=<3/Λ et Γapplication de G sur
T qui applique (a, h) en hx induit une application p de P sur T. Ainsi
P se munit d'une structure d'espace fibre principal holomorphe de groupe
A de base T et dont la projection est p. Le groupe G = G/Λ opere dans
P par les translations et coincide avec le plus grand groupe connexe
d'automorphismes de P, car la dimension de ce dernier est <£ dim P=
dim G d'apres le lemme 1. D'apres les theoremes 3 et 4, il en resulte
que P admet une connexion holomorphe integrable. Enfin, on constate
facilement que la classe τ(P) est representee par γ. On obtient ainsi
Γespace fibre requis, ce qui montre que r applique (P° sur le groupe
Horn (Δ, A)/ιj(Hom(fy, A)). Le theoreme 9 est ainsi demontre.

§7. Structure du groupe (P.

Le theoreme suivant determine la structure du groupe (P.

Theoreme 10. a) Le groupe (P est la somme directe du sous-groupe
(P° et d'un sous-groupe qui est isomorphe a (?*.

b) Le groupe des formes de courbure (P* est un groupe abelien libre
dont le rang est ^n(n — ί)r.

c) Le groupe (P° est isomorphe au quotient du produit direct A2n de
2n exemplaίres de A par un sous-groupe de Lie complete connexe de
dimension n.

Demonstration, a) Soit Λ" le noyau de Γhomomorphisme T. Le
theoreme 9 implique que le groupe (? se decompose en somme directe
(p°4-^//f D'apres le theoreme 7, Γhomomorphisme θ induit un isomor-
phisme de -^"sur (?*, ce qui demontre a).

Pour montrer b) et c) on suppose que les elements uly ~ ,un de la
base {&! , , u2n} de Δ f orment une base de Γespace vectoriel complexe
£) c'est possible puisque ul , , uzn engendrent ί) sur les nombres reels,
done a fortiori sur les nombres complexes.

b) Une forme bilineaire antisymetrique Ώ sur ^ a valeurs dans α est
definie par ses valeurs pour (uky uj) avec l<ίk<^l^2n, qui peuvent etre

points arbitraires de α. Le groupe de ces formes se munit done

d'une structure d'espace vectoriel complexe isomorphe a la somme directe
/n\

<T2;. Or, pour que ί2 soit dans (P*, il faut et il suffit que

(8) Ω(«Λ, w / ) € Π pour !<&</<
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Dans ce cas, on a en particulier Ω,(uίy Uj) £Π pour l^i<^j^n. Par con-
(n)sequent, (P* est isomorphe a un sous-groupe discret de cr2', done c'est

/n\

un groupe abelien libre dont le rang est ^2 dim cr2' = n(n — l)r.
c) Le groupe Hom(Δ, A) est isomorphe a A2n par Γapplication

y-^(y(^ι)> •••, y(^2«)) De meme, le groupe Hom(ϊj, α) etant le groupe des
applications lineaires de ^ dans α, Horn (I), α) est isomorphe a an par
Γapplications »-+(v(uύ, • ••, u(un)). On identifira Hom(Δ, A) avec -42W et
Horn (I), α) avec αn au moyen de ces isomorphismes. D'autre part, Γhomo-
morphisme exp : a-* A induit des homomorphismes de Hom(ξ), α) sur
Hom(ϊ), A) et de Hom(Δ, α) sur Hom(Δ, A). Designant encore par exp
ces homomorphismes et par ι Γhomomorphisme de Hom(Δ, Π) dans
Hom(Δ, α) induit par Γinjection de Π dans α, on a le diagramme suivant.

exp
(0) - > Horn (ί), α) — ̂  Horn (ί), A) - > (0)

( 9 ) 1* I'i * exp Φ
(0) - > Horn (Λ, Π) — -> Horn (Δ, α) — ί* Horn (Δ, A) - > (0)

II est clair que ce diagramme est commutatif et que les deux lignes sont
des suites exactes. De plus, η est injectif, car Δ engendre ξ) sur les
nombres complexes. II resulte de ce diagramme que Γhomomorphisme
compose *ι(exp) est un homomorphisme holomorphe de Hom(ΐ), α) = αw

dans le groupe Hom(Δ, A) = A2n dont le noyau est le sous-groupe discret
constitue par les elements qui sont appliques par η dans ^(Hom(Δ, Π)).
Le groupe f|(Hom(t), A)) etant Γimage *f(exp)α", c'est un sous-groupe
de Lie complexe connexe de dimension n de A2n. Le theoreme 10 c) en
resulte, puisque (P°^Hom(Δ, A)/*j(Hom(fy, A)) d'apres le theoreme 9. Le
theoreme 10 est ainsi demontre.

On va voir quand le sous-groupe de Lie du theoreme 10 c) est
ferme : Soit E le sous-groupe de Hom(Δ, α) forme par les elements 7 tels
que 7(^) = 0 pour l^i^n. On peut identifier E avec an en faisant
correpondre a γ € E Γelement (γ(^w+1), •• ,7(^2n)) D'autre part, le groupe
Hom(Δ, α) est la somme directe

(10) Horn (Δ, α) = η (Horn (ί), α)) + E .

Cela fait, on obtient facilement d'apres le diagramme (9) le resultat sui-
vant : Pour que n (Horn (ξ), A)) soit ferme dans Hom(Δ, A), il faut et il
suffit que Γimage D de ^(Hom(Δ, Π)) par la projection de Hom(Δ, α) sur
E par rapport a la decomposition (10) soit un sous-groupe ferme. Dans
ce cas, D est un sous-groupe discret de E et (P°^Hom(Δ, ^4)/f|(Hom(ξ), A))
est isomorphe aE/D. De plus, D contenant le sous-groupe Πw de E=αn,
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(P° est alors isomorphe au quotient de An par un sous-groupe discret.

EXEMPLE 1. Le cas A = C* (le groupe multiplicatif des nombres
complexes non-mils). En general, si ΩG(P*, alors Γensemble {Ω(w, u')
u, u' G Δ} est un sous-groupe de Π qui engendre sur les nombres reels
le sous-espace complexe {Ω(λ, h') A, hf Gϊj} . Or, dans le cas oύ A = C*y

aucun sous-groupe de Π n'engendre un sous-espace complexe Φ (0) sur les
nombres reels. Par consequent, (P* = (0) et (? = (?° d'apres le theoreme 7.
Par ailleurs, on sait que le groupe (P° est un tore complexe (la variete
de Picard de T). Cela resulte aussi du resultat ci-dessus. Plus precise-
ment, les groupes Hom(Δ, α), Hom(I}, α) et Hom(Δ, Π) sont canoniquement
isomorphes aux groupes des formes de degre 1, des formes de type (1, 0)
resp. des formes de degre 1 et de periodes entieres dans Γespace des formes
sur T, a valeurs complexes, qui sont harmoniques par rapport a une
metrique kaehlerienne de T invariantes par H. II en resulte que la
structure complexe de (P° d'apres le theoreme 10 coincide avec celle de
la variete de Picard au signe du tenseur complexe pres.

EXEMPLE 2. Soit {u19 —,u2n} = {uly ••-,«„, \/^Λuiy •••, \/^lun}. La

condition (8) pour qu'une forme bilineaire antisymetrique Ω appartienne
a (P* est alors : Ω(UJ, Uj) et \/^ΐn(uiy Uj) GΠ pour l^i<^j^n. Posons

H.f={v\v et ^^ΐv^ΐί}. Alors (P* est isomorphe a la somme directe

ίn\de ί 2 ) groupes isomorphes a Π7. Supposons de plus que A soit compact

et que Π soit engendre par {vί9 •••, vr, β j ) l y ••-, βrvr} oύ {vί9 •••, vr] est
une base complexe de α et oύ β19 •••, βr sont des nombres complexes avec
Im&φOpour l^ί^r. Si β,= - = βio= V^l et si Im £, φ(0) mod. 1
pour ί>ί"0, un simple calcul implique que Π7 est le sous-groupe de Π
engenre par {υiy •••, vio, V^ϊvί9 •••, V^ΐ^oi Par consequent, le groupe
(P* est alors de rang n(n — ί)i0. Les cas i0 = 0 et ί0 = r donnent les rangs
extremes de (P*.

On considere le groupe (P° au cas oύ r=n = l. Alors E=a et la pro-
jection D de £(Hom(Δ, Π)) dans E selon (10) est le groupe engendre par
{v19 β f l i , V^lVi> V — l/^ι^ι }• Si Im /3X est un nombre irrationnel, D
n'est pas ferme dans E. On voit de plus que (P° est alors le quotient
de .A2 par un sous-groupe de Lie isomorphe au groupe α.

Universite de Strasbourg, France
et

Universite dΌsaka, Japon

(Reςu le 11 mars, 1959)
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