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概要

電磁ノイズは電子・電気機器の誤動作などの問題を引き起こす。現在は、誤動作が生じても

通信障害などで済むが、今後、自動運転などの自動化により、我々の生活が電子・電気機器に

依存するにつれて電磁ノイズによる誤動作が引き起こす問題の被害はより深刻になる。現状の

電磁ノイズ対策はフィルタやシールドなどの対症療法的なものが多く、さらに技術者の勘や経

験に頼ることが多い。今後は、回路の信号設計だけでなく、電磁ノイズを考慮した回路設計が

必要になる。そのためには、回路内に発生する電磁ノイズ現象の発生メカニズムを解明するこ

とが重要である。

本論文はコモンモードが原因で電気回路内に発生する電磁ノイズ現象の起源を解明するため

に、マクスウェル方程式と回路理論に基づいた理論解析と数値計算手法を開発し、さらに実験

的アプローチを行った研究をまとめたものであり、合計 8章で構成されている。各章の概要は

以下の通りである。

第 1章　序論

電磁ノイズに関する社会的問題について述べた。電磁ノイズの発生原因について述べ、その

中で最も対策が困難なコモンモードノイズについて説明した。また、回路内に流れる伝搬モー

ドである「ノーマルモード（NM）」と「コモンモード（CM）」関する一般的な考え方について

述べ、本研究で明らかにする「コモンモード（CM）ノイズ」について、先行研究を踏まえて

説明した。先行研究では、CMノイズは「電気的構造（集中定数回路と伝送線路の接続関係）」

と「幾何学的構造（伝送線路の形状や位置関係）」の非対称性により、CMが NMに変換され

て発生することが解明されていることを説明した。また、CMノイズ現象のメカニズム解明に

関して、次の 3つの課題があることを指摘した。1つ目は、電気的・幾何学的構造が CMノイ

ズに及ぼす影響が解明されていないこと。2つ目は、時間領域における CMノイズ定量化手法

が確立されていないこと。3つ目は、グランド導体の物理的な影響が考慮できないことである。

CMノイズ現象の発生メカニズムを解明し、CMノイズが発生しない回路を設計するためには、

CMノイズに関する以上の課題を解決する必要がある。そこで本研究では、電気的・幾何学的
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構造がCMノイズに及ぼす影響を解明し、CMノイズが発生しない回路構造を導出することを

研究目的とした。

第 2章　マクスウェル方程式から導く 1次元多導体線路内の電位と電流の電信方程式の導出と

ノーマルモード・コモンモードの電信方程式の導出、その数値計算手法

CMノイズを取り扱うための理論とその数値計算手法について説明した。回路内に伝搬する

コモンモード及びそこから生じるコモンモードノイズの本質を明らかにするために、1次元多

導体線路理論を用いた。コモンモードは回路と周囲環境の導体との間を伝搬するモードである

が、通常の 2本線から構成される回路（2本線回路）では扱うことができない。そこで、コモン

モードを定式化するために、周囲環境を 1本の伝送線路を用いて表した 3本線回路を用いるこ

とで議論を単純化した。

まず、マクスウェル方程式と連続の式、オームの法則を用いて、多導体線路内における電位

と電流に関する電信方程式を導出した。また、2本線回路と 3本線回路内に流れるノーマルモー

ドとコモンモードに関する電信方程式を導出した。また、偏微分方程式を時間領域で数値計算

するために有限差分時間領域（FDTD：Finite-Difference Time-Domain）法に基づく数値計算

手法を説明した。さらに、集中定数回路を多導体線路と接続するための境界条件の計算手法も

導出した。

第 3章　 1次元回路内におけるコモンモードノイズ現象の数値計算と実験による過渡解析

第 2章で導出した数値計算手法を用いて CMノイズ現象の過渡解析を行った。具体的には、

2本線回路と 3本線回路内におけるNMとCM、CMノイズを定量化した。2本線回路の数値計

算の結果、回路の 2つの信号線の幾何学的非対称構造とインピーダンスの場所依存性が原因で

NMと CMがカップリングし、CMノイズが発生することを明らかにした。3本線回路の数値

計算の結果、回路のインピーダンスマッチング（整合）をとっているにも関わらず、CMノイ

ズによるリンギングノイズが発生することを明らかにした。また、NMとCMの過渡解析から

CMが回路内を伝搬し、終端で NMに変換して CMノイズが発生するメカニズムを解明した。

さらに、幾何学的構造と電気的構造の対称性と非対称性を組み合わせて数値計算を行うと、そ

れぞれの非対称性によってCMノイズのリンギングの減衰の大きさが変化することを数値計算

により明らかにした。また、回路内に発生したCMはジュール熱によって余分な電力消費の原

因となっていることを理論と数値計算から証明した。さらなる数値解析の結果、幾何学的対称
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かつ電気的対称構造が CMノイズを発生しない最適な構造であることを明らかにした。また、

実験による検証を行い、本研究で用いる数値計算手法の妥当性を確認した。

第 4章　 1次元回路内におけるコモンモードノイズ現象の解析的な分析

第 3章で数値計算と実験により定量化したCMノイズ現象の起源を第 2章で導出したNMと

CMに関する電信方程式を用いて解析的に解明した。2本線回路の電信方程式から波動方程式を

導出すると、幾何学的非対称構造かつ、インピーダンスの場所依存性がある場合、波動方程式

のNMと CMのカップリング項が有限になり、NMと CMがカップリングすることを示した。

さらに、3本線回路内の NM・CMに関する波動方程式と、境界の集中定数回路が NMと CM

で満たす条件から、境界におけるNMとCMのカップリング現象を表すカップリング係数を導

出した。その結果、カップリング係数が 0になる条件は、第 3章の数値計算から導いた電気的・

幾何学的対称構造であることを理論的に明らかにした。また、カップリング係数を用いて、NM

と CMのリンギングの減衰を表す減衰係数を導出した。その結果、3本線回路における電気的

対称性は CMから NMへの変換の減少に寄与し、幾何学的対称性は NMから CMへの変換の

減少に寄与していることを明らかにした。

第 5章　マクスウェル方程式から導く 3次元回路の電荷と電位、電流密度とスカラーポテンシャ

ルを変数とした時間領域数値計算手法

3次元回路の数値計算手法について説明した。これまでは、コモンモードノイズを解析的に

記述するためにコモンモードが伝搬するグランド導体を 1次元の伝送線路で単純化していた。

しかし、実際のグランドはプリント基板や筐体のように 3次元構造を有しているため、グラン

ド導体の幾何学的構造を考慮するためには、3次元回路の数値計算手法を開発する必要がある。

本研究で用いる基本方程式は偏微分積分方程式であるが、1次元回路では近似を用いることで

偏微分方程式に変換していた。しかし、3次元回路では 1次元回路で用いた近似を用いること

ができないため、偏微分積分方程式を数値計算する必要がある。そこで、有限体積法と FDTD

法を組み合わせることで 3次元偏微分積分方程式を直接数値計算するための方程式を導出し、3

次元回路の数値計算を可能にした。さらに、任意の境界に集中定数回路を接続するために、1次

元回路で導出した境界条件式を 3次元へと拡張した。
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第 6章　平面回路内に発生するコモンモードノイズ現象の定量化

第 5章で開発した 3次元回路の数値計算手法を用いて、従来法で用いていた理想グランドを

有限大にした場合のCMノイズへの影響について調べた。数値計算の結果、回路の基準を取る

ために有限大のグランド平面に接続するとグランド平面の電位変動の原因になることがわかっ

た。さらに、変動したグランド電位はグランド平面の境界で反射し、リンギング現象が生じる

ことがわかった。また、このリンギングがCMノイズに影響を与えることがわかった。よって、

グランド平面構造がCMノイズに与える影響を明らかにした。また、本研究で導出した電気的・

幾何学的対称構造はグランド平面の電位変動の原因とならず、またグランド平面の電位変動の

影響を受けず、EMC設計に最適であることをシミュレーションにより明らかにした。

第 7章　単純な構造の平面回路内に発生する電磁ノイズ現象の解析

第 5章で導出した 3次元回路の数値計算手法を用いて、単純な平面回路内におけるコモンモー

ドノイズ以外の電磁ノイズ現象の定量化へと応用した。具体的には、屈曲を有する平面回路を用

いて、屈曲によって生じる電磁ノイズ現象である反射ノイズを実験で観測し、開発した数値計算

と比較した。さらに、類似手法である部分要素等価回路（PEEC：Partial Element Equivalent

Circuit）法によって得られた数値計算結果とも比較した。その結果、本研究で開発した数値計

算手法で得られた結果の方が PEEC法より実験結果をより精度良く再現していることを実証

した。

第 8章　結論と今後の展望

本研究のまとめと得られた結果について総括した。また、本研究で得られた結果から生まれ

た新しい課題や可能性についての展望を述べた。具体的には、本研究の数値計算手法の精度を

より高めるために改善すべき点や、より現実に近い回路系でのCMノイズ現象の解明のための

課題などについて述べた。

以上が各章の概要である。本研究の意義は、CMノイズの発生起源である回路の電気的構造

と幾何学的構造を考慮した理論と数値計算手法の確立により、これまでに明らかにされていな

かったCMノイズの定量化を実現したことである。これにより、回路構造がCM発生に与える

影響を明らかにし、CMノイズを削減する最適な回路構造を設計することが可能になった。理

論と実験から、CMが発生しない回路構造は、電気的・幾何学的構造であることを実証した。ま

た、3次元回路の数値計算手法の確立により、これまで用いられていた基準導体の幾何学的構
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造を考慮できるようになった。その結果、理想グランドでは考慮することができなかった、グ

ランド平面が CMノイズに与える影響を定量化することができるようになった。
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第1章 序論

1.1 電磁ノイズの一般論

1.1.1 電磁ノイズ問題の始まり

電磁ノイズが世界的に問題となり始めたのは電磁ノイズの国際規格を定める国際無線障害特

別委員会（CISPR）が設立された 1934年に遡る。CISPRは、機器から放出される不要電磁波

の許容値と測定法を国際的に定め、貿易を促進するために設立された委員会である。当時はラ

ジオやテレビなどの無線機器が普及し始めた時期であり、電磁ノイズの被害はラジオの受信障

害がほとんどであった。よって、電磁ノイズが起こす問題の因果関係は明確であった。

しかし、トランジスタの汎用化により、電磁ノイズの原因はより複雑になった。スイッチン

グ動作により、不要な電磁波が放射されるため、すべての電子・電気機器が電磁ノイズの発生

源となった。現在では、電気・電子機器を一人で何台も所有するため、電磁ノイズの原因はあ

らゆるところに存在する。以上のように、電磁ノイズは現代の環境問題であり、信号だけでな

く、電磁ノイズも考慮した設計が重要である。

1.1.2 電磁ノイズ設計

電磁ノイズ設計にはEMCという概念が根底にある。EMCは”electromagnetic compatibility”

の略で「電磁両立性」と訳され、以下の 3つの規範から成り立っている [1]。

1. 機器自身に影響を及ぼさない

2. 他の機器に影響を及ぼさない

3. 他の機器からの影響を受けない

以上のように、電磁ノイズ設計は自他の機器に影響を及ぼさず、かつ影響を受けない電磁両立

性を備えた回路設計が必要になる。これらの基準値は各国、地域に存在する CISPRのような

委員会によって定められており、その地域の市場で製品を販売する際には電磁両立性に関する

基準値に基づく規格を取得する必要がある。
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1.1.3 将来の電磁ノイズ問題

電磁ノイズは、現代の社会に様々な問題を引き起こしている。開発の現場ではEMC規格の基

準値を超えることで基板を再設計する必要があるため、製品開発の期間延長やコスト増大の原

因となっている。また、EMC規格に通った後でも問題が発生し、LED照明からの電磁放射に

よって電磁ノイズが生じ、通信障害が生じるなど、我々の日常生活にも被害が報告されている。

今後、技術革新が進み、我々の生活は電子・電気機器にますます依存するようになる。例え

ば、運転者を必要としない完全自動運転車は今後普及し、世界の年間販売台数は 5年後の 2025

年に約 180万台、10年後の 2030年には約 1500万台と試算されている [2]。このように、電気

で動き、電気で制御される機器によって我々の生活の一部が置き換えられる機会は今後急速に

増加していくことが予想される。それに伴い、電磁ノイズが引き起こす問題は我々の身の危険

に及ぶ可能性があるため、電磁ノイズが発生しない回路設計が必要不可欠になる。しかし、現

状の電磁ノイズ対策は熟練技術者の経験やノウハウに基づく対症療法的なものが多い。これら

の対策では、電磁ノイズの起源をなくすことはできないため、根本的な対策とはならない。回

路内に発生する電磁ノイズ現象の発生メカニズムを解明し、電磁ノイズが発生しない回路設計

の需要は今後ますます大きくなる。

1.2 電磁ノイズの先行研究

信号復路

信号往路

送信信号 受信信号

電磁ノイズ

反射

クロストーク 外部放射

コモンモード

図 1.1: 回路内に発生する電磁ノイズの原因。

本研究では、図 1.1に示すように、送信信号を歪曲させる成分を電磁ノイズと呼ぶ。本節で

は、回路内で発生する電磁ノイズの原因と、本研究で取り扱うコモンモードノイズについて説
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明する。

1.2.1 電磁ノイズの原因

最も一般的な電磁ノイズの原因は、回路のインピーダンスのミスマッチ（不整合）による「反

射」である。インピーダンスは回路の特性を表し、異なるインピーダンスの回路が接続されて

いると、反射が生じ電磁ノイズが発生する [3]。また、近くにある他の回路との干渉によって信

号が歪曲され、電磁ノイズが発生する。この現象は「クロストーク」と呼ばれ、回路間の相互

インダクタンスによって結合し、回路に信号が流れるとその時間変化に応じて他方の回路に電

磁ノイズが発生する [1,3]。また、遠くにある他の機器からも「外部放射」を通じて干渉し、回

路内に不要な起電力が生じ電磁ノイズとなる [4–8]。

次に、回路内には信号以外に流れる成分が存在する。それは「コモンモード」と呼ばれ、信

号が変換されて発生したり [9]、外部からの電磁放射によって発生する [10–13]。回路内にコモ

ンモードが発生すると、信号成分に変換され、電磁ノイズとなる [14,15]。本研究では、コモン

モードが原因で発生する電磁ノイズをコモンモードノイズと呼ぶ。

1.2.2 コモンモードノイズが問題となる理由

信号は一般的に電圧を用いており、「差」の物理量で表され、電位差として測定が可能であ

る。一方、電磁ノイズの原因となるコモンモードは「和」の物理量で表されるため直接測定が

不可能である。よって、コモンモードの存在を直接確認することはできず、測定可能な信号成

分に変換されたコモンモードノイズか、外部に放射した電磁場などの 2次的な物理量でしか確

認することができない。よって、一般的なノイズ対策はコモンモードノイズに対するチョーク

コイルや放射電磁場に対するシールドなどの対症療法的な対策となる。しかし、それらはコモ

ンモードノイズの原因をなくす根本的な対策ではないため、別の場所でコモンモードノイズが

発生する可能性がある。以上より、コモンモードノイズはノイズ源であるコモンモードを直接

測定できないため、その原因を特定できないことがコモンモードノイズの対策をより困難にし

ている。

1.3 ノーマルモード・コモンモード

電気回路内には大別すると 2つの伝搬モードが存在する。1つ目は「ノーマルモード（NM）」

で我々が通常用いる信号である。2つ目は「コモンモード（CM）」で電磁ノイズの原因となる
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不要な成分である。本章では、本研究で取り扱うノーマルモードとコモンモードに関する一般

的な考え方について説明し、先行研究で明らかになっているコモンモードノイズや発生メカニ

ズム解明に関する課題について説明する。

1.3.1 ノーマルモードの一般的な考え方

基準

信号線

図 1.2: 一般的なノーマルモードの考え方。ノーマルモード電圧 Vnは、基準である導体と信号

線との間の電圧であり、ノーマルモード電流 Inは、信号線と基準導体に同じ大きさ逆向きに流

れる電流である。ノーマルモードは理想導体とみなされている基準から見た相対的な物理量で

あり、基準導体では物理的な現象は起こっていないと考えられている。

電気信号は、2つの導体間に電位差を掛けることで伝搬させることができる。回路内を伝搬

する信号はOliver Heaviside (1850-1924）によって初めて理論的に定式化された。Heavisideは

マクスウェルの著作 [16]を研究し、我々がよく知るマクスウェルの 4つの方程式を定式化した。

また、1876年、海底ケーブルで用いられていた伝送線路内の電信現象を以下の偏微分方程式で

定式化した。

∂Vn

∂x
= −L

∂In
∂x

−RIn , (1.1)

∂In
∂x

= −C
∂V

∂t
−GVn (1.2)

信号線と基準の電圧 Vnと電流 Inは、単位長さあたりの信号線の抵抗Rと、単位長さあたりの

信号線と基準間の電気容量 C、単位長さあたりの信号線の自己誘導 L、単位長さあたりの信号

線と基準間の漏電導度Gで表される。以上より、Heavisideは回路内に伝搬する信号を単位長

さあたりのパラメーターを用いて記述した。Heavisideはそれらを一般化してインピーダンスと

名付けた。

ここで、電信方程式で用いられる信号は図 1.2に示す、電圧 Vnと電流 Inであり、それぞれ導

体間の電位差と導体間に同じ大きさ逆向きに流れる電流を表している。これらは差の物理量で
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あり、現在では、ノーマルモード（Normal-Mode）、オッドモード（Odd-Mode）、あるいはディ

ファレンシャルモード（Differential-Mode）と呼ばれる。本研究ではノーマルモード（NM）と

呼ぶ。この時、伝送線路間の電磁場の関係は信号が伝搬する方向に対して垂直になり、この状

態はTEM（Transverse Electromagnetic）と呼ばれ、単位長さあたりのパラメーターは伝送線

路間の電磁場が TEMである条件を用いて導出することができる [17]。

1.3.2 コモンモードの一般的な考え方

基準

信号線２

信号線１

図 1.3: 一般的なコモンモードの扱い。コモンモード電圧 Vcは、基準導体から見た 2本線で表

された回路の電圧であり、コモンモード電流 Icは、2本線で表された回路に同じ向きに流れる

電流の和で表される。

電気回路内の信号は差の物理量であるNMが用いられているが、図 1.3に示すように回路内を

同じ向きに流れる和の物理量も存在し、それはコモンモード（Common-Mode）、イーヴンモー

ド（Even-Mode）、あるいはサムモード（Sum-Mode）とも呼ばれる。本研究ではコモンモード

（CM）と呼ぶ。CMの存在は JonesとBolljahn（1956）によってマイクロ波の電信に用いられ

る差動伝送線路内で確認された [18]。当時はCMの伝搬特性がNMと異なるという考察のみで、

電磁ノイズに対する影響は認識されていなかった。CMが電磁ノイズの原因となることが認識

され始めたのは、Paulと Bush（1987）が、回路内を伝搬する CM電流が回路からの不要な外

部放射の主な原因になることを理論的に証明したことから始まる [19]。さらに、Bockelmanと

Eisenstadt（1995）が、CMがNMに変換され電磁ノイズの原因となることを実験的に明らか

にした [20]。Bockelmanと Eisenstadtは 2つの信号線と 1つの基準導体間に流れるNM・CM
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電圧 Vn, Vcと電流 In, Icを以下のように定式化した。

Vn = V1 − V2 , (1.3)

In =
1

2
(I1 − I2) , (1.4)

Vc =
1

2
(V1 + V2) , (1.5)

Ic = I1 + I2 . (1.6)

このように、2つの信号線と 1つの基準を用いることで、信号線の和の物理量を定式化すること

ができる。ここで、V1, V2はグランドから見た信号線 1と 2の電圧であり、I1, I2はグランドと

信号線 1と 2の間に流れる電流を表している。Vn, InはNM電圧と電流でありHeavisideが定式

化した式 (1.1)(1.2)で用いられる、導体の電信方程式の電圧と電流と等価である。また、Vc, Ic

はCM電圧と電流である。また、CMは和の物理量で表され、CM電圧は V1と V2の平均、CM

電流は I1と I2の和で表される。

1.3.3 コモンモードノイズの先行研究

Heavisideが記述した NMの電信方程式には、和の物理量である CMに関する電信は記述さ

れていない。この理由は、Heavisideが参考にしたMaxwellの電磁気の教科書の中で”the sum

V1 + V2 has no physical meaning bearing on the phenomena, though V1 − V2 represents the

electromotive force” [16] と述べられており、電位の和は物理的な意味はないと明記されていた

ため CMの概念が考慮されなかったことが推測される。

しかし、PaulとBush（1987）によってCMがEMCに関する問題の原因となると提起されて

以来 [19]、回路内に流れる CMは電磁ノイズの原因になるという物理的な意味を持ち、CMを

定量化する手法が考案されてきた。Bockelmanと Eisenstadt（1995）は Sパラメーターを用い

てNMとCMのカップリング現象を定量化した。しかし、実験的なカップリング現象の定量化

手法であるため、その発生メカニズムを解明することはできない。CMノイズ現象を解明する

ためには、Heavisideが導出したように、伝送線路内に流れる NMと CMの電信現象を定式化

する必要がある。そこで、杉浦と上（2011）は 2つの信号線と 1つの基準導体から成り立つ伝

送線路系に発生するNMとCMの電信方程式を導出した [15]。まず、NMとCM電圧を Vn, Vc、

電流を In, Icとおき、ベクトルで表す。

V =

Vn

Vc

 , I =

In

Ic

 . (1.7)
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次に、式 (1.3), (1.4), (1.5), (1.6)から、2導体線路系の電信方程式をNMと CMで表すことが

できる。

∂V

∂x
= −L

∂I

∂x
, (1.8)

∂I

∂x
= −C

∂V

∂t
. (1.9)

ここで、LとC は NMと CM間の単位長さあたりのインダクタンスとキャパシタンスを表し

ている。

L =

Lnn Lnc

Lcn Lcc

 , C =

Cnn Cnc

Ccn Ccc

 . (1.10)

以上より、NMとCMに関する電信方程式は、Heavisideが導出したNMの電信方程式 (1.1),(1.2)

と同じ形式で表される。異なる点は、単位長さあたりのパラメーターが行列となり、その非対

角要素がNMとCMのカップリングを表している。杉浦と上（2011）は、NMとCMの電信方

程式を導出したが、伝送線路内のカップリングは考慮せず、伝送線路の入力と出力端に接続さ

れた集中定数回路の非対称性による NMと CMのカップリング現象を定式化した [15]。一方、

Grassi達（2015）は、伝送線路構造の非対称性によるNMとCMのカップリング（結合）現象

を定式化した [21]。ここで、非対称性とは、基準導体から見た 2つの信号線との関係を表して

いる。以上の先行研究より、回路内に発生する CMの原因は 2つあるといえる。1つ目は、終

端に接続された集中定数回路の非対称性であり、本研究では「電気的非対称性」と呼ぶ。2つ

目は、伝送線路の位置関係や形状などの構造であり、本研究では「幾何学的非対称性」と呼ぶ。

以上、2つの非対称性によって CMノイズが発生することがわかっている。

(a) ノーマルモード (b) コモンモード

信号線２

信号線１

信号線３

信号線２

信号線１

信号線３

U1

U3

U2(

I1

I3

I2

U1

U3

U2(

I1

I3

I2

図 1.4: 土岐と佐藤（2019）が提案した 3本線回路における (a)ノーマルモードと (b)コモンモー

ド。無限遠を基準として、従来の電信方程式で用いられていた基準導体を信号線と等価に扱う。

これまでは、Heavisideが導出した電信方程式を用いたCM解析が行われていたが、CMの経

路である基準導体は理想導体であるため、その幾何学的構造を考慮することができなかった。そ
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こで、土岐と佐藤（2009）は図 1.4に示すように、これまで基準として用いていた理想グランド

を回路の信号線と同じ伝送線路で表し、電磁気学で用いられる無限遠を基準とすることで、こ

れまで基準としてみなしていた導体の幾何学的構造を考慮することが可能になった。基準導体

を信号線 3とした、3本線回路内のNM・CM電圧 Vn, Vcと電流 In, Icを信号線の電位U1, U2, U3

と電流 I1, I2, I3を用いて表した。

Vn = U1 − U2 , (1.11)

In =
1

2
(I1 − I2) , (1.12)

Vc =
1

2
(U1 + U2)− U3 , (1.13)

Ic =
1

2
(I1 + I2 − I3) . (1.14)

以上より、これまで無限大の大きさを持つ理想グランドとして用いられていた基準導体の幾何

学的構造を考慮することができるようになった。さらに、これまでは電気的非対称構造と幾何

学的非対称構造が別々に考慮され、それらの非対称性が CMに及ぼす影響が未解明であった。

土岐と佐藤（2012）はマクスウェル方程式から多導体線路における電信方程式を導出し、電磁

気学との対応をつけた。その後、土岐と阿部（2016）は多導体線路に集中定数回路を任意に接

続するための数値計算手法を導出した [22]。これにより、任意の電気的・幾何学的構造におけ

る CMの数値計算が可能になった。

1.3.4 コモンモードノイズの取り扱いにおける課題

以上の先行研究を踏まえて、本研究では以下の 3つの課題に着目した。

1. 電気的非対称性と幾何学的非対称性が CMノイズに及ぼす影響が未解明

先行研究では、電気的非対称性と幾何学的非対称性が CMノイズ発生の原因であること

のみ解明されているが、それらの非対称性が CMに与える影響などの定性的な解析は行

われていない。CMノイズの発生メカニズムを理解するためには、様々な電気的・幾何学

的非対称性によって発生する CMの関係を明らかにする必要がある。

2. 時間領域における CMノイズ現象が未解明

これまでの CM定量化手法は周波数領域がほとんどであり、時間領域における定量化手

法は著者が調べた限りでは見つけることができなかった。CMノイズ現象を解明するため

には、その発生までの過渡現象を観察することが最も直感的である。よって、CMノイズ
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理想グランド（無限大の導体）

信号復路

信号往路

1. 終端の集中定回路の接続  

（電気的構造）

2. 伝送線路の構造 

　（幾何学的構造）

② CMノイズ発生の  

過渡現象？

③ 有限なグランド形状と  

CMノイズの関係？

① CMノイズに与える影響は？

図 1.5: コモンモードノイズ源と本研究で明らかにするコモンモードノイズ現象

現象の発生メカニズムを解明するためには、時間領域における CMノイズ定量化手法を

開発する必要がある。

3. 有限大のグランドを考慮した場合に発生する CMノイズ現象が未解明

従来法では、NMが伝搬する信号線の導体形状は考慮することができるが、CMが伝搬す

る基準導体は理想グランドであるため、グランドの幾何学的構造の影響を考慮すること

ができない。実際、高周波信号によってグランド電位が変動することがわかっており、そ

れが電磁ノイズの原因となっている [23–25]。しかし、グランド電位の変動がCMに及ぼ

す影響は定量化されていない。CMノイズをより高精度で定量化するためには、実際のグ

ランド平面の幾何学的構造を考慮した数値計算手法の開発が必要である。

1.4 コモンモードノイズ現象解明に対する課題

以上のことを踏まえると、CMノイズ現象の起源を解明するためには以下の課題に取り組む

必要がある。

1. 無限遠を基準とする伝送線路理論を考案し、理想グランドも伝送線路として扱う。

2. 集中定数回路の任意の接続条件と伝送線路の構造を考慮した CMノイズの定量化手法の

考案

3. 理論的に CMノイズ発生メカニズムを解明する
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4. 任意の伝送線路形状を考慮するための 3次元回路の時間領域における数値計算手法の考案

1.5 本研究の目的

本研究では、CMノイズ現象の発生メカニズムを解明し、CMノイズが発生しない回路構造

を考案することを研究目的とし、以下に関する研究を行う。

1. 1次元回路内における CMノイズの数値計算と実験による定量化

理想グランドを伝送線路として取り扱うために、本研究では土岐と佐藤（2012）が定式化

した 1次元電信方程式を 3本線回路に適用してCMノイズの定量化を行う。第 3章で、3

本線回路内のNMと CMを定量化することでそれぞれのモードのカップリングによって

発生する CMノイズを数値計算と実験により観測する。

2. NMと CMに関する電信方程式の導出と CMノイズ現象の発生メカニズムの理論的解明

第 4章で、土岐と佐藤（2012）が導出した電信方程式からNMと CMに関する電信方程

式を導出し [26]、得られた式から CMノイズ現象の起源を解析的に解明する。

3. 電気的・幾何学的構造が CMノイズに及ぼす影響の解明

第 3章で、電気的・幾何学的構造の対称性と非対称性を考慮した数値計算を行い、それ

ぞれの構造による非対称性がCMノイズに与える影響を明らかにする。また、第 4章で、

電気的・幾何学的構造の非対称性が CMモードノイズ発生に及ぼす影響を理論的に解明

する。

4. 時間領域における 3次元回路の数値計算手法の開発

グランド平面の幾何学的構造を考慮するために、3次元回路の時間領域における数値計算

手法を開発する。第 5章で、マクスウェル方程式から得られるスカラーポテンシャルとベ

クトルポテンシャルの式と連続の式、オームの法則の偏微分積分方程式を 3次元導体内で

直接計算するための差分方程式を導出する。また、第 7章では、実験を用いて開発した数

値計算手法の妥当性を証明する。

5. 有限大のグランド平面が CMノイズに及ぼす影響の解明

3次元回路導体内の数値計算手法を開発し、第 6章でこれまで明らかにされていなかった

有限大のグランド平面が CMモードノイズに与える影響を明らかにする。
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1.6 本論文の構成

本論文は合計 8章で構成されている。第 1章では電磁ノイズが引き起こす社会問題と本研究

で明らかにするCMノイズについて述べた。先行研究では、CMノイズの発生原因は回路の終

端における集中定数回路との接続関係である「電気的構造」と、回路導体の位置関係や形状で

ある「幾何学的構造」の非対称性であることが明らかにされている。しかし、それらの非対称

性がCMノイズに及ぼす影響は解明されていない。また、従来の伝送線路理論で用いられてい

る基準は無限大の大きさを理想グランドとしているため、基準導体の幾何学的構造を考慮する

ことができない。そこで、本研究では、回路の電気的・幾何学的構造がCMノイズに及ぼす影

響を明らかにすることと、基準導体の幾何学的構造がCMノイズに及ぼす影響を明らかにする

ことを研究目的とした。

第 2章では、本研究で扱う理論と数値計算について説明する。本研究では、基準導体の幾何

学的構造を考慮するために、電磁気学で用いられる電位、ベクトルポテンシャル、電荷、電流

を変数とした。本研究で用いる基本方程式は、マクスウェル方程式から得られる電位とベクト

ルポテンシャルに関する積分方程式、連続の式とオームの法則とした。それらの基本方程式か

ら、土岐と佐藤（2012）が導出した 1次元多導体線路内の電位と電流に関する電信方程式をも

とに回路形状をより正確に取り扱えるようにした [26]。また、時間領域における数値計算では、

土岐と阿部（2016）が導出した手法について説明する [22]。

第 3章では、1次元回路におけるNMと CMの過渡解析により、CMノイズ現象の発生メカ

ニズムの解明を行なった。まずは一般的な回路構造として 2本線回路を用いた。その結果、回

路の幾何学的構造が非対称の場合かつ、インピーダンスが場所依存している場合にCMノイズ

が発生することを明らかにした。さらに、周りの基準導体を回路と同じ信号線とみなした 3本

線回路を用いたシミュレーションを行なった。その結果、インピーダンスマッチングを取って

いるにも関わらず、CMノイズにより、リンギングノイズが発生していることがわかった。ま

た、発生したCMは回路内でジュール熱として消費され、余分な電力消費の原因になっている

ことを理論的に明らかにした。さらに、電気的・幾何学的構造の対称性と非対称性を比較した

数値計算と実験を行なった結果、それぞれの非対称性に応じてCMノイズのリンギングの減衰

の振る舞いが異なることがわかった。また、CMノイズが発生しない構造は電気的・幾何学的

対称構造であることがわかった。

第 4章では、第 3章で定量化したCMノイズの発生メカニズムを理論的に解明した。導出し

た電信方程式を用いてNMとCMに関する電信方程式を導出した。2本線回路の電信方程式か
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ら波動方程式を導出すると、幾何学的構造が非対称の場合かつ、インピーダンスの場所依存を

考慮した場合、波動方程式のNMとCMのカップリング項が有限になり、伝送線路内でNMと

CMがカップリングしていることが理論的に示した。さらに、3本線回路内のNMと CMに関

するは導体方程式と境界の集中定数回路がNMとCMで満たす条件から、境界におけるNMと

CMのカップリング現象を表すカップリング係数を導出した。その結果、カップリング係数が 0

になる条件は電気的・幾何学的構造であることを理論的に明らかにした。また、カップリング

係数を用いて、NMとCMのリンギングの減衰を表す減衰係数を導出した。その結果、電気的

対称性は CMから NMの変換の現象に寄与し、幾何学的構造は NMから CMへの変換の減少

に寄与していることを理論的に明らかにした。

第 5章では、3次元回路の数値計算手法について説明した。本研究で用いる基本方程式は偏

微分積分方程式であるが、1次元電信方程式では近似を用いることで偏微分方程式に変換して

いた。しかし、3次元回路では 1次元回路で用いた近似を用いることができないため、偏微分積

分方程式を数値計算する必要がある。そこで、有限体積法と FDTD法を組み合わせることで、

3次元偏微分積分方程式を数値計算するための差分和方程式を導出し、3次元回路の数値計算を

可能にした。さらに、任意の境界に集中定数回路を接続するために、1次元回路で導出した境

界条件式を 3次元へと拡張した。

第 6章では、第 5章で導出した 3次元回路の数値計算手法を用いて、従来法で用いた理想グ

ランドを有限大にした場合のCMノイズへの影響について調べた。数値計算の結果、回路の基

準を取るために有限の大きさのグランド平面に接続するとグランド平面の電位変動の原因にな

ることがわかった。さらに、変動したグランド電位はグランド平面の境界で反射し、リンギン

グ現象が生じることがわかった。また、このリンギングがCMノイズに影響を与えることがわ

かった。このことにより、グランド平面構造がCMノイズに与える影響を明らかにした。また、

本研究で導出した電気的・幾何学的対称構造はグランド平面の電位変動の原因とならず、また

グランド平面の電位変動の影響を受けず、EMC設計に最適であることをシミュレーションによ

り明らかにした。

第 7章では、第 5章で導出した 3次元回路の数値計算手法の妥当性を検証した。具体的には、

実験結果と類似手法で得られた数値計算結果と比較した。用いた回路系は回路の任意形状を考

慮するために、屈曲を有する平面導体を用いた。その結果、本研究で開発した数値計算手法で

得られた結果の方が類似手法より実験結果をより精度良く再現していることを実証した。

第 8章では、本研究のまとめと得られた結果について総括した。また、本研究で得られた結

果から生まれた新しい課題や可能性についての展望を述べた。具体的には、本研究の数値計算
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手法の精度をより高めるために改善すべき点や、より現実に近い回路系でのCMノイズ現象の

解明のための課題などについて述べた。
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第2章 マクスウェル方程式から導く1次元多導

体線路内の電位と電流の電信方程式の導

出とノーマルモード・コモンモードの電

信方程式の導出、その数値計算手法

2.1 緒言

本章では、CMノイズを取り扱うための理論体系を確立する。通常の 2本線から構成される

回路（2本線回路）ではその周囲の導体との間の伝搬現象は取り扱えない。この章では、コモ

ンモード及びそこから生じるコモンモードノイズの本質を明らかにするために、1次元多導体

線路の電信方程式の導出を行い、議論を単純化するために外部導体を 3本目の伝送線路とした、

3本線回路を用いてNMと CMに関する電信方程式を導出する。

最初に、本研究で用いる理論と数値計算手法について説明する。1次元回路に関する理論と

数値計算は先行研究で確立されており、1次元多導体線路内における電信方程式は土岐、佐藤

（2012）によって導出され [26]、その数値計算手法は土岐、阿部（2016）によって導出されてい

る [22]。先行研究の電信方程式は、幾何学的平均距離による近似が用いられているため、伝送

線路の断面形状で決まる一様なインピーダンスが用いられている [27–29]。しかし、伝送線路の

インピーダンスは場所に依存した値を持つ場合があり [30,31]、インピーダンスの場所依存性が

CMノイズに及ぼす影響は明らかにされていない。本章では、伝送線路の形状をより厳密に考

慮することで、伝送線路のインピーダンスの場所依存性を考慮した電信方程式を定式化する。

本研究では、基準導体から見た電位ではなく、電磁気で用いられている無限遠から見た電位

を扱うためにマクスウェル方程式を用いる。マクスウェル方程式からゲージ変換を用いて得ら

れる電位（スカラーポテンシャル）とベクトルポテンシャルの 2つの方程式を導出する。また、

オームの法則と連続の式を用いる。以上の 4つの方程式を本研究で用いる基本方程式とした。1

次元回路内の物理現象を記述するために、基本方程式から多導体線路における電位と電流に関

する電信方程式を導出する。
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次に、回路内のNMと CMの電信方程式を定式化するために、2本線回路と 3本線回路を導

入した。本研究では、回路内の電気信号を伝搬する最も単純な構造を 2本線回路で表す。また、

回路周囲にはグランドや筐体などの環境導体が存在し、基準を取るために接続されている。そ

こで、環境導体の幾何学的構造を考慮するために、環境導体を 1つの伝送線路で表した 3本線

回路を用いる。ここで、実際の環境は線ではなく、平面であるが、CMの現象を解析的に取り

扱うために、1次元の伝送線路を用いて単純化する。また、多導体線路における電信方程式か

らNMと CMに関する電信方程式を導出した。

次に、NMとCMを定量化するために、伝送線路内に流れる電位と電流の電信方程式の数値

計算手法について説明する。先行研究の数値計算では [22]、両端の境界条件の計算を別々に取

り扱っていたが、本論文ではそれを一般化して、両端の境界条件を同時に取り扱うための条件

式を導出する。本研究では、過渡解析を行うため、時間領域における数値計算手法である有限

差分時間領域（FDTD : Finite-Difference Time-Domain）法を用いる。

2.2 本研究で用いる4つの基本方程式

本研究で用いる基本方程式を 4つ導出する。2つはマクスウェル方程式から導出される電位

（スカラーポテンシャル）とベクトルポテンシャルであり、残りの 2つは連続の式とオームの法

則である。ここで、本研究で用いる変数とその単位は付録 Cの表 C.1に示す。

2.2.1 電位とベクトルポテンシャルに関する積分方程式の導出

マクスウェル方程式の微分形は以下のように表される。

∇ ·E(r, t) =
q(r, t)

ε
, (2.1)

∇ ·B(r, t) = 0 , (2.2)

∇×E(r, t) +
∂B(r, t)

∂t
= 0 , (2.3)

∇×B(r, t)− εµ
∂E(r, t)

∂t
= µj(r, t) . (2.4)

ここでEは電場、Bは磁場、qは電荷密度、j は電流密度、ε, µはそれぞれ誘電率と透磁率を

表している。式 (2.1)はガウスの法則、式 (2.2)は単磁荷が存在しないこと、式 (2.3)はファラ

デーの法則、式 (2.4)はアンペールの法則を表している。

電気回路内の現象は電位差や電流を実験で測定することで理解することができる。本研究で

は、電気回路を構成する導体内の物理現象を取り扱うため、電磁場ではなく電位とベクトルポ
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テンシャルを用いる。ここで、電位 U とベクトルポテンシャルAを導入し、電場Eと磁場B

を消去する。ベクトルポテンシャルは、その定義より、

B(r, t) = ∇×A(r, t) . (2.5)

と表すことができる。この関係式をファラデーの法則 (2.3)に代入する。

∇×E(r, t) +
∂ (∇×A(r, t))

∂t
= 0 ,

∇×
(
E(r, t) +

∂A(r, t)

∂t

)
= 0 . (2.6)

よって、E(r, t) + ∂A(r,t)
∂t は動電磁場におけるスカラーポテンシャル U の傾きを表している。

−∇U(r, t) = E(r, t) +
∂A(r, t)

∂t
. (2.7)

この式から電場E(r, t)は電位 U とベクトルポテンシャルAを使って次のように書ける。

E(r, t) = −∇U − ∂A(r, t)

∂t
. (2.8)

次に電荷と電流が与えられた時、これらの電気の源が作る電磁場（ポテンシャル）を計算す

る。式 (2.1)に式 (2.8)を代入し、電場を消去する。

−∇2U −∇ · ∂A(r, t)

∂t
=

q(r, t)

ε
. (2.9)

さらに、式 (2.4)に式 (2.5)と (2.8)を代入して電場と磁場を消去する。

−∇2A(r, t) + εµ
∂2A(r, t)

∂t2
+∇

(
∇ ·A(r, t) + εµ

∂U(r, t)

∂t

)
= µj(r, t) . (2.10)

ここで、以下のベクトル式の関係を用いた。

∇ ·∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·
(

∂

∂x
,
∂

∂y
,
∂

∂z

)
,

= ∇2 , (2.11)

∇× (∇×A) = −∇2A(r, t) +∇(∇ ·A(r, t)) . (2.12)

また、上の式を εµ = 1/c2を用いて書き換えると

−∇2U −∇ · ∂A(r, t)

∂t
=

q

ε
,

−∇2A(r, t) +
1

c2
∂2A(r, t)

∂t2
+∇(∇ ·A(r, t) +

1

c2
∂U

∂t
) = µj(r, t) . (2.13)
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となる。さらにこれらの式を簡単化するためにローレンツ条件をおく。それは以下の関係式で

表される。

∇ ·A(r, t) +
1

c2
∂U(r, t)

∂t
= 0 . (2.14)

このローレンツ条件を導入しゲージ変換すると、上の２つの式は分離し、それぞれ１変数の偏

微分方程式となる。

−∇2U(r, t) +
1

c2
∂2U(r, t)

∂t2
=

q(r, t)

ε
, (2.15)

−∇2A(r, t) +
1

c2
∂2A(r, t)

∂t2
= µj(r, t) . (2.16)

これらの式より電荷 qからスカラーポテンシャルが計算でき、電流 j(r, t)からベクトルポテ

ンシャルが計算できる。これらの式はグリーン関数を用いて解くことができる [32]。

U(r, t) =
1

4πε

∫
q(r′, t− |r−r′|

c )

|r − r′|
dr′ , (2.17)

A(r, t) =
µ

4π

∫
j(r′, t− |r−r′|

c )

|r − r′|
dr′ . (2.18)

以上より、導体内の電位とベクトルポテンシャルに関する条件式を導出することができた。電

位とベクトルポテンシャルは、それぞれ全空間の電荷密度と電流密度の和によって導出するこ

とができる。

2.2.2 オームの法則、連続の式

オームの法則は以下のように表される。

J(r, t) = σE(r, t) . (2.19)

ここで、σは電気伝導率であり、抵抗率 ρの逆数 σ = 1/ρで表される。式 (2.8)から、電場を消

去してポテンシャルで表す。

−∇U(r, t) − ∂A(r, t)

∂t
= ρj(r, t). . (2.20)

また、導体中では電荷と電流密度は以下の連続の式を満たす。

∂

∂t
q(r, t) + ∇ · j(r, t) = 0 . (2.21)

以上の 4式 (2.17)(2.18),(2.20),(2.21)が本研究で用いる基本方程式となる。
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図 2.1: 本研究で用いる多導体線路と変数の位置

2.3 1次元多導体線路内における電位と電流の電信方程式の導出

基本方程式を用いて、多導体線路内における電位と電流に関する電信方程式を導出する。方

程式を導出する際に、導体内の物理量である変数を定義する位置が重要になる。なぜなら、伝送

線路の電位係数やインダクタンスの計算式が変わるからである。本研究では 1次元多導体線路

の場合、図 2.1に示すように、変数を断面の値の平均値とみなし、y, z方向の変化を無視する。

Ui(x, t) =
1

Si

∫
Si

Ui(x, y, z, t)dydz , (2.22)

qi(x, t) =
1

Si

∫
Si

q(x, y, z, t)dydz , (2.23)

Axi(x, t) =
1

Si

∫
Si

Ax(x, y, z, t)dydz , (2.24)

Jxi(x, t) =
1

Si

∫
Si

Jix(x, y, z, t)dydz . (2.25)

ここで、式 (2.17), (2.18)の両辺を点 xの断面で平均をとると、以下のように表すことができる。

Ui(x, t) =
1

4πε

1

Sj

∫
Sj

dydz
∑
j

∫
Vj

dx′dy′dz′
qj(x

′, y′, z′, t)√
(x− x′)2 + (y − y′)2 + (z − z′)2

,

(2.26)

Axi(x, t) =
µ

4π

1

Sj

∫
Sj

dydz
∑
j

∫
Vj

dx′dy′dz′
Jxj(x

′, y′, z′, t)√
(x− x′)2 + (y − y′)2 + (z − z′)2

.

(2.27)
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さらに、伝送線路 jの電荷密度 qj と電流密度 Jxj の xにおける断面は一様とみなすと、被積分

関数である電荷密度と電流密度の積分は断面方向である y′と z′から外すことができる。また、

伝送線路 jの x = x′における電荷と電流をそれぞれQj(x), Ixj(x)と表すと、電荷密度と電流密

度は伝送線路 jの断面積Sjと線の長さ ℓjを用いて、qj(x) = Qj(x)/(Sjℓj), Jxj(x) = Ixj(x)/Sj

と表すことができる。

Ui(x, t)

=
1

4πε

1

Si

∫
Si

dydz
∑
j

∫ ℓj

0
dx′
∫
Sj

dy′dz′
1

Sjℓj

Qj(x
′, t)√

(x− x′)2 + (y − y′)2 + (z − z′)2
,

(2.28)

Axi(x, t)

=
1

4πε

1

Si

∫
Si

dydz
∑
j

∫ ℓj

0
dx′

1

Sj

∫
Sj

dy′dz′
1

Sj

Ixj(x
′, t)√

(x− x′)2 + (y − y′)2 + (z − z′)2
.

(2.29)

ここで、被積分関数の分母にある |y − y′|と |z − z′|は |y − y′| ≤ a, |z − z′| ≤ aより、線の

長さに比べて十分に小さい値をとる。よって、被積分関数は x′ = xのときに急峻なピークを持

つ関数であることがわかる。そこで、電荷 Qj(x
′)が x′に対して変動する割合が分母にある関

数よりも小さいとすると、Qj(x
′) = Qj(x)とすることができ、電荷を積分の外に出すことがで

きる。

Ui(x, t) =
1

4πε

1

Si

∫
Si

dydz
∑
j

∫ ℓj

0
dx′

1

Sj
dy′dz′

1

Sjℓj

Qj(x, t)√
(x− x′)2 + (y − y′)2 + (z − z′)2

,

=
∑
j

P ′
ij(x)Qj(x, t) , (2.30)

P ′
ij(x) =

1

4πε

1

Si

1

Sj

1

ℓj

∫
Si

dydz

∫ ℓj

0
dx′
∫
Sj

dy′dz′
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
.

(2.31)

ここで、P ′
ij は伝送線路 i, j 間の単位面積当たりの電位係数を表しており、単位は [F−1 ·m−2]

となる。以上より、電位を各伝送線路に分布する電荷と電位係数の和で表すことができた。同
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様に式 (2.29)より、ベクトルポテンシャルは以下のように表すことができる。

Aix(x, t) =
µ

4π

1

Si

∫
Si

dydz
∑
j

∫ ℓj

0
dx′
∫
Sj

dy′dz′
1

Sj

Ixj(x, t)√
(x− x′)2 + (y − y′)2 + (z − z′)2

,

=
∑
j

Lij(x)Ijx(x, t) , (2.32)

Lij(x) =
µ

4π

1

Si

1

Sj

∫
Si

dydz

∫ ℓj

0
dx′
∫
Sj

dy′dz′
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
.

(2.33)

ここで、Lijは伝送線路 i, j間の単位長さあたりのインダクタンスを表しており、単位は [H ·m−1]

となる。ベクトルポテンシャルは各伝送線路の電流とインダクタンスの積の和で表すことがで

きる。

以上より、電位とベクトルポテンシャルに関する積分方程式を多導体伝送線路の電荷と電流

の和で表すことができた。次に、式 (2.20)のオームの法則と式 (2.21)の連続の式に関しても電

荷や電流は断面方向で平均をとり、一様であるとみなすと、以下のように表すことができる。

−∂Ui(x, t)

∂x
− ∂Axi(x, t)

∂t
= ρi

Ixi(x, t)

Si
, (2.34)

1

Vi

∂Qi(x, t)

∂t
+

1

Si

∂Ixi(x, t)

∂x
= 0 . (2.35)

以上より、電流と電位の連立偏微分方程式を導出するために、電荷を消去する。式 (2.30)の両

辺を tで偏微分し、連続の式 (2.35)に代入して電荷を消去すると、

∂Ui(x, t)

∂t
= −

∑
ij

ℓjP
′
ij(x)

∂Ixj(x, t)

∂x
, (2.36)

= −
∑
ij

Pij(x)
∂Ixj(x, t)

∂x
. (2.37)

よって、電信方程式で用いる電位係数は以下のように表される。

Pij(x) =
1

4πε

1

Si

1

Sj

∫
Si

dydz

∫ ℓj

0
dx′
∫
Sj

dy′dz′
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
.

(2.38)

ここで、Pij は伝送線路 i, j間の単位長さあたりの電位係数を表し、単位は [F−1 ·m−1]となる。

次に、式 (2.32)の両辺を tで偏微分しベクトルポテンシャルを消去する。

∂Ui(x, t)

∂x
= −

∑
j

Lij(x)
∂Ixj(x, t)

∂t
− ρi

Ixi(x, t)

Si
. (2.39)
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以上より、式 (2.37)と (2.39)が本研究で計算する 1次元多導体線路方程式となり、まとめると

以下のように表される。

∂Ui(x, t)

∂t
= −

∑
j

Pij(x)
∂Ixj(x, t)

∂x
, (2.40)

∂Ui(x, t)

∂x
= −

∑
j

Lij(x)
∂Ixj(x, t)

∂t
− ρi

Ixi(x, t)

Si
, (2.41)

Pij(x) =
1

4πε

1

Si

1

Sj

∫
Si

dydz

∫ ℓj

0
dx′
∫
Sj

dy′dz′
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
,

(2.42)

Lij(x) =
µ

4π

1

Si

1

Sj

∫
Si

dydz

∫ ℓj

0
dx′
∫
Sj

dy′dz′
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
.

(2.43)

以上より、多導体線路内の電位と電流に関する電信方程式を導出することができた。

2.4 2本線回路と3本線回路内におけるノーマルモードとコモンモード

信号復路

信号往路

基準（筐体、グランド）

信号復路

信号往路

基準（筐体、グランド）

信号復路

信号往路

(b’) 基準導体に接続された2本線回路

(b) 3本線回路（基準導体を考慮した回路構造）

(a) 2本線回路（一般的な回路構造）

図 2.2: 本研究の 1次元回路解析で用いる (a)2本線回路と (b)3本線回路。(a)は最も単純な電

気回路を表しており、2本の伝送線路を用いて遠方に信号を伝搬することができる。(b’)は回路

の周囲に存在する筐体やグランドなどの基準導体を表している。(b)は回路の基準導体を単純化

のために 1本の伝送線路で表した 3本線回路である。
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本章では、図 2.2(a)と (b)に示す 2本線回路と 3本線回路内に流れるNMとCMについて説

明する。図 2.2(a)の 2本線回路は電気信号を遠方へと伝送させるために用いる最も単純な回路

を表している。また、図 2.2(b’)に示すように、電気回路の周囲には筐体やグランドなどの基準

導体が存在し、回路と接続されている。コモンモードは回路と基準導体内を伝搬しているが従

来手法では基準導体は理想グランドとみなし、その幾何学的構造の影響は考慮されていない。

そこで、基準導体の幾何学的構造の影響を考慮するために、図 2.2(b)に示す、基準導体を単純

な 1本線で表した 3本線回路を用いて、基準導体の幾何学構造を考慮した回路構造について考

える。以上の 2本線回路と 3本線回路に流れる NMと CMについて定式化し、2.3で導出した

多導体線路における電信方程式を用いて、NMと CMに関する電信方程式を導出する。

2.4.1 2本線回路内におけるノーマルモードとコモンモードの定式化

無限遠

(a) ノーマルモード (b) コモンモード

信号復路

信号往路U1(x, t) I1(x, t)

U2(x, t) I2(x, t)
信号復路

信号往路U1(x, t) I1(x, t)

U2(x, t) I2(x, t)

図 2.3: 2本線回路内の (a)ノーマルモードと (b)コモンモードの定義。(a)のノーマルモードは

我々が一般的に用いる信号と同じであり、2本の伝送線路で構成された回路を一周するように伝

搬する。よって、2本の伝送線路に流れる電流の向きは逆向きになる。一方、(b)のコモンモー

ドは回路と無限遠との間を流れるモードであるため、2本の伝送線路に流れる電流の向きは同

じ向きになる。

一般的に電気回路は信号の往復路の 2導体で構成され、それらの間に電位差をかけることで

信号を伝送することができる。本研究では、無限遠から見た導体の電位を変数としているため、

図 2.3に示すように、電位差であるNM電圧以外に、電位の和であるCM電流も定義すること

ができる。以下に 2本線回路におけるNMと CMで流れる電圧と電流を定義する。
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(1) 2本線回路のノーマルモード電圧と電流

本研究では、2本線回路におけるNMを図 2.3(a)に示すような信号の往復路の間を流れるモー

ドと定義する。よって、NM電圧と電流は信号の往復路の電位と電流の差で表される。

Vn(x, t) = U1(x, t)− U2(x, t) , (2.44)

In(x, t) =
1

2
(I1(x, t)− I2(x, t)) . (2.45)

ここで、NM電流に 1
2 を掛けている。これは、例えばTEM近似で用いられるように、信号の往

復路に同じ大きさ逆向きの電流が流れているとすると [15, 17]、I1(x, t) = −I2(x, t)で表され、

この時のNM電流は In = 1
2(I1(x, t)− I2(x, t)) = I1となり、TEM近似で用いられるNM電流

と一致する。よって 1
2 の係数が必要であることがわかる。

(2) 2本線回路内のコモンモード電圧と電流

次に、2本線回路におけるCMを図 2.3(b)に示すような無限遠と 2本線回路の間を流れるモー

ドと定義する。ここで、2本線回路の電位は信号線 1と 2の電位の平均とする。よって、CM

は 2本線と無限遠の間に流れるNMとみなすと、無限遠における電位と電流は共に 0であるた

め、CM電圧は 2本線回路の電位の和で表され、CM電流はそれぞれの信号線の電流の和で表

される。

Vc(x, t) =
1

2
(U1(x, t) + U2(x, t)) , (2.46)

Ic(x, t) = I1(x, t) + I2(x, t) . (2.47)

2.4.2 2本線回路内におけるノーマルモードとコモンモードの電信方程式の導出

2本線回路内におけるNM・CMの伝搬現象を記述するために、NM・CMに関する電信方程式

を導出する。式 (2.37),(2.39)より、多導体伝送線路の電信方程式を式 (2.44),(2.45),(2.46)(2.47)

で定義したNM・CMの電圧と電流について解くと、以下の方程式を得ることができる。また、

方程式の導出の詳細は、付録A.1に記す。

∂Vn(x, t)

∂t
= −Pnn(x)

∂In(x, t)

∂z
− Pnc(x)

∂Ic(x, t)

∂z
, (2.48)

∂Vc(x, t)

∂t
= −Pcn(x)

∂In(x, t)

∂z
− Pcc(x)

∂Ic(x, t)

∂z
, (2.49)

∂Vn(x, t)

∂z
= −Lnn(x)

∂In(x, t)

∂z
− Lnc(x)

∂Ic(x, t)

∂t
, (2.50)

∂Vc(x, t)

∂x
= −Lcn(x)

∂In(x, t)

∂t
− Lcc(x)

∂Ic(x, t)

∂t
. (2.51)
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(a) ノーマルモード (b) コモンモード

信号復路

信号往路

環境

U1(x, t) I1(x, t)

U2(x, t) I2(x, t)

U3(x, t) I3(x, t)

信号復路

信号往路

環境

U1(x, t) I1(x, t)

U3(x, t) I3(x, t)

U2(x, t) I2(x, t)

図 2.4: 3本線回路におけるノーマルモードとコモンモード

ここで、式 (2.48)と (2.50)は 2本線回路におけるNM方程式を表しており、式 (2.49)と (2.51)

は 2本線回路における CM方程式を表している。また、それぞれの係数は以下のように表さ

れる。

Pnn(x) = P11(x)− P21(x)− P12(x) + P22(x) , (2.52)

Pnc(x) =
1

2
(P11(x)− P21(x) + P12(x)− P22(x)) , (2.53)

Pcn(x) =
1

2
(P11(x) + P21(x)− P12(x)− P22(x)) , (2.54)

Pcc(x) =
1

4
(P11(x) + P21(x) + P12(x) + P22(x)) . (2.55)

これらの方程式をみると、NM方程式にCMの項が含まれており、CM方程式にもNMの項が

含まれていることがわかる。以上より、係数 Pnc(x), Pcn(x), Lnc(x), Lcn(x)が有限の場合、NM

とCMはカップリングする。また、P22の項により、基準導体との相対的な関係だけでなく、基

準導体の幾何学的構造も考慮することができる。

2.4.3 3本線回路内におけるノーマルモードとコモンモードの定式化

次に、図 2.2(b)に示す回路の基準導体の構造を考慮した 3本線回路について考える。2本線

回路と同様に、3本線回路内のNMと CMについて定式化し、電信方程式を導出する。
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(1) 3本線回路のノーマルモード電圧と電流

本研究では、3本線回路に流れるNMを図 2.4(a)に示すような信号の往復路の間を流れるモー

ドと定義する。これは 2本線回路のNMの式 (2.44),(2.45)と同じである。

Vn(x, t) = U1(x, t)− U2(x, t) , (2.56)

In(x, t) =
1

2
(I1(x, t)− I2(x, t)) . (2.57)

(2) 3本線回路のコモンモード電圧と電流

次に、3本線回路におけるCMを図 2.4(b)に示すような 2本線回路と環境線の間に流れるモー

ドと定義する。ここで、2本線回路の電位は信号往復路の電位の平均とし、2本線回路に流れる

電流は信号往復路の電流の和とする。CMは 2本線回路と環境線の間に流れるNMとみなすと、

CM電圧と電流は以下のように表すことができる。

Vc(x, t) =
1

2
(U1(x, t) + U2(x, t))− U3(x, t) , (2.58)

Ic(x, t) =
1

2
(I1(x, t) + I2(x, t)− I3(x, t)) . (2.59)

2.4.4 3本線回路内におけるノーマルモードとコモンモードの電信方程式の導出

3本線回路内における NM・CMの伝搬現象を記述するために、2本線回路と同様に NM・

CMに関する電信方程式を導出する。式 (2.37),(2.39)より、多導体伝送線路の電信方程式を式

(2.56),(2.57),(2.58)(2.59)で定義したNM・CMの電圧と電流について解くと、以下の方程式を

得ることができる。方程式の導出の詳細は付録A.2に記す。

∂Vn(x, t)

∂t
= −Pnn(x)

∂In(x, t)

∂z
− Pnc(x)

∂Ic(x, t)

∂z
, (2.60)

∂Vc(x, t)

∂t
= −Pcn(x)

∂In(x, t)

∂z
− Pcc(x)

∂Ic(x, t)

∂z
, (2.61)

∂Vn(x, t)

∂z
= −Lnn(x)

∂In(x, t)

∂z
− Lnc(x)

∂Ic(x, t)

∂t
, (2.62)

∂Vc(x, t)

∂x
= −Lcn(x)

∂In(x, t)

∂t
− Lcc(x)

∂Ic(x, t)

∂t
. (2.63)

式 (2.60)と (2.62)は 3本線回路におけるNM方程式を表しており、式 (2.61)と (2.63)は 3本線

回路における CM方程式を表している。これは 2本線回路のNM・CM方程式と同じ形式で表
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されていることがわかる。

Pnn(x) = P11(x)− P21(x)− P12(x) + P22(x) , (2.64)

Pnc(x) =
1

2
(P11(x)− P21(x) + P12(x)− P22(x))− (P13(x)− P23(x)) , (2.65)

Pcn(x) =
1

2
(P11(x) + P21(x)− P12(x)− P22(x))− (P31(x)− P32(x)) , (2.66)

Pcc(x) =
1

4
(P11(x) + P21(x) + P12(x) + P22(x))

−1

2
(P13(x) + P31(x) + P23(x) + P32(x)− 2P33(x)) . (2.67)

以上より、2本線回路と同様、3本線回路もNMとCMのカップリングを表す Pnc, Pcnが有限

であれば NMと CMはカップリングする。ここで、P33の項により、3番目の基準線の幾何学

的構造も考慮することができる。

2.5 時間領域有限差分(Finite-Difference Time-Domain : FDTD)

法を用いた多導体伝送線路内の電信方程式の数値計算

本節では 2.3で導出した 1次元多導体線路における電位と電流に関する電信方程式の数値計算

手法を説明する。時間領域における数値計算には電磁界の数値計算でよく用いられる有限差分時

間領域 (Finite-Difference Time-Domain Method : FDTD)法を用いて数値計算を行う [33]。1

次元多導体線路の両端は、図 2.5に示すように、集中定数回路と接続されている。これらの境界

条件の計算は、集中定数回路の数値計算で用いられているスパースタブロー法を用いる [34]。ス

パースタブロー法はキルヒホッフの電流則（KCL : Kirchhoff’s Current Law）と電圧則（KVL :

Kirchhoff’s Voltage Low)、また常微分方程式で表される枝構成式（BCE : Branch Consistutive

Equation）[35]を用いて、枝電圧と節点電位、枝電流を変数とした方程式を導出する。最終的に

本研究手法では、変数を節点電位と枝電流とし、それらが満たす条件式を接続行列とインピー

ダンス行列で表した境界条件の式を導出し、それを節点電位方程式（IPE : Incident Potential

Equation）と呼ぶ [22]。

FDTD法は図 2.6(c)のような中心差分近似を用いている。精度は他の (a)前進差分近似と (b)

後進差分近似の (∆z)に比べ誤差が (∆z)2になる [36]。よって、中心差分近似を用いることで精

度の高い数値計算が可能になる。式 (2.40),(2.41)より、本研究で解く方程式は以下の通り。こ
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・キルヒホッフの電流則(KCL) 

・キルヒホッフの電圧則(KVL) 

・枝構成式(BCE)（常微分方程式）

集中定数回路で用いる方程式

・電信方程式（偏微分方程式）

1次元多導体線路で用いる方程式

1次元多導体線路集中定数回路

受動素子 

・抵抗 

・インダクタンス 

・キャパシタンス 

・電圧源 

・電流源

集中定数回路

受動素子 

・抵抗 

・インダクタンス 

・キャパシタンス 

・電圧源 

・電流源

図 2.5: 本研究で用いる 1次元多導体線路の両端に集中定数回路が接続された回路構造。集中定

数回路が満たす方程式にキルヒホッフの電流則（KCL）とキルヒホッフの電圧則（KVL）、枝

構成式（BCE）を用いる。さらに、1次元多導体線路が満たす方程式に、2.3で導出した電信方

程式を用いる。数値計算では、集中定数回路が満たす常微分方程式と多導体線路が満たす偏微

分方程式を同時に計算する。

(b) 前進差分近似

xx

(a) 後進差分近似 (c) 中心差分近似

x

図 2.6: 差分方法の比較

こで簡略化のため、添字の xは省略する。

∂Ui(x, t)

∂t
= −

∑
j

Pij(x)
∂Ij(x, t)

∂z
, (2.68)

∂Ui(x, t)

∂z
= −

∑
j

Lij(x)
∂Ij(x, t)

∂t
−RiIi(x, t) . (2.69)
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この方程式を中心差分方程式で表すためにまず、式 (2.68)の左辺を時間に関して差分化すると、

∂Ui(x, t)

∂t
=

Ui(x, t+∆t)− Ui(x, t)

∆t
. (2.70)

と表すことができる。中心差分近似を取る場合、上式は時刻 t+ ∆t
2 における差分近似を求めて

いる。つまり、式 (2.68)の左辺の U の値は時刻 t+∆tと tの値を用いる。一方、右辺の電流は

時刻 t+ ∆t
2 の値を用いる。それに対応して、Iの値を取る位置がU に比べて半整数分（∆x

2 ）だ

けずらす必要がある。以上より、式 (2.68)を中心差分をとると以下のように表すことができる。

Ui(x, t+∆t)− Ui(x, t)

∆t
= −

∑
j

Pij(x)
Ij(x+ ∆x

2 , t+ ∆t
2 )− Ij(x− ∆x

2 , t+ ∆t
2 )

∆x
. (2.71)

このように FDTD法では 2変数 U と I のとる値が場所と時間でそれぞれ離散幅の半整数倍だ

けずれる。以下、差分方程式を見やすくするために i番目の伝送線路の時間と場所に関する離

散化後の U と I を次のように表す。

U(x, t) ≡ Um
i(k), (x = k∆x, t = m∆t, m, k = 0, 1 · · ·N) ,

I(x, t) ≡ I
m+1/2

i(k+ 1
2)
,

(
x =

(
k +

1

2

)
∆x, t =

(
k +

1

2

)
∆t, m, k = 0, 1 · · ·N − 1

)
.

上記のように、U は差分の整数倍の点、I は差分の半整数倍の点とそれぞれ半整数分だけずれ

た点の値が用いられている。N は伝送線路の x方向の分割数を表しており、電流の数が電位に

比べてひとつ少ない。以上より、式 (2.68)と (2.69)を中心差分を用いて差分化すると以下のよ

うに、表すことができる。

Um+1
i(k) − Um

i(k)

∆t
= −

M∑
j

Pij(k)

I
m+ 1

2

j(k+ 1
2)

− I
m+ 1

2

j(k− 1
2)

∆x
, (2.72)

Um+1
i(k+1) − Um+1

i(k)

∆x
= −

M∑
j

Lij(k+ 1
2
)

I
m+ 3

2

i(k+ 1
2)

− I
m+ 1

2

i(k+ 1
2)

∆t
−Ri

I
m+ 3

2

i(k+ 1
2)

+ I
m+ 1

2

i(k+ 1
2)

2
. (2.73)

ここで、M は伝送線路の数で Pij(k), Lij(k)は、点 x = k∆xの座標における伝送線路 i, j間の電

位係数とインダクタンスを表している。さらに、未知数である新しい時間の電位と電流の値を

求めるためには、上式 (2.72),(2.73)を解く必要がある。そこで、それぞれの式を行列とベクト

ルで表す。

Um+1
k −Um

k = −∆t

∆z
Pk

(
I
m+ 1

2

k+ 1
2

− I
m+ 1

2

k− 1
2

)
, (2.74)

Um+1
k+1 −Um+1

k = −∆z

∆t
Lk+ 1

2

(
I
m+ 3

2

k+ 1
2

− I
m+ 1

2

k+ 1
2

)
− 1

2
Rij(k+ 1

2
)

(
I
m+ 3

2

k+ 1
2

+ I
m+ 1

2

k+ 1
2

)
.

(2.75)
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図 2.7: 電位 U と電流 I の差分点と時間発展の関係

ここで、Uk, Ik+ 1
2
はそれぞれ場所 k, k + 1

2 における各伝送線路の電位と電流を大きさM のベ

クトルで表したものである。また、行列P とLは伝送線路 i, j間の電位係数行列とインダクタ

ンス行列でM ×M 行列である。また、Rは伝送線路内の抵抗行列であり、M ×M の対角行

列となっている。

新しい時間の未知数を左辺に、古い時間の既知数を右辺に移動させ、電位と電流に関する漸

化式を求める。

Um+1
k = Um

k − ∆t

∆x
Pk

(
I
m+ 1

2

k+ 1
2

− I
m+ 1

2

k− 1
2

)
, (2.76)

I
m+ 3

2

k+ 1
2

=

(
∆x

∆t
Lk+ 1

2
+

1

2
R

)−1(∆x

∆t
Lk+ 1

2
− 1

2
Rk+ 1

2

)
I
m+ 1

2

k+ 1
2

−
(
∆x

∆t
Lk+ 1

2
+

1

2
Rk+ 1

2

)−1 (
Um+1

k+1 −Um+1
k

)
. (2.77)

式 (2.76)より、新しい時間の電位 Um+1
k を求めるためには一つ前の時間の電位 Um

k と、時間

が半整数分だけ前の、場所が半整数だけずれた電流 I
m+ 1

2

k+ 1
2

, I
m+ 1

2

k− 1
2

の値を用いている。同様に式

(2.77)より、得られた電位Um+1の値をもとに、新しい電流 Im+ 3
2 の値を求めることができる。

以上を繰り返すことで電位と電流の任意の場所の過渡現象を計算することができる。これを図

で表すと、図 2.7のようになる。ここで、解の安定性を満たすために以下の Courant条件を満
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たす必要がある [17,33]。

∆t ≤ ∆x

v
. (2.78)

数値計算では、値を新しい時間へと更新する度に値は∆xだけ離れた位置に遷移する。つまり、

Courant条件を満たさない場合は、数値計算の値の遷移速度が光速を超え、物理現象から乖離し

てしまうために、数値計算の発散に繋がる。また、等号が成り立つ場合（v∆t = ∆x）はmagic

time stepと呼ばれ??、数値計算の値の遷移速度と実際の伝搬速度が一致するため、数値計算結

果の分散は最も小さくなる。さらに、∆xは信号の立ち上がり（下がり）の空間長よりも十分

小さくなるように取る必要がある。

2.6 集中定数回路との接続による分布定数回路の境界条件の計算

伝送線路両端の境界における計算は、伝送線路と集中定数回路との接続関係を表す接続行列

と、インピーダンスを表すインピーダンス行列を用いた IPEを導入して計算する。図 2.5に示

すように、電信方程式での未知数は電位と電流であるため、集中定数回路で用いる変数は節点

電位と枝電流とする。集中定数回路と伝送線路が境界で満たす条件式から IPEを導出する。

2.6.1 集中定数回路が満たす境界条件

(1) キルヒホッフの電流則（KCL）

集中定数回路内の節点間の接続関係は接続行列Al を用いて表すことができる。ここで、接

続行列の行は節点を表し、列は枝を表している。行列の成分は 0, 1,−1のいずれかであり、枝

の向きと節点との接続関係で以下の値になる。

Alij =


0 （枝 jが節点 iに接続していない場合）

1 （枝 jが節点 iに出る向きに接続している場合）

−1 （枝 jが節点 iに入る向きに接続している場合）

. (2.79)

枝電流ベクトルを Il、電流源ベクトルを Jl、電流源ベクトルとの接続関係をAJ とおくと、集

中定数回路内のキルヒホッフの電流則は以下のように表される。

AlIl +AJJl = 0 . (2.80)
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(2) キルヒホッフの電圧則（KVL）と枝構成式（BCE）

集中定数回路内の枝電圧ベクトル Vlは接続行列と節点電位ベクトルUlを用いて表すことが

できる。

Vl = AT
l Ul . (2.81)

また、BCEは枝を構成する受動素子によって決まる。

Vl = ZlIl +El . (2.82)

ここで、Zlは枝を構成する受動素子によって決まる時間領域でのインピーダンスを表しており、

対角行列である。また、Elは電圧源を表している。

次に、時間に関して離散化した後のインピーダンス行列の要素を導出する。集中定数回路内

の節点 ij間で成り立つ枝構成式を枝の構成要素が抵抗・キャパシタンス・インダクタンスの場

合を考える。枝電圧 Vij と枝電流 Iij が満たす微分方程式は以下のようになる。

Vij = RijIij , (2.83)

d

dt
Vij = C−1

ij Iij , (2.84)

Vij = Lij
dIij
dt

, (2.85)

Vij = Eij . (2.86)

これらを離散化して、差分方程式で表すと以下のようになる。

V m+1
ij + V m

ij

2
= Rij

Im+1
ij + Imij

2
, (2.87)

V m+1
ij − V m

ij

∆t
= C−1

ij

Im+1
ij + Imij

2
, (2.88)

V m+1
ij + V m

ij

2
= Lij

Im+1
ij − Imij

∆t
, (2.89)

V m+1
ij + V m

ij

2
=

Em+1
ij + Em

ij

2
. (2.90)

以上より BCEの差分方程式を一般化すると、以下のように表すことができる。

Vij − ZijI
m+1
ij = −ϵlijVij + δlijZijI

m
ij + Em+1 + Em . (2.91)
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表 2.1: 枝構成式のインピーダンスと係数行列の値

素子 Z ϵ δ

抵抗 R 1 1

インダクタ 2L/∆t 1 -1

キャパシタ ∆t/2C -1 1

ここで、ϵij と δij は符号を表す係数であり、枝の構成素子によって変わる。それらの関係は

表 2.1に示している。差分化されたBCEは式 (2.91)より接続行列とインピーダンス行列を用い

て表すことができる。

AT
l U

m+1
l −ZlI

m+1
l = −ϵlA

T
l U

m
l + δlZlI

m
l +

(
Em+1

l +Em
l

)
. (2.92)

ここで式 (2.81)より、枝電圧を接続行列と節点電圧を用いて表した。Zはインピーダンス行列

であり、枝を構成する素子の時間領域におけるインピーダンスを表す。また、ϵと δは対角行

列であり、枝を構成する素子の種類によって符号を変える役割を持つ。それぞれの行列の i行 i

列目の対角要素は以下のようになる。

Zlii =


R （枝構成素子が抵抗の場合）,

2L/∆t （枝構成素子がインダクタの場合）,

∆t/2C （枝構成素子がキャパシタの場合）.

(2.93)

ϵlii =

 1 （枝構成素子がキャパシタの場合）,

−1 （キャパシタ以外）.
(2.94)

δlii =

 1 （枝構成素子がインダクタの場合）,

−1 （インダクタ以外）.
(2.95)

(2.96)
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図 2.8: 境界における電位U と電流 Iの定義位置の関係。境界のU の計算をする際に、定義さ

れていない空間外（x = −∆x
2 ,
(
N + 1

2

)
∆x）での I の値を用いる必要がある。そこで、本研究

では、空間外の I の値をU と同じ位置にある I の時間平均とみなして計算を行う。

2.6.2 分布定数回路が満たす境界条件

次に多導体線路の境界で満たす条件式を導出する。境界で用いる式は、伝送線路内の電位の

漸化式 (2.76)に k = 0, N を代入すると導出することができる。

Um+1
0 = Um

0 − ∆t

∆x
P0

(
I
m+ 1

2
1
2

− I
m+ 1

2

− 1
2

)
, (2.97)

Um+1
N = Um

N − ∆t

∆x
PN

(
I
m+ 1

2

N+ 1
2

− I
m+ 1

2

N− 1
2

)
. (2.98)

ここで、電位と電流は場所が半整数ずれた位置で定義されているため、境界で電流の空間差分

をとる場合、定義されていない空間の点の電流 I− 1
2
と IN+ 1

2
を考慮する必要がある。本研究で

は、図 2.8で示すように、電位が定義されている点に流れる電流で代用する。また、この電流
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は時間も半整数ずれているため、時間平均を用いる。

I
m+ 1

2

− 1
2

=
Im+1
0 + Im

0

2
, (2.99)

I
m+ 1

2

N+ 1
2

=
Im+1
N + Im

N

2
. (2.100)

さらに、電位の点での電流を用いると、電流の空間差分をとる際に距離が半分になる。以上を

考慮すると、境界での電位の漸化式 (2.97)と (2.98)は以下のように表される。

Um+1
0 = Um

0 − ∆t

∆x/2
P0

(
I
m+ 1

2
1
2

− Im+1
0 + Im

0

2

)
, (2.101)

Um+1
N = Um

N − ∆t

∆x/2
PN

(
Im+1
N + Im

N

2
− I

m+ 1
2

N− 1
2

)
. (2.102)

ここで、境界の電流は未知数となるので、左辺に移動すると境界での伝搬方程式が導かられる。

Um+1
0 − ∆t

∆x
P0I

m+1
0 = Um

0 +
∆t

∆x
P0

(
Im
0 − 2I

m+ 1
2

1
2

)
, (2.103)

Um+1
N +

∆t

∆x
PNIm+1

N = Um
N − ∆t

∆x
PN

(
Im
N − 2I

m+ 1
2

N− 1
2

)
. (2.104)

両端での方程式を一つにまとめるために、以下の行列を用意する。

Ud =

U0

UN

 , Id =

I0

IN

 , (2.105)

Iα =

 I 1
2

IN− 1
2

 , (2.106)

Zd =
∆t

∆x

P0 0

0 PN

 . (2.107)

ここで、Ud, Idは伝送線路両端の電位と電流を表し、Iαは両端から半整数だけ伝送線路側にず

れた位置での電流を表している。また、Zdは両端でのインピーダンス行列を表している。以上

より、多導体線路の境界で満たす条件式を行列でまとめると、以下のように表される。

AdU
m+1
d − δdZdI

m+1
d = AdU

m
d + δdZd

(
Im
d − 2I

m+ 1
2

α

)
. (2.108)

ここで、Adは多導体線路を枝、境界を節点とみなしたときの接続行列を表している。各伝送線

路は γαは境界の場所によって符号を変えるための対角行列であり、i行 i列目の要素は以下の

ようになる。

δdii =

 1 (k = 0)

−1 (k = N)
. (2.109)

多導体線路の境界で満たされる電信方程式を導出した。
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2.6.3 境界における集中定数回路と伝送線路の節点電位方程式（IPE）

伝送線路の両端と集中定数回路の接続関係はKCLを用いて表すことができる。

AdId +AlIl +AJJl = 0 . (2.110)

以上より、境界で解くべき全ての方程式を準備することができ、それらは集中定数回路が満た

す BCE(2.92)と伝搬方程式が境界で満たす関係式 (2.108)、集中定数回路と伝送線路の接続関

係を表すKCL(2.110)である。これらの方程式を連立することにより境界における IPEを導出

することができ、新しい時間の未知数を数値計算することができる。そのために、集中定数回

路と伝送線路内の変数を以下の行列でまとめる。

U =

Ud

Il

 , I =

Id

Il

 , I ′ =

Id − 2Iα

Il

 , (2.111)

A =
(
Al Ad

)
, (2.112)

Z =

Zl 0

0 Zd

 , (2.113)

E =
(
El 0

)T
, (2.114)

ϵ =

ϵl 0

0 0

 , δ =

δl 0

0 δd

 . (2.115)

以上で導いた境界条件は以下の IPEでまとめることができる。 AT −Z

0 A

 Um+1

Im+1

 = −

 ϵAT −δZ

0 0

 Um

I ′m+ 1
2

+

 Em+1 +Em

−AlJ
m+1
l

 .

(2.116)

2.7 結言

本章では、1次元多導体線路内の電信方程式とその数値計算手法を導出した。まず、マクス

ウェル方程式からゲージ変換を用いて電位とベクトルポテンシャルの積分方程式を導出した。さ

らに、導体内で満たす連続の式とオームの法則を用い、多導体線路内の電位と電流に関する電

信方程式を導出した。さらに、本研究で用いる 2本線回路と 3本線回路内に流れるNMと CM

について定義し、導出した多導体線路内の電信方程式から、NM・CMに関する電信方程式を導

出した。数値計算では、境界で集中回路と多導体線路を接続するための境界条件の数値計算手

法を導出した。
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第3章 1次元回路内におけるコモンモードノイ

ズ現象の数値計算と実験による過渡解析

3.1 緒言

本章では、2.4で導入した 2本線回路と 3本線回路内に発生する CMノイズを定量化するた

めに、2.5で説明した数値計算手法を用いて過渡解析を行う。それにより、回路の幾何学的構造

や電気的構造が CMノイズに与える影響を観測する。2本線回路におけるシミュレーションで

は、幾何学的構造の対称性を考慮するために、同じ形状を有する平行 2本線路を用い、非対称

性を考慮するために、異なる形状を有する同軸線路を用いた。また、伝送線路内のインピーダ

ンスの場所依存性を考慮したシミュレーションも行なった。従来のインピーダンスの場所依存

性を考慮した計算は、伝送線路内のNMの反射のみを考慮した計算が行われいてた [30,31]。し

かし、伝送線路内ではNM以外にCMも伝搬しており、インピーダンスの場所依存性がNMと

CMに及ぼす影響を明らかにする必要がある。ここで、電気的構造は 2本線回路の場合、接続

関係は常に一意に決まるため、幾何学的構造が CMノイズに及ぼす影響を調べた。次に、3本

線回路におけるシミュレーションでは、幾何学的構造を考慮するために基準導体の位置を変化

させた。また、電気的構造を考慮するために、基準導体と信号線の接続関係を変化させた。過

渡解析から、電気的・幾何学的構造が CMノイズに及ぼす影響を調べた。また、3本線回路を

用いて、実験による検証も行なった。

3.2 2本線回路内におけるノーマルモードとコモンモードの過渡解析

本節では、2本線回路内に発生するNM・CM電圧と電流の過渡解析を行う。今回は回路構造

の対称性を考慮するために、図 3.1で示すように、同じ形状の伝送線路で構成された対称構造を

有する平行 2本線路と、異なる形状の伝送線路で構成された非対称構造を有する同軸線路を用

いて数値計算を行う。また、伝送線路のインピーダンスの場所依存性の有無による比較も行う。
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0.8 mm

3.7 mm

2.7 mm

断面図

断面図
1 cm

0.3 mm

(a) 平行2本線路（幾何学的対称構造）

(b) 同軸線路（幾何学的非対称構造）

図 3.1: 数値計算で用いる 2本線回路。(a)は平行 2本線回路であり、同じ形状の伝送線路で構

成されている。半径 0.3 mm、長さ 0.2 mの円柱形状の伝送線路を 1cm離れて配置した。(b)は

同軸線路であり、異なる伝送線路で構成されている。一方は半径 0.8 mm、長さ 0.2 mの円柱形

状の伝送線路であり、他方は外径 3.7 mm、内径 2.7 mm、長さ 0.2 mの円筒形状の伝送線路で

ある。それぞれの回路の入力側には内部抵抗 50 Ωの電圧源 VS(t)が接続されており、終端は抵

抗RLを接続し、インピーダンスマッチングをとっている。

3.2.1 平行 2本線路と同軸線路のインピーダンスの場所依存によって発生するコモン

モードノイズ

図 3.1に示す 1次元 2導体回路のインピーダンスの x方向の依存性を数値計算により導出す

る。数値計算で用いる方程式は 2章で導出した 1次元多導体線路の電位係数とインダクタンス

の式 (2.42)(2.43)を用いる。ここで、インピーダンスとインダクタンス、電位係数の関係は以

下のように表される。

Zij(x) = vLij(x) =
1

v
Pij(x) . (3.1)

ここで、vは信号の伝搬速度であり、導体周囲の媒質の誘電率を ε、透磁率を µとすると、v =

1/
√
εµで表される。また、導体内のインピーダンスの数値計算の方法は付録 Bに記す。
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図 3.2: 平行 2本線路と同軸線路のインピーダンスの場所依存。Z11, Z12, Z21, Z22は各伝送線路

の自己インピーダンスと相互インピーダンスを表している。Znn, Znc, Zcn, Zccは NM・CMイ

ンピーダンスを表している。

(1) 平行 2本線路と同軸線路のインピーダンスの場所依存性

図 3.2は平行 2本線路と同軸線路のインピーダンスの数値計算結果を表している。(a),(c)は平

行 2本線路と同軸線路における各伝送線路間のインピーダンスZ11, Z12, Z21, Z22を表しており、

(b),(d)は伝送線路のインピーダンスを用いて導出したNM・CMインピーダンスZnn, Znc, Zcn, Zcc

を表している。(a),(c)より、各伝送線路のインピーダンスは場所に大きく依存した値を持ち、

中心で最も大きくなることがわかる。さらに、終端のインピーダンスは中央部の半分程度になっ

ていることがわかる。また、平行 2本線路は同じ形状の伝送線路で構成されているため対称構造

である。よって、Z11(x) = Z22(x), Z12(x) = Z21(x)となる。一方、同軸線路は異なる形状を有

しているため、非対称構造である。よって、Z11 ̸= Z22, Z12 ̸= Z21となる。次に、図 3.2(b),(d)

に示されたNM・CMインピーダンスを見ると、Zccは図 3.2(a),(c)の伝送線路のインピーダン

スと同様の場所依存性を示しているのに対して、Znnは伝送線路の内部では一様で、終端付近で

急峻に変化していることがわかる。これは、Zccは全ての係数の和で表されるのに対して、Znn
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(a) 平行2本線路, ノーマルモード電圧 (b) 平行2本線路, コモンモード電圧

(c) 平行2本線路, ノーマルモード電流 (d) 平行2本線路, コモンモード電流

図 3.3: 幾何学的対称構造を有する平行 2本線路の中央 (x = 0.1 m)における NM・CM電圧

Vn(0.1, t), Vc(0.1, t)と電流 In(0.1, t), Ic(0.1, t)の時間変化

は、それぞれの係数の差で表されるため、伝送線路内の場所依存が打ち消されたことが考えら

れる。また、NMとCMカップリングを表すインピーダンス Znc, Zcnは対称構造であるため常

に 0であることがわかる。一方、同軸線路は非対称構造であるため、Znc, Zcnは有限の値を持

つ。平行 2本線路と同軸線路の Znc, Zcnの違いが及ぼす影響を回路に信号を入力した際の振る

舞いにより観測する。

(2) インピーダンスの場所依存性を考慮したNM・CM電圧と電流の過渡現象

インピーダンスの場所依存性がCMノイズに与える影響を、数値計算によるNMとCMの過

渡解析により明らかにする。インピーダンスの平均値Zと、場所依存性があるインピーダンス

Z(x)を用いて数値計算を行った。数値計算では、図 3.1に示すように、平行 2本線路と同軸線

路の両端に集中定数回路を接続してシミュレーションを行った。入力端（x = 0 m）では、電
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(a) 同軸線路, ノーマルモード電圧 (b) 同軸線路, コモンモード電圧

(c) 同軸線路, ノーマルモード電流 (d) 同軸線路, コモンモード電流

図 3.4: 幾何学的非対称構造を有する同軸線路の中央 (x = 0.1 m) における NM・CM電圧

Vn(0.1, t), Vc(0.1, t)と電流 In(0.1, t), Ic(0.1, t)の時間変化

圧源が接続され、両端（x = 0, 0.2 m）では Znn(x)と同じ値の抵抗値を用いてインピーダンス

マッチングを取っている。場所依存性がある場合は数値計算で反射波が最も小さくなった中央

における値を用いた（RL = Znn(0.1)）。入力には、電圧 1.0 V、立ち上がり（下がり）時間 0.1

ns、平坦時間 0.1 nsのパルス波を用いた。

図 3.3は平行 2本線路の中央部（x = 0.1m）におけるNM・CM電圧と電流 Vn, Vc, In, Icの数

値計算結果である。(a),(c)は Vn, Inであり、黒点線で示す場所依存性を考慮しない場合は、イ

ンピーダンスマッチングをとっているため、終端では反射しないので、入力波形しか観測され

ない。しかし、赤実線で示した Z(x)の場合は反射ノイズが発生していることがわかる。平行

2本線路の場合は Znc = Zcn = 0であるため、NM・CMは伝送線路内でカップリングしていな

いため、図 3.3(b),(d)に示すように、平行 2本線路の場合は常に Vc, Icが 0である。よって、生

じた反射波はZnn(x)が原因で発生したことがわかる。さらに、反射波の波形を見ると、入力波
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の立ち上がりと立ち下がり部分が反射されていることがわかる。また、その形状は時間変化を

微分した波形になっている。

図 3.4は同軸線路の中央部（x = 0.1 m）における Vn, Vc, In, Icの数値計算結果である。(a),(c)

は Vn, Inであり、平行 2本線路と同様に Vn, Inが Z(x)の場合に反射されている。さらに、図

3.4(b),(d)より、Vcと Icともに発生している。よって、同軸線路ではNMが変換し、CMが発

生する。平行 2本線路との違いから、CMが発生した原因は回路の幾何学的非対称構造である。

また、Vcと Icの波形を比較すると、Vcは入力波形と同じであるが、Icは入力波形の立ち上がり

（下がり）に発生している。これは、Vc と Ic の発生メカニズムが異なることを意味しており、

Vcは伝送線路の Znc, Zcnが有限であるため境界で発生し、Icは伝送線路内の Znc(x), Zcn(x)が

原因で発生したと考えることができる。以上より、2本線回路におけるNM・CMカップリング

によって発生する CMに関して以下の 4つにまとめることができる。

1. 幾何学的対称構造かつ、Z の場合、ノイズは発生しない。

2. 幾何学的対称構造かつ、Z(x)の場合、Vnと Inに反射ノイズが発生する。

3. 幾何学的非対称構造かつ、Z の場合、Znc, Zcnにより、Vcが発生する。

4. 幾何学的非対称構造かつ、Z(x)の場合、Znc(x), Zcn(x)により、Icが発生する。

3.3 3本線回路内におけるノーマルモードとコモンモードの過渡現象の

定量化

3本線回路内の NMと CMの過渡解析により、CMノイズ現象を解明するために、電気的・

幾何学的構造の対称性と非対称性を考慮したシミュレーションを行った。そこで、図 3.5(a)の

2本線回路と (b)の 3本線回路を用いて、CMノイズを定量化した。図 3.6は 2本線と 3本線

回路の終端における Vnと Vcの時間変化を数値計算したものである。図 3.6(a)の 2本線回路の

結果を見るとインピーダンスマッチングをとっているため、Vnに反射ノイズは発生しない。さ

らに、幾何学的対称構造であるためNMと CMはカップリングせず、Vc = 0である。しかし、

図 3.6(b)を見ると、3本線回路では、回路のインピーダンスマッチングをとっているにも関わ

らず、Vn にリンギングノイズが発生していることがわかる。一方、Vc にもリンギングが発生

し、Vnのリンギング波形に似ていることから、Vcが Vnに変換されて発生したことが考えられ

る。この周期は 17.2 nsであり、伝搬距離に直すと 4.0 m と回路の往復距離に一致した。つま

り、CMが一往復するたびにNMに変換され、CMノイズが発生していることがわかる。
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図 3.5: シミュレーションによる CMノイズ解析で用いる (a)2本線回路と (b)3本線回路。2本

線回路と 3本線回路は、長さ L = 2.0、半径 0.23 mmの円柱状導体で構成されている。回路の

電源側には、内部抵抗RS = 50 Ωの電圧源 e(t)が接続されている。入力には 5MHzの矩形波を

用いた。また、信号線 1と 2の距離は d12 = 2.54 mmであり、信号線 1と 3の距離は d13 = 5.08

mmとした。終端には、インピーダンスマッチングが取れるように、RL = Znnとした。一方、

CMインピーダンスのマッチングは両端では取っていない。また、比誘電率は 1.6とし、比透

磁率は 1.0とした。

回路内に発生する電磁ノイズ現象の過渡解析で最も一般的なものはリンギングノイズであ

る。リンギングノイズの原因は、終端のインピーダンスのミスマッチによる反射によって生じ

る [37–43]。このリンギング現象は、一般的には 2導体間の特性インピーダンスと伝搬時間を用

いて記述されている [17,44–46]。しかし、実際の回路の周囲はグランドなどの導体があり、3本

線回路で行なった過渡解析のような現象が起こっている。以上より、回路終端のインピーダン

スマッチングとっている場合でも、CMノイズによってNMにリンギングノイズが発生するこ

とが示された。

3.4 3本線回路内のコモンモードノイズ発生メカニズム解明のためのリ

ンギング解析

3.3の数値計算から、周囲環境を考慮した 3本線回路内にCMが発生するとNMに変換され、

リンギングノイズが発生することを明らかにした。ここで、電気的・幾何学的構造がコモンモー

42



Time [ns]

V
o

lt
a
g

e
 [
V

]

Time [ns]

V
o

lt
a
g

e
 [
V

]

(a) 2本線回路 (b) 3本線回路

図 3.6: (a) 2本線回路と (b) 3本線回路の終端におけるNM電圧 VnとCM電圧 Vcの時間変化。

Vnは 2本線回路と 3本線回路ともに Vn = U1 −U2となる。一方、CM電圧は、2本線回路の場

合、Vc =
1
2 (U1 + U2)で表せ、3本線回路の場合、Vc =

1
2 (U1 + U2)− U3とした。

ドノイズに及ぼす影響を実験とシミュレーションを用いて定量化する。図 3.7は 3本線回路の

電気的・幾何学的構造の対称性と非対称性を組み合わせた回路系を表している。ここでそれぞ

れの電気的・幾何学的構造のパラメーターは図のキャプションの通りである。図 3.7に示す回

路系を用いて、電気的・幾何学的構造がCMノイズに及ぼす影響をシミュレーションと実験に

より明らかにする。

3.4.1 集中定数回路との接続関係と回路構造を同時に考慮したコモンモードノイズの

シミュレーション

図 3.7に示す 3本線回路を用いた数値計算により、CMノイズ発生の過渡現象を定量化する。

図 3.8は電気的対称・幾何学的対称（ESGS）構造と電気的非対称・幾何学的対称（EAGS）構

造、電気的対称・幾何学的非対称（ESGA）構造における NM・CM電圧 Vn, Vcの時間変化を

表している。用いた回路構造のパラメーターは図 3.7に示す回路構造と同じ値を用いた。ここ

で、NMと CMの伝搬を観測しやすくするために、入力で用いるパルス電圧の幅を短くした。

用いたパルス電圧 e(t)は振幅 5.0 V、立ち上がり（下がり）時間 0.4 ns、パルス幅 1.6 nsであ

り t = 0の時に印加した。図 3.8の t = 3.54 sのとき、全ての構造において入力した Vnが負荷

側に向かって伝搬している。ここで、ESGS構造の場合、Vcは常に 0である。一方、EAGSと

ESGA構造の場合、Vcは Vnが印加されると同時に発生し、NMと同じ速度で伝搬している。次
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図 3.7: 電気的・幾何学的構造の対称性と非対称性を組み合わせた 3本線回路。電気的対称性と

は、3本線回路の電源側におけるグランド線 3− 3′に対する信号往復路 1− 1′, 2− 2′に接続され

た集中定数回路の対称性であり、R23 = R13の場合である。また、幾何学的対称性は 3本線回路

のグランド線 3−3′に対する信号往復路 1−1′, 2−2′の位置に関する対称性であり、d13 = d12/2

である。伝送線路 1 − 1′と 2 − 2′、3 − 3′のそれぞれの長さは l = 2.0 m、半径 a = 0.23 mm

である。2本線で表された回路の線間距離 d12 = 2.54 mmである。よって幾何学的対称の場合、

d13 = 1.27 mmであり、幾何学的非対称の場合 d13 = 5.08 mmとなる。また、電源側には内部

抵抗 RL = 50 Ωの電圧源 e(t)が接続されており、その他の抵抗は R13 = R23 = 10 Ωである。

ここで、シミュレーションでは、比誘電率を εr = 1.6、比透磁率を µr = 1.0とした。

に、Vnが負荷側に到達すると、全ての構造において Vnは反射していないことがわかる。これ

は、負荷抵抗RLと 3本線回路のZnnが一致しているからである。一方コモンモードは、EAGS

の場合は全反射され、Vcは Vnに変換されていない。ESGAの場合は、より大きな Vcが反射し
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図 3.8: 3本線回路内に伝搬するNMと CM電圧の時間変化を数値計算した結果を示す。(a)は

図 3.7に示す 3本線回路のESGS構造、(b)はEAGS構造、(c)はESGA構造の結果である。こ

こで、t = 0の時に印加したパルス電圧 e(t)は振幅 5.0 V、立ち上がり（下がり）時間 0.4 ns、

パルス幅 1.6 nsの波形を有する。それぞれの結果は t = 3.54, 9.54, 12.24, 17.81nsにおけるNM

電圧（赤線）とCM電圧（青線）を示している。また、矢印はパルス波が伝搬する方向を表し

ている。

ている。これは、Vnが終端に到達した際に Vcに変換されているからである。その後、EAGS

構造とESGA構造の Vcは電源側に向かって伝搬し、到達すると Vnに変換されCMノイズを発

生する。よって、CMノイズはCMが電源側でNMに変換されて生じる。以上のように、イン

ピーダンスマッチングを取っていても非対称構造によるCMノイズによってリンギング現象が

発生することを明らかにした。

次に、電気的・幾何学的構造とリンギング現象の関係を調べる。図 3.8(b),(c)の過渡現象が示

すように、回路構造によってCM電圧のリンギング現象が異なる。そこで、数値計算により電気

的・幾何学的構造とNM・CM電圧のリンギング現象の関係を明らかにする。図 3.9はEAGS構

造、EAGA構造、ESGA構造の 3本線回路の中央（x = ℓ/2）における (a)NM電圧 Vnと (b)CM

電圧 Vcの時間変化である。0thと 16thは、印加したパルス電圧が 3本線回路の中央を通過す

る回数を表し、初めの入力波を 0thとしている。つまり、偶数番目は電源側から負荷側に伝搬

45



時間 [ns]

電
圧

 [
V

]

(a) ノーマルモード電圧

電
圧

 [
V

]

時間 [ns]

(b) コモンモード電圧

EAGA

EAGS

ESGA

EAGA

EAGS

ESGA

図 3.9: 3本線回路の中心（x = ℓ/2）における EAGS構造（青線）と EAGA構造（赤線）、

ESGA構造（緑線）の (a)ノーマルモード電圧と (b)コモンモード電圧の時間変化。t = 0の時、

3本線回路にに振幅 5.0 V、立ち上がり（下がり）時間 0.4 ns、パルス幅 1.6 nsのパルス電圧

e(t)を印加した。縦点線とその数字はパルス電圧が 3本線回路の中心を通過した数を表す。こ

こで、入力パルスを 0番目とした。

する進行波であり、奇数番目は負荷側から電源側に伝搬する後退波を示す。また、それぞれの

電圧値は表 3.1に示す。

図 3.9(a),(b)より、Vn, Vcのリンギング現象は回路構造に依存していることがわかる。また、

Vn, Vcともに EAGS構造が最もリンギングの減衰が早く、ESGA構造が最も遅い。図 3.9(a)と

表 3.1の Vnの時間変化を見ると、全ての構造において、1stと 3rdの Vnが 0であることがわか

る。これは、Vnは負荷側ではインピーダンスマッチングを取っているので反射せず、Vcが Vn

に変換していないことを意味している。しかし、2ndと 4thの Vnを見ると再び発生しているこ

とがわかる。これは、Vcが電源側で Vnに変換されたことを意味している。
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表 3.1: ESGS構造とEAGA構造、ESGA構造、EAGA構造の 3本線回路に伝搬するNM・CM

におけるパルス電圧の値。それぞれの値は数値計算で得られた図 3.9の値を用いている。時間

tN はN番目にパルス波が 3本線回路の中心を通過する時の時刻を表し、電源側から負荷側まで

の伝搬時間を tD、立ち上がり時間を trとすると、tN =
(
1
2 +N

)
tD + trで表すことができる。

Number 0th 1st 2nd 3rd 4th 16th

Time [ns] t0 = 5.43 t1 = 13.89 t2 = 22.35 t3 = 30.81 t4 = 39.27 t5 = 140.8

ESGS [V]
NM 1.344 0.000 0.000 0.000 0.000 0.000

CM 0.000 0.000 0.000 0.000 0.000 0.000

EAGS [V]
NM 3.764 0.000 0.562 0.000 -0.381 -0.0366

CM 1.719 1.719 -1.163 -1.163 0.787 0.0757

ESGA [V]
NM 1.342 0.000 0.00359 0.000 -0.00340 -0.00248

CM 0.00475 -0.189 0.180 0.179 0.170 -0.124

EAGA [V]
NM 4.000 0.000 0.185 0.000 -0.158 -0.0632

CM 1.932 1.354 -1.136 -1.162 0.975 0.389

次に、Vcについて考察を行う。0thの CM電圧は電源側で電気的・幾何学的どちらかの非対

称性を有しているとNMに入力した電圧が変換されて発生している。またEAGS構造の 0thと

1st、2ndと 3rdの Vcの値が等しいことがわかる。これは、負荷側で Vcが全反射していること

を意味している。一方で、ESGAとEAGA構造の Vcは変化している。つまり、負荷側で Vnが

Vcに変換されている。以上より、GS構造の場合、Vnは Vcに変換されず、GA構造の場合、Vn

は Vcに変換されることがわかる。

次に、0thと 2ndの Vn の比をとることで、入力電圧によって発生する CMノイズの比率を

計算する。この時、EAGA構造の場合が 15%と最も大きく、その次に EAGS構造で 4.6%とな

り、ESGA構造は 0.27%であった。また、0thの Vnと 1stあるいは 2ndのCM電圧の絶対値の

最大値との比をとることで、入力電圧によって発生する Vcの比率を計算する。この時、EAGA

構造の場合が 48.3%と最も大きく、その次に EAGS構造で 45.7%となり、ESGA構造は 14.1%

であった。
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3.4.2 3本線回路内のコモンモードが原因で発生する熱の定量化

次に、CMノイズの熱の関係について考察する。3本線回路内に流れる電力W (x, t)は以下の

ように表すことができる。

W (x, t) =

3∑
i=1

Ui(x, t)Ii(x, t) (3.2)

2.4.3で定義したNMと CMの関係から、それぞれの伝送線路の電位と電流をNMと CMで表

すと以下のようになる。

U1(x, t) =
1

2
(Vn(x, t) + Vc(x, t) + Ua(x, t)) , (3.3)

U2(x, t) =
1

2
(−Vn(x, t) + Vc(x, t) + Ua(x, t)) , (3.4)

U3(x, t) =
1

2
(Vn(x, t)− Vc(x, t)) , (3.5)

I1(x, t) =
1

2
(2In(x, t) + Ic(x, t) + Ia(x, t)) , (3.6)

I2(x, t) =
1

2
(−2In(x, t) + Ic(x, t) + Ia(x, t)) , (3.7)

I3(x, t) =
1

2
(In(x, t)− Ic(x, t)) . (3.8)

ここで、Uaと Iaは 3本線回路における無限遠から見た CM電圧と電流を表しており、基準導

体から見たCMと区別するためにアンテナモード（AM）と呼び、AMの電圧と電流は、Ua =

1
2 (U1 + U2) +U3, Ia = I1 + I2 + I3で表される [26]。式 (3.2)に代入して、電力W (x, t)をNM

と CM、AMで表すと以下のようになる。

W (x, t) = Vn(x, t)In(x, t) + Vc(x, t)Ic(x, t) + Va(x, t)Ia(x, t) , (3.9)

= Wn(x, t) +Wc(x, t) +Wa(x, t) . (3.10)

ここで、WnとWc,WaはNM電力とCM電力、AM電力であり、Wn(x, t) = Vn(x, t)In(x, t), Wc(x, t) =

Vc(x, t)Ic(x, t), Wa(x, t) = Va(x, t)Ia(x, t)と表す。今回の議論では、インピーダンスの場所依

存を考慮していないため、3.2で得られた結論から常に Ia = 0となる。よって、Wa(x, t) = 0と

なり、3本線回路内に流れる電力はWnとWcとなる。

図3.10はEAGS構造を有する3本線回路の中央（x = L/2）におけるWn(L/2, t)とWc(L/2, t)

の時間変化を表している。結果より、Wn(L/2, t) は常に正の値で振動しているのに対して、

Wc(L/2, t)は正負の値で振動していることがわかる。この符号は電力が伝搬する向きを表し、

正の場合は負荷側に伝搬し、負の場合は電源側に伝搬していることを意味している。Wn(L/2, t)

は終端でマッチングを取っているため負荷側の抵抗で全て消費される。しかし、CMが電源側
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図 3.10: 電気的非対称・幾何学的対称（EAGS）構造を有する 3本線回路内に流れるNM電力

Wn(L/2, t)と CM電力Wc(L/2, t)の時間変化。終端では CM電流が 0となるため、回路の中

央（x = L/2）での電力の時間変化を示す。

でNMに変換するため、再びWn(L/2, t)が生じている。よって、図 3.10の拡大図は CMノイ

ズ電力の伝搬を表している。この電力を計算したところ、入力信号の電力Wnの約 4%がCMノ

イズとして消費されていることがわかった。また、電源側で反射したWcの絶対値は減衰して

おり、NMで発生したCMノイズ電力Wnよりも小さくなっている。これは、Wcが電源側の抵

抗でジュール熱として消費されたことを意味している。以上より、CMは以下の 2つの原因で

ジュール熱として消費される。

1. CMノイズ（CM電圧 がNM電圧へ変換された成分）電力が終端抵抗で消費

2. CM電力が入力側の抵抗で消費

シミュレーションより、発生した CMは余分な熱の原因となっていることが示された。

3.4.3 集中定数回路との接続関係と回路構造を同時に考慮したコモンモードノイズ

実験

3.4.1で行なった数値計算の実証実験を行う。用いる回路系は図 3.7と同じ電気的・幾何学的

構造のパラメーターを有する回路を用いた。
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(1) 実験器具・装置

1次元回路の実験で用いた装置は以下の通りである。

• ファンクションジェネレーター (任意波形発生器)

（メーカー：National Instruments、品名：NI PXIe-5451）

分解能：16ビット

サンプリングレート：最大 400 MS/s

• オシロスコープ（メーカー：National Instrument、品名：NI PXIe-5160）

帯域幅：500 MHz

サンプリングレート：最大 2.5 GS/s（測定時：1.0 GS/s）

• アクティブプローブ（メーカー：National Instrument、品名：NI5191）

帯域幅：800 MHz

入力インピーダンス：100 k || 0.2 pF

• フラットケーブル（メーカー：フジクラ、品番：FRX-CF-S ）

導体外径：0.38 mm

間隔：1.27 mm

• アクリル板

• チップ抵抗（部品名：RSKT-MCR10）

10Ω, 50Ω, 100Ω, 220Ω

ファンクションジェネレーターとオシロスコープは LabVIEWで制御しており、一般的に信

号の時間変化の早さがノイズの大きさに影響を与えるので、任意の立ち上がり時間を持った矩

形波を出せるように設計した。次に、アクティブプローブを用いることでプローブの影響をで

きるだけ小さくした。3本線回路を実現するフラットケーブルは線間が 1.27 mmと小さく、さ

らにアクリル板上で測定を行うことで外部からの影響が最小限になるように工夫した。伝送線

路の測定の際には終端における影響が実験結果に大きな影響を及ぼす。そこで、アクティブプ

ローブを用いることに加えてチップ抵抗を用いることで抵抗が持つ余分な寄生成分の影響を最

小限に留めた。
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(2) 実験手順・方法

実験では、図 3.7と同じパラメーターを用いた。今回の実験では、シミュレーションと同様、

電気的・幾何学的構造がノイズに及ぼす影響を実験によって確認する。まず、回路と環境を表す

ための 3本線は長さ 2 m、間隔 1.27 mmのフラットケーブルを用いた（図 3.11-図 3.13）。これ

は、回路内のノイズ現象を観測するためには信号が終端で反射によって生じるノイズを観測す

る必要があるので、それを観測するために十分に長い線を用いた。また、抵抗は入力側は 10 Ω、

負荷側は 220 Ωのチップ抵抗を接続した。チップ抵抗を用いることにより、素子が持つ物理的

な影響を小さくし、集中定数回路として扱えるようにする（図 3.14）。また、220 Ωは回路の

インピーダンスとほぼ同じ値を用いて、反射波が生じないようにマッチングを取っている。入

力側の抵抗はシミュレーションより、大きくするほどコモンモードが小さくなることがわかっ

ている。一方、測定ではCMノイズ現象を観測する必要があるので、できる限り小さい抵抗値

を用いる必要がある。また、入力波形には振幅 5 V、周波数 1 MHzの矩形波を用いた。ここ

で、立ち上がり（下がり）時間が早いと高周波成分を含みプローブの影響が顕著に現れる。そ

こで、プローブの影響が小さく、かつカップリングノイズが見えるように立ち上がり時間を変

化させて測定を行ったところ、本実験系では 0.04 µsが最も最適であることがわかり、この時

間を用いて測定を行った。実験では回路の終端の電圧 V12, V32の時間変化を測定した。V12は

U1 − U2であり、V32は U3 − U2である。コモンモード電圧 Vcは、測定した終端電圧を用いて

Vc =
1
2V12 − V32とする。
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プローブ

ファンクション 

ジェネレーター

アクリル板 フラットケーブル

入力部

図 3.11: 入力側での実験系。フラットケーブルとファンクションジェネレーターがプローブを

介して接続されている。フラットケーブルはアクリル板の上に配置している。

アクティブプローブ

フラットケーブル

出力部

アクリル板

図 3.12: 測定側での実験系。アクティブプローブを用いて出力部における電圧を測定する。
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フラットケーブル

チップ抵抗

図 3.13: チップ抵抗接続部。フラットケーブルの出力側はチップ抵抗が半田付けされている。

台 

(高さ約30 cm)

アクリル板

ファンクション 

ジェネレーター

図 3.14: 入力側を横から見た時の実験系。フラットケーブルの周囲の導体の影響を小さくする

ために台から約 30 cm離したアクリル板の上にフラットケーブルを配置した。
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(3) シミュレーションと実験結果の比較と考察

電
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(a) シミュレーション, ESGS

図 3.15: 図 3.7に示す 3本線回路の電気的・幾何学的構造の対称性・非対称性を考慮した時の終

端におけるノーマルモード電圧 Vn(ℓ, t)とコモンモード電圧 Vc(ℓ, t)の時間変化。(a),(c),(e),(g)

がシミュレーション結果で、(b),(d),(f),(h)が実験結果。回路の電気的・幾何学的構造のパラメー

ターは図 3.7と同じ値を用いた。

図 3.15は図 3.7の回路構造を用いて行ったシミュレーションと実験結果の比較を表している。

シミュレーションと実験結果の波形を比較すると、どの接続関係と回路構造の条件でも概ねよ

く似た結果を得られたことがわかる。(a),(b)はESGS構造を表しておりCM電圧は常に 0 Vで
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あり、NM電圧は入力波形と同じである。よって、ESGS構造はCMノイズを発生しないことが

わかる。また、矩形波の電圧はシミュレーションでは 1.34Vであり、実験の 1.29Vと比較する

と、およそ 4%、数値計算のNMインピーダンスZnnに誤差がある。図 3.15(c),(d)はEAGS構

造の場合の結果を表している。この場合、Vn, Vcは振動している。また、図 3.15(e),(f)はESGA

構造の場合の結果を表している。EAGS構造と比較すると、Vcの振幅は減少したが、振動の減

衰時間が遅くなったことがわかる。最後に、図 3.15(g),(h)が EAGA構造の場合の結果を表し

ている。この構造は電気的・幾何学的ともに非対称であるため、当然 CMノイズが発生する。

以上の結果から、CMノイズが発生しない回路構造は電気的・幾何学的対称構造 ESGSが唯一

の条件であることを数値計算と実験により証明することができた。

3.5 結言

本章では、1次元回路内に発生する CMノイズ現象の定量化を行った。2章で導出した多導

体線路における電信方程式と数値計算手法を用いて、回路の各伝送線路に流れる電流と電位を

計算し、NM・CM電圧と電流を直接定量化した。

2本線回路では幾何学的対称性に着目したシミュレーションを行った。幾何学的対称構造に

は同じ形状の伝送線路で構成された平行 2本線回路を用い、幾何学的非対称構造には、異なる

形状の伝送線路で構成された同軸線路を用いた。また、伝送線路内のインピーダンスの場所依

存性を考慮したシミュレーションを行った結果、以下の CMノイズの起源を解明した。

1. 幾何学的非対称構造ではCM電圧が発生する。しかし、NM電圧への変換は起こらない。

2. 幾何学的非対称構造かつインピーダンスの場所依存性があると伝送線路内でNM・CMが

カップリングし、CMノイズが発生する

さらに、3本線回路を用いて回路と周囲環境であるグランドとの間に流れる CMによって発

生するCMノイズ現象の定量化を行った。NM電圧とCM電圧の過渡解析の結果、インピーダ

ンスマッチングをとっているにも関わらず、NMに CMノイズによるリンギングが発生するこ

とがわかった。さらに、電気的構造（境界における伝送線路と集中定数回路の接続関係）と幾

何学的構造（伝送線路の形状と位置関係）を同時に考慮したシミュレーションを行った結果以

下の CMノイズ現象について解明した。

1. 電気的・幾何学的構造のどちらかに非対称構造があると CMノイズが発生する
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2. 電気的・幾何学的構造の関係によってリンギング現象の振幅や減衰の大きさが変わる

3. 電気的・幾何学的対称構造が CMノイズを削減する最適な構造である

最後に CMが原因で発生する電力について考察を行った。その結果、CMは全て抵抗によっ

て余分な電力として消費されていることを証明した。
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第4章 1次元回路内におけるコモンモードノイ

ズ現象の解析的な分析

4.1 緒言

前章では、1次元回路の境界におけるNMとCMのカップリングによって発生するCMノイ

ズ現象を数値計算で示した。本章では、伝送線路のインピーダンスの場所依存性がない場合に

は 2つのモードカップリングは線路内では起こらないことを解析的に示す。その上でCMノイ

ズが伝送線路のインピーダンスと境界につなぐ抵抗の間の関係を方程式で表す。得られた方程

式を用いて、どのような条件であれば、CMノイズを削減することができるかを明らかにする。

2.4で導出したNM・CM電信方程式を用いて、NMとCMが伝送線路と境界で満たす方程式を

以下の手順で導出する。

1. 伝送線路内のNM・CM波動方程式の導出

2. 境界の集中定数回路におけるNM・CM方程式の導出

3. 伝送線路内と終端の集中定数回路の方程式を用いて境界におけるNM・CMカップリング

係数を導出

ここで、伝送線路内で生じる現象と境界で生じる現象を分けて考えるために、境界で生じるカッ

プリング現象を定式化する際はインピーダンスの平均値を用いて場所依存性を無視した。

4.2 伝送線路内におけるノーマルモードとコモンモードのカップリング

2本線回路と 3本線回路における NM・CM電信方程式は 3章で導出した。2本線回路は式

(2.48)～(2.51)で表され、3本線回路は式 (2.60)～(2.63)で表される。これらの電信方程式は全

く同じ形式で表され、NM・CMインピーダンスの式が異なる。
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4.2.1 伝送線路のインピーダンスが場所依存しない場合の波動方程式

回路のNM・CMインピーダンスが場所に依存しない場合の電信方程式を導出する。ここで、

電信方程式のインピーダンスは伝送線路の長さ方向にインピーダンスの平均をとることで場所

依存性を無視する。さらに、NM・CMの電圧と電流に関する連立方程式を行列で表すために、

それぞれのモードの電位と電流を以下のベクトルでまとめる。

V (x, t) =

Vn(x, t)

Vc(x, t)

 , I(x, t) =

In(x, t)

Ic(x, t)

 , (4.1)

P =

Pnn Pnc

Pcn Pcc

 , L =

Lnn Lnc

Lcn Lcc

 . (4.2)

よって、NM・CM方程式は以下の行列で表すことができる。

∂V (x, t)

∂t
= −P

∂I(x, t)

∂x
, (4.3)

∂V (x, t)

∂x
= −L

∂I(x, t)

∂t
. (4.4)

式 (4.3)の両辺に左から P−1をかけ、両辺を tで微分する。

P−1∂
2V (x, t)

∂t2
= −∂2I(x, t)

∂t∂x
. (4.5)

さらに、式 (4.4)の両辺に左からL−1をかけ、両辺を xで微分する。

L−1∂
2V (x, t)

∂x2
= −∂2I(x, t)

∂x∂t
. (4.6)

よって、I(x, t)を消去すると V に関する波動方程式を導出することができる。

LP−1∂
2V (x, t)

∂t2
=

∂2V (x, t)

∂x2
(4.7)

ここで、式 (2.42),(2.43)より、伝送線路間の電位係数 Pij とインダクタンス Lij は同じ積分形

を有しているため、伝送線路内の伝搬速度を v = 1/
√
εµとおくと、NMとCMに関する電位係

数行列とインダクタンス行列は式 (3.1)より、以下のように表すことができる。

Z =
1

v
P = vL . (4.8)

ここで、Z はNMと CMに関するインピーダンス行列を表している。

Z =

Znn Znc

Zcn Zcc

 . (4.9)
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よって、LP−1 = 1
v2
1となる。ここで、1は単位行列を表す。以上より、NM・CM電圧ベクト

ル V に関する波動方程式は以下のように表すことができる。

1

v2
∂2V (x, t)

∂t2
=

∂2V (x, t)

∂x2
. (4.10)

同様に式 (4.3)と (4.4)を用いてNM・CM電流 I について解くと波動方程式を導出すること

ができる。

1

v2
∂2I(x, t)

∂t2
=

∂2I(x, t)

∂x2
. (4.11)

式 (4.10)と (4.11)より、各モードの電圧と電流の波動方程式を導出することができた。この式

から各モードの電圧と電流は回路内をカップリングせずに速度 vでして伝搬していることがわ

かる。

4.2.2 伝送線路のインピーダンスの場所依存を考慮した波動方程式

次に、インピーダンスの場所依存を考慮した場合のNM・CMの波動方程式を導出する。イン

ピーダンスの場所依存を考慮した電位係数行列 P (x)とインダクタンス行列L(x)を導入する。

P (x) =

Pnn(x) Pnc(x)

Pcn(x) Pcc(x)

 , L(x) =

Lnn(x) Lnc(x)

Lcn(x) Lcc(x)

 . (4.12)

よって、インピーダンスの場所依存を考慮した NM・CMの電信方程式は以下の行列で表すこ

とができる。

∂V (x, t)

∂t
= −P (x)

∂I(x, t)

∂x
, (4.13)

∂V (x, t)

∂x
= −L(x)

∂I(x, t)

∂t
. (4.14)

4.2.1と同様にNM・CM波動方程式を導出する。まず、式 (4.13)の両辺に左からP (x)をかけ、

両辺を tで微分する。

P (x)−1 ∂2

∂t2
V (x, t) = − ∂2

∂t∂x
I(x, t) . (4.15)

さらに、式 (4.14)の両辺に左からL−1(x)をかけ、両辺を xで微分する。

∂

∂x

[
L−1(x)

∂

∂x
V (x, t)

]
= − ∂2

∂x∂t
I(x, t) ,

∂

∂x
L(x)−1 ∂

∂x
V (x) +L−1(x)

∂2

∂x2
V (x, t) = − ∂2

∂x∂t
I(x, t) . (4.16)
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式 (4.15),(4.16)から I を消去して、V に関する波動方程式を導出する。

1

v2
∂2

∂t2
V (x, t) =

∂2

∂x2
V (x, t)−L(x)

∂

∂x
L(x)−1 ∂

∂x
V (x, t) . (4.17)

同様に式 (4.13)と (4.14)を用いて I について解くと波動方程式を導出することができる。

1

v2
∂2

∂t2
I(x, t) =

∂2

∂x2
I(x, t) + P−1(x, t)

∂

∂x
P (x)

∂

∂x
I(x, t) . (4.18)

以上より、式 (4.17),(4.18)がインピーダンスの場所依存性を考慮した場合の NM・CM波動方

程式となる。場所依存を考慮しない式 (4.10),(4.11)と比べると、それぞれの式の右辺の第 2項

目が新たに追加されている。これは、NMとCMが伝送線路内を伝搬する際にカップリングし

ていることを表している。また、カップリング係数を以下のように定義する。

Cv(x) = L(x)
∂

∂x
L(x)−1 , Cv(x) =

Cvnn(x) Cvnc(x)

Cvcn(x) Cvcc(x)

 , (4.19)

Ci(x) = P−1(x)
∂

∂x
P (x) , Ci(x) =

Cinn(x) Cinc(x)

Cicn(x) Cicc(x)

 . (4.20)

カップリング係数の式には空間の偏微分が含まれていることがわかる。よって、カップリング係

数は場所依存している箇所で有限となる。さらに、カップリング係数が掛かるV (x, t), I(x, t)に

も空間の偏微分が含まれているため、V (x, t), I(x, t)が時間変化する場合にNMと CMがカッ

プリングすることがわかる。以上より、伝送線路内部では、NMと CMはZ(x)が変化してい

る場所、かつ V (x, t), I(x, t)が時間変化する時にカップリングすることが解析的に示された。

次に、カップリング係数を定量化する。用いる回路の幾何学的構造は 3.2の図 3.1で用いた平

行 2本線路と同軸線路を用いる。それぞれの回路形状のパラメーターは同じものを用いた。図

4.1は 2本線路と同軸線路の伝送線路内の負荷側付近のカップリング係数Cv,Ciの場所依存性

を表している。電源側付近も符号が変わるが、同様の結果が得られる。この結果より、伝送線

路のNM・CMインピーダンスは図 3.2で求めたように、終端付近で大きく変化しているため、

カップリング係数も終端付近で有限な値となる。

図 4.1(a),(b)は、平行 2本線路のカップリング係数を示している。この回路は対称な構造であ

るため Znc(x) = Zcn(x) = 0となり、常にCvnc(x) = Cvcn(x) = Cinc(x) = Cicn(x) = 0となる。

よって、平行 2本線路は伝送線路内部でもNMとCMはカップリングしない。しかし、Cvnn(x)

とCinn(x)が有限であり、これは Vn, Inは負荷側付近で反射することを意味している。実際、図

3.3の数値計算で得られた結果を見ると、Vn, Inは時間変化する立ち上がりと立ち下がりで反射
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(b) 平行2本線路, 

(d) 同軸線路, 

(a) 平行2本線路, 

(c) 同軸線路, 

図 4.1: 図 3.1に示す 2導体回路の負荷側付近（0.190 ≤ x ≤ 0.200）におけるカップリング係数

Cv(x),Ci(x)の場所依存性。(a),(b)は平行 2本線路、(c),(d)は同軸線路のCv(x),Ci(x)を表し

ている。それぞれの回路の形状は図 3.1と同じ値を用いた。

している。また、反射波は信号の時間変化を微分した波形をしており、式 (4.17),(4.18)で表さ

れたカップリングと同じ現象を数値計算で得られていることがわかる。

次に、図 4.1(c),(d)に示す同軸線路のカップリング係数について考察する。Vn(x, t), In(x, t)は

2本線回路と同様に負荷側付近で反射することがわかる。一方、平行 2本線路と異なりZnc(x) ̸=

0, Zcn(x) ̸= 0であるため、カップリング係数Cv(x),Ci(x)の非対角要素は有限な値となる。さ

らに、Cvnc(x) ̸= Cinc(x), Cvcn(x) ̸= Cicn(x) であることがわかる。これは、V と I が異なる

カップリングの性質を持っていることを意味している。V に関しては、Vnから Vcへと変化す

る割合が大きく、I は、Icから Inへと変化する割合が大きい。これを踏まえて再度、図 3.4に

示す数値計算結果を見ると、Vc の反射波の波形は、Vn の立ち上がりと立ち下がりが変換され

たものである。さらに、In に発生した反射波以外の波形は、Ic が変換されたものであり、式

(4.17),(4.18)で表されたカップリングと同じ現象を数値計算で得られていることがわかる。
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4.3 3本線回路の終端におけるノーマルモードとコモンモードのカップ

リング

本節では、伝送線路の終端で生じる NM・CMのカップリング現象を定式化し、CMノイズ

現象の起源を理論的に解明する。ここで、伝送線路内部でのカップリング現象と切り分けるた

めに伝送線路内のインピーダンスは平均値を用いて場所依存性を無視した。また数値計算結果

から、2本線回路の両端では NMと CMはカップリングしないので、3本線回路の境界におけ

るNMと CMのカップリング現象を定式化する。

4.3.1 3本線回路の両端で発生するノーマルモードとコモンモードのカップリング係

数の導出

図 4.2: 集中定数回路と 3本線回路の電源側での接続関係を表す。全ての接続関係を考慮するた

め、3本線回路の境界の全てのノードが電圧源と抵抗で接続されている。伝送線路の未接続を

考慮する場合は、電圧源の電圧値を 0とし、抵抗を∞とする。

3本線回路内において、NMとCMは式 (4.10),(4.11)から伝搬速度 vで伝搬する。また、3本

線回路の両端には集中定数回路が接続されている。図 4.2は電源側の集中定数回路と 3本線回

路を表している。任意の接続条件を考慮するために、3本線回路の全てのノードが電圧源と抵

抗で接続された条件で定式化する。両端の集中定数回路における条件式はキルヒホッフの電流
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則を用いる。

I1(0, t) = −I13(t)− I12(t) , (4.21)

I2(0, t) = I12(t)− I23(t) , (4.22)

I3(0, t) = I23(t) + I13(t) . (4.23)

さらに、キルヒホッフの電圧則と枝構成式から、以下の式を導出できる。

U1(0, t)− U2(0, t) = R12I12(t) + V12(t) , (4.24)

U2(0, t)− U3(0, t) = R23I23(t) + V23(t) , (4.25)

U1(0, t)− U3(0, t) = R13I13(t) + V13(t) . (4.26)

以上の関係式からNM・CMについて解くと以下のように表される。導出過程は付録A.3に記す。

V (0, t) = R0I(0, t)− V0(t) . (4.27)

ここで、R0は抵抗行列を表し、0は電源側を意味している。その要素は接続される抵抗で決ま

り、以下のように表される。

R =

 Rnn Rnc

Rcn Rcc

 , (4.28)

Rnn =
R12

(
R23 +R13

)
R12 +R23 +R13

, (4.29)

Rcc =
1

4

4R23R13 +R12R23 +R13R12

R12 +R23 +R13
, (4.30)

Rnc = Rcn =
1

2

R12(R13 −R23)

R12 +R23 +R13
. (4.31)

また、V0(t)は電源側の電圧源によって発生するNM・CM電圧ベクトルである。V0(t)は電源

側に接続される電源電圧によって決まり、3本線回路に接続される電源電圧によってノーマル

モード電圧やコモンモード電圧に変換される。それぞれの要素は以下のように表される。

V0(t) = R0I0(t), (4.32)

I0(t) =

 V12(t)/R12 − V23(t)/2R23 + V13(t)/2R13

V23(t)/R23 + V13(t)/R13

 . (4.33)

ここで、I0(t)は電源側の電圧源によって発生するNM・CM電流ベクトルである。負荷側も同

様に行うと以下のように表される。

V (L, t) = RLI(L, t) + VL(t) . (4.34)

63



ここで、RLとVL 以上の関係式を用いて、多導体線路内における反射係数の導出と同様に行う

と [17]、3本線回路内のノーマルモードとコモンモードは反射係数と伝搬時間を用いて表すこ

とができる。

V (0, t) = M0V0(t)

+
(
1+ Γ0

)[
MLVL(t− TD) + ΓLΓ0MLVL(t− 3TD)

+ · · ·+
(
ΓLΓ0

)N
MLVL

(
t− (2N + 1

)
TD)

]
+
(
1+ Γ0

)
ΓL

[
M0V0(t− 2TD) + Γ0ΓLM0V0(t− 4TD)

+ · · ·+
(
Γ0ΓL

)N
MSV0

(
t− 2(N + 1)TD

)]
, (4.35)

V (L, t) = MLVL(t)

+
(
1+ ΓL

)
Γ0

[
MLVL(t− 2TD) + ΓLΓ0MLVL(t− 4TD)

+ · · ·+
(
ΓLΓ0

)N
MLVL

(
t− 2(N + 1)TD

)]
+
(
1+ ΓL

)[
M0V0(t− TD) + Γ0ΓLM0V0(t− 3TD)

+ · · ·+
(
Γ0ΓL

)N
M0V0

(
t− (2N + 1)TD

)]
. (4.36)

ここで、TDは信号が回路の両端を伝搬する時間であり、2TDは回路を往復する時間となる。M

は境界の集中定数回路に流れるNM電圧とCM電圧が伝送線路に分圧される割合であり分圧係

数行列と呼ぶ。また、Γは境界での NM・CM電圧が反射あるいはそれぞれが変換される割合

を表しており、それらを総称してカップリング係数行列と呼ぶ。従来の伝送線路理論では、対

角要素である回路内を伝搬するモードの反射に着目しているが、本研究では、非対角要素であ

るNM・CMカップリングが重要である。

M = Z(R+Z)−1 , (4.37)

Γ = (R−Z) (R+Z)−1 . (4.38)

ここで、Zは伝送線路内のNM・CMインピーダンス行列を表している。以上より、M とΓを

用いることで、多導体線路理論で用いられている方程式と同じ形式で回路内を伝搬するNMと

CMを記述することができた。分圧係数とカップリング係数の要素を以下のように定義する。

M =

 Mnn Mnc

Mcn Mcc

 , (4.39)

Γ =

 Γnn Γnc

Γcn Γcc

 . (4.40)
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これらの要素は式 (4.39)と (4.38)によって導出することができる。

Mnn =
1

A

[
Znn

(
Rcc + Zcc

)
− Znc

(
Rcn + Zcn

)]
, (4.41)

Mnc =
1

A

[
ZncRnn − ZnnRnc

]
, (4.42)

Mcn =
1

A

[
ZcnRcc − ZccRcn

]
, (4.43)

Mcc =
1

A

[
− Zcn

(
Rnc + Znc

)
+ Zcc

(
Rnn + Znn

)]
, (4.44)

Γnn =
1

A

[(
Rnn − Znn

)(
Rcc + Zcc

)
−
(
Rnc − Znc

)(
Rcn + Zcn

)]
, (4.45)

Γnc =
2

A

[
ZnnRnc − ZncRnn

]
, (4.46)

Γcn =
2

A

[
ZccRcn − ZcnRcc

]
, (4.47)

Γcc =
1

A

[
−
(
Rcn − Zcn

)(
Rnc + Znc

)
+
(
Rcc − Zcc

)(
Rnn + Znn

)]
, (4.48)

ここで、

A =
(
Rnn + Znn

)(
Rcc + Zcc

)
−
(
Rnc + Znc

)(
Rcn + Zcn

)
. (4.49)

である。以上より、M と Γは伝送線路のインピーダンス行列Z と 3本線回路に接続される抵

抗行列Rに依存していることがわかる。

4.3.2 ノーマルモードとコモンモードのカップリング係数から導く、コモンモードノ

イズが発生しない回路構造

3.4より、CMノイズが発生しない回路構造は電気的・幾何学的対称構造であることを数値計算

により導出した。今回は、この構造でのM ,Γを導出する。ここで、電源側では、V13 = V23 = 0,

R13 = R23とし、負荷側では V12 = V13 = V23 = 0, R13 = R23 → ∞, R12 = Znnとした。

M0 =

 Znn/
(
Rnn + Znn

)
0

0 0

 , (4.50)

Γ0 =

 (
Rnn − Znn

)
/
(
Rnn + Znn

)
0

0
(
Rcc − Zcc

)
/
(
Rcc + Zcc

)
 , (4.51)

ML =

 Znn/
(
Rnn + Znn

)
0

0 0

 , (4.52)

ΓL =

 0 0

0 1

 . (4.53)
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d12

ℓ

d13

(b) 電気的非対称

d12

R13

d13

ℓ

(a) 電気的対称

図 4.3: 電気的構造の (a)対称性と (b)非対称性を有する 3本線回路。数値計算では、幾何学的

構造 d13を変化させた時に発生するノーマルモードとコモンモードのカップリング係数を定量

化する。電気的構造のパラメーターは、(a)電気的対称構造の場合、内部抵抗 R12 = 50 Ωの

電圧源と、 R23 = R13 = 300 Ωが接続されている。(b)電気的非対称構造の場合、内部抵抗

R12 = 50 Ωの電圧源と、R23 = 5 Ωとした。また、伝送線路 1− 1′と 2− 2′で構成された回路

に終端された抵抗RLはインピーダンスマッチングをとっており、RL = Znn = 349.715 Ωとし

た。幾何学的構造のパラメーターは、伝送線路 1− 1′, 2− 2′, 3− 3′は長さ ℓ = 2.0 m、半径 0.5

mmであり、d12 = 0.02 mとした。ここで、シミュレーションでは、比誘電率を εr = 1.6、比

透磁率を µr = 1.0とした。

これより、電気的・幾何学的対称（ESGS）構造では、分圧係数とカップリング係数の非対角要

素が全て 0でり、ESGS構造ではNMと CMのカップリングは生じず、CMノイズが発生しな

いことがカップリング係数からも示された。

次に、図 4.3に示す、電気的構造が非対称（EA）と対称（ES）の場合で回路構造を変化さ

せ、カップリング係数のそれぞれの要素を計算した。図 4.4はその結果を表している。結果よ

り、d13 を変化させて回路の幾何学的構造を変えると、それぞれの係数は場所に依存した値を

持っている。図 4.4(a),(b)は ESの Γ0,ΓL を表しており、(c),(d)は EAの Γ0,ΓL を表してい

る。負荷側での電気的構造は (b)と (d)ともに同じ構造であるため、同じ結果となっている。

ESと EAの場合で比較すると、図 4.4(a),(b)の ESの場合は幾何学的対称（GS）な位置である

d13 = 0.01 mの場合にΓ0,ΓLの非対角要素が同時に 0になることがわかる。これは電源側と負

荷側で NMと CMがカップリングしないため、CMノイズが発生しないことを意味している。

一方、図 4.4(c),(d)の EAの場合は、Γ0の非対角要素が 0になる構造が存在していないことが
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(a) 電気的対称 (b) 電気的対称

(c) 電気的非対称 (d) 電気的非対称

図 4.4: 図 4.3に示す、電源側の集中定数回路の接続が、電気的対称構造と電気的非対称構造を

有する 3本線回路の d13を変化させて、幾何学的構造を変化させた時のカップリング係数の成

分の変化。(a),(c)は電源側のカップリング係数 Γ0であり、(b),(d)は負荷側のカップリング係

数 ΓLである。負荷側は環境線と信号線共に同じ接続関係を有している。

わかる。これは、CMノイズが電源側で常に発生していることを意味している。図 4.4(b),(d)の

負荷側での Γを見ると、Γcnのみ構造に依存した値となっている。この電気的構造は、環境線

がその他の回路と接続されていないために集中定数回路のRccは∞となる。よって、境界では

CMに電流が流れないため、Γncは常に 0となりCMはNMに変換されず、逆にNMはCMに

変換する。また、CMの反射を表す Γccは常に 1となり、CMは全反射される。NMはインピー

ダンスマッチングを取っているため Γnnは常に 0となる。
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4.4 ノーマルモードとコモンモードのリンギング現象の理論的考察

4.3.1で導出したカップリング係数から、3.4.1の数値計算で観察した図 3.9に示すNMとCM

のリンギング現象について考察する。まず、伝送線路に印加される 0thの電圧の振幅を定式化

する。電圧源によって集中定数回路内に流れるNM・CM電流を I0(t)とおくと、電源側に印加

されるNM・CM電圧 V (0, t)は式 (4.35)より、以下のように表される。

V (0, t) = Z (Z +RS)
−1RSI0(t) , (4.54)

= TI0(t) . (4.55)

ここで、T は、集中定数回路と分布定数回路の合成抵抗行列であり、集中定数回路内のNMと

CMに流れる電流 I0から伝送線路に印加される電圧を求めることができる。

T =

Tnn Tnc

Tcn Tcc

 . (4.56)

また、両端でカップリングを繰り返すことにより NMと CMのリンギングの振幅が減衰する。

そこで、NMとCMが回路内を 1往復する際に減衰・変換するする割合をまとめて減衰係数行

列と呼び、αと表す。

α = ΓSΓL , (4.57)

=

ΓSnn ΓSnc

ΓScn ΓScc

ΓLnn ΓLnc

ΓLcn ΓLcc

 , (4.58)

=

ΓSnnΓLnn + ΓSncΓLcn ΓSnnΓLnc + ΓSncΓLcc

ΓScnΓLnn + ΓSccΓLcn ΓScnΓLnc + ΓSccΓLcc

 , (4.59)

=

αnn αnc

αcn αcc

 . (4.60)

ここで、対角成分の αnnと αccは、一往復でのNMとCM電圧の減衰係数であり、非対角成分

の αcnと αncは、一往復でのNMとCM電圧の変換係数を表している。それぞれの成分の値は

両端の反射係数によって決まる。以上より、N 往復した後の伝送線路の中央におけるNM・CM

電圧は以下のように表すことができる。

V

(
ℓ

2
, t2N

)
= αNTIS . (4.61)

ここで、t2N は 2N 番目に伝送線路の中央を通過した時間を表しており、信号の立ち上がり時

間を tr、電源側から負荷側までの伝搬時間を tD とすると t2N =
(
1
2 + 2N

)
tD + tr となる。こ
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表 4.1: 図 3.7に示す、ESGSと EAGA、 ESGA、EAGAの回路構造の合成抵抗 T の要素の計

算結果

ESGS EAGS ESGA EAGA

Tnn 13.44 37.64 13.42 40.00

Tcn 0.00 17.19 0.048 19.32

表 4.2: 図 3.7に示す、ESGSと EAGA、 ESGA、EAGAの回路構造の減衰係数αの要素の計

算結果。

ESGS EAGS ESGA EAGA

αnn 0.000 0.000 0.00274 −0.0197

αnc 0.000 0.327 −0.0190 0.136

αcn 0.000 0.000 0.137 0.121

αcc −0.909 −0.677 0.951 −0.838

こで、図 3.7 に示す回路の電源 e(t)のパルス電圧によって集中定数回路に流れる NM電流は、

e(t)/RS = 0.1 Aであるため、3本線回路に印加されるNM・CM電圧は合成抵抗 T の成分との

積によって導出することができる。表 4.1は図 3.7の各回路構造における合成抵抗行列の成分で

ある。この値に集中定数回路に流れる NM電流 0.1 Aをかけることで、初めに印加される 0th

のパルス電圧を算出することができる。この値は、図 3.9と表 3.1に示す、伝送線路の数値計算

で得られた結果と一致した。表 4.1より、ES構造の Tnnは EA構造と比べ小さくなっている。

この理由は、グランド線と信号線が小さい抵抗で接続されているためである。よって、Tnnは

NMに印加される電圧の大きさを表すため、ES構造に印加される NM電圧は小さくなる。次

に、EAGSと ESGAの Tcnを比較すると、EA構造が大きく寄与していることがわかる。よっ

て、TcnはNMからCMに変換される大きさを意味しているため、EA構造ではより大きなCM

電圧が印加される。

次に、表 4.2は図 3.7の各回路構造における減衰係数の成分である。減衰を表す対角要素で

は、減衰係数は-1から 1まで変化し、0に近づくと減衰は大きくなり、1または-1に近づくと

減衰は小さくなる。一方、変換を表す非対角要素では、0に近づくと変換が小さくなり、1また

は-1に近づくと変換は大きくなる。

CMノイズによるリンギング現象は、CMが両端で NMに変換されて生じるため、αncに着
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目すれば良い。αncが最も大きい構造は EAGSであるため、EA構造がCMからNMへの変換

をより大きくする原因であると言える。さらに、CMからNMへの変換が大きいため、CMの

減衰を表す αccも小さい。一方、ESGAを見ると αcnが大きい。そのため、CMの減衰係数 αcc

が小さくなる。よって、GA構造がNMからCMへの変換をより大きくする原因であると言え

る。EAGAは EA構造とGA構造の影響を受け、αncと αcnが大きくなっている。これらの傾

向は 3.4.1と 3.4.3で行なった数値計算と実験で得られたNMとCMのリンギングの傾向と一致

している。

4.5 結言

本章では、回路内に発生するCMノイズの発生起源をNMとCMの電信方程式を用いて理論

的に解明した。伝送線路内におけるカップリング係数を導出した。その結果、インピーダンス

の場所依存性があり、かつ NMと CMが時間変化している時に NMと CMはカップリングす

ることを解析的に示した。さらに、境界における NMと CMのカップリング係数を導出した。

その結果、電気的対称かつ幾何学的対称構造がCMノイズを発生しない唯一の構造であること

を示した。さらに、カップリング係数を用いて、NMとCMのリンギング現象を理論的に考察

した。カップリング係数を用いてNMとCMの減衰係数を導出すると電気的構造と幾何学的構

造によってそれぞれ以下の異なる性質があることを示した。

1. 電気的非対称性は CMからNMへの変換を増加させる原因となる

2. 幾何学的非対称性はNMから CMへの変換を増加させる原因となる

以上より、CMノイズを削減するためには、電気的・幾何学的構造を共に対称にすることが重

要であることを示した。
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第5章 マクスウェル方程式から導く3次元回路

の電荷と電位、電流密度とスカラーポテ

ンシャルを変数とした時間領域数値計算

手法

5.1 緒言

コモンモードノイズの記述のためには 2本線回路と周辺の環境導体を伝搬する物理現象を定

量的に取り扱う必要がある。この章までは議論を単純にし、コモンモードの概念をわかりやす

くするために周囲の環境導体を 1次元の伝送線路として取り扱った。本章では、実際のプリン

ト基板で用いられるような平面構造を持った導体を取り扱うようにする。そのために 3次元導

体の回路理論をマクスウェル方程式から導出する。この 3次元回路理論は電磁ノイズの問題だ

けではなく、一般に使われる回路の動作を定量的に記述するのに不可欠な理論である。

本章では、グランド平面の幾何学的構造による CMノイズを定量化するために、3次元回路

の時間領域における数値計算手法について説明する。基本的には 1次元の場合の導出方法を踏

襲する。マクスウェル方程式から得られるスカラーポテンシャルやベクトルポテンシャルは導

体内に存在する電荷・電流で与えられるが、今回は導体が 3次元なので、全ての変数を微小体

積内で定義することで、3次元回路の数値計算で用いる差分方程式を定式化する。ここで、数

値計算には 1次元と同様 FDTD法を用い、それに加えて、積分方程式の離散化には有限体積法

を用いる。また、境界では集中定数回路が接続されているので境界条件も導出する必要がある。

以上の 3次元の場合の数値計算方法は本論文で開発されたものである。

3 次元回路の類似手法としては、部分要素等価回路（PEEC：Partial Element Equivalent

Circuit）法が存在する [47, 48]。PEEC法は、3次元導体を微小体積で離散化し、その等価回

路モデルを導出し、SPICEで回路方程式を数値計算する手法である。PEEC法を用いると、3

次元回路内の電位と電流の過渡応答を解析することができるが、電荷保存則を破っているため

に、回路方程式の導出の際に不自然な操作を行う必要がある。詳細は付録Cに記すが、例えば、
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受動素子 

・抵抗 

・インダクタンス 

・キャパシタンス 

・電圧源 

・電流源

集中定数回路

境界

・キルヒホッフの電流則(KCL) 

・キルヒホッフの電圧則(KVL) 

・枝構成式(BCE)（常微分方程式）

集中定数回路で用いる方程式

・基本方程式（偏微分積分方程式）

3次元回路で用いる方程式

3次元回路集中定数回路

受動素子 

・抵抗 

・インダクタンス 

・キャパシタンス 

・電圧源 

・電流源

図 5.1: 3次元回路とその境界の模式図。集中定数回路は任意の境界に接続されており、1次元

回路と同じ条件式を用いる。3次元回路では、2.2.1で導出した基本方程式（偏微分積分方程式）

を用いる。

PEEC法は変数である電位と電荷密度を微小体積の表面に定義し、ベクトルポテンシャルと電

流を微小体積内に定義している。その結果、連続の方程式を満たさなくなる。

5.2 3次元回路の数値計算の方針

図 5.1は 3次元回路と境界で接続された集中定数回路、計算で用いる方程式を示している。集

中定数回路の接続箇所は緑で示したように、1次元では両端の 2箇所であったが、3次元導体の

場合は任意の境界に接続される。1次元多導体線路における計算では、近似を用いることで積

分偏微分方程式を偏微分方程式へと簡略化することができた。具体的には、被積分関数に含ま

れる電荷や電流を断面 (yz-平面)で平均をとることで 1次元 (x方向)に変換し、さらに xに関

する積分を同じ x座標の値で代用することで、電荷や電流を x方向の積分から外すことができ

た。これにより、電位とベクトルポテンシャルの積分計算は偏微分方程式と分離することがで

きた。しかし、3次元回路の場合ではあらゆる方向に電流が伝搬するため 1次元回路で用いた

近似を適用することができない。そこで、3次元回路では 2.2.1で導出した基本方程式を直接数
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値計算する。ここで、再度 3次元回路の定式化に必要な 4つの基本方程式を書いておく。

U(r, t) =
1

4πε

∫
dr′

q(r′, t)

|r − r′|
, (5.1)

A(r, t) =
µ

4π

∫
dr′

j(r′, t)

|r − r′|
, (5.2)

−∇U(r, t) − ∂A(r, t)

∂t
= ρj(r, t), (5.3)

∂

∂t
q(r, t) + ∇ · j(r, t) = 0 . (5.4)

式 (5.1)は遅延を含まない電位の積分方程式、式 (5.2)は遅延を含まないベクトルポテンシャル

の積分方程式、式 (5.3)はオームの法則、式 (5.4)は連続の式を表している。時間領域における

遅延時間を含んだ計算はその他の先行研究でも発散する問題が報告されている [49,50]。本研究

では、まずは平面回路内を伝搬する現象がCMノイズに与える影響を調べるために、遅延時間

を無視し、遠方からの影響は無限の速さで伝わるとする。本研究では、以下の方針で 3次回路

内の偏微分積分方程式を数値計算する。

1. 3次元平面を直方体の微小体積で区分化

2. 変数は微小体積内での平均値を用いる

3. 積分方程式と偏微分方程式を微小体積の和と差を用いて定式化

5.3 積分方程式の離散化

数値計算のための方程式の離散化は単純化のために図 5.2に示すように、2次元多層平面回路

を用いる。3次元立方導体を計算する際も同様に定式化することができる。数値計算では、図

5.2の多層平面を区分化するために微小体積を用い、それを「セル」と呼ぶ。また、以下の式の
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図 5.2: 方程式を離散化するために多層平面回路を∆x,∆y,∆zの大きさを持つ立方体の微小体

積を用いて区分化した。多層平面の場合、∆x >> ∆z,∆y >> ∆zとし、非常に薄い立方体と

みなし、z方向の変化は無視した。1は最下層にある平面を表し、iは最下層から数えて i層目

にある平面を表している。d1iは 1層目と i層目の距離を表している。

ように微小体積内で変数を平均化することで一様とみなす。

Ui(k,l)(t) =
1

Vi(k,l)

∫
Vi(k,l)

U(r, t)dr, (5.5)

Axi(k+ 1
2
,l)(t) =

1

Vi(k+ 1
2
,l)

∫
V
i(k+1

2 ,l)

Ax(r, t)dr, (5.6)

Ayi(k,l+ 1
2)
(t) =

1

Vi(k,l+ 1
2)

∫
V
i(k,l+1

2)

Ay(r, t)dr, (5.7)

qi(k,l)(t) =
1

Vi(k,l)

∫
Vi(k,l)

q(r, t)dr, (5.8)

jxi(k+ 1
2
,l)(t) =

1

Vi(k+ 1
2
,l)

∫
V
i(k+1

2 ,l)

jx(r, t)dr, (5.9)

jyi(k,l+ 1
2
)(t) =

1

Vi(k,l+ 1
2)

∫
V
i(k,l+1

2)

jy(r, t)dr (5.10)

ここで、i, k, lはそれぞれ区分化した後のセルが存在する導体平面の層と x, y座標を表してお

り、セルの場所を i(k, l)と表記する。後に導出されるが、FDTD法を用いた空間差分を行うた

め、あらかじめ電位と x方向と y方向に流れる電流密度のセルはそれぞれの微小領域の半分だ

けずれた位置に定義される。また、最下層を第 1層とし、i層との距離を d1iと表す。x, y, z空

間ではセルの空間は中心座標を (k ×∆x+∆x/2, l ×∆y +∆y/2, d1i +∆z/2)とする以下の領
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域で定義する。

∆x× (k − 1) ≤ x ≤ ∆x× k (k = 1, 2, 3, · · · , Nx) , (5.11)

∆y × (l − 1) ≤ y ≤ ∆y × l (l = 1, 2, 3, · · · , Ny) , (5.12)

d1i ≤ z ≤ d1i +∆z (i = 1, 2, 3, · · · , Nz) . (5.13)

次に、セルで定義された変数を用いると、式 (5.1),(5.2)の積分方程式を以下に示す区分和で

表すことができる。

Ui(k,l)(t) =
∑
i′,k′,l′

Pi(k,l)i′(k′,l′)qi′(k′,l′)(t) , (5.14)

Axi(k+ 1
2
,l)(t) =

∑
i′,k′,l′

Lxi(k+ 1
2
,l)i′(k′+ 1

2
,l′)jxi′(k′+ 1

2
,l′)(t) , (5.15)

Ayi(k,l+ 1
2
)(t) =

∑
i′,k′,l′

Lyi(k,l+ 1
2)i′(k′,l′+

1
2)
jyi′(k′,l′+ 1

2)
(t) . (5.16)

ここで、Pi(k,l)i′(k′,l′)と Li(k,l)i′(k′,l′)はそれぞれ、セル i(k, l)と i′(k′, l′)との間の電位係数とイ

ンダクタンスであり、以下の式で表される。

Pi(k,l)i′(k′,l′) =
1

4πε

1

Vi(k,l)

∫
Vi(k,l)

∫
Vi′(k′,l′)

1

|r − r′|
drdr′ , (5.17)

Lxi(k+ 1
2
,l)i′(k′+ 1

2
,l′) =

µ

4π

1

Vi(k+ 1
2
,l)

∫
V
i(k+1

2 ,l)

∫
V
i′(k′+1

2 ,l′)

1

|r − r′|
drdr′ , (5.18)

Lyi(k,l+ 1
2
)i′(k′,l′+ 1

2
) =

µ

4π

1

Vi(k,l+ 1
2)

∫
V
i(k,l+1

2)

∫
V
i′(k′,l′+1

2)

1

|r − r′|
drdr′ . (5.19)

式から、電位係数とインダクタンスはセル i(k, l)がセル i′(k′, l′)から受ける影響の平均であること

がわかる。1次元と異なり、2次元では電荷密度と電流密度を用いているため電位係数とインダク

タンスの単位が変わる。Pi(k,l)i′(k′,l′)は
[
F−1 ·m3

]
であり、Lxi(k+ 1

2
,l)i′(k′+ 1

2
,l′), Lyi(k,l+ 1

2
)i′(k′,l′+ 1

2
)

は [H ·m]である。

5.4 中心差分法と有限体積法を用いた時間と空間に関する連立偏微分

方程式の差分化

5.4.1 空間に関する偏微分方程式の差分化

5.3で定義した微小体積セル内における変数を用いてオームの法則 (5.3)と連続の式 (5.4)の

空間と時間に関する偏微分方程式の差分化を行う。式 (5.3)はベクトルで表されており、それぞ
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れの成分を以下に示す。

∂

∂x
U(r, t) = −∂Ax(r, t)

∂t
− ρjx(r, t) , (5.20)

∂

∂y
U(r, t) = −∂Ay(r, t)

∂t
− ρjy(r, t) . (5.21)

セルを用いた変数を導入するために、式 (5.20)の両辺をベクトルポテンシャル Axと電流密度

jxが定義されているセル i
(
k + 1

2 , l
)
内で平均をとる。

1

Vi(k+ 1
2
,l)

∫
V
i(k+1

2 ,l)

∂

∂x
U(r′, t)dr′

= − ∂

∂t

1

Vi(k+ 1
2
,l)

∫
V
i(k+1

2 ,l)

Ax(r
′, t)dr′ − 1

Vi(k+ 1
2
,l)

∫
V
i(k+1

2 ,l)

ρjx(r
′, t)dr′ ,

1

Vi(k+ 1
2
,l)

∫
V
i(k+1

2 ,l)

∂

∂x
U(r′, t)dr′

= − ∂

∂t
Axi(k+ 1

2
,l)(t)− ρi(k+ 1

2
,l)jxi(k+ 1

2
,l)(t) . (5.22)

ここで、ベクトルポテンシャルAxと電流密度 jxに関してはセル i(k + 1
2 , l)内での体積平均で

表すことができるが、スカラーポテンシャル U に関しては xにおける偏微分が掛けられている

ため直接体積平均で表すことができない。そこで、以下のように関数 f(x, y, z)について、xに

関する偏微分の体積積分は、FDTD法で用いられている中心差分を行った後に、セル i(k+ 1
2 , l)

内で体積平均をとることとする。

1

Vi(k,l)

∫
Vi(k,l)

∂

∂x
f(x, y, z)dr

=
1

∆x∆y∆z

∫ (k+1/2)∆x

(k−1/2)∆x
dx

∫ (l+1/2)∆y

(l−1/2)∆y
dy∆z

[
f
(
x+ ∆x

2 , y
)
− f

(
x− ∆x

2 , y
)]

∆x
.

(5.23)

ここで、z方向の成分は一様としている。よって、それぞれの項は点 (x, y, z)からx方向に±∆x/2

だけずれた位置にある体積平均を表しており、それらを、

fi(k+ 1
2
,l) =

1

∆x∆y∆z

∫ (k+1/2)∆x

(k−1/2)∆x
dx

∫ (l+1/2)∆y

(l−1/2)∆y
dy∆zf

(
x+

∆x

2
, y

)
(5.24)

fi(k− 1
2
,l) =

1

∆x∆y∆z

∫ (k+1/2)∆x

(k−1/2)∆x
dx

∫ (l+1/2)∆y

(l−1/2)∆y
dy∆zf

(
x− ∆x

2
, y

)
(5.25)

と表すことで、偏微分を含んだセル i(k, l)の体積平均はそれぞれ半分だけずれた位置にあるセ

ルの差分で表すことができる。

1

Vi(k,l)

∫
Vi(k,l)

∂

∂x
f(r′, t)dr =

fi(k+ 1
2
,l)(t)− fi(k− 1

2
,l)(t)

∆x
. (5.26)
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よって、y成分についても同様に行うことで、式 (5.20)と (5.21)はセルを用いた差分で表すこ

とができる。

Ui(k+ 1
2
,l)(t)− Ui(k− 1

2
,l)(t)

∆x
= − ∂

∂t
Axi(k,l)(t)− ρi(k,l)jxi(k,l)(t) , (5.27)

Ui(k,l+ 1
2
)(t)− Ui(k,l− 1

2
)(t)

∆y
= − ∂

∂t
Ayi(k,l)(t)− ρi(k,l)jyi(k,l)(t) . (5.28)

連続の式についても同様に、セルを用いた空間の差分方程式で表す。両辺をセル i(k, l)につ

いて体積平均をとると、

∂

∂t
qi(k,l)(t) +

1

Vi(k,l)

∫
Vi(k,l)

∇ · j(r′, t)dr′ = 0 ,

∂

∂t
qi(k,l)(t) +

1

Vi(k,l)

∫
Vi(k,l)

[
∂

∂x
jx(r

′, t) +
∂

∂y
jy(r

′, t)

]
dr′ = 0 ,

∂

∂t
qi(k,l)(t) = −

jxi(k+ 1
2
,l)(t)− jxi(k− 1

2
,l)(t)

∆x
−

jyi(k,l+ 1
2
)(t)− jyi(k,l− 1

2
)(t)

∆y
. (5.29)

と表すことができる。ここで x方向に関する差分は、式 (5.24)と (5.25)の関係式を用いた。以

上より、空間に関する偏微分方程式の差分方程式を導出することができた。

5.4.2 時間のに関する偏微分方程式の差分化

次に時間に関する差分化を行う。x, yそれぞれの方向に流れる電流密度セルは電位セルに対

して微小領域の半分だけずれた位置に定義されている。時間領域でも電位と電流密度は微小時

間の半分だけずれた時間で定義する。

Um
i(k,l) =

∑
i′,k′,l′

Pi(k,l)i′(k′,l′)q
m
i′(k′,l′) , (5.30)

A
m+ 1

2

xi(k+ 1
2
,l)

=
∑
i′,k′,l′

Lxi(k+ 1
2
,l)i′(k′+ 1

2
,l′)j

m+ 1
2

xi′(k′+ 1
2
,l′)

, (5.31)

A
m+ 1

2

yi(k,l+ 1
2
)

=
∑
i′,k′,l′

Lyi(k,l+ 1
2
)i′(k′,l′+ 1

2
)j

m+ 1
2

yi′(k′,l′+ 1
2
)
. (5.32)

ここで、mは区分化された時間を表しており、微小時間を∆tとおくと、時刻は t = ∆t×mで

表される。式 (5.30)より、電位と電荷密度は同じ場所に定義されているため、同じ時刻で定義

される。よって、電荷密度を求めると同時に電位も計算することができる。式 (5.31)と (5.32)

より、ベクトルポテンシャルと電流密度は同じ場所に定義されているため、同じ時刻で定義さ

れる。よって、電流密度を求めると同時にベクトルポテンシャルも計算することができる。ま
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ずは連続の式 (5.29)を用いて、時間に関する差分化をすると、電荷密度の更新式を求めること

ができる。

qm+1
i(k,l) − qmi(k,l)

∆t
= −

j
m+ 1

2

xi(k+ 1
2
,l)

− j
m+ 1

2

xi(k− 1
2
,l)

∆x
−

j
m+ 1

2

yi(k,l+ 1
2
)
− j

m+ 1
2

yi(k,l− 1
2
)

∆y
. (5.33)

ここで時刻 m + 1の電荷密度が未知数となり、それ以外の時間の変数は既知となる。これよ

り、電荷密度に関する漸化式を得ることができた。次に x方向と y方向に関するオームの法則

(5.27),(5.28)の差分化を行う。

Um
i(k+1,l) − Um

i(k,l)

∆x

= −
A

m+ 3
2

xi(k+ 1
2
,l)

−A
m+ 1

2

xi(k+ 1
2
,l)

∆t
− ρi(k+ 1

2
,l)

j
m+ 3

2

xi(k+ 1
2
,l)

+ j
m+ 1

2

xi(k+ 1
2
,l)

2
, (5.34)

Um
i(k,l+1) − Um

i(k,l)

∆y

= −
A

m+ 3
2

yi(k,l+ 1
2
)
+A

m+ 1
2

yi(k,l+ 1
2
)

∆t
− ρi(k,l+ 1

2
)

j
m+ 3

2

yi(k,l+ 1
2
)
+ j

m+ 1
2

yi(k,l+ 1
2
)

2
. (5.35)

ここで、時刻m+ 3
2 で定義されたベクトルポテンシャルと電流密度が未知数となる。これらに

加えて、式 (5.31)と (5.32)を連立させて、ベクトルポテンシャルと電流密度に関して解くこと

で変数の新しい時間の値を求めることができる。以上より、基本方程式の空間と時間に関する

差分化を行うことができた。これらを用いることで多層平面回路内に流れる電荷と電位、電流

密度とベクトルポテンシャルの過渡現象を計算することができる。

5.4.3 電位と電流密度に関する差分電信方程式の導出

一般的に、回路理論で用いる変数は電位と電流であるため、導出した差分方程式から回路理論

では用いないベクトルポテンシャルAx, Ayと電荷密度 qを削除する。まずは、連続の式 (5.33)

の両辺に電位係数をかけて和をとる。

∑
i′,k′,l′

Pi(k,l)i′(k′,l′)

(
qm+1
i′(k′,l′) − qmi′(k′,l′)

∆t

)

= −
∑
i′,k′,l′

Pi(k,l)i′(k′,l′)

j
m+ 1

2

xi′(k′+ 1
2
,l′)

− j
m+ 1

2

xi′(k′− 1
2
,l′)

∆x


−
∑
i′,k′,l′

Pi(k,l)i′(k′,l′)

j
m+ 1

2

yi′(k′,l′+ 1
2
)
− j

m+ 1
2

yi′(k′,l′− 1
2
)

∆y

 . (5.36)
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次に、式 (5.30)を用いて電荷密度を消去すると、

Um+1
i(k,l) − Um

i(k,l)

∆t

= −
∑
i′,k′,l′

Pi(k,l)i′(k′,l′)

j
m+ 1

2

xi′(k′+ 1
2
,l′)

− j
m+ 1

2

xi′(k′− 1
2
,l′)

∆x


−
∑
i′,k′,l′

Pi(k,l)i′(k′,l′)

j
m+ 1

2

yi′(k′,l′+ 1
2
)
− j

m+ 1
2

yi′(k′,l′− 1
2
)

∆y

 . (5.37)

となり、これは平面回路における差分化された 3次元電信方程式を表している。これより、電

位に関する漸化式を電流密度を用いて表すことができる。

Um+1
i(k,l)

= Um
i(k,l) −

∑
i′,k′,l′

∆t

∆x
Pi(k,l)i′(k′,l′)

(
j
m+ 1

2

xi′(k′+ 1
2
,l′)

− j
m+ 1

2

xi′(k′− 1
2
,l′)

)

−
∑
i′,k′,l′

∆t

∆y
Pi(k,l)i′(k′,l′)

(
j
m+ 1

2

yi′(k′,l′+ 1
2
)
− j

m+ 1
2

yi′(k′,l′− 1
2
)

)
. (5.38)

次に電流密度について同様に行う。式 (5.31)を式 (5.34)に、式 (5.32)を,式 (5.35)に代入し

て、ベクトルポテンシャルを消去すると、電流密度と電位の関係式を得ることができる。

Um
i(k+1,l) − Um

i(k,l)

∆x

= −
∑
i′,k′,l′

Lxi(k+ 1
2
,l)i′(k′+ 1

2
,l′)

j
m+ 3

2

xi(k′+ 1
2
,l′)

− j
m+ 1

2

xi(k′+ 1
2
,l′)

∆t


−ρi(k′+ 1

2
,l′)

j
m+ 3

2

xi(k′+ 1
2
,l′)

+ j
m+ 1

2

xi(k′+ 1
2
,l′)

2
, (5.39)

Um
i(k,l+1) − Um

i(k,l)

∆y

= −
∑
i′,k′,l′

Lyi(k,l+ 1
2
)i′(k′,l′+ 1

2
)

j
m+ 3

2

yi(k,l+ 1
2
)
+ j

m+ 1
2

yi(k,l+ 1
2
)

∆t


−ρi(k,l+ 1

2
)

j
m+ 3

2

yi(k,l+ 1
2
)
+ j

m+ 1
2

yi(k,l+ 1
2
)

2
. (5.40)

以上の方程式を用いることで、平面回路内の電位と電流密度の過渡応答を計算することができ

る。また、求めた電流密度から式 (5.33)を用いると電荷密度を計算することができ、電流密度

から式 (5.31),(5.32)を用いるとベクトルポテンシャルを計算することができる。
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ここで、1次元の数値計算の場合と同様に、2次元の場合も数値計算の安定化のためにCourant

条件を満たす必要がある。2次元の場合の Courant条件を以下に示す [33]。

∆t ≤ 1

v

√(
1
∆x

)2
+
(

1
∆y

)2 . (5.41)

ここで、∆xと∆yの大きさが異なると、新しい時間の値の遷移速度が x方向と y方向で異なる

ため、数値計算結果の分散が大きくなる。これは、グリット分散と呼ばれ [33]、数値計算の分

散を小さくするためには、∆x = ∆yにすれば良い。この時のmagic time stepは、

∆t =
1√
2

∆x

v
. (5.42)

となり、発散しないためには、1次元に比べて∆tを 1/
√
2倍以下にする必要がある。
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5.5 境界条件の計算

本節では、3次元回路導体の任意の境界に集中定数回路を接続する方法について説明する。

5.5.1 境界条件の計算方針

(a) 電位 (b) 電流密度（x方向） (c) 電流密度（y方向）

図 5.3: 離散化しかした後の平面回路。電位と電流密度でセルの位置が半分だけずれている。灰

色部は境界にあるセルを表している。

図 5.3は多層平面回路の境界を表している。本手法では、電位セルの端が境界と一致するよ

うに区分化を行う。その場合、図に示すように電流密度セルは電位セルに対して半分ずれてい

るため、境界ではセルの大きさが半分になっていることがわかる。境界で半分のセルを用いる

場合、相互インピーダンスの組み合わせが増大し計算が煩雑になるのに加え、計算の安定性が

経験的に悪くなる。そのため本手法では、境界の電流密度は電位セルに流れる電流密度の時間

平均とみなすことで同じ大きさのセルで扱えるようにした。多層平面回路内の条件式を 2.6.3で

導出した節点電位方程式（Incident Potential Equation : IPE）の形で定式化する。その際に以

下の 2点を考慮した。

1. 多層平面回路の条件式は電位の漸化式 (5.38)を用いる。

2. 境界の電流密度セルは電位密度セルに流れる電流密度の時間平均を用いる。
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集中定数回路における IPEは以下の通りである。 AT
l −Zl

0 Al

 Um+1
l

Im+1
l


=

 −ϵAT
l δZl

0 Al

 Um
l

Im
l

+

 V m+1
s + V m

s

−AsI
m+1
s

 . (5.43)

以後、2次元多層平面回路の境界で満たす IPEを定式化する。

5.5.2 多層平面回路の境界条件の定式化

図 5.4: 本研究手法で対象とする多層平面回路。境界には集中定数回路が接続されている。

多層平面回路内での条件式は 1次元と同様に電位の漸化式を用いる。式 (5.38)から、時刻

m+ 1の未知数のみを左辺に、それ以外を右辺に移行する。

Um+1
i(k,l) = Um

i(k,l) +
∑
i′,k′,l′

∆t

∆x
Pi(k,l)i′(k′,l′)

(
j
m+ 1

2

xi′(k′+ 1
2
,l′)

− j
m+ 1

2

xi′(k′− 1
2
,l′)

)

+
∑
i′,k′,l′

∆t

∆y
Pi(k,l)i′(k′,l′)

(
j
m+ 1

2

yi′(k′,l′+ 1
2
)
− j

m+ 1
2

yi′(k′,l′− 1
2
)

)
. (5.44)

次に、境界に流れる電流密度を電位セルに流れる電流密度で定義する。

j
m+ 1

2

xi(k± 1
2
,l)

=
jm+1
xi(k,l) + jmxi(k,l)

2
, (5.45)

j
m+ 1

2

yi(k,l± 1
2)

=
jm+1
yi(k,l) + jmyi(k,l)

2
. (5.46)
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表 5.1: 境界に存在するセル i(k, l)の係数 γx, γy, Γx, Γyの値。ここで、AからDは図 5.4で表

された場所と対応している。

場所 A B C D

γx 1 -1 0 0

γy 0 0 -1 1

Γx 2 2 0 0

Γy 0 0 2 2

式 (5.45)と (5.46)を条件式 (5.44)に代入すると、右辺の差分和の項が境界の場合、未知数であ

る時刻m+ 1の電流密度が含まれている。そこで、区分和を境界と非境界で分け、未知数を左

辺に移行すると求める条件式を導出することができる。

Um+1
i(k,l) −

境界∑
i′,k′,l′

x,y∑
α

γαi′(k′,l′)
∆t

∆α
Pi(k,l)i′(k′,l′)j

m+1
αi′(k′,l′) =

Um
i(k,l) +

境界∑
i′,k′,l′

x,y∑
α

γαi′(k′,l′)
∆t

∆α
Pi(k,l)i′(k′,l′)j

m
αi′(k′,l′)

−
境界∑
i′,k′,l′

x,y∑
α

Γαi′(k′,l′)
∆t

∆α
Pi(k,l)i′(k′,l′)j

m+ 1
2

αi′(k′+βx,l′+βy)

−
非境界∑
i′,k′,l′

∆t

∆x
Pi(k,l)i′(k′,l′)

(
j
m+ 1

2

xi′(k′+ 1
2
,l′)

− j
m+ 1

2

xi′(k′− 1
2
,l′)
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−
非境界∑
i′,k′,l′

∆t

∆x
Pi(k,l)i′(k′,l′)

(
j
m+ 1

2

yi′(k′,l′+ 1
2
)
− j

m+ 1
2

yi′(k′,l′− 1
2
)

)
. (5.47)

ここで、係数 γ, Γは図 5.4に示す境界の場所に依存した値を持ち、セル i(k, l)の位置との対応

は表 5.1に示す。さらに、式 (5.47)のそれぞれの項の和を行列で表す。

AT
dU

m+1
d −Zdj

m+1
d = AT

dU
m
d +Zdj

m
d − Ũm+1

d . (5.48)

ここで、Ũdは非境界の区分和をまとめてベクトルで表したものである。以上より、多層平面回

路の境界で満たす伝搬方程式を IPEの形式で表すことができた。
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5.5.3 集中定数回路との接続による境界条件の定式化

次に、5.5.2で求めた多層平面回路の境界における伝搬方程式と集中定数回路を接続する。接

続点では、キルヒホッフの法則が成り立つ。

(γxSx + γySy)Adj
m+1
d +AlI

m+1
l = −AsI

m+1
s . (5.49)

ここで、γx,γy は電流の方向を表し、表 5.1に示すように境界の場所に対応している。また、

Sx,Sy はセルの断面積を表しており、多層平面回路の電流密度を集中定数回路と接続するため

に単位を [A ·m−2]から [A]に変換している。

次に多層平面回路内の変数と集中定数回路内の未知数を行列を用いて同時に計算するために

以下のようにまとめる。

U =

 Ud

Ul

 , I =

 Il

jd

 . (5.50)

接続行列も以下のようにまとめる。

A =
(

Al Ad

)
. (5.51)

インピーダンス行列も以下のようにまとめる。

Z =

 Zl 0

0 Zd

 . (5.52)

電圧源も以下のようにまとめる。

Em+1 =

 V m+1
s + V m

s

−Ũm+1
d

 . (5.53)

以上の行列とベクトルを用いることで、境界で満たす式 (5.43)(5.48),(5.49)は以下の IPEでま

とめることができる。 AT −Z

0 γSA

 Um+1

Im+1

 =

 −ϵAT δZ

0 0

 Um

Im

+

 Em+1

−AsI
m+1
s

 . (5.54)

ここで、ϵと δはそれぞれ境界に接続される受動素子の種類によって符号を変える対角行列であ

り、それらの成分は以下で表される。

ϵββ =

 −1 （キャパシタンス、セル）,

1 （その他）.
(5.55)

δββ =

 −1 （インダクタンス）,

1 （その他）.
(5.56)
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次に、γS は電流密度の単位を電流に変換するために用いられ、また集中定数回路の接続位置に

よって符号を変える役割を持つ。

γSββ =

 1 （集中定数回路）,

γxββSxββ + γyββSyββ （セル）.
(5.57)

以上より、2次元多層平面回路における境界での IPEを定式化することができた。

5.6 3次元への拡張による計算コスト削減のためのアルゴリズム

表 5.2: 1次元数値計算と 2次元数値計算アルゴリズムの比較。境界における「接続」、「未接続」

は集中定数回路の接続の有無を表している。

計算箇所 1次元計算アルゴリズム [22] 2次元計算アルゴリズム

U jx, jy U jx, jy

境界
接続

(i) Eq. (5.54)
(i) Eq. (5.54)

未接続
(iii) Eq. (5.59)

(ii) Eq. (5.58)

非境界 (ii) Eq. (5.59) (iii) Eqs. (5.39) and (5.40) (vi) Eqs. (5.39) and (5.39)

本章では、2次元平面回路の計算アルゴリズムについて説明する。これまでは平面回路の境

界全てを式 (5.54)で計算していた。しかし、2次元回路の計算では 1次元回路では現れなかっ

た以下の問題により、IPE行列の作成が非常に煩雑になった。

1. 分割数に比例して増大する IPE行列

2. 任意形状導体の境界の場所の判別

図 5.1に示すように、1次元回路の場合は境界は両端の 2箇所のみであり、回路の分割数には比

例しなかった。しかし、3次元回路の場合、回路導体の分割数を増やすほど、式 (5.54)で示さ

れる IPE行列の数が分割数に比例して大きくなる。さらに、境界の位置によって回路導体に流

出入する電流の向きが変わるため場所を特定する必要があるが、任意形状導体などを考慮する

際は IPEの作成が非常に煩雑になる。以上の問題を踏まえて本アルゴリズムでは、集中定数回

路の接続の有無に応じて用いる式を変更することで、境界の計算を 1次元と同程度にすること

を実現した。
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境界に集中定数回路が接続されていない場合、式 (5.49)のキルヒホッフの法則は以下のよう

になる。

(
γxi(k,l)Sxi(k,l) + γyi(k,l)Syi(k,l)

)
jm+1
i(k,l) = 0 . (5.58)

つまり、境界に集中定数回路が接続されていない場合、境界の電流密度は常に 0となる。よっ

て、境界が接続されていない場合は境界の未知数は電位のみとなり、伝搬方程式のみで電位を

導出することができる。

Um+1
i(k,l) = Um

i(k,l)

+

境界 (接続)∑
i′,k′,l′

x,y∑
α
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−
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m+ 1
2

αi′(k′+βx,l′+βy)

−
非境界∑
i′,k′,l′

∆t

∆x
Pi(k,l)i′(k′,l′)

(
j
m+ 1

2

xi′(k′+ 1
2
,l′)

− j
m+ 1

2

xi′(k′− 1
2
,l′)

)

−
非境界∑
i′,k′,l′

∆t

∆x
Pi(k,l)i′(k′,l′)

(
j
m+ 1

2

yi′(k′,l′+ 1
2)

− j
m+ 1

2

yi′(k′,l′− 1
2)

)
. (5.59)

ここで、jαi′(k′,l′)は集中定数回路が接続されたセルに流れる電流密度を表しており、既に境界

条件式である IPE(5.54)を用いて導出しているため既知の数字である。よって、境界に集中定

数回路が接続されていない場合は非境界の場合と同じように計算することができる。以上より、

2次元平面回路の計算手順を表 5.2に示す。まずは、入力を含む集中定数回路が接続されている

セルが満たす境界条件の計算を IPEを用いて行う。次に、式 (5.58)を用いて、境界の集中定数

回路が接続されていないセルの電流密度を 0とする。次に、式 (5.59)を用いて集中定数回路が

接続されていない境界と非境界のセルの電位を計算する。最後に、式 (5.39)と (5.40)を用いて

非境界での電流密度の計算を行う。

5.7 結言

本章では、グランド平面の幾何学的構造による CMノイズ現象を定量化するために、3次元

回路の数値計算を実現した。この定式化は本研究でなされたものである。3次元回路計算の類

似手法に PEEC法があるが、変数を別の位置で定義しているため、回路方程式の定式化の際に

連続の式を満たさないなどの問題があった。そこで、本研究では、変数を同じ位置で定義する
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ことでそれを解決し、さらに、有限体積法と FDTD法を組み合わせて、数値計算で用いる方程

式の導出を実現した。さらに、3次元回路の任意の境界に集中定数回路を接続するための境界

条件式を導出し、境界条件の計算コストを削減するためのアルゴリズムについて提案した。本

手法のメリットは、FDTD法を用いているため、PEEC法よりも精度の高い数値計算が可能で

あり、幾何学的構造をより正確に考慮することが可能である。
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第6章 平面回路内に発生するコモンモードノイ

ズ現象の定量化

6.1 緒言

電気回路を構成する導体は 1本線と平面導体、あるいは、2本線とそこから平面導体にグラ

ンドあるいはアースとしてつなぐ構造がよく見かけられる。多導体線路理論では平面導体内の

物理現象を定量的に表現することは難しい。本章ではより現実的な回路系として 1本線と平面

導体、2本線と平面導体、さらには 3本線と平面導体の場合のコモンモードノイズを議論する。

具体的には、5章で導出した 3次元数値計算手法を用いて、有限大のグランド平面構造がCM

ノイズに与える影響を定量化する。その際に、3.2で定量化した 2本線回路のグランドをプリン

ト基板で用いられるような有限大のグランド平面にしたときのCMノイズを定量化する。さら

に、3.4.1で定量化した 3本線回路のグランド線を有限大のグランド平面にした時のCMノイズ

を定量化する。

6.2 有限大のグランド平面回路内に発生するコモンモードノイズ

表 6.1: 第 6章の数値計算で用いたパラメーター

パラメーター 値 パラメーター 値

∆x 0.002 [m] εr 2.2

∆y 0.002 [m] µr 1.0

∆t 9.90 [ps]

本節では、2次元平面回路内に発生する CMノイズ現象を解明するため、まずは最も単純な

信号線とグランド面で構成された回路構造を考える。グランド平面は通常、理想的なグランド

とされており、無限大の大きさをもち、電位は一様であるとされている。そこで、有限大の平
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マッチンググランド平面

信号線

図 6.1: 有限大のグランド平面と信号線をもつ回路。信号線の幅は 0.002 m、グランド平面の

幅は 0.1 m、それぞれの長さはともに 0.1 mの導体を用いた。dはグランド平面の中心からの

接続点のずれを表しており、hは信号線とグランド平面の距離を表している。電源側は内部抵

抗RS = 50 Ωの電圧源 e(t)が接続されており、振幅 10 V、立ち上がり（下がり）時間 1.0 ns、

平坦時間 3.0 nsのパルス波を用いた。負荷側は反射波が最も小さくなる抵抗RLを用いてイン

ピーダンスマッチングをとった。ここで、比誘電率を εr = 2.2、比透磁率を µr = 1.0とした。

面導体を用意し、グランド平面がCMノイズに及ぼす影響を観測する。本章で行なった全ての

数値計算のパラメーターは表 6.2で示した値を用いる。

図 6.1に示す幅 0.001 mの信号線と幅 0.1 mのグランド平面を基準とした回路構造内に発生

するCMノイズを定量化する。それぞれの導体は同じ長さ 0.1 mである。回路の電源側には内

部抵抗 50 Ωの電圧源が接続されており、終端はシミュレーションから導出した反射波が最も

小さくなる値を用いてマッチングをとった。信号線とグランド面の距離によって回路のノーマ

ルモードインピーダンスが変わり、h = 0.001 mのとき、RL = 65 Ω、h = 0.01 mのとき、

RL = 145 Ω、h = 0.1 mのとき、RL = 245 Ωとした。信号線とグランド面の構造と CMノイ

ズの関係について明らかにするために、信号線とグランド面の接続点の中心からのずれ dと信

号線とグランド面の距離 hを変化させてシミュレーションを行なった。

図 6.2は信号線のグランド面の中心からのずれ dを変化させた時の終端の電位U1, U2とNM・

CM電圧 Vn, Vcの時間変化を表している。ここで、信号線とグランド面の距離 hは 0.001 mと

固定した。図 6.2(a),(b),(c)は回路の終端におけるU1, U2を表している。この場合、グランド面

の電位はほぼ 0 Vで信号線の電位が印加した電圧と等しくなっている。また、図 6.2(d),(e),(f)

のは回路の終端における Vnと Vcである。Vcを見ると、Vnのおよそ半分であることがわかる。

また、図 6.2の (a),(b),(c)を比較すると、dが大きくなると、それぞれの信号線の電位が振動

し始めることがわかる。この原因は、信号線のグランド面の中心の位置からのずれにより、幅
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図 6.2: 図 6.1に示す回路の信号線のグランド面の中心からのずれ dを (a),(d) : 0.00m、(b),(e)

: 0.01 m、(c),(f) : 0.02 mと変化させた時の (a),(b),(c) : 電位（U1, U2）と、(d),(e),(f) : NM・

CM電圧（Vn, Vc）の時間変化。この時、信号線とグランド面の距離は h = 0.001 mと固定した。

（y）方向の対称性が崩れたからである。この時、グランド平面の電位は振動し、信号線に影響

を与えているが、それぞれの電位は同じ大きさ同じ位相で振動していため、CM電圧は振動し

ているが、NM電圧は振動していないことがわかる。

次に、信号線とグランド平面との距離 hの影響を調べた。図 6.3は hを 0.001 mから 0.1 m

まで変化させた時のU1, U2と Vn(t), Vc(t)を表している。ここで、グランド平面との接続位置は

d = 0.00 mで固定し、常に中心に接続した。図 6.3(a),(b),(c)を比較すると、信号線とグランド

平面を離すとグランド平面の電位変動の振幅が大きくなり、リンギングが発生していることが

わかる。この振動は回路の両端でそれぞれの電位が全反射されて伝搬（x）方向に振動している

ことがわかった。この現象が起こった原因は、信号線とグランド面を離すとその間の結合が小

さくなり、それぞれの導体単独で電位が伝搬するため、終端では全反射する。図 6.3(d),(e),(f)

は回路終端の Vn(t)と Vc(t)の時間変化を表しており、信号線とグランド面の距離 hの増加に伴

い Vn(t)が大きくなる理由は、回路のNMインピーダンスが大きくなるため、回路に分圧され

る電圧が大きくなっている。また、Vc(t)にもリンギング現象が見られ、この振動の減衰は非常

に遅いことがわかる。この理由は、Vc(t)が両端で全反射し、Vn(t)に変換されていないためで

ある。しかし、3本線回路で明らかにしたように、周りの環境に平面回路が接続されると、発
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図 6.3: 図 6.1に示す回路の信号線とグランド面の距離 hを (a),(d) : 0.00m、(b),(e) : 0.01 m、

(c),(f) : 0.1 mと変化させた時の (a),(b),(c) : 電位（U1, U2）と、(d),(e),(f) : NM・CM電圧

（Vn, Vc）の時間変化。この時、信号線のグランド面の中心からのずれは d = 0.00 mと固定した。

生した CMはNMに変換され、CMノイズが発生する。

次に、信号線とグランド平面の接続位置 dと信号線とグランド平面の距離 hの影響を調べた。

図 6.4は dを 0.00 mから 0.04 mまで変化させた時の回路の終端の U1(t), U2(t)と Vn(t), Vc(t)

を表している。ここで、信号線とグランド平面との距離は h = 0.1 mで固定した。図 6.4に示

す結果より、接続位置をずらすと Vn(t)が大きく振動し始めたことがわかる。図 6.4(a),(d)は伝

搬（x）方向における信号線とグランド面を同相で流れる CMのみであったが、dを大きくし、

接続点をずらすに連れて、グランド平面の電位が伝搬（x）方向だけでなく、幅（y）方向にも

振動し始めた。よって、CM以外の振動がグランド平面に生じ、NM電圧となって変換された。

よって、今回のシミュレーションで NMに生じた電磁ノイズは CMノイズではなく、「グラン

ド電位の伝搬方向以外の振動」によって生じた電磁ノイズである。これは、グラウンドバウン

スと呼ばれる電位変動によって生じる電磁ノイズである [51,52]。以上のシミュレーション結果

から得られた電磁ノイズに関する結果を以下にまとめる。

1. 信号線とグランド平面の形状の非対称性により CM電圧が発生する。

2. 2導体の場合、CM電圧は NM電圧に変換されないため CMノイズは発生しない。（*別

91



V
o

lt
a
g

e
 [
V

]

Time [ns]

V
o

lt
a
g

e
 [
V

]

V
o

lt
a
g

e
 [
V

]

Time [ns] Time [ns]

Time [ns]

V
o

lt
a
g

e
 [
V

]

V
o

lt
a
g

e
 [
V

]

V
o

lt
a
g

e
 [
V

]

Time [ns] Time [ns]

V
o

lt
a
g

e
 [
V

]

(a) (b) (c)

(d) (e) (f)

図 6.4: 図 6.1に示す回路の信号線のグランド面の中心からのずれ dを (a),(d) : 0.00m、(b),(e)

: 0.01 m、(c),(f) : 0.02 mと変化させた時の (a),(b),(c) : 電位（U1, U2）と、(d),(e),(f) : NM・

CM電圧（Vn, Vc）の時間変化。この時、信号線とグランド面の距離は h = 0.1 mと固定した。

の伝送線路と接続すると CMはNMに変換されて CMノイズを発生する [53]。）

3. グランド平面の電位が伝搬方向以外に振動すると、NMに変換されて電磁ノイズの原因と

なる。

4. 信号線がグランド平面と十分に近くすると、グランド平面の電位の変動による電磁ノイ

ズの影響を小さくすることができる。

6.3 有限大のグランド平面と回路の接続によって発生するコモンモー

ドノイズ

4章と 3章で、1次元 3本線回路内に生じるCMノイズの発生起源を解明した。本節では、有

限大のグランド平面に接続された回路内に発生する CMノイズ現象を定量化する。

92



信号線2

グランド平面

信号線1

図 6.5: 一般的に用いられている 2本線回路にグランド平面を接続した構造。回路の信号線は幅

0.002 m、長さ 0.1 mであり、幅W m、長さ 0.1 mの有限大のグランド平面の 0.1 m上に配置

されている。また、2本線回路の信号線は 0.01 m離して配置されている。点線で示された 2本

線回路の中心とグランド面の中心は同じ z − x平面に存在する。2本線回路は RG = 5 Ωの抵

抗を介してグランド平面に接続されており、グランド平面の中心に対してw mだけずれた位置

に接続する。電源側では、50 Ωの内部抵抗を持つ電圧源 e1(t)が接続されている。負荷側では、

回路の反射が最も小さくなる終端抵抗RL = 245 Ωの抵抗が接続されている。ここで、比誘電

率 εr = 2.2、比透磁率 ε = 1.0とした。数値計算では導体空間全体に流れる電位と電流密度の過

渡現象を定量化し、終端の信号線の電位 (U1, U2, U3) とグランド面の電位 (UGU , UGC , UGB)

を観測した。

6.3.1 2本線回路をグランド面に接続した場合に発生するコモンモードノイズ

コモンモードノイズの削減のためには 2本線回路の場合においても、伝送線路の対称化およ

びそれに接続する電子部品をできるだけ対称に配置することが大切である。そのように考慮さ

れている 2本線対称回路は存在し、高周波回路で用いられ、差動伝送線路と呼ばれている [54]。

しかし、コモンモードノイズを考慮していない場合、図 6.5に示すように、回路の片方の信号

線は基準を取るために周りのグランド平面へと接続されている。この場合にはグランド平面は

理想グランドであり、信号が伝播しないことが想定されている。本節では、2本線回路に信号

を入力した際に回路内に発生するコモンモードノイズの過渡現象を定量化することにする。

入力電圧 e1(t)として、振幅 5.0 V、立ち上がり（下がり）時間 1.0 nsパルス波形を用いた。

数値計算では、2本線回路とグランド平面の導体空間全体の電位と電流密度を時間領域で計算

し、図 6.5に示す終端の信号線の電位 (US1, US2) とグランド面の電位 (UGU , UGC , UGB)を観

測した。グランド面の電位を 3点とる理由は、グランド電位の幅（y）方向の電位の変動を調べ
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図 6.6: 図 6.5に示す 2本線回路内の終端における電位とNM・CM電圧の時間変化を計算した

結果を表している。グランド面が信号線と同じ幅（W = 0.002） mの狭い場合 (a),(c)と十分

に広い（W = 0.3 m）場合 (b),(d)でシミュレーションを行なった。(a),(b)は信号線 1（緑）と

信号線 2（橙）、グランド面の中央（黒実線）と上部（黒点線）、下部（黒破線）の電位を表して

いる。(c),(d)は回路内の電位から導出したNM電圧（赤）とCM電圧（青）を表している。グ

ラフの拡大部はパルス波が立ち下がった後の 11nsから 20nsにおける時間変化を表している。

るためである。さらに、2本線回路の終端におけるNM・CM電圧を図 6.5に示す変数を用いて

以下のように定義した。

Vn = US1 − US2 , (6.1)

Vc =
1

2
(US1 + US2)− UGC . (6.2)

まず、グランド平面の形状がCMノイズに及ぼす影響を調べるために、グランド平面の幅W

を信号線と同じ幅である 0.002 mから十分に広い 0.3 mへと変化させた。ここで、グランド平

面への接続点は常に中心（w = 0.0 m）とした。図 6.6は入力側で時刻 t = 0 sにパルス信号を

入力した後の (a),(b)終端電位と (c),(d)NM・CM電圧の時間変化を表している。

図 6.6(a),(b)の電位の時間変化より、信号線 1,2とグランド平面の電位にリンギングが発生
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している。また、2本線回路の信号線 1,2のリンギングの位相は同じで、グランドはそれらと逆

になっている。よって、回路内の電位のリンギングは 2本線回路とグランド平面の間に流れる

CMによって発生している。さらに、電圧源 e1(t)により励起された、(a),(b)の信号線の電位

の振幅を比較すると、信号線 1の電位の振幅が 2に比べて大きくなっている。これは、グラン

ドが広くなるにつれて信号線 1と 2の非対称性が大きくなるためである。よって、信号線 1の

電位が信号線 2に比べてより非対称に分配されるため、Vcが大きくなる。さらに、信号線 1と

2の電位のリンギングの周期を (a)と (b)の拡大したグラフで比較すると、(a)が約 2.0 ns、(b)

が約 2.4 nsと、グランドを広げるとリンギングの周期が長くなっていた。これは、グランドの

電位が伝搬する長さ（x）方向だけでなく幅（y）方向にも振動していることを意味している。

実際、図 6.6(b)の拡大図を見ると、グランドの電位の周期がUGCとUGU, UGBで異なることが

わかる。これは、グランドの中心（UGU）を節として、端（UGU, UGB）を腹として振動してい

ることを意味している。よって、グランド電位の振動が Vcに与える影響を定量化することがで

きた。図 6.6(c),(d)の拡大図を見ると、Vcのリンギングの周期に応じてNMにCMノイズが発

生していることがわかる。

次に、グランド平面との接続点wを変化させ、中心（w = 0.00 m）に接続した場合と、角付近

（w = 0.04 m）に接続した場合の CMノイズを定量化した。ここで、グランドの幅はW = 0.1

mと固定した。図 6.7は数値計算結果を表しており、(a),(b)は終端電位、(c),(d)は NM・CM

電圧である。(a)と (b)のグランド電位の時間変化を比較すると、(b)のグランドの接続点を端

にずらした場合の方がグランド電位の振動が大きくなっている。これは、グランドの角では電

荷密度が大きくなりやすく、電位の変動が大きくなるためである。よって、グランド電位の変

動の増大によって Vcが増加し、回路内に発生するCMノイズも大きくなる。さらに、グランド

電位のリンギングの周期が少し長くなっている。これは、グランドの接続点がグランド電位の

変動源であるため、接続点が中心からずれることによって、グランド電位が幅（y）方向にも振

動し始めたからである。実際、図 6.7(b)の拡大図を見ると、グランド電位がそれぞれの場所で

異なる値を持っている。

6.3.2 3本線対称回路をグランド面に接続した場合に発生するコモンモードノイズ

次に、図 6.8に示す、3本線対称回路にグランド平面を接続した場合に発生する CMノイズ

をグランドの幅W と接続位置 wを変化させて定量化した。数値計算結果は図 6.9に示した通

りである。(a),(c)はグランド幅W を 0.3 mにした時の結果であり、(b),(d)はグランドとの接

続位置wを 0.04 mにした時の結果である。図 6.9(a),(b)を見ると、回路の信号線 1と 2の電位
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図 6.7: 図 6.5に示す 2本線回路内の終端における電位と NM・CM電圧の時間変化を計算し

た結果を表している。グランド面への接続が中心（w = 0.00 m）の場合 (a),(c)とずれた位置

（w = 0.04 m）の場合 (b),(d)でシミュレーションを行なった。(a),(b)は信号線 1（緑）と信号

線 2（橙）、グランド面の中央（黒実線）と上部（黒点線）、下部（黒破線）の電位を表してい

る。(c),(d)は回路内の電位から導出したNM電圧（赤）とCM電圧（青）を表している。グラ

フの拡大部はパルス波が立ち下がった後の 11nsから 20nsにおける時間変化を表している。

は同じ絶対値を持ち、正負対称に分布しており、中心線である信号線 3の電位は常に 0Vであ

る。よって、グランド電位も振動せずに常に 0Vである。この結果より、3本線対称回路はグラ

ンドの形状を変化させても、またグランドのどの位置に回路を接続してもCMノイズは発生し

ないことがわかる。

今回、具体的に考察した簡単な回路系では 3本線回路中央に配置した 3番目の信号線 3は冗

長的だとも考えられる。実際に、真ん中の線を除いた 2本線対称回路も同じように、グランド

平面と信号線を電気的対称に接続するとコモンモードノイズが発生しない。しかし、回路構成

が複雑になった場合には 3番目の信号線の周りに電子部品を対称の位置に配置するという基本

的な考え方が重要になってくる [55]。
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図 6.8: 本研究で導出した、CMノイズを削減する電気的・幾何学的対称構造を有する 3本線回

路をグランド平面に接続した構造を表している。回路の信号線は幅 0.002 m、長さ 0.1 mであ

り、幅W m、長さ 0.1 mの有限大のグランド平面の 0.1 m上に配置されている。また、3本線

回路の信号線は 0.005 m離して配置されている。3本線回路の中心線である信号線 3とグラン

ド面の中心は同じ z − x平面に存在する。3本線回路の中心線は RG = 5 Ωの抵抗を介してグ

ランド平面に接続されており、グランド平面の中心に対して w mだけずれた位置に接続する。

電源側では、50 Ωの内部抵抗を持つ電圧源 e1(t)が接続されている。負荷側では、回路の反射

が最も小さくなる終端抵抗RL = 245 Ωの抵抗が接続されている。ここで、比誘電率 εr = 2.2、

比透磁率 ε = 1.0とした。数値計算では導体空間全体に流れる電位と電流密度の過渡現象を定

量化し、終端の信号線の電位 (U1, U2, U3) とグランド面の電位 (UGU , UGC , UGB)を観測した。

(1) グランド電位の変動によって回路内に発生するCMノイズ

先ほどは、回路の接続によってグランド電位が変動する現象を定量化した。一方で、グラン

ド平面に複数の回路系が接続されている場合、他の機器がグランド平面の電位を変動し、その

影響を受ける可能性がある。そこで、グランド電位を強制的に変動させた時に発生するCMノ

イズの定量化を行う。図 6.10はグランド電位を変動させるための回路系である。図 6.5と図 6.8

に示した 2本線回路と 3本線回路の電位を変動させるために、グランド平面 1と同じ形状のグ

ランド平面 2を用意してその間に集中定数回路を接続することで電位差をかけ、グランド平面

1の電位を変動させた。ここで、用いた信号 e2(t)は、振幅 10 V、立ち上がり（下がり）時間

1.0 nsのパルス波を用いた。さらに、2本線回路と 3本線対称回路の信号 e1(t)は、振幅 0.0V

とし、回路内に信号電圧を入力しない。よって、回路内に発生する Vn(t)は全て Vc(t)がNMに

変換された CMノイズとなる。

図 6.11(a),(b)は 2本線回路と 3本線回路の終端電位の時間変化を表している。結果より、グ
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(a) 3本線回路, W=0.3m (b) 3本線回路, w=0.04m

(c) 3本線回路, W=0.3m (d) 3本線回路, w=0.04m

図 6.9: 図 6.8に示す 3本線回路内の終端における電位とNM・CM電圧の時間変化を計算した

結果を表している。グランド面が十分に広い（W = 0.3 m）場合 (a),(c)とグランドとの接続が

ずれた位置（w = 0.04 m）の場合でシミュレーションを行なった。(a),(b)は信号線 1（緑）と

2（橙）、3（ピンク）、グランド面の中央（黒実線）と上部（黒点線）、下部（黒破線）の電位

を表している。(c),(d)は回路内の電位から導出したNM電圧（赤）とCM電圧（青）を表して

いる。

ランド電位 UGCが信号 e2(t)によって大きく変化していることがわかる。また、グランド電位

が境界で反射することでリンギングが発生している。この時の周期は約 2 nsであった。2 nsを

伝搬距離にに直すと 0.4 mであり、これは入力信号 e2(t)が長さ方向に 2往復伝搬する距離に等

しい。これは、グランド平面 1,2で構成された回路の両端を往復し、1往復ごとに位相が 180 °

変わっていることを意味している。また、負荷側は開放であるため電源側で位相が変化してい

る。図 6.11(a),(b)の拡大図は入力信号 e2(t)が立ち上がった後の時間を表しており、それぞれ

の電位を比較すると、2本線回路の信号線 1,2の電位は異なる値であるのに対して、3本線対称

回路の信号線 1,2の電位は全く同じ値であることがわかる。この電位の違いが電位差を取った

時にノイズとなって現れる成分であり、それは図 6.11(c),(d)で表される。(c)は 2本線回路の

Vn(t), Vc を表しており、CMノイズが Vn(t)の成分として現れている。また、グランド電位を
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信号線3 信号線1
信号線1

信号線2

グランド平面1

グランド平面2

信号線2

グランド平面1

グランド平面2

(b) 3本線対称回路


　＋グランド電位変動回路

(a) 2本線回路


　＋グランド電位変動回路

図 6.10: グランド平面 1の電位変動によるCMノイズ現象を観測するために用いた回路系。グ

ランド平面 1の電位を変動するために同じ形状のグランド平面 2を 0.01 m真下に配置し、それ

らの間に内部抵抗 50 Ωの電圧源 e2(t)をグランド平面 1と 2の中心に接続した。ここで、2本

線回路と 3本線回路の電圧源 e1(t)は信号を発生させず、常に 0Vとした。また、それぞれの回

路の終端には、シミュレーションにより得られた最も反射波が小さくなる抵抗値 RL = 245 Ω

の抵抗を接続し、インピーダンスマッチングを取っている。

変動する信号 e2(t)の立ち上がり（下がり）時に最もCMノイズが大きくなっており、この時、

約 3.5%のグランド電位がCMノイズに変換されていることがわかった。一方、3本線対称回路

の場合は、Vc(t)が回路内に発生しているが、NMに変換されず、CMノイズが発生しないこと

がわかる。この結果より、3本線対称回路を用いると、グランド電位の変動の影響を受けない

ことがわかる。

以上より、2本線回路と 3本線回路のシミュレーション結果を比較すると、グランド面に接

続する際に以下の点に留意しておく必要がある。

1. グランド平面の接続は、グランド電位を変動させる。

2. グランド平面の電位が変動すると、回路内に CMノイズが発生し、他の回路の CMノイ

ズの原因にもなる。

3. グランド平面を用いる際は、グランド平面の電位を変動させず、グランド電位の電位変動

がNMに変換されない回路を設計する必要がある。
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図 6.11: 図 6.10に示す 2本線回路と 3本線回路のグランドを強制的に変化させた時の回路終

端における電位と NM・CM電圧の時間変化を計算した結果を表している。(a),(b)は信号線 1

（緑）と 2（橙）と 3（ピンク）、グランド面の中央（黒実線）の電位を表している。(c),(d)は

回路内の電位から導出したNM電圧（赤）とCM電圧（青）を表している。(a),(b)グラフの拡

大部はパルス波が立ち上がった後における信号線 1と 2の時間変化を表し、(c),(d)は、NM電

圧の時間変化を表している。

6.4 結言

本章では、有限大のグランド平面構造が CMノイズに及ぼす影響を数値計算により調べた。

1本線と 1つのグランド平面で構成された回路では、伝送線路の形状の非対称性により CM電

圧が発生したが、NM電圧には変換されなかった。一方で、グランド電位に伝搬方向とは異な

る向きの振動が存在すると、NM電圧に変換され電磁ノイズが生じた。次に、グランド平面と

の接続によって発生する CMノイズの定量化を行なった。その結果、2本線回路をグランド平

面に接続すると、3本線回路と同様に CMノイズが発生することがわかった。さらに、グラン

ド平面の形状と接続位置によってグランド平面の電位の振動の振る舞いが変化し、CMノイズ

の振動に影響を与えることがわかった。また、3本線対称回路の中心線をグランド平面に接続

した結果、グランド平面の電位を変動させず、CMノイズが発生しないことを示した。さらに、
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グランド平面の電位を強制的に変動させた時に回路内に発生する CMノイズを定量化した。2

本線回路の場合は、グランド電位の変動は回路内のNMに変換されてCMノイズが発生するこ

とを示した。一方、3本線対称回路は CMノイズが発生しないことを示した。よって、本研究

で導出した 3本線対称回路はグランド電位の変動を起こさず、グランド電位の変動による影響

を受けないことを示し、EMC設計に最適な構造であることをシミュレーションで実証した。
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第7章 単純な構造の平面回路内に発生する電磁

ノイズ現象の解析

7.1 緒言

本論文で開発された 3次元回路の数値計算手法はコモンモードノイズの問題だけでなく多くの

電磁ノイズに関する課題に適応することが可能である。その 1例として、プリント基板を使った

簡単な実験を行い、3次元数値計算結果との比較を行った。具体的には、時間領域反射（TDR：

Time Domain Reflectmetry）測定を用いた実験を行なった。複数の屈曲を有する平面回路を作

成し、回路内にステップ電圧を入力し、屈曲によって反射する波形を観測した。また、実験で用

いた平面回路と同じ形状の導体平面を用いて、シミュレーションを行った。実験と数値計算によ

り得られた結果から、屈曲によって反射するノイズ現象のメカニズムを解明し、その対策につ

いて考察した。また、類似手法である部分要素等価回路（PEEC：Partial Element Equivalent

Circuit）法との比較も行なった。

7.2 3次元数値計算手法の実証実験

実験では本研究で開発した数値計算が回路導体の形状を考慮できることを実証するために、

TDRを用いてプリント基板内に生じる反射波を測定した。

(1) 実験器具・装置

TDRによる実験で用いる器具と装置、それらの用途は以下の通りである。

• デジタル・シリアル・アナライザー（DSA）

（メーカー：Tektronix、品名：DSA8200型）

用途：TDR解析のための高性能サンプリング・オシロスコープ

• 電気サンプリングモジュール

（メーカー：Tektronix、品名：80E04型）
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用途：2チャンネル TDRサンプリングモジュール

• EOS/ESDプロテクションモジュール

（メーカー：Tektronix、品名：80A02型）

用途：回路基板やケーブルの過電圧（EOS）や過電流（ESD）からサンプリングモジュー

ルを保護する。

• スタフレックスケーブル

（メーカー：スタック電子、品番：SMA(P)-STF358 ）

用途：高周波計測用同軸ケーブル

• SMAコネクタ

（メーカー：TE Connectivity、品番：5-1814832-1）

用途：TDR測定のために、同軸ケーブルと PCB基板を接続する。

(2) 実験方法

屈曲2

屈曲1

出力端

入力端スタフレックス

ケーブル

SMAコネクタ

図 7.1: TDR実験で用いた回路基板。伝送線路の形状に起因する電磁ノイズ現象を観察するた

めに、2つの屈曲（屈曲 1,屈曲 2）を有する平面回路を用いた。また、平面回路の両面は同じ

形状を有しており、終端は開放端となっている。実験では、入力端に SMAコネクタを接続し

てステップ電圧を入力した。
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RS

図 7.2: 実験と数値計算で用いた回路の形状。幅 5mmの平面回路を用い、回路形状を変化させ

るために 50 mmごとに直角に曲げた屈曲を設けた。平面回路は同じ形状の平面導体で構成さ

れ、それぞれ 1.6 mmだけ離れている。数値計算では、電源側に内部抵抗RS = 50 Ωの電圧源

VS(t)が接続され、立ち上がり時間 0.085 ns、振幅 0.5 Vのステップ電圧を入力した。

TDRによる実験を行い、時間領域における 2次元平面回路の電位差の過渡現象を観測する。

実際の実験には、図 7.1で示した PCB基板を用いた。これは、両面基板であり、両面とも同じ

形状の平面導体である。一般的に、PCB基板の裏面は同じ形状ではなく、広い平面導体になっ

ている。両面とも同じ形状にした理由は、一方をグランド平面にすると、6.4で定量化したよう

にグランド電位の変動により電磁ノイズが発生する可能性があるため、グランド平面による影

響をなくすためである。この平面回路の入力端に SMAコネクタを半田付けし、スタフレック

スケーブルとデジタル・シリアル・アナライザーを接続し、TDR測定を行った。この基板は図

7.1に示すように、屈曲構造を 2箇所有し、終端は開放端となっている。TDR測定では、屈曲

による反射波を観測する。

図 7.2は実験と数値計算で用いた平面回路の形状を表している。50 mmごとに屈曲がある幅

5 mmの平面導体が 1.6 mm離れて配置されている。数値計算の電源側には内部抵抗 50 Ωの電

圧源 VS(t)が接続されている。一方、実験は SMAコネクタを介して同軸線路と接続されてい

る。入力電圧の波形は振幅 0.5 V、立ち上がり時間 0.085 nsのステップ電圧を用いた。

(3) 実験と数値計算結果

図 7.3は実験結果（赤実線）と数値計算結果（青点線）を表している。この結果は、平面回

路に入射したステップ電圧が立ち上がった後の時間変化を表している。ここで、反射波が認識

できるように、平面回路のステップ電圧分だけ負のオフセットをかけ、反射波がない状態は 0

Vとなるようにした。結果より、実験と数値計算ともに波形が歪み、2つの屈曲において反射
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図 7.3: 図 7.2の回路系を用いて行なった実験（赤実線）と数値計算結果（青点線）を比較した。

表 7.1: 第 7章の数値計算で用いたパラメーター

パラメーター 値 パラメーター 値

∆x 1.00 [mm] εr 3.8

∆y 1.00 [mm] µr 1.0

∆t 3.25 [ps]

波が発生している。また、数値計算は実験で得られた反射ノイズの波形を再現していることが

わかる。よって、実験結果との比較によって本研究で開発した 3次元回路の数値計算手法の妥

当性を証明することができた。

7.3 2次元平面回路の屈曲によって発生する反射ノイズのメカニズム

本節では、本研究手法の数値計算で得られた結果から、伝送線路の屈曲で起こる反射ノイズ

のメカニズムについて考察する。平面回路の屈曲による反射は、伝送線路の余分なキャパシタ

ンス成分が原因となっていることが言われている [56,57]。反射ノイズ現象と波形の関係につい

て考察し、反射ノイズが発生しない回路構造を提案する。

図 7.4は数値計算結果と屈曲部を拡大した図を表している。(b)の実験と数値計算で得られた
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(a) 屈曲部の拡大図 (b) 数値計算と実験の結果

図 7.4: (a)は屈曲部の拡大図。(b)は実験（赤実線）と数値計算（青点線）の結果で、屈曲部に

よる反射を拡大したもの。緑と紫で囲んだ部分が屈曲部の開始と終端で反射した波形と対応し

ている。

波形には下に凸と上に凸の大きな反射波が生じている。過渡解析の結果、図 7.4(b)の緑と紫で

囲んだ反射波は、図 7.4(a)の緑と紫で囲んだ屈曲部で生じていることがわかった。極性が異な

る理由は、屈曲の開始（緑）と終わり（紫）で伝送線路のインピーダンスが変化するためであ

る。屈曲の開始では、伝送線路の幅が急に広くなるためにインピーダンスが低くなり、大きな

下に凸の反射波が生じている。一方、屈曲の終わりは開放端となっているためインピーダンス

が高くなり、上に凸の反射波が生じる。

以上の考察結果から、伝送線路内の屈曲による反射波ノイズは伝送線路の幅の変化で生じて

いることがわかった。そこで、反射波が生じない回路形状は屈曲の際に伝送線路の幅が変化し

なければ良いことがわかる。そこで図 7.5(a)に示すように屈曲部分の伝送線路の幅が一定にな

るように、角の青斜線で示した部分を取り除いた形状でシミュレーションを行った。その結果

が図 7.5(b)となる。対策前の数値計算結果（青点線）と対策後（紫実線）を比較すると、反射

波が大きく削減されていることがわかる。以上より、本計算手法を用いることで、実装前にノ

イズが小さくなる配線形状をシミュレーションすることができる。

7.4 本研究手法と従来手法との比較

次に、3次元回路計算を行う部分要素等価回路（PEEC：Partial Element Equivalent Circuit）

法との比較を行った。PEEC法は本研究と同じ方程式を用いて 3次元導体空間を有限体積で分

割して数値計算する。分割した導体を等価回路モデルに変換することで 3次元回路内の物理現
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(a) 屈曲部の拡大図 (b) ノイズ対策前後の数値計算結果

同一幅にする

図 7.5: (a)は反射ノイズを低減するために屈曲部で同一幅になるように角を削り、対策を施し

た屈曲部を表している。(b)は対策前（青点線）と後（紫実線）を表している。

表 7.2: 本研究手法と PEEC法の相違点

本研究手法 PEEC法

空間の分割方法 図 7.6(a) 空間分割 1 図 7.6(b) 空間分割 2

方程式の離散化
有限体積法・FDTD法 [58, 59] SPICEで用いる方法 [60]

（時空間の偏微分方程式） （時間の常微分方程式）

インピーダンスの数値計算
P：体積積分 P：表面積分

L：体積積分 L：体積積分

象を SPICEなどの汎用回路シミュレーターで計算することができる。PEEC法と本研究の数

値計算手法との詳細な比較は付録 Cで行うが、相違点は表 7.4の通りである。まず、空間分割

の方法が異なり、それぞれの空間分割方法は図 7.6で示すように、本研究手法の空間分割は全

ての場所で同じ形状にしているが、PEECで用いる空間分割は境界で形状を細かくしている。

次に、方程式の離散化の方法が異なる。本研究手法は FDTD法で用いられている leap-frog法

を用いて時空間の偏微分方程式を中心差分を用いて差分化する。この際、変数の定義する時間

と空間が差分幅の半分だけずれている。一方で、PEEC法は SPICEで用いられている数値計

算手法を用いて計算する。SPICEは回路方程式である常微分方程式を数値計算する。次にイン

ピーダンスの数値計算の方法が異なる。本研究手法では、離散化した有限体積間のインピーダ

ンスはPと Lともに体積積分を用いて数値計算をするが、PEEC法はPは表面積分を用いる一

方、Lは体積積分を用い、それぞれ異なる積分範囲で Pと Lを計算している。
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(a) 空間分割1 (a) 空間分割2

図 7.6: 数値計算で用いる電位と電荷密度が定義された空間の離散化方法を表している。(a)は

本研究で用いた空間分割で、(b)はPEEC法で用いられている空間分割を表している。(a)は全

て同じ大きさの有限体積を用いているが、(b)は境界だけ有限体積が小さくなるように分割され

ている。

実験

本研究手法

電
圧

 [
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]

時間 [ns]

PEEC法 (空間分割1)

PEEC法 (空間分割2)

図 7.7: PEEC法を用いた数値計算（緑実線、黒実線）と本研究手法を用いた数値計算（青点

線）と実験結果（赤実線）を比較したものを表している。PEEC法による数値計算では、空間

分割の方法を図 7.6に示すように、本研究手法で用いている空間分割 1（黒実線）と PEEC法

で用いている空間分割 2（緑実線）を用いた。

108



図 7.7は本研究手法とPEEC法の数値計算結果と実験結果を比較したものである。これより、

本研究手法はPEEC法で得られた数値計算結果よりも実験結果をより精度よく再現しているこ

とがわかる。また、空間の分割の方法によって結果が大きく変わっていることがわかる。空間

分割 1（緑実線）と空間分割 2（黒実線）の PEEC法で得られた結果を比較すると、空間分割

1の数値計算結果の方が実験により似た波形であることがわかる。空間分割 2は PEEC法でよ

く用いられる分割方法であるが、計算結果に大きな違いが得られた原因は、分割した微小体積

の大きさが境界では異なるため、数値計算の値が更新された時に遷移する速度が場所によって

異なっていることが考えられる。その理由は、1.25 ns付近で観測できる終端での反射が他の手

法よりも早く到達し、空間分割 2で得られた波形の伝搬速度は他の手法よりも早くなっている

ことから推測できる。

7.5 結言

本章では、第 5章で考案した 3次元回路の数値計算手法により簡単な回路での数値計算を行っ

た。その比較として屈曲を有する平面回路の実験も行った。具体的には屈曲を有する平面回路

を用いてTDR（時間領域反射）測定を行った。その結果、本研究手法の数値計算で得られた結

果は、実験で得られた波形を再現していることがわかった。また、類似手法である PEEC法と

比較した結果、本研究手法の精度がより高いことを実証した。シミュレーションによる過渡応

答から、屈曲による反射ノイズのメカニズムを解明し、反射ノイズを対策する配線形状を提案

した。提案形状でシミュレーションを行うと反射ノイズを削減することを実現し、本研究手法

のノイズ対策の応用例を示した。
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第8章 結論

現代社会ではほとんど全ての場面で電気が使われている。電気回路を取り囲む導体を使って

伝わるコモンモードはその正体も明らかではなく、設計した回路を使う際に取り除き難いコモ

ンモードノイズを生じる。本論文では理論の定式化と数値計算、さらに実験的手法を使って、

このコモンモードノイズの発生起源を明らかにし、適切なノイズ除去方法について提案した。

8.1 本研究のまとめ

本論文は電気回路内に発生するコモンモード（CM）が信号であるノーマルモード（NM）に

変換され、歪曲するCMノイズ現象の起源を解明するために行った研究をまとめたものである。

CMノイズを定量化するためにマクスウェル方程式に基づく理論と数値計算手法の開発、実験

による検証を行った。本研究の内容を以下にまとめる。

(1) 1次元回路のコモンモードノイズ現象解明のための理論構築と数値計算手法の開発

第 2章では、1次元回路内に発生する CMノイズを定量化するために、マクスウェル方程式

とオームの法則、連続の式を用いることで、多導体線路内の電位と電流に関する電信方程式を

導出した。また、最も単純な回路を 2本の伝送線路で表した 2本線回路と周りの環境導体を考

慮した 3本線回路内のNMと CMを定義した。導出した多導体線路の電信方程式から、2本線

回路と 3本線回路のNMとCMの電信方程式を導出した。偏微分方程式である電信方程式を時

間領域で計算するために時間領域差分（FDTD : Finite-Difference Time-Domain)法を用いた

数値計算手法を導出した。さらに、終端で集中定数回路を任意に接続する境界条件の計算手法

を導出した。

(2) 1次元回路内に発生するコモンモードノイズの起源の解明

第 3章と第 4章では、2本線回路と 3本線回路を用いて、1次元回路内に発生するCMノイズ

現象の起源を解明した。第 3章では、数値計算と実験を用いてCMノイズを定量化し、第 4章
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では、NMと CMの電信方程式を用いて解析的に CMノイズ現象の起源を明らかにした。2本

線回路では、対称構造を有する平行 2本線路と非対称構造を有する同軸線路を用い、CMノイ

ズについて以下の点を明らかにした。

1. 幾何学的非対称構造とインピーダンスの場所依存性がある場合、CMノイズが発生

2. インピーダンスが変化する場所とNMと CMが時間変化する時に CMノイズが発生

次に、3本線回路の電気的構造と幾何学的構造によって発生する以下の CMノイズの起源を

明らかにした。

1. 電気的・幾何学的構造のどちらかに非対称性があると CMノイズが発生する

2. 電気的対称性はCMからNMへの変換に寄与し、幾何学的対称性はNMからCMへの変

換に寄与している

3. 電気的・幾何学的対称構造が CMノイズを発生しない唯一の構造である

(3) 3次元回路内の数値計算手法の開発

第 5章では、有限大のグランド平面の影響を考慮するために、3次元回路の数値計算手法を

開発した。これまでは、満足すべき 3次元回路理論が存在しなかったので、本論文で初めて 3

次元回路における数値計算手法を定式化した。さらに数値計算のためのプログラムも自らで開

発し実際の数値計算も行った。これまでは、現象を単純化するために 1次元回路を用いて CM

ノイズ現象の発生起源の解明を行った。しかし、実際の回路の環境はグランドや筐体などの 2

次元または 3次元構造を有している。そこで、環境導体の構造を考慮するために 3次元数値計

算手法の開発を行った。3次元回路の数値計算では、マクスウェル方程式からゲージ変換を用い

て導出される電位（スカラーポテンシャル）とベクトルポテンシャルに関する積分方程式、偏

微分方程式である連続の式とオームの法則を数値計算するための差分方程式を導出した。さら

に、集中定数回路を 3次元回路の任意の境界に接続できる境界条件の計算手法も考案した。

(4) 有限大のグランド平面の構造が起因となって発生するコモンモードノイズ

第 6章では、開発した 3次元回路の数値計算手法を用いて、グランド平面構造が原因で発生

するCMノイズ現象を定量化した。実際の回路の周囲環境はグランドや筐体などの 2次元ある

いは 3次元構造を有する。しかし、従来法では理想グランドを用いており、グランド形状は考
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慮されていなかった。そこで、グランドが有限大の平面構造をもつ場合に発生するCMノイズ

の定量化を行った結果、以下の点を明らかにした。

1. グランド平面の形状や接続位置が CMノイズに影響を及ぼす

2. 電気的・幾何学的対称構造を用いると CMノイズを発生させず、グランド平面の形状の

影響を受けない

以上より、CMノイズを発生させずに信号伝送するためには 3本線対称回路構造が最適である

ことをシミュレーションにより実証した。

(5) 開発した 3次元回路の数値計算手法の妥当性を実証

第 7章では、本数値計算手法の妥当性を検証するめに実験との比較を行った。屈曲を有する

2つの平面回路を用いた実験と本数値計算手法の結果を比較すると屈曲の形状を正確に再現し

ていることを実証した。さらに、類似手法である部分要素等価回路（PEEC：Partial Element

Equivalent Circuit）法と比較すると、本研究手法の方がより正確に再現できることを実証した。

8.2 今後の展望

本研究では、数値計算手法を 3次元へと拡張することを実現し、任意の形状の導体内に発生

するCMノイズ現象の定量化を可能にした。今後は、数値計算の残された課題の解決による計

算手法の拡張とより現実に近い系でのCMノイズ現象の解明を実現することでCMノイズが発

生しない回路設計のさらなる実用化が期待できる。

(1) 遅延時間を考慮した 3次元時間領域数値計算手法の実現

本研究で用いる基本方程式に電位（スカラーポテンシャル）とベクトルポテンシャルの積分

方程式があり、それらの積分計算には遅延時間が含まれている。この遅延時間は数値計算の不

安定性の原因となる問題があり [49,50]、集中定数回路と 3次元回路を接続する数値計算は未だ

実用化されていない。遅延時間を考慮することで放射による損失が考慮でるようになる [26]。

本研究で取り扱ったグランド平面内の数値計算に遅延時間を入れると電位変動が小さくなると

いう報告もある [61]。よって、より高精度な数値計算を実現するためには遅延時間を考慮した

3次元数値計算手法の開発を実現する必要がある。これを実現することで、遅延時間がグラン
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ド平面の電位変動に及ぼす影響を明らかにし、我々がこれまで理想としていたグランド平面内

に起こる物理現象をより高精度に解明することができ、回路設計におけるグランド平面の幾何

学的構造の最適化が可能になる。

(2) 多層平面回路内に発生するコモンモードノイズ現象の解明と実験検証

本研究で行った平面回路の数値計算では、信号線とグランド層の合計 2層を用いた数値計算

を行った。しかし、CMノイズは他にも 3層で構成された回路内に発生する現象が報告されて

いる [14]。より現実に近い回路系でシミュレーションをするためには、3層以上でのシミュレー

ションと実験による妥当性を検証する必要がある。多層平面回路内に発生するCMノイズ現象

の解明を実現すると、1次元回路シミュレーションで実現したように、CMノイズが発生しな

い回路構造の考案が期待できる。

(3) 異なる構造を有する伝送線路との接続によるコモンモードノイズ現象の解明

これまでは、信号を入力する際に集中定数回路と 3次元回路を接続してシミュレーションを

行っていたが、実際の回路は同軸線路などのケーブルから入力されている。本研究で定量化し

たように、同軸線路などに電位差をかけるとCMが発生する。よって、実際の入力にはCMも

同時に入力されているが、集中定数回路からの入力にはCMが考慮されていない。さらに、異

なる伝送線路の形状を接続する際には伝送線路の幾何学的構造の対称性の違いによってNMと

CMがカップリングする [62]。異なる構造を有する伝送線路の接続によって発生する CMノイ

ズの定量化が実現されると、実際の実験系に近い回路系でのシミュレーションが可能になる。
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付 録A 2本線回路と3本線回路内における

ノーマルモード・コモンモード電信方

程式の導出

本章では、本研究で用いる 2本線回路と 3本線回路内におけるNMとCMの電信方程式の導

出を行う。用いる関係式は、第 2 で導出した多導体線路における電信方程式と、第 3章で定式

化したNMと CMである。

A.1 2本線回路内におけるノーマルモード・コモンモード電信方程式

の導出

2本線回路内のノーマルモードとコモンモードに流れる電圧と電流は以下のように表される。

Vn(x, t) = U1(x, t)− U2(x, t) , (A.1)

Vc(x, t) =
1

2
(U1(x, t) + U2(x, t)) , (A.2)

In(x, t) =
1

2
(I1(x, t)− I2(x, t)) , (A.3)

Ic(x, t) = I1(x, t) + I2(x, t) . (A.4)

また、2本線回路内の電位と電流に関する伝搬方程式は以下のように表される。

∂Ui(x, t)

∂t
= −

2∑
j=1

Pij(x, t)
∂Ij(x, t)

∂x
, (A.5)

∂Ui(x, t)

∂x
= −

2∑
j=1

Lij(x, t)
∂Ij(x, t)

∂t
−RiIi(x, t) . (A.6)

式 (2.44)の両辺を tで微分する。

∂Vn(x, t)

∂t
=

∂U1(x, t)

∂t
− ∂U2(x, t)

∂t
(A.7)

さらに、式 (A.5)を代入する。ここで、xと tに関する微分記号をそれぞれチルダ記号 (˜ )と

ハット記号 (ˆ)で表す。また、以下の関係式を用いることで、和と差の式に分離することがで
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きる。

AI1 +BI2 =
1

2
(A+B)(I1 + I2) +

1

2
(A−B)(I1 − I2) . (A.8)

よって式 (A.5)を用いて、ノーマルモードについて解くと、以下のように表すことができる。

V̂n = Û1 − Û2 ,

= −
(
P11Ĩ1 + P12Ĩ2

)
+
(
P21Ĩ1 + P22Ĩ2

)
,

= − (P11 − P21) Ĩ1 − (P12 − P22) Ĩ2 ,

= −1

2
[(P11 − P21) + (P12 − P22)]

(
Ĩ1 + Ĩ2

)
− [(P11 − P21)− (P12 − P22)]

1

2

(
Ĩ1 − Ĩ2

)
,

= −PnnĨn − PncĨc . (A.9)

ここで、それぞれの電位係数は以下のように表される。

Pnn = P11 − P21 − P12 + P22 , (A.10)

Pnc =
1

2
(P11 − P21 + P12 − P22) . (A.11)

次に、式 (A.5)を用いてコモンモードについて解くと、以下のように表すことができる。

V̂c =
1

2

(
Û1 + Û2

)
,

=
1

2

[
−
(
P11Ĩ1 + P12Ĩ2

)
−
(
P21Ĩ1 + P22Ĩ2

)]
,

= −1

2

[
(P11 + P21) Ĩ1 + (P12 + P22) Ĩ2

]
,

= −1

2

[
1

2
{(P11 + P21) + (P12 + P22)}

(
Ĩ1 + Ĩ2

)
+ {(P11 + P21)− (P12 + P22)}

1

2

(
Ĩ1 − Ĩ2

)]
,

= −PcnĨn − PccĨc . (A.12)

ここで、それぞれの電位係数は以下のように表される。

Pcn =
1

2
(P11 + P21 − P12 − P22) ,

Pcc =
1

4
(P11 + P21 + P12 + P22) . (A.13)
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次に、式 (A.6)を用いてノーマルモードについて解くと、以下のように表される。

Ṽn = Ũ1 − Ũ2 ,

= −
(
L11Î1 + L12Î2

)
−R11Î1 +

(
L21Î1 + L22Î2

)
+R22Î2 , (A.14)

= −1

2
[(L11 − L21) + (L12 − L22)]

(
Î1 + Î2

)
− [(L11 − L21)− (L12 − L22)]

1

2

(
Î1 − Î2

)
−
[
1

2
(R11 −R22) (I1 + I2) + (R11 +R22)

1

2
(I1 − I2)

]
,

= −LnnÎn − LncÎc −RnnIn −RncIc . (A.15)

ここで、それぞれの成分の係数であるインダクタンスと抵抗は以下のように表される。

Lnn = (L11 − L21)− (L12 − L22) , (A.16)

Lnc =
1

2
[(L11 − L21) + (L12 − L22)] , (A.17)

Rnn = R11 +R22 , (A.18)

Rnc =
1

2
(R11 −R22) . (A.19)

次に、式 (A.6)を用いてコモンモードについて解くと、以下のように表される。

V̂c =
1

2

(
Û1 + Û2

)
,

=
1

2

[
−
(
L11Ĩ1 +R11I1 + L12Ĩ2

)
−
(
L21Ĩ1 + L22Ĩ2 +R22I2

)]
,

= −1

2

[
(L11 + L21) Ĩ1 + (L12 + L22) Ĩ2

]
− 1

2
(R11I1 +R22I2) ,

= −1

2

[
1

2
{(L11 + L21) + (L12 + L22)}

(
Ĩ1 + Ĩ2

)
+ {(L11 + L21)− (L12 + L22)}

1

2

(
Ĩ1 − Ĩ2

)]
−1

2

[
1

2
(R11 +R22) (I1 + I2) + (R11 −R22)

1

2
(I1 − I2)

]
,

= −LcnĨn − LccĨc −RcnIn −RccIc . (A.20)

それぞれの成分の係数であるインダクタンスと抵抗は以下のように表される。

Lcn =
1

2
(L11 + L21 − L12 − L22) , (A.21)

Lcc =
1

4
(L11 + L21 + L12 + L22) , (A.22)

Rcn =
1

2
(R11 −R22) , (A.23)

Rcc =
1

4
(R11 +R22) . (A.24)
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A.2 3本線回路内におけるノーマルモード・コモンモード電信方程式

の導出

2本線回路の場合と同様に導出することができる。3本線回路内のノーマルモードとコモン

モードに流れる電圧と電流は以下のように表される。

Vn(x, t) = U1(x, t)− U2(x, t) , (A.25)

Vc(x, t) =
1

2
(U1(x, t) + U2(x, t))− U3(x, t) , (A.26)

In(x, t) =
1

2
(I1(x, t)− I2(x, t)) , (A.27)

Ic(x, t) =
1

2
(I1(x, t) + I2(x, t)− I3(x, t)) . (A.28)

また、3本線回路内の電位と電流に関する電信方程式は以下のように表される。

∂Ui(x, t)

∂t
= −

3∑
j=1

Pij(x, t)
∂Ij(x, t)

∂x
, (A.29)

∂Ui(x, t)

∂x
= −

3∑
j=1

Lij(x, t)
∂Ij(x, t)

∂t
−RiIi(x, t) . (A.30)

ここで、I1 + I2 + I3 = 0とし、外部からこの回路系は閉じているとみなす。式 (A.25)の両辺

を tで微分する。

∂Vn(x, t)

∂t
=

∂U1(x, t)

∂t
− ∂U2(x, t)

∂t
. (A.31)

さらに、式 (A.29)を代入する。ここで、xと tに関する微分記号をそれぞれチルダ記号 (˜ と

ハット記号 (ˆ)で表す。また、以下の関係式を用いることで、和と差の式に分離することがで

きる。

AI1 +BI2 =
1

2
(A+B)(I1 + I2) +

1

2
(A−B)(I1 − I2) . (A.32)
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よってノーマルモード方程式は以下のように導出することができる。

V̂n = Û1 − Û2 = −
(
P11Ĩ1 + P12Ĩ2 + P13Ĩ3

)
+
(
P21Ĩ1 + P22Ĩ2 + P23Ĩ3

)
,

= (−P11 + P21) Ĩ1 + (−P12 + P22) Ĩ2 + (P13 + P23) Ĩ3 ,

= −1

2
[(P11 − P21) + (P12 − P22)]

(
Ĩ1 + Ĩ2

)
− 1

2
[(P11 − P21)− (P12 − P22)]

(
Ĩ1 − Ĩ2

)
+ (−P13 + P23) Ĩ3 ,

= − [(P11 − P21)− (P12 − P22)]
1

2

(
Ĩ1 − Ĩ2

)
−

[
1

2
[(P11 − P21) + (P12 − P22)] + (P13 − P23)

]
1

2
((I1 + I2) + I3)

−
[
1

2
[(P11 − P21) + (P12 − P22)]− (P13 − P23)

]
1

2
((I1 + I2)− I3) ,

= −PnĨn − PncĨc . (A.33)

よって、ノーマルモードに関する方程式を導出することができた。それぞれの電位係数は以下

のように表される。

Pnn = (P11 − P21)− (P12 − P22) , (A.34)

Pnc =
1

2

[
(P11 − P21) + (P12 − P22)

]
− (P13 − P23) . (A.35)
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同様にコモンモード方程式について導出する。式 (A.26)の両辺を tで微分し、式 (A.29)を代入

する。

V̂c =
1

2
(Û1 + Û2)− Ũ3 ,

= −1

2
(P11 + P21 − 2P31)Ĩ1 −

1

2
(P12 + P22 − 2P32)Ĩ2 −

1

2
(P13 + P23 − 2P33)Ĩ3 ,

= −1

2

[1
2
(P11 + P21 − 2P31) +

1

2
(P12 + P22 − 2P32)

]
(Ĩ1 + Ĩ2)

−1

2

[1
2
(P11 + P21 − 2P31)−

1

2
(P12 + P22 − 2P32)

]
(Ĩ1 − Ĩ2)

−1

2
(P13 + P23 − 2P33)Ĩ3 ,

= −
[1
2
(P11 + P21 − 2P31)−

1

2
(P12 + P22 − 2P32)

]1
2
(Ĩ1 − Ĩ2)

−

[
1

2

[1
2
(P11 + P21 − 2P31) +

1

2
(P12 + P22 − 2P32)

]
− 1

2
(P13 + P23 − 2P33)

]
×1

2

(
(Ĩ1 + Ĩ2) + Ĩ3

)
−

[
1

2

[1
2
(P11 + P21 − 2P31) +

1

2
(P12 + P22 − 2P32)

]
− 1

2
(P13 + P23 − 2P33)

]
×1

2

(
(Ĩ1 + Ĩ2)− Ĩ3

)
,

= −PcnĨn − PccĨc . (A.36)

以上より、コモンモード方程式を導出することができた。それぞれの係数は以下のように表さ

れる。

Pcn =
1

2
(P11 + P21 − 2P31)−

1

2
(P12 + P22 − 2P32) , (A.37)

Pcc =
1

2

[1
2
(P11 + P21 − 2P31) +

1

2
(P12 + P22 − 2P32)

]
− 1

2
(P13 + P23 − 2P33) .

(A.38)

本研究で用いる伝送方程式は電位係数を用いているため上記の計算のように電位の足し合わせ

ができため、コモンモード方程式を導くことが可能である。式 (A.30)からも同様にノーマル

モードとコモンモード方程式を導くことができる。以上の結果を以下にまとめる。

∂Vn(z, t)

∂t
= −Pnn

∂In(z, t)

∂z
− Pnc

∂Ic(z, t)

∂z
, (A.39)

∂Vc(z, t)

∂t
= −Pcn

∂In(z, t)

∂z
− Pcc

∂Ic(z, t)

∂z
, (A.40)

∂Vn(z, t)

∂z
= −Lnn

∂In(z, t)

∂z
− Lnc

∂Ic(z, t)

∂t
, (A.41)

∂Vc(z, t)

∂x
= −Lcn

∂In(z, t)

∂t
− Lcc

∂Ic(z, t)

∂t
. (A.42)
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式 (A.39)と (A.41)はノーマルモード方程式を表しており、式 (A.40)と (A.42)はコモンモー

ド方程式を表している。これらの方程式をみると、ノーマルモード方程式にコモンモードの項

が含まれており、コモンモード方程式にもノーマルモードの項が含まれていることがわかる。

これより、3本線回路を用いることでそれぞれのモード間はカップリングしていることが理論

的に証明できる。

A.3 3本線回路の境界の集中定数回路におけるノーマルモード・コモ

ンモード方程式の導出

図 4.2の 3本線回路の両端に接続された集中定数回路が満たすノーマルモードとコモンモー

ドの関係式を導出する。

I1(0, t) = −I13(t)− I12(t) , (A.43)

I2(0, t) = I12(t)− I23(t) , (A.44)

I3(0, t) = I23(t) + I13(t) . (A.45)

BCEは以下の通り。

U1(0, t)− U2(0, t) = R12I12(t) + V12(t) , (A.46)

U2(0, t)− U3(0, t) = R23I23(t) + V23(t) , (A.47)

U1(0, t)− U3(0, t) = R13I13(t) + V13(t) . (A.48)

よって

I12(t) =
U1(0, t)− U2(0, t)

R12
− V12(t)

R12
=

Vn(0, t)

R12
− V12(t)

R12
, (A.49)

I23(t) =
U2(0, t)− U3(0, t)

R23
− V23(t)

R23
= −Vn(0, t)

2R23
+

Vc(0, t)

R13
− V13(t)

R13
, (A.50)

I13(t) =
U1(0, t)− U3(0, t)

R13
− V13(t)

R13
=

Vn(0, t)

2R13
+

Vc(0, t)

R13
− V13(t)

R13
. (A.51)
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と表すことができる。In(0, t), Ic(0, t)を Vn(0, t), Vc(0, t)で表す。

In(0, t) =
1

2

(
I1(0, t)− I2(0, t)

)
=

1

2

(
− 2I12(t)− I13(t) + I23(t)

)
,

= −
(Vn(0, t)

R12
− V12(t)

R12

)
− 1

2

(
− Vn(0, t)

2R23
+

Vc(0, t)

R13
− V13(t)

R13

)
+
1

2

(Vn(0, t)

2R13
+

Vc(0, t)

R13
− V13(t)

R13

)
,

= −
( 1

R12
− 1

4R23
− 1

4R13

)
Vn(0, t)−

( 1

2R13
− 1

2R23

)
Vc(0, t)

+
(V12(t)

R12
− V23(t)

2R23
+

V13(t)

2R13

)
,

Ic(0, t) =
1

2
(I1(0, t) + I2(0, t)− I3(0, t)) = −I23(t)− I13(t) ,

= −
(
− Vn(0, t)

2R23
+

Vc(0, t)

R13
− V13(t)

R13

)
−
(Vn(0, t)

2R13
+

Vc(0, t)

R13
− V13(t)

R13

)
,

=
( 1

2R23
− 1

2R13

)
Vn(0, t)−

( 1

R23
+

1

R13

)
Vc(0, t) +

(V23(t)

R23
+

V13(t)

R13

)
.

これより、電源 V12(t), V23(t), V13(t)は、ノーマルモード電流源 In0(t)とコモンモード電流源

Ic0(t)に変換され、それぞれ以下のように表される。

In0(t) =
V12(t)

R12
− V23(t)

2R23
+

V13(t)

2R13
, (A.52)

Ic0(t) =
V23(t)

R23
+

V13(t)

R13
. (A.53)

以上より、ノーマルモード電流とコモンモード電流は以下のように表すことができる。

In(0, t)

Ic(0, t)

 =

−
(

1
R12

− 1
4R23

− 1
4R13

) (
1

2R13
− 1

2R23

)
(

1
2R23

− 1
2R13

)
−
(

1
R23

+ 1
R13

)

Vn(0, t)

Vc(0, t)

+

In0(t)

Ic0(t)

 .

さらに、ノーマルモード電圧とコモンモード電圧について解くと、Vn(0, t)

Vc(0, t)

 =


(

1
R12

− 1
4R23

− 1
4R13

)
−
(

1
2R13

− 1
2R23

)
−
(

1
2R23

− 1
2R13

) (
1

R23
+ 1

R13

)


−1In(0, t)

Ic(0, t)



−


(

1
R12

− 1
4R23

− 1
4R13

)
−
(

1
2R13

− 1
2R23

)
−
(

1
2R23

− 1
2R13

) (
1

R23
+ 1

R13

)


−1ISn(t)

ISc(t)

 . (A.54)

となる。ここで、電源側の集中定数回路に流れるノーマルモードとコモンモードの電流源と抵
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抗を以下の行列で表す。

I0(t) =

In0(t)

Ic0(t)

 , (A.55)

R0 =

Rnn Rnc

Rcn Rcc

 , (A.56)

=


(

1
R12

− 1
4R23

− 1
4R13

)
−
(

1
2R13

− 1
2R23

)
−
(

1
2R23

− 1
2R13

) (
1

R23
+ 1

R13

)


−1

. (A.57)

よって、ノーマルモード電圧とコモンモード電圧は行列を用いて以下のように表すことがで

きる。

V (0, t) = R0I(0, t)−R0I0(t) . (A.58)

次に式 (A.57)の逆行列の成分を求める。逆行列の係数を 1/Aとおくと、

A =
1

2

( 2

R12
+

1

2R13
+

1

2R23

)( 1

R13
+

1

R23

)
−
(1
2

)2( 1

R13
− 1

R23

)2
,

=
1

R12

( 1

R13
+

1

R23

)
+

1

4

( 1

R13
+

1

R23

)2
− 1

4

( 1

R13
− 1

R23

)2
,

=
1

R12

( 1

R13
+

1

R23

)
+

1

R13R23
,

=
1

R12R13
+

1

R12R23
+

1

R13R23
,

1

A
=

R12R23R13

R12 +R23 +R13
. (A.59)

以上より、式 (A.57)の要素は以下のように表される。

Rnn =
R12R23R13

R12 +R23 +R13

( 1

R13
+

1

R23

)
,

=
R12R23R13

R12 +R23 +R13
· R23 +R13

R13R23
,

=
R12

(
R23 +R13

)
R12 +R23 +R13

, (A.60)

Rcc =
R12R23R13

R12 +R23 +R13
· 1
2

( 2

R12
+

1

2R13
+

1

2R23

)
,

=
R12R23R13

R12 +R23 +R13

4R23R13 +R12R23 +R13R12

4R12R23R13
,

=
1

4

4R23R13 +R12R23 +R13R12

R12 +R23 +R13
, (A.61)

Rnc = Rcn =
R12R23R13

R12 +R23 +R13
· −1

2

( 1

R13
− 1

R23

)
,

=
1

2

R12(R13 −R23)

R12 +R23 +R13
. (A.62)
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負荷側（x = L）の境界でも同様に導出することができ、この時、集中定数回路に流出入す

る電流の向きが変わるので、符号が変わる。

V (L, t) = RLI(L, t) +RLIL(t) . (A.63)

ここで、RLと IL(t)は負荷側の集中定数回路の接続条件によって決まるノーマルモードとコモ

ンモードに関する抵抗行列と電流源となる。
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付 録B 多導体伝送線路のインピーダンスの数

値計算手法

第 2章でマクスウェル方程式から導出した多導体線路における電信方程式で用いる、伝送線

路 i, j間の電位係数 Pij(x)とインダクタンス Lij(x)は以下で表される。

Pij(x) =
1

4πε

1

Si

1

Sj

∫
Si

dydz

∫ ℓj

0
dx′
∫
Sj

dy′dz′
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
,

(B.1)

Lij(x) =
µ

4π

1

Si

1

Sj

∫
Si

dydz

∫ ℓj

0
dx′
∫
Sj

dy′dz′
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
.

(B.2)

また、伝送線路内の伝搬速度を vとすると、インピーダンス Zij は、Zij =
1
vPij = vLij で表さ

れる。本研究では、x′, y′, z′に関する積分を解析的に解き、x, yに関する積分は数値計算を用い

る。そこで、Lij(x)と Pij(x)に共通する x′, y′, z′に関する積分方程式を以下のように表す。

Kij(x, y, z) =

∫ ℓj

0
dx′
∫
Sj

dy′dz′
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
. (B.3)

ここで、伝送線路 i, j間の電位係数 Pij とインダクタンス Lij、インピーダンス Zij は同じ積分

方程式を有しているため、Kij(x, y, z)を計算することで以下のように導出することができる。

Pij(x, y, z) =
1

4πε
Kij(x, y, z) , (B.4)

Lij(x, y, z) =
µ

4π
Kij(x, y, z) , (B.5)

Zij(x, y, z) =
1

4π

√
µ

ε
Kij(x, y, z) . (B.6)

また、i = jにおけるインピーダンスを自己インピーダンスと呼び、i ̸= jの場合のインピーダ

ンスを相互インピーダンスと呼ぶ。本章では、多導体線路で用いられる円柱形導体と円筒形導

体のインピーダンスの数値計算手法を説明する。
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B.1 円柱形導体におけるインピーダンスの計算

図 B.1のように長さ l、線の半径が Rの 2つの円柱形導体が距離 sだけ離れた位置に配置さ

れた平行 2本線路の自己インピーダンスと相互インピーダンスを求める。

(1) 2本線路回路における円柱形導体の自己インピーダンスの計算

図 B.1: 平行 2本線路。半径R、長さ lの円柱形導体 1と 2が距離 sだけ離れた位置に配置され

ている。

(a) 斜視図 (b) 断面図

図 B.2: 自己インピーダンスの場合の rと θの範囲

K11を求める際、x′ = x, y′ = y, z′ = zとなる点で分母が 0になるため発散する。そこで、発

散を避けるために変数変換を利用した計算を行う。まず、円柱形導体 1内の任意の点 (x, y, z)に

おけるK11は、

K11(x, y, z) =

∫∫∫
V1

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

dx′dy′dz′ . (B.7)
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である。ここで、積分関数の変数である x′, y′, z′は円柱形導体 1内に存在するので、

z′2 + y′2 ≦ R , (B.8)

0 ≦ x′ ≦ l . (B.9)

と表すことができる。ここで、円筒座標系に変数変換を行う。

z − z′ = r cos θ , (B.10)

y − y′ = r sin θ , (B.11)

x− x′ = −v . (B.12)

この場合のヤコビアンは以下のように計算できる。

|J | =

∣∣∣∣∣∣∣∣∣∣
∂x′

∂r
∂x′

∂θ
∂x′

∂v

∂y′

∂r
∂y′

∂θ
∂y′

∂v

∂z′

∂r
∂z′

∂θ
∂z′

∂v

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0 0 1

− sin θ −r cos θ 0

− cos θ r sin θ 0

∣∣∣∣∣∣∣∣∣∣
= r . (B.13)

これは図 B.2(b)に示すように、導線路上の任意の点を中心に、半径 rとした円筒座標となる。

このときの積分関数は

K11 =

∫∫∫
r√

r2 + v2
drdvdθ . (B.14)

となる。この計算を行うためには、θ, v, rの積分範囲を求める必要がある。まず θに関しては、

図 B.2(b)より、θの値によらず vと rは存在するので、0 ≦ θ ≦ 2πである。x′は V1内に存在

するので、vは

−x ≦ v ≦ l − x . (B.15)

となる。同様に rの範囲を求める。z′, y′は V1内に存在するので、

(z − r cos θ)2 + (y − r sin θ)2 ≦ R2 ,

r2 − 2(z cos θ + y sin θ)r − (R2 − z2 − y2) ≦ 0 . (B.16)

となり、このとき上の不等式の等式が成り立つ場合は

a1, a2 = −(z cos θ + y sin θ) ±
√
(z cos θ + y sin θ)2 + (R2 − z2 − y2) . (B.17)

のときである（複合同順）。ここで、任意の点 (x, y, z)は V1内に存在するので、R2−z2−y2 ≧ 0

となる。よって、a1 ≧ 0, a2 < 0である。さらに、r ≧ 0であることを考慮すると、不等式
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図 B.3: 半径 0.001 m、長さ 1.0 mの円柱形導体。円柱形導体内の (x, y, z)座標における局所イ

ンピーダンスを導出する。この時の比誘電率 εrは 2.3とした。

(B.16)は、0 ≦ r ≦ a1 となる。以上より、K11は

K11 =

∫ 2π

0
dθ

∫ l−x

−x
dv

∫ a1

0
dr

r√
r2 + v2

. (B.18)

と表すことができる。上式の積分式は以下のように計算できる。

K11 =

∫ 2π

0
dθ

∫ l−x

−x
dv
[√

v2 + r2
]a1
0

,

=

∫ 2π

0
dθ

∫ l−x

−x
dv
{√

v2 + a21 − |v|
}
,

=

∫ 2π

0

1

2

[
v
√

v2 + a21 + a21 log |v +
√

v2 + a21|
]l−x

−x

−
∫ 2π

0

∫ 0

−x
(−v)dv −

∫ 2π

0
dθ

∫ l−x

0
(v)dv ,

=

∫ 2π

0
dθ

1

2

{
(l − x)

√
(l − x)2 + a21 + x

√
x2 + a21

+a21 log
(l − x) +

√
(l − x)2 + a21

−x+ x
√

z2 + a21
− 2x2 + 2lx− l2

}
. (B.19)

上式の第 2式の
√

v2 + a21の積分は、積分公式∫ √
v2 +Adx =

1

2
(v
√
v2 +A+A log |v +

√
v2 +A|) .

を用いた。これは v = 1
2(t −

A
t )とおいて置換積分をすることで証明できる。式 (B.19)は θの

関数であり、これ以上解析的に解くことができないため、残りの θに関する積分は数値計算を

行う。

次に、図 B.3に示す、長さ l = 1.0 m、半径 R = 0.001 mの円柱形導体を用いて数値計算を

行う。電信方程式で用いるインピーダンスは断面 yz-平面に関して平均を取っているが、まずは

平均を取る前の点 (x, y, z)におけるインピーダンスを式 (B.19)を用いて計算する。ここで、点

(x, y, z)におけるインピーダンスを局所インピーダンスと呼び、その空間分布を定量化する。ま
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局
所
イ
ン
ピ
ー
ダ
ン
ス
 [
Ω
]

図 B.4: 図 B.3の伝送線路の x = 0.0, z = 0.0における yz-平面内の局所自己インピーダンスの

半径（y）方向の分布

ず、円柱形導体内の任意の点の座標 (x, y, z)を式 (B.17)の a1に代入する。残る変数は被積分関

数内の θだけであり、この式を θについて区分求積法を用いて数値計算する。θを 0から 2πに

わたって積分した値をK11(x, y, z)とおくと、

K11(x, y, z) = ∆θ ×
N∑

n=1

K11

(2π
N

n
)

(B.20)

と表すことができる。ここで、N は分割数を表している。また、∆θ = 2π/N である。

x = 0 mの断面 yz−平面内にあるときの局所インピーダンスの分布を図B.4に示した。この

とき、対称性から θ方向には変化しないので、半径方向の依存を示す。この結果から、局所自己

インピーダンスが断面 yz-平面内で変化していることがわかる。中央部分が局所インピーダンス

が最も大きく、表面に近づくにつれて小さくなっていることがわかる。これは高周波で見られ

る表皮効果に矛盾しない結果が得られた。x = 0 mにおける表面と中心のインピーダンスを比

較すると、表面（y = 0.001 m）の局所インピーダンスは 301.29 Ωであり、中心は 320.27 Ωで

ある。よってこの形状では、表面の方が約 5.93 %自己インピーダンスが小さいことがわかった。

次に、長さ方向の局所インピーダンスの場所依存性を定量化した。図B.5は、点 (x, 0.001, 0)

における局所自己インピーダンスの長さ方向 xの依存性を数値計算した結果である。結果から、

長さ方向の自己局所インピーダンスは大きく変化していることがわかった。これも、図 B.4と

同様に、自己局所インピーダンスは、線の中央（x = 0.5 m）で 547.77 Ωと最も値が大きく、

終端（x = 0.0, 1.0 m）で 301.29 Ωと最も小さくなっている。以上より、本研究では断面方向

の局所インピーダンスの場所依存は小さいとして平均化を取り、長さ方向のインピーダンスの
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図 B.5: 図 B.3の伝送線路 y = 0.001, z = 0.0における局所自己インピーダンスの長さ（x）方

向の分布

場所依存性を考慮する。電信方程式のインピーダンスは表面で平均を取っているため、その時

の Z11(x)は

Z11(x) =
1

4π

√
µ

ε

1

Si

∫
Si

K11(x, y, z)dydz . (B.21)

とすると導出することができる。y, zに関する積分は、解析的に解くことは困難であるため、円

筒座標を利用して区分求積を行う。

(2) 2本線路回路における 2円柱形導体間の相互インピーダンスの計算

次に、相互インピーダンスK12の計算を行う。積分範囲が自身でなく他の導体空間（図 B.6

灰色部）になるため、積分範囲が伝送線路 2の空間 V2である。

(z′ − s)2 + y′2 ≦ R , (B.22)

0 ≦ x′ ≦ l .

となる。このときの θ, v, rの積分範囲を求める。自己インピーダンスの計算と異なる点は、図

B.6より、θの値によって、rが存在しない範囲があることである。それに注意して計算する必

要がある。まず、vは変わらず、

−z ≦ v ≦ l − z . (B.23)
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が存在する   の範囲

図 B.6: 円柱形導体 1内の点 (x, y, z)と円柱形導体 2の相互局所インピーダンスを導出する際の

rと θの範囲。

である。また、rの範囲は z′, y′は V2内に存在するので、(
(z − r cos θ)− s

)2
+ (y − r sin θ)2 ≦ R2 ,

r2 + 2
(
(z − s) cos θ + y sin θ

)
−
(
R2 − (z − s)2 − y2

)
≦ 0 . (B.24)

となり、このとき上の不等式の等式が成り立つ場合は、

b1, b2 = −((z − s) cos θ + y sin θ) ±
√
((z − s) cos θ + y sin θ)2 + (R2 − (z − s)2 − y2) .

のときである（複合同順）。ここで、図B.6で示しているように、rが存在する範囲を求めるた

めには b1と b2が 0以上になる θの範囲を求める必要がある。そのためには、具体的な数値を入

れて解く必要があるので一般化することが難しい。そこで、θ1 ≦ θ ≦ θ2のときに rが存在する

と仮定して解き進める。このときの rの範囲は b2 ≦ r ≦ b1となるので、K12は

K12 =

∫ θ2

θ1

b2θ

∫ l−x

−x
dv

∫ b1

b2

dr
r√

r2 + v2
. (B.25)
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(a)斜視図 (b)断面図

図 B.7: (a)同軸線路 (b)円筒形導体の自己局所インピーダンス計算の積分範囲 rと θの関係

と表すことができる。ここで、K11の式 (B.18)と比べると、rと θの積分範囲が異なり少し複

雑になっている。この積分式は以下のように計算できる。

K12 =

∫ θ2

θ1

dθ

∫ l−x

−x
dv
[√

v2 + r2
]b1
b2

,

=

∫ θ2

θ1

dθ

∫ l−x

−x
dv
{√

v2 + b21 −
√
v2 + b22

}
,

=

∫ θ2

θ1

1

2

[
v
(√

v2 + b21 −
√
v2 + b22

)
+ b21 log

(
v +

√
v2 + b21

)
− b22 log

(
v +

√
v2 + b22

)]l−x

−x
,

=

∫ θ2

θ1

b2θ
1

2

{
(l − x)

(√
(l − x)2 + b21 −

√
(l − x)2 + b22

)
+ x
(√

x2 + b21 −
√
x2 + b22

)
,

+b21 log
(l − x) +

√
(l − x)2 + b21

−x+
√
x2 + b21

− b22 log
(l − x) +

√
(l − x)2 + b22

−x+
√

x2 + b22

}
. (B.26)

残りの θに関する積分はK11と同様に数値計算で求める。以上の計算から、円柱形導体 1の点

(x, y, z)における円柱形導体 2からの局所相互インピーダンスを求めることができる。相互イ

ンピーダンスは、自己インピーダンスと同様に、断面方向で積分を取ることで平均化して導出

する。

B.2 円筒形導体におけるインピーダンスの計算

次に、図B.7(a)に示す同軸線路を考える。同軸線路は円筒形導体と円柱形導体の組み合わせ

であるので、円柱形導体の自己局所インピーダンス計算は (1)で求めた式と同じである。よっ

て、ここでは円筒形導体の自己局所インピーダンスの計算を示す。
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(1) 円筒形導体のインピーダンスの計算

円筒形導体は文字どおり円筒座標系で表されるので式 (B.14)と同じ積分式で計算することが

できる。そこで、r, θ, vの積分範囲を求める。図B.7(b)より、円筒形導体の自己局所インピー

ダンスK22を求める。積分範囲 V ′
2 は

Ri ≦ z′2 + y′2 ≦ Ro , (B.27)

0 ≦ x′ ≦ l . (B.28)

となり、導線路の場合と異なり半径の異なる二つの縁で囲まれた範囲となる。式 (B.11)-(B.12)

と同じ変数変換を行う。まず xは、

−x ≦ v ≦ l − x .

となる。次に、rは、

R2
i ≦ (z + r cos θ)2 + (y + r sin θ)2 ≦ R2

o . (B.29)

となり、まず右側の不等式から解いていく。

(z + r cos θ)2 + (y + r sin θ)2 ≦ R2
o .

となり、これと同じ計算を円柱形導体の自己局所インピーダンスで行った。式 (B.16)がR = Ro

のときであるので、右側不等式の範囲は

0 ≦ r ≦ c .

c = −(z cos θ + y sin θ) +
√
(z cos θ + y sin θ)2 + (R2

o − z2 − y2) . (B.30)

となる。次に左側の不等式を解いていく。

R2
i ≦ (z + r cos θ)2 + (y + r sin θ)2 ,

r2 + 2(z cos θ + y sin θ)r + (z2 + y2 −R2
i ) ≧ 0 .

より、この不等式の等式が成り立つときは

d1, d2 = (z cos θ + y sin θ)±
√
(z cos θ + y sin θ)2 − (z2 + y2 −R2

i ) .

である（複合同順）。d1と d2は図B.7(b)のように rの範囲が絶縁体の存在によって場合分けす

る必要があるときに実数の値を持つ。このときの範囲を θ1, θ2とおくと、rの範囲は 0 ≦ r ≦ d2
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と r ≦ d1となる。それ以外の d1と d2は虚数となる。式 (B.30)と組み合わせると、rの積分範

囲は図 B.7より、0 ≦ r ≦ eの場合と、0 ≦ r ≦ d2の場合と、d1 ≦ r ≦ eの場合がある。これ

を数式で表すと以下のようになる。

K22 =

∫ θ1

0
dθ

∫ l−x

−x
dv

∫ e

0
dr

r√
r2 + v2

,

+

∫ θ2

θ1

dθ

∫ l−x

−x
dv
{∫ d2

0
dr

r√
r2 + v2

+

∫ e

d1

dr
r√

r2 + v2

}
,

+

∫ 2π

θ2

dθ

∫ l−x

−x
dv

∫ e

0
dr

r√
r2 + v2

.

以上より、円筒形導体の局所インピーダンスの計算の場合、円筒座標系に変化すると、全て

同じ形の積分関数で表される。その際に、求めたい任意の点とその点に影響を与える導体の積

分範囲との関係で θと rの積分範囲が変化する。同軸線路における、円筒形導体と円柱形導体

の相互局所インピーダンスも同じように計算することができる。
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付 録C PEEC (Partial Element

Equivalent Circuit) 法の等価回路モ

デルの導出と本研究手法との違い

表 C.1: 本研究で用いる変数の SI単位

物理量 記号 SI単位 物理量 記号 SI単位

長さ ℓ m 電場 E V ·m−1

時間 t s 電位 U V

電荷 Q C 電気伝導率 σ S ·m−1(Ω−1 ·m−1)

電荷密度 q C ·m−3 磁場 H A ·m−1

電流 I A 抵抗 R Ω

電流密度 j A ·m−2 キャパシタンス C F

誘電率 ε F ·m−1 インダクタンス L H

透磁率 µ H ·m−1

C.1 等価モデルと回路方程式の導出

PEEC法で用いる方程式は、本研究で用いる方程式と同じ、2.2で導出した基本方程式を用

いる。ここで、遅延時間は無視している。

U(r, t) =
1

4πε

∫
dr′

q(r′, t)

|r − r′|
, (C.1)

A(r, t) =
µ

4π

∫
dr′

j(r′, t)

|r − r′|
, (C.2)

−∇U(r, t) − ∂A(r, t)

∂t
= ρj(r, t) , (C.3)

∂

∂t
q(r, t) + ∇ · j(r, t) = 0 . (C.4)
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これらの方程式から、回路理論で計算される枝電流と節点電位を用いた回路方程式を導出する。

式 (C.3)のオームの法則に式 (C.1)と (C.2)を代入する。

J(r, t)

σ
+

∂

∂t

[ µ

4π

∫
V

J(r′, t)

|r − r′|
dr′
]
+∇

[ 1

4πε

∫
V

q(r′, t)

|r − r′|
dr′
]
= 0 . (C.5)

この両辺の単位は [V/m]である。空間に関する偏微分を要素の差分で表すために、両辺を微小

体積空間 iに関する体積平均をとる。

1

Vi

∫
Vi

J(r, t)

σ
dr

+
1

Vi

∫
Vi

∂

∂t

[ µ

4π

∫
V

J(r′, t)

|r − r′|
dr′
]
dr

+
1

Vi

∫
Vi

∇
[ 1

4πε

∫
V

q(r′, t)

|r − r′|
dr′
]
dr = 0 . (C.6)

以上より、上式は体積セル iに関する電場の平均とみなすことができる。それぞれの項を以

下のようにおく。

Eir =
1

Vi

∫
Vi

J(r, t)

σ
dr , (C.7)

Eil =
1

Vi

∫
Vi

∂

∂t

[ µ

4π

∫
V

J(r′, t)

|r − r′|
dr′
]
dr , (C.8)

Eip =
1

Vi

∫
Vi

∇
[ 1

4πε

∫
V

q(r′, t)

|r − r′|
dr′
]
dr . (C.9)

ここで、Eirは微小空間 iの抵抗成分が原因で発生する電場の平均であり、Eilはインダクタン

ス成分が原因で発生する電場の平均であり、Eipは電位係数成分が原因で発生する電場の平均

となる。さらに、変数である電流密度 J [A/m2] と電荷密度 q [C/m2]に関して、積分方程式を

要素和で表すために、要素空間内で平均をとる。電流密度と電荷密度の要素の形は異なるので、

それぞれ i, lと呼ぶと、以下のように表すことができる。

Ji(t
′) =

1

Vi

∫
Vi

J(r, t)dr , (C.10)

ql(t
′) =

1

Sl

∫
Sl

q(r, t)dr . (C.11)

PEEC法では、図C.2(a)に示すように、電荷は表面に拘束されているとして、表面あたりの

電荷密度 [C/m2]を用いている。一方、本研究は電流の存在範囲に合わせて、要素内に一様に存

在しているとし、体積あたりの電荷密度 [C/m3]を用いている。Erl,EilとEipに関して積分を
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(a) PEEC法で用いる変数の定義 (b) 本研究で用いる変数の定義

図 C.1: PEEC法と本研究で用いる変数が存在する範囲。(a)PEEC法は電流密度とベクトルポ

テンシャルは体積内に存在し、電位と電荷密度は表面に存在するとしている。一方、(b)本研究

は全ての変数は体積内に存在するとする。

要素和を用いて表すと、以下のように展開することができる。

Eir =
1

Vi

∫
Vi

J(r, t)

σ
dr ,

=
Ji(t)

σi
, (C.12)

Eil =
1

Vi

∫
Vi

∂

∂t

[ µ

4π

∫
V

J(r′, t)

|r − r′|
dr′
]
dr ,

=
µ

4π

1

Vi

∫
Vi

∫
V

∂
∂tJ(r

′, t)

|r − r′|
dr′dr ,

=
∑
j

µ

4π

1

Vi

∫
Vi

∫
Vj

1

|r − r′|
dr′dr

∂Jj(t)

∂t
, (C.13)

Eip =
1

Vi

∫
Vi

∇
[ 1

4πε

∫
S

q(r′, t)

|r − r′|
dr′
]
dr ,

=
1

4πε

1

Vi

∫
Vi

∇
∫
S

q(r′, t)

|r − r′|
dr′dr ,

=
∑
l

1

4πε

1

Vi

∫
Vi

∇
∫
Sl

ql(t)

|r − r′|
dr′dr . (C.14)

ここで、Eipに関して、γ (= x, y, z)方向の成分で考えると、以下のように表すことができる。
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図 C.2: PEEC法の差分方程式の導出の際に行う変数の存在範囲の変更。PEEC法の差分方程

式の導出過程で、電荷密度の存在範囲は本来であればセル Viの側面 S⊥
iγ+, S

⊥
iγ−に存在するが、

Si−, Si+に変更している。

Eipγ =
∑
l

1

4πε

1

Viγ

∫
Viγ

∂

∂γ

∫
Sl

ql(t)

|r − r′|
dr′dr , (C.15)

=
∑
l

1

4πε

1

Viγ

[∫
Siγ+

∫
Sl

ql(t)

|ri − r′|
dr′dr −

∫
Siγ−

∫
Sl

ql(t)

|ri − r′|
dr′dr

]
, (C.16)

=
∑
l

1

4πε

1

Viγ
S⊥
iγ

[∫
Sl

ql(t)

|riγ+ − r′|
dr′ −

∫
Sl

ql(t)

|riγ− − r′|
dr′
]

, (C.17)

=
∑
l

1

4πε

1

∆γ

[ ∫
Sl

ql(t)

|riγ+ − r′|
dr′ −

∫
Sl

ql(t)

|riγ− − r′|
dr′
]
, (C.18)

=
∑
l

1

4πε

1

∆γ

[ 1

Si+

∫
Si+

∫
Sl

ql(t)

|r − r′|
drdr′ − 1

Si−

∫
Si−

∫
Sl

ql(t)

|r − r′|
drdr′

]
.(C.19)

ここで、式 (C.15)から (C.16)への変形は rに関する γ方向の偏微分を体積積分したものであ

る。この時、図C.2に示すように、積分範囲である体積 Viの γ方向に垂直な両端の面Siγ+, Siγ−

に関する積分だけが残る。さらに、両端の面での値は一様であるとすると、式 (C.17)を導出す

ることができる。ここで、S⊥
iγ+ = S⊥

iγ− = S⊥
iγ とした。また、式 (C.18)は Viγ = S⊥

iγ∆γとする

と、導出することができる。最後に、式 (C.19)はセル iの断面に存在した点 riγ+と riγ−を電

荷密度と電位が存在する面 Siγ+と Siγ−になるように式を変換している。この際、中心の点を

取るのではなく、面積 Siγ+と Siγ−の平均をとっている。

以上より、微小空間 i内の γ方向の電場の平均を導出することができる。式 (C.17)を電場に

微小区間の長さ∆γ を掛けると、γ 方向の電位差を導出することができるので、それぞれの成

137



分に関する電位差を virγ , vilγ , vipγ とおくと、以下のように表すことができる。

viγr = ∆γ × Eirγ ,

=
∆γ

σi
Jiγ(t) ,

=
∆γ

σiSiγ⊥
Iiγ(t) , (C.20)

viγl = ∆γ × Eilγ ,

=
∑
j

µ

4π

∆γ

Vγi

∫
Viγ

∫
Vjγ

1

|r − r′|
dr′dr

∂Jγj(t)

∂t
,

=
∑
j

µ

4π

∆γ

ViγSjγ⊥

∫
Viγ

∫
Vjγ

1

|r − r′|
dr′dr

∂Iγj(t)

∂t
, (C.21)

viγp = ∆γ × Eipγ , (C.22)

=
∑
l

∆γ

4πε

[ 1

Siγ+

∫
Siγ+

∫
Sl

ql(t)

|r − r′|
drdr′ − 1

Siγ−

∫
Siγ−

∫
Sl

ql(t)

|riγ− − r′|
drdr′

]
,

=
∑
l

∆γ

4πε

[ 1

Siγ+

1

Sl

∫
Siγ+

∫
Sl

Ql(t)

|r − r′|
drdr′ − 1

Siγ−

1

Sl

∫
Siγ−

∫
Sl

Ql(t)

|r − r′|
drdr′

]
.

(C.23)

このように、微小区間の長さをかけることで、大きさの概念を消している。以上より、セルの

抵抗とインダクタンス、電位係数を用いて以下のように表すことができる。

viγr = RiγIiγ(t) , (C.24)

viγl =
∑
j

LγijIγj , (C.25)

viγp =
∑
l

Piγ+lQl(t)−
∑
l

Piγ−lQl(t) , (C.26)

Riγ =
∆γi

σiSiγ⊥
, (C.27)

Lijγ =
µ

4π

∆γi
ViγSjγ⊥

∫
Vi

∫
Vj

1

|r − r′|
dr′dr , (C.28)

Pkl =
∆γ

4πε

1

SkSl

∫
Sk

∫
Sl

1

|r − r′|
dr′ . (C.29)

(C.30)

次に、セル lにおける電荷と電流の関係は、連続の式 (C.4)を体積平均することで差分化す
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(a) 本来の電流の向き (b) PEEC法で用いる電流の向き

図 C.3: ガウスの法則を用いた際の電流の向き。電荷密度が表面に存在すると仮定すると、電

流の向きは (a)の表面を貫く方向とな。PEEC法は (b)に示すように、電荷が存在しない側面

に貫く方向としている。

ることができる。

∂

∂t

∫
Vl

q(r, t)dr +
1

Vl

∫
Vl

∇ · j(r, t)dr = 0 , (C.31)

∂

∂t
Ql(t) +

∫
Sl

j(r, t) · dSl = 0 , (C.32)

∂

∂t
Ql(t) + Ilz+(t) + Ilz−(t) = 0 . (C.33)

ここで、図C.3(a)に示すように、本来であれば電流の向きは電荷が存在する面に対して垂直

の向きであるはずであるが、実際の PEEC法で用いている電流の向きは、セルの側面（x, y方

向）から出る向きとなっている。

∂

∂t
Ql(t) + Ilx+(t) + Ilx−(t) + Ily+(t) + Ily−(t) = 0 , (C.34)

∂

∂t
Ql(t) + Ĩl(t) = 0 . (C.35)

ここで、Ĩlはセル lに流出入する電流の合計である。また、式 (C.26)から、節点電位を電流を

用いて表すと以下のように表される。

d

dt
Uk(t) =

∑
l

PklĨl . (C.36)

以上が PEEC法で用いる回路方程式となる。
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(a) 平面導体

(b) 離散化した平面導体

(c) 等価回路モデル

図 C.4: 空間の離散化と離散化後の等価回路モデル

C.2 PEEC法の数値計算手法

これまでに導出した節点電位と枝電流を変数とした回路方程式を接続行列やインダクタンス

行列、電位係数行列などを用いて定式化する

(1) 電荷セルの等価回路表示

電荷セルの等価回路モデルを導出する。電荷セルのノード電位は、式 (C.36)より、

U = P Ĩ . (C.37)

と表すことができる。ここで、U 電位ベクトルを表しており、Ĩ は合計電流のベクトルを表し

ている。P を対角要素とそれ以外の要素の行列で表す。
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Pd =



P11 0 · · · 0

0 P22 · · · 0

...
...

...
...

0 0
... PNN


, (C.38)

Pnd =



0 P12 · · · P1N

P21 0 · · · P2N

...
...

...
...

PN1 PN2
... 0


. (C.39)

これらを用いると、

d

dt
U = PdQ̃+ PndQ̃ . (C.40)

と表すことができる。両辺に Pdの逆行列 P−1
d を左からかける。

P−1
d

d

dt
U = P−1

d PdĨ + P−1
d PndĨ , (C.41)

=
(
I +M

)
Ĩ . (C.42)

ここで、I は単位行列で、M は、

M =



0
PP12
PP11

· · ·
PP1Ns
PP11

PP21
PP22

0 · · ·
PP2Ns
PP22

...
...

...
...

PPNs1

PPNsNs

PPNs2

PPNsNs

... 0


. (C.43)

と表される。以上より、電荷セル内の関係式を等価回路で表すと、図 C.3に示すように、各電

荷セルに流入する電流によって制御される電流源と無限遠と電荷セル間の自己キャパシタンス

で表現することができる。

(2) 電流セルの等価回路表示

電流セルの両端の電位差は、流れる電流を用いて、以下のように表される。

Vlr = L
∂

∂t
Ilr +RIlr . (C.44)

等価回路で表すと、図 C.3の電荷セルノード間の枝となる。以上より、電荷セルと電流セルの

等価回路はそれぞれ図 C.4(c)の赤で囲った回路と青で囲った回路で表すことができる。
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(3) キルヒホッフの電流則

各ノードにおけるキルヒホッフの電流則は以下のようになる。

AcIc +AsIs +AlrIlr +AeIe +AiIi = 0 . (C.45)

ここで、Icはキャパシタンスに流れる電流を表し、Isは制御電流源 (Current Controlled Source)

であり、Ilrはインダクタンスと抵抗に流れる電流であり、Ieはセルに接続する外部要素に流れ

る電流であり、Iiは、電流源を表す。

(4) 回路方程式の差分化

ここで、Ĩ は電荷セルに流出入する電流の合計であり、それは、図 C.3のキャパシタンスと

電流制御電流源に流れる電流の総和であり、以下のように表される。

Ĩ = AcIc +AsIs . (C.46)

よって、式 (C.45)より、

Ĩ = −AlrIlr −AeIe −AiIi . (C.47)

と表すことができる。式 (C.42)に代入して、インダクタンスに流れる電流と、電流源に流れる

電流で表すと、

P−1
d

dU

dt
+
(
I +M

)
AlrIlr +

(
I +M

)
AeIe = −

(
I +M

)
AiIi . (C.48)

この方程式を後退オイラー法を用いて差分化し、未知数を左辺に移項すると、

P−1
d

Um+1 −Um

∆t
+
(
I +M

)
AlpIlp

m+1 +
(
I +M

)
AlIl

m+1

= −
(
I +M

)
AiI

m+1
i , (C.49)

P−1
d Um+1 +∆t

(
I +M

)
AlrI

m+1
lr +∆t

(
I +M

)
AeI

m+1
e

= P−1
d Um −∆t

(
I +M

)
AiI

m+1
i . (C.50)

となる。よって、電荷セルの関係式を等価回路で表した時の更新式を導出することができた。

次にインダクタンスと抵抗についてみる。式 (C.44)より、tに関して差分化し未知数を左辺

に移項する。

V m+1
lr = L

Im+1
lr − Im

lr

∆t
+RIm+1

lr , (C.51)

V m+1
lr −

( 1

∆t
L+R

)
Im+1
lr = − 1

∆t
LIm

lr . (C.52)
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また、上の方程式を電位 U で表すために、KVLと接続行列Alrを用いて表す。

Vlr = AT
lrU . (C.53)

よって、電流セルの関係式を等価回路で表した時の更新式は以下のように表すことができる。

AT
lrU

m+1 −
( 1

∆t
L+R

)
Im+1
lr = − 1

∆t
LIm

lr . (C.54)

(5) セルの外部に接続された集中定数回路の枝構成式

受動素子である抵抗RとインダクタンスL、キャパシタンスCが接続されている場合の枝構

成式から、任意の素子を接続できるように一般化した差分方程式を導出する。

(5)-1. 内部抵抗を有する電圧源

内部抵抗Reの電圧源Veを接続した場合のノード間の枝構成式は、接続行列Aeを用いて表すと、

AT
e U = Ve +ReIe . (C.55)

となる。差分化して表すと、

AT
e U

m+1 −ReI
m+1
e = V m+1

e . (C.56)

(5)-2. インダクタンス

インダクタンスの枝構成式は以下のようになる。

AT
e U = −Le

d

dt
Ie . (C.57)

差分方程式は以下の通り。

AT
e U

m+1 = −L
Im+1
e − Im

e

∆t
,

AT
e U

m+1 +
1

∆t
LeI

m+1
e =

1

∆t
LeI

m
e .

(C.58)

(5)-3. キャパシタンス

キャパシタンスの場合の枝構成式は以下のようになる。

Ie = Ce
d

dt
AT

e U . (C.59)
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枝構成式の差分方程式は以下の通り。

AeI
m+1
e = CAT

e

Um+1 −Um

∆t
(C.60)

− 1

∆t
CeA

T
e U

m+1 +AeI
m+1
e =

1

∆t
CeA

T
e U

m (C.61)

−AT
e U

m+1 +∆tC−1
e AeI

m+1
e = AT

e U
m (C.62)

(5)-4. 任意の受動素子へと一般化された枝構成式

以上より、任意の受動素子が接続された場合の枝構成式は以下のように表される。

α1A
T
e U +α2ZAeI

m+1
e = α3A

T
e U

m +α4ZAeI
m
e + V m+1

e . (C.63)

ここで、α1,α2,α3,α4は枝の素子によって符号を変えるための対角行列であり、それぞれの要

素は枝の素子に応じて以下のようになる。

α1ii =

 1 （Rまたは Lのとき）,

−1 （C のとき）.
(C.64)

α2ii =

 1 （Lまたは C のとき）,

−1 （Rのとき）.
(C.65)

α3ii =

 1 （C のとき）,

0 （Rまたは Lのとき）.
(C.66)

α4ii =

 1 （Lのとき）,

0 （Rまたは C のとき）.
(C.67)

また、Zは枝の素子のインピーダンス行列を表しており、それぞれの素子に応じて以下のよ

うに表される。

Zii =


Rii （Rのとき）,

1
∆tLii （Lのとき）,

∆tCii （C のとき) .

(C.68)
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(6) PEEC法の数値計算で用いる更新式

以上より、式 (C.50)と式 (C.54),(C.63)の漸化式を行列でまとめると、PEEC法で解くべき

更新式を得ることができる。
P−1
d ∆t

(
I +M

)
Alr ∆t

(
I +M

)
Ae

AT
lr −Llr 0

α1A
T
e 0 α2ZeAe




U

Ilr

Ie


m+1

=


P−1
d 0 0

0 − 1
∆tL+R 0

α3A
T
e 0 α4ZeAe




U

Ilr

Ie


m

+


∆t
(
I +M

)
Ai 0 0

0 0 0

0 0 Nv




Ii

0

Ve


m+1

.

(C.69)

2次元の場合も同様に定式化できる。
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