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Introduction

Let R=k[X,, ---, X,] be a polynomial ring over a field £ and G be a finite
subgroup of GL(n, k) with (|G|, ch(k))=1, if ch(k)+0. We want to investigate
the problem; “When is the invariant subring R® Gorenstein?”’ The main result
of this paper is the following theorem.

Theorem 1. We assume that G contains no pseudo-reflections. Then RC is
Gorenstein if and only if G SL(n, k).

Recall that g GL(n, k) is a pseudo-reflection if rank(g—I)=1 and g has a
finite order (where I denotes the unit matrix). It is known that RC is again a
polynomial ring if and only if G is generated by its pseudo-reflections (cf. [7],
Théoréme 1). So it would be natural to assume that G contains no pseudo-
reflections.

The “if”” part was treated in [13]. So, in this paper, we consider the “only
if” part. To achieve the proof, we need the theory of the canonical module of
a Macaulay ring developed in [2]. As R€ is a Macaulay ring, it has the canonical
module K p#, which is unique up to isomorphisms. R€ is Gorenstein if and only
if Kpe==R6. We want to construct a canonical module of R®. In this case, as
R€ is normal, a canonical module is isomorphic to a divisorial ideal of R®. Thus
the canonical module Kg# determines a well-defined class ¢(Kg¢) of the divisor
class group C(RC) of R®. RE€ is Gorenstein if and only if ¢(Kze)=0. But by the
“Galois descente” theory of divisor class groups, C(R¢)=~Hom(G, k*) (where k*
denotes the multiplicative group of non-zero elements of k). We show that by
this isomorphism, ¢(Kg¢) corresponds to det, the determinant, in Hom(G, k*)
and conclude the proof of Theorem 1.

We can apply Theorem 1 to the case of regular local rings. If (4, m) is a
local ring and if geAut(4), g induces a linear transformation of the tangent
space m/m’ of A. We denote this correspondence by A: Aut(4)—GL(m|m?).
We call an element g of Aut(4) a pseudo-reflection if A(g) is a pseudo-reflection,
Then, we have the following
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Theorem 2. Let (B, n) be a regular local ring and let G be a finite subgroup
of Aut(B) satisfying the following conditions.

1. |G| is a unit in B.

2. The automorphisms of k= B|n induced by the elements of G are the identity.

3. G contains no pseudo-reflections.
Then RC is Gorenstein if and only if M(G) C SL(n/n®).

Examining some examples, it is shown that Theorem 2 fails for non-regular
Gorenstein local rings.

1. Preliminaries
(1.1) Canonical modules.

In this paragraph, A denotes a Noetherian local ring with maximal ideal m
and residue class field k. All modules are assumed to be unitary and finitely
generated.

DeFiNiTION 1. Let M be a Macaulay A-module of dimension s. The type
of M, r(M), is defined by

r(M) = dim,Exti(k, M) .

The type of a Macaulay ring 4 is the type of 4 as an A-module. A is
Gorenstein if and only if 4 is Macaulay and »(4)=1.

Proposition A. If x&m is an M-regular (resp. A-regular) element, then
r(M[xM)=r(M) (resp. r(A/xA)=r(A)). (The type of M[xM as an A-module
equals to the type of M/xM as an A[xA-module.)

DEFINITION 2. An A-module K is a canonical module of 4 if it satisfies the
following equivalent conditions.
1 if i=dim 4,
0 otherwise.
(i) a) K is a Macaulay A-module and dim K=dim A.
b) K has a finite injective dimension.

c) r(K)=1.

(i) dimgExty(k, K):{

ReMARK. In the works of R.Y. Sharp, “canonical module” is called “basic
Gorenstein module” or “Gorenstein module of rank 1”.

Proposition B. (i) If K and K’ are canonical modules of A, then K=K’ as
A-modules.

(ii) If there exists a canonical module of A, then A is Macaulay.

(i) If A is Macaulay and if A has a canonical module K, then A is Gorenstein
if and only zf K=A as A-modules.
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Proposition C. ([9], [2], [S]) If A=Bla, A is Macaulay, B is Gorenstein
and dimB-dimA=s, Exty(A, B) is a canonical module of A. Conversely, if A has a
canonical module, A is a quotient of a Gorenstein ring.

Proposition D. ([2], [4]) If A is a Macaulay domain and if A has a canonical
module K, K is isomorphic to an ideal of A which is pure of height 1.

Proposition E. ([2], Korollar 6.12) Let A be a Macaulay domain and M be
an A-module. M is a canonical module of A if and only if the following conditions
are satisfied.

(1) M is a Macaulay A-module and dim M=dim A4.

(i) r(M)=1.

Proposition F. ([2], Satz 1.24, [10]) Let (4, m), (B, n) be Macaulay local
rings and f: A—B be a flat local homomorphism. If M is a Macaulay A-module,
then r(M Q 4B)=r(M)-r(B[mB).

(1.2) Descent theory for divisor class groups.

If B is a Noetherian normal domain, we denote by C(B) the divisor class
group of B.

Let A be a U.F.D. (unique factorization domain) and let G be a finite
subgroup of Aut(4).

Proposition G. ([6], Chapter III, Theorem 1.1) There is a monomorphism
i: C(A°)=H(G, U(A)) (U(A) denotes the multiplicative group of units of A). If
A is divisorially unramified over A€, i is an isomorphism.

Proposition H. (cf.[11], Proposition 1) If R=k[X), :--, X,)] is a polynomial
ring over a field k, G C GL(n, k) and if G does not contain any pseudo-reflections,
then 1:C(R°)=Hom(G, k*) (k* is the multiplicative group of non-zero elements of k).
If oeHom(G, k*), then there exists an element f = R such that for every g= G, g(f)
=a(g)f.

Proposition I. ([11], Theorem 2) Let (A4, m) be a local U.F.D. and let G
be a finite subgroup of Aut(A). We assume the following conditions for A and G.

1. |G| is a unit in A.

2. A contains a primitive | G | -th root of unity.

3. G acts trivially on k=A[m.

4. G contains no pseudo-reflections.
Then i: C(A°)=Hom(G, k*). If o=Hom(G, k*), then there exists an element
fem which satisfies the following conditions.

1. Theideal fA is invariant under G.

2. For every g=G, In(g(f))=w(g)+ In(f). (Recall that if fem™ and f&m™",
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then In(f)=f mod m"** in Gry(4).)
(1.3) Associated graded rings of local rings.

Let (A4, m) be a Noetherian local ring and N be an A-module. Let (F,),»,
be a filtration on 4 with F;=4 and F,=m. We assume that (F,),>, defines the
same topology as the m-adic topology. We put R=G*(4)=PF,/F,.,, M=R,

n>0

:GZBIF,,/FH1 and N=G'(N):€]29F,,N/F,,+IN. If acF, and a«F,,,, we write
nx n>0

In(a)=amod F,.,€R,=F,[F,.,. Wedefine In(x) for x< N in the same manner.

Proposition J. Let f;=1In(a;) (i=1, -+, s) be homogenous elements of M which
make an N-regular sequence. Then a; (i=1, -+-, 5) make an N-regular sequence and

we have a canonical isomorphism G*(N/(a,, -+, a)N)=NJ|(f,, -+, f)N.
Proof. The proof of Lemma 10 of [13] works by the change of notations.

Proposition K. (i) If Ry is Macaulay, then A is Macaulay.

(i1) If Ruis Gorenstein, then A is Gorenstein.

(iii) If Ny is a Macaulay Ry-module, then N is a Macaulay A-module.
(iv) If Ny is Macaulay and if r(INy)=1, then r(N)=1.

Proof. (i) and (ii) are Theorem 3 of [13]. (iii) is clear by Proposition J.
The proof of Lemma 11 of [13] works for the proof of (iv) if we use the following
lemma instead of Lemma 3 of [13].

Lemma 1. If (4, m) is a Noetherian local ring and if N is an Artinian A-
module, the following conditions are equivalent.

(a) r(N)=1.

(b) length,(O: m)y=1.

(c) There exisis an element 20 in N such that for every y=0 in N there
exists an element a in A satisfying ay=z.

Proposition L. Let A=®@ A, be a Noetherian graded ring with A,=k a field.

n>0

Let M=@M,, be a finitely generated graded A-module and f = A, be a homogenous

nez

M-regular element. Then dim (M[fM),, depends only on M, n and d.
Proof. dimyM/[fM),=dim,M,—dim, M, _,.
(1.4) Invariant subrings and the Reynolds operator.

In this paragraph, R is a Noetherian ring and G is a finite subgroup of Aut
(R). We assume that |G| is a unit in R. We define the Reynolds operator

p: R—RC by p(r)zl—éT %g(r) for reR.
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Lemma 2. Let M be an R-module. We assume that G acts on M satisfying
the condition g(ax)=g(a)g(x) for g= G, acR and xc M. If a,, -++, a, be elements of
RC which make an M-regular sequence, then they make an MC-regular sequence and
there is a canonical isomorphism M€|(a,, -+, a)MC=(M/(a,, -+, a,)M)°.

Proof. It suffices to prove the last equality for s=1. We put a=a,. There
exists a natural inclusion M¢/aMC<—(M[aM)¢. If xeM and g(x)—x<aM for
every g G, then p(x)—xaM and p(x)eMC. So this inclusion is an isomor-
phism.

Lemma 3. Let M be asin Lemma 2. If M is a Macaulay R-module, then
MF€ is a Macaulay RC-module.

Proof. We can take a parameter system a,, -*+, a, of M from R¢. Then a,,
.-+, a, make an M-regular sequence. By Lemma 2, they make an MC-regular
sequence.

Lemma 4. Let M be as in Lemma 2. We assume further that R is local with
maximal ideal m and M is Artinian with r(M)=1. Let 2 be an element of N which
satisfies the condition in (c) of Lemma 1. If 2 MC, then r(M®)=1.

Proof. The same as the proof of Lemma 4 of [13].

2. The main theorem

Theorem 1. Let R=k[X,, -+, X, be a polynomial ring over a field k and G
be a finite subgroup of GL(n, k) with (|G|, ch(k))=1 if ch(k)=*=0. We also assume
that G contains no pseudo-reflections. Then RC is Gorenstein if and only if GCSL
(m, k).

The “if” part was proved in [13]. So it suffices to prove the “only if”’ part.
First we fix our notations. We put n=(X,, --*, X,)R, m=nN R¢, B=R, and
A=(R°),,.

As A is Macaulay (Lemma 3) and is a quotient of a regular local ring, it has
a canonical module K,. By Proposition D, K, is isomorphic to a divisorial
ideal of 4. As isomorphic ideals determine the same element of the divisor class
group, K, determines a well-defined element ¢(K )= C(4). A is Gorenstein if
and only if ¢(K 4)=0. But as R is a graded ring, C(4)=C(RC) by Proposition
7.4 of [6] and by Proposition H, C(R¢)=~Hom(G, k*). To prove the theorem, it
suffices to show that ¢(K 4) = C(A4) corresponds to dete Hom(G, k*), the determi-
nant map, by these isomorphisms. The realization of deteHom(G, k*) as a
divisorial ideal is done by the following way. Take f&R as in Proposition H.
That is to say, f satisfies the condition g(f)=det(g)f for g G. We can assume
that f is homogenous. We put deg(f)=d. Then K=(fRN R®)A is a divisorial
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ideal of A whose class in C(A4) corresponds to det in Hom(G, k*). Thus Theorem
1 reduces to the following

Theorem 1'. Let f be as above. Then K=(fR N R®)A is a canonical module
of A.

Proof. By Proposition E, it suffices to prove that K is a Macaulay 4-module
and r(K)=1. (It is clear that dim(K)=dim(4) as K is an ideal of 4.) We divide

the proof into several steps.
Lemma 5. K is a Macaulay A-module.

Proof. Let (a,, -, a,) be elements of R® which make a parameter system
for A. Then (a,, -+, a,) make an R-regular sequence. As fR is a free R-module,
they also make an fR-regular sequence. As fRN R°=(fR)®, they also make an
JRN RC-regular sequence by Lemma 2 and thus make a K-regular sequence.
Thus K is a Macaulay 4-module.

Lemma 6. 7(K)=1.
Proof. We divide the proof into two steps.

Case 1. G is cyclic.

If k' is an extension field of k and if we put R’=R®k’, then G acts naturally
on R’ and (R')°=~RC6Q® .k’ by Lemma 3 of [13]. If we put n'=(X,, -, X,)R’
and m’=n’N (R’)®, then A’=((R’)), is faithfully flat over 4 and K® ,A4'=
(fR'N(R’)®)A’. By Proposition F, it suffices to show that 7(K® ,4’)=1. Thus
we may assume that & is algebraically closed.

Let g be a generator of G. We may assume that g is in a diagonal form. If
m is a multiple of |G|, we can take X7, .-, X™ as a parameter system for A.
As B=R|(X®, ---, X™) is an Artinian Gorenstein local ring and M=fR/(XT, -+,
X™fR is a free B-module, 7(M)=1 and z=(X,---X,)™ f mod (X7, ---, X™)fR
satisfies the condition in (c) of Lemma 1. But as g((X,---X,)” f)=det(g)™
(X, X" 'det(g)f=(X,-- X, )", k€MS. As MCS=K/(X7, -, X2)K by
Lemma 2, we have 7(K)=1 by Lemma 4 and Proposition A.

Case 2. General case.

We take a parameter system (a,, -**,a,) of RC satisfying the following condi-
tions.

1. a; are homogenous of the same degree m.

2. m is a multiple of |G].

We put B=R/(a,, **, a,)R and M=fR/(a,, -+, a,)fR. The B°=A|(a,, *,
a,)A and M¢=K/(a,, -+, a,)K. As B=M as B-modules and as B is Gorenstein,
r(M)=1. As fis a homogenous element of R, fR is a graded ideal and B and M
have induced structures of a graded ring and a graded B-module respectively.
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As in the proof of Theorem 1a of [13], dimgB,,,_»,=1and B,=0 for t >n(m—1).
Similarly, dimM - 14=1 and M,=0 for ¢ >n(m—1)+d. Let H be a cyclic
subgroup of G and g be a generator of H. We can assume that g is in a diagonal
form. Then we can take (X7, ---, X) for a parameter system of R¥. If zisa
generator of (fR/(XT, -+, X7)fR)ucm-»+a» We have seen in Case 1 that z is in-
variant under H. If we use Proposition L to R¥ and (fR)¥, we have dim,
(RYHIXE, -+, X2) TRV Yt ra=mu((FRY (@ -+, @) (FR)H )iy sa= it
(M) p-1>+a=1. Thus we see that each element of M,,,_,,,4 is invariant under
the action of H. As H is arbitrary cyclic subgroup of G, we can say that each
element of M, .4 is invariant under the action of G. By Lemma 4 and
Proposition 4, r(K)=r(K/(a,, ***, a,)K)=r(M°)=1.
This completes the proof of Theorem 1.

3. The case of regular local rings

In this section, let (B, #) be a regular local ring of dimension z and G be a
finite subgroup of Aut(B) with |G| a unit in B. If geG, g induces a linear
transformation of the tangent space #n/n* of B. We denote this transformation
by A(g). Thus we get a group homomorphism A: G—GL(n/n*). We call an
element g of G a pseudo-reflection if A(g) is a pseudo-reflection.

Theorem 2. Let (B, n) be a regular local ring and G be a finite subgroup of
Aut(B) which satisfies the following conditions.

1. |G| is a unit in B.
2. G acts trivially on k=DB|n.
3. G contains no pseudo-reflections.
Then BE€ is Gorenstein if and only if N\(G)C SL(n/n®).

Proof. We put A=B¢ and m=nNA. First, we need a lemma.
Lemma 7. We may assume that B contains a primitive | G | -th root of unity.

Proof. We know that 4 is a Noetherian local ring (cf. the proof of Theorem
4 of [13]). G acts on B and we have (B)szi ([14], Chapter II, Lemma 1,
Corollary). (B denotes the completion of B.) G induces the same linear trans-
formations on the tangent spaces of B and B and A4 is Gorenstein if and only if
A\%’(B)G is Gorenstein. Thus we may assume that B is complete. If k=B/n
contains a primitive |G |-th root of unity, then B contains a primitive | G'|-th
root of unity by Hensel’s lemma. If 2 does not contain primitive |G |-th roots
of unity, let F be a monic polynomial in the polynomial ring B[T'] whose image
in k[T] is an irreducible polynomial for a primitive | G |-th root of unity. We
put B’=B[T]/(F). Then B’ is {ree over B and B’ contains a primitive |G |-th
root of unity. As B’/nB’ is a field, B’ is a regular local ring and we can extend
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the action of G to B’. As B’ is free over B, it is easily seen that (B’)C is also
free over A and (B')¢/m(B’)¢=B’[nB’. Thus 4 is Gorenstein if and only if
(B’)¢ is Gorenstein ([12], Theorem 1). This completes the proof of Lemma 7.

By Lemma 7, we can use Proposition I. By the similar reasoning as in the
case of Theorem 1, we reduce Theorem 2 to the following

Theorem 2. Let (B, n), G be as in Thoerem 2 and let f be an element of B
which satisfies the following conditions.
1. The ideal fB is invariant under the action of G.

2. For every g G, In(g(f))=ng)In(f)=det(\(g))In(f).
Then (fB) N A=K is a canonical module of A.

Proof of Theorem 2’. We put R=Gr;(B) the associated graded algebra of
B. We know that R==k[X|, -+, X,], where n=dim(B). G acts on R by the
action of A(G) on linear forms of R. We define a filtration (F;);5, on A by
putting F;=A Nni=(n?)°. It was shown in [13], §7, that the filtration (F});5,
defines the same topology as the m-adic topology on A. The filtration (F;)
induces a filtration on K. We define F;- K=(f-n")°=F,;, 4(K) if deg(In(f))=d.
We put G‘(zél)zgg)F,-/F,-ﬂL1 and G‘(K):@Fi(K)/F,-+1(K).

Lemma 8. K is a Macaulay A-module.

Proof. This is a direct consequence of Lemma 3.
Lemma 9. G*(4)=R€ and G'(K)=In(f)RN G*(4).

Proof. The first assertion was proved in [13], in the proof of Theorem 4.
As K is an ideal of 4, G*(K) is the ideal of G*(4) generated by {In(a)|a=K}.
But if we consider G*(4) as a subring of R and if a= 4, then In(a) in R is equal
to In(a) in G*(4) As Gy(fB)=1In(f)-R in R, the second assertion follows.

Lemma 10. »(K)=1.

Proof. 'This is a consequence of Lemma 6, Lemma 5 and Proposition K,

(iv).

By Lemma 8 and Lemma 10, the proof of Theorem 2’ is complete.

4. Base extensions

In this section, let 4 be a Noetherian ring and G be a finite subgroup of
GL(n, A) with |G| a unit in 4. G acts naturally on R=A4[X,, -+, X,], the
polynomial ring over 4. When p& Spec(4) and g G, we say that g is a pseudo-
reflection at p if the canonical image of g in GL(n, k(p)) is a pseudo-reflection.
(k(p)=A,[pA,) TUnder these terminologies, we have the following
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Theorem 3. If G does not contain any pseudo-reflections at each point of
Spec(A), then RC is Gorenstein if and only if A is Gorenstein and det(g)—1 is nil-
potent for all g G.

Proof. By Lemma 9 of [13], RC is faithfully flat over 4. Thus R® is
Gorenstein if and only if 4 is Gorenstein and R°® 4k(p) is Gorenstein for all
peSpec(4)([12], Theorem 1’). Butas R°® 4k(p)==(k(p)[X,, -**, X4])® R°R 4k(p)
is Gorenstein if and only if the canonical image of G in GL(n, k(p)) is contained
in SL(n, k(p)) by Theorem 1. From these facts, Theorem 3 follows easily.

5. Examples

In this section, & always denotes a field and e,, denotes a primitive m-th root
of unity in k. We assume always that |G| is not a multiple of ch(k). We denote
G={g> if G is a cyclic group generated by g.

(5.1) “RE is Gorenstein” does not imply “R is Gorenstein”.

ExampLE 1. Let R=k[T? T*,T°] and G={g)>. If g actson R by g(T)=e,T,
then R6=k[T?] is regular but R is not Gorenstein.

ExampLE 2. Let R=k[S*, S°T, S*T?, ST? T*] and G={g) acting on R by
g(8)=e,S and g(T)=e5'T. Then RC=kK[S’T? S° T°] is Gorenstein but R is
not Gorenstein.

(5.2) “(4,m) is Gorenstein local and MG)DSL(m[m*)” does not imply
“AS is Gorenstein”.

ExampLE 3. Let R=k[S? ST, T°] and G={g) acting on R by g(S)=e,S
and g(T)=e,T. If A is the local ring of R at the maximal ideal (S? ST, T?),
then 4 is Gorenstein, A(g)eSL(m/m?) and A€ is not Gorenstein because R®
=k[S°%, S°T, S$*T? S°*T%, S°T*, ST°, T*).

(5.3) “(A4,m) is Gorenstein local and A€ is Gorenstein” does not imply
“MG) SL(m[m*)”.

ExampLE 4. Let R=E[T? T°] and G={g)> acting on R by g(T)=e,T.
Then R is Gorenstein and R°=k[T*] is regular. But if A4 is the local ring of R
at the maximal ideal (7%, T°), \(g) & SL(m|m?).

ExampLE 5. Let R=k[X? XY, Y? Z] and G={g)> acting on R by g(X)
=X, g(Y)=e,Y, g(Z)=e,7'Z. 'Then R is Gorenstein and by Theorem 1, R€ is
Gorenstein. But if A is the local ring of R at the maximal ideal (X?, XY, Y?, Z),
Mg) & SL(m|m?).
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