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Preface

Productivity growth plays an essential role in both micro- and macro-economics, as it
reflects the long-term improvements in production and operations at the firm, industry,
and economy-wide levels. There is a wide variety of measures of productivity change,
but the Malmquist-type indices are particularly noteworthy because of its widespread use
in the literature on productivity. The essential characteristic of Malmquist-type indices is
its dynamic view of efficiency, whereas the original efficiency analysis has been mostly
static. Indeed, the efficiencies reflecting the performance of production activities are
likely to change over time, and these changes have been considered as an important
contribution to productivity growth. Therefore, the thesis covers both the theoretical and
practical topics of efficiency and productivity analysis to estimate the productivity change
with Malmquist-type indices.

The primary analyzing approach of this thesis is nonparametric in the sense that the
measurement of the production frontier is entirely based on the observed input-output
data. The thesis extends the theoretical and practical framework of two principle
nonparametric methods involved: Data Envelopment Analysis (DEA) and Stochastic
Nonparametric Envelopment of Data (StoNED). In particular, DEA is recognized as a
modern mathematical programming method to deriving measures of efficiency and
productivity change over time in the multi-input and multi-output production technology.
The essential assumption of the traditional DEA models is its deterministic treatment of
the production frontier, ignoring the statistical aspect of the data set. By contrast, StoNED
is a regression-based method that imposes classical regression models of statistical noise
into DEA. The use of a noise term makes it possible to estimate the production frontier
under a stochastic setting. In practice, the choices of DEA and StoNED varies depending
on whether the data have been measured correctly or not.

The thesis extends the theoretical frameworks of efficiency and productivity analysis

in the following aspects: (1) a new scheme of allocative efficiency, which provides a



comprehensive understanding of the sources of inefficiency in inputs and outputs, (2) a
new Malmquist-type index termed profit-ratio change index, which gives a full picture of
the sources of productivity change in the sense that the impact of allocative efficiency
changes is incorporated, (3) a new panel-data model for estimating the Malmquist-type
indices under stochastic noise, which addressed the issues of inconsistent inefficiency and
measurement issues of intertemporal inefficiency. Further, the merits of the proposed
methods and the validity of the evaluation results have been illustrated by analyzing the
efficiency and productivity change of samples of 37 Japanese securities companies and
101 Japanese regional banks, respectively. These results provide realistic projections and

policy implications for improving the productive performance.
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Chapter 1

Introduction

1.1 Introduction to efficiency and productivity analysis

The thesis focuses on the essential practical and theoretical problems of analyzing
efficiency and productivity, including the measurement of allocative efficiency under
specific behavioral objectives, the characterization of productivity with consideration for
allocative efficiency, and the performance evaluation under stochastic noise. Both
efficiency and productivity are widely used concepts in the fields of management science
and economics as a means to evaluate the performance of production activities such as
firms, government agencies, and nonprofit organizations. In practice, however, assessing
efficiency or productivity can be difficult in some situations, especially when the
benchmarks (standards) are unavailable or multiple performance metrics (i.e., inputs and
outputs) are involved.

Consider bank branches, for example. The managers may be interested in knowing how
efficiently their business processes operate concerning the use of inputs such as labor,
deposits, and capital, and the outputs such as loans and securities. In such a situation,
efficiency can be easily estimated if we have a priori information on the relationship
among multiple inputs and multiple outputs (i.e., there is an available functional form that
can fully characterize the business processes of bank branches). Unfortunately, such
information is not always available. For this reason, efficiency is often considered as a
result of relative comparisons among all observed production activities. Specifically, by
comparing the current production activity with similar ones, we can empirically estimate

a so-called efficient frontier that identifies all best practices. Since producers or managers



are not required to operate on the efficient frontier, the deviations from the frontier are
then explained as a natural measure of efficiency. A detailed description of efficiency is
presented in Section 2.3. Further extensions of the concepts of efficiency are discussed in
Sections 3.2 and 5.3.

A majority of literature on efficiency analysis has been static, which means any
comparison through time is entirely ignored. However, the performance of production
activities is likely to change over time. Moreover, considering a time component, it
becomes possible to associate the changes in performance over time with productivity
change (e.g., higher or lower productivity). Note that productivity is a static concept that
compares the performance of production activities at a given point of time, while
productivity change is a dynamic view of productivity. Although productivity change
focuses on the differences in past performance, understanding recent historical trends of
productivity and what has driven these can be important for policy-makers or regulators.
For example, regulators can set reasonable expectations for future production plans by
assessing what can be achieved through efficiency improvements and what can be
achieved through changes of efficient frontier over time. On the other hand, analyzing
productivity change can also help to examine the impact of a policy or managerial
decisions over a long period. I provide a brief review of the productivity analysis in
Section 2.4 and further clarify the difference between the concepts of efficiency and
productivity. In Chapters 3 and 5, I address the theoretical issues of measuring
productivity change and propose the solutions by introducing a profit-ratio change index

and stochastic nonparametric estimation of Malmquist-type indices.

1.2 Brief review of methods

There are two main approaches for evaluating efficiency and productivity: deterministic
nonparametric and stochastic parametric approaches. In the standard deterministic
nonparametric approach, Data Envelopment Analysis (DEA, Charnes et al. [1]) has
demonstrated its utility for measuring productive performance. Notably, DEA can be

applied to a multi-input and multi-output production technology, which is based on



theoretical axioms of production theory such as free disposability, convexity, and returns
to scale (see also [2—5]). The significant properties of production technology are described
in Section 2.2. It is also well known that the deterministic nonparametric approach
commonly assumes away stochastic noise, suggesting that any deviations from the
frontier (e.g., gauging the distance to the boundary of the production technology) can be
considered as a measure of pure inefficiency. By contrast, Stochastic Frontier Analysis
(SFA, Aigner et al. [6], Meeusen and van Den Broeck [7]), a general stochastic parametric
approach, accounts for stochastic noise by treating all deviations from the frontier as
aggregations of both inefficiency and noise. However, compared with the flexibility of
nonparametric measurements, because SFA is a parametric methodology it relies heavily
on an accurately pre-specified functional form for production technology.

Moving on, a growing number of theoretical studies attempt to combine the advantages
of deterministic nonparametric and stochastic parametric approaches (see, e.g., [8—11]).
These studies offer potential in terms of improved understandings of performance
benchmarking. Stochastic Nonparametric Envelopment of Data (StoNED) introduced by
Kuosmanen [12] has been variously applied in the literature. It has been shown that both
DEA and SFA can be integrated into the StoNED framework (see also Kuosmanen and
Johnson [13]). The unknown production frontier in StoNED is handled with convex
nonparametric least squares (CNLS), which is a nonparametric regression technique
proposed by Kuosmanen [14]. Based on the results of CNLS regression, efficiency
analysis can be further performed with either parametric or nonparametric methods.

The primary theoretical approach of this thesis is based on nonparametric techniques:
DEA and StoNED. In Section 2.5, I provide a short description of these techniques and

further discuss the measurement issues for efficiency and productivity analysis.

1.3 Objectives of this thesis

The main objective of this thesis is to provide new nonparametric methodologies for the
estimations of efficiency and productivity change. This objective is motivated by

concerning the following three aspects:



(@)

(b)

(©)

Given specific behavioral objectives, efficiency analysis can be performed regarding
the optimal combinations (mix) of inputs and/or outputs, which leads to the concept
of allocative efficiency. Note that the common used behavioral objectives are either
cost minimization or revenue maximization. In practice, however, producers in
profit-seeking organizations can be both cost minimizers and revenue maximizers.
For example, consider the production activities whose underlying behavioral
objectives are the maximization of profit ratio (the ratio of revenue to expenses). The
conventional measures of allocative efficiency may not give a comprehensive
understanding of the sources of inefficiency because the effect caused by the wrong
mix of both revenue and expenses is not incorporated. Therefore, it is necessary to
develop a new scheme of allocative efficiency.

The Malmquist index is a useful tool for measuring productivity changes. Besides
measures quantifying productivity changes, there are also various empirical studies
investigating the drivers of productivity changes. In recent years, the decomposition
of productivity changes into a technical efficiency change component and a technical
change component using the Malmquist index has been widely used. However, the
conventional construction of the Malmquist index ignores the impact of allocative
efficiency, which has been proved to account for the changes in productivity in
empirical applications. Thus, it is necessary to consider a new Malmquist-type index
for incorporating the impact of allocative efficiency changes on productivity change.
In the deterministic approach, efficiency is often quantified by gauging the distance
to the production frontier. Meanwhile, the conventional Malmquist-type indices are
constructed from the distance functions, which makes it possible to use the evaluated
efficiencies to calculate the productivity change. However, in some situations, the
stochastic approach may be preferable than the deterministic approach, especially
when the evaluated efficiency is considered to be sensitive to mismeasurements or
outliers. In the nonparametric techniques, StoNED allows us to assume the deviations
from the unknown production frontier consist of both inefficiencies and noise in the
data. Consequently, compared with the deterministic approach, the distance
estimated from the cross-sectional StoNED model cannot be straightforwardly
extended to construct a Malmquist-type index. Therefore, it is necessary to develop

a new model to estimate the Malmquist-type indices under stochastic noise.



The secondary objective is to demonstrate the advantages of the proposed methods on
empirical applications. Specifically, two types of decision-makers are considered:
securities companies and regional banks. Considering both DEA and StoNED are
methods for decision making, the policy implications of the empirical results are also

discussed, respectively.

1.4 Outline of chapters

The summaries of the remaining chapters are provided below.

Chapter 2 provides the general theoretical background required for efficiency and
productivity analysis. It begins by introducing the structure of multi-input and multi-
output production technology. Some notable properties of production technology are
illustrated in detail. Attention then moves to the concepts of efficiency and productivity.
I outline a variety of efficiency measures and the definition of the Malmquist index, which
is dealt with within the following chapters. Eventually, I introduce the main
nonparametric techniques for analyzing efficiency and productivity.

Chapter 3 is devoted to the productivity analysis with consideration for allocative
efficiency. The methodology is established on a value-based measure with due
considerations to the imprecise price and the heterogeneity in physical inputs and physical
outputs. In what follows, a new scheme of allocative efficiency in terms of profit-ratio
maximization is firstly proposed. I show how this can be incorporated into a DEA model
theoretically. A profit-ratio change index is developed correspondingly, which can be
applied to panel data to measure productivity change and suitable for situations when
producers desire to maximize revenue and minimize expenses simultaneously. To identify
the drivers of changes in a profit-ratio change index, the index is further decomposed into
profit-ratio efficiency change and change of profit-ratio boundary. An alternative
decomposition of the profit-ratio change index is also proposed, which is the product of
the Malmquist input-oriented productivity index and an allocation Malmquist
productivity index.

Chapter 4 demonstrates the methodology in Chapter 3 by considering a sample of 37



Japanese securities companies observed from 2011 to 2015. To derive valuable
information for organization management, the observed securities companies are
categorized into six different groups based on their technical and allocative performance.
Through such a categorization, the empirical results revealed the strengths and
weaknesses of Japanese securities companies and identified the potential opportunities to
improve current operations and management.

Chapter 5 is concerned with productivity analysis under a stochastic setting.
Considering the presence of random noise in empirical data, a panel-data StoNED model
is introduced for estimating the production technology in terms of the directional distance
function. By virtue of using panel data, the inefficiency can be estimated consistently
based on the residuals of the CNLS problem. The problem of using CNLS is that the
intertemporal efficiency for constructing Malmquist-type indices cannot be assessed
directly. To solve this issue, an estimator of the directional distance function is developed
for analyzing the intertemporal efficiency. It is further extended to the estimation of
Malmquist-type indices. A major feature of this approach is that it measures productivity
changes over time while capturing both inefficiency and noise in a nonparametric
multiple-input multiple-output setting.

Chapter 6 investigates the productive performance of a sample of 101 Japanese
regional banks over two periods by applying the methodology developed in Chapter 5.
To investigate the drivers of productivity change, the proposed Malmquist index is
decomposed into components of efficiency change and technical change. The policy
implications of the empirical results are also discussed.

Chapter 7 provides a further productivity analysis for the sample of 37 Japanese
securities companies observed from 2011 to 2015. Considering the significant changes in
business management that appeared in the Japanese securities industry around the year
2013, the methodology developed in Chapter 5 is adopted to estimate the productivity
changes between the analyzing periods 2011-2013 and 2013-2015. Notably, I investigate
the extent to which the outlier affects the estimation of inefficiency. I further discuss the
policy implications of the estimated Malmquist index and examine the main drivers of
productivity growth.

Chapter 8 concludes the whole thesis and provides several directions for future research.



Chapter 2

Theoretical background

2.1 Introduction

The objective of this chapter is to provide the necessary theoretical underpinnings for
analyzing efficiency and productivity. Section 2.2 introduces the structure and some
notable properties of production technology where multiple inputs are used to produce
multiple outputs. Based on the production technology, efficiency and productivity are
then described in Sections 2.3 and 2.4, respectively. Section 2.3 covers classical efficiency
concepts, including the input-oriented, the output-oriented, and the graph measure of
technical efficiencies, as well as more advanced concepts like the directional measure of
inefficiency, the profit-ratio efficiency, and the allocative efficiency regarding the profit-
ratio maximization. Section 2.4 is concerned with the measurement of productivity in
terms of Malmquist-type indices. Attention then moves to the methods for analyzing
efficiency and productivity. Section 2.5 summarized the basics of two nonparametric
techniques: Data Envelopment Analysis (DEA) and Stochastic Nonparametric

Envelopment of Data (StoNED). Section 2.6 concludes this chapter.

2.2 Production technology

All production processes are considered as a transformation of inputs into outputs.
Production technology is a mathematical description of this transformation relationship
and can be represented with either sets or functions. The choice of which depends on the

analytical approaches and the purposes of productivity analysis. Especially, in



productivity literature on nonparametric approaches (e.g., DEA), the production
technology is almost represented with sets, while in those on parametric approaches (e.g.,
SFA), some specific production functions with unknown parameters are commonly used
which include the Cobb-Douglas, the translog, and the generalized production function.
However, it is worth noting that in some specific situations involving multiple outputs,
distance functions are also useful as alternative functional representations of the
production technology and can be handled with either nonparametric or parametric
approaches. In what follows, I first consider the representation of the sets due to the
purpose of modeling the production technology in a nonparametric approach. Alternative
functional representations using distance functions will also be considered.

Denote x € RY* a nonnegative vector of inputs and y € R} a nonnegative vector of
outputs. The production technology defined with production possibility set is given by

T = {(x,y) € R?"*:x can produce y}. (2.1)
Note that both the inputs and outputs in Eq. (2.1) are quantities without any random noise,
and at this point, I do not account for any price information or assume any particular
behavior such as cost minimization, revenue maximization, or other economic behaviors.
Set T contains all technologically feasible combinations of input-output vectors, and
thus it is also termed the graph of production technology. The thesis assumes T satisfies
the following standard axioms (e.g., Shephard [15]; Fare and Primont [16]):
A.l. Boundedness.
A.2. Closed set.
A3. Convexity: If (x,y) €T and (x',y')ET, then (Ax+ (1 —-AD)x", Ay+(1—
A)y')ET forall A €[0,1].
A.4. No free lunch:1f y >0 and (x,y) € T, then x > 0.
A.5. Free (or strong) disposability of inputs and outputs: If (x,y) € T,then (x',y’) €
T for (x,—y) < (x',—y".

The above axioms are assumed to hold throughout this thesis. However, further
assumptions such as returns to scale will be discussed as required. A.1, along with A.2,
guarantees the existence of production frontier (the boundary of the production
technology) which gives the maximum possible outputs that can be produced from the

given level of inputs or, equivalently, the minimum possible inputs required for any given



level of outputs. For example, if a production process only has a single output or an
obtainable aggregate output of multiple outputs to be produced (e.g., s = 1), then the
production frontier can be defined by using the function g(x) = max{y: (x,y) € T}.A.3
says any convex combination of two feasible production activities also belongs to the
production technology. This axiom is one of the standard theoretical axioms of production
theory in microeconomics (see [2—5]). For example, in the case of s = 1, A.3 implies a
diminishing marginal rate of (technical) substitution. A.4 says positive outputs can always
be produced by positive inputs. A.5 imposes the monotonicity of inputs and outputs.
Specifically, it ensures that the production technology is monotonically increasing in
inputs and monotonically decreasing in outputs. Figure 2.1 illustrates the production

technology imposed with A.1~A.5 in the case of a single input and a single output.

g(x)

0 X

Figure 2.1 Illustration of production technology with a single input and single output

It is worth noting that A.5 can be relaxed under some specific situations. For example,
one can impose the weak disposability of inputs and outputs in the sense that the
underlying production technology is expected to be radially increasing in inputs and
radially decreasing in outputs: (x,y) €T = (x,y) €T for A>1 and (x,y) €T =
(x,Ay) €T for 0 <A<1. Obviously, the strong disposability implies the weak

disposability, however, the converse does not hold. In other words, the strong
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disposability allows the situation where inputs can be increased without decreasing any
output, and also the situation where outputs can be decreased without increasing any input.
By contrast, the weak disposability indicates that any increase in inputs or decrease in
outputs comes at the cost of decreasing outputs or increasing inputs. Throughout the thesis,
the strong disposability is assumed due to the following considerations: First, strong
disposability allows for non-radial efficiency improvements, which will be considered in
upcoming sections. Second, strong disposability is a sufficient condition (see, e.g., Fire
et al. [17]) for the functional representation of production technology based on the
directional distance function (DDF). Further details on DDF will be discussed in Chapter
5.

2.3 Efficiency

Recall that the production possibility set contains all technologically feasible
combinations of input-output vectors. This implicitly says that producers may operate
below or on the production frontier. Generally, if an input-output combination (x4, y4) €
T 1is on the production frontier, the production activity is labeled technically efficient (or,
(x4,v4) €T is weakly efficient if there remains slack in inputs or outputs) in the sense
that decreasing any input or increasing any output is not possible without increasing any
other input or decreasing any other output [18]. In contrast, production activity is
technically inefficient if producers operate below the production frontier. Clearly, the
concept of “efficiency” provides a relative comparison for all feasible input-output
combinations, that is, efficiency means the extent to which each production activity
differs from those that appeared on the production frontier. More straightforwardly,
efficiencies are evaluated by comparing a production activity to the production frontier
(or, more precisely, to the estimated production frontier (best practices) derived from the
observations). Mathematically, efficiencies are generally expressed in either ratio or
difference form. Both of these can be further discussed in radial and non-radial measures,
depending on the purpose of efficiency analysis. The interest of radial measures is mainly

on the achievement of the maximum equally proportional contraction in all inputs or the



11

maximum equally proportional expansion of all outputs, while the non-radial measures
allow for the situation where inputs and outputs are not changed by the same proportion.
No matter which measure is used, however, it is essential to consider an economic
hypothesis: returns to scale. This is because the concept of returns to scale provides a
characterization of the shape of the underlying production technology (i.e., a reasonable
identification of returns to scale leads to a reasonable characterization of efficient
production activities). For example, if there is not enough evidence to prove that the
differences of operating scales among evaluated production activities relate directly with
economies of scale, then it may be reasonable to consider that the underlying production
technology exhibits constant returns to scale (CRS, that is, any feasible input-output
combination can arbitrarily be scaled up or down; i.e., T = kT, k > 0), and the efficient
production activities are of the most productive scale size [19]. Further details of returns
to scale will be discussed as required. Our focus in evaluating efficiencies is on the

following:

(@) The input-oriented technical efficiency (TE'): TE' is aradial measure that attempts
to minimize inputs while producing at least the given outputs [1,20], which is defined
as

TE! = irylf{y: (yx,y) €ET,0<y <1}, (2.2)

where the superscript “I”” denotes the input orientation.

(b) The output-oriented technical efficiency (TE®): TE® is also a radial measure
whose objective is to maximize outputs while using no more than the observed level
of any input [1,20], which is defined as

TEC = sgp{w: (x,wy) €ET,w =1}, (2.3)

where the superscript “O” denotes the output orientation.

(c) The graph measure of technical efficiency (TER): TE®R is simultaneously both a
radial input contraction and radial output expansion. Different from TE! and TE®,
this measure follows a hyperbolic path to the production frontier and thus is also

termed “graph hyperbolic measure” [21,22]. Formally, TE®® is defined as
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TEGR = igf{@; (0x,071y) €T,0< 6 < 1}, (2.4)

where the superscript “GR” stands for graph hyperbolic measure.
The above measures are of ratio forms and can be simply grouped into radial measures.
Let now TE! = y*, TE? = w*, and TER = 8*, we can illustrate their differences by

using Figure 2.2.

g(x)

w*y

0"y (®)

(©
(@

XY

*

0 y*x 0*x x

Figure 2.2 Input-oriented, output-oriented, and graph measure of technical

efficiencies.

Measures (a) and (b) were first proposed by Debreu [23] and Farrell [20], and thus also
referred to as “Farrell efficiencies” or “Debreu-Farrell measures of technical efficiency.”
These measures have been proved to be the inverse of the Shephard distance functions,

which are given as

D'(x,y) = sup{¢: (x/¢p,y) €T, ¢ > 0} = 1/TE/, 2.5
P (2.5)

DO(x,y) = inflp: (x,y/9) €T, > 0} = 1/TE®. (2.6)

Note that D'(x,y) and D9(x,y) are termed input distance function and output
distance function, respectively (see, e.g., Fiare and Primont [16]). As a more generalized
approach of both Farrell efficiencies and Shephard distance functions, the directional

distance function (DDF), which was proposed by Chambers et al. [24], can also be used
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to evaluate efficiencies:
D(x,y,g,h) = sup{n: (x —ng,y + nh) € T} with (g,h) € R]**S. 2.7)
n

This function simply measures how far a given input-output combination (x,y) can be
projected onto the production frontier along with some given direction (g, h). It has been
shown that either Farrell efficiencies or Shephard distance functions are, in principle,
special cases of the directional distance function [25]. Specifically, D (x,y,9,h) =1—
1/D'(x,y) =1 —TE! if we specify the direction vector as (g,h) = (x,0) and
D(x,y,g9,h) =1/D°(x,y) —1=TE® —1 if (g,h) = (0,y). However, it is also
straightforward to see that the directional distance function is not limited to the input or
the output orientation. Just like the graph measure of technical efficiency in Eq. (2.4), the
directional distance function in Eq. (2.7) combines the ideas of input and output
orientation by examining to what extent the actual inputs and outputs can be
simultaneously improved. A major difference between Eqgs. (2.4) and (2.7) is that the
directional distance function has an additive nature (difference form), which allows for

the potential for non-radial efficiencies.

(d) The directional measure of inefficiency (u): u is the distance quantified by scaling
inputs and outputs to the production frontier in the direction vector (g, h) € RT**S.
Formally,

u=D(x,y,g,h). (2.8)

Figure 2.3 illustrates the relations of the inefficiency and some pre-assigned direction

vector.
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v

Figure 2.3 The directional measure of inefficiency.

The observed production activities are points A, B, C, and D. It can be seen that with any
arbitrary given direction vectors, points on the production frontier are obtained as u =
n* = 0, which means no inefficiency (e.g., point A). Meanwhile, points under the
production frontier are estimated with positive inefficiency, that is u =n* >0 (e.g.,

points B, C, and D). This relation was first explained by Chambers et al., [26] and can be

formally described as 5(x, y,9,h) =0 if and only if (x,y) € T. Moreover, this
relation also indicates that the directional distance function provides a complete
characterization of the production technology, which will be discussed further in Chapter
4,

So far, no assumptions have been made about the behavioral objectives such as cost
minimization, revenue maximization, and profit maximization, among others. However,
it is possible to account for such behavioral objectives in the framework of efficiency
analysis. The thesis considers explicitly the production activities whose underlying
behavioral objectives are the maximization of profit ratio. Note that the term “profit ratio”
is consistent with the concept of “profitability” which is commonly defined as the ratio
of revenue to expenses [27-30], or the criterion “return to the dollar” proposed by
Georgescu-Roegen [31]. The assumption of profit-ratio maximization provides a

possibility for analyzing the economic frontier (i.e., the profit-ratio boundary. See further
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details in Chapter 3), which means it is possible to evaluate the profitability performance
(e.g., profit-ratio efficiency) of the production activities if their maximum achievable

profit ratio is obtainable.

(e) The profit-ratio efficiency (PE): PE is a measure of the extent to which the actual
profit ratio falls short of achieving the maximum profit ratio. Specifically,

_ my)
m(x*,y*)

where m(-) is a profit-ratio function that maximizes the ratio of revenue to expenses.

(2.9)

(x*,y*) €T are the input-output combinations on the profit-ratio boundary and thus
m(x*,y*) represents the maximum profit ratio for the observed production activities.

As for the production activities who consider profit-ratio maximization, they are
responsible not only for picking a technically efficient point on the production frontier
but also for picking the right one to maximize the profit ratio. The latter is associated with

allocative efficiency.

(f) The allocative efficiency regarding profit-ratio maximization (AE): AE identifies
the wrong mix in input-spending and output-earnings. If there is no wrong mix in
both input-spending and output-earnings, the technically efficient point is the same
one with the maximum profit ratio.

Note that the commonly used definition of allocative efficiency identifies the existence

of the wrong mix in physical inputs and physical outputs, given the exact price

information [20,23]. However, considering that the inaccurate price information can

distort measures of allocative efficiency [32], the allocative efficiency is evaluated in a

value-based technology in Chapter 3. In the case that one uses the data on volumes and

prices of inputs and outputs to calculate the input-spending and output-earnings, the
allocative efficiency identifies the wrong mix in input-spending and output-earnings
rather than in the physical inputs and physical outputs. The concept of allocative

efficiency will be further considered in Chapter 3.
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2.4 Productivity

As explained in Section 2.3, the concept of “efficiency” provides a relative comparison
for all production activities. Besides efficiency, another concept termed “productivity”
can also be used to compare the performance of production activities at a given point of
time. Although efficiency and productivity are closely related to each other, they are
fundamentally different concepts. If the production process only involves a single input
and a single output, then productivity can be simply defined as the ratio of the output to
the input (i.e., output per unit of input), and sometimes is referred to as partial
productivity. In contrast to partial productivity, the measurement of productivity becomes
more complicated in a multiple-input and multiple-output production technology because
aggregation of inputs and outputs is required for the construction of productivity. Note
that the ratio of aggregate output to aggregate input is also called total factor productivity.
Generally, the concept of productivity is related to the efficiency in the following sense:
If the underlying production technology exhibits constant returns to scale, then all of the
efficient production activities have the same score of productivity. However, this is not
always true when decreasing or increasing returns to scale is appropriate. For example, if
the underlying production technology exhibits decreasing returns to scale, then the score
of productivity for the efficient production activities declines as more and more of the
input is used. In other words, a production activity may be technically efficient but may
still be able to improve its productivity by scale improvements.

Thus far, productivity has been considered at a given point of time. If panel data is
available, then it is possible to examine the changes in productivity over time. For
instance, the analysis of “productivity change” can be useful to examine the impact of
policy or management decisions over a long period. It is also possible to examine the
drivers of productivity change. That is, one can examine whether the productivity growth
was driven by efficiency improvements, or whether it was driven by scale improvements,
or by technological improvements (i.e., there is an upward shift in the production
technology). The thesis focuses on the Malmgquist index [33] for measuring productivity
change over time. Since the Malmquist index was first introduced in productivity

literature by Caves et al. [34], there has been a great deal of interest in empirical studies
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quantifying productivity change. Consider two periods t and t + 1, respectively. The

input-oriented Malmquist index at period t is given as

Mt = D (41, Ye+1)
Dt(xtﬂyt) ’

where D(-) is the input distance function defined in Eq. (2.5). Note that the superscript

(2.10)

“I” is dropped for simplicity (e.g., D"*(x;,y.)). This index compares two input-output
combinations, (x;,Vy;) and (X;41,Vr+1), to a reference production technology at period

t. Similarly, a comparison at period t + 1 is

Dt+1(xt+1'J’t+1)
D1 (x¢, y)

To avoid an arbitrary choice of a reference production technology, the input-oriented

Mt+1 —

(2.11)

Malmquist index can be conveniently defined as the geometric mean of both the M* and

M'*1, Formally,

1
_ [P yen) D" (x¢41, Yer1) |2 (2.12)
Dt(xt, yt) Dt+1(xt,Yt) .

Here, the terms D®(x;,y,) and D®*'(x;41,y+1) are the measurements within the same

period, while the terms D®(x;.1,V¢+1) and D'*1(x,y,) are the intertemporal
comparisons. As a consequence, M measures the productivity change between periods
t and t+ 1. If M is greater, equal, or smaller than unity, the productivity shows, on

average, decline, stagnation, or growth between periods ¢t and t + 1.

In recent years, the decomposition of productivity change into a technical efficiency
change component and a technical change component using the Malmquist index has
been widely used. The above definition of the input-oriented Malmquist index can be
decomposed as follows:

M= D" (x¢41, Yes1) % D*(x¢41,Yes1) % D*(xt, yt) 1/2.
Dt (xt, y¢) D*™*1(xt11,¥e41)  D¥(xe, ye)

The component outside the square brackets in Eq. (2.13) captures technical efficiency

(2.13)

change (or Catch-up) between periods t and t + 1, while the component inside the
square brackets measures the shift of production frontier (technical change, or frontier
shift, innovation) over time. In general, for both component indices in Eq. (2.13), more

than 1 indicates regress, while equal to 1 and less than 1 show the status quo and progress,
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respectively. Figure 2.4 illustrates the input-oriented Malmquist index and its component

indices with a single input and single output production technology,

A

y Production frontier
atperiodt + 1
Production frontier
at period t
@ ®
H G F E
L Y
D C B A
0 >

Figure 2.4 The concept of input-oriented Malmquist index.

It is worth noting that in Fig. 2.4, the constant returns to scale is implicitly assumed. It
has been shown that a Malmquist index may not correctly measure productivity change
when variable returns to scale (VRS) is assumed [35-37]. In Fig. 2.4, point A and point
B are the same production activity obtained at period ¢ and t + 1, respectively. The
efficiency change is then expressed as (HF/HG)/ (DA/DB), and the technical change
is [(HF/HE)/(HF/HG) x (DA/DB)/(DA/DC)]*? , which can be simplified as
[(HG/HE) x (DC/DB)]/?.

On the other hand, as argued by Maniadakis et al. [38], the Malmquist index may not
give a full picture of the source of productivity change since the impact of allocative
efficiency change is not incorporated. However, given the purpose of profit-ratio
maximization, it is possible to measure the Malmquist-type indices with consideration for
allocative efficiency. In this thesis, a profit-ratio change index is also proposed, which
can be applied to panel data to measure productivity growth and suitable for situations
when producers desire to maximize revenue and minimize expenses simultaneously.

Further details will be discussed in Chapter 3.
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2.5 Nonparametric techniques for efficiency and productivity

analysis

Both the concepts of efficiency and productivity are established based on unknown
production technology. Thus, the mathematical formulation of the production technology
becomes a key issue for measuring efficiency and productivity. As mentioned in Chapter
1, this thesis focuses on two nonparametric techniques, that is, Data Envelopment
Analysis (DEA) and Stochastic Nonparametric Envelopment of Data (StoNED). This
section covers the basics and some additional material on DEA and StoNED.

In general, DEA integrates two general stages of a) formulating linear programming
models for constructing a piecewise linear production technology, and b) gauging the
efficiency of each production activity (i.e., Decision-Making Units, DMUs) relative to
the estimated production frontier. Recall that our production process transforms m
inputs to s outputs. Suppose we observe the activities of n producers indexed by j,
j=1,..,n. Assuming the underlying production technology T satisfies A.1-A.5 in
Section 2.2, a DEA representation of the production technology under constant returns to

scale (CRYS) is then formulated as

n
TPEA = (x,y) € RIS x; 2 Z’lfxij'i =1..,m,
j=1
(2.14)

n
Vr < Z/ljyrj,r =1..,54=20
j=1
where /'lj > 0,j =1, ...,n is an intensity variable that enables us to scale up or down the
observed input-output combinations (i.e., the observed production activities) to construct
unobserved but feasible input-output combinations (i.e., the unobserved feasible
production activities). Therefore, X7_;Ax;;(i=1,..,m) and X7, 4y, (r=
1, ...,s) are referred to as feasible inputs and outputs of virtual production activity. It is
worth noting that Y7 i 4ix;; (i =1,..,m) and X714y, (r=1,..,5) are the
convex combination of observed inputs and outputs, respectively. That is if we set kxlj’- =

Aj,k >0, then we have Z}’zl/l]’-xij (i=1,..,m) and Z;-Ll/l]’-y”- (r=1,..,s) where
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Z}l:l/l]'- = 1. In other words, virtual production activity is a convex combination of

observed production activities. It is now clear that Eq. (2.14) implicitly assumes T =
kT,k > 0 for the underlying production technology T, which implies constant returns
to scale (see, Section 2.3). It is also possible to impose different assumptions on returns
to scale such as non-increasing, non-decreasing, and variable returns to scale by adding
the convexity constraints 7,4 <1, ¥7.14; =1, and Y%, 4 =1, respectively.
Further, Eq. (2.14) requires each producer to use at least one positive input to produce at
least one positive output (such production activities are also referred to as semi-positive
input-output combinations).

Note that Eq. (2.14) satisfies the minimum extrapolation principle, which implies
TPEA is the smallest set that contains all observed production activities and meanwhile
satisfies A.1 to A.5 and CRS. From the perspective of efficiency or productivity analysis,
TPEA provides a performance standard for all observed production activities in the sense
that any production activity not on the estimated production frontier (i.e., the boundary
of TPEA) can be scaled against a convex combination of the observed production
activities on a subset of the estimated production frontier. Here, a simple model of DEA
is introduced for measuring the input-oriented technical efficiency (i.e., TE?).

Yy = miny
s.t.

n
ZAJXU < )/Xio,i = 1, e, M,
T (2.15)

n
leyrj =Yo7 =1,..,5;
j=1

Ai=0,j=1,.,n,
where the subscript “o0” represents the production activity (observation) under evaluation.
Since y =1, 4, =1, 4; =0 (j # 0) is a feasible solution to Eq. (2.15), the optimal
solution denoted by 6* is less than or equal to 1. On the other hand, the second constraint
ensures that any 4; is positive due to the assumption of semi-positive data. Hence, the
first constraint implies 8* is greater than 0. Putting this all together, we have 0 < 8™ <

1. Therefore, Eq. (2.15) is consistent with the definition of input-oriented technical
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efficiency in Eq. (2.2). Moreover, in the literature of DEA, Eq. (2.15) is also called the
input-oriented CCR model (see, Charnes, Cooper, and Rhodes [1]). If 6" =1, the
evaluated production activity is on the estimated production frontier in the sense that the
current level of inputs cannot be proportionally reduced. Otherwise, the evaluated
production activity is underneath the estimated production frontier because 0 < 8* < 1
indicates the current level of inputs can be proportionally reduced by a positive rate.
Recall the concepts of efficiency described in Section 2.3. If we ignore the existence of
slacks, observed production activity is evaluated to be technically efficientif 6* =1 and
to be technically inefficient if 0 < 8* < 1.

The data generating process suggested by DEA implies that any deviation from the
production frontier can be considered as an expression of inefficiency. Hence, the
efficiency resulted from the DEA models is sensitive to mismeasurement or outliers. To
address this issue, the thesis considers a stochastic nonparametric approach such as
StoNED in which the data generating process assumes the deviations are the results of
both inefficiency and noise. Similar to DEA, StoNED is a unified framework that
combines a) the stochastic nonparametric estimation of an unknown production frontier
and b) the efficiency analysis for each observed production activity.

To interpret the basic concepts of StoNED, a simple case is considered where the
production process involves multiple inputs x € RY* and a single output y € R, .
Suppose we observe the activities of n producers indexed by j, j = 1,...,n. Instead of
a set representation of production technology, an unknown production function f:R* —
R, is introduced, which gives the maximum possible output that can be produced from
the given level of inputs. The statistical model for estimating the unknown f is formally
given as

yj=f(xl-j)+ej,i=1,...,m,j=1,...,n, (2.16)
where & = v; —u; is a composite error term that consists of the stochastic noise term
v; and the nonnegative inefficiency term u;. Specifically, the following assumptions are
made for Eq. (2.16):

S.1. The stochastic noise terms v; have an unknown symmetrical distribution with a zero
mean and a finite variance 02 < 0.

S.2. The nonnegative inefficiency terms u; =0 have an unknown asymmetric
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distribution with a positive expected value x> 0 and a finite variance o2 < oo.
S.3. Terms v; and w; and hence ¢;, (j =1, ...,n) are homoscedastic (i.e., o2 and o2
are constant across all observed production activities) and statistically independent
of each other (i.e., 02 = o2 + d2).
S.4. Terms v and U; and hence g, (j=1,..,n) are statistically independent of
inputs x;;, G=1,..,n).

In the StoNED framework, the unknown production function f is estimated with
convex nonparametric least squares (CNLS), which is a nonparametric regression
technique proposed by Kuosmanen [14]. However, due to the above assumptions, the
expected value of the composite error term becomes E (ej) =—E (uj) = —u < 0. Thus,
applying the least squares estimation to Eq. (2.16) violates the Gauss-Markov properties.
This issue can be resolved by rephrasing the model as y; = [f (xl- j) - ,u] + [sj + u],i =
1,..,m,j =1, ...,n. The shape of the unknown production frontier is then estimated by
the following convex nonparametric least squares (CNLS) problem:

n
min z (ej-CNLS)Z
=1

a,p,e

s.t.

m
3’1 = aj + Z'BUXU + EJCNLS, VJ = 1, ., n, (217)

i=1
m m
@j +Zﬁijxij s ag +Z:8i2xi21vzrj =1,..n

pij=0vi=1,.,mj=1,.,n,

where &f""® is an estimator of &; + u. Consistency of this estimator is proved by Seijo
et al. [39] and Lim and Glynn [40]. The first constraint contains a set of linear regression

equations where parameters a; and f;; define tangent hyperplanes to an unknown
function h(xl- j) =f (xi j) — u. Note that @; and f;; are specific to each production
activity, and thus there are n different hyperplanes used for characterizing the unknown
function. The second constraint imposes concavity by applying Afrait inequalities (see
Afrait [41]). The Afrait inequalities ensure all hyperplanes not associated with j must be

above j’s hyperplane. The last constraint imposes the monotonicity for the unknown
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function. Based on the solutions to Eq. (2.17), it is possible to apply the minimum
extrapolation principle (e.g., Eq. (2.14)) to estimate the smallest function h(xij) =

f (xl- j) — u that envelops all observed production activities. If we further estimate the

expected inefficiency u from the solution &°VES

;™ , the unknown production function f

can be then restored by adding the estimated expected inefficiency [ to the estimated
function ANES(x;;) as f(xi;) = ANES(xy;) + A

It is worth noting that gauging the distance from an observed production activity to the
estimated production frontier cannot be interpreted as the inefficiency because all
observations are subject to noise in the stochastic setting. In the cross-sectional setting,
one may use the JLMS estimator [42] to estimate the conditional mean E (uj|sj) by
imposing further parametric assumptions for v; and u;. The JMLS estimator may be
sufficient for the purpose of relative efficiency rankings. However, it cannot be used
directly for further productivity analysis (e.g., the construction of the Malmquist index)
since E (uj |£j) never approaches u; as the number of observations approaches infinity.
To solve this issue, the use of the panel data is considered in a fully nonparametric setting.

Further details will be discussed in Chapter 5.

2.6 Concluding remarks

The chapter provides the necessary materials for analyzing efficiency and productivity.
Based on the multi-input and multi-output production technology, I described the
concepts of efficiency and productivity. Since the primary theoretical approach of this
thesis is based on the nonparametric techniques, I also summarized the basics of Data
Envelopment Analysis (DEA) and Stochastic Nonparametric Envelopment of Data

(StoNED).
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Chapter 3

Productivity changes regarding allocative efficiency

3.1 Introduction

The purpose of this chapter is to develop a new approach for measuring productivity
change regarding profit-ratio maximization. Such performance analysis can be applied to
profit-seeking organizations or industries where producers are both cost minimizers and
revenue maximizers. A profit-ratio efficiency measure and Malmquist-type indices
decompositions are also developed, which account for the contribution of allocative
efficiency. The proposed approach is further extended to categorize observed production
activities into six different groups based on their technical and allocative performance to
derive valuable information for organization management.

In Chapter 2, I have introduced the theoretical basis of DEA. Using a DEA
methodology, Fare et al. [43] developed a DEA-based Malmquist productivity index,
which measures the productivity change between two periods and further applied it to
empirical studies [44,45]. However, as argued by Maniadakis et al. [38]), the Malmquist
index may not give a full picture of the source of productivity change since the impact of
allocative efficiency change is not accounted for (see also Coelli et al. [46]). Maniadakis
et al. [38] have developed a cost Malmquist productivity index applicable when producers
are cost minimizers, and the firm-level input price data are available. Following the study
of Maniadakis et al. [38], an allocation Malmquist productivity index with the underlying
assumption of cost minimization is also proposed by Zhu et al. [47]. In this chapter, the
purpose of profit-ratio maximization is considered when adopting a Malmquist-type index.
The use of profit ratio is due to the following considerations: As noted by Georgescu-
Roegen [31], the ratio of revenue to expenses (i.e., profit ratio) is independent of the scale

of production, and thus it can be considered as an appropriate performance criterion on
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which to evaluate performance of activities of varying sizes. Furthermore, the use of profit
ratio also simplifies the performance analysis even when some activities earn negative or
zero profits, whereas the use of profit (which is commonly defined as the difference
between revenue and expenses) may be problematic (Cooper et al. [48]).

Instead of using quantity data described in Chapter 2, the efficiency measures and
Malmquist-type indices are developed by using a value-based measure [49-51]. A
distinctive feature of the value-based measure is the use of all feasible input-spending and
output-earnings, and it requires no direct knowledge of prices. Even when the prices are
observable in some situations, as pointed out by Camanho and Dyson [52], the input and
output prices in real-life markets are not exogenously given but can depend on negotiation.
Therefore, the efficiency measures based on the fixed price assumption in DEA may be
of limited use. Also, as argued by Fukuyama and Weber [32], the price data used for
analyzing the efficiencies of financial institutions are usually synthetically constructed,
which means it can distort measures of allocative efficiency. Another reason for applying
a value-based measure is because of the consideration of heterogeneity in physical inputs
and physical outputs. As argued by Sahoo et al. [49], if inputs or outputs are
heterogeneous, the construction of factor-based production technology set in DEA
becomes problematic. Since the value-based measure considers the price information and
has a common unit of both inputs and outputs, a value-based technology set is used.

The current chapter is organized as follows. Section 3.2 introduces the basic concepts
and notations used for deriving the allocative efficiency in terms of profit-ratio
maximization. Section 3.3 defines the profit-ratio change index. Section 3.4 presents the
decompositions of the profit-ratio change index as well as its component indices.

Concluding remarks are given in the last section.
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3.2 Allocative efficiency regarding profit-ratio maximization

This section is structured beginning with a description of a value-based technology and
then presents the efficiency measures, which include the graph measure of technical
efficiency, radial measures of technical efficiency, and profit ratio efficiency. Then I show
how those efficiency measures can be used to derive the allocative efficiency regarding
profit-ratio maximization.

Consider a set of n observations on production activities. The input-spending and
output-earnings vectors of each observation, the jth producer (j = 1, ...,n), are denoted
as X; = (J?lj, ...,fmj)’ ERY and y; = ()71]-, ...,)75]-)’ € Ry , respectively. The
superscript “’” denotes the transpose of vectors. Assume that the input-spending and
output-earnings vectors are measured in a common monetary unit (e.g., dollars, cents, or
pounds). According to Sahoo et al. [49], the value-based technology can be represented
as

Tey = {(X,y) € RT**:X can produce y}. (3.1)
In contrast to the production possibility set T defined in Eq. (2.1), Tg; is a set that
comprises all feasible input-spending and output-earnings vectors. That is, all inputs and
outputs should be measured in monetary terms. Assuming A.1 to A.5 in Section 2.2, the

DEA representation of Ty 3 under constant returns to scale (CRS) is then given by

ng’q: (xy)ER"”'S Z/lxl],': y e, M,

(3.2)
n
:)_]rSZ ]yr], == ...,S,/’{jZO .

TDEA

Relative to Tgy",

the value-based measure of the input-oriented technical efficiency
(TE"), the output-oriented technical efficiency (TE?), and the graph measure of technical

efficiency (TECF) are defined as
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£y

TE' = inf{y: (yx,7) € TPE4,0 <y < 1},
Y

(3.3)

TE® = sup{w: (¥, wy) € TeH w = 1}, (3.4)
w

TESF = inf{9: (0%,67'7) € TEA,0 < 6 < 1} (3-5)

, respectively.

The computational aspect of TE!, TE?, and TE®R are provided as follows. The
graph measure of technical efficiency (TE®R) under CRS in Eq. (3.5) is calculated by the
following programming problem [21,22]:

Ss.t

n

Z iXij < 00X, 0 =1, ...,m;

j=1 (3.6)
n

A4 =>0j=1,..,n
where x;,, and Y., are the ith input-spending and rth output-earnings for the
evaluated production activity, respectively. The program Eq. (3.6) can be transformed into
the equivalent linear programming problem below, by imposing y = 8% and u =04

y* = miny
Y.l

1 3.7

n
Z,uj_rj = Vo7 =1,...,8;

uj=0,j=1,..n.
Note that the solution y* of Eq. (3.7) is equivalent to the input-oriented technical
efficiency (TE') defined in Eq. (3.3). Therefore, under CRS, the square of the graph
measure of technical efficiency is equal to the input-oriented technical efficiency. In

addition, the input-oriented technical efficiency is equal to the reciprocal of output-



29

oriented technical efficiency if and only if T£§A exhibits CRS [53,54]. Thus, the

relations among TE!, TE® and TE“R can be represented as follows:

1
GRN2 _ I:_. 3.8
(TER)? = TE! = — (3.8)

Consider the production activities whose underlying behavioral objectives are the
maximization of profit ratio. The following function is used to calculate the maximum

profit ratio for the observed production activities:

Lr=1r o
(Xio, ¥ro) = sup {m(x;,¥,) = e Zl i Xij»

Xy YrAj l 1Xi

(3.9)

J_;T = Z){j}_/rj;fio;z fi'yro = }_]T'Aj 20,

where (X, V) = Yooy Vr / Dieq X; represents the profit-ratio function that maximizes
the ratio of revenue to expenses, and (¥;, %) € T¢2". This function ensures that, for the

evaluated production activity, a specific level of maximum profit ratio can be observed
relative to its input-spending and output-earnings. Note that Eq. (3.9) is a fractional
programming problem. It can be transformed into the linear programming problem below,

by introducing a positive scalar £ € R, .

" (3.10)

4=0j=1,..,n

where X; = &x;, ¥ = &y, /ij =¢A;, ¢ > 0. The relationship between the solution of
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Eq. (3.9) and that of the program Eq. (3.10) is explained in Cooper et al. [48]: Let an

k4K ok

optimal solution of the program Eq. (3.10) be (E ,xio,ym,/i]’-‘). Since &* > 0, the
optimal solution of Eq. (3.9) can be obtained from X;, = X;,/¢*, ¥y, = Vro/E, and
A=A /8

Given the maximum profit ratio w(x;,, ¥,), a profit-ratio boundary for the evaluated

production activity is defined as follows:

=% =% = = ZS= )_] =% =%
Iso n(X;,, Vro) = {(x, y) € RT*S:ZH—:; = (X}, ¥ro) (- (3.11)
=17
Eq. (3.11) contains input-spending and output-earnings vectors that are feasible at the

*
io’

level of the maximum profit ratio mw(x;,, yr,). Similar to Eq. (2.9) in Chapter 2, the value-

based measure of profit-ratio efficiency is defined as
_ (Xi0, Yro)
T[(fl)'ko' }_]Tiko)'

which is a measure of the extent to which the actual profit ratio expressed in the numerator,

PE (3.12)

falls short of achieving the maximum profit ratio expressed in the denominator. Eq. (3.12)

satisfies 0 < PE < 1.

Moving on, the above efficiency measures can be related to the measure of allocative
efficiency. For this, I show that the profit-ratio efficiency PE is less than or equal to the
input-oriented technical efficiency TE! (that is the square of the graph measure of

technical efficiency TECR) in the following sense:

Proposition: If TE®R and TE' are obtained from the programs Egs. (3.6) and (3.7),
respectively, and PE is defined as Eq. (3.12), then for any evaluated production activity,
PE < (TE®®)2 = TE", (3.13)
Proof. Let an optimal solution for the programs Egs. (3.6) and (3.7) be (9*,/1}‘) and
(v™, uj), respectively. Then, (H*JZiO, 9*_1}7r0,/1;) is feasible for the program Eq. (3.10).

Hence, it follows that Y¥5_, 0% 3., /XM, 0%y < X5_1 770 / X1, % . This leads to

Yr=1Yro/ Lieq Fio (: ”(fiod_’ro)> < 9*2 — y* ]

— oo Ea—
Zf«:l Y;o/2i=1xzo n(x;o'y;o
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According to Eq. (3.13), the relationship between the profit-ratio efficiency and radial

measures of technical efficiencies can be expressed as

% —x 1 f‘:l yro
(X0, Vro) = S (3.14)
i=1"1lo
which can be rewritten as either
Zf‘:l yro
(X0, Vo) 2 S 7o (3.15
ioYro) = S 65 )
or
1_
S
r=1 (_* yro)
s —x Y .1
7'[(xio'yro)2 m T ' (3 6)
i=1"1l0

The expression Eq. (3.15) is related to the input-oriented technical efficiency measure
defined in Eq. (3.3). It becomes equality when there is no distortion in the actual input-
spending mix. Similarly, the expression in Eq. (3.16) is related to the output-oriented
technical efficiency measure in Eq. (3.4), and it becomes equality when there is no
distortion in the actual output-earnings mix.

Figures 3.1 and 3.2 depict the state of one production activity when there are two inputs
and two outputs, respectively. Figure 3.1 illustrates the expression Eq. (3.15), and Fig. 3.1
illustrates the expression Eq. (3.15).

4

8

-~ ~

(o]

""""""""""""""""""""" XN A:(Elo'¥20)
N
D : N
l/n(zﬂ.a\_’;ﬂ) B 1/n(x14.%0)
value-based technical
c frontier
profit-ratio boundary
0

Input 1/0utput

Figure 3.1 Illustration of the input-oriented allocative efficiency regarding profit-ratio

maximization.
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In Fig. 3.1, the output is fixed at its current level, and the interest is in input reductions.
Point A is an evaluated production activity in the interior of the value-based technology.
The dashed line passing through A represents the contour of the reciprocal of the profit
ratio: X1 /Y + X%, /y(= 1/ /(%1 + %3)) ) = 1/ w(xy,, X3,) . To illustrate the profit-
ratio boundary for A, I alternatively depict the contour of the reciprocal of the maximum
profit ratio in the left panel. Activity A achieves the maximum profit ratio when it is
projected on the profit-ratio boundary (say at point D). Now consider the point C which
is at the intersection of the profit-ratio boundary through D with the ray from the origin
to A, we can obtain the profit-ratio efficiency of Aas 0 < OC/0OA < 1. In addition, we
can also form the ratio 0 < OB/OA < 1 to obtain a radial measure of input-oriented
technical efficiency. Given the input-oriented technical efficiency, we can obtain the
projection of A as point B. However, in Fig. 3.1, the profit ratio of this projection can still
be increased by moving from B to D along the value-based technical frontier. Since both
C and D achieve the same level of profit ratio, we can determine the ratio 0 < 0C/0B <
1 as a radial measure of “input-oriented allocative efficiency.” This ratio represents the
extent to which the technically efficient point B falls short of achieving the maximum
profit ratio because of the wrong mix in the input-spending vectors. Relating all three of
these efficiency concepts to each other, we have OC/0OA = (OB/0A) X (OC/OB),
which we can verbalize by saying that the profit-ratio efficiency is equal to the product
of the input-oriented technical efficiency and the input-oriented allocative efficiency.

Denote the input-oriented allocative efficiency as AE!, we then have PE = TE! x AE'.
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H: n—(?;o’ -}7;0)

Output 2/Input

(flo,fZD):E\ ' S —— profit-ratio boundary

value-based technical
frontier

>

Output 1/Input

Figure 3.2 Illustration of the output-oriented allocative efficiency regarding profit-

ratio maximization.

Similarly, for another production activity E in Fig. 3.2, the maximum profit ratio is at
point H and the solid line passing through points H and G is the profit-ratio boundary that
is associated with y,/x + ¥,/%x(= ( ¥ + ¥2)/%X) = n(J10,V20) - The profit-ratio
efficiency of E is then obtained as 0 < OE/OG < 1. We can also obtain a radial measure
of output-oriented efficiency from the ratio OF /OE > 1. In addition, we can form the
ratio OG/OF = 1 and call it a radial measure of “output-oriented allocative efficiency”
because of failure to make the reallocations involved in moving from point F to H along
the value-based technical frontier. As a result, we have OE/0G = (1/(0OF/OE)) X
(1/(0G/OF)). This equation shows that profit-ratio efficiency is the product of the
reciprocal of the output-oriented technical efficiency and the reciprocal of the output-
oriented allocative efficiency. Let the output-oriented allocative efficiency be AE?, then
PE = 1/(TE° x AE©).

In brief, Figs. 3.1 and 3.2 explain the inequality in Eq. (3.14) maybe caused by either
the wrong output-earnings mix or the wrong input-spending mix. However, note at this
point that A and E are treated as two different production activities. Now consider both
the input-oriented and output-oriented technical efficiencies for the same production

activity. It is clear that under CRS, AE! = 1/AE° because (a) PE = TE' X AE" and
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PE = 1/(TE° x AE?), (b) for the same production activity, profit-ratio efficiency is
unchangeable whether the interest is in the input-oriented measure or the output-oriented
measure, and (c) under CRS, TE! = 1/TE°.

I next consider the situation where the allocative efficiency is caused by both the wrong
output-earnings mix and the input-spending mix. To gain intuition, let us focus on the
inequality Y5 0" Jro / Sk1 0" %io < N1 Yo / Li%a %i, (see the proof in Eq. (3.13))
that is related to the graph measure of technical efficiency in Eq. (3.5). This inequality
implies that the realization of the maximum profit ratio is not entirely guaranteed by only
improving the graph measure of technical efficiency. Since the maximum profit ratio is
evaluated by the program Eq. (3.10), as well as the optimal input-spending and output-
earnings, the activities can achieve the maximum profit ratio by changing their actual
input-spending and output-earnings mixes into the optimal ones. Therefore, the inequality

S 10" P I 07K < XS Vi /XM, X5 becomes equality when there is no
distortion in both actual input-spending and out-earnings mix. In an analogous manner
with the input- and output-oriented allocative efficiencies, we can determine 0 < p* < 1
satisfying 351 0" p* Pro / L4 070" %io = Bi1 Vo / L1 %j, as the estimated
“graph measure of allocative efficiency.” Let the notation of the graph measure of
allocative efficiency be AE®R, we then have PE = (TER x AE®R)? . In addition, since
(a) PE = (TE®R x AE®®)?2 and PE =TE! x AE" , (b) profit-ratio efficiency is
unchangeable whether the interest is in the input-oriented measure or the output-oriented
measure, and (c¢) under CRS, (TE®®)2 =TE!, it is clear that under CRS, AE! =
(AECR)?,

As aresult, the inequality Eq. (3.13) maybe caused by either the wrong output-earnings
mix or the input-spending mix, or both. The relations discussed above are summarized
below:

(i) PE =TE' x AE";

(ii) PE = 1/(TE° x AE®);

(iii) PE = (TECR x AE®)2,
Because the assumption of CRS implies TE! = 1/TE? = (TE“®)?, we then have
AE" = 1/AE® = (AES®)? . Therefore, under CRS, the input-oriented allocative

efficiency can be derived directly from either the output-oriented measure or the graph
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measure.
In the rest of this chapter, I focus on the input-oriented measure and drop the superscript
“I” for simplicity. The output-oriented measure and the graph measure can be discussed
analogously. Formally, given PE = m(X;,, y;,)/m(X{,, ¥7p) in Eq. (3.12) and TE =y~
in Eq. (3.7), the (input-oriented) allocative efficiency regarding profit-ratio maximization
is defined as
_ (%o Yr)) 1 _ PE
n(%o, ¥io) V" TE
If there is neither the wrong output-earnings mix nor the wrong input-spending mix, that

is AE = 1,then PE = TE, and vice versa.

AE (3.17)

Note that the commonly used definition of allocative efficiency [20,23] requires exact
knowledge of prices, whereas the inaccurate information on prices can distort measures
of allocative efficiency [32]. Suppose one has data of the physical inputs and physical
outputs (that are both homogeneous), as well as data on input and output prices (that are
accurate and may be different across activities). The allocative efficiency obtained using
the commonly used definition identifies the existence of the wrong mix in physical inputs
and physical outputs, given the price information. In contrast, since the allocative
efficiency defined in Eq. (3.17) follows a value-based measure, the data should be in
monetary terms (e.g., expenses term). In the case that one uses the data on volumes and
prices of inputs and outputs to calculate the input-spending and output-earnings, the
allocative efficiency in Eq. (3.17) identifies the wrong mix in input-spending and output-
earnings rather than in the physical inputs and physical outputs. The scheme of allocative
efficiency defined in a value-based measure was first considered by Tone [50] and

subsequently extended by various authors [32,49,55].
3.3 A profit-ratio change index
This section describes a profit-ratio change index regarding profit-ratio maximization. A

distinctive feature of this index is the use of profit-ratio boundary (see Eq. (3.11)) for

measuring productivity change over time. Assume two periods t and t + 1, respectively.
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Denote the input-spending and output-earnings vectors of the evaluated production
activity o inperiods t and t + 1 by (ino,t, ym) and (fio‘tﬂ,)_/ro,tﬂ),respectively.
Let v (%ioe Vror) and ¥ (Fior41 Vrogs1) be the input-oriented technical

efficiencies obtained from Eq. (3.7). Relative to a value-based technology, the input-

oriented Malmquist index is defined as:

M]t — yt(fio,t' yro,t) (3~18)
Vt(fio,tﬂr }7ro,t+1) ’
Mt = Vt+1(fio,t' yro,t) (3.19)
V”l(fio,tﬂy 3_’ro,t+1) ’
MI = [MIt x MIt+T 1172, (3.20)

Note that the conventional Malmquist index in Chapter 2 is based on quantity data (see
Egs. (2.10) -(2.12)) while Egs. (3.18) - (3.20) are constructed with input-spending and
output-earnings vectors. If MI is greater, equal, or smaller than unity, the productivity
shows, on average, decline, stagnation, or growth between periods t and t + 1.

The profit-ratio change index is defined in terms of the profit-ratio efficiency as

follows:
pJt = nt(fio,t' yTO.t)/”t(f;ot,t' }_]:(t),t (3.21)
mt (fio,t+1: yro,t+1)/nt(f;(f.t+1' 3_’:5,”1) '
P]t+1 — 7Tt+1(fio,t' )_’ro,t)/nt+1(f;(§,t1' 3_];3-;1 (3-22)
nt+1(fio,t+1f yro,t+1)/nt+1(f£kot;.|1.1: 37:5—;-1%1 ’
PI = [PIt x PIt+1 11/2, (3.23)

Here, mt(x;t,, y75.) and w*t(xiti,, yrEth,) are the measurements within the same

period, while (%L, 41, Vibe1) and wH(xT, yritt) are the intertemporal
comparisons. The component PI® in Eq. (3.21) measures the profit-ratio efficiency
change regarding period t as the reference period. From Eq. (3.21), we see that the
numerator is the profit-ratio efficiency of (fio,t, ym,t) measured at period t, whereas
the denominator is the profit-ratio efficiency of (fio,tﬂ, yro,tﬂ) measured at period t.
If the evaluated production activity has improved its profit-ratio efficiency from period ¢t

to t + 1, the value of the numerator is less than that of the denominator, and therefore,

PIt is smaller than unity. Similarly, the component PI*! in Eq. (3.22) is the profit-ratio
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efficiency change regarding period t + 1 as the reference period. To avoid an arbitrary
choice of a reference period, the profit-ratio change index PI in Eq. (3.23) is defined by
the geometric means of PI' and PI**l. Here, PI measures the average change of
profit-ratio efficiency between periods t and t + 1. If the index is greater, equal, or
smaller than unity, the change of profit-ratio efficiency over time shows, on average,

decline, stagnation, or growth between periods t and t + 1.

»

Input 2 /Output

~ value-based technical
frontier at period t + 1

~
N

profit-ratio boundary
\ atperiod t + 1

value-based technical
frontier at period t

profit-ratio boundary
at period t

>

Input 1/0utput

Figure 3.3 The concept of profit-ratio change index.

A simple two-inputs, one-output case is illustrated in Fig. 3.3 to clarify the differences
between MI and PI. For the same evaluated production activity (A in period t and G
in period t + 1), its specific level of maximum profit ratios at periods ¢t and t + 1 are
obtained at point D and J, respectively. Graphically, the profit-ratio change index is given
by

0C/0A  OF/0A 1/2
0L/0G ~ 010G

PI = [PIt x P[t*1]Y/2 = (3.24)

)

where C and L have the same profit ratio as D, as both points lie on the same profit-ratio
boundary which is alternatively depicted as the contour of the reciprocal of the maximum
profit ratio in Fig. 3.3. For the same reason, F and I also have the same profit ratio as J.

Similarly, MI is expressed as
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OB/OA OE/0A1?

3.25
0K/0G  OHJOG (3:25)

MI = [MI* x MI**1]/2 = [

Note that in Fig. 3.3, the value-based technical frontier of period t+ 1 does not
encompass the activity A. This implies the intertemporal comparison term
(it yritt) does not have a feasible solution to Eq. (3.9), and y** (%01, ¥ro,z )
does not have a feasible solution to the program Eq. (3.7). In such cases, by following the
literature of the DEA-based Malmquist productivity index [56], a super efficiency
evaluation [57] is adopted to calculate the profit-ratio efficiency in Eq. (3.12), i.e., the
profit-ratio efficiency of A measured at period t + 1 is obtainedas OF /OA > 1, and the
input-oriented technical efficiency is OE/OA > 1.

To further clarify the differences between PI and MI, let us consider a (virtual) point
M in Fig. 3.3 that lies on the ray from the origin to G. It is clear that M and G have the
same mix in both inputs and outputs (i.e., a proportional change in both inputs and outputs
will not change their mixes). If we temporally treat the point M and the point G as the

same activity at periods t and t + 1, respectively, graphically we will have PI for this

activity given by

1
_ [OL/OM L 01/oMyz _ 06 (3.26)
0L/0G ~ 01/0G] ~— oM’

and MI given by
1
OK/OM o OH/0M2 _ OG. (3.27)
OK/0G OH/0G oM
Egs. (3.26) and (3.27) indicate that PI and MI have the same value when there is no

MI =

average change in the mix of inputs and outputs over time. To illustrate this difference,
let us consider the component (OL/OM)/(OL/0OG) in Eq. (3.26). This component
measures the profit-ratio efficiency change regarding the period t as the reference period.
Its numerator (OL/OM) represents the profit-ratio efficiency of M measured at period
t and can be decomposed into (OK/OM) X (OL/OK) (see Eq. (3.17)). Here, OK/OM
and OL/OK represent the (input-oriented) technical and allocative efficiencies of M
measured at period t, respectively. Similarly, we have the decompositions of the
denominator as OL/0G = (OK/0G) X (OL/OK) , where OK/OG and OL/OK

represent, respectively, the (input-oriented) technical and allocative efficiencies of G



39

measured at period t. Combing the decompositions of both the numerator and
denominator, we then have
OL/OM _ OK/OM o OL/OK
OL/OG =~ OK/OG "~ OL/OK

(3.28)

This makes it clear that the (input-oriented) allocative efficiency is identical at points M
and G regarding the period t as the reference period. The second component
(0I/OM)/(01/0G) in Eq. (3.26) can be discussed in an analogous manner. Therefore,
when there is no average change in allocative efficiencies over time, PM has the same
value as MI.

Returning now to a more general case in Fig. 3.3 that activity A in period ¢t and G in
period t + 1 are the same activity. Similar to the illustration of PI in Eq. (3.24) or MI
in Eq. (3.25), the average change in the (input-oriented) allocative efficiency over time

(AMI) is given by

0C/OB OFJOE7"?
AMI = [AMIt x AMIt+1]Y/2 = X .
[ ] OL/OK =~ 0I/OH

(3.29)
In this thesis, Eq. (3.29) is called the “allocation Malmgquist productivity index.” Just as
with the definition of PI and MI, the components AMI® and AMI**1 in Eq. (3.29)
measure the allocative efficiency change regarding the periods ¢t and t+ 1 as the
reference period, respectively. To avoid an arbitrary choice of a reference period, AMI
is defined by the geometric means of AMI* and AMI**. In addition, if AMI is greater,
equal, or similar than unity, the allocative efficiency change over time shows, on average,
decline, stagnation, or growth between periods t and ¢ + 1.
Combing Egs. (3.24), (3.25), and (3.29), we have the following equity:

Pl = MI x AMI. (3.30)

Eq. (3.30) implies that PI accounts for the impact of the average change in allocative

efficiency over time while MI does not. This difference is further discussed in Section

3.4.
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3.4 Decompositions of the profit-ratio change index

This section develops an alternative decomposition of the profit-ratio change index and
further clarifies the differences between PI and MI. The decomposition proposed can
be further used to identify the drivers of the profit-ratio change over time.

The conventional Malmquist index can be rearranged to show that it is equivalent to
the product of a technical efficiency change (or Catch-up) and a technical change (or
Frontier shift, innovation) [37,44,45,56]. The profit-ratio change index (PI) can be
decomposed into the sources of productivity change in a similar way. The decomposition
is formally stated as
7Tt(fio,t» yro,t)/nt(f;ot,t' J_]:cl;,t

t+1( ¥ v t+1( pxt+l  Sxt+1
s (xio,t+1:yro,t+1)/7T (xio,t+1'yr0,t+1

1/2

t( 7t o*t t st Sxt

T (xiO,t+1’yTO,t+1) T (xiojt; yro’t (331)
t+1(pet+1l  Sxt+l ) t+1( Frt+l Sxt+1

U (xio,t+1'yro,t+1 s (xio,c » Yrot

Pl =

X

= PEC X PTC.

The component outside the square brackets in Eq. (3.31) captures “profit-ratio efficiency
change (PEC)” between periods t and t + 1. Since the profit-ratio efficiency (PE)
compares the actual profit ratio with the maximum profit ratio that lies on the profit-ratio
boundary, the term “profit-ratio efficiency change (PEC)” indicates whether the evaluated
production activity is getting close to the profit-ratio boundary or not. Returning to Fig.
3.3, PEC is graphically represented by PEC = (0OC/0A)/(0I/0OG). In this case,
PEC <1, PEC > 1, PEC =1 imply the profit-ratio efficiency, respectively, progress,
regress, and constant between periods t and t + 1.

On the other hand, the component inside the square brackets consists of two ratios: The
first ratio compares maximum profit ratios of the period t + 1 activity with respect to
profit-ratio boundaries of periods t and t + 1. Similarly, the second ratio inside the
brackets compares maximum profit ratios of the period-t activity with respect to profit-
ratio boundaries of periods t and t + 1. Hence, the geometric mean of those two ratios
measures the average shift of profit-ratio boundary from the period t to t + 1, and is

referred to as “change of profit-ratio boundary (PTC).” In Fig. 3.3, PTC is illustrated as
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1/2 1/2
O1/0G o 9F/ OA] = & 2 Graphically, PTC is the average change in
0L/0G ~ 0C/0A oL " oc

PTC = |
maximum profit ratios over two periods. In this case, PTC <1 indicates an
improvement in the average change of maximum profit ratios (progress in the profit-ratio
boundary) while PTC > 1 and PTC =1 indicate, on average, regress and constant
change of maximum profit ratios, respectively.

The component index PEC can be further decomposed into the (input-oriented)

allocative (AEC) and technical efficiency change (TEC) as follows:

PEC

(”t(’zio,t' Frod) /T (Xige Fron ) / ¥ (Zioes Vroyt)

(”Hl(fio,tﬂ:37ro.t+1)/”t+1(ff§,ﬁ1'37:5}11 )/Vt+1(fio,t+1137ro,t+1)

(3.32)
yt(fio,b yro,t)
Yt+1(fio,t+113_’ro,t+1)

= AEC X TEC.

As discussed in Section 3.3, allocative efficiency captures the distortion in the mix of
input-spending and/or output-earnings relative to the optimum mix (determined by the
profit-ratio efficiency). Therefore, the first component AEC in Eq. (3.32) identifies
whether the distortion suggested by allocative efficiency is diminishing or increasing

from the period t to t+1. In Fig33, AEC is represented as AEC =

(0C/04)/(OB/OA) _ OC/OB
(01/0G)/(0H/OG) ~ 0I/OH

. The remaining part in Eq. (3.32) is called “Catch-up,” which

indicates whether the evaluated production activity is getting closer to the value-based
technical frontier or not. Reference to Fig. 3.3, TEC is TEC = (OB/0A)/(OH/0G).

The component index PTC can be further decomposed as follows:
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PTC

_yt+1(fio,t+1: yro,t+1) VHI(JEL'O,D Yro,t) 2

| Vt(fio,t+1r yro,t+1) Vt(fio,t’ yro,t)

) ) B een - ) B
(T[t+1(xio,t+1'Yro,t+1)/nt+1(x;ot,t+1'y:zt)}-ll-l )/yt+1(xio,t+1'yro,t+1)

X
(ﬂt(fio,t+1' )_’ro,t+1)/7tt (f;ot,t+1r yr*g,t+1)) /yt(fio,Hl: }_}ro,t+1) (3.33)

1/2
(T[H_l(fio,t: yro,t)/nt-'_l(fg,tl' 37:5}1)) /VHI(fio,t: yro,t)
(T[t (fio,tr yro,t)/ﬂt(flfk(f,t' }_’:ot,t ) /Vt(fio,t' yro,t)

=TC X ATC.
The first bracket in Eq. (3.33) is referred to as “Frontier shift or technical change (T C).”

It captures the shift of the value-based technical frontier between periods t and t + 1.

OH/0G OE/OA]l/Z_ OH 015]1/2
0K/0G ~~ 0BJ0A ~ lok ” 0B

As shown in Fig. 3.3, this term is expressed as TC = [
The second square bracket in Eq. (3.33) consist of four component ratios that follow the
definition of allocative efficiency in Eq. (3.17). This term will be referred to as
“allocation-technical change (ATC).” According to the definition of the profit-ratio
function in Eq. (3.9), we have the expressions (%01, Vrot) = T8 (Xiot) Vro,e) and
T (Xio,041) Vrot+1) = T8 (Xio 41, Vro,e41)- Therefore, the second square bracket of Eq.
(3.33) can be further simplified as

nt(f;ot,t+1ly:g,t+1)yt(fio,t+1'yro,t+1)

ATC =
t+1(Frt+1  mrt+l t+1( 5 S
n (xio,t+1'yro,t+1) )4 (xio,t+1'yro,t+1)

(3.34)
T[t(f;g't, y;g,t)yt(fio,t' yro,t) Yz
Tt (G 7y (Rioe Froe)

The four technical efficiencies in Eq. (3.34) construct the term TC which is the shift of

X

the value-based technical frontier. The maximum profit ratios, on the other hand,
construct the term PTC that is the change of profit-ratio boundary. Hence, we have
ATC = PTC/TC. 1t is clear that the term ATC captures the residual change of profit-
ratio boundary from the period t to t + 1. Furthermore, since the components of ATC
follow the definition of allocative efficiency, this residual change reflects the contribution
of relative changes of the input-spending and/or output-earnings mix on changes of the

maximum profit ratio. In Fig.3.3, this term is
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(01/0G)/(0OH/0G) (OF/0A)/(OE/0A) 1/2
(0L/0G)/(0K/0G) " (0C/0A)/(0B/0A)
_[0I/OH _ OF JOEY"/?

~ lozjox “ocjoB

arc=|
(3.35)

The component indices mentioned above can be rearranged as follows:
Pl = PEC X PTC
= (AEC XTEC) X (TC X ATC)
= (TEC X TC) x (AEC x ATC)
= MI X AMI.

(3.36)

Eq. (3.36) shows that the allocation Malmquist productivity index (AMI) is equal to the
product of the allocative efficiency change (AEC) and the allocation-technical change
(ATC). In general, for any indices or component indices mentioned above, more than 1
indicates regress, while equal to 1 and less than 1 show the status quo and progress,

respectively.

3.5 Concluding remarks

Chapter 2 introduced the input-oriented, the output-oriented, and the graph measure of
technical efficiencies, as well as the profit-ratio efficiency. Based on these efficiencies,
the concept of allocative efficiency regarding profit-ratio maximization is developed.
Compared with the conventional efficiency concepts, the new efficiency can be used to
identify the wrong mix in both input spending and output earnings.

A profit ratio change index is also proposed in this chapter. It can be applied to panel
data to measure productivity growth and suitable for situations when producers desire to
maximize revenue and minimize cost simultaneously. To identify the drivers of changes
in a profit-ratio change index, the index is decomposed into profit-ratio efficiency change
and change of profit-ratio boundary. Furthermore, the profit-ratio efficiency change is
decomposed into technical and allocative efficiency change and change of profit-ratio
boundary into technical change and allocation technical change. An alternative

decomposition is also provided, where the profit-ratio change index is decomposed into
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the Malmquist input-oriented productivity index and an allocation Malmquist
productivity index. The decompositions suggest the method gives a comprehensive
understanding of the source of productivity change. As a consequence, the proposed index
accounts for the impact of the average change in allocative efficiency over time, while
the Malmquist input-oriented productivity index does not. Further, it makes a difference
in identifying the drivers of productivity change, whether we account for allocative

efficiency or not.
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Chapter 4

Productivity changes of Japanese securities companies

4.1 Introduction

There is limited literature in DEA for analyzing the productive performance of securities
companies. Examples of recent studies include Fukuyama and Weber [32], Zhang et al.
[58], and Zhu et al. [47]. In this section, the efficiency measures and the profit-ratio
change index in Chapter 3 are applied to a sample of 37 Japanese securities companies
observed from 2011 to 2015. The data were gathered from annual securities reports as
published by each securities company. Those annual reports can be found from the
investor relations library of each company’s homepage or Japan Securities Dealers
Association (JSDA).

The securities companies in Japan relied heavily on the brokerage business until the
latter half of the 1990s regarding both revenues and business volumes. During this period,
the “Big Four” securities (Nomura, Daiwa, Nikko, and Yamaichi) gained a large share of
the securities market as many small and medium-sized securities companies were
affiliated to them. However, due to the bursting of the bubble economy in 1989, the
structure of Big Four oligopoly broke up, and the reforms and deregulation have
proceeded in securities markets, e.g., banks were allowed to operate the securities
business, and the types of securities businesses became increasingly diverse. As pointed
out by Fukuyama and Weber [32], these reforms and deregulation will likely impact the
competitive structure and efficiency of financial services in Japan. Because the Japanese
securities companies play an important role as intermediaries in the securities markets, it

is necessary to analyze their efficiencies, especially the allocative efficiency that relates
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to the diverse securities businesses. The detailed analysis and the projections regarding
allocative efficiency are provided in Section 4.3.

Today, the Japanese securities companies are facing a big challenge in their
management under uncertain economic conditions and business environment. According
to the annual reports of JSDA, the number of Japanese securities members in JSDA
totaled 253 companies at the end of the fiscal year 2016 (excluding foreign securities
members). However, since 1997 in which Yamaichi Securities collapsed, there have been
about 220 Japanese securities newly entering the securities markets while about 230
exiting due to voluntary dissolution, merger, or other reasons. Given the severe external
environment, it is necessary to analyze the productive performance for both the industry
and the individual level of Japanese securities companies. On the other hand, significant
changes in business management appeared around the year 2013. According to the Fact
Books of JSDA, the number of net assets of investment trusts has been sluggish since the
financial crisis of 2008. However, it increased rapidly by 27.4% year on year by the end
0f2013 and has grown steadily ever since. Hence, the Japanese securities companies tend
to focus more on the asset management business since 2013. Considering the differences
in business management, the analysis of productivity change is separated into the years
2011-2013 and 2013-2015. The detailed analysis is provided in Section 4.4.

Also, according to JSDA, the observed 37 companies can be separated into four groups,
which consist of five major securities companies, seven online brokers, seven bank-
affiliated securities companies, and eighteen other integrated securities companies.
However, when benchmarking the individual productive performance, this commonly
used categorization may not directly reflect the differences in productive performance
because it is based on multi-criteria (e.g., the bank-affiliated securities companies are
separated with the major ones based on their capital scale but with the online brokers
because of their differences in the trading platform). Therefore, in Section 4.4.2, a new
categorization for Japanese securities companies is provided based on their productive

performance.
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4.2 Selection of inputs and outputs

The sample excludes the securities companies for which the data are missing and covers
14.6% of members in JSDA. The selection of 37 companies is based on their securities
businesses: According to Financial Instruments and Exchange Act (enforced in
September 2007) in Japan, the principal businesses that securities companies are
authorized to operate are primarily divided into brokerage, dealing, underwriting and
selling businesses by the type of services. A securities company may operate some or all
the principal businesses. It may also undertake other businesses that require notification
to the authorities, such as the investment management business. Therefore, to keep the
homogeneity assumption when adopting a DEA methodology, the thesis only considers
37 of the 253 securities companies that operate all the above businesses.

Sources of expenses for securities companies consist of: (a) Trading related expenses;
(b) Personal expenses; (c) Office expenses; (d) Real estate-related expenses; (e)
Depreciation expenses; (f) Sundry taxes expense; and (g) Other expenses. Here, (a) ~ (c)
represent the economic and human resources of securities companies, while (d) ~ (g) are
related to fixed capital assets. Since it is less meaningful to consider the adjustments in
(d) ~ (g) regarding the efficiency measures discussed in Chapter 3, (a) ~ (c) are confirmed
as input variables. Besides, according to the financial summary (Tokyo Stock Exchange,
Inc.) between 2011 and 2015, it is clear that (a) ~ (¢) are the primary sources of expenses
for the Japanese securities industry (see Fig.4.1 for details).

Inputs:
Input 1 ( x,): Trading related expenses
Input 2 ( x,): Personal expenses

Input 3 ( x3): Office expenses
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Figure 4.1 The cost structure of the Japanese securities industry.

On the other hand, sources of revenue for securities companies that are associated with
the securities businesses (see Fig.4.2 for details) include (a) Brokerage income; (b)
Trading income; (c¢) Underwriting and Selling income; and (d) Other income. The term
“Other income” is the commission income of the investment management business.
Financial income consisting of interest or dividends is also considered as a source of
revenue. However, due to a lack of adequate accounting records of financial income, only
(a) ~ (d) are considered as output variables.

Outputs:

Output 1 ( ¥;): Brokerage income

Output 2 ( ¥,): Trading income

Output 3 ( ¥3): Underwriting and Selling income
Output 4 ( y,): Other income
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Figure 4.2 The revenue structure of the Japanese securities industry.

Note that all inputs and outputs are measured in the same unit (yen) but analyzed
separately. Since each of the input or output terms has different sources of income or
expenses, it is meaningful to make them distinct when estimating the allocative efficiency
of the financial sources given a qualified adjusted way.

One might also consider the use of an aggregated input and aggregated output. Since
the allocative efficiency is not evaluable in such cases, the adoption of the proposed index
can be used to classify the differences between the profit-ratio change index and the
Malmquist input-oriented productivity index. In Section 4.5, the profit-ratio change index
is shown to be reduced to the Malmquist input-oriented productivity index under a single
input and single output, while under the multiple inputs and multiple outputs, it can be
considered as an extension of the Malmquist input-oriented productivity index that takes

into consideration the effects of allocative efficiency over time.
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4.3 Results of profit-ratio, technical and allocative efficiencies

Table A-1 in Appendix A shows the results of profit-ratio, (input-oriented) technical, and
allocative efficiencies in 2011, 2013, and 2015. This section aims to provide examples of
projection for Japanese securities companies and further illustrate the allocative
efficiency described in Section 3.2.

A detailed description of analysis steps can be described as follows:

Step 1 Solve the linear programming problem Eq. (3.17) to evaluate the (input-oriented)
technical efficiency (TE). The graph measure of technical efficiency (TE®R) is then
derived by calculating the square root of TE.

Step 2 Solve the linear programming problem Eq. (3.10) to evaluate the maximum profit
ratio m(X;,,Vy,). The profit-ratio efficiency (PE) is then calculated by using Eq. (3.12).
Step 3 Apply Eq. (3.17) to evaluate the (input-oriented) allocative efficiency (AE). The
graph measure of allocative efficiency (AE®R) can be derived by calculating the square
root of AE.

From Table A-1, it can be seen that the activities with the most efficient profit-ratio
efficiency (PE =1) obtain the most efficient technical and allocative efficiencies (e.g.,
activity B6). Meanwhile, the profit-ratio efficiencies PE are less than or equal to the
technical efficiencies TE, which is consistent with the proposition in Section 3.2.
Regarding the scores of technical efficiency TE, for example, activity B10 achieved full
efficiency marks in 2013, whereas it fell short in the profit-ratio efficiency score
(TE =1.000, PE =0.630). According to the discussions in Section 3.2, this result may be
due to the wrong mix in either inputs or outputs, or both. Specifically, in the year 2013,
activity B10 had the current input mix X = (478,672,379) and output
mix Yy =(103,301,814,652), while the optimal mix x* was (478, 672, 233.613)
and y* was (147.749, 728.555, 1156.807, 652). Note that the optimal input-mix and
output-mix can be obtained from Eq. (3.7), and for simplicity, the optimal solution is
truncated to the three decimal places. For example, the real optimized y; for B10 in
2013 is 147.748450191852. Hence, for activity B10, the wrong mix appeared in both
input mix and output mix. According to Eq. (3.17), AE was obtained as 0.630. As an

adjustment plan for B10, it needs to reduce X; (office expenses), meanwhile,
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increase y; (brokerage income), y, (trading income) and Y5 (underwriting and
selling income).

On the other hand, for the activities which have worse technical efficiencies, e.g., O15
in the year 2011 (TE =0.969), improving technical efficiency does not guarantee the
achievement of the maximum profit ratio. In the year 2011, O15 had the current inputs
and outputs x =(4322,1943,4826) and y =(9750,1789,657,2054): According to the
graph measure of technical efficiency TE®R in Eq. (3.6), the current inputs of O15
should be reduced to the level (4254.969, 1912.866, 4751.152) and the current outputs
should be increased to the level (9903.597, 1817.183, 667.350, 2086.358). Note that
TE®R =0.984 can be obtained by calculating the square root of TE. However, the profit
ratio after improved TE®R resulted in 1.326, whereas the maximum profit ratio obtained
from Eq. (3.10) was 1.889. This gap is due to the existence of allocative efficiency. Using
Eq. (3.10), the optimal input mix Xx* of O15 was obtained as (4132.236, 1943, 169.081)
and the optimal output mix y* was (10072.01, 1789, 657, 2054). Compared with the
current inputs and outputs of O15, it is seen that the wrong mix existed in both inputs and
outputs. To achieve the maximum profit ratio, O15 needs to reduce x; (trading related

expenses) and X3 (office expenses), meanwhile, increase y; (brokerage income).

4.4 Results of the profit-ratio change index and its component
indices

The results of the profit-ratio change index PI and its component indices are
summarized in Tables A-2 and A-3 (Appendix A). Tables A-2 and A-3 also report the
cases that the intertemporal comparison terms of PI had infeasible solutions. In the
following, the results are discussed at the overall industry level and an individual level,
respectively.

The main steps for analyzing the profit-ratio change index are summarized below:
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Step 1 Apply Eq. (3.31) to evaluate the profit-ratio efficiency change (PEC) and the
change of profit-ratio boundary (PTC). The profit-ratio change index is then derived by
calculating the product of PEC and PTC.

Step 2 Apply Eq. (2.12) to evaluate the (input-oriented) technical efficiency change (TEC)
and the frontier shift (TC). The (input-oriented) Malmquist index is then derived by
calculating the product of TEC and TC.

Step 3 Apply Eq. (3.23) and Eq. (3.33) to evaluate the (input-oriented) allocative
efficiency change (AEC) and the allocation-technical change (ATC), respectively. The
(input-oriented) allocation Malmquist productivity index (AMI) is then derived by
calculating the product of AEC and ATC.

4.4.1. At the overall industry level

In order to identify the drivers of productivity change of Japanese securities companies,
I summarized the geometric means of PI and its decompositions in Table 4.1 (see the
decimal numbers) and further expressed those decimal numbers in the form of percentage

change by subtracting unity from them.

Table 4.1. The geometric means of Pl and its decompositions

PI PEC PTC M1 TEC TC AMI  AEC ATC

0.793 0941 0842 |0.860 0939 0916 |0922 1.003 0919
(20.7%) (5.9%) (15.8%) | (14.0%) (6.1%) (8.4%) |(7.8%) (-0.3%) (8.1%)

2011-2013

0.897 1.001 0896 |0907 1.010 0898 |0989 0991  0.999
(10.3%)  (-0.1%) (10.4%) | (9.3%)  (-1.0%) (10.2%) | (1.1%) (0.9%) (0.1%)

2013-2015

Note:
a. Pl =MIXAMI;:MI =TEC XTC; AMI = AEC x ATC.
b. PI = PEC X PTC;PEC =TEC X AEC; PTC =TC x ATC.

The thesis assumes that the behavioral objectives of securities companies are the
maximization of the profit ratio. Hence, from the viewpoint of the sustainable
development of the Japanese securities industry, the profit-ratio change index PI needs

to be progressed. Since we have obtained two alternative approaches for decomposing
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PI, PI = MI x AMI is firstly considered to identify the drivers of changes in PI. For
2011-2013, the results indicate that the average growth rate of PI (20.7%) was higher
than that of MI (14.0%) because AMI had an average growth rate of 7.8%. On the other
hand, for 2013-2015, AMI only improved at an average rate of 1.1%. The positive
impact of AMI caused the average growth rate of PI (10.3%) greater than that of M/
(9.3%). This explains the importance of considering allocative efficiency when analyzing
the productivity of the Japanese securities industry: the progress of AMI have a positive
impact on PI. Furthermore, considering MI = TEC X TC and AMI = AEC X ATC,
the results indicate that the shift of the value-based technical frontier TC was more
influential than the technical efficiency change TEC to the MI for both two periods.
The results also imply that the progress of AMI was mainly attributed to the term ATC.

Secondly, the decomposition PI = PEC X PTC is used to identify the main drivers of
PI. For 2011-2013, the profit-ratio efficiency change PEC increased at an average rate
of 5.9%, and the change of profit-ratio boundary PTC had an average growth rate of
15.8%. However, for 2013-2015, the decomposition shows that PEC decreased by 0.1%,
and PTC progressed at an average rate of 10.4%. Since the fluctuations in PTC were
greater than those in PEC for both two periods, PTC can be considered as the main
driver that causes PI progress. Furthermore, considering PEC = TEC X AEC, itis clear
that, for 2011-2013, the progress of PEC was mainly attributed to the improvement of
technical efficiency (TEC increased by 6.1%), although there was an allocative
efficiency regress suggested by geometric mean of 1.003 (the negative sign of its
percentages change shows that the allocative efficiency dropped by 0.3%). On the other
hand, PEC from 2013 to 2015 regressed by 0.1%. This is mainly due to the regress in
TEC. Similarly, according to the decomposition PTC = TC X ATC, the results show that
the progress of PTC was mainly caused by the progress of TC for both periods.
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4.4.2. At an individual level

In order to benchmark the evaluated activities at an individual level, an applicable
approach (Fig.4.1) is further provided according to the different performances suggested
by PI, MI,and AMI.
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Figure 4.1 The results of PI, MI, and AMI at an individual level.

Figure 4.1 shows the results for the sample of Japanese securities companies. The
detailed results can be found in table A-2 and A-3, Appendix A. As already discussed in
Section 4.1, the commonly used categorization (major, online, bank-affiliated, and other
integrated securities companies) may not directly reflect the differences in the productive
performance. Thus, the observed activities are divided into six different groups regarding
their performance evaluated by PI, MI, and AMI. Specifically, the horizontal axis
represents the index MI, and the vertical axis represents the index AMI. The index PI
can be represented as a hyperbolic curve passing through the point (1,1) since it is the
product of MI and AMI. The basic evaluate of MI suggests that the region I, II, and
III show bad productive performance (MI > 1) and the region IV, V and VI show good
productive performance (MI < 1). In contrast, Fig.4.1 further identifies the activities that

need to focus on the management of allocative efficiency over time.
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As can be seen from Fig. 4.1, the indices PI, MI,and AMI in the region I are greater
than unity, indicating there is no observable productivity growth. Therefore, the activities
located in this region can be benchmarked as “the bad performance.” Since the
fluctuations in PI, MI, and AMI get larger as the activities are getting away from the
origin, we can identify the one with “the worst practice” by calculating the furthest
distance from the origin. According to Fig.4.1, we have observed that O19 in the period
2011-2013 and M3 in the period 2013-2015 were “the worst practice,” respectively.

Inregion II, both PI and MI are greater than unity and thus indicate regress, whereas
AMI shows progress (AMI < 1). Pl shows regress because the regress of MI is
rigorous enough to offset the progressive effect of AMI (the percentage change of MI
is greater than that of AMI). The activities in this region (e.g., O14 in period 2011-2013;
133 in period 2013-2015) need to focus more on the production management for the
purpose of improving M.

Conversely, in region III, the regressive effect of MI is not enough to offset the
progressive effect brought by AMI (the percentage change of MI is less than that of
AMI). As a result, the index PI shows progress. Although the activities in this region
(e.g., B7, O18 in period 2011-2013; M1 in period 2013-2015) show better performances
than those in the region II, there still is much room to improve the estimated value of MI.

The region IV is referred to as “the good performance” region as the indices PI, MI
and AMI are less than unity. We can further identify “the best practice” by finding out
the one with the closest distance from the origin. According to Fig. 3, we have obtained
that M4 in the period 2011-2013 and 134 in the period 2013-2015 were “the best practice,”
respectively.

The activities in the region V have regressed according to AMI (>1) but progressed
according to both PI (<1) and MI (<1). The progress of PI is mainly due to the
progress of MI as MI has a more influential effect than AMI (the percentage change
of MI is greater than that of AMI). Compared with “the good performance” region, the
activities in the region V (e.g., 125 in period 2011-2013; O13 in period 2013-2015) should
pay attention to the index AMI which is affected by both allocative efficiency change

and allocation-technical change.
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The region VI also shows that the activities have regressed according to the index AMI
(>1). However, compared with the region V, PI shows regress because the progressive
effect brought by MI (<I) is not enough to cover the regress of AMI (the percentage
change of MI is less than that of AMI). To improve PI,the activities in this region (e.g.,
M1 in period 2011-2013; O18 in period 2013-2015) must focus more on their
management of allocative efficiency over time.

In summary, the activities in the region II and III should keep the level of AMI and
focus on improving MI which is affected by both the technical efficiency change and
the shift of the value-based technical frontier. For example, B7 was in region III for 2011-
2013, while it successfully improved itself to the region of “the good performance” in the
period 2013-2015 due to the progress of MI. This does not mean that the change of AMI
is not important: O18 was obtained in the region III for 2011-2013, and it improved its
value of MI in the latter period. However, it could not be evaluated as “the good
performance” because of the regress of AMI (AMI =1.092 for 2013-2015, see more
details in Appendix A). On the other hand, the activities in the region V and VI need to
keep the level of MI and pay attention to AMI which is affected by both the allocative
efficiency change and allocation-technical change. The producers or managers have to
make the right decisions to improve allocative efficiency over time. As already discussed
in Section 3.2, allocative efficiency can be achieved by reconsidering the resources mix
of the input-spending and output-earnings so as to maximize the profit ratio. For example,
125 (for 2011-2013) succeeded in improving itself to the region of “the good performance”
in the period 2013-2015 due to the progress of AEC (AEC =0.983 in the latter period,
see more details in Appendix A). However, improving the allocative efficiency does not
mean that the production management is not important: the activity M1 (for 2011-2013)
improved its AMI in the latter period, but it still could not be evaluated as “the good
performance” due to the regress of MI. Also, the activities in the region I should pay
attention to both MI and AMI. Figure 4.1 further shows that the one benchmarked as
“the worst practice” can get into the region of good performance by improving both MI
and AMI (e.g., O19 was evaluated as the good performance for 2013-2015 whereas the
worst practice for 2011-2013). Similarly, the one benchmarked as “the best practice” can

also be dropped into the region of bad performance as long as it could not keep the level
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of both MI and AMI (e.g., M4 was evaluated as the best practice for 2011-2013
whereas the bad performance for 2013-2015). Therefore, the activities in the region IV
should at least keep the current level of the progress for both MI and AMI.

4.5 Comparisons with the results of an aggregated input and

aggregated output

This section further clarifies the differences between the profit-ratio change index PI
and the Malmquist input-oriented productivity index MI. As already discussed in Section
4.2, one might consider the use of an aggregated input and aggregated output. In such
cases, the aggregated input is the total expenses, which summarize the inputs 1, 2, and 3.
The aggregated output is the total revenue defined as the sum of output 1 to output 4.

Using the aggregated input and output variable, the profit-ratio change index can be
adopted to analyze the productive performance of Japanese securities companies.
However, because there is no longer any observable allocative inefficiency in the single
input and single output setting, the wrong mix for either total expenses or total revenue is
not evaluable anymore. The definition of allocative efficiency in Eq. (3.17) then becomes
aunity in the sense that we have no means to evaluate it. In fact, the maximum profit ratio
defined in Eq. (3.9) is of “most productive scale size” under CRS (Banker et al. [59]) and
is identical to all the evaluated activities for a single input and single output case. This
indicates that the profit-ratio efficiency PE in Eq. (3.12) is equivalent to the technical
efficiency TE in Eq. (3.7) when using an aggregated input and output. Furthermore, the
component indices of the profit-ratio change index, AEC in Eq. (3.32) and ATC in Eq.
(3.33), also become unity either. Therefore, in the single input and single output setting,
the definition of the profit-ratio change index in Eq. (3.23) will be reduced to the
Malmquist input-oriented productivity index in Eq. (3.20).

Table 4.2 presents the results of the aggregated input and output case (Case (a)). The
details can be found in Table A-4 and A-5 (Appendix A). To further clarify the

interpretation of the index PI and its decompositions, I also added the results shown in
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Table 4.1 (Case (b)). Note that the decimal numbers are the geometric means of indices,

and the percentage changes are calculated by subtracting unity from the decimals.

Table 4.2. Comparisons with the results of an aggregated input and aggregated output

20112013 PI Ml PEC TEC PTC TC AMI _AEC____ATC
0831 1125 0.739 1000 1.000 _ 1.000

Case (a)
(16.9%) (-12.5%) (26.1%) 0.0%)  (0.0%)  (0.0%)
0793 0941 | 0842 0860 | 0939 0916 | 0922 _ 1.003 _ 0919

Case (b
e ®) | 0706 (5.9%) | (158%)  (14.0%) | (6.1%) (84%) | (7.8%) (13%)  (8.1%)
20132015 ] MI PEC __TEC | PIC TC AMI _AEC ___A4TC
0.931 0.846 1.100 1000 1.000  1.000

Case (a)
(6.9%) (15.4%) (-10.0%) 0.0%)  (0.0%)  (0.0%)
caeyy | 0% TOOT |08 0907 | 100 039 | 058 0991 0.9%

ase
(103%)  (0.1%) | (104%) (93%) | (-1.0%) (102%) | (1.1%) (0.9%) (0.1%)

Note: Case (a) represents the results calculated by the aggregated input (total expenses) and output

(total revenue), while Case (b) is the case of three inputs and four outputs in Table 4.1.

As can be seen in Table 4.2, the geometric means of PI in Case (a) (which is
equivalently the index MI) are close to those of PI in Case (b) for both periods 2011-
2013 and 2013-2015. In Case (a), the profit-ratio boundary overlapped the value-based
technical frontier, and hence there were no more residual shifts of the profit-ratio
boundary (ATC =1.000) or the changes of allocative efficiency (AEC =1.000). However,
in Case (b), the profit-ratio boundary needs not to be at the same level as the value-based
technical frontier. This ensures that the allocative efficiency is observable in the multiple
inputs and multiple outputs cases. Therefore, the difference between PI (or MI) in Case
(a)and PI in Case (b) should be interpreted by the existence of the observable allocative
efficiency. When the allocative efficiency is observable (e.g., Case (b)), its effects on the
productivity change over time are aggregated into the index AMI. As a result, the
proposed index PI should be interpreted as the one that captures the average effects of
both technical and allocative efficiency over time. Furthermore, although the allocative
efficiency is observable in Case (b), the index MI under this circumstance does not
consider the potential effects of changing the input and output mix of the evaluated

activities regarding their maximum possible profit ratios. Therefore, the proposed index
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Pl can be considered as an extension of the conventional MI as it takes into

consideration the effects of allocative efficiency over time.

4.6 Concluding remarks

This chapter focuses on the productive performance of 37 Japanese securities companies
to demonstrate the methods proposed in Chapter 3. Based on the results of profit-ratio,
technical, and allocative efficiencies, I explained the situation where the wrong mix
appeared in both input mix and output mix. Some examples of projection for Japanese
securities companies are provided by considering the allocative efficiency regarding
profit-ratio maximization. On the other hand, the results of PI, MI, and AMI are used
to characterize Japanese securities companies according to their different productive
performance over time. Because the characterization reveals the strengths and
weaknesses of securities companies, it is useful to help them to find their unique positions
under the competitive business environment.

To clarify the differences between the proposed PI and the conventional M/, I further
considered a special case that an aggregated input is used to produce an aggregated output.
Based on the results, I concluded that PI is an extension of MI as it accounts for the

impacts of allocative efficiency over time.
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Chapter 5

Productivity analysis under stochastic noise

5.1 Introduction

The purpose of this chapter is to develop a new model for estimating Malmquist-type
indices under a stochastic setting. Since existing approaches are mostly based on either
DEA or SFA, I seek to apply the StoNED approach to estimate Malmquist-type indices.
There are few studies attempting to combine both the StoNED approach and the
estimation of Malmquist indices: for example, Cheng et al. [60] estimated a Malmquist-
type index by utilizing a cost frontier, and Zhou [61] considered an aggregatable input
variable for estimating the input-oriented Malmquist index. However, both of them are
restricted to a single-input and multiple-output setting. In fact, most existing models in
StoNED have been presented in either a single-input or a single-output setting. To allow
for a multiple-input and multiple-output production technology in StoNED, Kuosmanen
and Johnson [62] (see also Layer et al. [63]) have recently proposed a cross-sectional
model by adopting the directional distance function (Chambers et al. [26]). Once the
production frontier is estimated, it is possible to gauge the distance for each observed
production activity. However, as mentioned before, measuring the distance to the
production frontier in a stochastic setting provides a measure of an aggregation of both
inefficiency and noise. Therefore, the distance estimated from the cross-sectional
StoNED model cannot be straightforwardly extended to construct a Malmquist-type index.

This chapter contributes to the literature by suggesting a panel-data StoNED model for
estimating Malmquist-type indices in a multiple-input and multiple-output setting.
Compared with conventional Malmquist-type indices, the index proposed herein can
account for the impact of stochastic noise in a nonparametric setting. More specifically, I

elaborate on the use of directional distance functions to allow for a multiple-input and
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multiple-output production technology and further suggest the use of panel data in
efficiency analysis. Note that panel data for efficiency analysis provide several significant
advantages over conventional cross-sectional data, leading to estimates with more
desirable statistical properties (e.g., Kumbhakar and Lovell [64], Hsiao [65,66]).

In what follows, I first consider the estimation of the multi-input and multi-output
production frontier and then perform the inefficiency analysis for constructing the
Malmquist-type indices. Specifically, in Section 5.2, a panel-data StoNED model is
proposed, which identifies the reference points on the production frontier. In Section 5.3,
I approximate a piecewise linear frontier based on these estimated reference points and
develop a consistent estimator of inefficiency. An input-oriented Malmgquist index defined
with the estimated inefficiencies is then presented in Section 5.4. Concluding remarks are

provided in Section 5.5.

5.2 A panel-data model for multi-input and multi-output

production frontier

In this section, the cross-sectional model of Kuosmanen and Johnson [62] is extended to
estimate the directional distance function in a panel-data setting. Recall that the
directional distance function suggested by Chambers et al. [26] provides an alternative
characterization of production technology as well as a measure of inefficiency. Thus, in
the estimation procedure, I first estimate the production frontier with the directional
distance function and then perform the inefficiency analysis accordingly.

Consider a balanced panel where n firms are observed multiple times, indexed by

subscript k, (k =1,...,K). Suppose that the producer of firm j, (j = 1,...,n) uses
m -dimensional inputs xj = (x1 ko X2k ...,xmjk), € RT* to produce s-dimensional

outputs  yj = (yljk,yzjk,...,ysjk)’ € R . The observed data point (xjk,yjk) is

*

assumed to differ from its reference point (xjk, y]f"k) in the exogenously given direction

(g, h) € RI**$ by both inefficiency and noise:

*

(%o i) = (% + €8 Vi — €h), Vi k, (5.1
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where €; = u; + vj is a composite error term that consists of firm-specific inefficiency

u; and random noise vjy. Specifically, the following assumptions are incorporated:

(@) The inefficiency components u; are independent of observing times k;

(b) The inefficiency components u; have an unknown asymmetric distribution with a
positive mean p and a finite constant variance;

(c) The noise components vj; are uncorrelated random variables and have an unknown
symmetrical distribution with zero mean and finite constant variance;

(d) u; and vy are independent of (x;‘k, y]fkk).

It has been shown in the cross-sectional setting that Eq. (5.1) satisfies D (xj, Vi & h) =
g, Vj. The same logic can be applied straightforwardly to the panel-data setting, which is
now expressed by D (xjk, Vik: & h) = &, Vj, k. This relation provides a regression
equation for estimating the directional distance function. To apply the CNLS regression,
I define the conditional mean distance function as D (xjk, Vik: & h) —E (ejk), Vj, k.
Given pre-assigned directions (g ,h) and observations (xjk, yjk), Vj,k, the CNLS

problem is stated as

K n
. 2
IPWICE
a,p,1,e
k=1j=1

S. t.

N

m
ZTTjkyTjk = ajk + Zﬁijkxijk + EJ%NLS, VJ = 1, e, n, k= 1, ,K

r=1 i=1
m S m S

Qjx + z BijkXijk — Z TrjkYrik < 0z + Z BiziXijk — Z Tra1Yrjk » (5.2)
i=1 r=1 i=1 r=1

Vi,z=1,..,n; k,l=1,..,K

m N
Zﬁijkg-l_zl—rjkh: 1,V] = 1,...,Tl; k= 1,...,K

=1 r=1

ﬁijk = O,Vl = 1,...,m; ]: 1,...,7’1; k= 1,...,K

Trjk =2 0,Vr=1,..,s; j=1,..,n k=1,.. K

where sﬁcNLS 1s an estimator of E (sjk) — & =U— (uj +vjk) for the jth firm

observed in the rth time. Eq. (5.2) defines a least-squares problem that minimizes the
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sum of squares of the composite error terms. The first constraint contains a set of linear
regression equations where parameters «, f,and t define a specific tangent hyperplane
to an unknown directional distance function for the jth firm observed in the kth time.
The second constraint imposes concavity on the directional distance function by applying
Afrait inequalities (see Afrait [41]). Due to the duality between the directional distance
function and the profit function, as shown in Chambers et al. [26], parameters f and T
can be further interpreted as nonnegative shadow prices for inputs and outputs. The third
constraint ensures the translation property of the directional distance function by
normalizing the shadow prices with the direction (g, h). The last two constraints impose
monotonicity relative to all inputs and outputs. It is worth noting that the use of firm-
specific directions in the CNLS estimator may violate the global convexity of the
production technology, as argued by Layer et al. [63]. Hence, at the stage of estimating
the production frontier, the direction (g h) in Eq. (5.2) is specified as a pre-assigned
vector that is common across all firms.

Given the CNLS estimates s“JCkN LS the average performance of firm j is computed as

K
1
E—J_CNLS — Ez ngI‘CNLS_ (5.3)
k=1

Note that éjCN LS captures impacts of the inefficiency u;, the noise vy, and the positive

mean u. However, as the number of observing times K increases, the impacts of noise
can be effectively averaged out. Therefore, Eq. (5.3) can be used as a measure of firm-
specific effect.

To benchmark the performance of each firm to best practice, Eq. (5.3) is normalized to

the nonnegative inefficiency by using the following definition (see Schmidt and Sickles

[67]):

- =CNLS _ zCNLS
;= max ¢ — &,
T ze{n,omy J 5.4

Eq. (5.4) is consistent if there is a strictly positive probability of observing a fully efficient

firm (see Park and Simar [68]). The positive pu can be then estimated as [ =

1 o =CNLS
anzluj = max £;

3 (note that the CNLS estimates are known to sum to zero, i.e.,

Yh=1 271 s“ﬁcNLS = 0). As a consequence, the estimated reference points on the
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production frontier are obtained as (a?jk,f/jk) = (xjk - (éjCkN B ﬁ)g, Vjk + (%‘;(N LS 4

i)h),vj, k.

5.3 Estimation of within and intertemporal efficiencies

Although Eq. (5.4) provides an estimator of inefficiency for firm j, it cannot be used for
assessing intertemporal efficiency (i.e., estimating the inefficiency of firm j at period t
to the production technology at period t + 1). The following estimator of directional
distance function is then considered as a general measure of inefficiency.

Relative to the estimated reference points (fjk_t, ﬁjk,t), Vj, k atperiod t,itis possible
to construct an (m X nK) matrix of optimal inputs and an (s X nK) matrix of optimal
outputs. The estimator of the distance for the jth firm observed in the kth time at period

t is defined as
t _
8 (Xt Vit Gjiees i) = max ik

s.t.
nk

Z AaXar < Xjir — SjxGji,ts
d=1

nk (5.5)
Z AaVar = Viie + Ojkchjie
d=1

nk
z Ad = 1,
d=1

A =0,
where j=1,..,n,k=1,..K,d =1,..,nK. To assess efficiency and productivity, a
piecewise linear production frontier is estimated relative to the reference points resulting
from the CNLS problem. Note that the notation (g h) are pre-assigned common
directions for estimating the underlying production technology (see, Eq. (5.2)) while the
notation (gjk,t, hjk,t) in Eq. (5.5) are allowed to be firm-specific depending on the

purpose of the efficiency analysis. In other words, once the production frontier is
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estimated, one can compute the distance from any observed point (xjk,t,yjk,t) to the
production frontier in any direction ( jk,tr hjk’t) by using Eq. (5.5). Eq. (5.5) implicitly
assumes variable returns to scale. By dropping the restrictions Y2, 1, =1, the
assumption of constant returns to scale can be imposed. It is also worth noting that Eq.
(5.5) differs from the DEA formulation of the directional distance function (see Chambers
et al. [26]) in the following sense. In the DEA formulation, the directional distance
function is calculated using a deterministic approach, while in Eq. (5.5), the directional
distance function results in a random variable because (xjk,t, yj-k’t) are subject to noise
and inefficiency by assumption.

Denote now the optimal solutions to Eq. (5.5) by Sj*,\f(xjk,t, Vik,tr Gkt hjk,t),‘v’j,k.

Analogous to Eq. (5.3), the average distance of firm j at period t is defined as

K
_ 1
5jt(xj,b Yiv 9t hj.t) = Ez 6jkt(xjk.tryjk,t' ikt hjk,t)- (5.6)
k=1

Eq. (5.6) provides an estimator of inefficiency for firm j at period t in the sense that
the noise term will be effectively canceled out as K — oo. Because it is measured within
the same period, Eq. (5.6) is also referred to as the within inefficiency.

To assess intertemporal inefficiencies, let 6jtk+1(xjk_t, Vik,t» 9jk,ts hjk,t) be an estimator
of the distance for the jth firm observed in the kth time at period t against the
production technology at period t + 1. Similar to Eq. (5.5), kaJ’ 1(xjk,t, Vik,t» 9jk,tr hjk’t)

is computed from the following linear programming problem:
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t+1 —
8 (Xjiees Yk e Myer) = max G

S.t.
nk

Z AaXa i1 < Xjkr — OjicGjie
a=1

nk (5.7)

Z AaVat+1 = Vike + Gjichik e
a=1

nk
Z Ad = 1,
d=1

A =0,
where j=1,..,n,k=1,..K,d=1,..,nK.
Given the optimal solutions 6j*,f+1(xjk_t, Vik,tr jk.ts hjk,t),Vj,k to Eq. (5.7), the

intertemporal average distance of firm j is expressed as

K
_ 1
87 (%0 Y00 jo ) = Ez 8jic " (X Vi e M) (5-8)
k=1

Eq. (5.8) provides an estimator of intertemporal inefficiency for firm j at a mixed period
in the sense that the noise term will be effectively canceled out as K — oo. Similarly, we
can also evaluate firm j at period t + 1 relative to the production technology at period

t by replacing the notations t and t + 1 in Eqgs. (5.7) - (5.8) with each other.

5.4 Stochastic nonparametric estimation of Malmquist-type

indices

This section provides an example of estimating the input-oriented Malmquist index based
on the efficiencies defined in Section 5.3. Similar procedures can also be applied
straightforwardly to the output-oriented Malmquist index as well as the Malmquist-
Luenberger indices (Chung et al. [69]). Recall the definition of the input-oriented
Malmquist index in Eq. (2.12). It has been shown that the input distance function and the

directional distance function are related by 1/D(x,y) =1 — D (x,y,9,h) if we specify
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the direction vector as (g, h) = (x,0) [25]. Therefore, the input-oriented Malmquist
index in Eq. (2.12) can be subsequently written as
1- Bt(xt' Yer Xt O)

M = —
1—D'(X¢41, Ver1, Xt+1,0)

1 (5.9)

1- ﬁt+1(xt'yt'xt' 0) 2
1- Bt+1(xt+1'3’t+1; X1, 0) .

Note that both Egs. (2.12) and (5.9) can be measured in the deterministic approach,

indicating that any distance between the observations and the production frontier can be
treated as a measure of inefficiency. However, in practice, the observed data may be
affected by both inefficiency and random noise, which makes it imprecise to interpret the
estimated distance as a measure of inefficiency. If we apply the estimator of the
directional distance function in Egs. (5.5) and (5.7) directly to the definition Eq. (5.9),
index M will result in random variables. The following definition is then considered as
a stochastic nonparametric estimation of an input-oriented Malmquist index for firm j:
1 -6/ (%6, 9,0, %,0, 0)

St
1-— 6] (xj,t+1’ yj,t+1, xj,t+1, O)

=

. (5.10)
1—8*" (%6 Y0 %0, 0)

St+1 .
1- 5]' (xj,t+1'yj,t+1'xj,t+1' 0)

Eq. (5.10) is derived relative to the within and intertemporal efficiencies of firm j
defined in Egs. (5.6) and (5.8). Similar to the input-oriented Malmquist index in Eq.
(2.12), M; <1 indicates progress in productivity from period t to t + 1, while M; =
1 and M] > 1 indicate no change and regressing productivity, respectively.
It is also possible to decompose the Malmquist index defined in Eq. (5.10) as follows:
_ 1=-5(x50y0%.00)

J— St+1
1- 5]' (xj,t+1'yj,t+1'xj,t+1' 0)

St+1
1- 6j (xj,t+1'yj,t+1'xj,t+1' 0)

St
1-—- 6] (xj,t+1’ yj,t+1, xj,t+1ﬂ O)

(5.11)

1
St+1 2
1= 8 (%0, ¥j,00 %0, 0)

1- @t(xj,t,y]',t'xj,t' 0) .
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The first term measures the efficiency change (EC) between periods t and t+ 1. A
value of EC less (greater) than unity indicates improved (declining) efficiency, and a
value of EC equal to unity indicates no change in the efficiency. The second term
captures the shift in the production frontier over time and is therefore referred to as
technical change (T'C). The frontier progresses if TC < 1, remains the same if TC = 1,
and regresses if TC > 1.

5.5 Concluding remarks

This chapter provided a stochastic nonparametric estimation of an input-oriented
Malmquist index. It is worth noting that the approach can also be applied
straightforwardly to output-oriented Malmquist indices as well as Malmquist-Luenberger
indices. Compared with the conventional input-oriented Malmgquist index, the proposed
index has the following features:
(@) It measures productivity change over time using a nonparametric approach.
(b) It is capable of dealing with multi-input and multi-output production technology.
(c) It allows for the presence of random noise and meanwhile captures inefficiencies.
Specifically, to account for the impact of random noise, a nonparametric regression
technique, CNLS, is adopted to estimate multi-input and multi-output production
technology characterized by a directional distance function. To evaluate inefficiencies, I
first considered an estimator of inefficiency based on the residuals of the CNLS problem.
By virtue of using panel data, inefficiency can be estimated consistently without imposing
distributional assumptions. However, intertemporal efficiency cannot be assessed directly.
To address this issue, I considered the estimator of the directional distance function and

then extended it to the estimation of Malmquist-type indices.
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Chapter 6

Productivity analysis of Japanese regional banks

6.1 Introduction

The performance of regional banks has drawn a great deal of interest among researchers
as well as regulators (e.g., Barros et al. [70], Fukuyama and Matousek [71], Fukuyama
and Weber [ 72—74], Mamatzakis et al. [75]). However, most previous studies have applied
either stochastic parametric estimation (e.g., SFA) or the deterministic nonparametric
approach (e.g., DEA). Few studies have analyzed the banking sector in a StoNED
framework (a rare example being Eskelinen and Kuosmanen [76]). This chapter
investigates the productive performance of a sample of 101 Japanese regional banks over
two periods by applying the stochastic nonparametric estimation of the input-oriented
Malmquist index proposed in Section 5.4. The first and second periods cover 2008 to
2012 and 2013 to 2017, respectively. Both panels are balanced. The dataset is drawn from
the financial statements of all banks, as published by the Japanese Bankers Association
(JBA).

Japanese regional banks serve the diverse financial needs of individual customers,
small- and medium-sized companies, and local governments, playing a primary role in
the country’s regional finance. These banks can be divided into two groups, namely,
regional banks I (members of the Regional Banks Association of Japan) and regional
banks II (members of the Second Association of Regional Banks). According to data from
the Financial Services Agency in the fiscal year 2017, there were 64 banks classified as
regional banks I and 40 banks classified as regional banks II. After eliminating those
banks lacking adequate accounting records, the sample in this thesis contains 63 regional
banks I and 38 regional banks II. Most regional banks II were referred to as mutual banks

before they converted to regional banks, starting in 1989, under the Banking Law. Since
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both types of regional banks have the same scope of the business, I simply use the term
“regional banks” to refer to them. However, due to different financial supports in regional
banks I and II, their efficiency levels may differ from each other (see, [71]). Therefore, 1
also investigate the differences between regional banks I and II.

In exploring the performance of regional banks, it is important to acknowledge and
consider prevailing political and macroeconomic contexts because these may affect bank
management practices. After the 2008 global financial crisis, the Bank of Japan (BOJ)
introduced significant monetary policy initiatives, including Quantitative-Qualitative
Easing (QQE) in April 2013 to address inflation expectations and push down long-term
interest rates. In practice, however, regional banks have been struggling to maintain

profitability amid the persistently low-interest rates.
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Figure 6.1 Total loans, total deposits, and the loan-to-deposit ratio of regional banks.

Figure 6.1 shows the loan-to-deposit ratio of regional banks during 2006-2017; a
declining trend is evident from 2008, but this switched to an increasing trend starting in
2013. According to the Financial System Report released by the BOJ in April 2018,

regional banks are facing heated competition because of the low-interest rates, and have
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been actively increasing the number of loans to low-return borrowers across a wide range
of industries. Meanwhile, deposits have remained relatively low compared to loans due
to the expansion of QQE with low deposit rates. On the other hand, long-term low deposit
rates may have a positive contribution to the increase in interest income. However, the
primary interest income (including interest on loans and securities), as shown in Fig.6.2,
has been decreasing in practice since 2008 due to the higher decline in lending rates
compared to deposit rates.

Based on the above discussion, it is necessary to estimate the productive performance
of regional banks either from the perspective of profitability management or policy
analysis. Moreover, it is clear that different political and economic conditions have
different impacts on the productive performance of regional banks. Therefore, the periods
2008-2012 and 2013-2017 are considered separately to empirically estimate the

productivity of regional banks over a long-term period.
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Figure 6.2 Growth of primary resources of revenue amid persistently low-interest

rates.
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6.2 Selection of inputs and outputs

To characterize the inputs and outputs of regional banks, an intermediation approach is
applied, which considers regional banks as financial intermediaries between savers and
investors (see, e.g., [71,77,78]). As shown in Table 6.1, I assume regional banks use three
inputs to produce two outputs. According to the 2018 Financial System Report, compared
to real demand, there may be an excessive number of employees and offices in the
banking sector due to the declining population. Thus, the number of employees (labor)
and real estate (capital) should be considered as sources of inefficiency in the production
process of regional banks. Further, based on Figs.6.1 and 6.2, I also specify deposits as
an input, and loans and securities as outputs. Note that loans on the balance sheet contain
both performing and non-performing loans. Nevertheless, this chapter focuses only on
performing loans because, as argued by Boussemart et al. [79], the assumption of weak
disposability of the good and bad outputs jointly is difficult to justify provided all regional

banks properly evaluate all loan applications (see also [80]).

Table 6.1. Definitions of inputs and outputs

Variables | Definitions

xt Labor Number of employees
x? Deposits | Deposits
x3 Capital Asset value of premises and real estate

Loans Performing loans

Securities | Asset value of securities investments
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6.3 Results of stochastic nonparametric estimation of the

Malmquist index

Appendix B shows the results of the proposed stochastic nonparametric estimation of an
input-oriented Malmquist index. The essential steps of the estimation can be described as
follows:

Step 1 Solve the CNLS problem in Eq. (5.2) to estimate s“jCNLS . Note that the scaling

vectors g = (1,1,1) and h = (1,1) are specified for all observing years as the common
pre-assigned direction, so that the underlying production technology allows for
simultaneous unit contraction in inputs and expansion in outputs.

Step 2 Apply Eq. (5.3) to evaluate the average performance of each regional bank (s_jc NLS),

The nonnegative consistent inefficiency (i;) is then computed by adopting Eq. (5.4).

- (éﬁcNLS +A)g v +

Calculate the reference points according to (fjk,ﬁjk) = (xjk
(éﬁNLS + ﬁ)h), Vi, k.

Step 3 Calculate the (input-oriented) within inefficiency by solving Egs. (5.5) and (5.6).
Calculate the (input-oriented) intertemporal inefficiency by solving Egs. (5.7) and (5.8).
Apply Eq. (5.11) to estimate the (input-oriented) efficiency change (EC) and the technical
change (TC). The stochastic nonparametric estimation of the input-oriented Malmquist
index is then derived by calculating the product of EC and TC.

Table 6.2 reports descriptive statistics for the estimated coefficients of the CNLS
problem. Due to the pre-specified directions, the average estimated coefficients f
and 7 for each period are summed to unity. Further, as explained in Section 5.2,
parameters a, [, and T characterize the shape of the boundary of the underlying
production technology, as they specify tangent hyperplanes to the directional distance
function. Since there is a little variation in the estimated coefficients f and 7, it is
reasonable to assume that the underlying production technology exhibits constant returns

to scale when we proceed to estimate productivity growth. Meanwhile, both estimated

coefficients § and ¢ for 2013-2017 exhibit more variation than those for 2008-2012.
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Therefore, it is meaningful to infer the difference in production technologies over the two

periods.

Table 6.2. Descriptive statistics of the estimated coefficients

Mean St. dev. Min Max
(2008-2012)

a -537.10228 594.18758 -2183.04860 4500.43787
Bt 0.99724 0.02955 0.34129 0.99912
B2 0.00002 0.00032 0 0.00703
B3 0.00182 0.02913 0 0.65010
1 0.00045 0.00047 0.00036 0.00800
T 0.00047 0.00011 0.00000 0.00249

(2013-2017)

a 223.77785  15981.55023 -2195.17121  358377.19030
St 0.99507 0.04558 0 0.99926
B2 0.00006 0.00027 0 0.00240
g3 0.00393 0.04361 0.00000 0.95433
Tt 0.00050 0.00204 0 0.04568
2 0.00044 0.00019 0.00000 0.00216

Notes: Units of deposits, capital, loans, and securities are in a million yen.

Productivity growth can be estimated based on the results of the CNLS problem by
simply applying Eq. (5.10). Figure 6.3 reports empirical results of the proposed input-
oriented Malmquist index under the assumption of constant returns to scale. The vertical
axis represents the frequency of the estimated Malmquist index, and the horizontal axis
represents the interval. As can be seen from the figure, a majority of regional banks had
improved their productivity over the entire period. There was no evident difference in
productivity change between regional banks I and II. Specifically, 17 of 63 (27%) regional
banks I and 10 of 38 (26.3%) regional banks II have regressed in their productivity.
Overall, the estimated input-oriented Malmquist index grew at an average of 2% from

2008-2012 to 2013-2017.
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Figure 6.3 Empirical results of stochastic nonparametric estimation of an input-

oriented Malmquist index.

To further investigate the drivers of productivity growth, I categorized the decomposed
components of the proposed input-oriented Malmquist index into a two-dimensional table,
as shown in Fig.6.4 (see Appendix B for details). According to this decomposition, the
productivity growth of regional banks is mainly attributable to technical progress. This
could be related to political and macroeconomic changes (i.e., ongoing market expansion
due to the heated competition spurred by low-interest rates, as discussed in Section 6.1).
On the other hand, the estimated values of efficiency change are evenly distributed on the
two sides of unity, and this applies to both regional banks I and II. As shown in Fig.6.4,
32 of 63 (50.8%) regional banks I and 23 of 38 (60.5%) regional banks II exhibited
efficiency improvements. Further, the average efficiency change of all regional banks is
close to 1 (0.9986), which means average efficiency remained unchanged over the entire
period. To understand this, note that regional banks have suffered a decline in primary

interest income since 2008. Unchanged efficiency would suggest the overall effects of
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managerial improvement are offset by the effects of low profitability. As a consequence,
continuous productivity growth in regional banks would require efficiency improvements.
From the perspective of operational management, regional banks should review their
personnel assignments and fixed investments to improve average efficiencies. From the
perspective of profitability management, regional banks should not only keep increasing
loans to low-return borrowers but also increasingly diversify investments to improve their

interest income, so that continuous productivity growth is achievable.

Decomposition of the Malmquist index
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Figure 6.4 Results of decomposing the proposed input-oriented Malmquist index.
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6.4 Concluding remarks

The methodology developed in Chapter 5 is applied to a sample of 101 Japanese regional
banks over two periods. Note that the proposed index can be used for two or more than
two periods. The estimated Malmquist index shows an increase in productivity change
for both regional banks I and II. To investigate the drivers of productivity growth, I further
decomposed the proposed index into components of efficiency change and technical
change. The decomposition results show that the main factor contributing to productivity
growth was technical progress, which provides a consistent interpretation of the estimated
coefficients of the CNLS problem. The empirical results can reasonably be interpreted in
terms of political and macroeconomic changes. Thus, the merits of the proposed index

and the validity of the results have been illustrated.
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Chapter 7

A further study of Japanese securities companies under

stochastic noise

7.1 Introduction

In Chapter 4, the profit-ratio change index is demonstrated in terms of a sample of 37
Japanese securities companies observed from 2011 to 2015. Considering the significant
changes in business management that appeared in the Japanese securities industry around
the year 2013, the analysis is separated into the productivity change between the years
2011 and 2013 and the productivity change between the years 2013 and 2015. The
empirical results indicate that the productivity of Japanese securities companies
progressed for each period.

On the other hand, as already discussed in Chapter 5, different political and economic
conditions may have different impacts on productive performance. Therefore, it would
also be interesting to investigate the differences in productivity due to the changes in
business management (i.e., the Japanese securities companies tended to focus more on
the asset management business since 2013, see further details in Chapter 4). Since the
primary focus for each period is the average productive performance of securities
companies, [ hereby adopt the stochastic nonparametric estimation of the Malmquist
index to estimate the productivity changes between the analyzing periods 2011-2013 and
2013-2015. Specifically, I consider the same sample of 37 Japanese securities companies
and the same selection of inputs and outputs, as reported in Section 4.2. To estimate the
average productive performance before and after the year 2013, I collected the panel data
of two analyzing periods from annual securities reports as published by each securities

company. The first analyzing period covers the years 2011, 2012, and 2013, and the
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second one covers 2013, 2014, and 2015.
The rest of this chapter is organized as follows. Section 7.2 discusses the empirical
results. Section 7.3 concludes the chapter. An appendix of the detail results is provided in

the last section.

7.2 Empirical results

This section is divided into three parts. The first part provides the economic interpretation
of the coefficients estimated from the panel-data model; the second part examines the
results of the estimated inefficiencies; the last part summarizes the results of the stochastic

nonparametric estimation of the input-oriented Malmquist index.

7.2.1 The interpretation of the estimated coefficients

To allow for the simultaneous unit contraction in inputs and expansion in outputs, |
specify the direction vectors g = (1,1,1) and h = (1,1) for all observing years as the
common pre-assigned direction when adopting the panel-data model in Section 5.2. The

descriptive statistics of the estimated parameters @, 5, and T in the two periods are

reported in Table 7.1.

Table 7.1. Descriptive statistics of the estimated coefficients

Mean St. dev. Min Max
(2011-2013)

a 1276.31044 7885.43320  -3699.294811 80952.44237
iR 0.30229 0.26452 0 0.84494
B2 0.13703 0.16991 0 0.68886
g3 0.20206 0.22682 0 0.70063
tl 0.08568 0.11621 0 0.99570
2 0.11750 0.10034 0.00000 0.43425

3 0.11184 0.12511 0.00000 0.49967

N>



83

4 0.04360 0.04322 0.00000 0.24026
(2013-2015)

a 2508.85972 13255.29478 -3863.53292  137299.52707
Bt 0.31297 0.27632 0 0.85622
B2 0.15080 0.18438 0 0.63350
B3 0.22703 0.24717 0 0.83953
£t 0.06616 0.07623 0 0.48147
2 0.09953 0.08954 0.00000 0.45064
3 0.08986 0.10552 0 0.51667
4 0.05365 0.05888 0.00000 0.32041

According to the duality between the directional distance function and the profit
function, coefficients  and 7 can be interpreted as the marginal products of input-
spending and output-earnings, respectively. Note that all inputs and outputs of Japanese
securities companies have the same unit (yen), and thus the inefficiency is estimated on
monetary sale. For example, increasing the trading related expenses (x;) by one yen
increases inefficiency by 30.2% yen, on average, across all observed securities companies
over the period 2011-2013. Further, recall that parameters «, f,and t of the panel-data
model characterize the shape of the boundary of the underlying production technology.
As shown in Table 7.1, the estimated coefficients § and £ for 2013-2015 exhibit more
variation than those for 2011-2013, implying that production technology changes over
two periods. Section 7.2.3 further investigates the extent of changes in production
technologies by adopting the stochastic nonparametric estimation of the input-oriented

Malmquist index.
7.2.2 Results of the estimated inefficiencies
Based on the estimated CNLS residuals, the inefficiency term of each securities company

is derived by using Eq. (5.4) in Chapter 5. The results of the average inefficiencies and

the standard deviations of the inefficiency and noise are summarized below.
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Table 7.1. Results of the average inefficiencies and the standard deviations of the
inefficiency and noise

(2011-2013)  (2013-2015)

Q 802.66805 742.40660
Oy 344.78232 203.25239
0y 424.10025 397.33423

As can be seen from Table 7.1, the average inefficiency fi in the securities industry
decreased over time. Meanwhile, there is a significant variation of the inefficiency over
two periods in the sense that &, in the period 2011-2013 is larger than that in the period
2013-2015. In contrast, the differences in &, over two periods are quite small, which
indicates that the noises for both periods behave nearly the same.

To further evaluate the results of the estimated inefficiencies, I next consider if there
might be a problem with outliers (i.e., the one whose relative performance difference is
extreme). A simple way to identify the outliers is to use the scatterplot matrix, which is
symmetric about its diagonal and shows the relationships (linear correlations) between
multiple variables. The scatterplot matrices for 37 Japanese securities companies with
three inputs and four outputs are shown in Figs.7.1 and 7.2. The diagonals of those two
figures plot univariate histograms of the input and output variables in two periods,
respectively. It is clear that there are 3 points above all the other points as on the upper
right of each figure. Indeed, these points are the same securities company (M1) who has
more massive inputs and outputs than the others over the period 2011-2015. To see
whether the outlier has a considerable influence on the or not, I eliminate M1 and re-

estimate the panel-data model in Section 5.2.
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Figure 7.1 Scatterplot matrix of the data in the period 2011-2013.
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Figure 7.2 Scatterplot matrix of the data in the period 2013-2015.

The re-estimated results of the average inefficiencies and the standard deviations of the

inefficiency and noise are summarized below.

Table 7.2. Re-estimated results of the average inefficiencies and the standard

deviations of the inefficiency and noise

(2011-2013)

37 observations 36 observations

(2013-2015)

37 observations 36 observations

Q 802.66805 799.93347
0y 344.78232 353.75853
Oy 424.10025 425.00023

742.40660 741.75461
203.25239 202.35733
397.33423 363.17758
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In Table 7.2, we can see that fi, 6,, and &, estimated without the outlier are nearly
the same as the original values. To further investigate the extent to which the outlier
affects the estimation of inefficiency, I calculated the rank correlation of the original
estimated inefficiencies (where the inefficiency score of M1 is eliminated) and the re-
estimated inefficiencies. As a result, the Spearman's rank correlation coefficient is
0.99990 in the period 2011-2013 and 0.99750 in the period 2013-2015. That is, the same
ranking of inefficiencies for securities companies is observed, no matter whether the
outliers are eliminated or not. Indeed, the same can be said of the estimated Malmquist
index as well. The rank correlation of the Malmquist index based on the original
inefficiencies and the one based on the re-estimated inefficiencies is 0.99995. These
results indicate that, in this empirical application, the ranks of the efficiencies estimated
in the panel-data model (as well as the Malmquist index to be discussed in Section 7.3)
are unaffected by the outliers. Considering that the outlier (M 1) may reflect the innovation
in business management from which other securities companies would want to learn, the
productivity analysis proceeds with the original dataset for 37 securities companies with

three inputs and four outputs.

7.2.3 Results of the stochastic nonparametric estimation of the

Malmquist index

Figure 7.3 visualizes the empirical results of the stochastic nonparametric estimation of
an input-oriented Malmquist index (see Appendix C for more details). As can be seen
from the figure, most Japanese securities companies had improved their productivity from
the period 2011-2013 to the period 2013-2015. Specifically, 33 of 37 (89.2%) securities
companies have progressed in their productivity. Overall, the estimated input-oriented
Malmquist index implies the productivity of Japanese securities companies grew at an
average of 19.7% after 2013, where the paradigm shifts in the asset management business

occurred.
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Figure 7.3 Empirical results of stochastic nonparametric estimation of an input-

oriented Malmquist index.

The estimated input-oriented Malmquist index can be decomposed into a technical
efficiency change component and a technical change component. As shown in Fig.7.4,
the productivity growth in the securities industry was mainly attributable to the technical
progress, which had an average growth rate of 23.5%. This could be related to the
paradigm shifts in the asset management business over two periods and explains why the
average inefficiency in the securities industry improved from the period 2011-2013 to the
period 2013-2015. On the other hand, the (input-oriented) efficiency change regressed at
an average rate of 5.0%, indicating the average (input-oriented) performance of the
observed securities companies declined after the business management changed. In
summary, the managers of Japanese securities companies should pay attention to their
operational and managerial performance in inputs to catch up with the changes in business

management.
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Figure 7.4 Results of decomposing the proposed input-oriented Malmquist index.

7.3 Concluding remarks

This chapter investigated the productivity changes of Japanese securities companies from
the period 2011-2013 to the period 2013-2015. Specifically, the stochastic nonparametric
estimation of the input-oriented Malmquist index proposed in Chapter 5 is applied.
According to the analysis of estimated residuals and inefficiencies, there is a significant
variation in inefficiencies over time whereas the noise behaves nearly the same for both
periods. To see whether the outliers have a significant influence on the estimation of
inefficiency, I re-estimated the panel-data model proposed in Chapter 5 and calculated the
rank correlation of the original and the re-estimated inefficiencies. The results found that

the ranks of the efficiencies are unaffected by the outlies. Considering that the outlier may
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reflect the innovation in business management from which other securities companies
would want to learn, the productivity analysis has proceeded with the original dataset for
37 securities companies. The empirical results indicate that the productivity of Japanese
securities companies progressed over two periods, and the main driver of productivity

growth was the technical progress.
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Chapter 8

Conclusions

The thesis provided two types of nonparametric methodologies for analyzing efficiency

and productivity change. Based on the theory of DEA, a new efficiency concept is

developed: allocative efficiency regarding profit-ratio maximization. The derived

efficiency is then used to construct a novel comprehensive productivity index: a profit-

ratio change index. Note that the DEA approach assumes away stochastic noise. Therefore,

based on the theory of StoNED, a stochastic nonparametric estimation of Malmquist-type

indices is also proposed to account for the impact of noise. Empirical applications are

provided for demonstrating the proposed methods. Specifically, the contributions of this

thesis are summarized as follows:

(a)

(b)

A new scheme of allocative efficiency is developed. The allocative efficiency
regarding profit-ratio maximization is suitable for performance evaluations in which
producers desire to maximize revenue and minimize expenses simultaneously. It
provides a comprehensive understanding of the sources of inefficiency, that is, the
wrong input mix, the wrong output mix, and the wrong mix in both inputs and outputs.
Further, the price information is not necessary because a value-based technology set
1s incorporated.

A new Malmquist-type index is proposed, which accounts for the impact of allocative
efficiency changes on productivity change. The profit-ratio change index can be
applied to panel data to measure productivity change and suitable for profit-seeking
organizations or industries. The index can be decomposed into the conventional
Malmquist index and an allocation Malmquist index. Since the latter evaluates the
impact of allocative efficiency changes on productivity change, the decomposition
suggests the profit-ratio change index gives a comprehensive understanding of the

sources of productivity change.
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(c) A new model for estimating the Malmquist-type indices under stochastic noise is
suggested. The proposed stochastic nonparametric estimation of Malmquist-type
indices can be used to measure the productivity change in a stochastic setting. It is
also capable of dealing with multi-input and multi-output production technology.

(d) InJapan, both securities companies and regional banks face significant challenges in
their management under uncertain economic conditions and a competitive business
environment. Using the above nonparametric methods, I evaluated the productive
performances of Japanese securities companies and regional banks, respectively. I
also investigated the drivers of productivity change by applying the decomposition
of Malmquist-type indices. These results provide realistic projections and policy
implications for improving the productive performance.

Despite the fact that the performance evaluation plays an essential role in the fields of
management science and economics, assessing efficiency and productivity can be
difficult in some situations, especially when the prior information on the production
function is unavailable or multiple inputs and multiple outputs are involved. By
addressing essential practical and theoretical problems in the measurement of allocative
efficiency and performance evaluation under stochastic noise, the proposed methods of
this thesis contributed to the nonparametric evaluation of efficiency and productivity in
the multi-input and multi-output setting. In other words, those methods can be applied to
a wide range of production activities that transform multiple inputs to multiple outputs,
and the prior information on the relationship of inputs and outputs is not required. The
proposed methods provide potent tools for decision-makers, regulators, or policy-makers.
Through the performance evaluations, valuable information such as realistic projections
and policy implications can be easily derived from the evaluated results, which is required
for continuous performance improvement.

In future research, I would like to develop a StoNED-based estimation of the profit-
ratio change index. It would also be attractive to consider alternative representations of
multi-input and multi-output production technology using Shephard distance functions. I
have done some theoretical works in this field, which may provide useful insights for

future researches.
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Appendices

Appendix A: Empirical results in Chapter 4

Note:

(a) M1~MS5 are the major securities companies, B6~B12 are the bank-affiliated securities
companies, O13~019 are the online brokers, and 120~I37 are the other integrated
securities companies.

(b) As discussed in Section 2.3, the intertemporal comparison terms of PI
(Tt (%1 o1, Vil ea1) and w82 (%;EEY, 377E41)) may have infeasible solutions. Such cases
are reported in Tables A-3 and A-3, and alternatively used a super efficiency evaluation
(Andersen and Petersen [57]) to calculate the profit-ratio efficiency in Eq. (8). The values
with “*” represent the cases that nt(ffot_t 1 37:5“1) were infeasible, implying the
technology in time period t does not encompass the evaluated company in period ¢t + 1,
and the values with “**” represent the cases that T+ (x/Lf", yrct!) were infeasible,

implying the technology in time period t+ 1 does not encompass the evaluated

company in period t.

Table A-1. Results of profit-ratio, technical and allocative efficiencies in 2011, 2013, and 2015

2011 2013 2015
Activities
PE TE AE PE TE AE PE TE AE
Ml 1.000 1.000 1.000 0.749 0975 0.768 0.751 0.969 0.775
M2 1.000 1.000 1.000 1.000 1.000 1.000 0.748 0.850 0.881
M3 1.000 1.000 1.000 1.000 1.000 1.000 0.708 0.932 0.759
M4 0.368 0.505 0.729 0.656 0.754 0.869 0.746 0.794 0.939

M5 0.656 0.734  0.895 0.671 0.795 0.844 0.681 0.785 0.867



94

B6
B7
B8
B9
B10
B11
B12
013
Ol14
Ol15
0ol6
o17
O18
019
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
Mean

G.Mean

1.000
1.000
1.000
1.000
0.455
0.691
0.596
1.000
1.000
0.680
1.000
1.000
1.000
1.000
0.675
0.769
0.892
1.000
1.000
0.619
0.825
0.701
0.689
0.730
0.465
0.576
0.563
1.000
0.488
0.526
1.000
0.595
0.799
0.769

1.000
1.000
1.000
1.000
0.651
0.923
0.766
1.000
1.000
0.969
1.000
1.000
1.000
1.000
0.796
0.845
0.994
1.000
1.000
0.692
0.907
0.861
0.872
0.893
0.655
0.735
0.753
1.000
0.738
0.745
1.000
0.861
0.889
0.878

1.000
1.000
1.000
1.000
0.698
0.749
0.777
1.000
1.000
0.702
1.000
1.000
1.000
1.000
0.849
0.910
0.897
1.000
1.000
0.895
0.909
0.815
0.789
0.818
0.710
0.783
0.747
1.000
0.662
0.706
1.000
0.691
0.885
0.876

1.000
1.000
1.000
0.633
0.630
0.624
0.619
1.000
0.790
0.710
1.000
1.000
1.000
1.000
0.730
0.810
1.000
1.000
1.000
0.534
1.000
0.587
0.729
0.557
0.766
0.603
1.000
1.000
0.560
1.000
1.000
1.000
0.837
0.817

1.000
1.000
1.000
0.915
1.000
0.871
0.973
1.000
0.914
0.889
1.000
1.000
1.000
1.000
0.899
0.938
1.000
1.000
1.000
0.744
1.000
0.762
0.917
0.713
0.930
0.814
1.000
1.000
0.951
1.000
1.000
1.000
0.939
0.935

1.000
1.000
1.000
0.691
0.630
0.717
0.636
1.000
0.865
0.798
1.000
1.000
1.000
1.000
0.812
0.863
1.000
1.000
1.000
0.718
1.000
0.770
0.795
0.781
0.823
0.741
1.000
1.000
0.589
1.000
1.000
1.000
0.884
0.873

1.000
0.768
1.000
0.615
1.000
0.665
1.000
1.000
0.757
0.684
1.000
1.000
1.000
1.000
1.000
0.849
0.802
1.000
1.000
0.554
0.794
0.719
0.729
0.702
0.508
1.000
0.626
1.000
1.000
0.467
1.000
1.000
0.834
0.816

1.000
0.809
1.000
0.859
1.000
0.948
1.000
1.000
0.878
0.816
1.000
1.000
1.000
1.000
1.000
0.965
0.973
1.000
1.000
0.759
0.909
0.934
0.897
0.947
0.803
1.000
0.955
1.000
1.000
0.642
1.000
1.000
0.930
0.926

1.000
0.949
1.000
0.716
1.000
0.701
1.000
1.000
0.862
0.839
1.000
1.000
1.000
1.000
1.000
0.881
0.824
1.000
1.000
0.730
0.873
0.770
0.812
0.742
0.633
1.000
0.655
1.000
1.000
0.728
1.000
1.000
0.890
0.882



SD
Min
Max

0.210 0.136
0.368 0.505

1.000 1.000

0.123
0.662
1.000

0.180 0.088
0.534 0.713

1.000 1.000

0.134
0.589
1.000

0.170  0.091
0.467 0.642 0.633

1.000 1.000

95

0.122

1.000

Table A-2. Results of the profit-ratio change index and its component indices from 2011 to 2013

(the case of three inputs and four outputs)

Activitios Pl = PEC X PTC MI=TECXTC AMI = AEC x ATC

PI PEC PTC MI TEC TC AMI AEC ATC
M1 1.006 1.335 0.754 0.986 1.025 0.962 1.021 1.302 0.784
M2 0.932 1.000 0.932 0.975 1.000 0.975 0.956 1.000 0.956
M3 0.941 1.000 0.941 0.989 0.998 0.990 0.952 1.002 0.951
M4 0.429 0.562 0.765 0.640 0.670 0.955 0.671 0.838 0.800
M5 0.709 0.977 0.725 0.787 0.923 0.853 0.901 1.059 0.850
B6 0.895 1.000 0.895 0.862 1.000 0.862 1.039 1.000 1.039
B7 0911** 1.000 0.911** 1.182 1.000 1.182 0.771 1.000 0.771
B8 0.811 1.000 0.811 0.861 1.000 0.861 0.942 1.000 0.942
B9 1.288 1.581 0.815 1.187 1.092 1.087 1.085 1.447 0.750
B10 0.624 0.722 0.864 0.767 0.651 1.178 0.813 1.108 0.734
B11 0.766 1.106 0.693 0.818 1.059 0.773 0.936 1.045 0.896
B12 0.624 0.962 0.649 0.552 0.788 0.701 1.131 1.221 0.926
013 1.048 1.000 1.048 0.894 1.000 0.894 1.173  1.000 1.173
014 1.222 1.266  0.965 1.371 1.094 1.253 0.891 1.157 0.771
O15 0.990 0.958 1.034 1.045 1.090 0.959 0.947 0.879 1.078
Ol6 0.977 1.000 0.977 1.008 1.000 1.008 0.969 1.000 0.969
017 1.084** 1.000 1.084** 1.131 1.000 1.131 0.958 1.000 0.958
O18 0.812** 1.000 0.812** 1.146 1.000 1.146 0.708 1.000 0.708
019 1.367** 1.000 1.367** 1.124 1.000 1.124 1.217 1.000 1.217
120 0.707 0.925 0.764 0.766 0.885 0.865 0.923 1.045 0.883
121 0.701 0.950 0.738 0.712 0.901 0.791 0.984 1.055 0.933
122 0.771*  0.892 0.864* 0.825 0.994 0.830 0.934 0.897 1.041
123 0.873*  1.000 0.873* 0.926 1.000 0.926 0.943 1.000 0.943
124 0.859*  1.000 0.859* 0.904 1.000 0.904 0.951 1.000 0.951
125 0.868 1.160 0.749 0.795 0.931 0.854 1.092 1.246 0.876
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126 0.836 0.825 1.014 0.771 0.907 0.850 1.085 0.909 1.193
127 0.899 1.195 0.753 0.991 1.130 0.877 0.907 1.058 0.858
128 0.759 0.945 0.804 0.886 0.952 0.931 0.858 0.993 0.864
129 0.854 1.312 0.651 0.960 1.251 0.767 0.889 1.048 0.849
130 0.483 0.608 0.795 0.600 0.705 0.851 0.806 0.863 0.934
131 0.667 0.955 0.698 0.727 0.903 0.805 0.917 1.058 0.867
132 0.478 0.563 0.850 0.586 0.753 0.778 0.816 0.747 1.093
133 0.605*  1.000 0.605* 0.640 1.000 0.640 0.945 1.000 0.945
134 0.616 0.872 0.706 0.712 0.776 0.918 0.865 1.124 0.770
135 0.539 0.526 1.025 0.723 0.745 0.970 0.746 0.706 1.057
136 0.722 1.000 0.722 0.805 1.000 0.805 0.898 1.000 0.898
137 0.667 0.595 1.121 0.866 0.861 1.006 0.770 0.691 1.115
Mean 0.820 0.967 0.855 0.879 0.948 0.926 0.930 1.013 0.928
G.Mean  0.793 0.941 0.842 0.860 0.939 0.916 0.922 1.003 0.919
SD 0.216 0.219 0.157 0.188 0.132 0.141 0.123 0.148 0.130
Min 0.429 0.526 0.605 0.552 0.651 0.640 0.671 0.691 0.708
Max 1.367 1.581 1.367 1.371 1.251 1.253 1.217 1.447 1.217

Table A-3. Results of the profit-ratio change index and its component indices from 2013 to 2015

(the case of three inputs and four outputs)

Pl = PEC X PTC MI =TECXTC AMI = AEC X ATC

Activities
Pl PEC PTC MI TEC TC AMI  AEC  ATC
Ml 0.938 0.998 0.940 1.013 1.007 1.006 0.926 0.991 0.935
M2 1.194 1.336 0.893 1.098 1.177 0.933 1.087 1.135 0.957
M3 1.336 1.412 0.946 1.151 1.074 1.071 1.160 1315 0.883
M4 0.899 0.879 1.022 0.908 0.950 0.956 0.990 0.925 1.070
M5 0.991 0.986 1.005 0.977 1.012 0.965 1.015 0974 1.042
B6 0.965** 1.000 0.965** 0.988 1.000 0.988 0.977 1.000 0.977
B7 0.947 1.302 0.727 0.960 1.236 0.776 0.986 1.053 0.936
B8 0.956 1.000 0.956 0.903 1.000 0.903 1.059 1.000 1.059
B9 0.804 1.028 0.782 0.932 1.065 0.875 0.862 0.965 0.894
B10 0.591 0.630 0.937 0.836 1.000 0.836 0.706  0.630 1.121

B11 0.950 0.939 1.012 0.893 0919 0.972 1.064 1.022 1.041



B12
013
014
O15
0Ol6
017
O18
019
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
Mean
G.Mean
SD
Min
Max

0.729
0.863
0.810
0.782
0.925
0.912
1.083
0.613*
0.713
0.969
1.179
0.905
0.957
0.867
1.152
0.707
0.890
0.834
1.280
0.416
1.168**
1.187%*
0.590
1.209
0.920
0.855
0.921
0.897
0.205
0.416
1.336

0.619
1.000
1.044
1.038
1.000
1.000
1.000
1.000
0.730
0.953
1.247
1.000
1.000
0.964
1.259
0.816
1.000
0.793
1.506
0.603
1.598
1.000
0.560
2.142
1.000
1.000
1.037
1.001
0.297
0.560
2.142

1.177
0.863
0.776
0.754
0.925
0.912
1.083
0.613*
0.976
1.016
0.946
0.905
0.957
0.900
0.915
0.866
0.890
1.052
0.850
0.690
0.731**
1.187**
1.054
0.565
0.920
0.855
0.907
0.896
0.136
0.565
1.187

0.931
0.756
0.784
0.856
0.806
0.874
0.992
0.707
0.893
0.996
1.040
0.912
0.916
0.933
1.101
0.779
0.951
0.785
1.122
0.428
1.065
1.268
0.794
1.003
0.887
0.802
0.920
0.907
0.147
0.428
1.268

0.973
1.000
1.041
1.091
1.000
1.000
1.000
1.000
0.899
0.973
1.027
1.000
1.000
0.980
1.100
0.816
1.022
0.753
1.158
0.814
1.047
1.000
0.951
1.558
1.000
1.000
1.017
1.010
0.129
0.753
1.558

0.957
0.756
0.754
0.785
0.806
0.874
0.992
0.707
0.994
1.023
1.012
0.912
0.916
0.951
1.000
0.956
0.930
1.042
0.969
0.526
1.016
1.268
0.835
0.644
0.887
0.802
0.908
0.898
0.133
0.526
1.268

0.783
1.142
1.033
0.915
1.147
1.045
1.092
0.868
0.798
0.973
1.134
0.992
1.045
0.930
1.047
0.907
0.936
1.062
1.141
0.972
1.097
0.936
0.743
1.206
1.038
1.066
0.997
0.989
0.119
0.706
1.206

0.636
1.000
1.003
0.952
1.000
1.000
1.000
1.000
0.812
0.980
1.213
1.000
1.000
0.983
1.145
1.001
0.979
1.053
1.300
0.741
1.526
1.000
0.589
1.374
1.000
1.000
1.008
0.991
0.186
0.589
1.526
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1.230
1.142
1.029
0.961
1.147
1.045
1.092
0.868
0.983
0.993
0.935
0.992
1.045
0.946
0.915
0.907
0.957
1.009
0.877
1.312
0.719
0.936
1.262
0.877
1.038
1.066
1.005
0.999
0.118
0.719
1.312
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Table A-4. Results of the profit-ratio change index and its component indices from 2011 to 2013

(the case of an aggregated input and aggregated output)

Pl = PEC X PTC MI =TECXTC AMI = AEC X ATC

Activities

Pl PEC  PTC MI TEC TC AMI  AEC ATC
Ml 0915 1.238 0.739 0915 1.238 0.739 1.000 1.000 1.000
M2 0.829 1.122  0.739 0.829 1.122 0.739 1.000 1.000 1.000
M3 0.922 1.247 0.739 0.922 1.247 0.739 1.000 1.000 1.000
M4 0.449 0.608 0.739 0.449 0.608 0.739 1.000 1.000 1.000
M5 0.739 1.000 0.739 0.739 1.000 0.739 1.000 1.000 1.000
B6 0.855 1.157 0.739 0.855 1.157 0.739 1.000 1.000 1.000
B7 0.849 1.149 0.739 0.849 1.149 0.739 1.000 1.000 1.000
BS 0.797 1.078 0.739 0.797 1.078 0.739 1.000 1.000 1.000
B9 1.089 1.473 0.739 1.089 1.473 0.739 1.000 1.000 1.000
B10 0.683 0.924 0.739 0.683 0.924 0.739 1.000 1.000 1.000
B11 0.905 1.225 0.739 0.905 1.225 0.739 1.000 1.000 1.000
B12 0.689 0.932 0.739 0.689 0.932 0.739 1.000 1.000 1.000
013 1.022  1.382 0.739 1.022  1.382 0.739 1.000 1.000 1.000
Ol14 1.033 1.398 0.739 1.033  1.398 0.739 1.000 1.000 1.000
Ol15 0.932 1.261 0.739 0.932 1.261 0.739 1.000 1.000 1.000
Ol6 0.995 1.346 0.739 0.995 1.346 0.739 1.000 1.000 1.000
o17 1.082 1.464 0.739 1.082 1.464 0.739 1.000 1.000 1.000
O18 0.819 1.108 0.739 0.819 1.108 0.739 1.000 1.000 1.000
019 1.014 1.372 0.739 1.014 1.372 0.739 1.000 1.000 1.000
120 0.786 1.064 0.739 0.786 1.064 0.739 1.000 1.000 1.000
121 0.804 1.088 0.739 0.804 1.088 0.739 1.000 1.000 1.000
122 0.858 1.160 0.739 0.858 1.160 0.739 1.000 1.000 1.000
123 0.876 1.185 0.739 0.876 1.185 0.739 1.000 1.000 1.000
124 0.885 1.198 0.739 0.885 1.198 0.739 1.000 1.000 1.000
125 0.939 1.270 0.739 0.939 1.270 0.739 1.000 1.000 1.000
126 0.774 1.047 0.739 0.774 1.047 0.739 1.000 1.000 1.000
127 0.920 1.244 0.739 0.920 1.244 0.739 1.000 1.000 1.000
128 0.790 1.070 0.739 0.790 1.070 0.739 1.000 1.000 1.000
129 0.862 1.166 0.739 0.862 1.166 0.739 1.000 1.000 1.000
130 0.606 0.820 0.739 0.606 0.820 0.739 1.000 1.000 1.000



131
132
133
134
135
136
137
Mean
G.Mean
SD
Min
Max

0.823
0.694
0.604
0.862
0.828
0.890
0.768
0.843
0.831
0.135
0.449
1.089

1.114
0.939
0.817
1.166
1.121
1.204
1.039
1.140
1.125
0.182
0.608
1.473

0.739
0.739
0.739
0.739
0.739
0.739
0.739
0.739
0.739
0.000
0.739
0.739

0.823
0.694
0.604
0.862
0.828
0.890
0.768
0.843
0.831
0.135
0.449
1.089

1.114
0.939
0.817
1.166
1.121
1.204
1.039
1.140
1.125
0.182
0.608
1.473

0.739
0.739
0.739
0.739
0.739
0.739
0.739
0.739
0.739
0.000
0.739
0.739

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.000
1.000
1.000
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1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.000
1.000
1.000

Table A-5. Results of the profit-ratio change index and its component indices from 2013 to 2015

(the case of an aggregated input and aggregated output)

Pl = PEC X PTC MI =TEC XTC AMI = AEC X ATC
Activities

PI PEC  PTC MI TEC TC AMI  AEC  ATC
Ml 0.880 0.800 1.100 0.880 0.800 1.100 1.000 1.000 1.000
M2 1.184 1.076 1.100 1.184 1.076 1.100 1.000 1.000 1.000
M3 1.026  0.932 1.100 1.026  0.932 1.100 1.000 1.000 1.000
M4 0.926 0.842 1.100 0.926 0.842 1.100 1.000 1.000 1.000
M5 1.010 0918 1.100 1.010 0918 1.100 1.000 1.000 1.000
B6 0.874 0.794 1.100 0.874 0.794 1.100 1.000 1.000 1.000
B7 0916 0.833 1.100 0916 0.833 1.100 1.000 1.000 1.000
B8 0.945 0.858 1.100 0.945 0.858 1.100 1.000 1.000 1.000
B9 0.774 0.703 1.100 0.774 0.703 1.100 1.000 1.000 1.000
B10 0.674 0.612 1.100 0.674 0.612 1.100 1.000 1.000 1.000
Bl11 0.975 0.886 1.100 0.975 0.886 1.100 1.000 1.000 1.000
B12 0.893 0.812 1.100 0.893 0.812 1.100 1.000 1.000 1.000
013 0.891 0.810 1.100 0.891 0.810 1.100 1.000 1.000 1.000
014 0.876  0.796 1.100 0.876 0.796 1.100 1.000 1.000 1.000
0O15 0.864 0.785 1.100 0.864 0.785 1.100 1.000 1.000 1.000
016 0.827 0.752 1.100 0.827 0.752 1.100 1.000 1.000 1.000
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017
O18
019
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
Mean
G.Mean
SD
Min
Max

0.949
1.184
1.039
0.903
0.896
1.184
0.910
0.886
0.891
0.976
0.872
0.988
0.892
1.177
0.491
1.153
1.283
0.914
0.987
0.907
0.881
0.943
0.931
0.148
0.491
1.283

0.862
1.076
0.944
0.821
0.814
1.076
0.827
0.805
0.809
0.887
0.792
0.898
0.811
1.070
0.447
1.048
1.166
0.831
0.897
0.824
0.801
0.857
0.846
0.134
0.447
1.166

1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
0.000
1.100
1.100

0.949
1.184
1.039
0.903
0.896
1.184
0.910
0.886
0.891
0.976
0.872
0.988
0.892
1.177
0.491
1.153
1.283
0.914
0.987
0.907
0.881
0.943
0.931
0.148
0.491
1.283

0.862
1.076
0.944
0.821
0.814
1.076
0.827
0.805
0.809
0.887
0.792
0.898
0.811
1.070
0.447
1.048
1.166
0.831
0.897
0.824
0.801
0.857
0.846
0.134
0.447
1.166

1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
1.100
0.000
1.100
1.100

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.000
1.000
1.000
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M EC TC M EC TC
No.1 1.0128 1.0016 ~ 1.0112  No.52 0.9488  0.9637  0.9845
No.2 0.9475 09593 09876  No.53 1.004 1.0174  0.9867
No.3 0.9537  0.9472 1.0069  No.54 1.0175 1.0287  0.9892
No.4 0.9892 1.0037  0.9855  No.55 1.0249  1.0413  0.9842
No.5 0.9495  0.9653 09836 No.56 0.9549 0971 0.9833
No.6 09496  0.9692 09798  No.57 0.985 1.0017  0.9834
No.7 0.9261 09313  0.9943  No.58 0.9494  0.9601  0.9889
No.8 0.9681 1.0083  0.9601  No.59 0.9556 09713  0.9838
No.9 09637 09794 0984 No.60 0.9945 1.0055  0.9891
No.10 0.8789 09782  0.8984  No.61 0.983 0.995 0.9879
No.11 1.0982 1.1363  0.9665  No.62 0.96 0.9843  0.9753
No.12 0.9567 09677 09886  No.63 1.0171 1.0473  0.9711
No.13 09561 09742 09814 No.64 0.9862  1.009 0.9774
No.14 09678  0.9861 09815 No.65 0.8935  0.9064  0.9858
No.15 0.9913  0.9961  0.9951 No.66 1.0064  1.0319  0.9753
No.l6 0.9615 09743  0.9868  No.67 0.9089  0.9244  0.9832
No.17 1.0025 1.0253  0.9778  No.68 1.0014  1.0128  0.9888
No.18 09616  0.9583 1.0034  No.69 1.039 1.0393  0.9997
No.19 1.0295 1.0585  0.9726  No.70 1.0064  1.0235  0.9833
No.20 1.0211 1.0655  0.9584  No.71 09264 0.9561  0.9689
No.21 0.978 0.9933 09846  No.72 0.898 1.0195  0.8808
No.22 0.9658  0.9824 09831 No.73 0.9678  0.9815  0.9861
No.23 09984  1.011 09875  No.74 0.9698  0.9795  0.9901
No.24 09142 09418 09707 No.75 1.0082 1.0221  0.9864
No.25 1.057 1.0904  0.9694  No.76 0.9633  0.9669  0.9963
No.26 1.0062 1.0205  0.986 No.77 1.0118 1.0221  0.99
No.27 09791  0.9898 09892  No.78 1.0053 1.0352  0.9712
No.28 0.9921 1.0011 0.991 No.79 0.975 0.9907  0.9842
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No.29
No.30
No.31
No.32
No.33
No.34
No.35
No.36
No.37
No.38
No.39
No.40
No.41
No.42
No.43
No.44
No.45
No.46
No.47
No.48
No.49
No.50
No.51

1.04
1.0228
0.9896
0.9427
0.9853
0.9758
0.9707
0.9855
0.9645
1.0439
1.0251
0.9834
0.962
0.9857
0.8957
0.9502
1.0201
1.0101
0.9725
1.0345
0.9894
0.9499
0.9454

1.074

1.0428
1.0216
0.934

0.9995
0.9655
0.9826
1.0012
0.978

1.0443
1.0385
0.9853
0.9986
1.0188
0.9092
0.9663
1.0368
1.0468
0.9895
1.0465
1.0025
0.9643
0.991

0.9684
0.9808
0.9687
1.0094
0.9858
1.0107
0.9879
0.9844
0.9862
0.9996
0.9871
0.9981
0.9633
0.9675
0.9851
0.9833
0.9839
0.965

0.9828
0.9885
0.987

0.985

0.954

No.80
No.81
No.82
No.83
No.84
No.85
No.86
No.87
No.88
No.89
No.90
No.91
No.92
No.93
No.9%4
No.95
No.96
No.97
No.98
No.99
No.100
No.101

1.0047
0.9805
0.9792
0.9839
0.9613
1.0735
0.9951
0.9266
0.9924
0.9427
0.9863
0.9825
0.9534
0.9453
0.9819
0.9602
0.9545
0.9974
0.9857
1.0231
0.9479
0.9672

1.0147
0.9947
0.9929
0.9917
0.9901
1.0959
1.0073
0.9433
1.008

0.9595
1.0014
1.0117
0.9745
0.9596
1.0175
0.9775
0.9903
1.0399
1.0295
1.0487
0.9634
0.9788

0.9902
0.9857
0.9862
0.9921
0.9708
0.9796
0.9879
0.9823
0.9845
0.9824
0.985

0.9711
0.9784
0.985

0.965

0.9823
0.9638
0.9592
0.9574
0.9756
0.9839
0.9881
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Dataset with outliers

Dataset without outliers

M EC TC M EC TC

Ml 0.95241 0.98328  0.96861

M2 1.02119 1.10541 0.92381 1.02307 1.10410  0.92661
M3 1.03003 1.02634 1.00360 1.03121 1.04323 0.98848
M4 0.77551 0.92495  0.83844 0.77437  0.92445 0.83765
M5 0.88779  0.99875  0.88890 0.88746 1.00260  0.88516
B6 0.91517 1.28568 0.71182 0.91541 1.28647  0.71157
B7 0.81130 1.16147  0.69851 0.81046 1.16025 0.69852
B8 0.84771 1.06816  0.79361 0.84589 1.05435 0.80229
B9 1.13732 1.62026  0.70194 1.13690 1.61919  0.70214
B10 0.73536  0.97922  0.75096 0.73332  0.97716  0.75046
B11 0.88194 1.07181 0.82286 0.88063 1.06696  0.82536
B12 0.74318  0.86087  0.86329 0.74185  0.85771 0.86492
013 0.71242  0.96170  0.74080 0.71200  0.96108  0.74084
Ol4 0.94400 1.18994  0.79332 0.93903 1.18003 0.79577
Ol15 0.80993 1.27672  0.63438 0.80972 1.27531 0.63492
ol6 0.66680 1.18761 0.56147 0.66655 1.18707  0.56151
017 0.90229 1.36903 0.65907 0.90211 1.37137  0.65782
O18 1.05878 1.11955 0.94572 1.05907 1.11967  0.94588
o19 0.87899 1.36613 0.64341 0.88143 1.36648  0.64504
120 0.75532  0.88049  0.85784 0.75263  0.88148  0.85383
121 0.77572  0.90495  0.85719 0.77393  0.90761 0.85271
122 0.85061 1.00506  0.84633 0.85093 1.00473 0.84693
123 0.87555 1.14585 0.76411 0.87590 1.14942  0.76203
124 0.79047 1.05585  0.74866 0.78996 1.05906  0.74591
125 0.66126  0.84546  0.78213 0.66212  0.84501 0.78357
126 0.83285 1.10608  0.75297 0.83301 1.10596  0.75320
127 0.84059 1.08660  0.77359 0.83850 1.08489  0.77290
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128
129
130
131
132
133
134
135
136
137
Mean
G.Mean
SD
Min
Max

0.82628
0.73921
0.79329
0.37432
0.79393
0.95571
0.60833
0.75117
0.61701
0.67236
0.81692
0.80330
0.14221
0.37432
1.13732

1.13712
0.85513
0.98798
0.60168
1.17078
1.17724
0.98494
1.12831
0.83782
0.94933
1.06534
1.04991
0.18339
0.60168
1.62026

0.72664
0.86444
0.80294
0.62212
0.67812
0.81183
0.61763
0.66575
0.73645
0.70825
0.77193
0.76512
0.10401
0.56147
1.00360

0.82630
0.73911
0.79298
0.37563
0.79390
0.95568
0.60815
0.75241
0.61702
0.67236
0.81281
0.79919
0.14230
0.37563
1.13690

1.13640
0.85496
0.99148
0.60891
1.17113
1.17658
0.98468
1.13685
0.83791
0.94889
1.06787
1.05224
0.18478
0.60891
1.61919

0.72712
0.86450
0.79980
0.61689
0.67790
0.81225
0.61761
0.66184
0.73639
0.70858
0.76580
0.75951
0.09922
0.56151
0.98848
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