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Preface 

 

 

 

Productivity growth plays an essential role in both micro- and macro-economics, as it 

reflects the long-term improvements in production and operations at the firm, industry, 

and economy-wide levels. There is a wide variety of measures of productivity change, 

but the Malmquist-type indices are particularly noteworthy because of its widespread use 

in the literature on productivity. The essential characteristic of Malmquist-type indices is 

its dynamic view of efficiency, whereas the original efficiency analysis has been mostly 

static. Indeed, the efficiencies reflecting the performance of production activities are 

likely to change over time, and these changes have been considered as an important 

contribution to productivity growth. Therefore, the thesis covers both the theoretical and 

practical topics of efficiency and productivity analysis to estimate the productivity change 

with Malmquist-type indices.   

The primary analyzing approach of this thesis is nonparametric in the sense that the 

measurement of the production frontier is entirely based on the observed input-output 

data. The thesis extends the theoretical and practical framework of two principle 

nonparametric methods involved: Data Envelopment Analysis (DEA) and Stochastic 

Nonparametric Envelopment of Data (StoNED). In particular, DEA is recognized as a 

modern mathematical programming method to deriving measures of efficiency and 

productivity change over time in the multi-input and multi-output production technology. 

The essential assumption of the traditional DEA models is its deterministic treatment of 

the production frontier, ignoring the statistical aspect of the data set. By contrast, StoNED 

is a regression-based method that imposes classical regression models of statistical noise 

into DEA. The use of a noise term makes it possible to estimate the production frontier 

under a stochastic setting. In practice, the choices of DEA and StoNED varies depending 

on whether the data have been measured correctly or not. 

The thesis extends the theoretical frameworks of efficiency and productivity analysis 

in the following aspects: (1) a new scheme of allocative efficiency, which provides a 



comprehensive understanding of the sources of inefficiency in inputs and outputs, (2) a 

new Malmquist-type index termed profit-ratio change index, which gives a full picture of 

the sources of productivity change in the sense that the impact of allocative efficiency 

changes is incorporated, (3) a new panel-data model for estimating the Malmquist-type 

indices under stochastic noise, which addressed the issues of inconsistent inefficiency and 

measurement issues of intertemporal inefficiency. Further, the merits of the proposed 

methods and the validity of the evaluation results have been illustrated by analyzing the 

efficiency and productivity change of samples of 37 Japanese securities companies and 

101 Japanese regional banks, respectively. These results provide realistic projections and 

policy implications for improving the productive performance. 
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List of frequently used symbols 
 

 

 

𝑥  Input vector 

𝑦  Output vector 

𝑥̅  Input-spending vector 

𝑦̅  Output-earnings vector 

𝑇  Production possibility set 

𝑇𝑥̅,𝑦̅  Value-based technology 

𝑇𝐸𝐼 , 𝛾  Input-oriented technical efficiency 

𝑇𝐸𝑂 , 𝜔  Output-oriented technical efficiency 

𝑇𝐸𝐺𝑅 , 𝜃  Graph measure of technical efficiency 

𝐷𝐼(𝑥, 𝑦), 𝜙  Input distance function 

𝐷𝑂(𝑥, 𝑦), 𝜑  Output distance function 

𝐷⃗⃗ (𝑥, 𝑦, 𝑔, ℎ), 𝜂  Directional distance function 

(𝑔, ℎ)  Direction vector 

𝜀  Composite error that consists of inefficiency and random noise 

𝑢  Inefficiency  

𝑣  Random noise 

𝐸(𝑢), 𝜇  Expected value of inefficiency 

𝜎𝑢  Standard deviation of inefficiency 

𝜎𝑣  Standard deviation of random noise 

𝜎𝜀  Standard deviation of composite error term 

𝜋(𝑥, 𝑦)  Profit-ratio function 

𝑃𝐸  Profit-ratio efficiency 

𝐴𝐸  Allocative efficiency 

𝜆  Intensity variable 



𝑀𝐼  Malmquist-type index 

𝑇𝐸𝐶  Technical efficiency change, Catch-up 

𝑇𝐶  Technical change, Frontier shift, Innovation 

𝑃𝐼  Profit-ratio change index 

𝑃𝐸𝐶  Profit-ratio efficiency change 

𝑃𝑇𝐶  Change of profit-ratio boundary 

𝐴𝑀𝐼  Allocation Malmquist productivity index 

𝐴𝐸𝐶  Allocative efficiency change 

𝐴𝑇𝐶  Allocation-technical change 

𝜀𝐶𝑁𝐿𝑆  Estimator of the CNLS problem 

𝛿  Estimator of the directional distance function 

𝑀̅  Stochastic nonparametric estimation of the Malmquist-type index 

𝐸𝐶  Efficiency (inefficiency) change 

𝑅  Set of real numbers 

𝑚, (𝑖 = 1,… ,𝑚)  Dimension of the input (input-spending) vector, indexed by 𝑖 

𝑠, (𝑟 = 1,… , 𝑠)  Dimension of the output (output-earnings) vector, indexed by 𝑟 

𝐾, (𝑘 = 1,… , 𝐾)  Observing times at some period, indexed by 𝑘 

𝑛, (𝑗 = 1,… , 𝑛)  Number of observations, indexed by 𝑗 

𝑜  Observation under evaluation 

𝛼  Intercept of tangent hyperplanes 

𝛽  Shadow prices (slope parameters) of the inputs 

𝜏  Shadow prices (slope parameters) of the outputs 
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Chapter 1  

Introduction 

 

 

 

1.1 Introduction to efficiency and productivity analysis 

 

The thesis focuses on the essential practical and theoretical problems of analyzing 

efficiency and productivity, including the measurement of allocative efficiency under 

specific behavioral objectives, the characterization of productivity with consideration for 

allocative efficiency, and the performance evaluation under stochastic noise. Both 

efficiency and productivity are widely used concepts in the fields of management science 

and economics as a means to evaluate the performance of production activities such as 

firms, government agencies, and nonprofit organizations. In practice, however, assessing 

efficiency or productivity can be difficult in some situations, especially when the 

benchmarks (standards) are unavailable or multiple performance metrics (i.e., inputs and 

outputs) are involved.  

Consider bank branches, for example. The managers may be interested in knowing how 

efficiently their business processes operate concerning the use of inputs such as labor, 

deposits, and capital, and the outputs such as loans and securities. In such a situation, 

efficiency can be easily estimated if we have a priori information on the relationship 

among multiple inputs and multiple outputs (i.e., there is an available functional form that 

can fully characterize the business processes of bank branches). Unfortunately, such 

information is not always available. For this reason, efficiency is often considered as a 

result of relative comparisons among all observed production activities. Specifically, by 

comparing the current production activity with similar ones, we can empirically estimate 

a so-called efficient frontier that identifies all best practices. Since producers or managers 
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are not required to operate on the efficient frontier, the deviations from the frontier are 

then explained as a natural measure of efficiency. A detailed description of efficiency is 

presented in Section 2.3. Further extensions of the concepts of efficiency are discussed in 

Sections 3.2 and 5.3. 

A majority of literature on efficiency analysis has been static, which means any 

comparison through time is entirely ignored. However, the performance of production 

activities is likely to change over time. Moreover, considering a time component, it 

becomes possible to associate the changes in performance over time with productivity 

change (e.g., higher or lower productivity). Note that productivity is a static concept that 

compares the performance of production activities at a given point of time, while 

productivity change is a dynamic view of productivity. Although productivity change 

focuses on the differences in past performance, understanding recent historical trends of 

productivity and what has driven these can be important for policy-makers or regulators. 

For example, regulators can set reasonable expectations for future production plans by 

assessing what can be achieved through efficiency improvements and what can be 

achieved through changes of efficient frontier over time. On the other hand, analyzing 

productivity change can also help to examine the impact of a policy or managerial 

decisions over a long period. I provide a brief review of the productivity analysis in 

Section 2.4 and further clarify the difference between the concepts of efficiency and 

productivity. In Chapters 3 and 5, I address the theoretical issues of measuring 

productivity change and propose the solutions by introducing a profit-ratio change index 

and stochastic nonparametric estimation of Malmquist-type indices. 

 

   

1.2 Brief review of methods 

 

There are two main approaches for evaluating efficiency and productivity: deterministic 

nonparametric and stochastic parametric approaches. In the standard deterministic 

nonparametric approach, Data Envelopment Analysis (DEA, Charnes et al. [1]) has 

demonstrated its utility for measuring productive performance. Notably, DEA can be 

applied to a multi-input and multi-output production technology, which is based on 
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theoretical axioms of production theory such as free disposability, convexity, and returns 

to scale (see also [2–5]). The significant properties of production technology are described 

in Section 2.2. It is also well known that the deterministic nonparametric approach 

commonly assumes away stochastic noise, suggesting that any deviations from the 

frontier (e.g., gauging the distance to the boundary of the production technology) can be 

considered as a measure of pure inefficiency. By contrast, Stochastic Frontier Analysis 

(SFA, Aigner et al. [6], Meeusen and van Den Broeck [7]), a general stochastic parametric 

approach, accounts for stochastic noise by treating all deviations from the frontier as 

aggregations of both inefficiency and noise. However, compared with the flexibility of 

nonparametric measurements, because SFA is a parametric methodology it relies heavily 

on an accurately pre-specified functional form for production technology.  

  Moving on, a growing number of theoretical studies attempt to combine the advantages 

of deterministic nonparametric and stochastic parametric approaches (see, e.g., [8–11]). 

These studies offer potential in terms of improved understandings of performance 

benchmarking. Stochastic Nonparametric Envelopment of Data (StoNED) introduced by 

Kuosmanen [12] has been variously applied in the literature. It has been shown that both 

DEA and SFA can be integrated into the StoNED framework (see also Kuosmanen and 

Johnson [13]). The unknown production frontier in StoNED is handled with convex 

nonparametric least squares (CNLS), which is a nonparametric regression technique 

proposed by Kuosmanen [14]. Based on the results of CNLS regression, efficiency 

analysis can be further performed with either parametric or nonparametric methods. 

  The primary theoretical approach of this thesis is based on nonparametric techniques: 

DEA and StoNED. In Section 2.5, I provide a short description of these techniques and 

further discuss the measurement issues for efficiency and productivity analysis.   

 

 

1.3 Objectives of this thesis 

 

The main objective of this thesis is to provide new nonparametric methodologies for the 

estimations of efficiency and productivity change. This objective is motivated by 

concerning the following three aspects:  
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(a) Given specific behavioral objectives, efficiency analysis can be performed regarding 

the optimal combinations (mix) of inputs and/or outputs, which leads to the concept 

of allocative efficiency. Note that the common used behavioral objectives are either 

cost minimization or revenue maximization. In practice, however, producers in 

profit-seeking organizations can be both cost minimizers and revenue maximizers. 

For example, consider the production activities whose underlying behavioral 

objectives are the maximization of profit ratio (the ratio of revenue to expenses). The 

conventional measures of allocative efficiency may not give a comprehensive 

understanding of the sources of inefficiency because the effect caused by the wrong 

mix of both revenue and expenses is not incorporated. Therefore, it is necessary to 

develop a new scheme of allocative efficiency.  

(b) The Malmquist index is a useful tool for measuring productivity changes. Besides 

measures quantifying productivity changes, there are also various empirical studies 

investigating the drivers of productivity changes. In recent years, the decomposition 

of productivity changes into a technical efficiency change component and a technical 

change component using the Malmquist index has been widely used. However, the 

conventional construction of the Malmquist index ignores the impact of allocative 

efficiency, which has been proved to account for the changes in productivity in 

empirical applications. Thus, it is necessary to consider a new Malmquist-type index 

for incorporating the impact of allocative efficiency changes on productivity change.  

(c) In the deterministic approach, efficiency is often quantified by gauging the distance 

to the production frontier. Meanwhile, the conventional Malmquist-type indices are 

constructed from the distance functions, which makes it possible to use the evaluated 

efficiencies to calculate the productivity change. However, in some situations, the 

stochastic approach may be preferable than the deterministic approach, especially 

when the evaluated efficiency is considered to be sensitive to mismeasurements or 

outliers. In the nonparametric techniques, StoNED allows us to assume the deviations 

from the unknown production frontier consist of both inefficiencies and noise in the 

data. Consequently, compared with the deterministic approach, the distance 

estimated from the cross-sectional StoNED model cannot be straightforwardly 

extended to construct a Malmquist-type index. Therefore, it is necessary to develop 

a new model to estimate the Malmquist-type indices under stochastic noise. 
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  The secondary objective is to demonstrate the advantages of the proposed methods on 

empirical applications. Specifically, two types of decision-makers are considered: 

securities companies and regional banks. Considering both DEA and StoNED are 

methods for decision making, the policy implications of the empirical results are also 

discussed, respectively.  

 

 

1.4 Outline of chapters 

 

The summaries of the remaining chapters are provided below. 

  Chapter 2 provides the general theoretical background required for efficiency and 

productivity analysis. It begins by introducing the structure of multi-input and multi-

output production technology. Some notable properties of production technology are 

illustrated in detail. Attention then moves to the concepts of efficiency and productivity. 

I outline a variety of efficiency measures and the definition of the Malmquist index, which 

is dealt with within the following chapters. Eventually, I introduce the main 

nonparametric techniques for analyzing efficiency and productivity.  

  Chapter 3 is devoted to the productivity analysis with consideration for allocative 

efficiency. The methodology is established on a value-based measure with due 

considerations to the imprecise price and the heterogeneity in physical inputs and physical 

outputs. In what follows, a new scheme of allocative efficiency in terms of profit-ratio 

maximization is firstly proposed. I show how this can be incorporated into a DEA model 

theoretically. A profit-ratio change index is developed correspondingly, which can be 

applied to panel data to measure productivity change and suitable for situations when 

producers desire to maximize revenue and minimize expenses simultaneously. To identify 

the drivers of changes in a profit-ratio change index, the index is further decomposed into 

profit-ratio efficiency change and change of profit-ratio boundary. An alternative 

decomposition of the profit-ratio change index is also proposed, which is the product of 

the Malmquist input-oriented productivity index and an allocation Malmquist 

productivity index. 

  Chapter 4 demonstrates the methodology in Chapter 3 by considering a sample of 37 
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Japanese securities companies observed from 2011 to 2015. To derive valuable 

information for organization management, the observed securities companies are 

categorized into six different groups based on their technical and allocative performance. 

Through such a categorization, the empirical results revealed the strengths and 

weaknesses of Japanese securities companies and identified the potential opportunities to 

improve current operations and management. 

  Chapter 5 is concerned with productivity analysis under a stochastic setting. 

Considering the presence of random noise in empirical data, a panel-data StoNED model 

is introduced for estimating the production technology in terms of the directional distance 

function. By virtue of using panel data, the inefficiency can be estimated consistently 

based on the residuals of the CNLS problem. The problem of using CNLS is that the 

intertemporal efficiency for constructing Malmquist-type indices cannot be assessed 

directly. To solve this issue, an estimator of the directional distance function is developed 

for analyzing the intertemporal efficiency. It is further extended to the estimation of 

Malmquist-type indices. A major feature of this approach is that it measures productivity 

changes over time while capturing both inefficiency and noise in a nonparametric 

multiple-input multiple-output setting. 

  Chapter 6 investigates the productive performance of a sample of 101 Japanese 

regional banks over two periods by applying the methodology developed in Chapter 5. 

To investigate the drivers of productivity change, the proposed Malmquist index is 

decomposed into components of efficiency change and technical change. The policy 

implications of the empirical results are also discussed. 

  Chapter 7 provides a further productivity analysis for the sample of 37 Japanese 

securities companies observed from 2011 to 2015. Considering the significant changes in 

business management that appeared in the Japanese securities industry around the year 

2013, the methodology developed in Chapter 5 is adopted to estimate the productivity 

changes between the analyzing periods 2011-2013 and 2013-2015. Notably, I investigate 

the extent to which the outlier affects the estimation of inefficiency. I further discuss the 

policy implications of the estimated Malmquist index and examine the main drivers of 

productivity growth. 

  Chapter 8 concludes the whole thesis and provides several directions for future research.  
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Chapter 2 

Theoretical background 

 

 

 

2.1 Introduction 

 

The objective of this chapter is to provide the necessary theoretical underpinnings for 

analyzing efficiency and productivity. Section 2.2 introduces the structure and some 

notable properties of production technology where multiple inputs are used to produce 

multiple outputs. Based on the production technology, efficiency and productivity are 

then described in Sections 2.3 and 2.4, respectively. Section 2.3 covers classical efficiency 

concepts, including the input-oriented, the output-oriented, and the graph measure of 

technical efficiencies, as well as more advanced concepts like the directional measure of 

inefficiency, the profit-ratio efficiency, and the allocative efficiency regarding the profit-

ratio maximization. Section 2.4 is concerned with the measurement of productivity in 

terms of Malmquist-type indices. Attention then moves to the methods for analyzing 

efficiency and productivity. Section 2.5 summarized the basics of two nonparametric 

techniques: Data Envelopment Analysis (DEA) and Stochastic Nonparametric 

Envelopment of Data (StoNED). Section 2.6 concludes this chapter. 

 

 

2.2 Production technology 

 

All production processes are considered as a transformation of inputs into outputs. 

Production technology is a mathematical description of this transformation relationship 

and can be represented with either sets or functions. The choice of which depends on the 

analytical approaches and the purposes of productivity analysis. Especially, in 
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productivity literature on nonparametric approaches (e.g., DEA), the production 

technology is almost represented with sets, while in those on parametric approaches (e.g., 

SFA), some specific production functions with unknown parameters are commonly used 

which include the Cobb-Douglas, the translog, and the generalized production function. 

However, it is worth noting that in some specific situations involving multiple outputs, 

distance functions are also useful as alternative functional representations of the 

production technology and can be handled with either nonparametric or parametric 

approaches. In what follows, I first consider the representation of the sets due to the 

purpose of modeling the production technology in a nonparametric approach. Alternative 

functional representations using distance functions will also be considered. 

Denote 𝑥 ∈ 𝑅+
𝑚 a nonnegative vector of inputs and 𝑦 ∈ 𝑅+

𝑠  a nonnegative vector of 

outputs. The production technology defined with production possibility set is given by 

 𝑇 = {(𝑥, 𝑦) ∈ 𝑅+
𝑚+𝑠: 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦}. (2.1) 

Note that both the inputs and outputs in Eq. (2.1) are quantities without any random noise, 

and at this point, I do not account for any price information or assume any particular 

behavior such as cost minimization, revenue maximization, or other economic behaviors. 

Set 𝑇  contains all technologically feasible combinations of input-output vectors, and 

thus it is also termed the graph of production technology. The thesis assumes 𝑇 satisfies 

the following standard axioms (e.g., Shephard [15]; Färe and Primont [16]):  

A.1.  Boundedness. 

A.2.  Closed set. 

A.3.  Convexity: If (𝑥, 𝑦) ∈ 𝑇  and (𝑥′, 𝑦′) ∈ 𝑇 , then (𝜆𝑥 + (1 − 𝜆)𝑥′, 𝜆𝑦 + (1 −

𝜆)𝑦′) ∈ 𝑇 for all 𝜆 ∈ [0,1]. 

A.4.  No free lunch: If 𝑦 > 0 and (𝑥, 𝑦) ∈ 𝑇, then 𝑥 > 0. 

A.5.  Free (or strong) disposability of inputs and outputs: If (𝑥, 𝑦) ∈ 𝑇, then (𝑥′, 𝑦′) ∈

𝑇 for (𝑥, −𝑦) ≤ (𝑥′, −𝑦′).  

The above axioms are assumed to hold throughout this thesis. However, further 

assumptions such as returns to scale will be discussed as required. A.1, along with A.2, 

guarantees the existence of production frontier (the boundary of the production 

technology) which gives the maximum possible outputs that can be produced from the 

given level of inputs or, equivalently, the minimum possible inputs required for any given 
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level of outputs. For example, if a production process only has a single output or an 

obtainable aggregate output of multiple outputs to be produced (e.g., 𝑠 = 1), then the 

production frontier can be defined by using the function 𝑔(𝑥) = max {𝑦: (𝑥, 𝑦) ∈ 𝑇}. A.3 

says any convex combination of two feasible production activities also belongs to the 

production technology. This axiom is one of the standard theoretical axioms of production 

theory in microeconomics (see [2–5]). For example, in the case of 𝑠 = 1, A.3 implies a 

diminishing marginal rate of (technical) substitution. A.4 says positive outputs can always 

be produced by positive inputs. A.5 imposes the monotonicity of inputs and outputs. 

Specifically, it ensures that the production technology is monotonically increasing in 

inputs and monotonically decreasing in outputs. Figure 2.1 illustrates the production 

technology imposed with A.1~A.5 in the case of a single input and a single output. 

 

 

Figure 2.1 Illustration of production technology with a single input and single output 

 

It is worth noting that A.5 can be relaxed under some specific situations. For example, 

one can impose the weak disposability of inputs and outputs in the sense that the 

underlying production technology is expected to be radially increasing in inputs and 

radially decreasing in outputs: (𝑥, 𝑦) ∈ 𝑇 ⇒ (𝑥, 𝑦) ∈ 𝑇  for 𝜆 ≥ 1  and (𝑥, 𝑦) ∈ 𝑇 ⇒

(𝑥, 𝜆𝑦) ∈ 𝑇  for 0 ≤ 𝜆 ≤ 1 . Obviously, the strong disposability implies the weak 

disposability, however, the converse does not hold. In other words, the strong 
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disposability allows the situation where inputs can be increased without decreasing any 

output, and also the situation where outputs can be decreased without increasing any input. 

By contrast, the weak disposability indicates that any increase in inputs or decrease in 

outputs comes at the cost of decreasing outputs or increasing inputs. Throughout the thesis, 

the strong disposability is assumed due to the following considerations: First, strong 

disposability allows for non-radial efficiency improvements, which will be considered in 

upcoming sections. Second, strong disposability is a sufficient condition (see, e.g., Färe 

et al. [17]) for the functional representation of production technology based on the 

directional distance function (DDF). Further details on DDF will be discussed in Chapter 

5.   

 

 

2.3 Efficiency 

 

Recall that the production possibility set contains all technologically feasible 

combinations of input-output vectors. This implicitly says that producers may operate 

below or on the production frontier. Generally, if an input-output combination (𝑥𝐴, 𝑦𝐴) ∈

𝑇 is on the production frontier, the production activity is labeled technically efficient (or, 

(𝑥𝐴, 𝑦𝐴) ∈ 𝑇 is weakly efficient if there remains slack in inputs or outputs) in the sense 

that decreasing any input or increasing any output is not possible without increasing any 

other input or decreasing any other output [18]. In contrast, production activity is 

technically inefficient if producers operate below the production frontier. Clearly, the 

concept of “efficiency” provides a relative comparison for all feasible input-output 

combinations, that is, efficiency means the extent to which each production activity 

differs from those that appeared on the production frontier. More straightforwardly, 

efficiencies are evaluated by comparing a production activity to the production frontier 

(or, more precisely, to the estimated production frontier (best practices) derived from the 

observations). Mathematically, efficiencies are generally expressed in either ratio or 

difference form. Both of these can be further discussed in radial and non-radial measures, 

depending on the purpose of efficiency analysis. The interest of radial measures is mainly 

on the achievement of the maximum equally proportional contraction in all inputs or the 
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maximum equally proportional expansion of all outputs, while the non-radial measures 

allow for the situation where inputs and outputs are not changed by the same proportion. 

No matter which measure is used, however, it is essential to consider an economic 

hypothesis: returns to scale. This is because the concept of returns to scale provides a 

characterization of the shape of the underlying production technology (i.e., a reasonable 

identification of returns to scale leads to a reasonable characterization of efficient 

production activities). For example, if there is not enough evidence to prove that the 

differences of operating scales among evaluated production activities relate directly with 

economies of scale, then it may be reasonable to consider that the underlying production 

technology exhibits constant returns to scale (CRS, that is, any feasible input-output 

combination can arbitrarily be scaled up or down; i.e., 𝑇 = 𝑘𝑇, 𝑘 > 0), and the efficient 

production activities are of the most productive scale size [19]. Further details of returns 

to scale will be discussed as required. Our focus in evaluating efficiencies is on the 

following: 

 

(a) The input-oriented technical efficiency (𝑇𝐸𝐼): 𝑇𝐸𝐼 is a radial measure that attempts 

to minimize inputs while producing at least the given outputs [1,20], which is defined 

as 

 𝑇𝐸𝐼 = inf
𝛾

{𝛾: (𝛾𝑥, 𝑦) ∈ 𝑇, 0 < 𝛾 ≤ 1}, (2.2) 

where the superscript “𝐼” denotes the input orientation.  

 

(b) The output-oriented technical efficiency (𝑇𝐸𝑂 ): 𝑇𝐸𝑂  is also a radial measure 

whose objective is to maximize outputs while using no more than the observed level 

of any input [1,20], which is defined as 

 𝑇𝐸𝑂 = sup
𝜔

{𝜔: (𝑥, 𝜔𝑦) ∈ 𝑇, 𝜔 ≥ 1}, (2.3) 

where the superscript “𝑂” denotes the output orientation. 

 

(c) The graph measure of technical efficiency (𝑇𝐸𝐺𝑅): 𝑇𝐸𝐺𝑅 is simultaneously both a 

radial input contraction and radial output expansion. Different from 𝑇𝐸𝐼 and 𝑇𝐸𝑂, 

this measure follows a hyperbolic path to the production frontier and thus is also 

termed “graph hyperbolic measure” [21,22]. Formally, 𝑇𝐸𝐺𝑅  is defined as 
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 𝑇𝐸𝐺𝑅 = inf
𝜃

{𝜃: (𝜃𝑥, 𝜃−1𝑦) ∈ 𝑇, 0 < 𝜃 ≤ 1}, (2.4) 

where the superscript “𝐺𝑅” stands for graph hyperbolic measure. 

The above measures are of ratio forms and can be simply grouped into radial measures. 

Let now 𝑇𝐸𝐼 = 𝛾∗, 𝑇𝐸𝑂 = 𝜔∗, and 𝑇𝐸𝐺𝑅 = 𝜃∗, we can illustrate their differences by 

using Figure 2.2. 

 

 

Figure 2.2 Input-oriented, output-oriented, and graph measure of technical 

efficiencies. 

 

Measures (a) and (b) were first proposed by Debreu [23] and Farrell [20], and thus also 

referred to as “Farrell efficiencies” or “Debreu-Farrell measures of technical efficiency.” 

These measures have been proved to be the inverse of the Shephard distance functions, 

which are given as 

 𝐷𝐼(𝑥, 𝑦) = sup
𝜙

{𝜙: (𝑥 𝜙⁄ , 𝑦) ∈ 𝑇, 𝜙 > 0} = 1/𝑇𝐸𝐼 , (2.5) 

 𝐷𝑂(𝑥, 𝑦) = inf
φ

{𝜑: (𝑥, 𝑦 𝜑⁄ ) ∈ 𝑇, 𝜑 > 0} = 1 𝑇𝐸𝑂⁄ . (2.6) 

Note that 𝐷𝐼(𝑥, 𝑦)  and 𝐷𝑂(𝑥, 𝑦)  are termed input distance function and output 

distance function, respectively (see, e.g., Färe and Primont [16]). As a more generalized 

approach of both Farrell efficiencies and Shephard distance functions, the directional 

distance function (DDF), which was proposed by Chambers et al. [24], can also be used 
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to evaluate efficiencies: 

𝐷⃗⃗ (𝑥, 𝑦, 𝑔, ℎ) = sup
𝜂

{𝜂: (𝑥 − 𝜂𝑔, 𝑦 + 𝜂ℎ) ∈ 𝑇}  with (𝑔, ℎ) ∈ 𝑅+
𝑚+𝑠. (2.7) 

This function simply measures how far a given input-output combination (𝑥, 𝑦) can be 

projected onto the production frontier along with some given direction (𝑔, ℎ). It has been 

shown that either Farrell efficiencies or Shephard distance functions are, in principle, 

special cases of the directional distance function [25]. Specifically, 𝐷⃗⃗ (𝑥, 𝑦, 𝑔, ℎ) = 1 −

1 𝐷𝐼(𝑥, 𝑦)⁄ = 1 − 𝑇𝐸𝐼  if we specify the direction vector as (𝑔, ℎ) = (𝑥, 0)  and 

𝐷⃗⃗ (𝑥, 𝑦, 𝑔, ℎ) = 1 𝐷𝑂(𝑥, 𝑦)⁄ − 1 = 𝑇𝐸𝑂 − 1  if (𝑔, ℎ) = (0, 𝑦) . However, it is also 

straightforward to see that the directional distance function is not limited to the input or 

the output orientation. Just like the graph measure of technical efficiency in Eq. (2.4), the 

directional distance function in Eq. (2.7) combines the ideas of input and output 

orientation by examining to what extent the actual inputs and outputs can be 

simultaneously improved. A major difference between Eqs. (2.4) and (2.7) is that the 

directional distance function has an additive nature (difference form), which allows for 

the potential for non-radial efficiencies. 

 

(d) The directional measure of inefficiency (𝑢): 𝑢 is the distance quantified by scaling 

inputs and outputs to the production frontier in the direction vector (𝑔, ℎ) ∈ 𝑅+
𝑚+𝑠. 

Formally, 

 𝑢 = 𝐷⃗⃗ (𝑥, 𝑦, 𝑔, ℎ). (2.8) 

Figure 2.3 illustrates the relations of the inefficiency and some pre-assigned direction 

vector.  
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Figure 2.3 The directional measure of inefficiency. 

 

The observed production activities are points A, B, C, and D. It can be seen that with any 

arbitrary given direction vectors, points on the production frontier are obtained as 𝑢 =

𝜂∗ = 0 , which means no inefficiency (e.g., point A). Meanwhile, points under the 

production frontier are estimated with positive inefficiency, that is 𝑢 = 𝜂∗ > 0  (e.g., 

points B, C, and D). This relation was first explained by Chambers et al., [26] and can be 

formally described as 𝐷⃗⃗ (𝑥, 𝑦, 𝑔, ℎ) ≥ 0  if and only if (𝑥, 𝑦) ∈ 𝑇 . Moreover, this 

relation also indicates that the directional distance function provides a complete 

characterization of the production technology, which will be discussed further in Chapter 

4. 

  So far, no assumptions have been made about the behavioral objectives such as cost 

minimization, revenue maximization, and profit maximization, among others. However, 

it is possible to account for such behavioral objectives in the framework of efficiency 

analysis. The thesis considers explicitly the production activities whose underlying 

behavioral objectives are the maximization of profit ratio. Note that the term “profit ratio” 

is consistent with the concept of “profitability” which is commonly defined as the ratio 

of revenue to expenses [27–30], or the criterion “return to the dollar” proposed by 

Georgescu-Roegen [31]. The assumption of profit-ratio maximization provides a 

possibility for analyzing the economic frontier (i.e., the profit-ratio boundary. See further 
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details in Chapter 3), which means it is possible to evaluate the profitability performance 

(e.g., profit-ratio efficiency) of the production activities if their maximum achievable 

profit ratio is obtainable. 

 

(e) The profit-ratio efficiency (𝑃𝐸): 𝑃𝐸 is a measure of the extent to which the actual 

profit ratio falls short of achieving the maximum profit ratio. Specifically, 

 𝑃𝐸 =
𝜋(𝑥, 𝑦)

𝜋(𝑥∗, 𝑦∗)
, (2.9) 

where 𝜋(∙) is a profit-ratio function that maximizes the ratio of revenue to expenses. 

(𝑥∗, 𝑦∗) ∈ 𝑇  are the input-output combinations on the profit-ratio boundary and thus 

𝜋(𝑥∗, 𝑦∗) represents the maximum profit ratio for the observed production activities.    

As for the production activities who consider profit-ratio maximization, they are 

responsible not only for picking a technically efficient point on the production frontier 

but also for picking the right one to maximize the profit ratio. The latter is associated with 

allocative efficiency. 

 

(f) The allocative efficiency regarding profit-ratio maximization (𝐴𝐸): 𝐴𝐸 identifies 

the wrong mix in input-spending and output-earnings. If there is no wrong mix in 

both input-spending and output-earnings, the technically efficient point is the same 

one with the maximum profit ratio. 

Note that the commonly used definition of allocative efficiency identifies the existence 

of the wrong mix in physical inputs and physical outputs, given the exact price 

information [20,23]. However, considering that the inaccurate price information can 

distort measures of allocative efficiency [32], the allocative efficiency is evaluated in a 

value-based technology in Chapter 3. In the case that one uses the data on volumes and 

prices of inputs and outputs to calculate the input-spending and output-earnings, the 

allocative efficiency identifies the wrong mix in input-spending and output-earnings 

rather than in the physical inputs and physical outputs. The concept of allocative 

efficiency will be further considered in Chapter 3. 
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2.4 Productivity 

 

As explained in Section 2.3, the concept of “efficiency” provides a relative comparison 

for all production activities. Besides efficiency, another concept termed “productivity” 

can also be used to compare the performance of production activities at a given point of 

time. Although efficiency and productivity are closely related to each other, they are 

fundamentally different concepts. If the production process only involves a single input 

and a single output, then productivity can be simply defined as the ratio of the output to 

the input (i.e., output per unit of input), and sometimes is referred to as partial 

productivity. In contrast to partial productivity, the measurement of productivity becomes 

more complicated in a multiple-input and multiple-output production technology because 

aggregation of inputs and outputs is required for the construction of productivity. Note 

that the ratio of aggregate output to aggregate input is also called total factor productivity. 

Generally, the concept of productivity is related to the efficiency in the following sense: 

If the underlying production technology exhibits constant returns to scale, then all of the 

efficient production activities have the same score of productivity. However, this is not 

always true when decreasing or increasing returns to scale is appropriate. For example, if 

the underlying production technology exhibits decreasing returns to scale, then the score 

of productivity for the efficient production activities declines as more and more of the 

input is used. In other words, a production activity may be technically efficient but may 

still be able to improve its productivity by scale improvements. 

  Thus far, productivity has been considered at a given point of time. If panel data is 

available, then it is possible to examine the changes in productivity over time. For 

instance, the analysis of “productivity change” can be useful to examine the impact of 

policy or management decisions over a long period. It is also possible to examine the 

drivers of productivity change. That is, one can examine whether the productivity growth 

was driven by efficiency improvements, or whether it was driven by scale improvements, 

or by technological improvements (i.e., there is an upward shift in the production 

technology). The thesis focuses on the Malmquist index [33] for measuring productivity 

change over time. Since the Malmquist index was first introduced in productivity 

literature by Caves et al. [34], there has been a great deal of interest in empirical studies 
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quantifying productivity change. Consider two periods 𝑡 and 𝑡 + 1, respectively. The 

input-oriented Malmquist index at period 𝑡 is given as 

 𝑀𝑡 =
𝐷𝑡(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡(𝑥𝑡, 𝑦𝑡)
, (2.10) 

where 𝐷(∙) is the input distance function defined in Eq. (2.5). Note that the superscript 

“𝐼” is dropped for simplicity (e.g., 𝐷𝐼,𝑡(𝑥𝑡, 𝑦𝑡)). This index compares two input-output 

combinations, (𝑥𝑡, 𝑦𝑡) and (𝑥𝑡+1, 𝑦𝑡+1), to a reference production technology at period 

𝑡. Similarly, a comparison at period 𝑡 + 1 is 

 𝑀𝑡+1 =
𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡+1(𝑥𝑡, 𝑦𝑡)
. (2.11) 

To avoid an arbitrary choice of a reference production technology, the input-oriented 

Malmquist index can be conveniently defined as the geometric mean of both the 𝑀𝑡 and 

𝑀𝑡+1. Formally, 

 𝑀 = [
𝐷𝑡(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡(𝑥𝑡, 𝑦𝑡)
×

𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡+1(𝑥𝑡, 𝑦𝑡)
]

1
2

. (2.12) 

Here, the terms 𝐷𝑡(𝑥𝑡, 𝑦𝑡) and 𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1) are the measurements within the same 

period, while the terms 𝐷𝑡(𝑥𝑡+1, 𝑦𝑡+1)  and 𝐷𝑡+1(𝑥𝑡, 𝑦𝑡)  are the intertemporal 

comparisons. As a consequence, 𝑀 measures the productivity change between periods 

𝑡 and 𝑡 + 1. If 𝑀 is greater, equal, or smaller than unity, the productivity shows, on 

average, decline, stagnation, or growth between periods 𝑡 and 𝑡 + 1. 

In recent years, the decomposition of productivity change into a technical efficiency 

change component and a technical change component using the Malmquist index has 

been widely used. The above definition of the input-oriented Malmquist index can be 

decomposed as follows: 

𝑀 =
𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡(𝑥𝑡, 𝑦𝑡)
× [

𝐷𝑡(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)
×

𝐷𝑡(𝑥𝑡, 𝑦𝑡)

𝐷𝑡+1(𝑥𝑡, 𝑦𝑡)
]

1/2

. (2.13) 

The component outside the square brackets in Eq. (2.13) captures technical efficiency 

change (or Catch-up) between periods 𝑡  and 𝑡 + 1 , while the component inside the 

square brackets measures the shift of production frontier (technical change, or frontier 

shift, innovation) over time. In general, for both component indices in Eq. (2.13), more 

than 1 indicates regress, while equal to 1 and less than 1 show the status quo and progress, 
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respectively. Figure 2.4 illustrates the input-oriented Malmquist index and its component 

indices with a single input and single output production technology, 

 

Figure 2.4 The concept of input-oriented Malmquist index. 

 

It is worth noting that in Fig. 2.4, the constant returns to scale is implicitly assumed. It 

has been shown that a Malmquist index may not correctly measure productivity change 

when variable returns to scale (VRS) is assumed [35–37]. In Fig. 2.4, point A and point 

B are the same production activity obtained at period 𝑡  and 𝑡 + 1 , respectively. The 

efficiency change is then expressed as (𝐻𝐹/𝐻𝐺)/ (𝐷𝐴/𝐷𝐵), and the technical change 

is [(𝐻𝐹/𝐻𝐸)/(𝐻𝐹/𝐻𝐺) × (𝐷𝐴/𝐷𝐵)/(𝐷𝐴/𝐷𝐶)]1/2 , which can be simplified as 

[(𝐻𝐺/𝐻𝐸) × (𝐷𝐶/𝐷𝐵)]1/2. 

  On the other hand, as argued by Maniadakis et al. [38], the Malmquist index may not 

give a full picture of the source of productivity change since the impact of allocative 

efficiency change is not incorporated. However, given the purpose of profit-ratio 

maximization, it is possible to measure the Malmquist-type indices with consideration for 

allocative efficiency. In this thesis, a profit-ratio change index is also proposed, which 

can be applied to panel data to measure productivity growth and suitable for situations 

when producers desire to maximize revenue and minimize expenses simultaneously. 

Further details will be discussed in Chapter 3. 
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2.5 Nonparametric techniques for efficiency and productivity 

analysis 

 

Both the concepts of efficiency and productivity are established based on unknown 

production technology. Thus, the mathematical formulation of the production technology 

becomes a key issue for measuring efficiency and productivity. As mentioned in Chapter 

1, this thesis focuses on two nonparametric techniques, that is, Data Envelopment 

Analysis (DEA) and Stochastic Nonparametric Envelopment of Data (StoNED). This 

section covers the basics and some additional material on DEA and StoNED. 

  In general, DEA integrates two general stages of a) formulating linear programming 

models for constructing a piecewise linear production technology, and b) gauging the 

efficiency of each production activity (i.e., Decision-Making Units, DMUs) relative to 

the estimated production frontier. Recall that our production process transforms 𝑚 

inputs to 𝑠 outputs. Suppose we observe the activities of 𝑛 producers indexed by 𝑗, 

𝑗 = 1,… , 𝑛 . Assuming the underlying production technology 𝑇  satisfies A.1-A.5 in 

Section 2.2, a DEA representation of the production technology under constant returns to 

scale (CRS) is then formulated as 

 

𝑇𝐷𝐸𝐴 = {(𝑥, 𝑦) ∈ 𝑅+
𝑚+𝑠: 𝑥𝑖 ≥ ∑𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

, 𝑖 = 1, … ,𝑚,

𝑦𝑟 ≤ ∑𝜆𝑗𝑦𝑟𝑗

𝑛

𝑗=1

, 𝑟 = 1,… , 𝑠, 𝜆𝑗 ≥ 0}, 

(2.14) 

where 𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛 is an intensity variable that enables us to scale up or down the 

observed input-output combinations (i.e., the observed production activities) to construct 

unobserved but feasible input-output combinations (i.e., the unobserved feasible 

production activities). Therefore, ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 (𝑖 = 1,… ,𝑚)  and ∑ 𝜆𝑗𝑦𝑟𝑗

𝑛
𝑗=1 (𝑟 =

1, … , 𝑠) are referred to as feasible inputs and outputs of virtual production activity. It is 

worth noting that ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 (𝑖 = 1,… ,𝑚)  and ∑ 𝜆𝑗𝑦𝑟𝑗

𝑛
𝑗=1 (𝑟 = 1,… , 𝑠)  are the 

convex combination of observed inputs and outputs, respectively. That is if we set 𝑘𝜆𝑗
′ =

𝜆𝑗 , 𝑘 > 0 , then we have ∑ 𝜆𝑗
′𝑥𝑖𝑗

𝑛
𝑗=1 (𝑖 = 1,… ,𝑚)  and ∑ 𝜆𝑗

′𝑦𝑟𝑗
𝑛
𝑗=1 (𝑟 = 1,… , 𝑠)  where 
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∑ 𝜆𝑗
′𝑛

𝑗=1 = 1 . In other words, virtual production activity is a convex combination of 

observed production activities. It is now clear that Eq. (2.14) implicitly assumes 𝑇 =

𝑘𝑇, 𝑘 > 0 for the underlying production technology 𝑇, which implies constant returns 

to scale (see, Section 2.3). It is also possible to impose different assumptions on returns 

to scale such as non-increasing, non-decreasing, and variable returns to scale by adding 

the convexity constraints ∑ 𝜆𝑗
𝑛
𝑗=1 ≤ 1 , ∑ 𝜆𝑗

𝑛
𝑗=1 ≥ 1 , and ∑ 𝜆𝑗

𝑛
𝑗=1 = 1 , respectively. 

Further, Eq. (2.14) requires each producer to use at least one positive input to produce at 

least one positive output (such production activities are also referred to as semi-positive 

input-output combinations).  

  Note that Eq. (2.14) satisfies the minimum extrapolation principle, which implies 

𝑇𝐷𝐸𝐴 is the smallest set that contains all observed production activities and meanwhile 

satisfies A.1 to A.5 and CRS. From the perspective of efficiency or productivity analysis, 

𝑇𝐷𝐸𝐴 provides a performance standard for all observed production activities in the sense 

that any production activity not on the estimated production frontier (i.e., the boundary 

of 𝑇𝐷𝐸𝐴 ) can be scaled against a convex combination of the observed production 

activities on a subset of the estimated production frontier. Here, a simple model of DEA 

is introduced for measuring the input-oriented technical efficiency (i.e., 𝑇𝐸𝐼). 

 

𝛾∗ = min
𝛾,𝜆

𝛾 

𝑠. 𝑡. 

∑𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝛾𝑥𝑖𝑜 , 𝑖 = 1,… ,𝑚; 

∑𝜆𝑗𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝑦𝑟𝑜, 𝑟 = 1,… , 𝑠; 

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛, 

(2.15) 

where the subscript “𝑜” represents the production activity (observation) under evaluation. 

Since 𝛾 = 1, 𝜆𝑜 = 1, 𝜆𝑗 = 0 (𝑗 ≠ 𝑜) is a feasible solution to Eq. (2.15), the optimal 

solution denoted by 𝜃∗ is less than or equal to 1. On the other hand, the second constraint 

ensures that any 𝜆𝑗 is positive due to the assumption of semi-positive data. Hence, the 

first constraint implies 𝜃∗ is greater than 0. Putting this all together, we have 0 < 𝜃∗ ≤

1 . Therefore, Eq. (2.15) is consistent with the definition of input-oriented technical 
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efficiency in Eq. (2.2). Moreover, in the literature of DEA, Eq. (2.15) is also called the 

input-oriented CCR model (see, Charnes, Cooper, and Rhodes [1]). If 𝜃∗ = 1 , the 

evaluated production activity is on the estimated production frontier in the sense that the 

current level of inputs cannot be proportionally reduced. Otherwise, the evaluated 

production activity is underneath the estimated production frontier because 0 < 𝜃∗ < 1 

indicates the current level of inputs can be proportionally reduced by a positive rate. 

Recall the concepts of efficiency described in Section 2.3. If we ignore the existence of 

slacks, observed production activity is evaluated to be technically efficient if 𝜃∗ = 1 and 

to be technically inefficient if 0 < 𝜃∗ < 1. 

  The data generating process suggested by DEA implies that any deviation from the 

production frontier can be considered as an expression of inefficiency. Hence, the 

efficiency resulted from the DEA models is sensitive to mismeasurement or outliers. To 

address this issue, the thesis considers a stochastic nonparametric approach such as 

StoNED in which the data generating process assumes the deviations are the results of 

both inefficiency and noise. Similar to DEA, StoNED is a unified framework that 

combines a) the stochastic nonparametric estimation of an unknown production frontier 

and b) the efficiency analysis for each observed production activity.  

To interpret the basic concepts of StoNED, a simple case is considered where the 

production process involves multiple inputs 𝑥 ∈ 𝑅+
𝑚  and a single output 𝑦 ∈ 𝑅+ . 

Suppose we observe the activities of 𝑛 producers indexed by 𝑗, 𝑗 = 1,… , 𝑛. Instead of 

a set representation of production technology, an unknown production function 𝑓: 𝑅+
𝑚 →

𝑅+ is introduced, which gives the maximum possible output that can be produced from 

the given level of inputs. The statistical model for estimating the unknown 𝑓 is formally 

given as 

 𝑦𝑗 = 𝑓(𝑥𝑖𝑗) + 𝜀𝑗 , 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, (2.16) 

where 𝜀𝑗 = 𝑣𝑗 − 𝑢𝑗 is a composite error term that consists of the stochastic noise term 

𝑣𝑗  and the nonnegative inefficiency term 𝑢𝑗 . Specifically, the following assumptions are 

made for Eq. (2.16): 

S.1. The stochastic noise terms 𝑣𝑗  have an unknown symmetrical distribution with a zero 

mean and a finite variance 𝜎𝑣
2 < ∞. 

S.2. The nonnegative inefficiency terms 𝑢𝑗 ≥ 0  have an unknown asymmetric 
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distribution with a positive expected value 𝜇 > 0 and a finite variance 𝜎𝑢
2 < ∞.  

S.3. Terms 𝑣𝑗  and 𝑢𝑗  and hence 𝜀𝑗, (𝑗 = 1, … , 𝑛) are homoscedastic (i.e., 𝜎𝑣
2 and 𝜎𝑢

2 

are constant across all observed production activities) and statistically independent 

of each other (i.e., 𝜎𝜀
2 = 𝜎𝑣

2 + 𝜎𝑢
2). 

S.4. Terms 𝑣𝑗   and 𝑢𝑗   and hence 𝜀𝑗, (𝑗 = 1, … , 𝑛)  are statistically independent of 

inputs 𝑥𝑖𝑗 , (𝑗 = 1,… , 𝑛). 

  In the StoNED framework, the unknown production function 𝑓  is estimated with 

convex nonparametric least squares (CNLS), which is a nonparametric regression 

technique proposed by Kuosmanen [14]. However, due to the above assumptions, the 

expected value of the composite error term becomes 𝐸(𝜀𝑗) = −𝐸(𝑢𝑗) = −𝜇 < 0. Thus, 

applying the least squares estimation to Eq. (2.16) violates the Gauss-Markov properties. 

This issue can be resolved by rephrasing the model as 𝑦𝑗 = [𝑓(𝑥𝑖𝑗) − 𝜇] + [𝜀𝑗 + 𝜇], 𝑖 =

1, … ,𝑚, 𝑗 = 1,… , 𝑛. The shape of the unknown production frontier is then estimated by 

the following convex nonparametric least squares (CNLS) problem: 

 

min
𝛼,𝛽,𝜀

∑(𝜀𝑗
𝐶𝑁𝐿𝑆)

2
𝑛

𝑗=1

 

𝑠. 𝑡. 

𝑦𝑗 = 𝛼𝑗 + ∑𝛽𝑖𝑗𝑥𝑖𝑗

𝑚

𝑖=1

 + 𝜀𝑗
𝐶𝑁𝐿𝑆, ∀𝑗 = 1, … , 𝑛, 

𝛼𝑗 + ∑𝛽𝑖𝑗𝑥𝑖𝑗

𝑚

𝑖=1

≤ 𝛼𝑧 + ∑𝛽𝑖𝑧𝑥𝑖𝑧

𝑚

𝑖=1

, ∀𝑧, 𝑗 = 1, … , 𝑛, 

𝛽𝑖𝑗 ≥ 0, ∀𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, 

(2.17) 

where 𝜀𝑗
𝐶𝑁𝐿𝑆 is an estimator of 𝜀𝑗 + 𝜇. Consistency of this estimator is proved by Seijo 

et al. [39] and Lim and Glynn [40]. The first constraint contains a set of linear regression 

equations where parameters 𝛼𝑗  and 𝛽𝑖𝑗  define tangent hyperplanes to an unknown 

function ℎ(𝑥𝑖𝑗) = 𝑓(𝑥𝑖𝑗) − 𝜇 . Note that 𝛼𝑗  and 𝛽𝑖𝑗  are specific to each production 

activity, and thus there are 𝑛 different hyperplanes used for characterizing the unknown 

function. The second constraint imposes concavity by applying Afrait inequalities (see 

Afrait [41]). The Afrait inequalities ensure all hyperplanes not associated with 𝑗 must be 

above 𝑗  s hyperplane. The last constraint imposes the monotonicity for the unknown 
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function. Based on the solutions to Eq. (2.17), it is possible to apply the minimum 

extrapolation principle (e.g., Eq. (2.14)) to estimate the smallest function ℎ(𝑥𝑖𝑗) =

𝑓(𝑥𝑖𝑗) − 𝜇 that envelops all observed production activities. If we further estimate the 

expected inefficiency 𝜇 from the solution 𝜀𝑗̂
𝐶𝑁𝐿𝑆, the unknown production function 𝑓 

can be then restored by adding the estimated expected inefficiency  𝜇̂ to the estimated 

function  ℎ̂𝐶𝑁𝐿𝑆(𝑥𝑖𝑗) as 𝑓(𝑥𝑖𝑗) = ℎ̂𝐶𝑁𝐿𝑆(𝑥𝑖𝑗) + 𝜇̂. 

  It is worth noting that gauging the distance from an observed production activity to the 

estimated production frontier cannot be interpreted as the inefficiency because all 

observations are subject to noise in the stochastic setting. In the cross-sectional setting, 

one may use the JLMS estimator [42] to estimate the conditional mean 𝐸(𝑢𝑗|𝜀𝑗)  by 

imposing further parametric assumptions for 𝑣𝑗  and 𝑢𝑗 . The JMLS estimator may be 

sufficient for the purpose of relative efficiency rankings. However, it cannot be used 

directly for further productivity analysis (e.g., the construction of the Malmquist index) 

since 𝐸(𝑢𝑗|𝜀𝑗) never approaches 𝑢𝑗  as the number of observations approaches infinity. 

To solve this issue, the use of the panel data is considered in a fully nonparametric setting. 

Further details will be discussed in Chapter 5. 

  

 

2.6 Concluding remarks 

 

The chapter provides the necessary materials for analyzing efficiency and productivity. 

Based on the multi-input and multi-output production technology, I described the 

concepts of efficiency and productivity. Since the primary theoretical approach of this 

thesis is based on the nonparametric techniques, I also summarized the basics of Data 

Envelopment Analysis (DEA) and Stochastic Nonparametric Envelopment of Data 

(StoNED). 
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Chapter 3  

Productivity changes regarding allocative efficiency 

 

 

3.1 Introduction 

 

The purpose of this chapter is to develop a new approach for measuring productivity 

change regarding profit-ratio maximization. Such performance analysis can be applied to 

profit-seeking organizations or industries where producers are both cost minimizers and 

revenue maximizers. A profit-ratio efficiency measure and Malmquist-type indices 

decompositions are also developed, which account for the contribution of allocative 

efficiency. The proposed approach is further extended to categorize observed production 

activities into six different groups based on their technical and allocative performance to 

derive valuable information for organization management. 

  In Chapter 2, I have introduced the theoretical basis of DEA. Using a DEA 

methodology, Färe et al. [43] developed a DEA-based Malmquist productivity index, 

which measures the productivity change between two periods and further applied it to 

empirical studies [44,45]. However, as argued by Maniadakis et al. [38]), the Malmquist 

index may not give a full picture of the source of productivity change since the impact of 

allocative efficiency change is not accounted for (see also Coelli et al. [46]). Maniadakis 

et al. [38] have developed a cost Malmquist productivity index applicable when producers 

are cost minimizers, and the firm-level input price data are available. Following the study 

of Maniadakis et al. [38], an allocation Malmquist productivity index with the underlying 

assumption of cost minimization is also proposed by Zhu et al. [47]. In this chapter, the 

purpose of profit-ratio maximization is considered when adopting a Malmquist-type index. 

The use of profit ratio is due to the following considerations: As noted by Georgescu-

Roegen [31], the ratio of revenue to expenses (i.e., profit ratio) is independent of the scale 

of production, and thus it can be considered as an appropriate performance criterion on 
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which to evaluate performance of activities of varying sizes. Furthermore, the use of profit 

ratio also simplifies the performance analysis even when some activities earn negative or 

zero profits, whereas the use of profit (which is commonly defined as the difference 

between revenue and expenses) may be problematic (Cooper et al. [48]).  

Instead of using quantity data described in Chapter 2, the efficiency measures and 

Malmquist-type indices are developed by using a value-based measure [49–51]. A 

distinctive feature of the value-based measure is the use of all feasible input-spending and 

output-earnings, and it requires no direct knowledge of prices. Even when the prices are 

observable in some situations, as pointed out by Camanho and Dyson [52], the input and 

output prices in real-life markets are not exogenously given but can depend on negotiation. 

Therefore, the efficiency measures based on the fixed price assumption in DEA may be 

of limited use. Also, as argued by Fukuyama and Weber [32], the price data used for 

analyzing the efficiencies of financial institutions are usually synthetically constructed, 

which means it can distort measures of allocative efficiency. Another reason for applying 

a value-based measure is because of the consideration of heterogeneity in physical inputs 

and physical outputs. As argued by Sahoo et al. [49], if inputs or outputs are 

heterogeneous, the construction of factor-based production technology set in DEA 

becomes problematic. Since the value-based measure considers the price information and 

has a common unit of both inputs and outputs, a value-based technology set is used. 

  The current chapter is organized as follows. Section 3.2 introduces the basic concepts 

and notations used for deriving the allocative efficiency in terms of profit-ratio 

maximization. Section 3.3 defines the profit-ratio change index. Section 3.4 presents the 

decompositions of the profit-ratio change index as well as its component indices. 

Concluding remarks are given in the last section. 
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3.2 Allocative efficiency regarding profit-ratio maximization 

 

This section is structured beginning with a description of a value-based technology and 

then presents the efficiency measures, which include the graph measure of technical 

efficiency, radial measures of technical efficiency, and profit ratio efficiency. Then I show 

how those efficiency measures can be used to derive the allocative efficiency regarding 

profit-ratio maximization. 

  Consider a set of 𝑛  observations on production activities. The input-spending and 

output-earnings vectors of each observation, the 𝑗th producer (𝑗 = 1,… , 𝑛), are denoted 

as 𝑥̅𝑗 = (𝑥̅1𝑗 , … , 𝑥̅𝑚𝑗)
′
∈ 𝑅+

𝑚  and 𝑦̅𝑗 = (𝑦̅1𝑗 , … , 𝑦̅𝑠𝑗)
′
∈ 𝑅+

𝑠  , respectively. The 

superscript “′ ” denotes the transpose of vectors. Assume that the input-spending and 

output-earnings vectors are measured in a common monetary unit (e.g., dollars, cents, or 

pounds). According to Sahoo et al. [49], the value-based technology can be represented 

as 

 𝑇𝑥̅,𝑦̅ = {(𝑥̅, 𝑦̅) ∈ 𝑅+
𝑚+𝑠: 𝑥̅ 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦̅}. (3.1) 

In contrast to the production possibility set 𝑇  defined in Eq. (2.1), 𝑇𝑥̅,𝑦̅  is a set that 

comprises all feasible input-spending and output-earnings vectors. That is, all inputs and 

outputs should be measured in monetary terms. Assuming A.1 to A.5 in Section 2.2, the 

DEA representation of 𝑇𝑥̅,𝑦̅ under constant returns to scale (CRS) is then given by 

 

𝑇𝑥̅,𝑦̅
𝐷𝐸𝐴 = {(𝑥̅, 𝑦̅) ∈ 𝑅+

𝑚+𝑠: 𝑥̅𝑖 ≥ ∑𝜆𝑗𝑥̅𝑖𝑗

𝑛

𝑗=1

, 𝑖 = 1,… ,𝑚,

𝑦̅𝑟 ≤ ∑𝜆𝑗𝑦̅𝑟𝑗

𝑛

𝑗=1

, 𝑟 = 1,… , 𝑠, 𝜆𝑗 ≥ 0}. 

(3.2) 

Relative to 𝑇𝑥̅,𝑦̅
𝐷𝐸𝐴 , the value-based measure of the input-oriented technical efficiency 

(𝑇𝐸𝐼), the output-oriented technical efficiency (𝑇𝐸𝑂), and the graph measure of technical 

efficiency (𝑇𝐸𝐺𝑅) are defined as 
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𝑇𝐸𝐼 = inf
𝛾

{𝛾: (𝛾𝑥̅, 𝑦̅) ∈ 𝑇𝑥̅,𝑦̅
𝐷𝐸𝐴, 0 < 𝛾 ≤ 1} , 

𝑇𝐸𝑂 = sup
𝜔

{𝜔: (𝑥̅, 𝜔𝑦̅) ∈ 𝑇𝑥̅,𝑦̅
𝐷𝐸𝐴, 𝜔 ≥ 1}, 

𝑇𝐸𝐺𝑅 = inf
𝜃

{𝜃: (𝜃𝑥̅, 𝜃−1𝑦̅) ∈ 𝑇𝑥̅,𝑦̅
𝐷𝐸𝐴, 0 < 𝜃 ≤ 1} 

(3.3) 

(3.4) 

(3.5) 

, respectively.  

The computational aspect of 𝑇𝐸𝐼 , 𝑇𝐸𝑂 , and 𝑇𝐸𝐺𝑅  are provided as follows. The 

graph measure of technical efficiency (𝑇𝐸𝐺𝑅) under CRS in Eq. (3.5) is calculated by the 

following programming problem [21,22]: 

 

𝜃∗ = min
𝜃,𝜆

𝜃 

𝑠. 𝑡. 

∑𝜆𝑗𝑥̅𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑥̅𝑖𝑜 , 𝑖 = 1,… ,𝑚; 

∑𝜆𝑗𝑦̅𝑟𝑗

𝑛

𝑗=1

≥ 𝜃−1𝑦̅𝑟𝑜, 𝑟 = 1,… , 𝑠; 

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛, 

(3.6) 

where 𝑥̅𝑖𝑜  and 𝑦̅𝑟𝑜  are the 𝑖 th input-spending and 𝑟 th output-earnings for the 

evaluated production activity, respectively. The program Eq. (3.6) can be transformed into 

the equivalent linear programming problem below, by imposing 𝛾 = 𝜃2 and 𝜇𝑗 = 𝜃𝜆𝑗: 

 

𝛾∗ = min
𝛾,𝜇

𝛾 

𝑠. 𝑡. 

∑𝜇𝑗𝑥̅𝑖𝑗

𝑛

𝑗=1

≤ 𝛾𝑥̅𝑖𝑜 , 𝑖 = 1,… ,𝑚; 

∑𝜇𝑗𝑦̅𝑟𝑗

𝑛

𝑗=1

≥ 𝑦̅𝑟𝑜 , 𝑟 = 1,… , 𝑠; 

𝜇𝑗 ≥ 0, 𝑗 = 1, …𝑛. 

(3.7) 

Note that the solution 𝛾∗  of Eq. (3.7) is equivalent to the input-oriented technical 

efficiency (𝑇𝐸𝐼 ) defined in Eq. (3.3). Therefore, under CRS, the square of the graph 

measure of technical efficiency is equal to the input-oriented technical efficiency. In 

addition, the input-oriented technical efficiency is equal to the reciprocal of output-
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oriented technical efficiency if and only if 𝑇𝑥̅,𝑦̅
𝐷𝐸𝐴  exhibits CRS [53,54]. Thus, the 

relations among 𝑇𝐸𝐼, 𝑇𝐸𝑂, and 𝑇𝐸𝐺𝑅 can be represented as follows: 

 (𝑇𝐸𝐺𝑅)2 = 𝑇𝐸𝐼 =
1

𝑇𝐸𝑂
 . (3.8) 

   

Consider the production activities whose underlying behavioral objectives are the 

maximization of profit ratio. The following function is used to calculate the maximum 

profit ratio for the observed production activities: 

 

𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ ) = sup
𝑥̅𝑖,𝑦̅𝑟,𝜆𝑗

{𝜋(𝑥̅𝑖, 𝑦̅𝑟) =
∑ 𝑦̅𝑟

𝑠
𝑟=1

∑ 𝑥̅𝑖
𝑚
𝑖=1

: 𝑥̅𝑖 = ∑𝜆𝑗𝑥̅𝑖𝑗

𝑛

𝑗=1

,

𝑦̅𝑟 = ∑𝜆𝑗𝑦̅𝑟𝑗

𝑛

𝑗=1

, 𝑥̅𝑖𝑜 , ≥ 𝑥̅𝑖 , 𝑦̅𝑟𝑜 ≤ 𝑦̅𝑟 , 𝜆𝑗 ≥ 0}, 

(3.9) 

where 𝜋(𝑥̅𝑖, 𝑦̅𝑟) = ∑ 𝑦̅𝑟
𝑠
𝑟=1 /∑ 𝑥̅𝑖

𝑚
𝑖=1  represents the profit-ratio function that maximizes 

the ratio of revenue to expenses, and (𝑥̅𝑖, 𝑦̅𝑟) ∈ 𝑇𝑥̅,𝑦̅
𝐷𝐸𝐴. This function ensures that, for the 

evaluated production activity, a specific level of maximum profit ratio can be observed 

relative to its input-spending and output-earnings. Note that Eq. (3.9) is a fractional 

programming problem. It can be transformed into the linear programming problem below, 

by introducing a positive scalar 𝜉 ∈ 𝑅++. 

 

∑𝑦̂𝑟𝑜
∗

𝑠

𝑟=1

= max
𝑥̂,𝑦̂,𝜆̂,𝜉

∑𝑦̂𝑟

𝑠

𝑟=1

 

𝑠. 𝑡. 

∑ 𝑥̂𝑖

𝑚

𝑖=1

= 1; 

𝜉𝑥̂𝑖𝑜 ≥ 𝑥̂𝑖 = ∑𝜆̂𝑗𝑥̅𝑖𝑗

𝑛

𝑗=1

, 𝑖 = 1,… ,𝑚; 

𝜉𝑦̂𝑖𝑜 ≤ 𝑦̂𝑟 = ∑𝜆̂𝑗𝑦̅𝑟𝑗

𝑛

𝑗=1

, 𝑟 = 1,… , 𝑠; 

𝜆̂𝑗 ≥ 0, 𝑗 = 1,… , 𝑛, 

(3.10) 

where 𝑥̂𝑖 = 𝜉𝑥̅𝑖, 𝑦̂𝑖 = 𝜉𝑦̅𝑟, 𝜆̂𝑗 = 𝜉𝜆𝑗, 𝜉 > 0. The relationship between the solution of 
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Eq. (3.9) and that of the program Eq. (3.10) is explained in Cooper et al. [48]: Let an 

optimal solution of the program Eq. (3.10) be (𝜉∗, 𝑥̂𝑖𝑜
∗ , 𝑦̂𝑟𝑜

∗ , 𝜆̂𝑗
∗) . Since 𝜉∗ > 0 , the 

optimal solution of Eq. (3.9) can be obtained from 𝑥̅𝑖𝑜
∗ = 𝑥̂𝑖𝑜

∗ /𝜉∗ , 𝑦̅𝑟𝑜
∗ = 𝑦̂𝑟𝑜

∗ /𝜉∗ , and 

𝜆𝑗
∗ = 𝜆̂𝑗

∗/𝜉∗. 

  Given the maximum profit ratio 𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ ), a profit-ratio boundary for the evaluated 

production activity is defined as follows: 

 𝐼𝑠𝑜 𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ ) = {(𝑥̅, 𝑦̅) ∈ 𝑅+
𝑚+𝑠:

∑ 𝑦̅𝑟
𝑠
𝑟=1

∑ 𝑥̅𝑖
𝑚
𝑖=1

= 𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ )}. (3.11) 

Eq. (3.11) contains input-spending and output-earnings vectors that are feasible at the 

level of the maximum profit ratio 𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ ). Similar to Eq. (2.9) in Chapter 2, the value-

based measure of profit-ratio efficiency is defined as 

 𝑃𝐸 =
𝜋(𝑥̅𝑖𝑜 , 𝑦̅𝑟𝑜)

𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ )
, (3.12) 

which is a measure of the extent to which the actual profit ratio expressed in the numerator, 

falls short of achieving the maximum profit ratio expressed in the denominator. Eq. (3.12) 

satisfies 0 < 𝑃𝐸 ≤ 1. 

 

  Moving on, the above efficiency measures can be related to the measure of allocative 

efficiency. For this, I show that the profit-ratio efficiency 𝑃𝐸 is less than or equal to the 

input-oriented technical efficiency 𝑇𝐸𝐼  (that is the square of the graph measure of 

technical efficiency 𝑇𝐸𝐺𝑅) in the following sense: 

 

Proposition: If 𝑇𝐸𝐺𝑅  and 𝑇𝐸𝐼  are obtained from the programs Eqs. (3.6) and (3.7), 

respectively, and 𝑃𝐸 is defined as Eq. (3.12), then for any evaluated production activity, 

 𝑃𝐸 ≤ (𝑇𝐸𝐺𝑅)2 = 𝑇𝐸𝐼 . (3.13) 

Proof. Let an optimal solution for the programs Eqs. (3.6) and (3.7) be (𝜃∗, 𝜆𝑗
∗)  and 

(𝛾∗, 𝜇𝑗
∗), respectively. Then, (𝜃∗𝑥̅𝑖𝑜 , 𝜃

∗−1
𝑦̅𝑟𝑜 , 𝜆𝑗

∗) is feasible for the program Eq. (3.10). 

Hence, it follows that ∑ 𝜃∗−1
𝑦̅𝑟𝑜

𝑠
𝑟=1 /∑ 𝜃∗𝑥̅𝑖𝑜

𝑚
𝑖=1 ≤ ∑ 𝑦̅𝑟𝑜

∗𝑠
𝑟=1 /∑ 𝑥̅𝑖𝑜

∗𝑚
𝑖=1  . This leads to 

∑ 𝑦̅𝑟𝑜
𝑠
𝑟=1 /∑ 𝑥̅𝑖𝑜

𝑚
𝑖=1

∑ 𝑦̅𝑟𝑜
∗𝑠

𝑟=1 /∑ 𝑥̅𝑖𝑜
∗𝑚

𝑖=1

(=
𝜋(𝑥̅𝑖𝑜,𝑦̅𝑟𝑜)

𝜋(𝑥̅𝑖𝑜
∗ ,𝑦̅𝑟𝑜

∗ )
) ≤ 𝜃∗2

= 𝛾∗.                                   □ 
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  According to Eq. (3.13), the relationship between the profit-ratio efficiency and radial 

measures of technical efficiencies can be expressed as  

 𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ ) ≥
1

𝛾∗

∑ 𝑦̅𝑟𝑜
𝑠
𝑟=1

∑ 𝑥̅𝑖𝑜
𝑚
𝑖=1

 (3.14) 

which can be rewritten as either  

𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ ) ≥
∑ 𝑦̅𝑟𝑜

𝑠
𝑟=1

∑ (𝛾∗𝑥̅𝑖𝑜)
𝑚
𝑖=1

, (3.15) 

or 

𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ ) ≥
∑ (

1
𝛾∗ 𝑦̅𝑟𝑜)

𝑠
𝑟=1

∑ 𝑥̅𝑖𝑜
𝑚
𝑖=1

. (3.16) 

The expression Eq. (3.15) is related to the input-oriented technical efficiency measure 

defined in Eq. (3.3). It becomes equality when there is no distortion in the actual input-

spending mix. Similarly, the expression in Eq. (3.16) is related to the output-oriented 

technical efficiency measure in Eq. (3.4), and it becomes equality when there is no 

distortion in the actual output-earnings mix. 

  Figures 3.1 and 3.2 depict the state of one production activity when there are two inputs 

and two outputs, respectively. Figure 3.1 illustrates the expression Eq. (3.15), and Fig. 3.1 

illustrates the expression Eq. (3.15).    

 

Figure 3.1 Illustration of the input-oriented allocative efficiency regarding profit-ratio 

maximization. 
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In Fig. 3.1, the output is fixed at its current level, and the interest is in input reductions. 

Point A is an evaluated production activity in the interior of the value-based technology. 

The dashed line passing through A represents the contour of the reciprocal of the profit 

ratio: 𝑥̅1/𝑦̅ + 𝑥̅2/𝑦̅(= 1/(𝑦̅/(𝑥̅1 + 𝑥̅2)) ) = 1/ 𝜋(𝑥̅1𝑜 , 𝑥̅2𝑜) . To illustrate the profit-

ratio boundary for A, I alternatively depict the contour of the reciprocal of the maximum 

profit ratio in the left panel. Activity A achieves the maximum profit ratio when it is 

projected on the profit-ratio boundary (say at point D). Now consider the point C which 

is at the intersection of the profit-ratio boundary through D with the ray from the origin 

to A, we can obtain the profit-ratio efficiency of A as 0 < 𝑂𝐶/𝑂𝐴 ≤ 1. In addition, we 

can also form the ratio 0 < 𝑂𝐵/𝑂𝐴 ≤ 1 to obtain a radial measure of input-oriented 

technical efficiency. Given the input-oriented technical efficiency, we can obtain the 

projection of A as point B. However, in Fig. 3.1, the profit ratio of this projection can still 

be increased by moving from B to D along the value-based technical frontier. Since both 

C and D achieve the same level of profit ratio, we can determine the ratio 0 < 𝑂𝐶/𝑂𝐵 ≤

1 as a radial measure of “input-oriented allocative efficiency.” This ratio represents the 

extent to which the technically efficient point B falls short of achieving the maximum 

profit ratio because of the wrong mix in the input-spending vectors. Relating all three of 

these efficiency concepts to each other, we have 𝑂𝐶/𝑂𝐴 = (𝑂𝐵/𝑂𝐴) × (𝑂𝐶/𝑂𝐵) , 

which we can verbalize by saying that the profit-ratio efficiency is equal to the product 

of the input-oriented technical efficiency and the input-oriented allocative efficiency. 

Denote the input-oriented allocative efficiency as 𝐴𝐸𝐼, we then have 𝑃𝐸 = 𝑇𝐸𝐼 × 𝐴𝐸𝐼. 
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Figure 3.2 Illustration of the output-oriented allocative efficiency regarding profit-

ratio maximization. 

 

Similarly, for another production activity E in Fig. 3.2, the maximum profit ratio is at 

point H and the solid line passing through points H and G is the profit-ratio boundary that 

is associated with 𝑦̅1/𝑥̅ + 𝑦̅2/𝑥̅(= ( 𝑦̅1 + 𝑦̅2)/𝑥̅) = 𝜋(𝑦̅1𝑜 , 𝑦̅2𝑜) . The profit-ratio 

efficiency of E is then obtained as 0 < 𝑂𝐸/𝑂𝐺 ≤ 1. We can also obtain a radial measure 

of output-oriented efficiency from the ratio 𝑂𝐹/𝑂𝐸 ≥ 1. In addition, we can form the 

ratio 𝑂𝐺/𝑂𝐹 ≥ 1 and call it a radial measure of “output-oriented allocative efficiency” 

because of failure to make the reallocations involved in moving from point F to H along 

the value-based technical frontier. As a result, we have 𝑂𝐸/𝑂𝐺 = (1/(𝑂𝐹/𝑂𝐸)) ×

(1/(𝑂𝐺/𝑂𝐹)) . This equation shows that profit-ratio efficiency is the product of the 

reciprocal of the output-oriented technical efficiency and the reciprocal of the output-

oriented allocative efficiency. Let the output-oriented allocative efficiency be 𝐴𝐸𝑂, then 

𝑃𝐸 = 1/(𝑇𝐸𝑂 × 𝐴𝐸𝑂). 

  In brief, Figs. 3.1 and 3.2 explain the inequality in Eq. (3.14) maybe caused by either 

the wrong output-earnings mix or the wrong input-spending mix. However, note at this 

point that A and E are treated as two different production activities. Now consider both 

the input-oriented and output-oriented technical efficiencies for the same production 

activity. It is clear that under CRS, 𝐴𝐸𝐼 = 1/𝐴𝐸𝑂 because (a) 𝑃𝐸 = 𝑇𝐸𝐼 × 𝐴𝐸𝐼 and 
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𝑃𝐸 = 1/(𝑇𝐸𝑂 × 𝐴𝐸𝑂) , (b) for the same production activity, profit-ratio efficiency is 

unchangeable whether the interest is in the input-oriented measure or the output-oriented 

measure, and (c) under CRS, 𝑇𝐸𝐼 = 1/𝑇𝐸𝑂. 

  I next consider the situation where the allocative efficiency is caused by both the wrong 

output-earnings mix and the input-spending mix. To gain intuition, let us focus on the 

inequality ∑ 𝜃∗−1
𝑦̅𝑟𝑜

𝑠
𝑟=1 /∑ 𝜃∗𝑥̅𝑖𝑜

𝑚
𝑖=1 ≤ ∑ 𝑦̅𝑟𝑜

∗𝑠
𝑟=1 /∑ 𝑥̅𝑖𝑜

∗𝑚
𝑖=1  (see the proof in Eq. (3.13)) 

that is related to the graph measure of technical efficiency in Eq. (3.5). This inequality 

implies that the realization of the maximum profit ratio is not entirely guaranteed by only 

improving the graph measure of technical efficiency. Since the maximum profit ratio is 

evaluated by the program Eq. (3.10), as well as the optimal input-spending and output-

earnings, the activities can achieve the maximum profit ratio by changing their actual 

input-spending and output-earnings mixes into the optimal ones. Therefore, the inequality 

∑ 𝜃∗−1
𝑦̅𝑟𝑜

𝑠
𝑟=1 /∑ 𝜃∗𝑥̅𝑖𝑜

𝑚
𝑖=1 ≤ ∑ 𝑦̅𝑟𝑜

∗𝑠
𝑟=1 /∑ 𝑥̅𝑖𝑜

∗𝑚
𝑖=1   becomes equality when there is no 

distortion in both actual input-spending and out-earnings mix. In an analogous manner 

with the input- and output-oriented allocative efficiencies, we can determine 0 < 𝜌∗ ≤ 1 

satisfying ∑ 𝜃∗−1
𝜌∗−1

𝑦̅𝑟𝑜
𝑠
𝑟=1 /∑ 𝜃∗𝜌∗𝑥̅𝑖𝑜

𝑚
𝑖=1 = ∑ 𝑦̅𝑟𝑜

∗𝑠
𝑟=1 /∑ 𝑥̅𝑖𝑜

∗𝑚
𝑖=1   as the estimated 

“graph measure of allocative efficiency.” Let the notation of the graph measure of 

allocative efficiency be 𝐴𝐸𝐺𝑅, we then have 𝑃𝐸 = (𝑇𝐸𝐺𝑅 × 𝐴𝐸𝐺𝑅)2. In addition, since 

(a) 𝑃𝐸 = (𝑇𝐸𝐺𝑅 × 𝐴𝐸𝐺𝑅)2  and 𝑃𝐸 = 𝑇𝐸𝐼 × 𝐴𝐸𝐼 , (b) profit-ratio efficiency is 

unchangeable whether the interest is in the input-oriented measure or the output-oriented 

measure, and (c) under CRS, (𝑇𝐸𝐺𝑅)2 = 𝑇𝐸𝐼 , it is clear that under CRS, 𝐴𝐸𝐼 =

(𝐴𝐸𝐺𝑅)2. 

  As a result, the inequality Eq. (3.13) maybe caused by either the wrong output-earnings 

mix or the input-spending mix, or both. The relations discussed above are summarized 

below: 

 

(i) 𝑃𝐸 = 𝑇𝐸𝐼 × 𝐴𝐸𝐼; 

(ii) 𝑃𝐸 = 1/(𝑇𝐸𝑂 × 𝐴𝐸𝑂); 

(iii) 𝑃𝐸 = (𝑇𝐸𝐺𝑅 × 𝐴𝐸𝐺𝑅)2. 

 

Because the assumption of CRS implies 𝑇𝐸𝐼 = 1/𝑇𝐸𝑂 = (𝑇𝐸𝐺𝑅)2 , we then have 

𝐴𝐸𝐼 = 1/𝐴𝐸𝑂 = (𝐴𝐸𝐺𝑅)2 . Therefore, under CRS, the input-oriented allocative 

efficiency can be derived directly from either the output-oriented measure or the graph 
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measure.  

  In the rest of this chapter, I focus on the input-oriented measure and drop the superscript 

“𝐼” for simplicity. The output-oriented measure and the graph measure can be discussed 

analogously. Formally, given 𝑃𝐸 = 𝜋(𝑥̅𝑖𝑜 , 𝑦̅𝑟𝑜)/𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ ) in Eq. (3.12) and 𝑇𝐸 = 𝛾∗ 

in Eq. (3.7), the (input-oriented) allocative efficiency regarding profit-ratio maximization 

is defined as  

 𝐴𝐸 =
𝜋(𝑥̅𝑖𝑜 , 𝑦̅𝑟𝑜)

𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ )

1

𝛾∗
=

𝑃𝐸

𝑇𝐸
. (3.17) 

If there is neither the wrong output-earnings mix nor the wrong input-spending mix, that 

is 𝐴𝐸 = 1, then 𝑃𝐸 = 𝑇𝐸, and vice versa. 

  Note that the commonly used definition of allocative efficiency [20,23] requires exact 

knowledge of prices, whereas the inaccurate information on prices can distort measures 

of allocative efficiency [32]. Suppose one has data of the physical inputs and physical 

outputs (that are both homogeneous), as well as data on input and output prices (that are 

accurate and may be different across activities). The allocative efficiency obtained using 

the commonly used definition identifies the existence of the wrong mix in physical inputs 

and physical outputs, given the price information. In contrast, since the allocative 

efficiency defined in Eq. (3.17) follows a value-based measure, the data should be in 

monetary terms (e.g., expenses term). In the case that one uses the data on volumes and 

prices of inputs and outputs to calculate the input-spending and output-earnings, the 

allocative efficiency in Eq. (3.17) identifies the wrong mix in input-spending and output-

earnings rather than in the physical inputs and physical outputs. The scheme of allocative 

efficiency defined in a value-based measure was first considered by Tone [50] and 

subsequently extended by various authors [32,49,55]. 

 

 

3.3 A profit-ratio change index 

 

This section describes a profit-ratio change index regarding profit-ratio maximization. A 

distinctive feature of this index is the use of profit-ratio boundary (see Eq. (3.11)) for 

measuring productivity change over time. Assume two periods 𝑡 and 𝑡 + 1, respectively. 
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Denote the input-spending and output-earnings vectors of the evaluated production 

activity 𝑜 in periods 𝑡 and 𝑡 + 1 by (𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡) and (𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1), respectively. 

Let 𝛾𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)  and 𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)  be the input-oriented technical 

efficiencies obtained from Eq. (3.7). Relative to a value-based technology, the input-

oriented Malmquist index is defined as: 

 

𝑀𝐼𝑡 =
𝛾𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)

𝛾𝑡(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)
, 

𝑀𝐼𝑡+1 =
𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)

𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)
, 

𝑀𝐼 = [𝑀𝐼𝑡 × 𝑀𝐼𝑡+1 ]1/2. 

(3.18) 

 

(3.19) 

 

(3.20) 

Note that the conventional Malmquist index in Chapter 2 is based on quantity data (see 

Eqs. (2.10) -(2.12)) while Eqs. (3.18) - (3.20) are constructed with input-spending and 

output-earnings vectors. If 𝑀𝐼 is greater, equal, or smaller than unity, the productivity 

shows, on average, decline, stagnation, or growth between periods 𝑡 and 𝑡 + 1. 

The profit-ratio change index is defined in terms of the profit-ratio efficiency as 

follows: 

 

𝑃𝐼𝑡 =
𝜋𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)/𝜋

𝑡(𝑥̅𝑖𝑜,𝑡
∗𝑡 , 𝑦̅𝑟𝑜,𝑡

∗𝑡 )

𝜋𝑡(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)/𝜋𝑡(𝑥̅𝑖𝑜,𝑡+1
∗𝑡 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡 )
, 

𝑃𝐼𝑡+1 =
𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)/𝜋

𝑡+1(𝑥̅𝑖𝑜,𝑡
∗𝑡+1, 𝑦̅𝑟𝑜,𝑡

∗𝑡+1)

𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)/𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1
∗𝑡+1 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡+1 )
, 

𝑃𝐼 = [𝑃𝐼𝑡 × 𝑃𝐼𝑡+1 ]1/2. 

(3.21) 

 

(3.22) 

 

(3.23) 

Here, 𝜋𝑡(𝑥̅𝑖𝑜,𝑡
∗𝑡 , 𝑦̅𝑟𝑜,𝑡

∗𝑡 ) and 𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1
∗𝑡+1 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡+1 ) are the measurements within the same 

period, while 𝜋𝑡(𝑥̅𝑖𝑜,𝑡+1
∗𝑡 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡 )  and 𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡
∗𝑡+1, 𝑦̅𝑟𝑜,𝑡

∗𝑡+1)  are the intertemporal 

comparisons. The component 𝑃𝐼𝑡  in Eq. (3.21) measures the profit-ratio efficiency 

change regarding period 𝑡  as the reference period. From Eq. (3.21), we see that the 

numerator is the profit-ratio efficiency of (𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡) measured at period 𝑡, whereas 

the denominator is the profit-ratio efficiency of (𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1) measured at period 𝑡. 

If the evaluated production activity has improved its profit-ratio efficiency from period 𝑡 

to 𝑡 + 1, the value of the numerator is less than that of the denominator, and therefore, 

𝑃𝐼𝑡 is smaller than unity. Similarly, the component 𝑃𝐼𝑡+1 in Eq. (3.22) is the profit-ratio 
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efficiency change regarding period 𝑡 + 1 as the reference period. To avoid an arbitrary 

choice of a reference period, the profit-ratio change index 𝑃𝐼 in Eq. (3.23) is defined by 

the geometric means of 𝑃𝐼𝑡  and 𝑃𝐼𝑡+1 . Here, 𝑃𝐼  measures the average change of 

profit-ratio efficiency between periods 𝑡  and 𝑡 + 1 . If the index is greater, equal, or 

smaller than unity, the change of profit-ratio efficiency over time shows, on average, 

decline, stagnation, or growth between periods 𝑡 and 𝑡 + 1. 

 

Figure 3.3 The concept of profit-ratio change index. 

 

A simple two-inputs, one-output case is illustrated in Fig. 3.3 to clarify the differences 

between 𝑀𝐼 and 𝑃𝐼. For the same evaluated production activity (A in period 𝑡 and G 

in period 𝑡 + 1), its specific level of maximum profit ratios at periods 𝑡 and 𝑡 + 1 are 

obtained at point D and J, respectively. Graphically, the profit-ratio change index is given 

by 

 𝑃𝐼 = [𝑃𝐼𝑡 × 𝑃𝐼𝑡+1]1/2 = [
𝑂𝐶/𝑂𝐴

𝑂𝐿/𝑂𝐺
×

𝑂𝐹/𝑂𝐴

𝑂𝐼/𝑂𝐺
]
1/2

, (3.24) 

where C and L have the same profit ratio as D, as both points lie on the same profit-ratio 

boundary which is alternatively depicted as the contour of the reciprocal of the maximum 

profit ratio in Fig. 3.3. For the same reason, F and I also have the same profit ratio as J. 

  Similarly, 𝑀𝐼 is expressed as 
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 𝑀𝐼 = [𝑀𝐼𝑡 × 𝑀𝐼𝑡+1]1/2 = [
𝑂𝐵/𝑂𝐴

𝑂𝐾/𝑂𝐺
×

𝑂𝐸/𝑂𝐴

𝑂𝐻/𝑂𝐺
]
1/2

. (3.25) 

Note that in Fig. 3.3, the value-based technical frontier of period 𝑡 + 1  does not 

encompass the activity A. This implies the intertemporal comparison term 

𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡
∗𝑡+1, 𝑦̅𝑟𝑜,𝑡

∗𝑡+1) does not have a feasible solution to Eq. (3.9), and 𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡) 

does not have a feasible solution to the program Eq. (3.7). In such cases, by following the 

literature of the DEA-based Malmquist productivity index [56], a super efficiency 

evaluation [57] is adopted to calculate the profit-ratio efficiency in Eq. (3.12), i.e., the 

profit-ratio efficiency of A measured at period 𝑡 + 1 is obtained as 𝑂𝐹/𝑂𝐴 > 1, and the 

input-oriented technical efficiency is 𝑂𝐸/𝑂𝐴 > 1. 

  To further clarify the differences between 𝑃𝐼 and 𝑀𝐼, let us consider a (virtual) point 

M in Fig. 3.3 that lies on the ray from the origin to G. It is clear that M and G have the 

same mix in both inputs and outputs (i.e., a proportional change in both inputs and outputs 

will not change their mixes). If we temporally treat the point M and the point G as the 

same activity at periods 𝑡 and 𝑡 + 1, respectively, graphically we will have 𝑃𝐼 for this 

activity given by 

 𝑃𝐼 = [
𝑂𝐿/𝑂𝑀

𝑂𝐿/𝑂𝐺
×

𝑂𝐼/𝑂𝑀

𝑂𝐼/𝑂𝐺
]

1
2
=

𝑂𝐺

𝑂𝑀
, (3.26) 

and 𝑀𝐼 given by   

 𝑀𝐼 = [
𝑂𝐾/𝑂𝑀

𝑂𝐾/𝑂𝐺
×

𝑂𝐻/𝑂𝑀

𝑂𝐻/𝑂𝐺
]

1
2
=

𝑂𝐺

𝑂𝑀
. (3.27) 

Eqs. (3.26) and (3.27) indicate that 𝑃𝐼 and 𝑀𝐼 have the same value when there is no 

average change in the mix of inputs and outputs over time. To illustrate this difference, 

let us consider the component (𝑂𝐿/𝑂𝑀)/(𝑂𝐿/𝑂𝐺)  in Eq. (3.26). This component 

measures the profit-ratio efficiency change regarding the period 𝑡 as the reference period. 

Its numerator (𝑂𝐿/𝑂𝑀) represents the profit-ratio efficiency of M measured at period 

𝑡 and can be decomposed into (𝑂𝐾/𝑂𝑀) × (𝑂𝐿/𝑂𝐾) (see Eq. (3.17)). Here, 𝑂𝐾/𝑂𝑀 

and 𝑂𝐿/𝑂𝐾  represent the (input-oriented) technical and allocative efficiencies of M 

measured at period 𝑡 , respectively. Similarly, we have the decompositions of the 

denominator as 𝑂𝐿/𝑂𝐺 = (𝑂𝐾/𝑂𝐺) × (𝑂𝐿/𝑂𝐾) , where 𝑂𝐾/𝑂𝐺  and 𝑂𝐿/𝑂𝐾 

represent, respectively, the (input-oriented) technical and allocative efficiencies of G 
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measured at period 𝑡 . Combing the decompositions of both the numerator and 

denominator, we then have 

 
𝑂𝐿/𝑂𝑀

𝑂𝐿/𝑂𝐺
=

𝑂𝐾/𝑂𝑀

𝑂𝐾/𝑂𝐺
×

𝑂𝐿/𝑂𝐾

𝑂𝐿/𝑂𝐾
. (3.28) 

This makes it clear that the (input-oriented) allocative efficiency is identical at points M 

and G regarding the period 𝑡  as the reference period. The second component 

(𝑂𝐼/𝑂𝑀)/(𝑂𝐼/𝑂𝐺) in Eq. (3.26) can be discussed in an analogous manner. Therefore, 

when there is no average change in allocative efficiencies over time, 𝑃𝑀 has the same 

value as 𝑀𝐼. 

  Returning now to a more general case in Fig. 3.3 that activity A in period 𝑡 and G in 

period 𝑡 + 1 are the same activity. Similar to the illustration of 𝑃𝐼 in Eq. (3.24) or 𝑀𝐼 

in Eq. (3.25), the average change in the (input-oriented) allocative efficiency over time 

(𝐴𝑀𝐼) is given by 

 𝐴𝑀𝐼 = [𝐴𝑀𝐼𝑡 × 𝐴𝑀𝐼𝑡+1]1/2 = [
𝑂𝐶/𝑂𝐵

𝑂𝐿/𝑂𝐾
×

𝑂𝐹/𝑂𝐸

𝑂𝐼/𝑂𝐻
]
1/2

. (3.29) 

In this thesis, Eq. (3.29) is called the “allocation Malmquist productivity index.” Just as 

with the definition of 𝑃𝐼 and 𝑀𝐼, the components 𝐴𝑀𝐼𝑡 and 𝐴𝑀𝐼𝑡+1 in Eq. (3.29) 

measure the allocative efficiency change regarding the periods 𝑡  and 𝑡 + 1  as the 

reference period, respectively. To avoid an arbitrary choice of a reference period, 𝐴𝑀𝐼 

is defined by the geometric means of 𝐴𝑀𝐼𝑡 and 𝐴𝑀𝐼𝑡+1. In addition, if 𝐴𝑀𝐼 is greater, 

equal, or similar than unity, the allocative efficiency change over time shows, on average, 

decline, stagnation, or growth between periods 𝑡 and 𝑡 + 1. 

  Combing Eqs. (3.24), (3.25), and (3.29), we have the following equity: 

 𝑃𝐼 = 𝑀𝐼 × 𝐴𝑀𝐼. (3.30) 

Eq. (3.30) implies that 𝑃𝐼 accounts for the impact of the average change in allocative 

efficiency over time while 𝑀𝐼 does not. This difference is further discussed in Section 

3.4. 
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3.4 Decompositions of the profit-ratio change index 

 

This section develops an alternative decomposition of the profit-ratio change index and 

further clarifies the differences between 𝑃𝐼 and 𝑀𝐼. The decomposition proposed can 

be further used to identify the drivers of the profit-ratio change over time. 

  The conventional Malmquist index can be rearranged to show that it is equivalent to 

the product of a technical efficiency change (or Catch-up) and a technical change (or 

Frontier shift, innovation) [37,44,45,56]. The profit-ratio change index (𝑃𝐼 ) can be 

decomposed into the sources of productivity change in a similar way. The decomposition 

is formally stated as 

 

𝑃𝐼 =
𝜋𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)/𝜋

𝑡(𝑥̅𝑖𝑜,𝑡
∗𝑡 , 𝑦̅𝑟𝑜,𝑡

∗𝑡 )

𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)/𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1
∗𝑡+1 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡+1 )

× [
𝜋𝑡(𝑥̅𝑖𝑜,𝑡+1

∗𝑡 , 𝑦̅𝑟𝑜,𝑡+1
∗𝑡 )

𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1
∗𝑡+1 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡+1 )
×

𝜋𝑡(𝑥̅𝑖𝑜,𝑡
∗𝑡 , 𝑦̅𝑟𝑜,𝑡

∗𝑡 )

𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡
∗𝑡+1, 𝑦̅𝑟𝑜,𝑡

∗𝑡+1)
]

1/2

 

= 𝑃𝐸𝐶 × 𝑃𝑇𝐶. 

(3.31) 

The component outside the square brackets in Eq. (3.31) captures “profit-ratio efficiency 

change (𝑃𝐸𝐶 )” between periods 𝑡  and 𝑡 + 1 . Since the profit-ratio efficiency (𝑃𝐸 ) 

compares the actual profit ratio with the maximum profit ratio that lies on the profit-ratio 

boundary, the term “profit-ratio efficiency change (𝑃𝐸𝐶)” indicates whether the evaluated 

production activity is getting close to the profit-ratio boundary or not. Returning to Fig. 

3.3, 𝑃𝐸𝐶  is graphically represented by 𝑃𝐸𝐶 = (𝑂𝐶/𝑂𝐴)/(𝑂𝐼/𝑂𝐺) . In this case, 

𝑃𝐸𝐶 < 1, 𝑃𝐸𝐶 > 1, 𝑃𝐸𝐶 = 1 imply the profit-ratio efficiency, respectively, progress, 

regress, and constant between periods 𝑡 and 𝑡 + 1. 

  On the other hand, the component inside the square brackets consists of two ratios: The 

first ratio compares maximum profit ratios of the period 𝑡 + 1 activity with respect to 

profit-ratio boundaries of periods 𝑡  and 𝑡 + 1 . Similarly, the second ratio inside the 

brackets compares maximum profit ratios of the period-𝑡 activity with respect to profit-

ratio boundaries of periods 𝑡 and 𝑡 + 1. Hence, the geometric mean of those two ratios 

measures the average shift of profit-ratio boundary from the period 𝑡 to 𝑡 + 1, and is 

referred to as “change of profit-ratio boundary (𝑃𝑇𝐶).” In Fig. 3.3, 𝑃𝑇𝐶 is illustrated as 



41 

 

𝑃𝑇𝐶 = [
𝑂𝐼/𝑂𝐺

𝑂𝐿/𝑂𝐺
×

𝑂𝐹/𝑂𝐴

𝑂𝐶/𝑂𝐴
]
1/2

= [
𝑂𝐼

𝑂𝐿
×

𝑂𝐹

𝑂𝐶
]
1/2

. Graphically, 𝑃𝑇𝐶 is the average change in 

maximum profit ratios over two periods. In this case, 𝑃𝑇𝐶 < 1  indicates an 

improvement in the average change of maximum profit ratios (progress in the profit-ratio 

boundary) while 𝑃𝑇𝐶 > 1  and 𝑃𝑇𝐶 = 1  indicate, on average, regress and constant 

change of maximum profit ratios, respectively. 

  The component index 𝑃𝐸𝐶  can be further decomposed into the (input-oriented) 

allocative (𝐴𝐸𝐶) and technical efficiency change (𝑇𝐸𝐶) as follows: 

 

𝑃𝐸𝐶

=
(𝜋𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)/𝜋

𝑡(𝑥̅𝑖𝑜,𝑡
∗𝑡 , 𝑦̅𝑟𝑜,𝑡

∗𝑡 )) / 𝛾𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)

(𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)/𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1
∗𝑡+1 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡+1 )) /𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1) 

×
𝛾𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)

𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)
 

= 𝐴𝐸𝐶 × 𝑇𝐸𝐶. 

(3.32) 

As discussed in Section 3.3, allocative efficiency captures the distortion in the mix of 

input-spending and/or output-earnings relative to the optimum mix (determined by the 

profit-ratio efficiency). Therefore, the first component 𝐴𝐸𝐶  in Eq. (3.32) identifies 

whether the distortion suggested by allocative efficiency is diminishing or increasing 

from the period 𝑡  to 𝑡 + 1 . In Fig.3.3, 𝐴𝐸𝐶  is represented as 𝐴𝐸𝐶 =

(𝑂𝐶/𝑂𝐴)/(𝑂𝐵/𝑂𝐴)

(𝑂𝐼/𝑂𝐺)/(𝑂𝐻/𝑂𝐺)
=

𝑂𝐶/𝑂𝐵

𝑂𝐼/𝑂𝐻
. The remaining part in Eq. (3.32) is called “Catch-up,” which 

indicates whether the evaluated production activity is getting closer to the value-based 

technical frontier or not. Reference to Fig. 3.3, 𝑇𝐸𝐶 is 𝑇𝐸𝐶 = (𝑂𝐵/𝑂𝐴)/(𝑂𝐻/𝑂𝐺). 

  The component index 𝑃𝑇𝐶 can be further decomposed as follows: 
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𝑃𝑇𝐶

= [
𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)

𝛾𝑡(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)
×

𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)

𝛾𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)
]

1/2

× [
(𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)/𝜋

𝑡+1(𝑥̅𝑖𝑜,𝑡+1
∗𝑡+1 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡+1 )) /𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1) 

(𝜋𝑡(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)/𝜋𝑡(𝑥̅𝑖𝑜,𝑡+1
∗𝑡 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡 )) /𝛾𝑡(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1) 

×
(𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)/𝜋

𝑡+1(𝑥̅𝑖𝑜,𝑡
∗𝑡+1, 𝑦̅𝑟𝑜,𝑡

∗𝑡+1)) /𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡) 

(𝜋𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)/𝜋𝑡(𝑥̅𝑖𝑜,𝑡
∗𝑡 , 𝑦̅𝑟𝑜,𝑡

∗𝑡 )) /𝛾𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡) 
]

1/2

 

= 𝑇𝐶 × 𝐴𝑇𝐶. 

(3.33) 

The first bracket in Eq. (3.33) is referred to as “Frontier shift or technical change (𝑇𝐶).” 

It captures the shift of the value-based technical frontier between periods 𝑡 and 𝑡 + 1. 

As shown in Fig. 3.3, this term is expressed as 𝑇𝐶 = [
𝑂𝐻/𝑂𝐺

𝑂𝐾/𝑂𝐺
×

𝑂𝐸/𝑂𝐴

𝑂𝐵/𝑂𝐴
]
1/2

= [
𝑂𝐻

𝑂𝐾
×

𝑂𝐸

𝑂𝐵
]
1/2

. 

The second square bracket in Eq. (3.33) consist of four component ratios that follow the 

definition of allocative efficiency in Eq. (3.17). This term will be referred to as 

“allocation-technical change (𝐴𝑇𝐶 ).” According to the definition of the profit-ratio 

function in Eq. (3.9), we have the expressions 𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡) = 𝜋𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡) and 

𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1) = 𝜋𝑡(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1). Therefore, the second square bracket of Eq. 

(3.33) can be further simplified as 

 

𝐴𝑇𝐶 = [
𝜋𝑡(𝑥̅𝑖𝑜,𝑡+1

∗𝑡 , 𝑦̅𝑟𝑜,𝑡+1
∗𝑡 )𝛾𝑡(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1) 

𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡+1
∗𝑡+1 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡+1 ) 𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡+1, 𝑦̅𝑟𝑜,𝑡+1)

×
𝜋𝑡(𝑥̅𝑖𝑜,𝑡

∗𝑡 , 𝑦̅𝑟𝑜,𝑡
∗𝑡 )𝛾𝑡(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡) 

𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡
∗𝑡+1, 𝑦̅𝑟𝑜,𝑡

∗𝑡+1)𝛾𝑡+1(𝑥̅𝑖𝑜,𝑡, 𝑦̅𝑟𝑜,𝑡)
]

1/2

. 

(3.34) 

The four technical efficiencies in Eq. (3.34) construct the term 𝑇𝐶 which is the shift of 

the value-based technical frontier. The maximum profit ratios, on the other hand, 

construct the term 𝑃𝑇𝐶  that is the change of profit-ratio boundary. Hence, we have 

𝐴𝑇𝐶 = 𝑃𝑇𝐶/𝑇𝐶. It is clear that the term 𝐴𝑇𝐶 captures the residual change of profit-

ratio boundary from the period 𝑡 to 𝑡 + 1. Furthermore, since the components of 𝐴𝑇𝐶 

follow the definition of allocative efficiency, this residual change reflects the contribution 

of relative changes of the input-spending and/or output-earnings mix on changes of the 

maximum profit ratio. In Fig.3.3, this term is 
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𝐴𝑇𝐶 = [
(𝑂𝐼/𝑂𝐺)/(𝑂𝐻/𝑂𝐺)

(𝑂𝐿/𝑂𝐺)/(𝑂𝐾/𝑂𝐺)
×

(𝑂𝐹/𝑂𝐴)/(𝑂𝐸/𝑂𝐴)

(𝑂𝐶/𝑂𝐴)/(𝑂𝐵/𝑂𝐴)
]
1/2

 

= [
𝑂𝐼/𝑂𝐻

𝑂𝐿/𝑂𝐾
×

𝑂𝐹/𝑂𝐸

𝑂𝐶/𝑂𝐵
]
1/2

. 

(3.35) 

  The component indices mentioned above can be rearranged as follows: 

 

𝑃𝐼 = 𝑃𝐸𝐶 × 𝑃𝑇𝐶 

= (𝐴𝐸𝐶 × 𝑇𝐸𝐶) × (𝑇𝐶 × 𝐴𝑇𝐶) 

= (𝑇𝐸𝐶 × 𝑇𝐶) × (𝐴𝐸𝐶 × 𝐴𝑇𝐶) 

= 𝑀𝐼 × 𝐴𝑀𝐼. 

(3.36) 

Eq. (3.36) shows that the allocation Malmquist productivity index (𝐴𝑀𝐼) is equal to the 

product of the allocative efficiency change (𝐴𝐸𝐶) and the allocation-technical change 

(𝐴𝑇𝐶). In general, for any indices or component indices mentioned above, more than 1 

indicates regress, while equal to 1 and less than 1 show the status quo and progress, 

respectively. 

 

 

3.5 Concluding remarks 

 

Chapter 2 introduced the input-oriented, the output-oriented, and the graph measure of 

technical efficiencies, as well as the profit-ratio efficiency. Based on these efficiencies, 

the concept of allocative efficiency regarding profit-ratio maximization is developed. 

Compared with the conventional efficiency concepts, the new efficiency can be used to 

identify the wrong mix in both input spending and output earnings.  

A profit ratio change index is also proposed in this chapter. It can be applied to panel 

data to measure productivity growth and suitable for situations when producers desire to 

maximize revenue and minimize cost simultaneously. To identify the drivers of changes 

in a profit-ratio change index, the index is decomposed into profit-ratio efficiency change 

and change of profit-ratio boundary. Furthermore, the profit-ratio efficiency change is 

decomposed into technical and allocative efficiency change and change of profit-ratio 

boundary into technical change and allocation technical change. An alternative 

decomposition is also provided, where the profit-ratio change index is decomposed into 
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the Malmquist input-oriented productivity index and an allocation Malmquist 

productivity index. The decompositions suggest the method gives a comprehensive 

understanding of the source of productivity change. As a consequence, the proposed index 

accounts for the impact of the average change in allocative efficiency over time, while 

the Malmquist input-oriented productivity index does not. Further, it makes a difference 

in identifying the drivers of productivity change, whether we account for allocative 

efficiency or not. 

 

  



45 

 

 

Chapter 4 

Productivity changes of Japanese securities companies 

 

 

 

4.1 Introduction 

 

There is limited literature in DEA for analyzing the productive performance of securities 

companies. Examples of recent studies include Fukuyama and Weber [32], Zhang et al. 

[58], and Zhu et al. [47]. In this section, the efficiency measures and the profit-ratio 

change index in Chapter 3 are applied to a sample of 37 Japanese securities companies 

observed from 2011 to 2015. The data were gathered from annual securities reports as 

published by each securities company. Those annual reports can be found from the 

investor relations library of each company s homepage or Japan Securities Dealers 

Association (JSDA). 

The securities companies in Japan relied heavily on the brokerage business until the 

latter half of the 1990s regarding both revenues and business volumes. During this period, 

the “Big Four” securities (Nomura, Daiwa, Nikko, and Yamaichi) gained a large share of 

the securities market as many small and medium-sized securities companies were 

affiliated to them. However, due to the bursting of the bubble economy in 1989, the 

structure of Big Four oligopoly broke up, and the reforms and deregulation have 

proceeded in securities markets, e.g., banks were allowed to operate the securities 

business, and the types of securities businesses became increasingly diverse. As pointed 

out by Fukuyama and Weber [32], these reforms and deregulation will likely impact the 

competitive structure and efficiency of financial services in Japan. Because the Japanese 

securities companies play an important role as intermediaries in the securities markets, it 

is necessary to analyze their efficiencies, especially the allocative efficiency that relates 
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to the diverse securities businesses. The detailed analysis and the projections regarding 

allocative efficiency are provided in Section 4.3. 

Today, the Japanese securities companies are facing a big challenge in their 

management under uncertain economic conditions and business environment. According 

to the annual reports of JSDA, the number of Japanese securities members in JSDA 

totaled 253 companies at the end of the fiscal year 2016 (excluding foreign securities 

members). However, since 1997 in which Yamaichi Securities collapsed, there have been 

about 220 Japanese securities newly entering the securities markets while about 230 

exiting due to voluntary dissolution, merger, or other reasons. Given the severe external 

environment, it is necessary to analyze the productive performance for both the industry 

and the individual level of Japanese securities companies. On the other hand, significant 

changes in business management appeared around the year 2013. According to the Fact 

Books of JSDA, the number of net assets of investment trusts has been sluggish since the 

financial crisis of 2008. However, it increased rapidly by 27.4% year on year by the end 

of 2013 and has grown steadily ever since. Hence, the Japanese securities companies tend 

to focus more on the asset management business since 2013. Considering the differences 

in business management, the analysis of productivity change is separated into the years 

2011-2013 and 2013-2015. The detailed analysis is provided in Section 4.4. 

Also, according to JSDA, the observed 37 companies can be separated into four groups, 

which consist of five major securities companies, seven online brokers, seven bank-

affiliated securities companies, and eighteen other integrated securities companies. 

However, when benchmarking the individual productive performance, this commonly 

used categorization may not directly reflect the differences in productive performance 

because it is based on multi-criteria (e.g., the bank-affiliated securities companies are 

separated with the major ones based on their capital scale but with the online brokers 

because of their differences in the trading platform). Therefore, in Section 4.4.2, a new 

categorization for Japanese securities companies is provided based on their productive 

performance. 
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4.2 Selection of inputs and outputs 

 

The sample excludes the securities companies for which the data are missing and covers 

14.6% of members in JSDA. The selection of 37 companies is based on their securities 

businesses: According to Financial Instruments and Exchange Act (enforced in 

September 2007) in Japan, the principal businesses that securities companies are 

authorized to operate are primarily divided into brokerage, dealing, underwriting and 

selling businesses by the type of services. A securities company may operate some or all 

the principal businesses. It may also undertake other businesses that require notification 

to the authorities, such as the investment management business. Therefore, to keep the 

homogeneity assumption when adopting a DEA methodology, the thesis only considers 

37 of the 253 securities companies that operate all the above businesses.  

Sources of expenses for securities companies consist of: (a) Trading related expenses; 

(b) Personal expenses; (c) Office expenses; (d) Real estate-related expenses; (e) 

Depreciation expenses; (f) Sundry taxes expense; and (g) Other expenses. Here, (a) ~ (c) 

represent the economic and human resources of securities companies, while (d) ~ (g) are 

related to fixed capital assets. Since it is less meaningful to consider the adjustments in 

(d) ~ (g) regarding the efficiency measures discussed in Chapter 3, (a) ~ (c) are confirmed 

as input variables. Besides, according to the financial summary (Tokyo Stock Exchange, 

Inc.) between 2011 and 2015, it is clear that (a) ~ (c) are the primary sources of expenses 

for the Japanese securities industry (see Fig.4.1 for details).  

Inputs:  

Input 1 ( 𝑥̅1): Trading related expenses  

Input 2 ( 𝑥̅2): Personal expenses 

Input 3 ( 𝑥̅3): Office expenses 
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Figure 4.1 The cost structure of the Japanese securities industry. 

 

On the other hand, sources of revenue for securities companies that are associated with 

the securities businesses (see Fig.4.2 for details) include (a) Brokerage income; (b) 

Trading income; (c) Underwriting and Selling income; and (d) Other income. The term 

“Other income” is the commission income of the investment management business. 

Financial income consisting of interest or dividends is also considered as a source of 

revenue. However, due to a lack of adequate accounting records of financial income, only 

(a) ~ (d) are considered as output variables.  

Outputs: 

Output 1 ( 𝑦̅1): Brokerage income 

Output 2 ( 𝑦̅2): Trading income 

Output 3 ( 𝑦̅3): Underwriting and Selling income 

Output 4 ( 𝑦̅4): Other income 
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Figure 4.2 The revenue structure of the Japanese securities industry. 

 

Note that all inputs and outputs are measured in the same unit (yen) but analyzed 

separately. Since each of the input or output terms has different sources of income or 

expenses, it is meaningful to make them distinct when estimating the allocative efficiency 

of the financial sources given a qualified adjusted way.  

One might also consider the use of an aggregated input and aggregated output. Since 

the allocative efficiency is not evaluable in such cases, the adoption of the proposed index 

can be used to classify the differences between the profit-ratio change index and the 

Malmquist input-oriented productivity index. In Section 4.5, the profit-ratio change index 

is shown to be reduced to the Malmquist input-oriented productivity index under a single 

input and single output, while under the multiple inputs and multiple outputs, it can be 

considered as an extension of the Malmquist input-oriented productivity index that takes 

into consideration the effects of allocative efficiency over time. 
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4.3 Results of profit-ratio, technical and allocative efficiencies 

 

Table A-1 in Appendix A shows the results of profit-ratio, (input-oriented) technical, and 

allocative efficiencies in 2011, 2013, and 2015. This section aims to provide examples of 

projection for Japanese securities companies and further illustrate the allocative 

efficiency described in Section 3.2.  

  A detailed description of analysis steps can be described as follows: 

Step 1 Solve the linear programming problem Eq. (3.17) to evaluate the (input-oriented) 

technical efficiency (𝑇𝐸 ). The graph measure of technical efficiency (𝑇𝐸𝐺𝑅 ) is then 

derived by calculating the square root of 𝑇𝐸. 

Step 2 Solve the linear programming problem Eq. (3.10) to evaluate the maximum profit 

ratio 𝜋(𝑥̅𝑖𝑜
∗ , 𝑦̅𝑟𝑜

∗ ). The profit-ratio efficiency (𝑃𝐸) is then calculated by using Eq. (3.12). 

Step 3 Apply Eq. (3.17) to evaluate the (input-oriented) allocative efficiency (𝐴𝐸). The 

graph measure of allocative efficiency (𝐴𝐸𝐺𝑅) can be derived by calculating the square 

root of 𝐴𝐸. 

From Table A-1, it can be seen that the activities with the most efficient profit-ratio 

efficiency (𝑃𝐸 =1) obtain the most efficient technical and allocative efficiencies (e.g., 

activity B6). Meanwhile, the profit-ratio efficiencies 𝑃𝐸 are less than or equal to the 

technical efficiencies 𝑇𝐸 , which is consistent with the proposition in Section 3.2. 

Regarding the scores of technical efficiency 𝑇𝐸, for example, activity B10 achieved full 

efficiency marks in 2013, whereas it fell short in the profit-ratio efficiency score 

(𝑇𝐸 =1.000, 𝑃𝐸 =0.630). According to the discussions in Section 3.2, this result may be 

due to the wrong mix in either inputs or outputs, or both. Specifically, in the year 2013, 

activity B10 had the current input mix  𝑥̅ = (478,672,379) and output 

mix  𝑦̅ = (103,301,814,652), while the optimal mix  𝑥̅∗  was (478, 672, 233.613) 

and  𝑦̅∗ was (147.749, 728.555, 1156.807, 652). Note that the optimal input-mix and 

output-mix can be obtained from Eq. (3.7), and for simplicity, the optimal solution is 

truncated to the three decimal places. For example, the real optimized  𝑦̅1
∗ for B10 in 

2013 is 147.748450191852. Hence, for activity B10, the wrong mix appeared in both 

input mix and output mix. According to Eq. (3.17), 𝐴𝐸 was obtained as 0.630. As an 

adjustment plan for B10, it needs to reduce  𝑥̅3  (office expenses), meanwhile, 
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increase  𝑦̅1  (brokerage income), 𝑦̅2  (trading income) and 𝑦̅3  (underwriting and 

selling income).  

On the other hand, for the activities which have worse technical efficiencies, e.g., O15 

in the year 2011 (𝑇𝐸 = 0.969), improving technical efficiency does not guarantee the 

achievement of the maximum profit ratio. In the year 2011, O15 had the current inputs 

and outputs  𝑥̅ = (4322,1943,4826) and  𝑦̅ = (9750,1789,657,2054): According to the 

graph measure of technical efficiency 𝑇𝐸𝐺𝑅  in Eq. (3.6), the current inputs of O15 

should be reduced to the level (4254.969, 1912.866, 4751.152) and the current outputs 

should be increased to the level (9903.597, 1817.183, 667.350, 2086.358). Note that 

𝑇𝐸𝐺𝑅 =0.984 can be obtained by calculating the square root of 𝑇𝐸. However, the profit 

ratio after improved 𝑇𝐸𝐺𝑅 resulted in 1.326, whereas the maximum profit ratio obtained 

from Eq. (3.10) was 1.889. This gap is due to the existence of allocative efficiency. Using 

Eq. (3.10), the optimal input mix  𝑥̅∗ of O15 was obtained as (4132.236, 1943, 169.081) 

and the optimal output mix  𝑦̅∗ was (10072.01, 1789, 657, 2054). Compared with the 

current inputs and outputs of O15, it is seen that the wrong mix existed in both inputs and 

outputs. To achieve the maximum profit ratio, O15 needs to reduce  𝑥̅1 (trading related 

expenses) and 𝑥̅3 (office expenses), meanwhile, increase 𝑦̅1 (brokerage income). 

 

 

4.4 Results of the profit-ratio change index and its component 

indices 

 

The results of the profit-ratio change index 𝑃𝐼  and its component indices are 

summarized in Tables A-2 and A-3 (Appendix A). Tables A-2 and A-3 also report the 

cases that the intertemporal comparison terms of 𝑃𝐼  had infeasible solutions. In the 

following, the results are discussed at the overall industry level and an individual level, 

respectively.  

  The main steps for analyzing the profit-ratio change index are summarized below: 
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Step 1 Apply Eq. (3.31) to evaluate the profit-ratio efficiency change (𝑃𝐸𝐶 ) and the 

change of profit-ratio boundary (𝑃𝑇𝐶). The profit-ratio change index is then derived by 

calculating the product of 𝑃𝐸𝐶 and 𝑃𝑇𝐶. 

Step 2 Apply Eq. (2.12) to evaluate the (input-oriented) technical efficiency change (𝑇𝐸𝐶) 

and the frontier shift (𝑇𝐶 ). The (input-oriented) Malmquist index is then derived by 

calculating the product of 𝑇𝐸𝐶 and 𝑇𝐶. 

Step 3 Apply Eq. (3.23) and Eq. (3.33) to evaluate the (input-oriented) allocative 

efficiency change (𝐴𝐸𝐶) and the allocation-technical change (𝐴𝑇𝐶), respectively. The 

(input-oriented) allocation Malmquist productivity index (𝐴𝑀𝐼 ) is then derived by 

calculating the product of 𝐴𝐸𝐶 and 𝐴𝑇𝐶. 

 

4.4.1. At the overall industry level 

 

In order to identify the drivers of productivity change of Japanese securities companies, 

I summarized the geometric means of 𝑃𝐼 and its decompositions in Table 4.1 (see the 

decimal numbers) and further expressed those decimal numbers in the form of percentage 

change by subtracting unity from them. 

 

Table 4.1. The geometric means of 𝑃𝐼 and its decompositions 

  𝑃𝐼 𝑃𝐸𝐶 𝑃𝑇𝐶 𝑀𝐼 𝑇𝐸𝐶 𝑇𝐶 𝐴𝑀𝐼 𝐴𝐸𝐶 𝐴𝑇𝐶 

2011-2013 
0.793 0.941 0.842 0.860 0.939 0.916 0.922 1.003 0.919 

(20.7%) (5.9%) (15.8%) (14.0%) (6.1%) (8.4%) (7.8%) (-0.3%) (8.1%) 

2013-2015 
0.897 1.001 0.896 0.907 1.010 0.898 0.989 0.991 0.999 

(10.3%) (-0.1%) (10.4%) (9.3%) (-1.0%) (10.2%) (1.1%) (0.9%) (0.1%) 

Note: 

a. 𝑃𝐼 = 𝑀𝐼 × 𝐴𝑀𝐼;𝑀𝐼 = 𝑇𝐸𝐶 × 𝑇𝐶; 𝐴𝑀𝐼 = 𝐴𝐸𝐶 × 𝐴𝑇𝐶. 

b. 𝑃𝐼 = 𝑃𝐸𝐶 × 𝑃𝑇𝐶; 𝑃𝐸𝐶 = 𝑇𝐸𝐶 × 𝐴𝐸𝐶; 𝑃𝑇𝐶 = 𝑇𝐶 × 𝐴𝑇𝐶. 

 

The thesis assumes that the behavioral objectives of securities companies are the 

maximization of the profit ratio. Hence, from the viewpoint of the sustainable 

development of the Japanese securities industry, the profit-ratio change index 𝑃𝐼 needs 

to be progressed. Since we have obtained two alternative approaches for decomposing 
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𝑃𝐼, 𝑃𝐼 = 𝑀𝐼 × 𝐴𝑀𝐼 is firstly considered to identify the drivers of changes in 𝑃𝐼. For 

2011-2013, the results indicate that the average growth rate of 𝑃𝐼 (20.7%) was higher 

than that of 𝑀𝐼 (14.0%) because 𝐴𝑀𝐼 had an average growth rate of 7.8%. On the other 

hand, for 2013-2015, 𝐴𝑀𝐼  only improved at an average rate of 1.1%. The positive 

impact of 𝐴𝑀𝐼 caused the average growth rate of 𝑃𝐼 (10.3%) greater than that of 𝑀𝐼 

(9.3%). This explains the importance of considering allocative efficiency when analyzing 

the productivity of the Japanese securities industry: the progress of 𝐴𝑀𝐼 have a positive 

impact on 𝑃𝐼 . Furthermore, considering 𝑀𝐼 = 𝑇𝐸𝐶 × 𝑇𝐶  and 𝐴𝑀𝐼 = 𝐴𝐸𝐶 × 𝐴𝑇𝐶 , 

the results indicate that the shift of the value-based technical frontier 𝑇𝐶  was more 

influential than the technical efficiency change 𝑇𝐸𝐶 to the 𝑀𝐼 for both two periods. 

The results also imply that the progress of 𝐴𝑀𝐼 was mainly attributed to the term 𝐴𝑇𝐶. 

Secondly, the decomposition 𝑃𝐼 = 𝑃𝐸𝐶 × 𝑃𝑇𝐶 is used to identify the main drivers of 

𝑃𝐼. For 2011-2013, the profit-ratio efficiency change 𝑃𝐸𝐶 increased at an average rate 

of 5.9%, and the change of profit-ratio boundary 𝑃𝑇𝐶 had an average growth rate of 

15.8%. However, for 2013-2015, the decomposition shows that 𝑃𝐸𝐶 decreased by 0.1%, 

and 𝑃𝑇𝐶 progressed at an average rate of 10.4%. Since the fluctuations in 𝑃𝑇𝐶 were 

greater than those in 𝑃𝐸𝐶 for both two periods, 𝑃𝑇𝐶 can be considered as the main 

driver that causes 𝑃𝐼 progress. Furthermore, considering 𝑃𝐸𝐶 = 𝑇𝐸𝐶 × 𝐴𝐸𝐶, it is clear 

that, for 2011-2013, the progress of 𝑃𝐸𝐶 was mainly attributed to the improvement of 

technical efficiency ( 𝑇𝐸𝐶  increased by 6.1%), although there was an allocative 

efficiency regress suggested by geometric mean of 1.003 (the negative sign of its 

percentages change shows that the allocative efficiency dropped by 0.3%). On the other 

hand, 𝑃𝐸𝐶 from 2013 to 2015 regressed by 0.1%. This is mainly due to the regress in 

𝑇𝐸𝐶. Similarly, according to the decomposition 𝑃𝑇𝐶 = 𝑇𝐶 × 𝐴𝑇𝐶, the results show that 

the progress of 𝑃𝑇𝐶 was mainly caused by the progress of 𝑇𝐶 for both periods. 
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4.4.2. At an individual level 

 

In order to benchmark the evaluated activities at an individual level, an applicable 

approach (Fig.4.1) is further provided according to the different performances suggested 

by 𝑃𝐼, 𝑀𝐼, and 𝐴𝑀𝐼.  
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Figure 4.1 The results of 𝑃𝐼, 𝑀𝐼, and 𝐴𝑀𝐼 at an individual level. 

 

Figure 4.1 shows the results for the sample of Japanese securities companies. The 

detailed results can be found in table A-2 and A-3, Appendix A. As already discussed in 

Section 4.1, the commonly used categorization (major, online, bank-affiliated, and other 

integrated securities companies) may not directly reflect the differences in the productive 

performance. Thus, the observed activities are divided into six different groups regarding 

their performance evaluated by 𝑃𝐼 , 𝑀𝐼 , and 𝐴𝑀𝐼 . Specifically, the horizontal axis 

represents the index 𝑀𝐼, and the vertical axis represents the index 𝐴𝑀𝐼. The index 𝑃𝐼 

can be represented as a hyperbolic curve passing through the point (1,1) since it is the 

product of 𝑀𝐼 and 𝐴𝑀𝐼. The basic evaluate of 𝑀𝐼 suggests that the region I, II, and 

III show bad productive performance (𝑀𝐼 > 1) and the region IV, V and VI show good 

productive performance (𝑀𝐼 < 1). In contrast, Fig.4.1 further identifies the activities that 

need to focus on the management of allocative efficiency over time.  
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As can be seen from Fig. 4.1, the indices 𝑃𝐼, 𝑀𝐼, and 𝐴𝑀𝐼 in the region I are greater 

than unity, indicating there is no observable productivity growth. Therefore, the activities 

located in this region can be benchmarked as “the bad performance.” Since the 

fluctuations in 𝑃𝐼, 𝑀𝐼, and 𝐴𝑀𝐼 get larger as the activities are getting away from the 

origin, we can identify the one with “the worst practice” by calculating the furthest 

distance from the origin. According to Fig.4.1, we have observed that O19 in the period 

2011-2013 and M3 in the period 2013-2015 were “the worst practice,” respectively.  

In region II, both 𝑃𝐼 and 𝑀𝐼 are greater than unity and thus indicate regress, whereas 

𝐴𝑀𝐼  shows progress (𝐴𝑀𝐼 < 1 ). 𝑃𝐼  shows regress because the regress of 𝑀𝐼  is 

rigorous enough to offset the progressive effect of 𝐴𝑀𝐼 (the percentage change of 𝑀𝐼 

is greater than that of 𝐴𝑀𝐼). The activities in this region (e.g., O14 in period 2011-2013; 

I33 in period 2013-2015) need to focus more on the production management for the 

purpose of improving 𝑀𝐼.  

Conversely, in region III, the regressive effect of 𝑀𝐼  is not enough to offset the 

progressive effect brought by 𝐴𝑀𝐼 (the percentage change of 𝑀𝐼 is less than that of 

𝐴𝑀𝐼). As a result, the index 𝑃𝐼 shows progress. Although the activities in this region 

(e.g., B7, O18 in period 2011-2013; M1 in period 2013-2015) show better performances 

than those in the region II, there still is much room to improve the estimated value of 𝑀𝐼. 

The region IV is referred to as “the good performance” region as the indices 𝑃𝐼, 𝑀𝐼 

and 𝐴𝑀𝐼 are less than unity. We can further identify “the best practice” by finding out 

the one with the closest distance from the origin. According to Fig. 3, we have obtained 

that M4 in the period 2011-2013 and I34 in the period 2013-2015 were “the best practice,” 

respectively.  

The activities in the region V have regressed according to 𝐴𝑀𝐼 (>1) but progressed 

according to both 𝑃𝐼  (<1) and 𝑀𝐼  (<1). The progress of 𝑃𝐼  is mainly due to the 

progress of 𝑀𝐼 as 𝑀𝐼 has a more influential effect than 𝐴𝑀𝐼 (the percentage change 

of 𝑀𝐼 is greater than that of 𝐴𝑀𝐼). Compared with “the good performance” region, the 

activities in the region V (e.g., I25 in period 2011-2013; O13 in period 2013-2015) should 

pay attention to the index 𝐴𝑀𝐼 which is affected by both allocative efficiency change 

and allocation-technical change. 
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The region VI also shows that the activities have regressed according to the index 𝐴𝑀𝐼 

(>1). However, compared with the region V, 𝑃𝐼 shows regress because the progressive 

effect brought by 𝑀𝐼 (<1) is not enough to cover the regress of 𝐴𝑀𝐼 (the percentage 

change of 𝑀𝐼 is less than that of 𝐴𝑀𝐼). To improve 𝑃𝐼, the activities in this region (e.g., 

M1 in period 2011-2013; O18 in period 2013-2015) must focus more on their 

management of allocative efficiency over time. 

  In summary, the activities in the region II and III should keep the level of 𝐴𝑀𝐼 and 

focus on improving 𝑀𝐼 which is affected by both the technical efficiency change and 

the shift of the value-based technical frontier. For example, B7 was in region III for 2011-

2013, while it successfully improved itself to the region of “the good performance” in the 

period 2013-2015 due to the progress of 𝑀𝐼. This does not mean that the change of 𝐴𝑀𝐼 

is not important: O18 was obtained in the region III for 2011-2013, and it improved its 

value of 𝑀𝐼  in the latter period. However, it could not be evaluated as “the good 

performance” because of the regress of 𝐴𝑀𝐼  (𝐴𝑀𝐼 = 1.092 for 2013-2015, see more 

details in Appendix A). On the other hand, the activities in the region V and VI need to 

keep the level of 𝑀𝐼 and pay attention to 𝐴𝑀𝐼 which is affected by both the allocative 

efficiency change and allocation-technical change. The producers or managers have to 

make the right decisions to improve allocative efficiency over time. As already discussed 

in Section 3.2, allocative efficiency can be achieved by reconsidering the resources mix 

of the input-spending and output-earnings so as to maximize the profit ratio. For example, 

I25 (for 2011-2013) succeeded in improving itself to the region of “the good performance” 

in the period 2013-2015 due to the progress of 𝐴𝐸𝐶 (𝐴𝐸𝐶 =0.983 in the latter period, 

see more details in Appendix A). However, improving the allocative efficiency does not 

mean that the production management is not important: the activity M1 (for 2011-2013) 

improved its 𝐴𝑀𝐼 in the latter period, but it still could not be evaluated as “the good 

performance” due to the regress of 𝑀𝐼. Also, the activities in the region I should pay 

attention to both 𝑀𝐼 and 𝐴𝑀𝐼. Figure 4.1 further shows that the one benchmarked as 

“the worst practice” can get into the region of good performance by improving both 𝑀𝐼 

and 𝐴𝑀𝐼 (e.g., O19 was evaluated as the good performance for 2013-2015 whereas the 

worst practice for 2011-2013). Similarly, the one benchmarked as “the best practice” can 

also be dropped into the region of bad performance as long as it could not keep the level 
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of both 𝑀𝐼  and 𝐴𝑀𝐼  (e.g., M4 was evaluated as the best practice for 2011-2013 

whereas the bad performance for 2013-2015). Therefore, the activities in the region IV 

should at least keep the current level of the progress for both 𝑀𝐼 and 𝐴𝑀𝐼. 

 

 

4.5 Comparisons with the results of an aggregated input and 

aggregated output 

 

This section further clarifies the differences between the profit-ratio change index 𝑃𝐼 

and the Malmquist input-oriented productivity index 𝑀𝐼. As already discussed in Section 

4.2, one might consider the use of an aggregated input and aggregated output. In such 

cases, the aggregated input is the total expenses, which summarize the inputs 1, 2, and 3. 

The aggregated output is the total revenue defined as the sum of output 1 to output 4. 

Using the aggregated input and output variable, the profit-ratio change index can be 

adopted to analyze the productive performance of Japanese securities companies. 

However, because there is no longer any observable allocative inefficiency in the single 

input and single output setting, the wrong mix for either total expenses or total revenue is 

not evaluable anymore. The definition of allocative efficiency in Eq. (3.17) then becomes 

a unity in the sense that we have no means to evaluate it. In fact, the maximum profit ratio 

defined in Eq. (3.9) is of “most productive scale size” under CRS (Banker et al. [59]) and 

is identical to all the evaluated activities for a single input and single output case. This 

indicates that the profit-ratio efficiency 𝑃𝐸 in Eq. (3.12) is equivalent to the technical 

efficiency 𝑇𝐸 in Eq. (3.7) when using an aggregated input and output. Furthermore, the 

component indices of the profit-ratio change index, 𝐴𝐸𝐶 in Eq. (3.32) and 𝐴𝑇𝐶 in Eq. 

(3.33), also become unity either. Therefore, in the single input and single output setting, 

the definition of the profit-ratio change index in Eq. (3.23) will be reduced to the 

Malmquist input-oriented productivity index in Eq. (3.20).  

Table 4.2 presents the results of the aggregated input and output case (Case (a)). The 

details can be found in Table A-4 and A-5 (Appendix A). To further clarify the 

interpretation of the index 𝑃𝐼 and its decompositions, I also added the results shown in 
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Table 4.1 (Case (b)). Note that the decimal numbers are the geometric means of indices, 

and the percentage changes are calculated by subtracting unity from the decimals.  

 

Table 4.2. Comparisons with the results of an aggregated input and aggregated output 

2011-2013 𝑃𝐼 𝑀𝐼 𝑃𝐸𝐶 𝑇𝐸𝐶 𝑃𝑇𝐶 𝑇𝐶 𝐴𝑀𝐼 𝐴𝐸𝐶 𝐴𝑇𝐶 

Case (a) 
0.831 1.125 0.739 1.000 1.000 1.000 

(16.9%) (-12.5%) (26.1%) (0.0%) (0.0%) (0.0%) 

Case (b) 
0.793 0.941 0.842 0.860 0.939 0.916 0.922 1.003 0.919 

(20.7%) (5.9%) (15.8%) (14.0%) (6.1%) (8.4%) (7.8%) (-1.3%) (8.1%) 

 

2013-2015 𝑃𝐼 𝑀𝐼 𝑃𝐸𝐶 𝑇𝐸𝐶 𝑃𝑇𝐶 𝑇𝐶 𝐴𝑀𝐼 𝐴𝐸𝐶 𝐴𝑇𝐶 

Case (a) 
0.931 0.846 1.100 1.000 1.000 1.000 

(6.9%) (15.4%) (-10.0%) (0.0%) (0.0%) (0.0%) 

Case (b) 
0.897 1.001 0.896 0.907 1.010 0.898 0.989 0.991 0.999 

(10.3%) (-0.1%) (10.4%) (9.3%) (-1.0%) (10.2%) (1.1%) (0.9%) (0.1%) 

Note: Case (a) represents the results calculated by the aggregated input (total expenses) and output 

(total revenue), while Case (b) is the case of three inputs and four outputs in Table 4.1. 

 

As can be seen in Table 4.2, the geometric means of 𝑃𝐼  in Case (a) (which is 

equivalently the index 𝑀𝐼) are close to those of 𝑃𝐼 in Case (b) for both periods 2011-

2013 and 2013-2015. In Case (a), the profit-ratio boundary overlapped the value-based 

technical frontier, and hence there were no more residual shifts of the profit-ratio 

boundary (𝐴𝑇𝐶 =1.000) or the changes of allocative efficiency (𝐴𝐸𝐶 =1.000). However, 

in Case (b), the profit-ratio boundary needs not to be at the same level as the value-based 

technical frontier. This ensures that the allocative efficiency is observable in the multiple 

inputs and multiple outputs cases. Therefore, the difference between 𝑃𝐼 (or 𝑀𝐼) in Case 

(a) and 𝑃𝐼 in Case (b) should be interpreted by the existence of the observable allocative 

efficiency. When the allocative efficiency is observable (e.g., Case (b)), its effects on the 

productivity change over time are aggregated into the index 𝐴𝑀𝐼 . As a result, the 

proposed index 𝑃𝐼 should be interpreted as the one that captures the average effects of 

both technical and allocative efficiency over time. Furthermore, although the allocative 

efficiency is observable in Case (b), the index 𝑀𝐼  under this circumstance does not 

consider the potential effects of changing the input and output mix of the evaluated 

activities regarding their maximum possible profit ratios. Therefore, the proposed index 
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𝑃𝐼  can be considered as an extension of the conventional 𝑀𝐼  as it takes into 

consideration the effects of allocative efficiency over time. 

 

 

4.6 Concluding remarks 

 

This chapter focuses on the productive performance of 37 Japanese securities companies 

to demonstrate the methods proposed in Chapter 3. Based on the results of profit-ratio, 

technical, and allocative efficiencies, I explained the situation where the wrong mix 

appeared in both input mix and output mix. Some examples of projection for Japanese 

securities companies are provided by considering the allocative efficiency regarding 

profit-ratio maximization. On the other hand, the results of 𝑃𝐼, 𝑀𝐼, and 𝐴𝑀𝐼 are used 

to characterize Japanese securities companies according to their different productive 

performance over time. Because the characterization reveals the strengths and 

weaknesses of securities companies, it is useful to help them to find their unique positions 

under the competitive business environment.  

To clarify the differences between the proposed 𝑃𝐼 and the conventional 𝑀𝐼, I further 

considered a special case that an aggregated input is used to produce an aggregated output. 

Based on the results, I concluded that 𝑃𝐼 is an extension of 𝑀𝐼 as it accounts for the 

impacts of allocative efficiency over time. 
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Chapter 5  

Productivity analysis under stochastic noise 

 

 

 

5.1 Introduction 

 

The purpose of this chapter is to develop a new model for estimating Malmquist-type 

indices under a stochastic setting. Since existing approaches are mostly based on either 

DEA or SFA, I seek to apply the StoNED approach to estimate Malmquist-type indices. 

There are few studies attempting to combine both the StoNED approach and the 

estimation of Malmquist indices: for example, Cheng et al. [60] estimated a Malmquist-

type index by utilizing a cost frontier, and Zhou [61] considered an aggregatable input 

variable for estimating the input-oriented Malmquist index. However, both of them are 

restricted to a single-input and multiple-output setting. In fact, most existing models in 

StoNED have been presented in either a single-input or a single-output setting. To allow 

for a multiple-input and multiple-output production technology in StoNED, Kuosmanen 

and Johnson [62] (see also Layer et al. [63]) have recently proposed a cross-sectional 

model by adopting the directional distance function (Chambers et al. [26]). Once the 

production frontier is estimated, it is possible to gauge the distance for each observed 

production activity. However, as mentioned before, measuring the distance to the 

production frontier in a stochastic setting provides a measure of an aggregation of both 

inefficiency and noise. Therefore, the distance estimated from the cross-sectional 

StoNED model cannot be straightforwardly extended to construct a Malmquist-type index. 

  This chapter contributes to the literature by suggesting a panel-data StoNED model for 

estimating Malmquist-type indices in a multiple-input and multiple-output setting. 

Compared with conventional Malmquist-type indices, the index proposed herein can 

account for the impact of stochastic noise in a nonparametric setting. More specifically, I 

elaborate on the use of directional distance functions to allow for a multiple-input and 
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multiple-output production technology and further suggest the use of panel data in 

efficiency analysis. Note that panel data for efficiency analysis provide several significant 

advantages over conventional cross-sectional data, leading to estimates with more 

desirable statistical properties (e.g., Kumbhakar and Lovell [64], Hsiao [65,66]). 

  In what follows, I first consider the estimation of the multi-input and multi-output 

production frontier and then perform the inefficiency analysis for constructing the 

Malmquist-type indices. Specifically, in Section 5.2, a panel-data StoNED model is 

proposed, which identifies the reference points on the production frontier. In Section 5.3, 

I approximate a piecewise linear frontier based on these estimated reference points and 

develop a consistent estimator of inefficiency. An input-oriented Malmquist index defined 

with the estimated inefficiencies is then presented in Section 5.4. Concluding remarks are 

provided in Section 5.5. 

 

 

5.2 A panel-data model for multi-input and multi-output 

production frontier 

 

In this section, the cross-sectional model of Kuosmanen and Johnson [62] is extended to 

estimate the directional distance function in a panel-data setting. Recall that the 

directional distance function suggested by Chambers et al. [26] provides an alternative 

characterization of production technology as well as a measure of inefficiency. Thus, in 

the estimation procedure, I first estimate the production frontier with the directional 

distance function and then perform the inefficiency analysis accordingly. 

  Consider a balanced panel where 𝑛  firms are observed multiple times, indexed by 

subscript 𝑘 , (𝑘 = 1, … , 𝐾) . Suppose that the producer of firm 𝑗 , (𝑗 = 1,… , 𝑛)  uses 

𝑚 -dimensional inputs 𝑥𝑗𝑘 = (𝑥1𝑗𝑘 , 𝑥2𝑗𝑘, … , 𝑥𝑚𝑗𝑘)
′
∈ 𝑅+

𝑚  to produce 𝑠 -dimensional 

outputs 𝑦𝑗𝑘 = (𝑦1𝑗𝑘, 𝑦2𝑗𝑘 , … , 𝑦𝑠𝑗𝑘)
′
∈ 𝑅+

𝑠  . The observed data point (𝑥𝑗𝑘 , 𝑦𝑗𝑘)  is 

assumed to differ from its reference point (𝑥𝑗𝑘
∗ , 𝑦𝑗𝑘

∗ ) in the exogenously given direction 

(g, h) ∈ 𝑅+
𝑚+𝑠 by both inefficiency and noise: 

 (𝑥𝑗𝑘 , 𝑦𝑗𝑘) = (𝑥𝑗𝑘
∗ + 𝜀𝑗𝑘g, 𝑦𝑗𝑘

∗ − 𝜀𝑗𝑘h), ∀𝑗, 𝑘, (5.1) 
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where 𝜀𝑗𝑘 = 𝑢𝑗 + 𝑣𝑗𝑘 is a composite error term that consists of firm-specific inefficiency 

𝑢𝑗  and random noise 𝑣𝑗𝑘. Specifically, the following assumptions are incorporated: 

(a) The inefficiency components 𝑢𝑗  are independent of observing times 𝑘; 

(b) The inefficiency components 𝑢𝑗  have an unknown asymmetric distribution with a 

positive mean 𝜇 and a finite constant variance; 

(c) The noise components 𝑣𝑗𝑘 are uncorrelated random variables and have an unknown 

symmetrical distribution with zero mean and finite constant variance; 

(d) 𝑢𝑗  and 𝑣𝑗𝑘 are independent of (𝑥𝑗𝑘
∗ , 𝑦𝑗𝑘

∗ ). 

It has been shown in the cross-sectional setting that Eq. (5.1) satisfies 𝐷⃗⃗ (𝑥𝑗 , 𝑦𝑗 , g, h) =

𝜀𝑗 , ∀𝑗. The same logic can be applied straightforwardly to the panel-data setting, which is 

now expressed by 𝐷⃗⃗ (𝑥𝑗𝑘 , 𝑦𝑗𝑘, g, h) = 𝜀𝑗𝑘 , ∀𝑗, 𝑘 . This relation provides a regression 

equation for estimating the directional distance function. To apply the CNLS regression, 

I define the conditional mean distance function as 𝐷⃗⃗ (𝑥𝑗𝑘 , 𝑦𝑗𝑘 , g, h) − 𝐸(𝜀𝑗𝑘), ∀𝑗, 𝑘 . 

Given pre-assigned directions (g, h)  and observations (𝑥𝑗𝑘 , 𝑦𝑗𝑘), ∀𝑗, 𝑘 , the CNLS 

problem is stated as 

min
𝛼,𝛽,𝜏,𝜀

∑ ∑(𝜀𝑗𝑘
𝐶𝑁𝐿𝑆)

2
𝑛

𝑗=1

𝐾

𝑘=1

 

𝑠. 𝑡. 

∑𝜏𝑟𝑗𝑘𝑦𝑟𝑗𝑘

𝑠

𝑟=1

= 𝛼𝑗𝑘 + ∑𝛽𝑖𝑗𝑘𝑥𝑖𝑗𝑘

𝑚

𝑖=1

 + 𝜀𝑗𝑘
𝐶𝑁𝐿𝑆, ∀𝑗 = 1, … , 𝑛;  𝑘 = 1, … , 𝐾 

𝛼𝑗𝑘 + ∑𝛽𝑖𝑗𝑘𝑥𝑖𝑗𝑘

𝑚

𝑖=1

− ∑𝜏𝑟𝑗𝑘𝑦𝑟𝑗𝑘

𝑠

𝑟=1

≤ 𝛼𝑧𝑙 + ∑𝛽𝑖𝑧𝑙𝑥𝑖𝑗𝑘

𝑚

𝑖=1

− ∑𝜏𝑟𝑧𝑙𝑦𝑟𝑗𝑘

𝑠

𝑟=1

,

∀𝑗, 𝑧 = 1,… , 𝑛;  𝑘, 𝑙 = 1,… , 𝐾 

∑𝛽𝑖𝑗𝑘g

𝑚

𝑖=1

+ ∑𝜏𝑟𝑗𝑘h

𝑠

𝑟=1

= 1, ∀𝑗 = 1, … , 𝑛;  𝑘 = 1, … , 𝐾 

𝛽𝑖𝑗𝑘 ≥ 0, ∀𝑖 = 1,… ,𝑚;  𝑗 = 1,… , 𝑛;  𝑘 = 1,… , 𝐾 

𝜏𝑟𝑗𝑘 ≥ 0, ∀𝑟 = 1,… , 𝑠;  𝑗 = 1,… , 𝑛;  𝑘 = 1,… , 𝐾 

(5.2) 

where 𝜀𝑗𝑘
𝐶𝑁𝐿𝑆  is an estimator of 𝐸(𝜀𝑗𝑘) − 𝜀𝑗𝑘 = 𝜇 − (𝑢𝑗 + 𝑣𝑗𝑘)  for the 𝑗 th firm 

observed in the 𝑟th time. Eq. (5.2) defines a least-squares problem that minimizes the 
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sum of squares of the composite error terms. The first constraint contains a set of linear 

regression equations where parameters 𝛼, 𝛽, and 𝜏 define a specific tangent hyperplane 

to an unknown directional distance function for the 𝑗th firm observed in the 𝑘th time. 

The second constraint imposes concavity on the directional distance function by applying 

Afrait inequalities (see Afrait [41]). Due to the duality between the directional distance 

function and the profit function, as shown in Chambers et al. [26], parameters 𝛽 and 𝜏 

can be further interpreted as nonnegative shadow prices for inputs and outputs. The third 

constraint ensures the translation property of the directional distance function by 

normalizing the shadow prices with the direction (g, h). The last two constraints impose 

monotonicity relative to all inputs and outputs. It is worth noting that the use of firm-

specific directions in the CNLS estimator may violate the global convexity of the 

production technology, as argued by Layer et al. [63]. Hence, at the stage of estimating 

the production frontier, the direction (g, h) in Eq. (5.2) is specified as a pre-assigned 

vector that is common across all firms. 

  Given the CNLS estimates  𝜀𝑗̂𝑘
𝐶𝑁𝐿𝑆, the average performance of firm 𝑗 is computed as 

 𝜀𝑗̅
𝐶𝑁𝐿𝑆 =

1

𝐾
∑  𝜀𝑗̂𝑘

𝐶𝑁𝐿𝑆

𝐾

𝑘=1

. (5.3) 

Note that  𝜀𝑗̂
𝐶𝑁𝐿𝑆 captures impacts of the inefficiency 𝑢𝑗 , the noise 𝑣𝑗𝑘, and the positive 

mean 𝜇. However, as the number of observing times 𝐾 increases, the impacts of noise 

can be effectively averaged out. Therefore, Eq. (5.3) can be used as a measure of firm-

specific effect. 

  To benchmark the performance of each firm to best practice, Eq. (5.3) is normalized to 

the nonnegative inefficiency by using the following definition (see Schmidt and Sickles 

[67]): 

 𝑢̂𝑗 = max
𝑧∈{1,…,𝑛}

𝜀𝑧̅
𝐶𝑁𝐿𝑆 − 𝜀𝑗̅

𝐶𝑁𝐿𝑆. (5.4) 

Eq. (5.4) is consistent if there is a strictly positive probability of observing a fully efficient 

firm (see Park and Simar [68]). The positive 𝜇  can be then estimated as  𝜇̂ =

1

𝑛
∑ 𝑢̂𝑗

𝑛
𝑗=1 = max 𝜀𝑗̅

𝐶𝑁𝐿𝑆 (note that the CNLS estimates are known to sum to zero, i.e., 

∑ ∑ 𝜀𝑗̂𝑘
𝐶𝑁𝐿𝑆𝑛

𝑗=1
𝐾
𝑘=1 = 0 ). As a consequence, the estimated reference points on the 
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production frontier are obtained as (𝑥̂𝑗𝑘 , 𝑦̂𝑗𝑘) = (𝑥𝑗𝑘 − (𝜀𝑗̂𝑘
𝐶𝑁𝐿𝑆 + 𝜇̂)g, 𝑦𝑗𝑘 + (𝜀𝑗̂𝑘

𝐶𝑁𝐿𝑆 +

𝜇̂)h), ∀𝑗, 𝑘. 

 

 

5.3 Estimation of within and intertemporal efficiencies 

 

Although Eq. (5.4) provides an estimator of inefficiency for firm 𝑗, it cannot be used for 

assessing intertemporal efficiency (i.e., estimating the inefficiency of firm 𝑗 at period 𝑡 

to the production technology at period 𝑡 + 1 ). The following estimator of directional 

distance function is then considered as a general measure of inefficiency. 

  Relative to the estimated reference points (𝑥̂𝑗𝑘,𝑡, 𝑦̂𝑗𝑘,𝑡), ∀𝑗, 𝑘 at period 𝑡, it is possible 

to construct an (𝑚 × 𝑛𝐾) matrix of optimal inputs and an (𝑠 × 𝑛𝐾) matrix of optimal 

outputs. The estimator of the distance for the 𝑗th firm observed in the 𝑘th time at period 

𝑡 is defined as 

 

𝛿𝑗𝑘
𝑡 (𝑥𝑗𝑘,𝑡, 𝑦𝑗𝑘,𝑡, 𝑔𝑗𝑘,𝑡, ℎ𝑗𝑘,𝑡) = max

𝛿,𝜆
𝛿𝑗𝑘 

𝑠. 𝑡. 

∑ 𝜆𝑑𝑥̂𝑑,𝑡

𝑛𝑘

𝑑=1

≤ 𝑥𝑗𝑘,𝑡 − 𝛿𝑗𝑘𝑔𝑗𝑘,𝑡, 

∑ 𝜆𝑑𝑦̂𝑑,𝑡

𝑛𝑘

𝑑=1

≥ 𝑦𝑗𝑘,𝑡 + 𝛿𝑗𝑘ℎ𝑗𝑘,𝑡, 

∑ 𝜆𝑑

𝑛𝑘

𝑑=1

= 1, 

𝜆𝑗 ≥ 0, 

(5.5) 

where 𝑗 = 1,… , 𝑛, 𝑘 = 1,…𝐾, 𝑑 = 1,… , 𝑛𝐾 . To assess efficiency and productivity, a 

piecewise linear production frontier is estimated relative to the reference points resulting 

from the CNLS problem. Note that the notation (g, h)  are pre-assigned common 

directions for estimating the underlying production technology (see, Eq. (5.2)) while the 

notation (𝑔𝑗𝑘,𝑡, ℎ𝑗𝑘,𝑡)  in Eq. (5.5) are allowed to be firm-specific depending on the 

purpose of the efficiency analysis. In other words, once the production frontier is 
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estimated, one can compute the distance from any observed point (𝑥𝑗𝑘,𝑡, 𝑦𝑗𝑘,𝑡) to the 

production frontier in any direction (𝑔𝑗𝑘,𝑡, ℎ𝑗𝑘,𝑡) by using Eq. (5.5). Eq. (5.5) implicitly 

assumes variable returns to scale. By dropping the restrictions ∑ 𝜆𝑑
𝑛𝑘
𝑑=1 = 1 , the 

assumption of constant returns to scale can be imposed. It is also worth noting that Eq. 

(5.5) differs from the DEA formulation of the directional distance function (see Chambers 

et al. [26]) in the following sense. In the DEA formulation, the directional distance 

function is calculated using a deterministic approach, while in Eq. (5.5), the directional 

distance function results in a random variable because (𝑥𝑗𝑘,𝑡, 𝑦𝑗𝑘,𝑡) are subject to noise 

and inefficiency by assumption. 

  Denote now the optimal solutions to Eq. (5.5) by 𝛿𝑗𝑘
∗𝑡(𝑥𝑗𝑘,𝑡, 𝑦𝑗𝑘,𝑡, 𝑔𝑗𝑘,𝑡, ℎ𝑗𝑘,𝑡), ∀𝑗, 𝑘 . 

Analogous to Eq. (5.3), the average distance of firm 𝑗 at period 𝑡 is defined as 

 𝛿𝑗̅
𝑡(𝑥𝑗,𝑡, 𝑦𝑗,𝑡, 𝑔𝑗,𝑡, ℎ𝑗,𝑡) =

1

𝐾
∑  𝛿𝑗𝑘

∗𝑡(𝑥𝑗𝑘,𝑡, 𝑦𝑗𝑘,𝑡, 𝑔𝑗𝑘,𝑡, ℎ𝑗𝑘,𝑡)

𝐾

𝑘=1

. (5.6) 

Eq. (5.6) provides an estimator of inefficiency for firm 𝑗 at period 𝑡 in the sense that 

the noise term will be effectively canceled out as 𝐾 → ∞. Because it is measured within 

the same period, Eq. (5.6) is also referred to as the within inefficiency. 

  To assess intertemporal inefficiencies, let 𝛿𝑗𝑘
𝑡+1(𝑥𝑗𝑘,𝑡, 𝑦𝑗𝑘,𝑡, 𝑔𝑗𝑘,𝑡, ℎ𝑗𝑘,𝑡) be an estimator 

of the distance for the 𝑗 th firm observed in the 𝑘 th time at period 𝑡  against the 

production technology at period 𝑡 + 1. Similar to Eq. (5.5), 𝛿𝑗𝑘
𝑡+1(𝑥𝑗𝑘,𝑡, 𝑦𝑗𝑘,𝑡, 𝑔𝑗𝑘,𝑡, ℎ𝑗𝑘,𝑡) 

is computed from the following linear programming problem: 
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𝛿𝑗𝑘
𝑡+1(𝑥𝑗𝑘,𝑡, 𝑦𝑗𝑘,𝑡, 𝑔𝑗𝑘,𝑡, ℎ𝑗𝑘,𝑡) = max

𝛿,𝜆
𝛿𝑗𝑘  

𝑠. 𝑡. 

∑ 𝜆𝑑𝑥̂𝑑,𝑡+1

𝑛𝑘

𝑑=1

≤ 𝑥𝑗𝑘,𝑡 − 𝛿𝑗𝑘𝑔𝑗𝑘,𝑡, 

∑ 𝜆𝑑𝑦̂𝑑,𝑡+1

𝑛𝑘

𝑑=1

≥ 𝑦𝑗𝑘,𝑡 + 𝛿𝑗𝑘ℎ𝑗𝑘,𝑡, 

∑ 𝜆𝑑

𝑛𝑘

𝑑=1

= 1, 

𝜆𝑗 ≥ 0, 

(5.7) 

where 𝑗 = 1,… , 𝑛, 𝑘 = 1,…𝐾, 𝑑 = 1,… , 𝑛𝐾.  

Given the optimal solutions 𝛿𝑗𝑘
∗𝑡+1(𝑥𝑗𝑘,𝑡, 𝑦𝑗𝑘,𝑡, 𝑔𝑗𝑘,𝑡, ℎ𝑗𝑘,𝑡), ∀𝑗, 𝑘  to Eq. (5.7), the 

intertemporal average distance of firm 𝑗 is expressed as 

 𝛿𝑗̅
𝑡+1(𝑥𝑗,𝑡, 𝑦𝑗,𝑡, 𝑔𝑗,𝑡, ℎ𝑗,𝑡) =

1

𝐾
∑  𝛿𝑗𝑘

∗𝑡+1(𝑥𝑗𝑘,𝑡, 𝑦𝑗𝑘,𝑡, 𝑔𝑗𝑘,𝑡, ℎ𝑗𝑘,𝑡)

𝐾

𝑘=1

. (5.8) 

Eq. (5.8) provides an estimator of intertemporal inefficiency for firm 𝑗 at a mixed period 

in the sense that the noise term will be effectively canceled out as 𝐾 → ∞. Similarly, we 

can also evaluate firm 𝑗 at period 𝑡 + 1 relative to the production technology at period 

𝑡 by replacing the notations 𝑡 and 𝑡 + 1 in Eqs. (5.7) - (5.8) with each other. 

 

 

5.4 Stochastic nonparametric estimation of Malmquist-type 

indices 

 

This section provides an example of estimating the input-oriented Malmquist index based 

on the efficiencies defined in Section 5.3. Similar procedures can also be applied 

straightforwardly to the output-oriented Malmquist index as well as the Malmquist-

Luenberger indices (Chung et al. [69]). Recall the definition of the input-oriented 

Malmquist index in Eq. (2.12). It has been shown that the input distance function and the 

directional distance function are related by 1/𝐷(𝑥, 𝑦) = 1 − 𝐷⃗⃗ (𝑥, 𝑦, 𝑔, ℎ) if we specify 
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the direction vector as (𝑔, ℎ) = (𝑥, 0)  [25]. Therefore, the input-oriented Malmquist 

index in Eq. (2.12) can be subsequently written as 

 

𝑀 = [
1 − 𝐷⃗⃗ 𝑡(𝑥𝑡, 𝑦𝑡 , 𝑥𝑡, 0)

1 − 𝐷⃗⃗ 𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡+1, 0)

×
1 − 𝐷⃗⃗ 𝑡+1(𝑥𝑡, 𝑦𝑡 , 𝑥𝑡, 0)

1 − 𝐷⃗⃗ 𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡+1, 0)
]

1
2

. 

(5.9) 

Note that both Eqs. (2.12) and (5.9) can be measured in the deterministic approach, 

indicating that any distance between the observations and the production frontier can be 

treated as a measure of inefficiency. However, in practice, the observed data may be 

affected by both inefficiency and random noise, which makes it imprecise to interpret the 

estimated distance as a measure of inefficiency. If we apply the estimator of the 

directional distance function in Eqs. (5.5) and (5.7) directly to the definition Eq. (5.9), 

index 𝑀 will result in random variables. The following definition is then considered as 

a stochastic nonparametric estimation of an input-oriented Malmquist index for firm 𝑗: 

 

𝑀̅𝑗 = [
1 − 𝛿𝑗̅

𝑡(𝑥𝑗,𝑡, 𝑦𝑗,𝑡, 𝑥𝑗,𝑡, 0)

1 − 𝛿𝑗̅
𝑡(𝑥𝑗,𝑡+1, 𝑦𝑗,𝑡+1, 𝑥𝑗,𝑡+1, 0)

×
1 − 𝛿𝑗̅

𝑡+1(𝑥𝑗,𝑡, 𝑦𝑗,𝑡, 𝑥𝑗,𝑡, 0)

1 − 𝛿𝑗̅
𝑡+1(𝑥𝑗,𝑡+1, 𝑦𝑗,𝑡+1, 𝑥𝑗,𝑡+1, 0)

]

1
2

. 

(5.10) 

Eq. (5.10) is derived relative to the within and intertemporal efficiencies of firm 𝑗 

defined in Eqs. (5.6) and (5.8). Similar to the input-oriented Malmquist index in Eq. 

(2.12),  𝑀̅𝑗 < 1 indicates progress in productivity from period 𝑡 to 𝑡 + 1, while  𝑀̅𝑗 =

1 and  𝑀̅𝑗 > 1 indicate no change and regressing productivity, respectively. 

  It is also possible to decompose the Malmquist index defined in Eq. (5.10) as follows: 

𝑀̅𝑗 =
1 − 𝛿𝑗̅

𝑡(𝑥𝑗,𝑡, 𝑦𝑗,𝑡, 𝑥𝑗,𝑡, 0)

1 − 𝛿𝑗̅
𝑡+1(𝑥𝑗,𝑡+1, 𝑦𝑗,𝑡+1, 𝑥𝑗,𝑡+1, 0)

× [
1 − 𝛿𝑗̅

𝑡+1(𝑥𝑗,𝑡+1, 𝑦𝑗,𝑡+1, 𝑥𝑗,𝑡+1, 0)

1 − 𝛿𝑗̅
𝑡(𝑥𝑗,𝑡+1, 𝑦𝑗,𝑡+1, 𝑥𝑗,𝑡+1, 0)

×
1 − 𝛿𝑗̅

𝑡+1(𝑥𝑗,𝑡, 𝑦𝑗,𝑡, 𝑥𝑗,𝑡, 0)

1 − 𝛿𝑗̅
𝑡(𝑥𝑗,𝑡, 𝑦𝑗,𝑡, 𝑥𝑗,𝑡, 0)

]

1
2

. 

(5.11) 
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The first term measures the efficiency change (𝐸𝐶 ) between periods 𝑡  and 𝑡 + 1 . A 

value of 𝐸𝐶 less (greater) than unity indicates improved (declining) efficiency, and a 

value of 𝐸𝐶  equal to unity indicates no change in the efficiency. The second term 

captures the shift in the production frontier over time and is therefore referred to as 

technical change (𝑇𝐶). The frontier progresses if 𝑇𝐶 < 1, remains the same if 𝑇𝐶 = 1, 

and regresses if 𝑇𝐶 > 1. 

 

     

5.5 Concluding remarks 

 

This chapter provided a stochastic nonparametric estimation of an input-oriented 

Malmquist index. It is worth noting that the approach can also be applied 

straightforwardly to output-oriented Malmquist indices as well as Malmquist-Luenberger 

indices. Compared with the conventional input-oriented Malmquist index, the proposed 

index has the following features: 

(a) It measures productivity change over time using a nonparametric approach. 

(b) It is capable of dealing with multi-input and multi-output production technology.  

(c) It allows for the presence of random noise and meanwhile captures inefficiencies.  

Specifically, to account for the impact of random noise, a nonparametric regression 

technique, CNLS, is adopted to estimate multi-input and multi-output production 

technology characterized by a directional distance function. To evaluate inefficiencies, I 

first considered an estimator of inefficiency based on the residuals of the CNLS problem. 

By virtue of using panel data, inefficiency can be estimated consistently without imposing 

distributional assumptions. However, intertemporal efficiency cannot be assessed directly. 

To address this issue, I considered the estimator of the directional distance function and 

then extended it to the estimation of Malmquist-type indices. 
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Chapter 6 

Productivity analysis of Japanese regional banks 

 

 

 

6.1 Introduction 

 

The performance of regional banks has drawn a great deal of interest among researchers 

as well as regulators (e.g., Barros et al. [70], Fukuyama and Matousek [71], Fukuyama 

and Weber [72–74], Mamatzakis et al. [75]). However, most previous studies have applied 

either stochastic parametric estimation (e.g., SFA) or the deterministic nonparametric 

approach (e.g., DEA). Few studies have analyzed the banking sector in a StoNED 

framework (a rare example being Eskelinen and Kuosmanen [76]). This chapter 

investigates the productive performance of a sample of 101 Japanese regional banks over 

two periods by applying the stochastic nonparametric estimation of the input-oriented 

Malmquist index proposed in Section 5.4. The first and second periods cover 2008 to 

2012 and 2013 to 2017, respectively. Both panels are balanced. The dataset is drawn from 

the financial statements of all banks, as published by the Japanese Bankers Association 

(JBA). 

Japanese regional banks serve the diverse financial needs of individual customers, 

small- and medium-sized companies, and local governments, playing a primary role in 

the country s regional finance. These banks can be divided into two groups, namely, 

regional banks I (members of the Regional Banks Association of Japan) and regional 

banks II (members of the Second Association of Regional Banks). According to data from 

the Financial Services Agency in the fiscal year 2017, there were 64 banks classified as 

regional banks I and 40 banks classified as regional banks II. After eliminating those 

banks lacking adequate accounting records, the sample in this thesis contains 63 regional 

banks I and 38 regional banks II. Most regional banks II were referred to as mutual banks 

before they converted to regional banks, starting in 1989, under the Banking Law. Since 
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both types of regional banks have the same scope of the business, I simply use the term 

“regional banks” to refer to them. However, due to different financial supports in regional 

banks I and II, their efficiency levels may differ from each other (see, [71]). Therefore, I 

also investigate the differences between regional banks I and II. 

In exploring the performance of regional banks, it is important to acknowledge and 

consider prevailing political and macroeconomic contexts because these may affect bank 

management practices. After the 2008 global financial crisis, the Bank of Japan (BOJ) 

introduced significant monetary policy initiatives, including Quantitative-Qualitative 

Easing (QQE) in April 2013 to address inflation expectations and push down long-term 

interest rates. In practice, however, regional banks have been struggling to maintain 

profitability amid the persistently low-interest rates. 

  

 

Figure 6.1 Total loans, total deposits, and the loan-to-deposit ratio of regional banks. 

 

Figure 6.1 shows the loan-to-deposit ratio of regional banks during 2006-2017; a 

declining trend is evident from 2008, but this switched to an increasing trend starting in 

2013. According to the Financial System Report released by the BOJ in April 2018, 

regional banks are facing heated competition because of the low-interest rates, and have 
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been actively increasing the number of loans to low-return borrowers across a wide range 

of industries. Meanwhile, deposits have remained relatively low compared to loans due 

to the expansion of QQE with low deposit rates. On the other hand, long-term low deposit 

rates may have a positive contribution to the increase in interest income. However, the 

primary interest income (including interest on loans and securities), as shown in Fig.6.2, 

has been decreasing in practice since 2008 due to the higher decline in lending rates 

compared to deposit rates.  

Based on the above discussion, it is necessary to estimate the productive performance 

of regional banks either from the perspective of profitability management or policy 

analysis. Moreover, it is clear that different political and economic conditions have 

different impacts on the productive performance of regional banks. Therefore, the periods 

2008-2012 and 2013-2017 are considered separately to empirically estimate the 

productivity of regional banks over a long-term period. 

 

 

Figure 6.2 Growth of primary resources of revenue amid persistently low-interest 

rates. 
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6.2 Selection of inputs and outputs 

 

To characterize the inputs and outputs of regional banks, an intermediation approach is 

applied, which considers regional banks as financial intermediaries between savers and 

investors (see, e.g., [71,77,78]). As shown in Table 6.1, I assume regional banks use three 

inputs to produce two outputs. According to the 2018 Financial System Report, compared 

to real demand, there may be an excessive number of employees and offices in the 

banking sector due to the declining population. Thus, the number of employees (labor) 

and real estate (capital) should be considered as sources of inefficiency in the production 

process of regional banks. Further, based on Figs.6.1 and 6.2, I also specify deposits as 

an input, and loans and securities as outputs. Note that loans on the balance sheet contain 

both performing and non-performing loans. Nevertheless, this chapter focuses only on 

performing loans because, as argued by Boussemart et al. [79], the assumption of weak 

disposability of the good and bad outputs jointly is difficult to justify provided all regional 

banks properly evaluate all loan applications (see also [80]). 

 

Table 6.1. Definitions of inputs and outputs 

 Variables Definitions 

𝑥1 Labor Number of employees 

𝑥2 Deposits Deposits 

𝑥3 Capital Asset value of premises and real estate 

𝑦1 Loans Performing loans 

𝑦2 Securities Asset value of securities investments 
 

 

 

 

 

 

 

 



75 

 

6.3 Results of stochastic nonparametric estimation of the 

Malmquist index 

 

Appendix B shows the results of the proposed stochastic nonparametric estimation of an 

input-oriented Malmquist index. The essential steps of the estimation can be described as 

follows: 

Step 1 Solve the CNLS problem in Eq. (5.2) to estimate 𝜀𝑗̂
𝐶𝑁𝐿𝑆. Note that the scaling 

vectors g = (1,1,1) and h = (1,1) are specified for all observing years as the common 

pre-assigned direction, so that the underlying production technology allows for 

simultaneous unit contraction in inputs and expansion in outputs. 

Step 2 Apply Eq. (5.3) to evaluate the average performance of each regional bank (𝜀𝑗̅
𝐶𝑁𝐿𝑆). 

The nonnegative consistent inefficiency (𝑢̂𝑗  ) is then computed by adopting Eq. (5.4). 

Calculate the reference points according to (𝑥̂𝑗𝑘 , 𝑦̂𝑗𝑘) = (𝑥𝑗𝑘 − (𝜀𝑗̂𝑘
𝐶𝑁𝐿𝑆 + 𝜇̂)g, 𝑦𝑗𝑘 +

(𝜀𝑗̂𝑘
𝐶𝑁𝐿𝑆 + 𝜇̂)h), ∀𝑗, 𝑘. 

Step 3 Calculate the (input-oriented) within inefficiency by solving Eqs. (5.5) and (5.6). 

Calculate the (input-oriented) intertemporal inefficiency by solving Eqs. (5.7) and (5.8). 

Apply Eq. (5.11) to estimate the (input-oriented) efficiency change (𝐸𝐶) and the technical 

change (𝑇𝐶). The stochastic nonparametric estimation of the input-oriented Malmquist 

index is then derived by calculating the product of 𝐸𝐶 and 𝑇𝐶. 

Table 6.2 reports descriptive statistics for the estimated coefficients of the CNLS 

problem. Due to the pre-specified directions, the average estimated coefficients 𝛽̂ 

and  𝜏̂  for each period are summed to unity. Further, as explained in Section 5.2, 

parameters 𝛼 , 𝛽 , and 𝜏  characterize the shape of the boundary of the underlying 

production technology, as they specify tangent hyperplanes to the directional distance 

function. Since there is a little variation in the estimated coefficients 𝛽̂  and  𝜏̂ , it is 

reasonable to assume that the underlying production technology exhibits constant returns 

to scale when we proceed to estimate productivity growth. Meanwhile, both estimated 

coefficients 𝛽̂ and  𝜏̂ for 2013-2017 exhibit more variation than those for 2008-2012. 
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Therefore, it is meaningful to infer the difference in production technologies over the two 

periods.  

 

Table 6.2. Descriptive statistics of the estimated coefficients 

 Mean St. dev. Min Max 

(2008-2012)     

𝛼̂ -537.10228 594.18758 -2183.04860 4500.43787 

𝛽̂1 0.99724 0.02955 0.34129 0.99912 

𝛽̂2 0.00002 0.00032 0 0.00703 

𝛽̂3 0.00182 0.02913 0 0.65010 

𝜏̂1 0.00045 0.00047 0.00036 0.00800 

𝜏̂2 0.00047 0.00011 0.00000 0.00249 

(2013-2017)     

𝛼̂ 223.77785 15981.55023 -2195.17121 358377.19030 

𝛽̂1 0.99507 0.04558 0 0.99926 

𝛽̂2 0.00006 0.00027 0 0.00240 

𝛽̂3 0.00393 0.04361 0.00000 0.95433 

𝜏̂1 0.00050 0.00204 0 0.04568 

𝜏̂2 0.00044 0.00019 0.00000 0.00216 

Notes: Units of deposits, capital, loans, and securities are in a million yen. 
 

 

  Productivity growth can be estimated based on the results of the CNLS problem by 

simply applying Eq. (5.10). Figure 6.3 reports empirical results of the proposed input-

oriented Malmquist index under the assumption of constant returns to scale. The vertical 

axis represents the frequency of the estimated Malmquist index, and the horizontal axis 

represents the interval. As can be seen from the figure, a majority of regional banks had 

improved their productivity over the entire period. There was no evident difference in 

productivity change between regional banks I and II. Specifically, 17 of 63 (27%) regional 

banks I and 10 of 38 (26.3%) regional banks II have regressed in their productivity. 

Overall, the estimated input-oriented Malmquist index grew at an average of 2% from 

2008-2012 to 2013-2017.   



77 

 

 

Figure 6.3 Empirical results of stochastic nonparametric estimation of an input-

oriented Malmquist index. 

 

To further investigate the drivers of productivity growth, I categorized the decomposed 

components of the proposed input-oriented Malmquist index into a two-dimensional table, 

as shown in Fig.6.4 (see Appendix B for details). According to this decomposition, the 

productivity growth of regional banks is mainly attributable to technical progress. This 

could be related to political and macroeconomic changes (i.e., ongoing market expansion 

due to the heated competition spurred by low-interest rates, as discussed in Section 6.1). 

On the other hand, the estimated values of efficiency change are evenly distributed on the 

two sides of unity, and this applies to both regional banks I and II. As shown in Fig.6.4, 

32 of 63 (50.8%) regional banks I and 23 of 38 (60.5%) regional banks II exhibited 

efficiency improvements. Further, the average efficiency change of all regional banks is 

close to 1 (0.9986), which means average efficiency remained unchanged over the entire 

period. To understand this, note that regional banks have suffered a decline in primary 

interest income since 2008. Unchanged efficiency would suggest the overall effects of 
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managerial improvement are offset by the effects of low profitability. As a consequence, 

continuous productivity growth in regional banks would require efficiency improvements. 

From the perspective of operational management, regional banks should review their 

personnel assignments and fixed investments to improve average efficiencies. From the 

perspective of profitability management, regional banks should not only keep increasing 

loans to low-return borrowers but also increasingly diversify investments to improve their 

interest income, so that continuous productivity growth is achievable. 

 

 

Figure 6.4 Results of decomposing the proposed input-oriented Malmquist index. 
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6.4 Concluding remarks 

 

The methodology developed in Chapter 5 is applied to a sample of 101 Japanese regional 

banks over two periods. Note that the proposed index can be used for two or more than 

two periods. The estimated Malmquist index shows an increase in productivity change 

for both regional banks I and II. To investigate the drivers of productivity growth, I further 

decomposed the proposed index into components of efficiency change and technical 

change. The decomposition results show that the main factor contributing to productivity 

growth was technical progress, which provides a consistent interpretation of the estimated 

coefficients of the CNLS problem. The empirical results can reasonably be interpreted in 

terms of political and macroeconomic changes. Thus, the merits of the proposed index 

and the validity of the results have been illustrated.    
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Chapter 7 

A further study of Japanese securities companies under 

stochastic noise 

 

 

 

7.1 Introduction 

 

In Chapter 4, the profit-ratio change index is demonstrated in terms of a sample of 37 

Japanese securities companies observed from 2011 to 2015. Considering the significant 

changes in business management that appeared in the Japanese securities industry around 

the year 2013, the analysis is separated into the productivity change between the years 

2011 and 2013 and the productivity change between the years 2013 and 2015. The 

empirical results indicate that the productivity of Japanese securities companies 

progressed for each period.  

On the other hand, as already discussed in Chapter 5, different political and economic 

conditions may have different impacts on productive performance. Therefore, it would 

also be interesting to investigate the differences in productivity due to the changes in 

business management (i.e., the Japanese securities companies tended to focus more on 

the asset management business since 2013, see further details in Chapter 4). Since the 

primary focus for each period is the average productive performance of securities 

companies, I hereby adopt the stochastic nonparametric estimation of the Malmquist 

index to estimate the productivity changes between the analyzing periods 2011-2013 and 

2013-2015. Specifically, I consider the same sample of 37 Japanese securities companies 

and the same selection of inputs and outputs, as reported in Section 4.2. To estimate the 

average productive performance before and after the year 2013, I collected the panel data 

of two analyzing periods from annual securities reports as published by each securities 

company. The first analyzing period covers the years 2011, 2012, and 2013, and the 
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second one covers 2013, 2014, and 2015. 

 The rest of this chapter is organized as follows. Section 7.2 discusses the empirical 

results. Section 7.3 concludes the chapter. An appendix of the detail results is provided in 

the last section. 

 

 

7.2 Empirical results 

 

This section is divided into three parts. The first part provides the economic interpretation 

of the coefficients estimated from the panel-data model; the second part examines the 

results of the estimated inefficiencies; the last part summarizes the results of the stochastic 

nonparametric estimation of the input-oriented Malmquist index. 

 

7.2.1 The interpretation of the estimated coefficients  

 

To allow for the simultaneous unit contraction in inputs and expansion in outputs, I 

specify the direction vectors g = (1,1,1) and h = (1,1) for all observing years as the 

common pre-assigned direction when adopting the panel-data model in Section 5.2. The 

descriptive statistics of the estimated parameters 𝛼̂, 𝛽̂, and  𝜏̂ in the two periods are 

reported in Table 7.1. 

 

Table 7.1. Descriptive statistics of the estimated coefficients 

 Mean St. dev. Min Max 

(2011-2013)     

𝛼̂ 1276.31044 7885.43320 -3699.294811 80952.44237 

𝛽̂1 0.30229 0.26452 0 0.84494 

𝛽̂2 0.13703 0.16991 0 0.68886 

𝛽̂3 0.20206 0.22682 0 0.70063 

𝜏̂1 0.08568 0.11621 0 0.99570 

𝜏̂2 0.11750 0.10034 0.00000 0.43425 

𝜏̂3 0.11184 0.12511 0.00000 0.49967 
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𝜏̂4 0.04360 0.04322 0.00000 0.24026 

(2013-2015)     

𝛼̂ 2508.85972 13255.29478 -3863.53292 137299.52707 

𝛽̂1 0.31297 0.27632 0 0.85622 

𝛽̂2 0.15080 0.18438 0 0.63350 

𝛽̂3 0.22703 0.24717 0 0.83953 

𝜏̂1 0.06616 0.07623 0 0.48147 

𝜏̂2 0.09953 0.08954 0.00000 0.45064 

𝜏̂3 0.08986 0.10552 0 0.51667 

𝜏̂4 0.05365 0.05888 0.00000 0.32041 
 

 

According to the duality between the directional distance function and the profit 

function, coefficients 𝛽  and 𝜏  can be interpreted as the marginal products of input-

spending and output-earnings, respectively. Note that all inputs and outputs of Japanese 

securities companies have the same unit (yen), and thus the inefficiency is estimated on 

monetary sale. For example, increasing the trading related expenses (𝑥̅1 ) by one yen 

increases inefficiency by 30.2% yen, on average, across all observed securities companies 

over the period 2011-2013. Further, recall that parameters 𝛼, 𝛽, and 𝜏 of the panel-data 

model characterize the shape of the boundary of the underlying production technology. 

As shown in Table 7.1, the estimated coefficients 𝛽̂ and  𝜏̂ for 2013-2015 exhibit more 

variation than those for 2011-2013, implying that production technology changes over 

two periods. Section 7.2.3 further investigates the extent of changes in production 

technologies by adopting the stochastic nonparametric estimation of the input-oriented 

Malmquist index. 

 

7.2.2 Results of the estimated inefficiencies   

 

Based on the estimated CNLS residuals, the inefficiency term of each securities company 

is derived by using Eq. (5.4) in Chapter 5. The results of the average inefficiencies and 

the standard deviations of the inefficiency and noise are summarized below. 
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Table 7.1. Results of the average inefficiencies and the standard deviations of the 

inefficiency and noise 

 (2011-2013) (2013-2015) 

𝜇̂ 802.66805 742.40660 

𝜎̂𝑢 344.78232 203.25239 

𝜎̂𝑣 424.10025 397.33423 
 

 

As can be seen from Table 7.1, the average inefficiency 𝜇̂ in the securities industry 

decreased over time. Meanwhile, there is a significant variation of the inefficiency over 

two periods in the sense that 𝜎̂𝑢 in the period 2011-2013 is larger than that in the period 

2013-2015. In contrast, the differences in 𝜎̂𝑣 over two periods are quite small, which 

indicates that the noises for both periods behave nearly the same.   

To further evaluate the results of the estimated inefficiencies, I next consider if there 

might be a problem with outliers (i.e., the one whose relative performance difference is 

extreme). A simple way to identify the outliers is to use the scatterplot matrix, which is 

symmetric about its diagonal and shows the relationships (linear correlations) between 

multiple variables. The scatterplot matrices for 37 Japanese securities companies with 

three inputs and four outputs are shown in Figs.7.1 and 7.2. The diagonals of those two 

figures plot univariate histograms of the input and output variables in two periods, 

respectively. It is clear that there are 3 points above all the other points as on the upper 

right of each figure. Indeed, these points are the same securities company (M1) who has 

more massive inputs and outputs than the others over the period 2011-2015. To see 

whether the outlier has a considerable influence on the or not, I eliminate M1 and re-

estimate the panel-data model in Section 5.2. 
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Figure 7.1 Scatterplot matrix of the data in the period 2011-2013. 
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Figure 7.2 Scatterplot matrix of the data in the period 2013-2015. 

 

The re-estimated results of the average inefficiencies and the standard deviations of the 

inefficiency and noise are summarized below. 

 

Table 7.2. Re-estimated results of the average inefficiencies and the standard 

deviations of the inefficiency and noise 

 (2011-2013) (2013-2015) 

 37 observations 36 observations 37 observations 36 observations 

𝜇̂ 802.66805 799.93347 742.40660 741.75461 

𝜎̂𝑢 344.78232 353.75853 203.25239 202.35733 

𝜎̂𝑣 424.10025 425.00023 397.33423 363.17758 
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In Table 7.2, we can see that 𝜇̂, 𝜎̂𝑢, and 𝜎̂𝑣 estimated without the outlier are nearly 

the same as the original values. To further investigate the extent to which the outlier 

affects the estimation of inefficiency, I calculated the rank correlation of the original 

estimated inefficiencies (where the inefficiency score of M1 is eliminated) and the re-

estimated inefficiencies. As a result, the Spearman's rank correlation coefficient is 

0.99990 in the period 2011-2013 and 0.99750 in the period 2013-2015. That is, the same 

ranking of inefficiencies for securities companies is observed, no matter whether the 

outliers are eliminated or not. Indeed, the same can be said of the estimated Malmquist 

index as well. The rank correlation of the Malmquist index based on the original 

inefficiencies and the one based on the re-estimated inefficiencies is 0.99995. These 

results indicate that, in this empirical application, the ranks of the efficiencies estimated 

in the panel-data model (as well as the Malmquist index to be discussed in Section 7.3) 

are unaffected by the outliers. Considering that the outlier (M1) may reflect the innovation 

in business management from which other securities companies would want to learn, the 

productivity analysis proceeds with the original dataset for 37 securities companies with 

three inputs and four outputs. 

 

7.2.3 Results of the stochastic nonparametric estimation of the 

Malmquist index   

 

Figure 7.3 visualizes the empirical results of the stochastic nonparametric estimation of 

an input-oriented Malmquist index (see Appendix C for more details). As can be seen 

from the figure, most Japanese securities companies had improved their productivity from 

the period 2011-2013 to the period 2013-2015. Specifically, 33 of 37 (89.2%) securities 

companies have progressed in their productivity. Overall, the estimated input-oriented 

Malmquist index implies the productivity of Japanese securities companies grew at an 

average of 19.7% after 2013, where the paradigm shifts in the asset management business 

occurred.  
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Figure 7.3 Empirical results of stochastic nonparametric estimation of an input-

oriented Malmquist index. 

 

  The estimated input-oriented Malmquist index can be decomposed into a technical 

efficiency change component and a technical change component. As shown in Fig.7.4, 

the productivity growth in the securities industry was mainly attributable to the technical 

progress, which had an average growth rate of 23.5%. This could be related to the 

paradigm shifts in the asset management business over two periods and explains why the 

average inefficiency in the securities industry improved from the period 2011-2013 to the 

period 2013-2015. On the other hand, the (input-oriented) efficiency change regressed at 

an average rate of 5.0%, indicating the average (input-oriented) performance of the 

observed securities companies declined after the business management changed. In 

summary, the managers of Japanese securities companies should pay attention to their 

operational and managerial performance in inputs to catch up with the changes in business 

management. 
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Figure 7.4 Results of decomposing the proposed input-oriented Malmquist index. 

 

 

7.3 Concluding remarks 

 

This chapter investigated the productivity changes of Japanese securities companies from 

the period 2011-2013 to the period 2013-2015. Specifically, the stochastic nonparametric 

estimation of the input-oriented Malmquist index proposed in Chapter 5 is applied. 

According to the analysis of estimated residuals and inefficiencies, there is a significant 

variation in inefficiencies over time whereas the noise behaves nearly the same for both 

periods. To see whether the outliers have a significant influence on the estimation of 

inefficiency, I re-estimated the panel-data model proposed in Chapter 5 and calculated the 

rank correlation of the original and the re-estimated inefficiencies. The results found that 

the ranks of the efficiencies are unaffected by the outlies. Considering that the outlier may 
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reflect the innovation in business management from which other securities companies 

would want to learn, the productivity analysis has proceeded with the original dataset for 

37 securities companies. The empirical results indicate that the productivity of Japanese 

securities companies progressed over two periods, and the main driver of productivity 

growth was the technical progress.   
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Chapter 8 

Conclusions 

 

 

 

The thesis provided two types of nonparametric methodologies for analyzing efficiency 

and productivity change. Based on the theory of DEA, a new efficiency concept is 

developed: allocative efficiency regarding profit-ratio maximization. The derived 

efficiency is then used to construct a novel comprehensive productivity index: a profit-

ratio change index. Note that the DEA approach assumes away stochastic noise. Therefore, 

based on the theory of StoNED, a stochastic nonparametric estimation of Malmquist-type 

indices is also proposed to account for the impact of noise. Empirical applications are 

provided for demonstrating the proposed methods. Specifically, the contributions of this 

thesis are summarized as follows: 

(a) A new scheme of allocative efficiency is developed. The allocative efficiency 

regarding profit-ratio maximization is suitable for performance evaluations in which 

producers desire to maximize revenue and minimize expenses simultaneously. It 

provides a comprehensive understanding of the sources of inefficiency, that is, the 

wrong input mix, the wrong output mix, and the wrong mix in both inputs and outputs. 

Further, the price information is not necessary because a value-based technology set 

is incorporated. 

(b) A new Malmquist-type index is proposed, which accounts for the impact of allocative 

efficiency changes on productivity change. The profit-ratio change index can be 

applied to panel data to measure productivity change and suitable for profit-seeking 

organizations or industries. The index can be decomposed into the conventional 

Malmquist index and an allocation Malmquist index. Since the latter evaluates the 

impact of allocative efficiency changes on productivity change, the decomposition 

suggests the profit-ratio change index gives a comprehensive understanding of the 

sources of productivity change. 
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(c) A new model for estimating the Malmquist-type indices under stochastic noise is 

suggested. The proposed stochastic nonparametric estimation of Malmquist-type 

indices can be used to measure the productivity change in a stochastic setting. It is 

also capable of dealing with multi-input and multi-output production technology. 

(d) In Japan, both securities companies and regional banks face significant challenges in 

their management under uncertain economic conditions and a competitive business 

environment. Using the above nonparametric methods, I evaluated the productive 

performances of Japanese securities companies and regional banks, respectively. I 

also investigated the drivers of productivity change by applying the decomposition 

of Malmquist-type indices. These results provide realistic projections and policy 

implications for improving the productive performance. 

Despite the fact that the performance evaluation plays an essential role in the fields of 

management science and economics, assessing efficiency and productivity can be 

difficult in some situations, especially when the prior information on the production 

function is unavailable or multiple inputs and multiple outputs are involved. By 

addressing essential practical and theoretical problems in the measurement of allocative 

efficiency and performance evaluation under stochastic noise, the proposed methods of 

this thesis contributed to the nonparametric evaluation of efficiency and productivity in 

the multi-input and multi-output setting. In other words, those methods can be applied to 

a wide range of production activities that transform multiple inputs to multiple outputs, 

and the prior information on the relationship of inputs and outputs is not required. The 

proposed methods provide potent tools for decision-makers, regulators, or policy-makers. 

Through the performance evaluations, valuable information such as realistic projections 

and policy implications can be easily derived from the evaluated results, which is required 

for continuous performance improvement. 

In future research, I would like to develop a StoNED-based estimation of the profit-

ratio change index. It would also be attractive to consider alternative representations of 

multi-input and multi-output production technology using Shephard distance functions. I 

have done some theoretical works in this field, which may provide useful insights for 

future researches. 
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Appendices 
 

 

 

Appendix A: Empirical results in Chapter 4 

 

Note: 

(a) M1~M5 are the major securities companies, B6~B12 are the bank-affiliated securities 

companies, O13~O19 are the online brokers, and I20~I37 are the other integrated 

securities companies. 

(b) As discussed in Section 2.3, the intertemporal comparison terms of 𝑃𝐼 

(𝜋𝑡(𝑥̅𝑖𝑜,𝑡+1
∗𝑡 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡 ) and 𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡
∗𝑡+1, 𝑦̅𝑟𝑜,𝑡

∗𝑡+1)) may have infeasible solutions. Such cases 

are reported in Tables A-3 and A-3, and alternatively used a super efficiency evaluation 

(Andersen and Petersen [57]) to calculate the profit-ratio efficiency in Eq. (8). The values 

with “*” represent the cases that 𝜋𝑡(𝑥̅𝑖𝑜,𝑡+1
∗𝑡 , 𝑦̅𝑟𝑜,𝑡+1

∗𝑡 )  were infeasible, implying the 

technology in time period 𝑡 does not encompass the evaluated company in period 𝑡 + 1, 

and the values with “**” represent the cases that 𝜋𝑡+1(𝑥̅𝑖𝑜,𝑡
∗𝑡+1, 𝑦̅𝑟𝑜,𝑡

∗𝑡+1) were infeasible, 

implying the technology in time period 𝑡 + 1  does not encompass the evaluated 

company in period 𝑡. 

 

Table A-1. Results of profit-ratio, technical and allocative efficiencies in 2011, 2013, and 2015 

Activities 
2011       2013       2015   

𝑃𝐸 𝑇𝐸 𝐴𝐸   𝑃𝐸 𝑇𝐸 𝐴𝐸   𝑃𝐸 𝑇𝐸 𝐴𝐸 

M1 1.000 1.000 1.000   0.749 0.975 0.768   0.751 0.969 0.775 

M2 1.000 1.000 1.000  1.000 1.000 1.000  0.748 0.850 0.881 

M3 1.000 1.000 1.000  1.000 1.000 1.000  0.708 0.932 0.759 

M4 0.368 0.505 0.729  0.656 0.754 0.869  0.746 0.794 0.939 

M5 0.656 0.734 0.895  0.671 0.795 0.844  0.681 0.785 0.867 
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B6 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

B7 1.000 1.000 1.000  1.000 1.000 1.000  0.768 0.809 0.949 

B8 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

B9 1.000 1.000 1.000  0.633 0.915 0.691  0.615 0.859 0.716 

B10 0.455 0.651 0.698  0.630 1.000 0.630  1.000 1.000 1.000 

B11 0.691 0.923 0.749  0.624 0.871 0.717  0.665 0.948 0.701 

B12 0.596 0.766 0.777  0.619 0.973 0.636  1.000 1.000 1.000 

O13 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

O14 1.000 1.000 1.000  0.790 0.914 0.865  0.757 0.878 0.862 

O15 0.680 0.969 0.702  0.710 0.889 0.798  0.684 0.816 0.839 

O16 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

O17 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

O18 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

O19 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

I20 0.675 0.796 0.849  0.730 0.899 0.812  1.000 1.000 1.000 

I21 0.769 0.845 0.910  0.810 0.938 0.863  0.849 0.965 0.881 

I22 0.892 0.994 0.897  1.000 1.000 1.000  0.802 0.973 0.824 

I23 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

I24 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

I25 0.619 0.692 0.895  0.534 0.744 0.718  0.554 0.759 0.730 

I26 0.825 0.907 0.909  1.000 1.000 1.000  0.794 0.909 0.873 

I27 0.701 0.861 0.815  0.587 0.762 0.770  0.719 0.934 0.770 

I28 0.689 0.872 0.789  0.729 0.917 0.795  0.729 0.897 0.812 

I29 0.730 0.893 0.818  0.557 0.713 0.781  0.702 0.947 0.742 

I30 0.465 0.655 0.710  0.766 0.930 0.823  0.508 0.803 0.633 

I31 0.576 0.735 0.783  0.603 0.814 0.741  1.000 1.000 1.000 

I32 0.563 0.753 0.747  1.000 1.000 1.000  0.626 0.955 0.655 

I33 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

I34 0.488 0.738 0.662  0.560 0.951 0.589  1.000 1.000 1.000 

I35 0.526 0.745 0.706  1.000 1.000 1.000  0.467 0.642 0.728 

I36 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

I37 0.595 0.861 0.691  1.000 1.000 1.000  1.000 1.000 1.000 

Mean 0.799 0.889 0.885  0.837 0.939 0.884  0.834 0.930 0.890 

G.Mean 0.769 0.878 0.876  0.817 0.935 0.873  0.816 0.926 0.882 
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SD 0.210 0.136 0.123  0.180 0.088 0.134  0.170 0.091 0.122 

Min 0.368 0.505 0.662  0.534 0.713 0.589  0.467 0.642 0.633 

Max 1.000 1.000 1.000   1.000 1.000 1.000   1.000 1.000 1.000 

 

 

Table A-2. Results of the profit-ratio change index and its component indices from 2011 to 2013 

(the case of three inputs and four outputs) 

Activities 
𝑃𝐼 = 𝑃𝐸𝐶 × 𝑃𝑇𝐶  𝑀𝐼 = 𝑇𝐸𝐶 × 𝑇𝐶  𝐴𝑀𝐼 = 𝐴𝐸𝐶 × 𝐴𝑇𝐶 

𝑃𝐼 𝑃𝐸𝐶 𝑃𝑇𝐶   𝑀𝐼 𝑇𝐸𝐶 𝑇𝐶   𝐴𝑀𝐼 𝐴𝐸𝐶 𝐴𝑇𝐶 

M1 1.006 1.335 0.754   0.986 1.025 0.962   1.021 1.302 0.784 

M2 0.932 1.000 0.932  0.975 1.000 0.975  0.956 1.000 0.956 

M3 0.941 1.000 0.941  0.989 0.998 0.990  0.952 1.002 0.951 

M4 0.429 0.562 0.765  0.640 0.670 0.955  0.671 0.838 0.800 

M5 0.709 0.977 0.725  0.787 0.923 0.853  0.901 1.059 0.850 

B6 0.895 1.000 0.895  0.862 1.000 0.862  1.039 1.000 1.039 

B7 0.911** 1.000 0.911**  1.182 1.000 1.182  0.771 1.000 0.771 

B8 0.811 1.000 0.811  0.861 1.000 0.861  0.942 1.000 0.942 

B9 1.288 1.581 0.815  1.187 1.092 1.087  1.085 1.447 0.750 

B10 0.624 0.722 0.864  0.767 0.651 1.178  0.813 1.108 0.734 

B11 0.766 1.106 0.693  0.818 1.059 0.773  0.936 1.045 0.896 

B12 0.624 0.962 0.649  0.552 0.788 0.701  1.131 1.221 0.926 

O13 1.048 1.000 1.048  0.894 1.000 0.894  1.173 1.000 1.173 

O14 1.222 1.266 0.965  1.371 1.094 1.253  0.891 1.157 0.771 

O15 0.990 0.958 1.034  1.045 1.090 0.959  0.947 0.879 1.078 

O16 0.977 1.000 0.977  1.008 1.000 1.008  0.969 1.000 0.969 

O17 1.084** 1.000 1.084**  1.131 1.000 1.131  0.958 1.000 0.958 

O18 0.812** 1.000 0.812**  1.146 1.000 1.146  0.708 1.000 0.708 

O19 1.367** 1.000 1.367**  1.124 1.000 1.124  1.217 1.000 1.217 

I20 0.707 0.925 0.764  0.766 0.885 0.865  0.923 1.045 0.883 

I21 0.701 0.950 0.738  0.712 0.901 0.791  0.984 1.055 0.933 

I22 0.771* 0.892 0.864*  0.825 0.994 0.830  0.934 0.897 1.041 

I23 0.873* 1.000 0.873*  0.926 1.000 0.926  0.943 1.000 0.943 

I24 0.859* 1.000 0.859*  0.904 1.000 0.904  0.951 1.000 0.951 

I25 0.868 1.160 0.749  0.795 0.931 0.854  1.092 1.246 0.876 
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I26 0.836 0.825 1.014  0.771 0.907 0.850  1.085 0.909 1.193 

I27 0.899 1.195 0.753  0.991 1.130 0.877  0.907 1.058 0.858 

I28 0.759 0.945 0.804  0.886 0.952 0.931  0.858 0.993 0.864 

I29 0.854 1.312 0.651  0.960 1.251 0.767  0.889 1.048 0.849 

I30 0.483 0.608 0.795  0.600 0.705 0.851  0.806 0.863 0.934 

I31 0.667 0.955 0.698  0.727 0.903 0.805  0.917 1.058 0.867 

I32 0.478 0.563 0.850  0.586 0.753 0.778  0.816 0.747 1.093 

I33 0.605* 1.000 0.605*  0.640 1.000 0.640  0.945 1.000 0.945 

I34 0.616 0.872 0.706  0.712 0.776 0.918  0.865 1.124 0.770 

I35 0.539 0.526 1.025  0.723 0.745 0.970  0.746 0.706 1.057 

I36 0.722 1.000 0.722  0.805 1.000 0.805  0.898 1.000 0.898 

I37 0.667 0.595 1.121  0.866 0.861 1.006  0.770 0.691 1.115 

Mean 0.820 0.967 0.855  0.879 0.948 0.926  0.930 1.013 0.928 

G.Mean 0.793 0.941 0.842  0.860 0.939 0.916  0.922 1.003 0.919 

SD 0.216 0.219 0.157  0.188 0.132 0.141  0.123 0.148 0.130 

Min 0.429 0.526 0.605  0.552 0.651 0.640  0.671 0.691 0.708 

Max 1.367 1.581 1.367   1.371 1.251 1.253   1.217 1.447 1.217 

 

 

Table A-3. Results of the profit-ratio change index and its component indices from 2013 to 2015 

(the case of three inputs and four outputs) 

Activities 
𝑃𝐼 = 𝑃𝐸𝐶 × 𝑃𝑇𝐶  𝑀𝐼 = 𝑇𝐸𝐶 × 𝑇𝐶  𝐴𝑀𝐼 = 𝐴𝐸𝐶 × 𝐴𝑇𝐶 

𝑃𝐼 𝑃𝐸𝐶 𝑃𝑇𝐶   𝑀𝐼 𝑇𝐸𝐶 𝑇𝐶   𝐴𝑀𝐼 𝐴𝐸𝐶 𝐴𝑇𝐶 

M1 0.938 0.998 0.940   1.013 1.007 1.006   0.926 0.991 0.935 

M2 1.194 1.336 0.893  1.098 1.177 0.933  1.087 1.135 0.957 

M3 1.336 1.412 0.946  1.151 1.074 1.071  1.160 1.315 0.883 

M4 0.899 0.879 1.022  0.908 0.950 0.956  0.990 0.925 1.070 

M5 0.991 0.986 1.005  0.977 1.012 0.965  1.015 0.974 1.042 

B6 0.965** 1.000 0.965**  0.988 1.000 0.988  0.977 1.000 0.977 

B7 0.947 1.302 0.727  0.960 1.236 0.776  0.986 1.053 0.936 

B8 0.956 1.000 0.956  0.903 1.000 0.903  1.059 1.000 1.059 

B9 0.804 1.028 0.782  0.932 1.065 0.875  0.862 0.965 0.894 

B10 0.591 0.630 0.937  0.836 1.000 0.836  0.706 0.630 1.121 

B11 0.950 0.939 1.012  0.893 0.919 0.972  1.064 1.022 1.041 
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B12 0.729 0.619 1.177  0.931 0.973 0.957  0.783 0.636 1.230 

O13 0.863 1.000 0.863  0.756 1.000 0.756  1.142 1.000 1.142 

O14 0.810 1.044 0.776  0.784 1.041 0.754  1.033 1.003 1.029 

O15 0.782 1.038 0.754  0.856 1.091 0.785  0.915 0.952 0.961 

O16 0.925 1.000 0.925  0.806 1.000 0.806  1.147 1.000 1.147 

O17 0.912 1.000 0.912  0.874 1.000 0.874  1.045 1.000 1.045 

O18 1.083 1.000 1.083  0.992 1.000 0.992  1.092 1.000 1.092 

O19 0.613* 1.000 0.613*  0.707 1.000 0.707  0.868 1.000 0.868 

I20 0.713 0.730 0.976  0.893 0.899 0.994  0.798 0.812 0.983 

I21 0.969 0.953 1.016  0.996 0.973 1.023  0.973 0.980 0.993 

I22 1.179 1.247 0.946  1.040 1.027 1.012  1.134 1.213 0.935 

I23 0.905 1.000 0.905  0.912 1.000 0.912  0.992 1.000 0.992 

I24 0.957 1.000 0.957  0.916 1.000 0.916  1.045 1.000 1.045 

I25 0.867 0.964 0.900  0.933 0.980 0.951  0.930 0.983 0.946 

I26 1.152 1.259 0.915  1.101 1.100 1.000  1.047 1.145 0.915 

I27 0.707 0.816 0.866  0.779 0.816 0.956  0.907 1.001 0.907 

I28 0.890 1.000 0.890  0.951 1.022 0.930  0.936 0.979 0.957 

I29 0.834 0.793 1.052  0.785 0.753 1.042  1.062 1.053 1.009 

I30 1.280 1.506 0.850  1.122 1.158 0.969  1.141 1.300 0.877 

I31 0.416 0.603 0.690  0.428 0.814 0.526  0.972 0.741 1.312 

I32 1.168** 1.598 0.731**  1.065 1.047 1.016  1.097 1.526 0.719 

I33 1.187** 1.000 1.187**  1.268 1.000 1.268  0.936 1.000 0.936 

I34 0.590 0.560 1.054  0.794 0.951 0.835  0.743 0.589 1.262 

I35 1.209 2.142 0.565  1.003 1.558 0.644  1.206 1.374 0.877 

I36 0.920 1.000 0.920  0.887 1.000 0.887  1.038 1.000 1.038 

I37 0.855 1.000 0.855  0.802 1.000 0.802  1.066 1.000 1.066 

Mean 0.921 1.037 0.907  0.920 1.017 0.908  0.997 1.008 1.005 

G.Mean 0.897 1.001 0.896  0.907 1.010 0.898  0.989 0.991 0.999 

SD 0.205 0.297 0.136  0.147 0.129 0.133  0.119 0.186 0.118 

Min 0.416 0.560 0.565  0.428 0.753 0.526  0.706 0.589 0.719 

Max 1.336 2.142 1.187   1.268 1.558 1.268   1.206 1.526 1.312 
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Table A-4. Results of the profit-ratio change index and its component indices from 2011 to 2013 

(the case of an aggregated input and aggregated output) 

Activities 
𝑃𝐼 = 𝑃𝐸𝐶 × 𝑃𝑇𝐶  𝑀𝐼 = 𝑇𝐸𝐶 × 𝑇𝐶  𝐴𝑀𝐼 = 𝐴𝐸𝐶 × 𝐴𝑇𝐶 

𝑃𝐼 𝑃𝐸𝐶 𝑃𝑇𝐶   𝑀𝐼 𝑇𝐸𝐶 𝑇𝐶   𝐴𝑀𝐼 𝐴𝐸𝐶 𝐴𝑇𝐶 

M1 0.915 1.238 0.739   0.915 1.238 0.739   1.000 1.000 1.000 

M2 0.829 1.122 0.739  0.829 1.122 0.739  1.000 1.000 1.000 

M3 0.922 1.247 0.739  0.922 1.247 0.739  1.000 1.000 1.000 

M4 0.449 0.608 0.739  0.449 0.608 0.739  1.000 1.000 1.000 

M5 0.739 1.000 0.739  0.739 1.000 0.739  1.000 1.000 1.000 

B6 0.855 1.157 0.739  0.855 1.157 0.739  1.000 1.000 1.000 

B7 0.849 1.149 0.739  0.849 1.149 0.739  1.000 1.000 1.000 

B8 0.797 1.078 0.739  0.797 1.078 0.739  1.000 1.000 1.000 

B9 1.089 1.473 0.739  1.089 1.473 0.739  1.000 1.000 1.000 

B10 0.683 0.924 0.739  0.683 0.924 0.739  1.000 1.000 1.000 

B11 0.905 1.225 0.739  0.905 1.225 0.739  1.000 1.000 1.000 

B12 0.689 0.932 0.739  0.689 0.932 0.739  1.000 1.000 1.000 

O13 1.022 1.382 0.739  1.022 1.382 0.739  1.000 1.000 1.000 

O14 1.033 1.398 0.739  1.033 1.398 0.739  1.000 1.000 1.000 

O15 0.932 1.261 0.739  0.932 1.261 0.739  1.000 1.000 1.000 

O16 0.995 1.346 0.739  0.995 1.346 0.739  1.000 1.000 1.000 

O17 1.082 1.464 0.739  1.082 1.464 0.739  1.000 1.000 1.000 

O18 0.819 1.108 0.739  0.819 1.108 0.739  1.000 1.000 1.000 

O19 1.014 1.372 0.739  1.014 1.372 0.739  1.000 1.000 1.000 

I20 0.786 1.064 0.739  0.786 1.064 0.739  1.000 1.000 1.000 

I21 0.804 1.088 0.739  0.804 1.088 0.739  1.000 1.000 1.000 

I22 0.858 1.160 0.739  0.858 1.160 0.739  1.000 1.000 1.000 

I23 0.876 1.185 0.739  0.876 1.185 0.739  1.000 1.000 1.000 

I24 0.885 1.198 0.739  0.885 1.198 0.739  1.000 1.000 1.000 

I25 0.939 1.270 0.739  0.939 1.270 0.739  1.000 1.000 1.000 

I26 0.774 1.047 0.739  0.774 1.047 0.739  1.000 1.000 1.000 

I27 0.920 1.244 0.739  0.920 1.244 0.739  1.000 1.000 1.000 

I28 0.790 1.070 0.739  0.790 1.070 0.739  1.000 1.000 1.000 

I29 0.862 1.166 0.739  0.862 1.166 0.739  1.000 1.000 1.000 

I30 0.606 0.820 0.739  0.606 0.820 0.739  1.000 1.000 1.000 
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I31 0.823 1.114 0.739  0.823 1.114 0.739  1.000 1.000 1.000 

I32 0.694 0.939 0.739  0.694 0.939 0.739  1.000 1.000 1.000 

I33 0.604 0.817 0.739  0.604 0.817 0.739  1.000 1.000 1.000 

I34 0.862 1.166 0.739  0.862 1.166 0.739  1.000 1.000 1.000 

I35 0.828 1.121 0.739  0.828 1.121 0.739  1.000 1.000 1.000 

I36 0.890 1.204 0.739  0.890 1.204 0.739  1.000 1.000 1.000 

I37 0.768 1.039 0.739  0.768 1.039 0.739  1.000 1.000 1.000 

Mean 0.843 1.140 0.739  0.843 1.140 0.739  1.000 1.000 1.000 

G.Mean 0.831 1.125 0.739  0.831 1.125 0.739  1.000 1.000 1.000 

SD 0.135 0.182 0.000  0.135 0.182 0.000  0.000 0.000 0.000 

Min 0.449 0.608 0.739  0.449 0.608 0.739  1.000 1.000 1.000 

Max 1.089 1.473 0.739   1.089 1.473 0.739   1.000 1.000 1.000 

 

 

Table A-5. Results of the profit-ratio change index and its component indices from 2013 to 2015 

(the case of an aggregated input and aggregated output) 

Activities 
𝑃𝐼 = 𝑃𝐸𝐶 × 𝑃𝑇𝐶  𝑀𝐼 = 𝑇𝐸𝐶 × 𝑇𝐶  𝐴𝑀𝐼 = 𝐴𝐸𝐶 × 𝐴𝑇𝐶 

𝑃𝐼 𝑃𝐸𝐶 𝑃𝑇𝐶   𝑀𝐼 𝑇𝐸𝐶 𝑇𝐶   𝐴𝑀𝐼 𝐴𝐸𝐶 𝐴𝑇𝐶 

M1 0.880 0.800 1.100   0.880 0.800 1.100   1.000 1.000 1.000 

M2 1.184 1.076 1.100  1.184 1.076 1.100  1.000 1.000 1.000 

M3 1.026 0.932 1.100  1.026 0.932 1.100  1.000 1.000 1.000 

M4 0.926 0.842 1.100  0.926 0.842 1.100  1.000 1.000 1.000 

M5 1.010 0.918 1.100  1.010 0.918 1.100  1.000 1.000 1.000 

B6 0.874 0.794 1.100  0.874 0.794 1.100  1.000 1.000 1.000 

B7 0.916 0.833 1.100  0.916 0.833 1.100  1.000 1.000 1.000 

B8 0.945 0.858 1.100  0.945 0.858 1.100  1.000 1.000 1.000 

B9 0.774 0.703 1.100  0.774 0.703 1.100  1.000 1.000 1.000 

B10 0.674 0.612 1.100  0.674 0.612 1.100  1.000 1.000 1.000 

B11 0.975 0.886 1.100  0.975 0.886 1.100  1.000 1.000 1.000 

B12 0.893 0.812 1.100  0.893 0.812 1.100  1.000 1.000 1.000 

O13 0.891 0.810 1.100  0.891 0.810 1.100  1.000 1.000 1.000 

O14 0.876 0.796 1.100  0.876 0.796 1.100  1.000 1.000 1.000 

O15 0.864 0.785 1.100  0.864 0.785 1.100  1.000 1.000 1.000 

O16 0.827 0.752 1.100  0.827 0.752 1.100  1.000 1.000 1.000 
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O17 0.949 0.862 1.100  0.949 0.862 1.100  1.000 1.000 1.000 

O18 1.184 1.076 1.100  1.184 1.076 1.100  1.000 1.000 1.000 

O19 1.039 0.944 1.100  1.039 0.944 1.100  1.000 1.000 1.000 

I20 0.903 0.821 1.100  0.903 0.821 1.100  1.000 1.000 1.000 

I21 0.896 0.814 1.100  0.896 0.814 1.100  1.000 1.000 1.000 

I22 1.184 1.076 1.100  1.184 1.076 1.100  1.000 1.000 1.000 

I23 0.910 0.827 1.100  0.910 0.827 1.100  1.000 1.000 1.000 

I24 0.886 0.805 1.100  0.886 0.805 1.100  1.000 1.000 1.000 

I25 0.891 0.809 1.100  0.891 0.809 1.100  1.000 1.000 1.000 

I26 0.976 0.887 1.100  0.976 0.887 1.100  1.000 1.000 1.000 

I27 0.872 0.792 1.100  0.872 0.792 1.100  1.000 1.000 1.000 

I28 0.988 0.898 1.100  0.988 0.898 1.100  1.000 1.000 1.000 

I29 0.892 0.811 1.100  0.892 0.811 1.100  1.000 1.000 1.000 

I30 1.177 1.070 1.100  1.177 1.070 1.100  1.000 1.000 1.000 

I31 0.491 0.447 1.100  0.491 0.447 1.100  1.000 1.000 1.000 

I32 1.153 1.048 1.100  1.153 1.048 1.100  1.000 1.000 1.000 

I33 1.283 1.166 1.100  1.283 1.166 1.100  1.000 1.000 1.000 

I34 0.914 0.831 1.100  0.914 0.831 1.100  1.000 1.000 1.000 

I35 0.987 0.897 1.100  0.987 0.897 1.100  1.000 1.000 1.000 

I36 0.907 0.824 1.100  0.907 0.824 1.100  1.000 1.000 1.000 

I37 0.881 0.801 1.100  0.881 0.801 1.100  1.000 1.000 1.000 

Mean 0.943 0.857 1.100  0.943 0.857 1.100  1.000 1.000 1.000 

G.Mean 0.931 0.846 1.100  0.931 0.846 1.100  1.000 1.000 1.000 

SD 0.148 0.134 0.000  0.148 0.134 0.000  0.000 0.000 0.000 

Min 0.491 0.447 1.100  0.491 0.447 1.100  1.000 1.000 1.000 

Max 1.283 1.166 1.100   1.283 1.166 1.100   1.000 1.000 1.000 
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Appendix B: Empirical results in Chapter 6 

 

 𝑀̅ 𝐸𝐶 𝑇𝐶  𝑀̅ 𝐸𝐶 𝑇𝐶 

No.1 1.0128 1.0016 1.0112 No.52 0.9488 0.9637 0.9845 

No.2 0.9475 0.9593 0.9876 No.53 1.004 1.0174 0.9867 

No.3 0.9537 0.9472 1.0069 No.54 1.0175 1.0287 0.9892 

No.4 0.9892 1.0037 0.9855 No.55 1.0249 1.0413 0.9842 

No.5 0.9495 0.9653 0.9836 No.56 0.9549 0.971 0.9833 

No.6 0.9496 0.9692 0.9798 No.57 0.985 1.0017 0.9834 

No.7 0.9261 0.9313 0.9943 No.58 0.9494 0.9601 0.9889 

No.8 0.9681 1.0083 0.9601 No.59 0.9556 0.9713 0.9838 

No.9 0.9637 0.9794 0.984 No.60 0.9945 1.0055 0.9891 

No.10 0.8789 0.9782 0.8984 No.61 0.983 0.995 0.9879 

No.11 1.0982 1.1363 0.9665 No.62 0.96 0.9843 0.9753 

No.12 0.9567 0.9677 0.9886 No.63 1.0171 1.0473 0.9711 

No.13 0.9561 0.9742 0.9814 No.64 0.9862 1.009 0.9774 

No.14 0.9678 0.9861 0.9815 No.65 0.8935 0.9064 0.9858 

No.15 0.9913 0.9961 0.9951 No.66 1.0064 1.0319 0.9753 

No.16 0.9615 0.9743 0.9868 No.67 0.9089 0.9244 0.9832 

No.17 1.0025 1.0253 0.9778 No.68 1.0014 1.0128 0.9888 

No.18 0.9616 0.9583 1.0034 No.69 1.039 1.0393 0.9997 

No.19 1.0295 1.0585 0.9726 No.70 1.0064 1.0235 0.9833 

No.20 1.0211 1.0655 0.9584 No.71 0.9264 0.9561 0.9689 

No.21 0.978 0.9933 0.9846 No.72 0.898 1.0195 0.8808 

No.22 0.9658 0.9824 0.9831 No.73 0.9678 0.9815 0.9861 

No.23 0.9984 1.011 0.9875 No.74 0.9698 0.9795 0.9901 

No.24 0.9142 0.9418 0.9707 No.75 1.0082 1.0221 0.9864 

No.25 1.057 1.0904 0.9694 No.76 0.9633 0.9669 0.9963 

No.26 1.0062 1.0205 0.986 No.77 1.0118 1.0221 0.99 

No.27 0.9791 0.9898 0.9892 No.78 1.0053 1.0352 0.9712 

No.28 0.9921 1.0011 0.991 No.79 0.975 0.9907 0.9842 
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No.29 1.04 1.074 0.9684 No.80 1.0047 1.0147 0.9902 

No.30 1.0228 1.0428 0.9808 No.81 0.9805 0.9947 0.9857 

No.31 0.9896 1.0216 0.9687 No.82 0.9792 0.9929 0.9862 

No.32 0.9427 0.934 1.0094 No.83 0.9839 0.9917 0.9921 

No.33 0.9853 0.9995 0.9858 No.84 0.9613 0.9901 0.9708 

No.34 0.9758 0.9655 1.0107 No.85 1.0735 1.0959 0.9796 

No.35 0.9707 0.9826 0.9879 No.86 0.9951 1.0073 0.9879 

No.36 0.9855 1.0012 0.9844 No.87 0.9266 0.9433 0.9823 

No.37 0.9645 0.978 0.9862 No.88 0.9924 1.008 0.9845 

No.38 1.0439 1.0443 0.9996 No.89 0.9427 0.9595 0.9824 

No.39 1.0251 1.0385 0.9871 No.90 0.9863 1.0014 0.985 

No.40 0.9834 0.9853 0.9981 No.91 0.9825 1.0117 0.9711 

No.41 0.962 0.9986 0.9633 No.92 0.9534 0.9745 0.9784 

No.42 0.9857 1.0188 0.9675 No.93 0.9453 0.9596 0.985 

No.43 0.8957 0.9092 0.9851 No.94 0.9819 1.0175 0.965 

No.44 0.9502 0.9663 0.9833 No.95 0.9602 0.9775 0.9823 

No.45 1.0201 1.0368 0.9839 No.96 0.9545 0.9903 0.9638 

No.46 1.0101 1.0468 0.965 No.97 0.9974 1.0399 0.9592 

No.47 0.9725 0.9895 0.9828 No.98 0.9857 1.0295 0.9574 

No.48 1.0345 1.0465 0.9885 No.99 1.0231 1.0487 0.9756 

No.49 0.9894 1.0025 0.987 No.100 0.9479 0.9634 0.9839 

No.50 0.9499 0.9643 0.985 No.101 0.9672 0.9788 0.9881 

No.51 0.9454 0.991 0.954     
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Appendix C: Empirical results in Chapter 7 

 

 Dataset with outliers  Dataset without outliers 

 𝑀̅ 𝐸𝐶 𝑇𝐶  𝑀̅ 𝐸𝐶 𝑇𝐶 

M1 0.95241 0.98328 0.96861     

M2 1.02119 1.10541 0.92381  1.02307 1.10410 0.92661 

M3 1.03003 1.02634 1.00360  1.03121 1.04323 0.98848 

M4 0.77551 0.92495 0.83844  0.77437 0.92445 0.83765 

M5 0.88779 0.99875 0.88890  0.88746 1.00260 0.88516 

B6 0.91517 1.28568 0.71182  0.91541 1.28647 0.71157 

B7 0.81130 1.16147 0.69851  0.81046 1.16025 0.69852 

B8 0.84771 1.06816 0.79361  0.84589 1.05435 0.80229 

B9 1.13732 1.62026 0.70194  1.13690 1.61919 0.70214 

B10 0.73536 0.97922 0.75096  0.73332 0.97716 0.75046 

B11 0.88194 1.07181 0.82286  0.88063 1.06696 0.82536 

B12 0.74318 0.86087 0.86329  0.74185 0.85771 0.86492 

O13 0.71242 0.96170 0.74080  0.71200 0.96108 0.74084 

O14 0.94400 1.18994 0.79332  0.93903 1.18003 0.79577 

O15 0.80993 1.27672 0.63438  0.80972 1.27531 0.63492 

O16 0.66680 1.18761 0.56147  0.66655 1.18707 0.56151 

O17 0.90229 1.36903 0.65907  0.90211 1.37137 0.65782 

O18 1.05878 1.11955 0.94572  1.05907 1.11967 0.94588 

O19 0.87899 1.36613 0.64341  0.88143 1.36648 0.64504 

I20 0.75532 0.88049 0.85784  0.75263 0.88148 0.85383 

I21 0.77572 0.90495 0.85719  0.77393 0.90761 0.85271 

I22 0.85061 1.00506 0.84633  0.85093 1.00473 0.84693 

I23 0.87555 1.14585 0.76411  0.87590 1.14942 0.76203 

I24 0.79047 1.05585 0.74866  0.78996 1.05906 0.74591 

I25 0.66126 0.84546 0.78213  0.66212 0.84501 0.78357 

I26 0.83285 1.10608 0.75297  0.83301 1.10596 0.75320 

I27 0.84059 1.08660 0.77359  0.83850 1.08489 0.77290 
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I28 0.82628 1.13712 0.72664  0.82630 1.13640 0.72712 

I29 0.73921 0.85513 0.86444  0.73911 0.85496 0.86450 

I30 0.79329 0.98798 0.80294  0.79298 0.99148 0.79980 

I31 0.37432 0.60168 0.62212  0.37563 0.60891 0.61689 

I32 0.79393 1.17078 0.67812  0.79390 1.17113 0.67790 

I33 0.95571 1.17724 0.81183  0.95568 1.17658 0.81225 

I34 0.60833 0.98494 0.61763  0.60815 0.98468 0.61761 

I35 0.75117 1.12831 0.66575  0.75241 1.13685 0.66184 

I36 0.61701 0.83782 0.73645  0.61702 0.83791 0.73639 

I37 0.67236 0.94933 0.70825  0.67236 0.94889 0.70858 

Mean 0.81692 1.06534 0.77193  0.81281 1.06787 0.76580 

G.Mean 0.80330 1.04991 0.76512  0.79919 1.05224 0.75951 

SD 0.14221 0.18339 0.10401  0.14230 0.18478 0.09922 

Min 0.37432 0.60168 0.56147  0.37563 0.60891 0.56151 

Max 1.13732 1.62026 1.00360  1.13690 1.61919 0.98848 
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