
Title Sneak Path Free Reconfiguration and Fault
Diagnosis for Via-Switch Crossbar Based FPGA

Author(s) 土井, 龍太郎

Citation 大阪大学, 2020, 博士論文

Version Type VoR

URL https://doi.org/10.18910/76647

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Sneak Path Free Reconfiguration and Fault Diagnosis

for Via-Switch Crossbar Based FPGA

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2020

Ryutaro DOI

Publications

Academic Journal
[AJ1] R. Doi, J. Yu, and M. Hashimoto, “Sneak Path Free Reconfiguration with

Minimized Programming Steps for Via-switch Crossbar Based FPGA,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, (accepted).

[AJ2] H. Ochi, K. Yamaguchi, T. Fujimoto, J. Hotate, T. Kishimoto, T. Higashi,
T. Imagawa, R. Doi, M. Tada, T. Sugibayashi, W. Takahashi, K. Wak-
abayashi, H. Onodera, Y. Mitsuyama, J. Yu, and M. Hashimoto, “Via-
Switch FPGA: Highly Dense Mixed-Grained Reconfigurable Architecture
With Overlay Via-Switch Crossbars,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2723–2736, Dec 2018.

[AJ3] R. Doi, M. Hashimoto, and T. Onoye, “An Analytic Evaluation on Soft
Error Immunity Enhancement due to Temporal Triplication,” International
Journal of Embedded Systems, vol. 10, no. 1, pp. 22–31, January 2018.

International Conference
[IC1] R. Doi, X. Bai, T. Sakamoto, and M. Hashimoto, “Fault Diagnosis of Via-

Switch Crossbar in Non-volatile FPGA,” in Design, Automation, and Test
in Europe Conference and Exhibition (DATE), (accepted).

[IC2] M. Hashimoto, X. Bai, N. Banno, M. Tada, T. Sakamoto, J. Yu, R. Doi,
Y. Araki, H. Onodera, T. Imagawa, H. Ochi, K. Wakabayashi, Y. Mit-
suyama, and T. Sugibayashi, “Via-switch FPGA: First Implementation in
65-nm CMOS and Architecture Extension for AI Applications,” in IEEE
International Solid-State Circuits Conference (ISSCC), (accepted).

[IC3] R. Doi, J. Yu, and M. Hashimoto, “Sneak Path Free Reconfiguration of Via-
switch Crossbars Based FPGA,” in IEEE/ACM International Conference on

i

ii

Computer-Aided Design (ICCAD), Nov 2018, pp. 1–8.

[IC4] R. Doi and M. Hashimoto, “SAT Encoding-Based Verification of Sneak
Path Problem in Via-Switch FPGA,” in IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), July 2018, pp. 429–434.

[IC5] M. Hashimoto, Y. Nakazawa, R. Doi, and J. Yu, “Interconnect Delay
Analysis for RRAM Crossbar Based FPGA (invited),” in IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), July 2018, pp. 522–527.

[IC6] J. Hotate, T. Kishimoto, T. Higashi, H. Ochi, R. Doi, M. Tada, T. Sug-
ibayashi, K. Wakabayashi, H. Onodera, Y. Mitsuyama, and M. Hashimoto,
“A Highly-dense Mixed Grained Reconfigurable Architecture with Overlay
Crossbar Interconnect using Via-switch,” in International Conference on
Field Programmable Logic and Applications (FPL), Aug 2016, pp. 1–4.

[IC7] R. Doi, J. Hotate, T. Kishimoto, T. Higashi, H. Ochi, M. Tada, T. Sug-
ibayashi, K. Wakabayashi, H. Onodera, Y. Mitsuyama, and M. Hashimoto,
“Highly-dense Mixed Grained Reconfigurable Architecture with Via-
switch,” in ACM International Workshop on Timing Issues in the Specifi-
cation and Synthesis of Digital Systems (TAU), March 2016.

[IC8] R. Doi, M. Hashimoto, and T. Onoye, “An Analytic Evaluation on Soft
Error Immunity Enhancement due to Temporal Triplication,” in IEEE
Pacific Rim International Symposium on Dependable Computing (PRDC),
November 2015.

Domestic Conference

[DC1] 土井龍太郎, 劉載勲, 橋本昌宜, “ビアスイッチ FPGAの部分的再構成
における書き換えスイッチ数の最小化,”情報処理学会 DAシンポジウム
, August 2019.

[DC2] Y. Sun, R. Doi, and M. Hashimoto, “RC Extraction-free Wiring Delay
Analysis Focusing on Number of On-state Switches for Via-switch FPGA,”
in IPSJ DA Symposium, August 2019.

[DC3] 土井龍太郎,劉載勲,橋本昌宜, “ビアスイッチFPGA再構成時のスニー
クパス問題を回避するプログラミング順決定手法,”情報処理学会 DAシ
ンポジウム, August 2018.

iii

[DC4] 中澤 祐希, 土井龍太郎, 劉 載勲, 橋本 昌宜, “ビアスイッチ FPGA向け
配線遅延解析手法の検討,”電子情報通信学会 VLSI設計技術研究会, no.
VLD2017-120, March 2018.

[DC5] 土井龍太郎,橋本昌宜, “ビアスイッチ FPGAにおけるスニークパス問
題の SAT符号化を用いた検証,”情報処理学会 DAシンポジウム, August
2017.

[DC6] 土井龍太郎, 橋本 昌宜, 尾上 孝雄, “時間的三重化によるソフトエラー
耐性向上の解析的評価,”電子情報通信学会ディペンダブルコンピュー
ティング研究会, November 2014.

Workshop
[WS1] J. Hotate, T. Kishimoto, T. Higashi, H. Ochi, R. Doi, M. Tada, T. Sug-

ibayashi, K. Wakabayashi, H. Onodera, Y. Mitsuyama, and M. Hashimoto,
“Highly-dense Mixed Grained Reconfigurable Architecture with Via-
switch,” in Work in Progress Session, Design Automation Conference
(DAC), June 2016.

Summary

Reconfigurable computing hardware, such as field-programmable gate arrays
(FPGAs), is gaining its popularity since the design and manufacturing cost
of application-specific integrated circuits (ASICs) is elevating according to the
device miniaturization and larger-scale integration. However, the performance
and energy efficiency of conventional FPGAs are much lower than those of ASICs.
These drawbacks originate from low area efficiency due to static random access
memory (SRAM)-based programmable switches that consist of transistors and
have a large area, resistance and capacitance.

To overcome the conventional FPGA drawbacks, FPGAs that exploit via-
switches, which are a kind of Resistive RAM (RRAM), instead of SRAM-based
switches are actively studied. The via-switch is a non-volatile switch with a small
footprint and parasitic load, and it can be implemented and programmed without
using transistors. Thanks to its characteristics, the via-switch is expected to boost
the performance and energy efficiency of FPGA.

On the other hand, the via-switch FPGA is in an early stage of development
and hence facing design, test, and programming challenges for practical applica-
tion. First, in the design phase, there is no sufficient discussion on the interconnect
structure that fully exploits the via-switch advantages. Previous studies on atom
switch based FPGAs, where the atom switch is one of the component devices of
the via-switch, presented a fundamental structure based on crossbars for higher
integration density. Here, the crossbar is a circuit that has a switch device at
every intersection of vertical and horizontal interconnections for signal routing.
However, the appropriate interconnect structure with the via-switch crossbar is not
discussed enough, and the performance improvement effect thanks to via-switches
is not quantitatively evaluated. Next, the manufacturing phase requires the
via-switch FPGA manufacturer to verify the crossbar functionality before the
shipment for ensuring arbitrary routings at the FPGA user side. Therefore, fault
testing is indispensable to check whether all the via-switches can be normally
turned on/off. However, fault testing methodology for the via-switch crossbar
has not been established so far. Meanwhile, in the user programming phase
after the shipment, there is a possibility that the sneak path problem occurs due

v

vi

to the crossbar programming structure depending on configuration patterns of
via-switches in the crossbar. The sneak path problem changes on/off state of
non-target via-switches unintentionally due to programming signal detouring, and
interferes the reconfiguration of FPGA. Therefore, it is crucially important to
identify the occurrence conditions and develop countermeasures for this problem.

Solving the challenge at the design phase, this dissertation proposes an
interconnect structure that can selectively insert repeaters to signal paths and
achieve small interconnect delay and high energy efficiency. This work also
clarifies the requirement of the programming structure for the connection switch
between crossbars focusing on the sneak path problem. Transistor-level SPICE-
based evaluation demonstrates that the proposed interconnect structure achieves a
significant performance improvement compared with conventional SRAM-based
FPGA. The proposed structure reaches 26X higher crossbar integration density
and reduces interconnect delay and energy by 90% and 94% at 0.5 V operation.

For the challenge at the manufacturing phase, this dissertation proposes a fault
testing methodology to verify the via-switch crossbar functionality for ensuring
arbitrary routings. This work confirms that a general differential pair comparator
successfully discriminates on/off-states of via-switches, where the comparator can
be implemented with a small area at the peripheral part of the via-switch FPGA
chip. This work also identifies fault modes of a via-switch using SPICE simulation
that injects stuck-on/off faults to atom switch and varistor, which are components
of via-switches. Then, this dissertation proposes a fault diagnosis method that
identifies faulty via-switches in the crossbar according to the comparator response
difference between normal and faulty cases. The proposed method attains 100%
fault detection. As for the diagnosability, the successful ratios of the fault
diagnosis are 100% and 79% in cases that the number of faulty components in
a via-switch is up to one and up to two, respectively.

Aiming at overcoming the challenge at the user programming phase, this
dissertation establishes a sneak path free reconfiguration methodology of via-
switch crossbar. This work investigates the occurrence conditions of the sneak
path problem and identifies the crossbar programming status that causes the
sneak path. Based on the occurrence conditions, this dissertation proposes a
sneak path free programming method that arranges the programming sequence
of via-switches in a crossbar. This work devises an algorithm that effectively
derives a sneak path free programming order by constructing the connection status
of signal lines in a crossbar as a tree structure, which is called the connection
tree. This dissertation also gives a proof that a sneak path free programming
order necessarily exists for arbitrary on-off patterns in a crossbar as long as no
loops exist. The simulation-based evaluation demonstrates that the proposed
method significantly improves the routing flexibility of the via-switch crossbar.
In a practically-sized 100x100 crossbar, the number of available configurations

vii

increases by over four orders of magnitude. The proposed method successfully
solves the sneak path problem in any practical configurations of via-switch FPGA.

Furthermore, this dissertation extends the above programming method for
partial reconfiguration that partially turns on and off via-switches in the already
programmed crossbar. This work proposes a partial reconfiguration method that
minimizes programming steps while avoiding the sneak path problem. The
proposed method minimizes the number of programmed switches by arranging
the root node of the connection tree. This work models the optimal root node
selection as a set cover problem with cost minimization, and also proposes a low
computational complexity method that obtains the same solution of the set cover
problem without solving it. In a test case of simulation-based evaluation, the
proposed method reduces the number of programmed switches by 77.4% com-
pared to the conventional approach, which enables 4.4X more reconfigurations of
the via-switch FPGA in its device lifetime and reduces reconfiguration time by
77.4%.

This dissertation covers challenges at all phases of via-switch FPGA develop-
ment, i.e., design phase, manufacturing phase, and user programming phase. The
proposed interconnect structure contributes to boosting the operating speed and
energy efficiency. The proposed fault diagnosis method helps the manufacturer to
inspect manufactured products and to prevent the shipment of defective products.
The proposed sneak path solution enables to implement all the practical config-
uration patterns to the via-switch FPGA. The proposed partial reconfiguration
method contributes to extending the lifetime of via-switches and speeding up
the reconfiguration of the via-switch FPGA for both user programming and
manufacturing test. At last, thanks to these contributions, FPGA users can
enjoy implementing any systems on high-performance and defect-free via-switch
FPGA.

Acknowledgments

First of all, I would like to express my deepest gratitude to Professor Masanori
Hashimoto in Osaka University for providing an excellent research environment
and a precious opportunity to have various experiences for seven years of
bachelor’s, master’s, and doctoral courses. He comprehensively supported my
research, and his advanced perspective and thoughtful advice led me to successful
achievements. I have learned a lot from him and realized the growth of my skills
and mind.

I would like to deeply express my appreciation to Associate Professor Jaehoon
Yu in Tokyo Institute of Technology for valuable discussions and accurate advice.
His thoughtful supports improved my research achievements.

I am grateful to Professor Tatsuhiro Tsuchiya, Associate Professor Ittetsu
Taniguchi, and Associate Professor Hiromitsu Awano in Osaka University for
detailed reviews and valuable suggestions.

I would like to express great gratitude to Professor Hidetoshi Onodera in
Kyoto University, Professor Hiroyuki Ochi in Ritsumeikan University, Associate
Professor Yukio Mitsuyama in Kochi University of Technology, Assistant Profes-
sor Takashi Imagawa in Ritsumeikan University, Dr. Kazutoshi Wakabayashi, Mr.
Tadahiko Sugibayashi, Dr. Toshitsugu Sakamoto, and Dr. Munehiro Tada in NEC
Corporation for precious discussions, insightful suggestions, and teaching me the
fun of collaborative research.

I would like to express my appreciation to Professor Takao Onoye in Osaka
University, Professor Yoshinori Takeuchi in Kindai University, Associate Profes-
sor Yuichi Itoh, and Assistant Professor Masahide Hatanaka in Osaka University
for their advice and supports.

I would like to thank Assistant Professor Yutaka Masuda in Nagoya Univer-
sity, Assistant Professor Wang Liao in Kochi University of Technology, Dr. Koichi
Mitsunari, Mr. Jun Chen, and Mr. Ryo Shirai for daily discussions and their
supports. My sincere appreciation goes to Ms. Asako Murakami and Ms. Yuki
Yoshida for their various supports throughout my student life. I also would like
to thank all members of Integrated System Design Laboratory and Information
Systems Synthesis Laboratory in Osaka University for having interesting and

ix

x

good time in the laboratory.
My heartfelt thanks go to my family for supporting my life and giving a

delightful and relaxing time.
This work was supported by JSPS KAKENHI Grant Number JP17J10008 and

JST CREST Grant Number JPMJCR1432, Japan.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Conventional FPGA and Drawbacks 3

1.2.1 SRAM-Based FPGA . 3
1.2.2 Drawbacks of SRAM-Based FPGA 4

1.3 Emerging FPGAs with Non-volatile Memories 6
1.3.1 Programmability and Energy Efficiency Trade-off in Con-

ventional Hardware . 7
1.3.2 Traditional Non-volatile FPGAs 8
1.3.3 Emerging Non-volatile Memories 9
1.3.4 Emerging NVM-Based FPGAs 12

1.4 Via-Switch FPGA and Issues . 13
1.4.1 Via-Switch . 13
1.4.2 Via-Switch FPGA . 16
1.4.3 Issues of Via-Switch FPGA 17

1.5 Objectives of This Dissertation 20

2 Interconnect Structure Design and Evaluation in Via-Switch FPGA 25
2.1 Introduction . 25
2.2 Interconnect Structures of Via-Switch FPGA 26

2.2.1 Proposed Interconnect Structure 26
2.2.2 Connection Structure Between CLBs 27
2.2.3 Effectiveness Proof of Programming Constraint Based

Countermeasure for Sneak Path Problem 28
2.2.4 Interconnect Structures for Performance Comparison . . . 31

2.3 Interconnect Performance Evaluation 32
2.3.1 Performance Improvement Thanks to Selective Repeater

Insertion and Bidirectional Signal Transmission 32
2.3.2 Performance Comparison between Proposed and Conven-

tional Architectures . 36
2.4 Conclusion . 40

xi

xii CONTENTS

3 Fault Diagnosis of Via-Switch Crossbar 41
3.1 Fault Mode Analysis of Via-Switch 41

3.1.1 Discriminating Via-Switch On/Off-States with Comparator 42
3.1.2 Via-Switch Fault Modes 45

3.2 Proposed Fault Diagnosis Method 47
3.2.1 Prerequisites . 47
3.2.2 Fault Diagnosis . 47

3.3 Discussion . 51
3.4 Conclusion . 53

4 Sneak Path Free Initial Programming in Via-Switch FPGA 55
4.1 Introduction . 55
4.2 Occurrence Conditions of Sneak Path Problem 57
4.3 Proposed Sneak Path Free Initial Programming 59

4.3.1 Overview of Proposed Method 60
4.3.2 Programming Order Determination with Connection Tree 61

4.4 Proof of Existence of Sneak Path Free Programming Order 66
4.5 Pseudo Code and Execution Example 68
4.6 Evaluation Results . 70
4.7 Conclusion . 72

5 Minimization of Programming Steps in Partial Reconfiguration of
Via-Switch FPGA 73
5.1 Proposed Partial Reprogramming Method 73

5.1.1 Partial Erasing . 74
5.1.2 Partial Writing . 76

5.2 Proof of Sneak Path Avoidance in Partial Reconfiguration 78
5.3 Proposed Minimization Method of Programming Steps 80

5.3.1 Minimizing Number of Switches Programed in Partial
Reconfiguration . 80

5.3.2 Root Node Selection with Lower Computational Com-
plexity . 84

5.4 Pseudo Code of Partial Reprogramming 85
5.5 Evaluation Results . 86
5.6 Discussion . 89
5.7 Conclusion . 91

6 Conclusion 95

A Another proof for Equation (5.6) 99

List of Figures

1.1 Isrand-style FPGA structure. 4
1.2 SRAM-based logic block structure. 5
1.3 SRAM-based connection block structure. 6
1.4 SRAM-based switch block structure. 6
1.5 Trade-off between programmability and energy efficiency of con-

ventional computing devices, and goal of next-generation FPGAs
with non-volatile memories. 7

1.6 Structure and operation of STT-MRAM cell. 11
1.7 Structure and operation of PCRAM cell. 11
1.8 Structure and operation of RRAM cell. 12
1.9 Structure and operation of atom switch. 14
1.10 CAS structure. 15
1.11 Via-switch structure. 16
1.12 Concept of via-switch FPGA. 17
1.13 Structure of via-switch FPGA. 18
1.14 Via-switch based crossbar structure and switch programming steps. 19
1.15 Sneak path problem in via-switch crossbar programming. 20
1.16 Contributions and organization of this dissertation. 23

2.1 Proposed interconnect structure of via-switch FPGA. 27
2.2 Sneak path problem in connection switch between CLBs. 28
2.3 Crossbar expansion supposed in induction-based proof. 30
2.4 An equivalent circuit model of via-switch in normal operation. . . 33
2.5 Signal transmission path in performance evaluation. 33
2.6 (a) interconnect delay and (b) energy per signal transmission in

the proposed interconnect structure. Two crossbar sizes of 86x153
and 96x163 are evaluated. Repeaters are not inserted. Supply
voltage is 1.0 V. 34

xiii

xiv LIST OF FIGURES

2.7 (a) interconnect delay and (b) energy per signal transmission
in the proposed, BFR, and UFR structures. The proposed and
BFR structures are 86x153 crossbar and UFR structure is 96x163
crossbar. Supply voltage is 1.0 V. 34

2.8 Energy-delay product per signal transmission in the proposed,
BFR, and UFR structures. The proposed and BFR structures are
86x153 crossbar and UFR structure is 96x163 crossbar. Supply
voltage is 1.0 V. 35

2.9 (a) interconnect delay and (b) energy per signal transmission in
the proposed interconnect structure. Crossbar size is 86x153.
Supply voltage is 1.0 V. 35

2.10 Comparison between the proposed and SRAM-based architec-
tures. Repeaters are not inserted. Crossbar size is 86x153. Supply
voltage is 1.0 V. 37

2.11 (a) Interconnect delay and (b) total energy in the proposed
and SRAM-based architectures when supply voltage is varied.
Repeaters are not inserted. Crossbar size is 86x153. 37

2.12 (a) Interconnect delay and (b) total energy in the proposed and
SRAM-based architectures when the ON-resistance of via-switch
is varied. Repeaters are not inserted. Crossbar size is 86x153. . . . 38

2.13 Crossbar area variation in terms of switch removal. 39
2.14 (a) Interconnect delay and (b) energy in the proposed and

SRAM-based architectures when the thinning ratio of intersection
switches is varied. Repeaters are not inserted. Crossbar size is
86x153. 39

3.1 Connection between comparator, programming drivers, and cross-
bar array. 43

3.2 Boundary reference voltage of comparator when via-switch on-
resistance is varied. 45

3.3 Path to apply read voltage in ASV-, CAS-, and TVR-read. 45
3.4 Percentage of faulty via-switches in 100x100 crossbar when fault

rate of each component in a via-switch varies. 52
3.5 Percentage of diagnosable via-switches in 100x100 crossbar when

the fault rate of each component in a via-switch and the supposed
maximum number of faulty components are varied. 52

4.1 Routing patterns that are prohibited in conventional countermea-
sure. These patterns are often used in practical applications. 57

4.2 Two occurrence conditions of sneak path problem. 58

LIST OF FIGURES xv

4.3 Example of non-looped configuration and definition of
connector/non-connector switches. 62

4.4 Example of connection tree for connector switches in Figure 4.3. . 63
4.5 Programming of connector switch in leaf/non-leaf node at the last

programming step. 64
4.6 Recursively searching switch which can be programmed lastly for

each shrinking graph. 66
4.7 Number of available configurations with conventional counter-

measure and proposed method in small crossbars. 71

5.1 Concept of partial reprogramming. 74
5.2 Sneak path problem in erasing process. 76
5.3 Proposed partial writing method. 78
5.4 Changes in the structure of connection tree and the number of

pre-erased SCH depending on the root node selection. 82
5.5 Minimization method of the number of switch programming. . . . 83
5.6 Number of programmed switches in reconfiguration with con-

ventional and proposed methods when 0.5% of via-switches are
on-state in 100x100 crossbar. 87

5.7 Number of programmed switches in reconfiguration with con-
ventional and proposed methods when 1.5% of via-switches are
on-state in 100x100 crossbar. 88

5.8 Histogram of reduction ratio in number of programmed switches
from worst root selection to optimal root selection. 89

5.9 Built-in self-test (BIST) approach. 90
5.10 Test sessions and test phases in BIST. 91
5.11 Complete directed graph that represents entire BIST sequence

and optimal test order derivation by solving asymmetric travelling
salesman problem. 92

A.1 All combinations of two representative switches. 100

List of Tables

1.1 Comparison between ASICs and FPGAs for system implementa-
tions. 2

1.2 Comparison of SRAM-based FPGA and traditional NVM-based
FPGAs. 8

1.3 Device Characteristic Comparison of SRAM and Emerging NVM
Technologies. 10

2.1 Comparison of supposed interconnect structures. 31

3.1 Comparator output when reference voltage is varied in read
operation of atom switch. 44

3.2 Boundary reference voltage in ASV-, CAS-, and TVR-read. 44
3.3 Boundary reference voltage in ASV- and CAS-read with faulty

varistor. 46
3.4 Boundary reference voltage in TVR-read with normal and faulty

varistors. 47
3.5 Comparator response difference and diagnosability in case of up

to two faulty components in a via-switch. 49
3.6 Diagonosable faults ratio. 51

4.1 Summary of proposed initial programming method. 61
4.2 Number of usable configurations among 10,000 random configu-

rations in a practically-sized 100x100 crossbar. 71

5.1 Summary of proposed partial reconfiguration method. 75

xvii

Chapter 1

Introduction

This dissertation addresses design, test, and programming issues of non-volatile
via-switch FPGA that is an emerging FPGA with high energy efficiency. First, this
chapter explains the background and objectives of this dissertation. Section 1.1
describes the research background. Then, Section 1.2 briefly explains the
conventional FPGA and its drawbacks. As a solution to overcome conventional
FPGA drawbacks, emerging non-volatile memory-based FPGAs are introduced
in Section 1.3. After that, Section 1.4 explains via-switch FPGA that is mainly
focused on in this dissertation, and also discusses issues to be solved. Finally,
Section 1.5 states the research objectives of this dissertation.

1.1 Background

In 1965, Gordon Moore found that the number of transistors in an integrated
circuit chip doubles every 18 months. This observation is called Moore’s Law and
has become a self-fulfilling prophecy [1]. Moore’s Law has been maintained for
recent decades by the effort of manufacturers. For example, the transistor count
in Intel microprocessors has doubled every 26 months since the development
of the 4004 microprocessor that had only 2,300 transistors in 1971 [2]. On the
other hand, in 2019, Apple A13 Bionic microprocessor that contains 8.5 billion
transistors was launched [3]. The continuation of Moore’s Law over such a
long term is mainly thanks to the scaling down of transistor size. The 4004
microprocessor was fabricated at a process node of 10 µm, while the Apple
A13 Bionic used a process node of 7 nm. Manufacturers adopt a new process
node every a few years with a 30% smaller transistor size to pack twice as many
transistors in the same area [1, 4].

The successive scaling down of process node is beneficial to transistor
performance, i.e., shrinking the transistor size brings faster operating speed and

1

2 CHAPTER 1. INTRODUCTION

Table 1.1: Comparison between ASICs and FPGAs for system implementations.
ASICs FPGAs

Programmability No Yes
Layout/Mask/Manufacturing Necessary Unnecessary

NRE Cost Very High Low
Time to Market Long Short
Design Change Difficult Easy

Design Flow Comlex Simple
Performance High Medium (Higher than CPU)

lower power consumption. On the other hand, especially in application-specific
integrated circuits (ASICs), the development cost is increasing exponentially as
the transistor size scales down [5]. This is because non-recurring engineering
(NRE) costs, which include costs of mask-sets and engineering design efforts
of layout and verification, are very expensive in smaller process nodes. For
example, in 14 nm process, the total development cost of an ASIC reaches 270
million dollars [6]. Such expensive development costs of ASICs are unacceptable
in many fields except for some fields that will sell in huge quantities or that
have cutting-edge performance requirements, e.g., smartphone market, gaming
hardware market, etc. In addition to high development costs, the long time to
market due to complicated design and verification processes is another concern
of ASIC implementations. It also takes a long time and high cost for design
modifications or bug fixes.

In recent years, field-programmable gate arrays (FPGAs) are becoming
popular since ASIC development cost is elevating and development time becomes
longer due to process node scaling. Table 1.1 summarizes the advantages and
disadvantages of ASICs and FPGAs for system implementations. FPGAs are
computing devices that can reprogram the circuit functionality after manufactur-
ing. We utilize a hardware description language (HDL) such as Verilog HDL
and VHDL, which are similar to programming languages, to design the circuit
with already manufactured FPGA, and hence layout, mask, manufacturing steps
are unnecessary in FPGA implementations. Eliminating these steps significantly
reduces NRE costs and shortens the development time. When we need to modify
the circuit design or fix design errors, the modification can be achieved by just
changing the description of HDL and reprogramming the FPGA. The design flow
of FPGA implementations is also simpler than that of ASIC implementations.

Thanks to the above advantages, FPGAs are widely adopted not only for proto-
typing but also practical use in various fields despite lower performance compared
to ASICs. For example, Microsoft, Amazon Web Services, and IBM introduced

1.2. CONVENTIONAL FPGA AND DRAWBACKS 3

FPGAs to their data centers of cloud computing services [7–10]. FPGAs often
offer much higher performance than central processing units (CPUs), and this
higher performance contributes to both speed up and energy reduction of the
system. Besides, field-programmability, low NRE cost, and a short time to market
of FPGAs are suitable for edge computing devices in the Internet of Things (IoT)
era. Even in the fields of large variety and small quantity production, the adoption
of FPGAs can improve profitability. Furthermore, hardware acceleration with
FPGAs is drawing attention especially for artificial intelligence (AI) in recent
years. For instance, Intel, Xilinx, and Microsoft corporations accelerate deep
neural network (DNN) inference by using FPGAs [11–13]. In this way, FPGAs
have a wide range of applications, and the FPGA market is expected to expand
further in the future.

1.2 Conventional FPGA and Drawbacks
Section 1.2.1 briefly reviews the structure and operating principle of conventional
FPGAs. Then, Section 1.2.2 takes a look at the drawbacks of conventional
FPGAs.

1.2.1 SRAM-Based FPGA
Static random access memory (SRAM)-based FPGAs are the most popular
FPGAs in many fields. These FPGAs typically have an island-style structure
illustrated in Figure 1.1. The island-style structure consists of programmable
logic elements and interconnects arranged in an array, where programmable logic
elements are called logic blocks (LBs) and programmable interconnect wires are
called connection blocks (CBs) and switch blocks (SBs). We can implement any
circuit functionality by constructing arbitrary combinational or sequential circuits
in LBs and routing arbitrary signal paths between LBs in CBs and SBs [14–16].

Figure 1.2 shows the most basic structure of an LB. A k-input look-up table
(LUT) circuit has 2k-bit SRAM cells and a 2k-to-1 multiplexer (MUX) with k
select terminals. To construct arbitrary combinational logic, we store a truth table
of the desired function in k-input and 1-output, and give the input signals of LB
to the select terminals of MUX. Thanks to the 2k-bit SRAM cells, we can define
the output values for all the combinations of k input signals. The LB also contains
flip-flops (FFs) to implement a sequential circuit.

CB and SB have the structures depicted in Figure 1.3 and 1.4, respectively.
CB is responsible for inputting to and outputting from the LB. MUX or pass
transistors are used for controlling the connection between the LB and global
interconnections. Here, the global interconnections are wiring resources that are

4 CHAPTER 1. INTRODUCTION

Logic Block (LB)

Connection Block (CB)

Switch Block (SB)

Figure 1.1: Isrand-style FPGA structure.

aligned outside LBs, while the local interconnections are arranged inside LBs.
An SRAM cell is connected to the select terminal of MUX or gate terminal of
the pass transistor. On the other hand, SB connects or disconnects the vertical
interconnection and horizontal interconnection by pass transistors with SRAM
cells. In both CB and SB, we program stored values in SRAM cells to construct
the desired connection between LBs.

1.2.2 Drawbacks of SRAM-Based FPGA
Conventional SRAM-based FPGAs are inferior to ASICs regarding operating
speed, power consumption, and implementation area [17]. For example, when
we implement the same circuit function, Kuon et al. report that FPGA imple-
mentation has four times slower operating speed, fourteen times more dynamic
power, 87 times more static power, and 35 times larger circuit area than ASIC
implementation [18]. These drawbacks originate from a tremendous amount of
programmable switches that are equipped in SRAM-based FPGAs to acquire
reconfigurability as mentioned in the previous subsection. Lin et al. say
that 80% of the circuit delay comes from programmable interconnections with
SRAM-based switches [19].

Typical SRAM-based programmable switch is composed of a switch gate,
such as transmission gate or MUX, and an SRAM cell to hold the on/off states
of switch gate. The switch gate consists of transistors, and hence it has high
resistance and large capacitance, which degrade the circuit speed and increase
power dissipation. The SRAM cell using six transistors consumes a large area.
This increases not only circuit area but also wiring length, and the consequent

1.2. CONVENTIONAL FPGA AND DRAWBACKS 5

3-Input
Look-up
Table (LUT)

8-Bit
SRAM
Cells

8-to-1
Multiplexer
(MUX)

LB Input

Flip-Flop
(FF)

LB Output

Figure 1.2: SRAM-based logic block structure.

long wire imposes a bad impact on the speed and power. Besides, the volatility
of SRAM cells is also a concern. We need to keep supplying power to SRAM
cells even during standby, and the leakage current in a large amount of SRAM
cells causes enormous static power consumption. Furthermore, conventional
FPGA structure where programming resources and logic circuits share the same
layer, i.e., the transistor layer, is also undesirable. This is because SRAM cells
dominate the FPGA chip area due to the large area and amount of them, and
consequently logic circuits can only use a small area. This makes it difficult to put
computing units that have high computing performance, e.g., arithmetic unit and
multiply-accumulator, on the chip. Ref. [19] reports that programmable routing
resources including SRAM-based switches occupy 78% of the chip area, whereas
computing logic circuits account for only 14%.

From the above reasons, SRAM-based programmable switches lead to the
degradation of interconnect performance and area efficiency of the FPGA.
Therefore, miniaturizing the programmable switch, which is the performance
bottleneck of conventional FPGAs, directly contributes to an area reduction of
the entire FPGA. According to the area reduction, wiring length becomes shorter,
and it reduces signal transmission delay and power consumption. Also, exploiting
low resistance and small capacitance of programmable switches contributes
to boosting the FPGA performance. In recent years, various FPGAs using
non-volatile memories (NVM) are widely developed to overcome the drawbacks
of conventional SRAM-based FPGAs. The details of such FPGAs are discussed
in the following sections.

6 CHAPTER 1. INTRODUCTION

Logic
Block

Connection
Block

Global
Interconnection

SRAM cell

Figure 1.3: SRAM-based connection block structure.

SRAM cell

Figure 1.4: SRAM-based switch block structure.

1.3 Emerging FPGAs with Non-volatile Memories

This section firstly compares conventional computing hardware in terms of pro-
grammability and energy efficiency. Then, Section 1.3.1 introduces non-volatile
memory (NVM)-based FPGAs that are developed for improving the energy
efficiency of conventional FPGAs. There are traditional NVM-based FPGAs
and emerging NVM-based FPGAs. Section 1.3.2 discusses the advantages and
disadvantages of traditional NVM-based FPGAs. Emerging NVM technologies
are actively developed in recent years, and they are becoming the most promising
candidates to replace SRAM memories in conventional FPGAs. Section 1.3.3
explains three emerging NVM technologies, their structure and operating princi-
ple, followed by the reviews of related works of emerging NVM-based FPGAs in
Section 1.3.4.

1.3. EMERGING FPGAS WITH NON-VOLATILE MEMORIES 7

Programmability

En
er

gy
 E

ffi
ci

en
cy

ASICs

FPGAs

CPUs

Emerging Non-volatile
Memory Based FPGAs

Figure 1.5: Trade-off between programmability and energy efficiency of conven-
tional computing devices, and goal of next-generation FPGAs with non-volatile
memories.

1.3.1 Programmability and Energy Efficiency Trade-off in
Conventional Hardware

Conventional computing hardware has a trade-off relation between programmabil-
ity and energy efficiency as shown in Figure 1.5. The programmability of CPUs
is the highest since we can easily program them with high-level programming
languages such as Python, C++, and so on. However, CPUs suffer from Von
Neumann bottleneck due to their slow access speed between the processor and
memory, and hence their energy efficiency becomes quite low [20, 21]. On the
other hand, ASICs are designed to achieve the highest performance for a specific
function, and therefore the energy efficiency is very high. Instead of this, ASICs
cannot be programmed after manufacturing except the programs of embedded
processors and hardly cope with design changes or bug fixes. Conventional
FPGAs stand between CPUs and ASICs. FPGAs can be programmed like
software by HDL, which is slightly difficult to use compared to high-level
software programming languages. They often offer much better performance
than CPUs since arbitrary circuit functionality can be implemented as dedicated
hardware with parallelization.

In recent years, many researchers have studied how to boost up the pro-
grammability and performance of FPGAs. In terms of programmability, we have
to describe cycle-by-cycle circuit behavior at a low level of abstraction with HDL,
and this requires advanced hardware expertise. To improve the programmability,
high-level synthesis techniques are well developed [22–27]. These techniques
automatically generate an HDL description from a given algorithm written by
high-level language, e.g., C and Java. The synthesis process can be optimized
taking into account the performance, power, and area. Thanks to high-level
synthesis, designers without hardware expertise can easily utilize FPGAs, and

8 CHAPTER 1. INTRODUCTION

Table 1.2: Comparison of SRAM-based FPGA and traditional NVM-based
FPGAs.

SRAM-Based Flash-Based Antifuse-Based
Non-volatility No Yes Yes
Switch Area Large Medium Small

On-Resistance High High Low
Capacitance Large Large Small

Reconfigurability Yes Yes No
Manufacturing Process Simple Complex Simple

we can also shorten the development time.
For improving the energy efficiency of FPGAs, on the other hand, various

FPGAs that exploit other programmable switches instead of SRAM-based one
are studied. As described in the previous section, SRAM-based programmable
switches are performance bottleneck in conventional FPGAs. Requirements of
desirable programmable switches are as follows.

• Small circuit area.

• Low on-resistance and high off-resistance.

• Small parasitic capacitance.

• Simple manufacturing process and high yield rate.

• Non-volatility.

According to the above requirements, many FPGA architectures using non-
volatile memories (NVMs) are widely developed. There are traditional NVM-
based FPGAs and emerging NVM-based FPGAs. The following subsections
explain the characteristics of each FPGA.

1.3.2 Traditional Non-volatile FPGAs
There are two types of traditional non-volatile FPGAs, namely, flash memory-
based FPGA [28–32] and antifuse FPGA [33–37]. Table 1.2 summarizes the
characteristics of these traditional NVM-based FPGAs with the SRAM-based one.

Flash-based FPGAs replace SRAM cells by flash memories. The flash
memory is a kind of floating-gate metal-oxide-semiconductor field-effect tran-
sistors (MOSFETs), and we program it by injecting an electrical charge to the
floating-gate. Compared to SRAM-based switches, the area per switch can be
reduced, but flash-based switches still have high on-resistance and large parasitic

1.3. EMERGING FPGAS WITH NON-VOLATILE MEMORIES 9

capacitance. Besides, combining flash and complementary MOS (CMOS)
technologies requires a complicated and costly manufacturing process.

When we program antifuse FPGAs, we apply a high voltage to the antifuse
switch. Initially, the antifuse switch is insulated. The applied high voltage
makes a small hole in the insulation layer, and the switch turns on. Antifuse
switch has advantages of a small area, low on-resistance, and small capacitance.
However, once a hole is formed in the insulation layer, we cannot fill up the hole.
Therefore, an antifuse FPGA allows only one-time programming, and there is no
reconfigurability after programming once.

1.3.3 Emerging Non-volatile Memories
The previous subsection explains that traditional NVM-based FPGAs have many
disadvantages despite their non-volatility. Recently, novel FPGA architectures
using emerging non-volatile memories are widely proposed for boosting energy
efficiency compared to conventional FPGAs [38, 39]. Firstly, this subsection
summarizes the structure and operation of emerging NVM technologies, and then
reviews emerging NVM-based FPGAs in the next subsection.

Emerging NVMs are two-terminal devices, and we change their resistance by
imposing an electrical stimulus, i.e., voltage or current pulse. A high resistance
state (HRS) is regarded as off-state and a low resistance state (LRS) corresponds
to on-state. The switching between off-state and on-state is repeatable. NVMs
have a non-volatility, namely, each on/off-state is maintained after power off.
Emerging NVMs can be categorized into three types according to switching
physics: spin-transfer-torque magnetic random access memory (STT-MRAM),
phase-change random access memory (PCRAM), and resistive random access
memory (RRAM) [40–42].

Table 1.3 compares the device characteristics of SRAM and emerging NVM
technologies [41]. Thanks to very high cell density and low leakage power
of emerging NVMs, replacing SRAM cells or whole SRAM-based switches
including switch gate with these NVMs can improve the area efficiency and
energy efficiency of FPGA. Especially, PCRAM and RRAM have a large on-off
ratio, which represents the ratio of off-resistance to on-resistance. The large
on-off ratio is beneficial to FPGA performance since low resistance in on-state
enables high-speed signal transmission and high resistance in off-state cuts off
the leakage current. PCRAM and RRAM also have good process compatibility
with mainstream CMOS technology. Therefore, these NVM technologies can
be easily combined with general CMOS logic circuits at a lower cost. On the
other hand, cycling endurance of emerging NVMs, which means the maximum
number of on-off switching, is lower than the SRAM cell. Thanks to the above
features of emerging NVMs, they are becoming the most promising candidate

10 CHAPTER 1. INTRODUCTION

Table 1.3: Device Characteristic Comparison of SRAM and Emerging NVM
Technologies.

SRAM STT-MRAM PCRAM RRAM
Non-volatility No Yes Yes Yes

Cell Area > 100 F2 6–50 F2 4–30 F2 4–12 F2

Leakage Power High Low Low Low
On-Off Ratio N/A < 2X 102–103X 101–106X

CMOS Compatibility Yes Poor Yes Yes
Cycling Endurance > 1016 > 1015 106–109 104–1012

F: minimum feature size.

to replace SRAM-based programmable switches in conventional FPGAs. The
following paragraphs explain the structure and operating mechanism of each
emerging NVM.

The STT-MRAM cell is based on a magnetic tunnel junction (MTJ) struc-
ture [43–49]. MTJ structure consists of two ferromagnetic layers separated by a
thin tunneling insulator layer, and one ferromagnetic layer is called a free layer
and the other is a pinned layer as shown in Figure 1.6. We can change the
magnetization direction in the free layer by injecting a large amount of electrons
with the same spin direction, while the magnetization direction in the pinned
layer is fixed. When both free and pinned layers have the same magnetization
direction, which is called a parallel state, the resistance of STT-MRAM is low and
a large tunneling current flows in the cell. On the other hand, in an antiparallel
state where magnetization directions of free and pinned layers are opposite,
the resistance becomes high and the current becomes small. This resistance
change phenomenon that depends on the magnetization direction is known as
tunneling magnetoresistance (TMR) effect. The on-off ratio of STT-MRAM is
typically small, specifically less than 2X. The fabrication of STT-MRAM becomes
complicated and has relatively poor compatibility to CMOS process technology
since ten or more layers of ferromagnetic materials are stacked in MTJ structure.

The PCRAM cell is composed of chalcogenide materials that have two phases
of the amorphous phase and crystalline phase as illustrated in Figure 1.7 [50–55].
The amorphous phase corresponds to off-state and has high resistance, whereas
the crystalline phase which has low resistance corresponds to on-state. When we
turn on a PCRAM cell, we heat the cell at a relatively low temperature and then
cool down slowly. In the turning off operation, on the other hand, we use a high
temperature for heating and then rapidly cool the cell. The on-off resistance ratio
of PCRAM is much larger in the range from 100X to 1,000X. Due to the slow
cooling down process in the turning on operation, switching speed of PCRAM cell

1.3. EMERGING FPGAS WITH NON-VOLATILE MEMORIES 11

Injecting electrons
with same

spin direction

Large
Tunneling
Current

Parallel State (On-State)

Small
Tunneling
Current

Antiparallel State (Off-State)

Ferromagnetic Layer
(Free Layer)

Ferromagnetic Layer
(Pinned Layer)

Tunneling Insulator Layer

Magnetization Direction

Figure 1.6: Structure and operation of STT-MRAM cell.

Resistor for Heating

Electrode

Crystalline
Chalcogenide

Amorphous
Chalcogenide

Electrode

Amorphous Phase (Off-State) Crystalline Phase (On-State)

Heating and Cooling

Figure 1.7: Structure and operation of PCRAM cell.

is limited, specifically slower than 50 ns which is ten times longer than RRAM
cell. PCRAM has a long endurance of 106–109 cycles. In general, PCRAM has
good process compatibility with CMOS technology.

The RRAM cell consists of metal oxide or solid electrolyte sandwiched
between two electrodes, where metal oxide-based RRAM and solid electrolyte-
based RRAM are called oxide random access memory (OxRAM) [56–60] and
conductive bridge random access memory (CBRAM) [61–65], respectively. In
an RRAM cell, low resistance conductive filaments are formed (on-state) and
ruptured (off-state) between two electrodes by applying a voltage as depicted in
Figure 1.8. Here, this figure shows an OxRAM cell and its filaments consist of
oxygen vacancies, while filaments of CBRAM consist of metal atoms. OxRAM
has a small on-off resistance ratio of 10–100X and better cycling endurance up to
1012 cycles. On the other hand, the on-off ratio of CBRAM is very large in the

12 CHAPTER 1. INTRODUCTION

Electrode
Off-State On-State

Electrode

Metal
Oxide

Filament

Voltage
Applying

Oxygen Atom
Oxygen Vacancy
Oxygen Ion

Figure 1.8: Structure and operation of RRAM cell.

range from 103X to 106X and endurance is limited to 104 cycles. RRAMs have
excellent process compatibility with CMOS technology.

1.3.4 Emerging NVM-Based FPGAs

In recent years, FPGA architectures that utilize emerging NVMs are widely
studied. There are three categories of emerging NVM-based FPGAs. The
first category is FPGAs based on non-volatile SRAM (NV-SRAM) cells and
non-volatile logic (NV-logic) circuits [66, 67]. The second category replaces
SRAM cells with NVM cells [68, 69], while the third category exploits NVMs
instead of whole SRAM-based switches including not only SRAM cells but also
transistor switches whose gates are connected to the SRAM cells [39, 70]. The
following paragraphs review FPGAs in each category and their contributions.

The first category adds NVMs to SRAMs and flip-flops for building the
NV-SRAMs and NV-logic cells. The NVMs record the cell states before power
off and restore after power on. The goal of this category is to completely
cut off leakage power at standby and be immediately ready for computing on
demand. Xue et al. proposed a low-power variation-tolerant non-volatile LUT,
and demonstrated 38% reduction in power and 22% reduction in delay [66].
Huang et al. presented a low active leakage and high reliability PCRAM-based
NV-SRAM [67]. The proposed NV-SRAM based LUT achieves 174 times
reduction in active leakage power compared to the state-of-the-art. However,
NV-SRAM and NV-logic based FPGAs remain having SRAM-based switches,
which are the performance bottleneck in conventional FPGAs, and consequently
the improvement on processing speed and area efficiency is limited.

In the second category, SRAM cells that control switch gates are replaced
by NVM cells. Typically, NVM-based memory cell consists of two NVM cells
in series where one end is connected to power rail and the other is connected
to the ground rail. By letting only one NVM cell on-state, i.e., the other is
off-state, a value of 0 or 1 can be read from the signal line between two NVM

1.4. VIA-SWITCH FPGA AND ISSUES 13

cells. Thanks to the elimination of SRAM cells, FPGAs in the second category
reduce the area and energy consumption. Ju et al. proposed an STT-MRAM
memory block based FPGA that reduced the critical path delay by 8.55% and the
power by 54.34% [68]. Yuan et al. proposed an overall FPGA architecture with
RRAM-based memory cells, and stated that they reduced the energy consumption
by 39.5% compared with the state-of-the-art techniques [69]. However, these
FPGAs still use transistor switches with high resistance in signal paths, which
increases the signal delay.

The third category replaces both a transistor switch and its corresponding
SRAM cell with an NVM cell since NVMs naturally have both switching and
memory functionalities. Thanks to low resistance NVMs being placed in signal
paths instead of high resistance transistor switch, the critical path delays can be
reduced. Gaillardon et al. proposed NVM-based SB and LUT structures, and
demonstrated an area and delay reduction of up to 28% and 34% compared to
conventional FPGA [39]. They also claimed that PCRAM leads to the lowest
leakage power, whereas RRAM gives the best area and delay improvements.
Khaleghi et al. presented an RRAM-based FPGA architecture including SB, LUT,
and also programming circuitry [70]. Their architecture reduces the area and delay
by 59.4% and 20.1% compared to SRAM-based FPGA, and also improves the area
and power by 49.7% and 33.8% compared to recent RRAM-based architecture.
Miyamura et al. fabricated an FPGA based on atom switches [71], where the
atom switch is one of the via-switch component and is detailed in the next section.
They also demonstrated that their FPGA performed 60% active power saving and
three times faster operation compared with a conventional FPGA. However, these
NVMs need a few transistors per each cell for programming and those transistors
prevent the further improvement of area efficiency.

1.4 Via-Switch FPGA and Issues
This section introduces via-switch FPGA that is mainly focused on in this
dissertation. The via-switch FPGA is a novel non-volatile FPGA under active
development for the practical application. First, Section 1.4.1 describes via-switch
structure and characteristics. Then, Section 1.4.2 explains a fundamental structure
and switch programming steps. Finally, Section 1.4.3 discusses challenges to be
solved for the practical application of the via-switch FPGA.

1.4.1 Via-Switch
To overcome the drawbacks of conventional SRAM-based FPGAs, various
FPGAs that exploit emerging NVMs as programmable switches instead of

14 CHAPTER 1. INTRODUCTION

Ru electrode

Solid
electrolyte

Cu electrode

OFF +V to Cu
electrode

-V to Cu
electrode

ON+V to Cu
electrode

-V to Cu
electrode

Figure 1.9: Structure and operation of atom switch.

SRAM-based ones are widely studied as explained in the previous section. In
these emerging NVM-based FPGAs, however, one or two access transistors per a
programmable switch are required for switch programming. The access transistor
is relatively large despite the small footprint of an NVM-based switch, and hence
it prevents further area reduction. To eliminate access transistors, non-volatile
via-switch is actively developed [72–74]. The via-switch is a non-volatile,
rewritable, and compact switch that is developed to implement a crossbar switch
by Banno et al. [72]. This switch consists of atom switches, which are a kind
of CBRAMs in RRAMs family, and varistors in place of access transistors. This
subsection explains the device structure, functionality, and characteristics of the
via-switch.

The atom switch consists of a solid electrolyte sandwiched between copper
(Cu) and ruthenium (Ru) electrodes as shown in Figure 1.9. By applying a positive
voltage to the Cu electrode, a Cu bridge is formed in the solid electrolyte, and
the switch turns on. On the other hand, when a negative voltage is applied, Cu
atoms in the bridge are reverted to the Cu electrode, and then the switch turns
off. The switching between on-state and off-state is repeatable, and each state is
non-volatile [75–79]. In an atom switch, both electrodes are connected by Cu
metal ions, and therefore the on-resistance becomes low and capacitance becomes
small. The on-resistance depends on the programming current through the atom
switch when we form the Cu bridge, and it can be down to 200 Ω that is one
order of magnitude lower compared with a MOS transistor switch. Off-resistance
of an atom switch is 200 MΩ. Capacitance per atom switch is 0.14 fF [72, 80].
The atom switch can be reprogrammed about 1,000 times [71]. Furthermore, the
atom switch can be integrated in the back-end-of-line (BEoL) layers with a small
area, where BEoL layers correspond to wiring layers, while the front-end-of-line
(FEoL) layer corresponds to transistor layer [81–84]. Since atom switches do
not use transistors, we can fully utilize the FEoL layer to implement the logic,
memory, or arithmetic computing unit.

1.4. VIA-SWITCH FPGA AND ISSUES 15

OFF

Signal line

Control line

Signal line

ON

Programming
path at step 1

Programming
path at step 2

Figure 1.10: CAS structure.

On the other hand, when we use a single atom switch as a programmable
switch, a device reliability issue arises. The turning on/off operation applies a
relatively high voltage (programming voltage) to the atom switch, whereas we
use lower voltage than programming voltage during normal operation. However,
even when a lower voltage is applied to the atom switch, a small amount of Cu
ions move, and hence it may lead to the transition of on/off states. To prevent the
above reliability issue, the complementary atom switch (CAS) is devised, where it
consists of two atom switches connected in series with opposite direction as shown
in Figure 1.10 [85–89]. By regarding two atom switches as a programmable
switch, the voltage applied to each atom switch is divided and it alleviates Cu
ions transfer. Besides, when a positive voltage is given to either atom switch,
a negative voltage is applied to the other atom switch thanks to the anti-series
structure of a CAS, and this improves the device reliability. In the programming
of CAS, a pair of the signal line and control line supply a programming voltage to
each atom switch, and two atom switches are programmed sequentially. During
normal operation, on the other hand, only signal lines are used for routing [71].

To accurately provide the programming voltage only to the target atom switch
in a switch array, the varistor, which is a kind of bidirectional diode, is introduced
into the via-switch [72–74]. Figure 1.11 shows the structure of via-switch, where
the varistor is connected to the control terminal of CAS. When a voltage higher
than a threshold value (programming voltage) is applied between the signal and

16 CHAPTER 1. INTRODUCTION

��������

�	

����

���

������ ���

����

���

Figure 1.11: Via-switch structure.

control lines, the varistor supplies programming current to an atom switch. On
the other hand, the varistor isolates the control lines from the signal lines during
normal operation, and we can regard a via-switch as a two-terminal device with
two signal lines. Both CAS and varistor can be implemented in the BEoL layer,
and therefore the via-switch is a fully transistor free programmable switch. The
minimum footprint per via-switch is 18 F2 [72, 80].

1.4.2 Via-Switch FPGA
Figure 1.12 illustrates the concept of via-switch FPGA. By using non-volatile
via-switches with a small footprint, resistance and capacitance instead of SRAM-
based switches, the area and energy efficiency can be expected to improve.
Furthermore, the BEoL layer integration of via-switches without transistors
enables us to exploit the whole FEoL layer for computing logic. This promotes
to implement rich computing units, e.g., arithmetic and logic units (ALUs),
multiply-accumulators, accelerators for AI applications, etc. The following
paragraphs explain the via-switch FPGA structure and switch programming steps.

The structure of via-switch FPGA is an array of configurable logic blocks
(CLBs), and each CLB is composed of a logic block and a crossbar where a via-
switch is placed at each intersection of signal lines as shown in Figure 1.13 [80].
The via-switch in the crossbar is responsible for connection and disconnection
between the horizontal and vertical signal lines by changing the switch on/off
states. Besides, the top half of the crossbar serves as input and output multiplexers
to the logic block and corresponds to the connection block in conventional FPGAs.
On the other hand, the bottom half of the crossbar, which corresponds to the switch
block, routes global interconnections. The logic block organizes combinational
and sequential circuits. In via-switch FPGA, we reconfigure each CLB separately.
To acquire this, via-switches are also placed at the boundary between adjacent
CLBs as depicted in Figure 1.13.

Next, the following describes how to program the via-switch in the crossbar

1.4. VIA-SWITCH FPGA AND ISSUES 17

Switches occupy
most of the area

SRAM switch

Conventional FPGA Via-switch FPGA

Small device
+ 3-D structure

FEOL layer

BE
O

L
la

ye
r

Via-switch
• BEoL integration
• Small footprint
• Non-volatility
• Small R and C

Figure 1.12: Concept of via-switch FPGA.

structure. Figure 1.14 illustrates the via-switch based crossbar structure. Both
signal and control lines are aligned horizontally and vertically. This figure
exemplifies programming steps in a 2x2 crossbar where an atom switch is turned
on at each step. A pair of the perpendicular signal and control lines crossing
at the via-switch of interest are used for switch programming. As mentioned in
the previous subsection, when a high programming voltage is given between the
signal and control lines, the varistor turns on and supplies programming current
to the switch. Therefore, two programming drivers are activated at each step, and
a positive voltage is given to one of the signal lines, and a ground voltage is given
to one of the control lines. Other lines are floated. As shown in the figure, steps 1
and 2 successfully turn on the via-switch at the bottom left.

1.4.3 Issues of Via-Switch FPGA

Thanks to the advantages of via-switches as mentioned, via-switch FPGA is
expected to significantly boost the energy efficiency compared to conventional
FPGAs. On the other hand, the via-switch FPGA is facing some challenges for
the practical application. First of all, it is primarily important to establish the fab-
rication and integration technologies of via-switches. For utilizing via-switches
as programmable switches, they need to have a large on-off resistance ratio.
Also, novel nano-sized devices such as via-switches face a challenge in terms
of device yield, and hence highly-reliable manufacturing process is demanded.
To tackle these issues, Refs. [74, 79, 90–92] have been actively developing
the integration technology of via-switches and improving device characteristics.
Besides, developing computer-aided design (CAD) tools for the via-switch FPGA

18 CHAPTER 1. INTRODUCTION

CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

Logic
block

Via-switch

Connection
block

Switch
block

On-state
Off-state

Figure 1.13: Structure of via-switch FPGA.

is also challenging. Based on the features and constraints of the via-switch FPGA
architecture, it is essential to build appropriate CAD tools that are responsible
for the logic synthesis, technology mapping, place and route. For this challenge,
the mapping algorithm dedicated for the via-switch FPGA is devised [93, 94].
However, some critical challenges still remain for the practical application of the
via-switch FPGA. This subsection explains these challenges along each phase of
via-switch FPGA development, i.e., the chip design phase, manufacturing phase,
and reprogramming phase at the user side.

First, as the challenge at the chip design phase, the interconnect structure
that fully utilizes the advantages of via-switches is not sufficiently studied.
The crossbar structure is considered to be suitable to efficiently accommodate
many switches in a small area and to improve the performance in previous
studies on FPGAs with atom switches. However, quantitative evaluations on the
performance improvement effect in the case that the via-switch FPGA exploits
crossbar structure are not enough. Besides, an appropriate connection structure
between CLBs has not been considered so far. Furthermore, the repeater
insertion technique for improving the interconnect performance, which is a
common strategy in conventional circuit design, is not discussed. For example in

1.4. VIA-SWITCH FPGA AND ISSUES 19

VaristorAtom switch Programming driver
Signal line Control line Ground voltage Positive voltage

On-state atom switch Programming target

Step 1 Step 2

Figure 1.14: Via-switch based crossbar structure and switch programming steps.

conventional FPGAs, signal slope tends to become gentle due to the large circuit
area and the large parasitic load of switch circuits. To prevent the signal distortion
and improve the performance, conventional FPGAs frequently insert repeaters to
the signal paths, where the repeater is a driving circuit to restore the distorted
signals and is typically implemented by a buffer or inverter. From the above, the
interconnect structure that maximizes the performance improvement effect thanks
to via-switches needs to be clarified.

Next, in the manufacturing phase, via-switch FPGA manufacturer needs
to inspect the via-switch based crossbar functionality before the shipment for
ensuring that FPGA users can implement arbitrary routings. For this purpose,
fault testing that investigates whether all the via-switches can be normally turned
on and off is essential. However, fault testing methodology for via-switch based
crossbar has not been developed. As mentioned, the via-switch has an upper
limit on the number of reprogramming. Therefore, the fault testing method with
a small number of reprogramming is desirable for maximizing the number of
reprogramming at the FPGA user side after the shipment.

After the shipment of the via-switch FPGA, users apply various programs
to the FPGA. However, the crossbar programming structure explained in the
previous subsection may cause the sneak path problem depending on on-off
patterns of via-switches in a crossbar. For example, the programming of the top
right via-switch in Figure 1.15 cannot be performed correctly. The atom switch

20 CHAPTER 1. INTRODUCTION

Programming target

Unintentional switch
programming due to
signal detour

Sneak path problem

On-state

On-state

VaristorAtom switch Programming driver
Signal line Control line Ground voltage Positive voltage

On-state atom switch Programming target

Figure 1.15: Sneak path problem in via-switch crossbar programming.

that composes the bottom right via-switch is under programming unintentionally
since the positive voltage is provided through the already on-state via-switches
at the bottom left and top left. Such an unintentional switch programming due
to signal detouring through on-state via-switches is the sneak path problem.
The sneak path problem interferes the reconfiguration of FPGA, and hence it is
crucially important to clarify the occurrence conditions and find countermeasures
for the sneak path problem.

1.5 Objectives of This Dissertation
The objective of this dissertation is to solve the issues preventing the practical
application of the via-switch FPGA and provide an environment where users can
utilize the high-performance and defectless via-switch FPGA without the sneak
path problem. For this purpose, this dissertation tackles the challenges of via-
switch FPGA at the chip design phase, manufacturing phase, and reprogramming

1.5. OBJECTIVES OF THIS DISSERTATION 21

phase at the user side as explained in Section 1.4.3. This subsection summarizes
the objectives of the following chapters and outlines how to address each issue.

Chapter 2 aims at solving the issues at the design phase. This work
investigates interconnect structures of via-switch FPGA focusing on the repeater
insertion, and proposes a structure that can utilize the via-switch advantages
and can selectively insert repeaters to the signal paths. Then, transistor-level
SPICE simulations quantitatively evaluate the interconnect performance of the
proposed structure and demonstrate that the significant performance improvement
is achieved comparing to conventional SRAM-based FPGA. Besides, this chapter
clarifies the appropriate connection structure between CLBs of via-switch FPGA
taking the sneak path problem into account. For this purpose, this work also
reviews a constraint-based countermeasure for the sneak path problem in the
via-switch crossbar and give a formal proof of its effectiveness.

Chapter 3 establishes a fault detection and diagnosis methodology for the
manufacturing phase of the via-switch FPGA. This work is the first one to
investigate the fault testing of the via-switch crossbar. This chapter utilizes a
general differential pair comparator, which can be implemented with a small area
at the peripheral a part of via-switch FPGA chip, for distinguishing the via-switch
on/off-states in the crossbar. Next, fault modes of a via-switch are clarified
by using SPICE simulation that injects stuck-on/off faults to atom switch and
varistor. Then, this work proposes a fault detection and diagnosis methodology
that identifies faulty via-switches in the via-switch crossbar focusing on the
difference of the comparator response in normal and faulty cases. The number
of reprogramming in the proposed fault testing method is very small, i.e., each
via-switch is reprogrammed only once. The fault detectable ratio and diagnosable
ratio are also evaluated.

Chapter 4 addresses the sneak path problem that is a critical issue at the user
programming phase. First, the crossbar programming status that causes the sneak
path is identified by investigating the occurrence conditions of the sneak path
problem. After that, this chapter proposes an initial programming method that
avoids the sneak path problem by arranging the programming sequence of via-
switches in a crossbar. It should be noted that the crossbar whose via-switches are
all off-state is supposed as the initial state in the initial programming. This work
develops an algorithm that can effectively find a sneak path free programming
order by traversing the connection tree, which represents the connection status of
signal lines in a crossbar as a tree structure. A formal proof that a sneak path free
programming order necessarily exists for arbitrary on-off patterns without loops
in a crossbar is also provided in this chapter. The significant improvement of
the routing flexibility in the via-switch crossbar is confirmed by the quantitative
simulation-based evaluation.

Chapter 5 extends the proposed method of Chapter 4 for partial reconfiguration

22 CHAPTER 1. INTRODUCTION

in the already programmed crossbar at the initial state. This work proposes a
partial reprogramming method for minimizing the number of switch programming
steps while avoiding the sneak path problem. The minimization of the number of
programmed switches is achieved by arranging the root node of the connection
tree. This chapter models the optimal root node selection as a set cover problem
with cost minimization, and also proposes a low computational complexity
method that obtains the same solution of the set cover problem without solving
it. The simulation-based evaluation confirms that the proposed method greatly
reduces the number of programming steps and contributes to extending the
lifetime of via-switches and speeding up the reconfiguration of the via-switch
FPGA.

Finally, Chapter 6 summarizes the dissertation. Future works are also
discussed in this chapter.

Primary issues at all phases of via-switch FPGA development that prevent
practical application are covered in this dissertation as illustrated in Figure 1.16.
The interconnect structure proposed in Chapter 2 boosts both the operating speed
and energy efficiency. The fault diagnosis method proposed in Chapter 3 helps
the FPGA manufacturer to inspect manufactured products and to prevent the
shipment of defective products to FPGA users. The sneak path solution proposed
in Chapters 4 and 5 enables to implement all the practical configuration patterns
to the via-switch FPGA. As a result, this dissertation realizes that FPGA users
can enjoy implementing any applications on high-performance and defectless
via-switch FPGA.

1.5. OBJECTIVES OF THIS DISSERTATION 23

Chip design
phase

Manufacturing
phase

User programming
phase

Chapter 2
Issue: appropriate interconnect structure is not clarified
Approach: structure with selective repeater insertion
→ High operating speed and energy efficiency

Chapter 3
Issue: fault testing method is not developed
Approach: fault diagnosis with comparator
→ 100% detectability and high diagnosability

Chapter 4&5
Issue: sneak path interferes reconfiguration
Approach: arranging switch programming order
→ All practical configurations are available

Via-switch FPGA
development

Figure 1.16: Contributions and organization of this dissertation.

Chapter 2

Interconnect Structure Design and
Evaluation in Via-Switch FPGA

This chapter discusses the interconnect structure that is suitable for via-switch
FPGA [80]. By comparing some interconnect structures of via-switch FPGA, this
chapter proposes a high performance interconnect structure that can selectively
insert repeaters to signal paths. This chapter also clarifies the appropriate
programming structure at the connection switch between CLBs taking the sneak
path problem into account. Section 2.1 introduces the repeater insertion that is
an important technique in circuit design to improve the interconnect performance.
Then, Section 2.2 proposes an interconnect structure and provides some structures
to be compared. The inter-CLB connection structure is also discussed in this
section. Section 2.3 evaluates the interconnect performance of these structures by
transistor-level SPICE simulation, and demonstrates that the proposed structure
attains high energy efficiency. Lastly, Section 2.4 summarizes this chapter.

2.1 Introduction

This chapter focuses on the repeater insertion which is one of the design consid-
erations in integrated circuits [1]. Both interconnect resistance and capacitance
increase in proportion to wiring length L, and hence wiring delay increases in
proportion to the square of wiring length L2. To mitigate this quadratic effect,
repeater circuits, which are typically buffers or inverters, are inserted in the middle
of interconnection to divide the interconnection and shorten the wiring length per
gate circuit. Supposing the wiring is split into N segments with N repeaters, each
segment has a delay time of (L/N)2, and hence the total delay through N segments
becomes L2/N. If the number of segments is proportional to the wiring length,
the overall delay increases only linearly with L. On the other hand, repeaters also

25

26
CHAPTER 2. INTERCONNECT STRUCTURE DESIGN AND

EVALUATION IN VIA-SWITCH FPGA

become load factors that have resistance and capacitance, and therefore excessive
repeater insertion leads to degrading the operating speed and energy efficiency.
Besides, repeater insertion has a disadvantage that signal transmission direction is
fixed since repeaters allow only the unidirectional signal transfer.

Conventional FPGAs have large wiring length, and consequent large resis-
tance and capacitance due to the large area of the SRAM-based programmable
switches as explained in Section 1.2. Therefore, repeaters are placed at every
connection block and switch block, and the signal frequently goes through these
repeaters [95]. In via-switch FPGA, on the other hand, the circuit area is expected
to be dramatically reduced thanks to the small footprint of a via-switch, and
wiring resistance and capacitance become small according to the area reduction.
The via-switch resistance and capacitance are also small. Hence, frequent
repeater insertion by adopting the conventional strategy may lead to performance
degradation. The following sections clarify an interconnect structure that is
suitable for via-switch FPGA.

2.2 Interconnect Structures of Via-Switch FPGA
This section introduces the proposed interconnect structure and some structures
to be compared.

2.2.1 Proposed Interconnect Structure
Figure 2.1 illustrates the proposed interconnect structure. An important feature
of the proposed structure is that repeaters are arranged separately from the global
signal lines. In this structure, the connection block is responsible for repeater
insertion. This structure enables us to selectively insert repeaters according to
the signal transmission distance. For example, in short distance transmission
such as transmission to adjacent CLB, the wiring load is small, and hence no
repeaters are inserted by using the blue path depicted in Figure 2.1. On the
other hand, in the signal transfer over a long distance, the crossbar routes the
signal like the green path shown in Figure 2.1 at the middle CLBs and insert
repeaters. This selective repeater insertion contributes to optimized signal delay.
Besides, the signal lines of the proposed structure are bidirectional since the
via-switch is naturally capable of bidirectional signal transfer and repeaters are
placed separately from the signal lines. Thanks to the bidirectional transmission,
the routing efficiency per signal line improves and consequently the number of
necessary signal lines can be reduced. Ref. [80] reports that the number of signal
lines with bidirectional interconnects can be reduced by 9–14% compared with
unidirectional interconnects in a case study of application mapping.

2.2. INTERCONNECT STRUCTURES OF VIA-SWITCH FPGA 27

CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

Logic
block

Via-switch

Long distance
transfer with
repeater insertion

Short distance
transfer without
repeater insertion

Selective
repeater
insertion

On-state
Off-state

Figure 2.1: Proposed interconnect structure of via-switch FPGA.

2.2.2 Connection Structure Between CLBs

In via-switch FPGA, CLBs are connected to each other by via-switches, but the
detailed connection structure is not discussed so far. This subsection clarifies the
requirement of connection structure focusing on the sneak path problem in the
switch programming as explained in Section 1.4.3. An important design consider-
ation of switch programming is how to arrange control lines of via-switches. For
example in the crossbar as mentioned in Section 1.4, each via-switch connects
to two control lines that are aligned horizontally and vertically. Ochi et al. intu-
itively claimed that a programming constraint which prohibits multiple on-state
via-switches in the same horizontal line eliminates the sneak path problem. They
also mentioned that they could turn on multiple via-switches in the same vertical
line for multiple fan-outs by imposing the programming constraint. Therefore, this
subsection reveals the appropriate programming structure of between CLBs while
assuming that there are multiple on-state via-switches in the same horizontal line
but not in the same vertical line. In addition, the next subsection gives a formal
proof that the programming constraint surely eliminates the sneak path problem

28
CHAPTER 2. INTERCONNECT STRUCTURE DESIGN AND

EVALUATION IN VIA-SWITCH FPGA

Control line

Atom switchSneak path

Target

On-state Off-state
Ground voltage Positive voltage

Figure 2.2: Sneak path problem in connection switch between CLBs.

in the crossbar.
First, a smaller number of control lines is better in terms of area efficiency.

Therefore, it is preferable that all the connection switches between CLBs share
one control line as illustrated in Figure 2.2. However, this structure causes the
sneak path problem when multiple via-switches are on-state in the same line of
the crossbar, and a non-target connection switch turns on unintentionally in the
figure. To prevent the sneak path problem, an individual control line needs to
be aligned for each connection switch between horizontal CLBs. On the other
hand, connection switches between vertical CLBs can share the same control line
since the multiple on-state via-switches in the same horizontal line are not allowed
under the programming constraint.

2.2.3 Effectiveness Proof of Programming Constraint Based
Countermeasure for Sneak Path Problem

This subsection proves that there is no sneak path problem in the programming
of the any-sized via-switch based crossbar structure under a programming con-
straint that the multiple on-state via-switches are allowed only in one direction.
Following the procedure below, a formal proof based on mathematical induction
is provided.

1. Prove that the sneak path problem does not arise in the programming of
1 × 1 crossbar (i.e., single via-switch). This is self-evident.

2.2. INTERCONNECT STRUCTURES OF VIA-SWITCH FPGA 29

2. Assume that the sneak path problem does not arise at each programming
step for any configuration patterns of M × N crossbar.

(a) Prove that the sneak path problem does not arise at each programming
step for any configuration patterns in (M + 1) × N crossbar.

(b) Prove that the sneak path problem does not arise at each programming
step for any configuration patterns in M × (N + 1) crossbar.

3. Once procedures 1 and 2 are completed, this work can prove there is no
sneak path problem in the programming of the any-sized crossbar.

The atom switch at the intersection when a positive voltage is given to the
signal line and a ground voltage is given to the control line is turned on. When
the number of such intersections is two or more, the sneak path problem arises.
Here, the proof focuses on the number of bends of the programming signal given
to the signal line. When the number of bends of programming signal given to
the signal line is two or more, there are two or more intersections where the
corresponding atom switches become on as shown in Figure 1.15. In other words,
the programming signal must be bend twice or more by on-state via-switches to
cause the sneak path problem. The proof will show that the number of signal
bends is at most one in procedure 2. The following assumes that the multiple
on-state via-switches are allowed only in the vertical direction without losing
generality since the crossbar has a symmetrical structure. Also, turning on and
off a via-switch is a symmetrical operation, and by swapping the voltages given to
the signal line and control line, the same proof can be easily achieved. Therefore,
the following proof only considers the situation in which via-switches are turned
on.

In procedure 2-(a), it is necessary to prove that there is no sneak path problem
in any possible configuration patterns newly added by the horizontal one-column
crossbar extension. Here, the number of on-state via-switches in each row is zero
or one because the multiple on-state via-switches in the horizontal direction are
not allowed. Therefore, what the proof needs to clarify is that for each row with no
on-state via-switches, the switches located at the expanded column can be turned
on without the sneak path problem. The upper right of Figure 2.3 illustrates this
example. The programming of a via-switch must turn on two atom switches, i.e.,
the upper atom switch connected to the horizontal signal line and the lower atom
switch connected to the vertical signal line as shown in Figure 1.14. When the
upper atom switch is under programming, a positive voltage is provided to the
horizontal signal line (e.g., step 1 in Figure 1.14). Here, all other switches on the
same horizontal line are off-state due to the programming constraint, and hence the
signal given to the signal line never bends. On the other hand, the programming

30
CHAPTER 2. INTERCONNECT STRUCTURE DESIGN AND

EVALUATION IN VIA-SWITCH FPGA

Verify these switches
can be turned ON

Verify that each switch
can be turned ON alone

Expand by one row

Expand by one column

MxN crossbar

M

N

M

N

M

N

On-state

Figure 2.3: Crossbar expansion supposed in induction-based proof.

of the lower atom switch uses the vertical signal line (e.g., step 2 in Figure 1.14).
In this case, the programming signal can be bent depending on whether there are
on-state via-switches on the same vertical line. However, the signal never bends
further because the multiple on-state via-switches in the horizontal direction are
not allowed. From the above, the proof can conclude that the total number of
signal bends is at most one and hence no sneak path problem arises in procedure 2-
(a).

Next, let us move to the procedure 2-(b). The crossbar is expanded by one
row in the vertical direction. Here, only one via-switch on the expanded row can
be turned on because the multiple on-state via-switches in the horizontal direction
are not allowed. Therefore, what the proof should verify is that any one of the
switches on the expanded row can be turned on, which is illustrated in the lower
right of Figure 2.3. When the upper atom switch is under programming, the
programming signal given to the horizontal signal line never bends similar to the
proof of procedure 2-(a). When the lower atom switch is under programming,
the programming signal bends at most once. From the above, the total number
of signal bends is one or less, and hence no sneak path problem arises in
procedure 2-(b).

In summary, the above proof has completed procedures 1 and 2, and

2.2. INTERCONNECT STRUCTURES OF VIA-SWITCH FPGA 31

Table 2.1: Comparison of supposed interconnect structures.
Proposed BFR UFR SRAM-based

Crossbar Via-Switch Via-Switch Via-Switch Transmission
Switch Gate

Repeater Separated from Between Between Between
Position Signal Lines CLBs CLBs CLBs
Repeater Selective Fixed Fixed Fixed
Insertion
Repeater Buffer Cross-Coupled Buffer Cross-Coupled
Circuit Tri-State Buffers Tri-State Buffers
Signal Bidirectional Bidirectional Unidirectional Bidirectional

Direction
BFR: bidirectional fixed repeater structure.
UFR: unidirectional fixed repeater structure.

consequently clarifies that there is no sneak path problem in the programming
of any-sized crossbar under the programming constraint that multiple on-state
via-switches are allowed only in one direction.

2.2.4 Interconnect Structures for Performance Comparison

This subsection explains other interconnect structures supposed in this chapter for
the comparison purpose. Table 2.1 summarizes these structures with the proposed
one. To evaluate the effectiveness of the selective repeater insertion, this chapter
supposes two structures for the performance comparison, namely bidirectional
fixed repeater (BFR) structure and unidirectional fixed repeater (UFR) structure.
In both the BFR structure and UFR structure, a repeater is placed on each
signal line at the boundary between CLBs. Therefore, the repeater insertion
frequently occurs every time the signal passes through each CLB in BFR and UFR
structures. The difference between BFR and UFR structures is the repeater circuit.
BFR structure uses cross-coupled tri-state buffers, and hence signal lines are
bidirectional, while UFR structure allows only unidirectional signal transmission
due to buffers located at the boundary between CLBs. In addition to the above
structures, this work supposes an SRAM-based structure to compare the proposed
structure with the conventional FPGA. In SRAM-based structure, a transmission
gate is placed at each crossbar intersection and cross-coupled tri-state buffers are
arranged at the boundary between CLBs.

32
CHAPTER 2. INTERCONNECT STRUCTURE DESIGN AND

EVALUATION IN VIA-SWITCH FPGA

2.3 Interconnect Performance Evaluation

This section evaluates the interconnect delay and the energy for signal transmis-
sion. Section 2.3.1 evaluates the performance improvement thanks to the selective
repeater insertion and bidirectional signal transmission, which are the features
of the proposed architecture. Section 2.3.2 compares the performance of the
proposed and conventional architectures.

2.3.1 Performance Improvement Thanks to Selective Repeater
Insertion and Bidirectional Signal Transmission

First, this subsection evaluates the dependence of the delay and energy on the
crossbar size aiming to show that the smaller crossbar thanks to bidirectional
signal can contribute to higher performance. In general, the bidirectional
signaling can utilize programmable interconnections more effectively than the
unidirectional signaling, and therefore the bidirectional crossbar size can be
reduced compared to the unidirectional one. Ochi et al. reported that the crossbar
sizes of 86x153 and 96x163 were required for bidirectional interconnection and
for unidirectional interconnection, respectively, when a certain application of the
same function is mapped [80]. The following evaluation constructs circuit models
of 86x153 crossbar and 96x163 crossbar using the equivalent circuit model of
the via-switch shown in Figure 2.4. The circuit models include wire resistance
and capacitance of the signal lines. Then, by connecting the crossbar circuit
models with inter-crossbar via-switches, the transistor-level netlists of the tiled
crossbars are generated. The netlist also includes the LUTs and repeaters where
65 nm thin-buried-oxide fully-depleted-silicon-on-insulator (thin-BOX FD-SOI)
transistor [96] that is suitable for the low-voltage operation is assumed. Then,
HSPICE performs the circuit simulation and evaluates the propagation delay from
the LUT output of the source CLB to the LUT input of the destination CLB by
changing the number of CLBs between the source CLB and the destination CLB
as illustrated in Figure 2.5.

Figure 2.6 shows the interconnect delay and the energy per signal transition. In
this evaluation, no repeaters are inserted. The result shows that the interconnect
delay depends on the crossbar size and it decreases by 11% when the crossbar
size is reduced from 96x163 to 86x153. The energy per signal transition also
depends on the crossbar size and it decreases by 10%. Here, these reduction
ratios are evaluated at the distance of seven CLBs since the average distance in the
mapping results is roughly seven CLBs [80]. The crossbar size reduction thanks
to bidirectional interconnection is effective for interconnect delay and energy
reduction.

2.3. INTERCONNECT PERFORMANCE EVALUATION 33

����������	

����
���

�������

�� ��

�� ��
��

������
���
��

�

�� ��

��

����������	

��������
�

�������

����������	

����
���

����������Ω ����

����Ω �����

Figure 2.4: An equivalent circuit model of via-switch in normal operation.

���

�����

���

�����

���

���

����	
��

���

����	
��

Figure 2.5: Signal transmission path in performance evaluation.

Then, Figure 2.7 compares the proposed structure with BFR and UFR
structures in terms of the interconnect delay and energy. Three structures have
comparable delay time in short distance transfer up to seven CLBs. Here, the delay
in the proposed structure increases in proportion to the square of the distance and
becomes larger in long distance transmission. The later evaluation demonstrates
that the selective repeater insertion successfully eliminates this quadratic effect
and optimizes the delay even in the long distance transmission. Focusing on the
energy, on the other hand, the proposed structure has the lowest energy compared
to BFR and UFR structures. Figure 2.8 compares the energy-delay product, which
is a good metric of energy efficiency. When the distance is seven CLBs, the
reduction ratio of the proposed structure from BFR and UFR structures are 67%
and 46%, respectively. This result indicates that the proposed structure is suitable
for the high energy efficient signal transfer.

Next, this paragraph evaluates the impact of selective repeater insertion.
Figure 2.9 shows the relations of interconnect delay and energy to the distance
between the source LB and the destination LB. By inserting repeaters, the delay

34
CHAPTER 2. INTERCONNECT STRUCTURE DESIGN AND

EVALUATION IN VIA-SWITCH FPGA

�

���

���

���

���

� � �� ��

�
�
��
�
��
�
	

	
�����������������

�

����

���

����

���

����

� � �� ��

�
�
�
�
�
��
�
�

	
�����������������

����������	
�

�	���������	
�

����������	
�

�	���������	
�

�

��������	
��

��������	

�
� ���

Figure 2.6: (a) interconnect delay and (b) energy per signal transmission in the
proposed interconnect structure. Two crossbar sizes of 86x153 and 96x163 are
evaluated. Repeaters are not inserted. Supply voltage is 1.0 V.

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10

D
el

ay
 [n

s]

Distance (# of CLBs)

Proposed
BFR
UFR

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10

En
er

gy
 [p

J]

Distance (# of CLBs)

Proposed
BFR
UFR

(a) (b)

Figure 2.7: (a) interconnect delay and (b) energy per signal transmission in the
proposed, BFR, and UFR structures. The proposed and BFR structures are 86x153
crossbar and UFR structure is 96x163 crossbar. Supply voltage is 1.0 V.

2.3. INTERCONNECT PERFORMANCE EVALUATION 35

0
0.05

0.1
0.15

0.2
0.25

0.3

0 2 4 6 8 10

En
er

gy
 D

el
ay

 P
ro

du
ct

[1

0-2
1 J

s]

Distance (# of CLBs)

Proposed
BFR
UFR

67% smaller

46%
smaller

Figure 2.8: Energy-delay product per signal transmission in the proposed, BFR,
and UFR structures. The proposed and BFR structures are 86x153 crossbar and
UFR structure is 96x163 crossbar. Supply voltage is 1.0 V.

0

2

4

6

8

10

0 20 40 60

D
el

ay
 [n

s]

Distance (# of CLBs)

0
0.5

1
1.5

2
2.5

3

0 20 40 60

En
er

gy
 [p

J]

Distance (# of CLBs)

no repeaters
per 1 CLB
per 10 CLBs
per 15 CLBs

no repeaters
per 1 CLB
per 10 CLBs
per 15 CLBs

(a) (b)

Figure 2.9: (a) interconnect delay and (b) energy per signal transmission in the
proposed interconnect structure. Crossbar size is 86x153. Supply voltage is 1.0 V.

becomes proportional to the distance as is expected. The result also indicates that
the frequent repeater insertion, e.g., per 1 CLB in Figure 2.9, leads to significant
increase in both delay and energy. Therefore, it should be avoided to insert
repeaters frequently in via-switch based FPGA. In the case of short-distance
transmission, no repeater insertion is needed for minimizing the delay and energy.
When the distance is more than 14 CLBs, the repeater insertion per 10 CLBs
achieved the minimum delay. On the other hand, the insertion per 15 CLBs
reduces the energy with a small delay increase. From these results, the proposed
interconnect structure can insert repeaters according to the timing constraint. The
routing for selective repeater insertion is accomplished by CAD tools.

In the mapping result reported in reference [80], the most frequent distance

36
CHAPTER 2. INTERCONNECT STRUCTURE DESIGN AND

EVALUATION IN VIA-SWITCH FPGA

from the source to the destination was six CLBs and the ratio of the intercon-
nections whose distance is longer than 14 CLBs was only 2.3%. For 97.7%
of interconnections, no repeaters are needed for delay minimization. For larger
designs, longer interconnection will appear, but its frequency is expected to be
still not high since such a tendency is observed with Rent’s rule [97]. Therefore,
the number of repeaters is expected to be small. In addition, by introducing long
wires, which can be easily accommodated, the proposed structure further reduces
the number of repeater insertion. Thus, the flexible repeater insertion well fits the
proposed interconnect structure.

2.3.2 Performance Comparison between Proposed and Con-
ventional Architectures

This subsection compares the interconnect delay and energy between the proposed
and conventional SRAM-based architectures. The transistor-level netlist of the
SRAM-based crossbar is implemented with complementary pass gates and SRAM
cells, and the crossbars are connected by back-to-back tristate buffers with SRAM
cells for enabling bidirectional signaling. The netlist also includes wire resistance
and capacitance. Referring an industrial 65 nm cell library, the crossbar size is
estimated by the number of transistors. Here, the 86x153 SRAM-based crossbar
size is 223.6 µm × 275.4 µm, and it is 26 times larger compared to the via-switch
crossbar which is 516 F × 459 F = 51.6 µm × 45.9 µm. This means the proposed
architecture can achieve 26X higher crossbar density. Figure 2.10 shows the
performance comparison between the proposed and SRAM-based structures by
changing the signal transmission distance. The proposed architecture attains
significant delay and energy reduction. The reduction ratios of delay and energy
from the SRAM-based structure are 67% and 88%, respectively.

So far, the supply voltage is fixed at 1.0 V. This paragraph sweeps the
supply voltage in the range from 0.5 V to 1.0 V to evaluate the performance at
the low-voltage operation. Figure 2.11 shows the evaluation result. Here, the
signal transmission with seven CLBs distance is assumed, where please remind
that seven CLBs is the average distance in the mapping result [80]. The total
energy, which is depicted in Figure 2.11-(b), is the sum of all the interconnect
energies in the mapping result assuming that a single pulse propagates through
each interconnect. Figure 2.11-(a) shows that the interconnect delay reduction
ratio from the SRAM-based FPGA becomes higher as the supply voltage becomes
lower. At 0.5 V, the ratio of interconnect delay reduction reaches 90% because the
ON-resistance of the via-switch is independent of the supply voltage while that
of conventional transistor switch depends on the supply voltage. The interconnect
delay increasing ratio from 1.0 V to 0.5 V of the proposed architecture is only

2.3. INTERCONNECT PERFORMANCE EVALUATION 37

0

0.5

1

1.5

2

0 5 10 15

D
el

ay
 [n

s]

Distance (# of CLBs)

0

0.5

1

1.5

2

0 5 10 15

En
er

gy
 [p

J]

Distance (# of CLBs)

Proposed

SRAM-based

Proposed

SRAM-based

67%
reduction 88%

reduction

(a) (b)

Figure 2.10: Comparison between the proposed and SRAM-based architectures.
Repeaters are not inserted. Crossbar size is 86x153. Supply voltage is 1.0 V.

0
1
2
3
4
5
6

0.5 0.6 0.7 0.8 0.9 1

D
el

ay
 [n

s]

Supply Voltage [V]

0
200
400
600
800

1000
1200

0.5 0.6 0.7 0.8 0.9 1

To
ta

l E
ne

rg
y

[p
J]

Supply Voltage [V]

Proposed SRAM-based

90%
reduction

Proposed

SRAM-based3.6X

94%
reduction

87%
reduction

(a) (b)

Figure 2.11: (a) Interconnect delay and (b) total energy in the proposed and
SRAM-based architectures when supply voltage is varied. Repeaters are not
inserted. Crossbar size is 86x153.

1.1X, whereas that of the SRAM-based architecture is 3.6X. The evaluation also
indicates that the energy reduction ratio becomes higher with voltage decrease.
Focusing on 0.5 V operation, the energy reduction is 94%. These evaluation
results show that the proposed architecture can achieve high performance even
at low supply voltage.

The next evaluation investigates the impact of on-resistance of via-switch
by increasing it from 400 Ω to 1200 Ω. The evaluation results are shown in
Figure 2.12. The signal transmission distance is seven CLBs. The delay increases
in proportion to the on-resistance. However, even when the on-resistance rises to
1200Ω, the delay reduction from the SRAM-based architecture is still achievable,
especially a large reduction of 76% is attained at 0.5 V operation. On the other
hand, the total energy has almost no changes even when the on-resistance rises,

38
CHAPTER 2. INTERCONNECT STRUCTURE DESIGN AND

EVALUATION IN VIA-SWITCH FPGA

0
1
2
3
4
5
6

400 800 1200

On-Resistance of
a Via-Switch [Ω]

SRAM-
based

D
el

ay
 [n

s]

0
200
400
600
800

1000
1200

400 800 1200

On-Resistance of
a Via-Switch [Ω]

SRAM-
based

To
ta

l E
ne

rg
y

[p
J]0.5V

1.0V

76%
reduction

14%
reduction 93%

reduction

85%
reduction

0.5V
1.0V

(a) (b)

Figure 2.12: (a) Interconnect delay and (b) total energy in the proposed and
SRAM-based architectures when the ON-resistance of via-switch is varied.
Repeaters are not inserted. Crossbar size is 86x153.

and it is reduced nearly by one order of magnitude from the SRAM-based one at
both 1.0 V and 0.5 V operations.

All the above evaluations suppose dense crossbars where via-switches are
placed at all the intersections. On the other hand, sparser or depopulated switch
block which has fewer intersection switches are often used in conventional
FPGAs. The sparsened switch box may degrade the routing flexibility but can
reduce the area [98]. In the via-switch FPGA, the sparse crossbar decreases the
number of via-switches connected to each signal wire and consequently reduces
the load capacitance of each signal wire, whereas the crossbar area is unchanged.
In the case of conventional FPGA, the crossbar area is also reduced since the
number of transistors is reduced.

This paragraph evaluates the impact of crossbar sparseness on interconnect
performance. The evaluation sweeps the ratio of switch removal in the range
from 0%, i.e., fully dense crossbar, to 70%. Figure 2.13 shows the crossbar area.
Even when the removal ratio reaches 70%, the via-switch crossbar is still 8X
smaller than the SRAM-based one. Figure 2.14 shows the interconnection delay
and energy, where the crossbar size is 86x153, the supply voltage is 1.0 V, and the
signal transmission distance is seven CLBs. As shown in Figure 2.14, both delay
and energy decrease according to via-switch removal. When the removal ratio is
70% and on-resistance of via-switch is 400 Ω, the reduction ratios of delay and
energy from the full matrix crossbar are 45% and 46%, respectively. The result
also shows that the delay and energy of via-switch FPGA remain much smaller
than those of SRAM-based FPGA even with the switch removal, and the reduction
ratios of delay and energy are 69% and 87%, respectively.

The above results indicate that the proposed architecture achieves significant

2.3. INTERCONNECT PERFORMANCE EVALUATION 39

0

20,000

40,000

60,000

80,000

0% 30% 50% 70%

Switch Removal Ratio

SRAM-based Proposed

Cr
os

sb
ar

 A
re

a
[μ

m
2] 26X

18X
13X

8X

Figure 2.13: Crossbar area variation in terms of switch removal.

0

0.5

1

1.5

0 50 100

D
el

ay
[n

s]

Switch removal ratio [%]

0

0.2

0.4

0.6

0.8

1

0 50 100

En
er

gy
[p

J]

Switch removal ratio [%]

Proposed (ON-R=400Ω) Proposed (ON-R=1200Ω) SRAM-based

45% reduction

69%
reduction

46% reduction

87%
reduction

(a) (b)

Figure 2.14: (a) Interconnect delay and (b) energy in the proposed and SRAM-
based architectures when the thinning ratio of intersection switches is varied.
Repeaters are not inserted. Crossbar size is 86x153.

40
CHAPTER 2. INTERCONNECT STRUCTURE DESIGN AND

EVALUATION IN VIA-SWITCH FPGA

performance improvement compared with the conventional architectures. In
particular, it is more significant at the low-voltage operation, and the interconnect
delay and energy are reduced by one order of magnitude or more at 0.5 V
operation. This improvement can contribute to filling the gap between FPGA
and ASIC.

2.4 Conclusion
This chapter has proposed an energy-efficient interconnect structure of via-switch
FPGA. The proposed structure can selectively insert repeaters for optimizing
the delay according to the signal transmission distance, and adopts bidirectional
signaling. These features of the proposed structure contribute to improving
the interconnect performance. This chapter also discussed the programming
structure of the crossbar focusing on a constraint-based countermeasure for the
sneak path problem. This work gave a formal proof that the constraint-based
countermeasure works fine, and also identified the requirement of programming
structure at inter-CLB connection switches to prevent the sneak path problem.
Evaluation results based on transistor-level SPICE simulations show that the
proposed interconnect structure can achieve up to 26X higher crossbar integration
density and reduce interconnect delay and energy by 90% and 94% at 0.5 V
operation compared to conventional SRAM-based crossbars.

Chapter 3

Fault Diagnosis of Via-Switch
Crossbar

This chapter proposes a fault diagnosis methodology that identifies the fault
modes of via-switches in the crossbar [99]. This work is the first one to investigate
the fault testing and diagnosis of the via-switch based crossbar. First, Section 3.1
confirms that a general comparator can distinguish on/off-states of via-switches
in the crossbar, and clarifies fault modes of a via-switch by transistor-level
SPICE simulation. Then, Section 3.2 proposes a fault diagnosis methodology for
via-switches in the crossbar. Section 3.3 discusses the relation between a fault rate
of via-switch and a percentage of faulty via-switches in a practical-sized crossbar
with simulations of the fault injection, and also confirms that the proposed method
is suitable for the practical use. Finally, a summary of this chapter is given in
Section 3.4.

3.1 Fault Mode Analysis of Via-Switch

To verify the via-switch crossbar functionality after manufacturing, fault testing
that checks whether via-switches can be securely turned on and off is indispens-
able. Aiming at developing a fault testing method, this section first analyzes
fault modes of a via-switch. Section 3.1.1 confirms that a general comparator
can distinguish on/off-states of via-switches in the crossbar. Section 3.1.2 then
investigates and identifies fault modes of a via-switch by transistor-level SPICE
simulation. Based on the discussion in this section, the next section will propose
a fault diagnosis method.

41

42 CHAPTER 3. FAULT DIAGNOSIS OF VIA-SWITCH CROSSBAR

3.1.1 Discriminating Via-Switch On/Off-States with Compara-
tor

To discriminate via-switch on/off-states in the crossbar, this work adds a dif-
ferential pair comparator that connects to every programming driver through a
transistor switch as shown in Figure 3.1. This figure illustrates the connection
between the comparator, programming drivers, an array that contains four 2x2
crossbars. Here, all the crossbars can share the programming driver by using
NMOS pass transistors while Figure 1.14 depicts a driver for each wire. The
comparator can also be shared by all the crossbars. Therefore, the proposed
fault testing method is feasible by adding only one comparator, and the peripheral
circuit for testing is negligibly small for a practically large CLB array.

The read operation applies a voltage to the target atom switch in the same
manner as programming operation and turns on only the transistor switch that
connects the comparator with the driver that is outputting a ground voltage, which
is illustrated in Figure 3.1. In this read operation, the comparator observes the
voltage drop in the target atom switch and compares it with a given reference
voltage. Here, the applied voltage in the read operation is lower than the
programming voltage, and therefore this operation never changes the on/off-states
of the target switch. By giving an appropriate reference voltage that makes the
comparator output different depending on on/off-states of the target switch, the
comparator can read the switch states. The reference voltage is provided as an
analog voltage from a large scale integration (LSI) tester outside the chip. In
this read method, two programming drivers apply the voltage to a pair of an
atom switch and a varistor, and therefore this work calls this operation as atom
switch-varistor read (ASV-read) operation.

Table 3.1 summarizes the comparator output simulated by transistor-level
SPICE simulation in both cases that the target atom switch is on-state and off-state
varying the reference voltage. In this chapter, the crossbar size is set to 90x127
for practical use. Table 3.1 shows that the comparator output changes from 0 to 1
according to an increase in the reference voltage, and the reference voltage at the
boundary between 0 and 1 differs depending on the on/off-states of the target atom
switch. The boundary reference voltage for the on-state atom switch is higher than
that for off-state atom switch, and the voltage difference is about 50 mV as shown
in the row of ASV-read in Table 3.2. General LSI testers can provide the analog
voltage with millivolt accuracy, and therefore the comparator can discriminate
the on/off-states by exploiting the boundary difference between on and off states.
For example in Table 3.1, the atom switch state can be distinguished by choosing
0.56 V as the reference voltage.

The boundary reference voltage depends on the on-resistance of the via-
switch. Figure 3.2 shows the boundary reference voltage obtained by SPICE

3.1. FAULT MODE ANALYSIS OF VIA-SWITCH 43

Programming driver
for horizontal wires

Programming driver
for vertical wires

Comparator

Via-switch Target switch

Signal line Control line
Ground voltage Positive voltage

Figure 3.1: Connection between comparator, programming drivers, and crossbar
array.

simulations varying the on-resistance. On the other hand, even when the
on-resistance varies from 1 kΩ to 10 kΩ, the voltage difference between on and
off states is still tens of millivolts. Therefore, the comparator can distinguish the
on/off states. Also, the location of the target via-switch in the CLB array affects the
boundary reference voltage because the interconnect resistance varies depending
on the via-switch location. However, the interconnect resistance is about one
order of magnitude lower than the via-switch resistance, and hence the impact
of the via-switch location on the boundary reference voltage is relatively small.
SPICE simulations confirmed that the comparator successfully discriminates the
on/off states of via-switches at different locations.

In addition to the above ASV-read, this work introduces two read methods,
namely complementary atom switch read (CAS-read) operation and two varistors
read (TVR-read) operation. CAS-read applies a read voltage to the CAS by
activating a pair of drivers that drive the perpendicular two signal lines crossing at
the target intersection. One the other hand, TVR-read uses perpendicular two
control lines to apply a read voltage to two varistors connected in series in a
via-switch. Figure 3.3 illustrates each path to apply a read voltage in ASV-read,
CAS-read, and TVR-read. Here, this work does not use the signal path using
parallel signal and control lines at the target intersection, where the signal also

44 CHAPTER 3. FAULT DIAGNOSIS OF VIA-SWITCH CROSSBAR

Table 3.1: Comparator output when reference voltage is varied in read operation
of atom switch.

Reference Comparator output
voltage [V] Atom switch is on Atom switch is off

0.50 0 0
0.52 0 0
0.54 0 1
0.56 0 1
0.58 0 1
0.60 1 1

Table 3.2: Boundary reference voltage in ASV-, CAS-, and TVR-read.
Read type Target switch state

On-state Off-state
ASV-read 0.58 V 0.53 V
CAS-read 0.70 V 0.53 V
TVR-read 0.58 V 0.58 V

passes through an atom switch and a varistor, due to the sneak path problem.
In both CAS-read and TVR-read, one driver gives a positive voltage and the
other applies a ground voltage. Both the operations turn on only the transistor
switch that connects the comparator with the driver outputting a ground voltage
such that the voltage of interest is delivered to the comparator. The applying
voltage in CAS-read is lower than the programming voltage. On the other hand,
in TVR-read, the drivers apply a voltage of the same level as the programming
voltage to check the varistors state correctly.

The SPICE simulation has confirmed that the comparator response in CAS-
read is similar to ASV-read except for the absolute value of the reference voltage.
The comparator output changes from 0 to 1 as the reference voltage elevates, and
the boundary reference voltage for the on-state CAS is higher than that for off-state
CAS, where on-state CAS and off-state CAS mean both of atom switches in the
CAS are on-state and off-state, respectively. The row of CAS-read in Table 3.2
shows the values of the boundary reference voltage. The SPICE simulation also
confirms that the comparator response for a CAS containing one on-state atom
switch and one off-state atom switch is the same as the response to off-state CAS.
Meanwhile, the boundary in TVR-read does not change regardless of on/off-states
of atom switches as shown in Table 3.2 since there is no atom switch in the signal
path in TVR-read.

ASV-read uses both an atom switch and a varistor, whereas CAS-read uses

3.1. FAULT MODE ANALYSIS OF VIA-SWITCH 45

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

10 kΩ 5 kΩ 2.5 kΩ 1 kΩ

Off-state
switch

On-state switch

Bo
un

da
ry

 re
fe

re
nc

e
vo

lta
ge

 [V
]

Figure 3.2: Boundary reference voltage of comparator when via-switch on-
resistance is varied.

Voltage is applied to
• Pair of an atom switch and

a varistor: ASV-read
• Two atom switches connected

in series: CAS-read
• Two varistors connected

in series: TVR-read

Figure 3.3: Path to apply read voltage in ASV-, CAS-, and TVR-read.

only atom switches and TVR-read uses only varistors. By combining the
comparator responses in these three read operations, this work can improve the
fault diagnosis capability. The details will be explained in Section 3.2.

3.1.2 Via-Switch Fault Modes

This subsection discusses how the comparator response varies when a via-switch
includes faulty atom switch or varistor. This work injects stuck-on/off faults
to atom switch and varistor, and evaluates the comparator response by SPICE
simulation. Here, stuck-on/off faults mean that the two terminals of atom switch
or varistor are shorted/opened.

46 CHAPTER 3. FAULT DIAGNOSIS OF VIA-SWITCH CROSSBAR

Table 3.3: Boundary reference voltage in ASV- and CAS-read with faulty varistor.
Read type Target switch state Varistor fault type

Stuck-on Stuck-off
ASV-read On-state 0.77 V 0.53 V

Off-state 0.53 V 0.53 V
CAS-read On-state 0.70 V 0.70 V

Off-state 0.53 V 0.53 V

First, this paragraph studies the case where the atom switch is stuck-on/off.
When an atom switch is stuck-on, the boundary reference voltage is unchanged
from the non-faulty on-state case even after the drivers apply a programming
voltage to turn off the atom switch. Then, this observation indicates that there
is a fault. The same discussion holds for the stuck-off case. The CAS can be
in a state where one atom switch is on-state and the other is off-state in addition
to the states that both atom switches are on-state or off-state. As mentioned in
the previous subsection, when at least one atom switch is stuck-off in a CAS, the
boundary reference voltage is identical to the boundary of CAS-read for off-state
CAS. Stuck-on/off faults of atom switches do not affect the boundary in TVR-read
as explained in the previous subsection.

Next, the following discusses the case where the varistor is stuck-on/off.
Table 3.3 summarizes the boundary reference voltage in ASV-read and CAS-read
with faulty varistor. Focusing on ASV-read with stuck-on varistor in Table 3.3, the
boundary for the on-state switch changes from that of the normal case, specifically
from 0.58 V in Table 3.2 to 0.77 V in Table 3.3. Therefore, this observation
can know there is a fault. On the other hand, when reading the off-state atom
switch, the boundary is the same for normal and stuck-on cases. In ASV-read
with stuck-off varistor, the boundary is fixed to 0.53 V, which is the boundary
in the normal case with off-state switch, regardless of on/off-states of the target
switch.

The row of CAS-read in Table 3.3 indicates that the boundary reference
voltage for faulty varistor does not change from the normal case. The CAS-read
operation applies a read voltage only to the CAS, and hence stuck-on/off faults of
the varistor do not affect the comparator response.

Table 3.4 shows the boundary reference voltage of TVR-read in normal and
faulty cases. When either varistor in a via-switch is stuck-off, the boundary
voltage drops from the normal boundary. On the other hand, when both varistors
are not stuck-off and either varistor is stuck-on, the boundary voltage rises
compared to the normal case.

This work utilizes these differences in the boundary reference voltage between

3.2. PROPOSED FAULT DIAGNOSIS METHOD 47

Table 3.4: Boundary reference voltage in TVR-read with normal and faulty
varistors.

Varistors state Boundary reference voltage
No fault 0.58 V

If either varistor is stuck-off 0.53 V
Else if either varistor is stuck-on 0.72 V

normal and faulty cases for the fault diagnosis method proposed in the next
section. It should be noted that the comparator response for a via-switch with
multiple faulty components is a combination of the above fault modes.

3.2 Proposed Fault Diagnosis Method
This section proposes a fault diagnosis method for the via-switch crossbar exploit-
ing the comparator response difference between normal and faulty via-switches
explained in the previous section. First, Section 3.2.1 clarifies prerequisites in the
proposed method. Then, Section 3.2.2 proposes a fault diagnosis method.

3.2.1 Prerequisites
The proposed method assumes the following prerequisites.

• Even when a varistor is stuck-on, the drivers can program the corresponding
atom switch normally. This can be achieved by a current-limiting circuit
that restricts the programming current appropriately.

• When a varistor is stuck-off, the drivers cannot program the corresponding
atom switch since the programming current cannot be provided to the target
atom switch.

• Initial state of non-faulty atom switch is off-state, which is a feature of via-
switch.

• There is no fault in the comparator, programming drivers, and interconnect
wires.

3.2.2 Fault Diagnosis
This subsection proposes a fault diagnosis method that identifies faulty compo-
nents in a via-switch on the crossbar. The proposed method utilizes the difference

48 CHAPTER 3. FAULT DIAGNOSIS OF VIA-SWITCH CROSSBAR

of the boundary reference voltage of the comparator in read operation discussed
in Section 3.1.

The proposed method enumerates all the combinations of stuck-on/off faults of
two atom switches and two varistors in a via-switch. Then, the proposed method
makes a look-up table beforehand that summarizes the boundary reference voltage
of ASV-read, CAS-read, and TVR-read after turning on/off the target switch
for each fault combination. When actually diagnosing faults in a via-switch,
the proposed method investigates the boundary of three read operations after
programming the target switch, performs a pattern matching with the look-up table
prepared above, and identifies the faults.

Table 3.5 enumerates all the patterns of comparator response when the number
of faulty components in a via-switch is up to two, which correspond to the left
half of the table. A via-switch has four components and each component can be
stuck-on/off. Then, supposing the number of faulty components is n, the number
of combinations of fault components is given by 4Cn×2n. Therefore, the number of
combinations in case of up to n faulty components can be calculated by

∑n
k=0 4Ck×

2k. When n is 2, there are 33 combinations listed in Table 3.5.
The proposed method performs ASV-read operations for both cases after

turning on and off the target atom switch, where this operation corresponds to
“US”/“LS” and “UR”/“LR” in Table 3.5, respectively. For example, “US” and
“LR” stand for “Upper atom switch is Set” and “Lower atom switch is Reset”,
respectively. For a CAS, there are four combinations to turn on (S) and off (R)
both upper and lower atom switches, and hence the proposed method evaluates
the boundary reference voltage in all four cases, which are “SS”, “SR”, “RS”, and
“RR” in Table 3.5. The proposed method also uses TVR-read operation in the
proposed method. For each via-switch, the above read operations can be attained
by reprogramming the via-switch only once. The following steps exemplify a
procedure of read operations.

1. Initial state of upper and lower atom switches is (upper: off-state, lower:
off-state).

2. Turn on the upper atom switch [switch state is (on, off)].

3. Perform the upper ASV-read operation (“US”).

4. Perform the CAS-read operation (“SR”).

5. Turn on the lower atom switch [switch state is (on, on)].

6. Perform the lower ASV-read operation (“LS”).

7. Perform the CAS-read operation (“SS”).

3.2. PROPOSED FAULT DIAGNOSIS METHOD 49

Table 3.5: Comparator response difference and diagnosability in case of up to two
faulty components in a via-switch.

Fault states of via-switch components Read operation results Diag.
ID Upper VR Lower AS Lower VR Upper AS U-ASV L-ASV CAS TVR 1F 2F

NF SN SF NF SN SF NF SN SF NF SN SF US UR LS LR SS SR RS RR
1 ✓ ✓ ✓ ✓ N N N N N N N N N Yes Yes
2 ✓ ✓ ✓ ✓ M H N N M M H M N Yes Yes
3 ✓ ✓ ✓ ✓ L M N N L M M M N Yes Yes
4 ✓ ✓ ✓ ✓ R M N N N N N N R Yes Yes
5 ✓ ✓ ✓ ✓ R R N N M M H M R — Yes
6 ✓ ✓ ✓ ✓ L M N N L M M M R — Yes
7 ✓ ✓ ✓ ✓ L M N N L M M M D Yes No1

8 ✓ ✓ ✓ ✓ L M N N M M H M D — Yes
9 ✓ ✓ ✓ ✓ L M N N L M M M D — No1

10 ✓ ✓ ✓ ✓ N N M H M H M M N Yes Yes
11 ✓ ✓ ✓ ✓ M H M H M H H H N — Yes
12 ✓ ✓ ✓ ✓ L M M H L M M M N — Yes
13 ✓ ✓ ✓ ✓ R M M H M H M M R — Yes
14 ✓ ✓ ✓ ✓ L M M H L M M M D — Yes
15 ✓ ✓ ✓ ✓ N N L M L M M M N Yes Yes
16 ✓ ✓ ✓ ✓ M H L M L M M M N — Yes
17 ✓ ✓ ✓ ✓ L M L M L M M M N — Yes
18 ✓ ✓ ✓ ✓ R M L M L M M M R — Yes
19 ✓ ✓ ✓ ✓ L M L M L M M M D — No2

20 ✓ ✓ ✓ ✓ N N R M N N N N R Yes Yes
21 ✓ ✓ ✓ ✓ M H R M M M H M R — Yes
22 ✓ ✓ ✓ ✓ L M R M L M M M R — Yes
23 ✓ ✓ ✓ ✓ R M R M N N N N R — Yes
24 ✓ ✓ ✓ ✓ L M R M L M M M D — Yes
25 ✓ ✓ ✓ ✓ N N R R M H M M R — Yes
26 ✓ ✓ ✓ ✓ N N L M L M M M R — Yes
27 ✓ ✓ ✓ ✓ N N L M L M M M D Yes No3

28 ✓ ✓ ✓ ✓ M H L M L M M M D — Yes
29 ✓ ✓ ✓ ✓ L M L M L M M M D — No2

30 ✓ ✓ ✓ ✓ R M L M L M M M D — Yes
31 ✓ ✓ ✓ ✓ L M L M L M M M D — No2

32 ✓ ✓ ✓ ✓ N N L M M H M M D — Yes
33 ✓ ✓ ✓ ✓ N N L M L M M M D — No3

VR: varistor, AS: atom switch, NF: no fault, SN/SF: stuck-on/off
U-ASV/L-ASV: ASV-read of upper/lower atom switch
US/UR/LS/LR: read after turning on/off/on/off upper/upper/lower/lower atom switch
SS/SR/RS/RR: read after turning on/on/off/off upper atom switch and turning on/off/on/off lower atom switch
N: normal response, M: fault is masked, H/L: boundary is the same as on-state/off-state switch, R/D: boundary rises/drops
Diag.: diagnosability, 1F/2F: up to one/two faulty components in a via-switch
Rows that have the same superscript number of “No” in diagnosability column share the same comparator response.

8. Turn off the upper atom switch [switch state is (off, on)].

9. Perform the upper ASV-read operation (“UR”).

10. Perform the CAS-read operation (“RS”).

11. Turn off the lower atom switch [switch state is (off, off)].

12. Perform the lower ASV-read operation (“LR”).

13. Perform the CAS-read operation (“RR”).

14. Perform the TVR-read operation.

50 CHAPTER 3. FAULT DIAGNOSIS OF VIA-SWITCH CROSSBAR

There are six characters that represent the state of the boundary reference
voltage in Table 3.5. “N” means that the component has no fault and the boundary
is normal. When there are faulty components but the boundary is the same as
normal, it expressed as “M”, e.g., when the comparator reads a stuck-on switch
after turning on the switch. When the boundary is expected to be that of the
off-state switch but is the same as the on-state switch, this work categorizes this
case as “H”. For example, “H” arises when the comparator reads a stuck-on
switch after turning off the switch. “L” is the opposite situation to “H”. “R” and
“D” correspond to the cases that the boundary rises and drops from the normal,
respectively. After obtaining the pattern of these six characters with ASV-read of
upper and lower atom switches, CAS-read, and TVR-read, the proposed method
diagnose faulty components in a via-switch.

The following paragraphs discuss fault detectability and diagnosability. Here,
the fault detection only evaluates whether the via-switch has faulty components,
while the fault diagnosis identifies faulty components in the via-switches and their
fault types. First, this paragraph evaluates fault detectability. The ASV-read of an
upper atom switch uses the upper atom switch and the lower varistor. Here, ID
#1-9 in Table 3.5 cover all combinations of non-faulty and stuck-on/off upper
atom switch and lower varistor. In this case, the response of the ASV-read, which
corresponds to the column of “U-ASV”, becomes (“N”, “N”) only when both
upper atom switch and lower varistor have no fault. The response of the remaining
eight cases is different from (“N”, “N”). By utilizing this difference, the proposed
method can detect whether a pair of upper atom switch and lower varistor are
faulty. The same discussion holds in the ASV-read of lower atom switch with the
upper varistor. Therefore, the proposed method can achieve 100% fault detection
of a via-switch by using ASV-read for both upper and lower atom switches.

On the other hand, in terms of fault diagnosability, the above observation
cannot identify the faulty components in a via-switch uniquely only with the
ASV-read. The column of “U-ASV” in Table 3.5 indicates that ID #3 and 6-9
have the same response of (“L”, “M”), and hence ASV-read cannot distinguish
these patterns. This is mainly because the boundary reference voltage of ASV-read
for stuck-off varistor is fixed to that in the normal case explained in Section 3.1.
For improving fault diagnosability, the proposed method combines the responses
of ASV-read, CAS-read, and TVR-read. The column of “Diag.” shows that fault
diagnosability using these three read methods in cases that there are up to one
and up to two fault components in a via-switch. When the comparator response is
unique in the table, the corresponding fault is diagnosable. The table demonstrates
that the proposed method can identify the fault component perfectly when there
is up to one fault component in a via-switch. When there are up to two faulty
components, the diagnosability ratio is 26/33 × 100 = 79%. On the other hand,
when only AVS-read is used, this ratio decreases to 33%. CAS-read and TVR-read

3.3. DISCUSSION 51

Table 3.6: Diagonosable faults ratio.
Maximum number Number of Number of Diagnosis

of faults fault patterns diagnosable patterns ratio [%]
1 9 9 100
2 33 26 79
3 65 34 52
4 81 34 42

help elevate the fault diagnosability by 46%.
Table 3.6 summarizes the fault diagnosis ratio when the maximum number

of faulty components in a via-switch is varied from 1 to 4. When the maximum
number of fault is 1, the proposed method can discriminate the faulty component
and fault type no matter which component is stuck-on/off. The table also indicates
that the diagnosis ratio diminishes as the maximum number of faulty components
increases. This is because the number of fault patterns that have the same response
of read operations increases. Fortunately, the probability that there are 3 or 4 faulty
components in a via-switch is low. The next section discusses a relation between
the number of faulty components and the fault rate of via-switch components in a
practically-sized crossbar, and confirms that the proposed method is effective for
practical use.

3.3 Discussion
This section investigates the relation between a fault rate of via-switch compo-
nents, a percentage of faulty via-switches, and the number of faulty components
in a via-switch in a practical-sized crossbar. Then, this section confirms that
identifying the faulty component in via-switches where there is one faulty
component in the via-switch is the most important in the crossbar for practical
use, and, from this point of view, the proposed method is suitable.

Figure 3.4 shows a percentage of faulty via-switches in a 100x100 crossbar
when a fault rate of via-switch components is varied from 0.01 to 0.25. This
evaluation randomly injects faults assuming that four components in a via-switch
have the same fault rate, and plots the average value of 10,000 trials. This
figure also categorizes faulty via-switches according to the number of faulty
components. The result demonstrates that via-switches with a single faulty
component are dominant, especially when the fault rate is low. When the fault
rate of each component is 0.1, the percentage of faulty via-switches reaches more
than 30%. Therefore, in the crossbar that has a practical percentage of faulty
via-switches, it is important to identify the faulty component in via-switches that

52 CHAPTER 3. FAULT DIAGNOSIS OF VIA-SWITCH CROSSBAR

0
20
40
60
80

0.01 0.025 0.05 0.1 0.25

%
 o

f f
au

lty

vi
a-

sw
itc

he
s

Fault rate of each component

1 2 3 4
of faulty components

Figure 3.4: Percentage of faulty via-switches in 100x100 crossbar when fault rate
of each component in a via-switch varies.

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25%
 o

f d
ia

gn
os

ab
le

vi

a-
sw

itc
he

s

Fault rate of each component

1 2 3 4

Supposed max. # of
faulty components

Figure 3.5: Percentage of diagnosable via-switches in 100x100 crossbar when the
fault rate of each component in a via-switch and the supposed maximum number
of faulty components are varied.

have only one faulty component.
Next, this paragraph evaluates how the percentage of diagnosable via-switches

in a 100x100 crossbar changes when the supposed maximum number of faulty
components in a via-switch varies. Figure 3.5 shows the evaluation result. In case
of lower fault rates, the highest diagnosability can be achieved by supposing that
there is up to one fault in a via-switch. For example, the percentage of diagnosable
via-switches is 99% when the fault rate is 0.05. The result also indicates that it is
better to suppose multiple faults in a via-switch and diagnose faulty components
when the fault rate becomes high.

The high diagnosability of the proposed method is useful for yield analysis.
In novel devices such as via-switches, it is important to investigate the cause of
faults in detail for improving the yield. The proposed method can identify which
component is faulty and also discriminate the fault type with high diagnosability.
Therefore, the proposed method helps the manufacturer to increase the yield

3.4. CONCLUSION 53

rate. Besides, the proposed method also contributes to the efficient use of
programmable resources. This is because, even when a crossbar has faulty
via-switches, it is possible to utilize the same crossbar normally by identifying
faulty switches with the proposed method and avoiding the faulty part with
sophisticated signal routings.

3.4 Conclusion
This chapter has confirmed that a general comparator can discriminate on/off-
states of via-switches in the crossbar-based FPGA and clarified fault modes of a
via-switch by SPICE simulation. Then, this chapter has proposed a fault diagnosis
method that exploits three read modes and identifies faulty via-switch components
according to the comparator response difference between normal and faulty cases.
The proposed method achieves 100% fault detection. As for the diagnosability, the
successful ratios of the fault diagnosis are 100% and 79% in cases that the number
of faulty components in a via-switch is up to one and up to two, respectively. The
number of reprogramming in the proposed fault testing method is very small, i.e.,
each via-switch is reprogrammed only once.

Chapter 4

Sneak Path Free Initial
Programming in Via-Switch FPGA

This chapter proposes a sneak path free initial programming method [100],
where the initial programming means the programming that is performed for
the crossbars whose via-switches are all off-state. Partial reconfiguration for
the crossbars where some via-switches are on-state will be discussed in the next
chapter. Section 4.1 firstly reviews conventional countermeasures for the sneak
path problem and states the advantages of the proposed method. After that,
Section 4.2 investigates the occurrence conditions of the sneak path problem and
identifies the crossbar programming status that causes the sneak path. Based
on the discussion in Section 4.2, Section 4.3 proposes a sneak path avoidance
method that provides a sneak path free programming sequence of via-switches
in a crossbar. Then, Section 4.4 generalizes the proposed method and gives a
proof that a sneak path free programming order necessarily exists for arbitrary
on-off patterns in a crossbar as long as no loops exist. Section 4.5 gives a
pseudo code and execution examples of the proposed method. Section 4.6
clarifies the advantages of the proposed method in terms of routing flexibility by
simulation-based evaluation. Lastly, Section 4.7 summarizes this chapter.

4.1 Introduction

In recent decades, countermeasures for the sneak path problem in RRAM-based
crossbars are widely studied [101–108]. These countermeasures can be catego-
rized into three groups, namely device-level structure modifications [102–104],
voltage bias schemes [105, 106], and multistage reading schemes [107, 108].
Refs. [102] and [103] propose one transistor-one resistor (1T1R) and one
diode-one resistor (1D1R) structures for each crossbar intersection, respectively.

55

56
CHAPTER 4. SNEAK PATH FREE INITIAL PROGRAMMING IN

VIA-SWITCH FPGA

These structures mitigate the sneak path current since the transistor or diode
act as a gating device, but the integration density of crossbars decreases due to
the added gating devices. Ref. [104] adopts a complementary resistive switch
(CRS), which is composed of two anti-serial memristors, as an intersection switch.
This structure ensures that either memristor in a CRS is always off-state (high
resistance) whenever the CRS retains logical 0 or 1, and hence it alleviates the
sneak path problem. However, write and read operations for the CRS become
complicated. The bias schemes have to apply VDD/3 or VDD/2 to unused wires
for minimizing the sneak path current [105,106]. These schemes need to drive all
the wires, and therefore large switching power is consumed. Also, they require
complicated controls and additional hardware overheads for write/read operations.
Refs. [107, 108] propose a reading scheme that reads the target switch multiple
times while changing conditions to eliminate the sneak path effect. The drawbacks
of the multistage reading schemes are a large amount of reading time and large
reading circuits.

The above summarizes the sneak path countermeasures reported in the
literature, but all the countermeasures focus on the sneak path problem in the
crossbar used as a memory. On the other hand, via-switch FPGA utilizes the
crossbar as programmable interconnections and this work solves the sneak path
problem in the write operation. To reduce the signal propagation delay in
crossbars for FPGA, on-resistance of a via-switch is set to 400 Ω [80] whereas
the on-resistance for memory purpose is in a range of a few kilo-ohms to
hundreds kilo-ohms [109–112]. This smaller on-resistance in FPGA purpose
makes the sneak path problem more severe since the countermeasures that insert
high-resistance gating devices to signal lines increase the delay and diminish the
integration density. Besides, voltage bias countermeasures are undesirable due to
the large power consumption and hardware overheads. Therefore, the sneak path
countermeasure that does not degrade the FPGA performance and does not need
hardware modifications is required.

As a sneak path countermeasure for FPGA purpose, Ochi et al. have
revealed that the sneak path problem can be avoided by imposing a programming
constraint [80]. This constraint allows multiple on-state via-switches on the same
signal line only in one direction. In other words, this constraint prohibits the
configurations in which multiple on-state via-switches exist in both the same
horizontal line and the same vertical line such as Figure 1.15. However, their
countermeasure involves a clear disadvantage. The programming constraint pro-
hibits some configurations of via-switch FPGA, and hence imposing the constraint
leads to a decrease in the number of available configurations. Consequently,
routing flexibility is limited. For example, practical applications often use routing
patterns illustrated in Figure 4.1. The left pattern changes vertical routing tracks,
and the right one realizes multiple fan-outs in the vertical direction. However,

4.2. OCCURRENCE CONDITIONS OF SNEAK PATH PROBLEM 57

Changing tracks Multiple fan-outs

On-state via-switch

Figure 4.1: Routing patterns that are prohibited in conventional countermeasure.
These patterns are often used in practical applications.

these patterns cannot be programmed in a crossbar when the constraint prohibits
multiple on-state switches in the same horizontal line [80]. To achieve the same
function, it is required to consume more interconnect resources due to detour
routing.

This chapter, on the other hand, proposes a programming constraint-free
countermeasure for the sneak path problem. The proposed method can pro-
gram arbitrary practical configuration patterns including the patterns depicted
in Figure 4.1. The advantages of the proposed method are as follows. The
proposed method completely eliminates the programming status that causes the
sneak path problem by arranging the programming order, and accepts all the
practical configuration patterns. The computational complexity of the proposed
algorithm is low, and there is no additional hardware overhead. Furthermore,
the elimination of programming constraints can simplify the algorithm and data
structure in the routing CAD software.

It should be noted that the proposed method can turn on multiple via-switches
in the same line both vertically and horizontally. As discussed in Section 2.2.2,
when there are multiple on-state via-switches in the same line of the crossbar, it is
necessary to align an individual control line for each inter-CLB connection switch.
Therefore, the via-switch FPGA that adopts the proposed programming method
requires the individual control lines for both vertical and horizontal inter-CLB
connection switches.

4.2 Occurrence Conditions of Sneak Path Problem

This section clarifies the programming status of a crossbar that leads to the sneak
path problem for developing a more efficient countermeasure. As explained in
Section 1.4.3, the atom switch at the intersection is turned on when a positive

58
CHAPTER 4. SNEAK PATH FREE INITIAL PROGRAMMING IN

VIA-SWITCH FPGA

Signal
bend #1

Signal
bend #2

Target Sneak path
VS1 VS2

VS3 VS4

SV1 SV2

SH1

SH2
Target

Sneak path

Condition (a): #bends of prog. signal
given to signal line is two or more

Condition (b): #bends of prog. signal
given to signal line is zero or one

VaristorAtom switch Programming driver
Signal line Control line Ground voltage Positive voltage

On-state atom switch Programming target

Figure 4.2: Two occurrence conditions of sneak path problem.

voltage is provided to the signal line and a ground voltage is provided to the
control line. When the number of such intersections is two or more, the sneak
path problem occurs. Focusing on the number of bends of the programming signal
given to the signal line, the circuit status that causes the sneak path problem can be
classified into two situations, namely conditions (a) and (b) as shown in Figure 4.2.
In condition (a), the programming signal provided to the signal line bends twice
or more, whereas the number of signal bends is one or zero in condition (b).
The following discusses each condition in detail. It should be noted that this
section only considers the programming operations to turn on the atom switch in
the following because programming operations to turn on and off an atom switch
are symmetrical operations and the same discussion can be done by swapping the
voltage given to the signal line and control line.

In condition (a) of Figure 4.2, two vertical signal lines SV1 and SV2 are
connected by multiple on-state via-switches VS3 and VS4 in the same line SH2.
When a programming signal is given to one of the signal lines SV1 and SV2,
the same signal is provided to the other signal line, which means we cannot
distinguish SV1 and SV2 anymore in the programming. Therefore, when we try to
turn on the lower atom switch of via-switch VS1 in the line SV1, the atom switch

4.3. PROPOSED SNEAK PATH FREE INITIAL PROGRAMMING 59

in the same position of signal line SV2, i.e., lower atom switch of via-switch
VS2 is programmed simultaneously. In summary, the sneak path problem arises
when programming an atom switch in already indistinguishable vertical lines or
indistinguishable horizontal signal lines.

From the opposite point of view, we could avoid the sneak path problem if
we would program such an atom switch before multiple vertical/horizontal signal
lines become indistinguishable. For example, in condition (a) in Figure 4.2, we
need to turn on the lower atom switch of via-switch VS1 before programming VS3
and VS4. It should be noted that, for programming a via-switch, we must turn on
two atom switches, which are the lower atom switch connected to the vertical
signal line and the upper atom switch connected to the horizontal signal line.
The vertical signal line is used when programming the lower atom switch (e.g.,
step 2 in Figure 1.14), and hence we need to pay attention to multiple on-state
via-switches in the same horizontal signal line that connect multiple vertical signal
lines. On the other hand, we should care about multiple on-state via-switches in
the same vertical signal line when programming the upper atom switch.

Let us move to condition (b) in Figure 4.2, where the number of bends of
programming signal given to the signal line is one or zero. In this case, the
programming signal that is provided to a control line is detoured and the sneak
path problem arises. On the other hand, such a condition is satisfied only when
a loop is intentionally programmed in a crossbar. For example, in Figure 4.2-(b),
all the four via-switches are intended to be turned on, otherwise the top two
atom switches of VS1 and VS3 never be on. This condition arises only when
programming the last two atom switches that compose a loop, and the ground
voltage applied to the control line is propagated to the non-target switch because
of the loop structure.

From the above discussion, the sneak path problem cannot be avoided in the
configurations that include a loop. Fortunately, such configurations with a loop
are not used in practical applications since the looped signal routing increases the
wire capacitance and degrades delay and power compared to non-loop routing.
Therefore, there is no need to take care of condition (b). Consequently, the only
thing to consider for sneak path avoidance is only condition (a).

4.3 Proposed Sneak Path Free Initial Programming
Based on the discussion in the previous section, this section proposes a sneak path
avoidance method that provides a sneak path free initial programming sequence of
via-switches in a crossbar. Here, the initial programming means the programming
that is performed for the crossbars whose via-switches are all off-state. The
proposed method gives a sneak path free programming order, where the target

60
CHAPTER 4. SNEAK PATH FREE INITIAL PROGRAMMING IN

VIA-SWITCH FPGA

configurations are non-looped configurations for signal routing. Section 4.3.1
explains the overview of the proposed sneak path avoidance method followed by
its details with examples in Section 4.3.2. Some key properties necessary for
proving that a sneak path free programming order necessarily exists are in italic.
With those properties, the next section generalizes the proposed method and gives
a proof that a sneak path free programming order necessarily exists for arbitrary
non-looped configurations.

4.3.1 Overview of Proposed Method
Table 4.1 shows the proposed method consisting of two steps: STEP 1 turning on
all the upper atom switches of interest and STEP 2 turning on all the lower atom
switches of interest. Each step is explained in the following.

In STEP 1, all the upper atom switches of the via-switches to be turned on in a
given target configuration are programmed. The via-switch connects the vertical
and horizontal signal lines only when both the upper and lower atom switches
composing a via-switch are on-state. Therefore, in STEP 1, any signal lines are
not connected to each other and the programming signal never detours. Hence,
no sneak path problem arises in this step. Then, the arbitrary programming order
works fine in STEP 1.

STEP 2 turns on all the lower atom switches to be programmed. In STEP 2, a
vertical line and a horizontal line are connected by a via-switch each time a lower
atom switch is turned on since the corresponding upper atom switch is already
turned on in STEP 1. Therefore, it is necessary to determine the programming
order of the lower switches paying attention to the occurrence condition of the
sneak path problem, which is discussed in the previous section. Please remind
that the driver provides a programming signal to a vertical signal line when
programming a lower atom switch, and hence this step considers only multiple
on-state via-switches in the same horizontal signal line since they make multiple
vertical lines indistinguishable. Multiple on-state via-switches in the same vertical
signal line do not matter. STEP 2 categorizes those multiple on-state switches
in the same horizontal line as connector switches (CSs) and other switches
as non-connector switches (NCSs). STEP 2a and 2b turn on NCSs and CSs,
respectively.

Table 4.1 demonstrates that all the target switches are programmed by the
proposed STEPs. The fifth column of Table 4.1 shows lemma numbers that
correspond to each STEP. Proving those lemmas in Section 4.4, this work ensures
that no sneak path problems arise in the proposed method.

It should be noted that the swapped sequence of STEP 2 followed by STEP 1,
i.e., programming all the upper atom switches after turning on all the lower
atom switches can also avoid the sneak path problem since the crossbar has a

4.3. PROPOSED SNEAK PATH FREE INITIAL PROGRAMMING 61

Table 4.1: Summary of proposed initial programming method.
Prog. Upper atom Lower atom switches Relevant
STEP switches NCSs CSs lemma
Start
STEP 1 Turned on Lem. 1
STEP 2a Programmed Turned on Lem. 2
STEP 2b Programmed Programmed Turned on Lem. 3-5
End Programmed Programmed Programmed
NCSs: non-connector switches, CSs: connector switches

symmetrical structure. In this case, it needs to determine the programming order
of the upper switches.

4.3.2 Programming Order Determination with Connection
Tree

This subsection details the proposed method explaining how to derive a sneak
path free programming order of via-switches in a crossbar. The following uses a
configuration of a 5x5 crossbar shown in Figure 4.3 as an example.

As mentioned in Section 4.3.1, the only thing to do is to determine the
programming order in STEP 2 since STEP 1 does not cause sneak path problems
with an arbitrary programming order. STEP 2 has to pay attention to multiple
on-state via-switches in the same horizontal signal line that connect multiple
vertical signal lines and make them indistinguishable. Therefore, this work
introduces two categories of the via-switch, namely connector switches and
non-connector switches, which are defined in the previous subsection. For
example, via-switches B, C, D, E, F, G, and H are connector switches and
via-switches A and I are non-connector switches in Figure 4.3. A pair of connector
switches connects two vertical signal lines, e.g., via-switches E and F connect
vertical signal lines SV1 and SV2 in Figure 4.3. The non-connector switch, on
the other hand, does not connect any vertical signal lines.

Please remind that the sneak path problem occurs when turning on the lower
atom switch included in the already connected vertical signal lines as explained
in Section 4.2. Therefore in STEP 2a, all the non-connector switches should be
programmed before the connector switches so that this step can avoid the sneak
path problem in programming the non-connector switches since the connector
switches which may connect vertical lines are still off-state. In this case, the
programming order of the non-connector switches is arbitrary.

Next, STEP 2b determines the programming order of connector switches. In

62
CHAPTER 4. SNEAK PATH FREE INITIAL PROGRAMMING IN

VIA-SWITCH FPGA

���������	
����
��

������������
��

����������������
��

��� ��� ��� ��� ���

�

	
 �

�

� �

�

Figure 4.3: Example of non-looped configuration and definition of connector/non-
connector switches.

this step, the programming order is not arbitrary since the sneak path problem
may arise depending on the programming order. For example in Figure 4.3, when
the drivers are turning on the connector switches B or G after programming the
connector switches of E and F, the sneak path problem occurs since switches E
and F have connected vertical lines SV1 and SV2.

To determine the programming order, this work constructs a connection
tree that represents the connection status of vertical signal lines in a crossbar.
Figure 4.4 exemplifies a connection tree for the connector switches in Figure 4.3,
where each node corresponds to a vertical signal line. The root node can be
arbitrarily selected. Vertical line SV3 is selected as the root node in Figure 4.4.
Here, when another node is chosen as the root node instead of SV3, the structure
of the connection tree changes. On the other hand, regardless of the tree structure,
the proposed method can avoid the sneak path, and the number of switches to be
turned on does not change since all the connector switches must be turned on.
When two vertical signal lines are supposed to be connected in the configuration
of interest, an edge is given between the two nodes corresponding to these two
vertical signal lines. Two black dots located at both ends of an edge represent
connector switches, and when both the two connector switches are turned on, this
work supposes the edge is activated and two vertical lines are connected. From
the definition, any non-looped configurations can be necessarily expressed by a
tree structure, which means loops are not included in the graph.

4.3. PROPOSED SNEAK PATH FREE INITIAL PROGRAMMING 63

��� ��� ��� ��� ���

� 	

� �

 �

���������	
���	�
�����	�

���

���

���

���

���

	
�

�

� �

Figure 4.4: Example of connection tree for connector switches in Figure 4.3.

The connection tree tells us which connector switch can be programmed such
that the connector switch that can be turned on at the end of programming is
indicated as the leaf node of the connection tree. Let us explain what happens
when programming the connector switch in the leaf node and non-leaf node of the
connection tree at the last programming step, where the last programming step
means that only one switch remains off and the others are already turned on in the
target configuration.

In Figure 4.5-(a), the connector switch in the leaf node of SV1 is under
programming, and the other connector switches are already on-state. In this
case, node SV1 and node SV2 are not connected yet, and hence the programming
signal never propagates to any other vertical signal lines. Consequently, the target
connector switch can be turned on without the sneak path problem. Figure 4.5-(b)
can also confirm that there is no sneak path problem when programming the
connector switch in the leaf node, where this figure is the circuit diagram
corresponding to Figure 4.5-(a). Next, let us turn on the connector switch in
non-leaf node SV2 in Figure 4.5-(c) at the last programming step. In this case, the
programming signal reaches the other vertical signal lines through the connector
switches that are already on-state, and consequently the sneak path problem arises.
The circuit diagram of Figure 4.5-(d) also indicates that atom switches placed at
the same vertical position as the target on the connected indistinguishable vertical
signal lines are unintentionally programmed.

Then, this work proposes to recursively search for a connector switch that
can be turned on at the final programming step for obtaining a sneak path free

64
CHAPTER 4. SNEAK PATH FREE INITIAL PROGRAMMING IN

VIA-SWITCH FPGA

���������	
���	�
�����	�

���

���

���

���

���

����������	
���	�
�����	�

�	
��

�������� ������

������
��������
��	
���	�
��

���	����������
��

������	����������

	
�����
������
����

������������������
����

���������	
���	�
�����	�

���

���

���

���

���

����������	
���	�
�����	�

�	
��

���

���

���

�	����
��������
��	
���	�
��

���	�����
��������
��

������	����������

	
�����
������
��	�

�������� ������ ���

�
� �

��

� �

�
� �

�

�
� �

Figure 4.5: Programming of connector switch in leaf/non-leaf node at the last
programming step.

4.3. PROPOSED SNEAK PATH FREE INITIAL PROGRAMMING 65

programming order of connector switches. Figure 4.6 illustrates the recursive
process. Here, there are two types of connector switches in each node, namely the
connector switch connecting with the parent node (e.g., switch B in node SV2)
and the connector switch connecting with the child node (e.g., switches F and
G in node SV2). In each node, all the switches connecting with the child node
must be turned on before the switch connecting with the parent node. Otherwise,
the sneak path problem arises when programming the switch connecting with the
child node since the programming signal is propagated to the parent node through
the on-state switch to the parent node as pointed out in Figure 4.5-(c).

Let us roll back the recursive programming step one by one with Figure 4.6.
As discussed, we can program only the connector switch in the leaf node at the
final programming step. Then, switch H in SV5 is selected as the last switch to be
programmed and node SV5, and the edge between SV2 and SV5 are deleted. This
modified graph is again analyzed to find the next last switch to be programmed.
In this case, switch E is selected. After SV5 and SV1 are removed from the graph,
SV2 has no child nodes, and hence switch B in leaf node SV2 connecting with
parent node SV3 can be programmed. In this way, one recursive process chooses
one leaf node, identifies the switch in the leaf node connecting with the parent
node as the last switch to be programmed in the current graph, and remove the
leaf node and its edge to the parent node. Eventually, all the edges are removed
from the connection tree, and the recursive process finishes. At this time, all the
vertical lines are not connected to any other vertical lines anymore, and hence we
can distinguish all the vertical lines. It should be noted that there remain some
on-state connector switches, for example, switches C, F, and G in Figure 4.6.
These switches can be programmed in an arbitrary order as long as they are
programmed before the switches selected in the recursive processes. One of the
finally obtained programming orders is C, F, G, B, D, E, and H.

Depending on the target configuration, multiple connection trees may be
constructed for a non-looped configuration. Each tree has no connection to
other trees, and hence the programming signal never propagates to other trees
when programming the switch in the tree of interest. Consequently, the proposed
method can handle each connection tree independently.

Thus far, this section discussed the programming order for turning-on opera-
tions. Programming operations to turn on and off an atom switch are symmetric
except that applied voltages to the signal line and control line are reversed.
Therefore, the proposed method can turn off all the switches without the sneak
path problem in the reverse order.

66
CHAPTER 4. SNEAK PATH FREE INITIAL PROGRAMMING IN

VIA-SWITCH FPGA

SV3

SV2

SV1

SV4

SV5

CB D

GF

E H

SV3

SV2

SV1

SV4

SV5

CB D

GF

E H

SV3

SV2

SV1

SV4

SV5

CB D

GF

E H

SV3

SV2

SV1

SV4

SV5

CB D

GF

E H

SV3

SV2

SV1

SV4

SV5

CB D

GF

E H

SV3

SV2

SV1

SV4

SV5

CB D

GF

E H

On-state connector switch Off-state connector switch

Figure 4.6: Recursively searching switch which can be programmed lastly for
each shrinking graph.

4.4 Proof of Existence of Sneak Path Free Program-
ming Order

This section formally proves that a sneak path free programming order always
exists for arbitrary non-looped configurations. As indicated in Table 4.1, the proof
consists of five lemmas, and this section proves them in the following, where
Lemma 1, Lemma 2, and Lemma 3-5 demonstrate that there is no sneak path
problem in the programming of upper atom switches, non-connector switches,
and connector switches, respectively.

Lemma 1. All the upper atom switches can be programmed in an arbitrary order

4.4. PROOF OF EXISTENCE OF SNEAK PATH FREE PROGRAMMING
ORDER 67

without the sneak path problem.

Proof. Only when both the upper and lower atom switches composing a via-
switch are on-state, the via-switch connects the vertical and horizontal signal lines.
Hence, any signal lines are not connected to each other in this programming step
because all the lower atom switches are still off-state. Therefore, the programming
signal never detours and no sneak path problem occurs. From the same reason,
the programming order of this step is arbitrary. □

Lemma 2. There is no sneak path problem in the programming of all the non-
connector switches, and arbitrary programming order works fine in this step.

Proof. In programming lower atom switches, the sneak path problem occurs when
the drivers turn on an atom switch in already indistinguishable vertical signal lines
as mentioned in Section 4.2. The indistinguishable signal lines originate from
on-state connector switches that connect multiple vertical lines. By programming
all the non-connector switches before connector switches, we can distinguish all
the vertical lines in programming non-connector switches since all the connector
switches are still off-state in this step. Therefore, no sneak path problem arises
and arbitrary programming order is acceptable in this programming step. □

Lemma 3. Given a non-looped configuration, it can be expressed by a connection
tree or multiple connection trees.

Proof. When we treat each vertical signal line as a node and draw an edge between
corresponding nodes if connector switches exist, these nodes and edges compose
a graph or multiple graphs that represent the connection status of vertical lines.
Each graph does not contain closed loops unless the target configuration has loops.
When a node is selected as the root node, the graph is expressed by a tree structure,
which is called the connection tree defined in Section 4.3.2. □

Lemma 4. At the last programming step for a connection tree, only a switch in
a leaf node connecting to its parent node can be programmed without the sneak
path problem.

Proof. When programming a switch in a leaf node at the final programming step,
the target switch is still off-state and the connection between the leaf node and
its parent node is not established yet. Hence, the programming signal given to
the leaf node never propagates to any other nodes, and consequently there is no
sneak path problem in this programming. On the other hand, a non-leaf node
has at least two connections, i.e., connections to its parent node and child node.
Therefore, the target non-leaf node has at least one connection to the other node
at the last programming step since all the switches except the target switch are

68
CHAPTER 4. SNEAK PATH FREE INITIAL PROGRAMMING IN

VIA-SWITCH FPGA

already on-state. Consequently, programming a switch in a non-leaf node at the
end always causes the sneak path problem by propagating the programming signal
to other nodes through the connection to the parent or child node. □

Lemma 5. Recursively searching a switch that can be programmed at the last
programming step always finds the sneak path free programming order.

Proof. By recursively searching a switch that can be turned on at the final
programming step in the current graph and removing the leaf node and its edge
to the parent node from the graph, all the nodes except the root node must be
eventually eliminated and the recursive search necessarily finishes since the tree
must have at least one leaf node when the number of nodes is two or larger. The
remaining switches can be programmed in an arbitrary order before the switches
chosen in the recursive search since each node has no connection to other nodes
at this moment, i.e., all the vertical signal lines are distinguishable. □

4.5 Pseudo Code and Execution Example
Algorithm 1 summarizes the overall determination procedure of a programming
order. This algorithm determines a sneak path free programming order of
non-connector and connector switches, and stores it to queue Oprog. Line 1
defines a set S of switches to be turned on. Lines 2-4 search non-connector
switches by checking the number of on-state switches in each horizontal signal
line. Specifically, line 2 creates a set H j of on-state switches in j-th horizontal
signal line, line 3 enumerates non-connector switches in j-th horizontal line
where the number of elements of H j is one, and line 4 enqueues all the
non-connector switches to Oprog. Then, line 5 removes all the non-connector
switches from the set S, and subsequent lines 6-8 determine the programming
order of connector switches. Line 6 selects i-th vertical signal line, in which the
connector switch to be turned on exists, as the root node of a connection tree, and
the programming order of connector switches in this connection tree is determined
by the function Search in line 7.

Search is a recursive function and traverses a connection tree from the root
node to leaf nodes. Please remind that all the switches connected to child nodes
need to be programmed before programming any switch connected to its parent
node. Search classifies the switches connected to child nodes of the parent node i
(line 10) and the switches connected to the parent node i (line 13). The former
is enqueued to Oprog in line 14 since switches connected to the child have to turn
on before the switches connected to the parent. On the other hand, the latter is
enqueued in Otmp in line 15 until all the switches connected to the child node are
enqueued to Oprog by the recursive function Search. This function is recursively

4.5. PSEUDO CODE AND EXECUTION EXAMPLE 69

Algorithm 1 Programming order determination of non-connector and connector
switches.

1: S = {S i, j | S i, j is on-state, 0 ≤ i < W, 0 ≤ j < H}
2: H j = {S i, j | S i, j ∈ S}
3: Snon-con = {S i, j | |H j| = 1, S i, j ∈ S}
4: Enqueue(Snon-con) to Oprog

5: S = S − Snon-con

6: for i ∈ {i | ∃S i, j ∈ S} do
7: Search(i, S, Oprog, Otmp)
8: Enqueue(Otmp) to Oprog

9: function Search(i, S, Oprog, Otmp)
10: Schild = {S i, j | S i, j ∈ S}
11: if Schild = ∅ then
12: return
13: Sparent = {S k, j | k , i, ∃S i, j ∈ Schild}
14: Enqueue(Schild) to Oprog

15: Enqueue(Sparent) to Otmp

16: S = S − (Schild ∪ Sparent)
17: for k ∈ {k | ∃S k, j ∈ Sparent} do
18: Search(k, S, Oprog, Otmp)

W: crossbar width, H: crossbar height

executed for all the child nodes of the node of interest (lines 17-18), and returns
when the node of interest is a leaf node of the connection tree, i.e., no child
nodes exist (lines 11-12). In the case that there exist multiple connection trees,
S is not empty after line 7 completion. In this case, “for statement” in line 6
re-executes Search with the updated S until S becomes empty. Finally, all the
switches connected to the parent node in all nodes are enqueued to Oprog in line 8.

Let us explain an example when the proposed algorithm is applied to the
configurations as shown in Figure 4.3. Lines 2-4 find non-connector switches A
and I, and enqueue them to Oprog. Line 7 determines a programming order of the
remaining connector switches B-H. Assuming the vertical line SV3 is selected as
a root node i, at the first execution of the function Search, the set Schild contains
the switch C connected to the child node as shown in Figure 4.4, and the set Sparent

contains switches B and D connected to the parent node (root node). Line 14
enqueues the switch C to Oprog and line 15 stores switches B and D to Otmp.
After that, function Search is executed again for vertical lines SV2 and SV4

70
CHAPTER 4. SNEAK PATH FREE INITIAL PROGRAMMING IN

VIA-SWITCH FPGA

where switches B and D exist. When Search is executed for line SV2, set Schild

contains switches F and G, and set Sparent contains switches E and H. On the
other hand, when Search is executed for line SV4, set Schild is empty and Search
returns. Eventually, the proposed method successfully obtains a sneak path free
programming order and it is A, I, C, F, G, B, D, E, and H.

4.6 Evaluation Results
This subsection discusses an increase in the number of available configurations
thanks to the proposed sneak path-aware programming method. The conventional
countermeasure for the sneak path problem, which is explained in Section 4.1,
imposes a programming constraint that prohibits a class of configurations of the
via-switch FPGA. Therefore, the conventional countermeasure reduces the num-
ber of usable configurations and consequently diminishes the routing flexibility.
On the other hand, the proposed method can give a sneak path free programming
order for any non-looped configurations. As discussed in Section 4.2, the sneak
path problem is unavoidable in looped configurations, but those configurations are
practically meaningless for signal routing.

Figure 4.7 compares the number of programmable configurations with the
conventional countermeasure and the proposed method in 2x2, 3x3, 4x4, and 5x5
crossbars, where such small crossbars are used to enumerate all the non-looped
configurations. In this evaluation, the conventional countermeasure prohibits
configurations in which multiple on-state via-switches exist in the same horizontal
line [80]. We can see that the proposed method increases the number of
usable configurations compared to the conventional countermeasure. Even in
the small 5x5 crossbar, the number of available configurations increases by over
two orders of magnitude. This evaluation also confirms that the number of
usable configurations in the proposed method is equal to the number of all the
non-looped configurations. As proved in Section 4.4, the proposed method can
find a sneak path free programming order for arbitrary non-looped configurations
in an arbitrarily-sized crossbar. Another observation is that the increasing ratio
of the number of usable configurations becomes larger as the crossbar size
increments, which suggests a significant increase in the number of configurations
in practically-sized crossbars.

Motivated by this, this work assesses the number of available configura-
tions in a practically-sized crossbar. Here, the total number of configurations
exponentially increases as the crossbar size n becomes larger, like 2n, and the
comprehensive simulation of larger crossbars is infeasible. Instead, this evaluation
generated random configurations for a large crossbar in Monte Carlo manner
and compared the number of programmable configurations with conventional and

4.6. EVALUATION RESULTS 71

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

2x2 3x3 4x4 5x5

of

 a
va

ila
bl

e
co

nf
ig

ur
at

io
ns

Crossbar size

Conventional
Proposed (theoretical max.)
All non-looped configs.

Figure 4.7: Number of available configurations with conventional countermeasure
and proposed method in small crossbars.

Table 4.2: Number of usable configurations among 10,000 random configurations
in a practically-sized 100x100 crossbar.

% of on-state # of samples # of available configs.
Conventional Proposed

0.1 10,000 6,347 10,000
0.2 10,000 1,324 10,000
0.3 10,000 91 10,000
0.4 10,000 1 10,000
0.5 10,000 0 10,000

proposed methods. The locations of on-state via-switches were determined by
uniformly distributed random numbers. In this evaluation, the crossbar size was
set to 100x100 and the number of trials was 10,000. This evaluation also varied
the percentage of on-state via-switches from 0.1% to 0.5%. Table 4.2 shows the
evaluation results. We can see that the proposed method achieves a significant
increase in the number of usable configurations. When 0.5% of via-switches
are on-state, the number of programmable configurations increases by over four
orders of magnitude.

72
CHAPTER 4. SNEAK PATH FREE INITIAL PROGRAMMING IN

VIA-SWITCH FPGA

4.7 Conclusion
This chapter identified the programming status of the via-switch crossbars based
FPGA that cause the sneak path problem, and clarified that the sneak path problem
could not be avoided in looped configurations. On the other hand, this chapter
has proved that a via-switch programming order which can avoid the sneak path
problem always exists for all the non-looped configurations, and this chapter
proposed a sneak path avoidance method that gave sneak path free programming
order of via-switches in a crossbar. The devised algorithm finds the programming
order by representing the connection status of signal wires in a crossbar as a
tree structure. Simulation-based evaluation results confirmed that the proposed
method increases the number of available configurations by over four orders of
magnitude in a practically-sized crossbar, and improves the routing flexibility
of via-switch FPGA. The proposed method successfully solves the sneak path
problem in any practical configurations of via-switch FPGA.

Chapter 5

Minimization of Programming Steps
in Partial Reconfiguration of
Via-Switch FPGA

This chapter proposes a partial reconfiguration method that minimizes the number
of switch programming steps while avoiding sneak path problem [113]. First,
Section 5.1 explains the proposed method that partially turns off and on via-
switches in an already programmed crossbar. Then, Section 5.2 provides a
proof that there is no sneak path problem in the proposed partial reconfiguration
method. After that, Section 5.3 proposes a minimization method of programming
steps, followed by a pseudo code in Section 5.4. The minimization effect is
quantitatively evaluated by simulations in Section 5.5. Section 5.6 discusses
an application example of the proposed method for the chip testing. Finally,
Section 5.7 summarizes this chapter.

5.1 Proposed Partial Reprogramming Method

This chapter discusses partial reprogramming for changing crossbar configura-
tions. Needless to say, we can change the crossbar configuration by turning off
all the on-state switches in the previous configuration and then writing the next
configuration to the crossbar with the proposed method explained in Chapter 4.
However, this approach involves unnecessary reprogramming when both the
previous and next configurations partially share the same on-state via-switches.
The unnecessary reprogramming of via-switches directly leads to an increase
in the reconfiguration time, and also shortens the lifetime of via-switches since
the maximum number of reprogramming is limited. For solving this problem,
this chapter proposes a partial reconfiguration method that minimizes the number

73

74
CHAPTER 5. MINIMIZATION OF PROGRAMMING STEPS IN PARTIAL

RECONFIGURATION OF VIA-SWITCH FPGA

Previous configuration Next configuration

Turn off ● Erase minimum #
of ● to avoid SPP

Turn on ● and
erased ●

Non-common switches Common switches

Figure 5.1: Concept of partial reprogramming.

of programmed switches while avoiding the sneak path problem. This method
contributes to extending the lifetime of via-switch FPGA and speeding up the
reconfiguration.

Table 5.1 summarizes the proposed partial programming steps and indicates
switches to be turned on/off in each step and their abbreviations in parentheses.
Figure 5.1 illustrates the basic strategy that programs non-common switches and
minimizes the number of common switches to be programmed for avoiding the
sneak path problem, where the proposed method erases only either upper or lower
atom switch in such common switches depicted with red semicircle symbols in
Figure 5.1. The following subsections explain how to partially turn off and on
via-switches in an already programmed crossbar.

5.1.1 Partial Erasing

STEP 1 of partial erasing turns off both upper and lower atom switches of
non-common parts, which are SPU and SPL, respectively, in Table 5.1. Similar
to the case of turning on an atom switch, the sneak path problem arises if we turn
off an atom switch in the already indistinguishable lines. Figure 5.2 illustrates
such a case. This figure indicates that the harmful SPP problem is not occurring
since the detoured routing provides the turning-off voltage to the off-state switch.
Fortunately, in non-looped configurations, this work can ensure that switches
under unintentional programming by the sneak path problem are always off-state.
If the switch under unintentional programming is on-state, a loop is composed
by these switches beforehand. This work uses only non-looped configurations,
and therefore we can turn off any switch regardless of the programming order.
Note that the programming order obtained in the previous section can erase all the

5.1. PROPOSED PARTIAL REPROGRAMMING METHOD 75

Ta
bl

e
5.

1:
Su

m
m

ar
y

of
pr

op
os

ed
pa

rt
ia

lr
ec

on
fig

ur
at

io
n

m
et

ho
d.

N
on

-c
om

m
on

in
C

om
m

on
in

bo
th

co
nfi

g.
N

on
-c

om
m

on
in

ne
xt

co
nfi

g.
pr

ev
.c

on
fig

.
R

el
ev

an
t

Pr
og

.S
T

E
P

U
pp

er
L

ow
er

U
pp

er
L

ow
er

A
Ss

U
pp

er
L

ow
er

A
Ss

le
m

m
a

A
Ss

A
Ss

A
Ss

H
or

iz
on

ta
l

V
er

tic
al

O
th

er
s

A
Ss

H
or

iz
on

ta
l

H
or

iz
on

ta
l

(S
PU

)
(S

PL
)

(S
C

U
)

C
Ss

(S
C

H
)

C
Ss

(S
C

V
)

(S
C

O
)

(S
N

U
)

C
Ss

(S
N

C
)

N
C

Ss
(S

N
N

)
St

ar
t

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Pa
rt

ia
le

ra
se

(S
T

E
P

1)
Tu

rn
off

Tu
rn

off
Pr

og
ed

.
Pr

og
ed

.
Pr

og
ed

.
Pr

og
ed

.
L

em
.6

ST
E

P
2a

Pr
og

ed
.

Pr
og

ed
.

Tu
rn

off
Pr

og
ed

.
L

em
.7

ST
E

P
2b

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Tu
rn

on
L

em
.7

Pa
rt

ia
l

ST
E

P
3a

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

L
em

.8
w

ri
te

ST
E

P
3b

Pr
og

ed
.

Tu
rn

off
Pr

og
ed

.
Pr

og
ed

.
L

em
.8

ST
E

P
3c

Pr
og

ed
.

Tu
rn

on
Pr

og
ed

.
Pr

og
ed

.
Tu

rn
on

L
em

.8
ST

E
P

3d
Pr

og
ed

.
Tu

rn
on

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Tu
rn

on
Pr

og
ed

.
L

em
.8

E
nd

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

Pr
og

ed
.

A
Ss

:a
to

m
sw

itc
he

s,
C

Ss
:c

on
ne

ct
or

sw
itc

he
s,

N
C

Ss
:n

on
-c

on
ne

ct
or

sw
itc

he
s,

Pr
og

ed
.:

pr
og

ra
m

m
ed

76
CHAPTER 5. MINIMIZATION OF PROGRAMMING STEPS IN PARTIAL

RECONFIGURATION OF VIA-SWITCH FPGA

SPP: sneak path problem

Target SPP

Indistinguishable lines

Always off-state

VaristorAtom switch

Signal line Control line
Ground voltage Positive voltage

Programming driver On-state

Figure 5.2: Sneak path problem in erasing process.

switches without the harmful or non-harmful sneak path problems.

5.1.2 Partial Writing

The partial writing process consists of two steps, where STEP 2 and 3 turn on all
the upper (SNU) and lower (SNC and SNN) atom switches, respectively, of the via-
switches to be newly turned on in the target configuration as shown in Table 5.1.
For avoiding the sneak path problem at each STEP, the proposed method turns off
a part of common and already on-state switches SCH and SCV before programming
SNU, SNC, and SNN so that the programming signal does not detour to any non-
target switch. The following explains the details of each step.

STEP 2 is to turn on SNU while avoiding the sneak path problem. As discussed
in Section 4.2, in programming upper atom switches, the sneak path problem
arises when we turn on an atom switch in already indistinguishable horizontal
lines. Therefore, it is necessary to care about SCV, which represents the connector
switches in the same vertical signal line. When SCV exists in the same horizontal
line of the target switch SNU, the proposed method erases the lower atom switches
SCV in the same line of SNU at STEP 2a. Such erasing is always possible as
explained in Section 5.1.1. The erased SCV will be reprogrammed later at STEP 3.
After STEP 2a, STEP 2b can turn on SNU without the sneak path problem since

5.1. PROPOSED PARTIAL REPROGRAMMING METHOD 77

the programming signal is never propagated to any other horizontal lines. Thus,
STEP 2 ensures that all the upper atom switches of via-switches to be turned on
are on-state at the beginning of STEP 3.

STEP 3 turns on SNC and SNN, which are lower atom switches to be newly
turned on in the target configurations. In addition, SCV erased at STEP 2a is also
turned on. This step utilizes the connection tree that is constructed based on the
final configuration of partial reprogramming. The basic idea to avoid the sneak
path problem in STEP 3 is as follows. The first step turns off a part of connector
switches and disconnects the node containing a target switch from the connection
tree so that the programming signal is never propagated to other nodes. Then, the
next step turns on the target switch in the isolated node, followed by turning on
the erased connector switches to restore the connection between the isolated node
and the connection tree.

STEP 3 is decomposed into the following four steps, which are listed in
Table 5.1. Let us explain each step with an example shown in Figure 5.3. As
explained in Section 4.3.2, the root node can be arbitrarily selected. Using this
property, STEP 3a changes the root node of the connection tree for minimizing
the number of switches to be programmed in STEPs 3b-3d, where the detail will
be discussed in Section 5.3. In Figure 5.3, node A is selected as the root node.
Next, STEP 3b is to turn off SCH, which represents horizontal connector switches
connecting to the parent node in the target and its descendant nodes. All the
connections below the target node are disconnected from the connection tree by
this step. The sneak path problem does not arise in STEP 3b since only erasing is
performed. In Figure 5.3, STEP 3b turns off the connector switches in nodes B,
C, and E connecting to their parent nodes. Then, STEP 3c turns on switches SNC

and SCV. There is no connection between the target node and the others thanks
to STEP 3b, and therefore no sneak path problem arises in this step. Finally,
STEP 3d reconnects the target and its descendant nodes to the connection tree.
By turning on the connector switches SCH and SNC in order from the shallow level
to the deep level of the connection tree, each phase always turns on a connector
switch in a leaf node, and hence there is no sneak path problem. As proved in
Section 4.4, a connector switch in a leaf node of the connection tree can be turned
on without the sneak path problem. In Figure 5.3, STEP 3d turns on connector
switches in order of nodes B, C, and E.

It should be noted that the swapped sequence of STEP 3 followed by STEP 2,
i.e., programming upper atom switches after turning on lower atom switches is
also acceptable since the crossbar has a symmetrical structure. In this case, it is
necessary to determine the programming order of the upper switches. Depending
on the target configuration, the number of switches to be programmed is different
for upper switch programming first or lower switch programming first. Therefore,
this work evaluates both the cases for reducing the number of programmed

78
CHAPTER 5. MINIMIZATION OF PROGRAMMING STEPS IN PARTIAL

RECONFIGURATION OF VIA-SWITCH FPGA

A B C D E F
C

E

F

A D

B

A

F

D

C

E

B

A

F

D

C

E

B

A

F

D

C

E

B

A

F

D

C

E

B

A

F

D

C

E

B

A

F

D

C

E

B

STEP
3a

STEP
3b

STEP
3c

STEP
3d

STEP
3d

STEP
3d

On-state via-switch Target switchOff-state via-switch

Figure 5.3: Proposed partial writing method.

switches.

5.2 Proof of Sneak Path Avoidance in Partial Recon-
figuration

This section summarizes a proof of sneak path problem avoidance with three
lemmas that correspond to STEP 1, 2, and 3 in the last column of Table 5.1.

Lemma 6. Lemma for the partial erasing process (STEP 1): The sneak path
problem in the erasing process always applies a voltage to turn off to off-state
switches that are placed in the same position as the target switch in the
indistinguishable lines.

5.2. PROOF OF SNEAK PATH AVOIDANCE IN PARTIAL
RECONFIGURATION 79

Proof. When we turn off an atom switch in the indistinguishable lines, the sneak
path problem arises in switches at the same position as the target switch in the
indistinguishable lines. Assuming that these switches are on-state, these on-state
switches and the target on-state switch connect already indistinguishable lines,
i.e., the configuration has loops. This causes a contradiction since this work
programs only non-looped configurations. Therefore, these switches that are
affected by the sneak path problem in the erasing process are always off-state.
Applying a voltage to turn off an already off-state switch does not matter, and
hence we can accept the sneak path problem in the erasing process. □

Lemma 7. Lemma for STEP 2 of the partial writing process: The sneak path
problem in the turning-on process of upper atom switches can be avoided by pre-
erasing lower atom switches of on-state vertical connector switch in the same
horizontal line of the target switch.

Proof. As discussed in Section 4.2, indistinguishable horizontal lines lead to
the sneak path problem in the turning-on process of upper atom switches. The
cause of indistinguishable horizontal lines is vertical connector switches that
are multiple on-state via-switches in the same vertical line. If these on-state
via-switches exist in the same horizontal line of the target switch, the proposed
method turns off the lower atom switches of these via-switches before the target
switch programming. In this case, we can distinguish the target horizontal line
and the programming signal never detours to other horizontal lines. □

Lemma 8. Lemma for STEP 3 of the partial writing process: The sneak path
problem does not arise in each STEP 3a-3d.

Proof. STEPs 3a and 3b do not include turning on operations, and therefore
the sneak path problem never occurs thanks to Lemma 6. STEP 3c turns on
atom switches in nodes that are isolated from the connection tree, and hence
the programming signal is never propagated to other vertical lines and there is
no sneak path problem. STEP 3d turns on connector switches to restore the
connections of isolated nodes. When turning on connector switches in order
from the shallow to the deep of the connection tree, each turning on operation
becomes a leaf node programming. As proved in Lemma 4, the leaf node switch
programming does not cause the sneak path problem, and hence there is no sneak
path problem in STEP 3d. □

80
CHAPTER 5. MINIMIZATION OF PROGRAMMING STEPS IN PARTIAL

RECONFIGURATION OF VIA-SWITCH FPGA

5.3 Proposed Minimization Method of Program-
ming Steps

This section discusses the minimization of the programming steps in the partial
reconfiguration. First, Section 5.3.1 models this minimization problem as a set
cover problem. Then, Section 5.3.2 proposes a low computational complexity
method that obtains the same solution of the set cover problem without solving it.

5.3.1 Minimizing Number of Switches Programed in Partial
Reconfiguration

This subsection proposes a minimization method of the number of switches
programmed in partial reconfiguration. The total number of programmed switches
can be calculated by summing the number of switches programmed in partial
erasing (STEP 1) and writing (STEP 2 and 3) process, which are expressed in
equations (5.1)-(5.4).

(Total #SWprog
[∗] in partial reprogramming) = (#SWprog in STEPs 1, 2, and 3),

[∗]#SWprog: # of programmed switches. (5.1)

(#SWprog in STEP 1) = (# of SPU and SPL). (5.2)

(#SWprog in STEP 2) = (# of SNU) + (# of SCV in same horizontal line of SNU).
(5.3)

(#SWprog in STEP 3) = (# of SCH to be pre-erased) × 2
+ (# of SCV in same horizontal line of SNU) + (# of SNC and SNN). (5.4)

STEP 1 programs twice as many switches as the number of non-common
via-switches in the previous configuration since the via-switch is composed of
two atom switches and the proposed method have to turn off both switches SPU

and SPL. STEP 2 turns on all the upper atom switches SNU of the non-common
via-switches in the next configuration at STEP 2b. In addition, STEP 2a turns
off the lower atom switch of on-state via-switches in the same horizontal line
of SNU if this on-state via-switch is a vertical connector switch SCV. Therefore,
the number of switches programmed in STEP 2 is given by equation (5.3). In
STEP 3, the number of programmed switches can be calculated by equation (5.4).
The pre-erased connector switches SCH are programmed twice, i.e., turning off
(pre-erasing) before the target programming at STEP 3b and turning on after the
target programming at STEP 3d. The target switches SNC, SNN, and SCV, where
SCV, which is turned off at STEP 2a, is programmed back at STEP 3c.

5.3. PROPOSED MINIMIZATION METHOD OF PROGRAMMING STEPS81

The number of SCH to be pre-erased in equation (5.4) varies depending on the
chosen root node of the connection tree since it changes the tree structure and the
number of descendant nodes of the target node. On the other hand, equations (5.2),
(5.3), and remaining terms of equation (5.4) are fixed for a given configuration.
Hence, this work minimizes the number of pre-erased connector switches SCH.

Supposing that there is only one target switch, the number of connector
switches SCH to be turned off before the target programming can be given by

(# of SCH to be pre-erased for one target switch)
= (# of SCH to parent in target and its descendant nodes)

− (# of SCH already turned off among first term). (5.5)

The pre-erasing phase at STEP 3b turns off the connector switches connecting
to the parent node in the target and its descendant nodes for disconnecting these
nodes from the connection tree. There are already off-state connector switches
since these switches are turned off in STEP 2a, and therefore the number of pre-
erased SCH is obtained by equation (5.5). Figure 5.4 exemplifies that the structure
of the connection tree and the number of pre-erased SCH change depending on
the root node selection. By choosing the root node that minimizes the number
of pre-erased SCH, the total number of programmed switches in the entire partial
reconfiguration can be minimized.

On the other hand, when there are multiple target switches in a connection
tree, the total number of pre-erased connector switches is not necessarily the sum
of equation (5.5) for each target switch. This is because some target switches
could be programmed during the programming process of another target switch,
where this work regards the former switches are dominated by the latter switch.
For example in the connection tree of Figure 5.5, target switches a and f can be
programmed in the programming process of target switch b when the root node is
node E. Here, switches a and f are dominated by switch b. In this case, STEP 3b
disconnects target node B and its descendant nodes A, C, D, F from the connection
tree. Then, STEP 3c can turn on not only target switches b but also switches a and f
since nodes A, B, and F are isolated, and the programming signal never propagates
to any other nodes.

Thanks to this dominance property, this work can reduce the number of
programmed switches compared to the case that STEP 3 is applied separately
to each target switch. In the example of Figure 5.5, the minimum number of
programmed switches is achieved by selecting node E or H as the root node and
dividing target switches into three groups, i.e., “switches a, b, and f”, “switch g”,
and “switch i”, where switches a and f are dominated by switch b. This work
separately applies STEP 3 to each switch group, and all the switches in the same
group are programmed in the same process of STEP 3. The following paragraphs

82
CHAPTER 5. MINIMIZATION OF PROGRAMMING STEPS IN PARTIAL

RECONFIGURATION OF VIA-SWITCH FPGA

Root node Node A Node B Node C

Structure of
connection tree

Number of SCH
to be pre-erased
(Number of)

3 5 4

Choose the smallest one
for minimizing the number
of switch programming

A

F

D

C

E

B

C

E

F

A D

B
F

A D

B

C

E

On-state

Target
Off-state

Figure 5.4: Changes in the structure of connection tree and the number of pre-
erased SCH depending on the root node selection.

explain how to derive the optimal root node and the target switch groups.
This work models this optimization problem as a set cover problem with

cost minimization. For each target switch, the proposed method calculates the
number of pre-erased connector switches and enumerates other target switches
that are dominated by the target switch of interest while changing the root node.
The number of pre-erased connector switches, which is the cost of this problem,
can be given by equation (5.5). The proposed method can enumerate dominated
target switches that can be programmed in the same process by checking whether
other target switches are included in the target node of interest and its descendant
nodes. Here, the dominance relation is determined once the parent node of the
target switch is fixed. Therefore, the above enumeration for a target switch is
repeated for the number of edges of the target node, not for the number of nodes
in the connector tree. In the other case, the target node is the root node, and
the dominance relation is also fixed. The above procedure gives some pairs of the
number of pre-erased connector switches and the group of target switches that can
be turned on in the same process of STEP 3. From the combination of these pair

5.3. PROPOSED MINIMIZATION METHOD OF PROGRAMMING STEPS83

Parent B: 3, (a, f)
Parent C: 8, (a, b, g, i)
Root A: 9, (a, b, f, g, i)

Parent/root node

of pre-erased switches

Switches that can be
programmed at once

Parent A: 7, (b, g, i)
Parent D: 9, (a, b, f, g, i)
Parent E: 5, (a, b, f)
Root B: 9, (a, b, f, g, i) Parent C: 1, (f)

Root F: 9, (a, b, f, g, i)

Parent E: 2, (i)
Parent J: 9, (a, b, f, g, i)
Root I: 9, (a, b, f, g, i)

Parent E: 1, (g)
Root G: 9, (a, b, f, g, i)

aA

CB

FED

G H I

J

b

f

g i

Target switch

a b f g i Cost

X X 3

X X X X 8

X X X X X 9

X X X 7

X X X X X 9

X X X 5

X X X X X 9

X 1

X X X X X 9

X 1

X X X X X 9

X 2

X X X X X 9

X X X X X 9

Figure 5.5: Minimization method of the number of switch programming.

information, the proposed method finds a set that covers all the target switches
and minimizes the total number of pre-erased connector switches.

Figure 5.5 exemplifies the set cover problem defined above. For target
switch a, the proposed method counts the number of pre-erased connector
switches and the covered target switches in three cases; i.e., when node B is parent,
when node C is parent, and when node A is root. In case when node B is parent,
it is necessary to disconnect nodes A, C, and F in STEP 3b, and hence the number
of pre-erased switches is three and the dominated switches are a and f. In the
same way, the proposed method counts the number of pre-erased switches and
dominated switches for each target switch. Then, this work constructs the table
in the right side of Figure 5.5, where each row represents a group of a dominant
node and dominated nodes and the corresponding cost of the number of pre-erased
switches. From this table, the proposed method finds a set of three red rows that
covers all the target switches and minimizes the cost to 8. In this example, we can
minimize the number of programmed switches so that node E or H is selected as
the root node and the target switches are divided into three groups “switches a, b,
and f”, “switch g”, and “switch i”.

84
CHAPTER 5. MINIMIZATION OF PROGRAMMING STEPS IN PARTIAL

RECONFIGURATION OF VIA-SWITCH FPGA

5.3.2 Root Node Selection with Lower Computational Com-
plexity

The previous subsection demonstrates a minimization method of the number of
programmed switches in partial reconfiguration by solving the set cover problem.
However, the set cover problem is well known to be NP-hard. Thus, this
subsection proposes an efficient root selection method to minimize the number
of programmed switches without solving the set cover problem.

The proposed method exploits a property of the connection tree that at least
one solution set of rows in the set cover problem can share the same root node.
With this property, the proposed method only needs to count the number of
programmed switches sequentially supposing each node of the connection tree is
the root node, and chooses the one with the minimum number of programmed
switches. This approach reduces the computational complexity compared to
solving the set cover problem since the number of nodes of the connection tree
is the number of vertical signal lines at most. The proposed root selection
method can be implemented as a polynomial-time algorithm and the details will
be explained in Section 5.4.

The following paragraphs prove that the above property is always satisfied.
For this proof, this work introduces representative switches, which are defined as
the target switches that are not dominated by other target switches in a solution
of the set cover problem. One representative switch is included as one row in the
table like Figure 5.5, and this entry is obtained by assuming the parent node or the
root node. Therefore, the direction to the root node is specified. For example in
Figure 5.5, the solution selects three representative switches b, g, and i, and three
red arrows indicate the direction to the root node. In this case, node E or H is
selected as the root node that satisfies all the red arrows at the same time. If such
a root node exists in any case, there is no need to solve the set cover problem. The
following calls the node that contains a representative switch as the representative
node.

To derive the property that optimal representative switches can share the
same root node, this work proves that representative switches that have common
dominated switch never compose an optimal solution first. The proof supposes
that there are two cases of representative switches that cover all the target
switches, and the one is with one or more common dominated switches and the
other has no common dominated switch. For example, a pair of 3rd and 7th
rows of the table in Figure 5.5 belongs to the former case, which has common
dominated switches a and b. On the other hand, a pair of three red (7th, 11th, and
13th) rows corresponds to the latter case without common dominated switches.
When we compare the number of pre-erased switches in both cases, the former is
always costlier than the latter. This is because the node including the dominated

5.4. PSEUDO CODE OF PARTIAL REPROGRAMMING 85

switch is disconnected and reconnected in each programming of a representative
switch. The former disconnects/reconnects such a node multiple times, but the
latter disconnects/reconnects it only once. Therefore, the optimal solution selects
representative switches that have no common dominated switches.

Consequently, the proof can conclude that optimal representative switches
are not dominated by other target switches. Hence, the original property can be
proved by

SWopt-rep
[∗∗] are not dominated by other target switches.

⇒ Multiple SWopt-rep are not dominated by each other.
⇔ Multiple SWopt-rep are not descendants of each other.
⇒ Multiple SWopt-rep share a root node.

[∗∗]SWopt-rep: optimal representative switches. (5.6)

Another proof in an exhaustive manner for equation (5.6) is given in Appendix A.

5.4 Pseudo Code of Partial Reprogramming
This section gives a pseudo code of the proposed partial reprogramming method.
Algorithm 2 includes only STEP 3 of the partial writing process since STEPs 1
and 2 are straightforward. Lines 3-8, line 9, lines 10-12, and line 13 correspond
to STEP 3a, 3b, 3c, and 3d, respectively.

As explained in Section 5.3.2, lines 3-8 calculate the number of programmed
switches by function CalcCost repeatedly changing the root node, and choose
the one with the minimum number of programmed switches. Function CalcCost
recursively traverses the connection tree with depth-first search, and count the
number of programmed switches. Inside this function, lines 15-16 search
representative nodes from the closer nodes to the root node for each edge. After
that, lines 17-18 enumerate on-state connector switches connecting to the parent
in a representative node and its descendant for all representative nodes. The
proposed method puts these connector switches in Serase and increments the cost,
which is the number of programmed switches, by one each time a connector
switch is put. STEP 3a performs a depth-first search as many times as the
number of nodes in the connection tree, and hence the worst time complexity
is O(|V |(|V | + |E|)) where |V | and |E| are the number of nodes and edges of the
connection tree, respectively. Here, |E| = |V | − 1 < |V | holds in a tree structure,
and |V | is Nvertical at most, which is the number of vertical signal lines in a crossbar.
Therefore the worst time complexity can be written as O(Nvertical

2).
After the completion of lines 3-8, the switches to be pre-erased are in Serase,

and the proposed method turns off them in line 9 as STEP 3b. Then, STEP 3c turns

86
CHAPTER 5. MINIMIZATION OF PROGRAMMING STEPS IN PARTIAL

RECONFIGURATION OF VIA-SWITCH FPGA

Algorithm 2 Minimizing programmed switches.
1: Starget = {SCV, SNC, SNN to be turned on}
2: Sch = {On-state SCH}
3: Serase = ∅, cost = ∞
4: for each node Ni do
5: Stmp = ∅, costtmp = 0
6: CalcCost(Ni, ∅, Stmp, costtmp, False)
7: if costtmp < cost then
8: Serase = Stmp, cost = costtmp

9: Turn off all Serase

10: for S i ∈ Starget do
11: if S i is not connector switch to parent then
12: Turn on S i, Starget = Starget − {S i}
13: Turn on all Serase ∪ Starget in order from shallow to deep

14: function CalcCost(Ni, Nrep, Serase, cost, flag)
15: if flag = False, Ni has S j ∈ Starget then
16: Nrep = Nrep ∪ {Ni}, flag = True
17: if flag = True, Ni has S j ∈ Sch, S j is connecting to parent then
18: Serase = Serase ∪ {S j}, cost = cost + 1
19: for Nchild ∈ {N j | N j is child node of Ni} do
20: CalcCost(Nchild, Nrep, Serase, cost, flag)
21: if Ni ∈ Nrep then
22: flag = False

on target switches SCV and SNN in lines 10-12. Finally, line 13 turns on connector
switches SCH and SNC in order from shallow to deep at STEP 3d.

5.5 Evaluation Results
This subsection experimentally demonstrates how much the number of pro-
grammed switches is reduced by the proposed partial reprogramming method.
Figures 5.6 and 5.7 compare the number of programmed switches in the con-
ventional method and that in the proposed method. Here, the conventional
method turns off all the on-state via-switches in the previous configuration and
then writes the next configuration to the crossbar. This evaluation randomly
generates non-looped previous and next configurations and derives a sneak path
free programming order minimizing the programmed switches by the proposed

5.5. EVALUATION RESULTS 87

0
50

100
150
200
250

Conv. Proposed Conv. Proposed Conv. Proposed

20 50 80#
of

 p
ro

gr
am

m
ed

 sw
itc

he
s

% of common switches in prev. & next configs. [%]

Non-common switches Common switches
19.5%

47.9%
77.4%

Figure 5.6: Number of programmed switches in reconfiguration with conventional
and proposed methods when 0.5% of via-switches are on-state in 100x100
crossbar.

method. This evaluation chose the locations of on-state switches using uniformly
distributed random numbers. The crossbar size was set to 100x100, and the
percentage of on-state via-switches in a crossbar was 0.5% in Figure 5.6 and 1.5%
in Figure 5.7. This evaluation also varied the percentage of common on-state
via-switches in the previous and next configurations from 20% to 80%, and
performed 10,000 trials for each case. Programmed common and non-common
switches are depicted with different colors.

From Figure 5.6, we can see that the number of programmed switches in
the conventional method is fixed to 200, which is 100 × 100 via-switches ×
0.5% × 2 atom switches × 2 configurations (previous and next), for each case. In
the proposed method, the number of programmed non-common switches is the
same as that of the conventional method since it is essential to erase and write
non-common switches for reconfiguration. On the other hand, the number of
programmed common switches is dramatically reduced by the proposed method.
As a result, the proposed method reduces the total number of programmed
switches by 19.5% to 77.4%. The reduction of 77.4% increases the number
of possible reconfiguration executions of the via-switch FPGA by 4.4X. The
reduction in the number of programmed switches also reduces reconfiguration
time. If the via-switch FPGA shares the programming drivers between the
entire CLBs array for reducing the area of peripheral circuits, it is necessary
to program via-switches sequentially. In this case, the reconfiguration time is
the programming time of each switch multiplied by the number of programmed
via-switches. Therefore, 77.4% reduction in the number of programmed switches
reduces reconfiguration time by 77.4%. On the other hand, the via-switch FPGA

88
CHAPTER 5. MINIMIZATION OF PROGRAMMING STEPS IN PARTIAL

RECONFIGURATION OF VIA-SWITCH FPGA

0
150
300
450
600
750

Conv. Proposed Conv. Proposed Conv. Proposed

20 50 80#
of

 p
ro

gr
am

m
ed

 sw
itc

he
s

% of common switches in prev. & next configs. [%]

Non-common switches Common switches
16.8%

39.2%
63.7%

Figure 5.7: Number of programmed switches in reconfiguration with conventional
and proposed methods when 1.5% of via-switches are on-state in 100x100
crossbar.

can also adopt a parallel programming scheme by increasing the number of
drivers. Even in this case, the reconfiguration time decreases while the reduction
ratio may vary depending on the maximum number of programmed switches in
independent programming regions.

Comparing Figures 5.6 and 5.7, the reduction ratio on the number of pro-
grammed switches decreases slightly as the percentage of on-state via-switches
increases from 0.5% to 1.5%. This is because the density of on-state via-switches
is relatively high and we have to erase more common switches for avoiding
the sneak path problem. However, we can still see that the proposed method
considerably reduces the number of programmed switches.

Next, this paragraph discusses the impact of optimal root node selection in
STEP 3a of partial writing. This evaluation compares the number of programmed
switches in both cases that STEP 3a selects an optimal root node and the worst
root node. Figure 5.8 shows a histogram of reduction ratio in the number of
programmed switches from the worst case to the optimal case. In this evaluation,
the crossbar size is 100x100, the percentage of on-state via-switches in a crossbar
of the previous and next configurations are 1% and 1.1%, all the on-state
via-switches in the previous configuration are included in the next configuration,
and consequently 0.1% via-switches are newly turned on in the next configuration.
The number of trials is 10,000. The number of programmed switches can be
reduced by 70% at maximum and 29% on average thanks to the optimal root
selection. This result indicates that the optimal root selection plays an important
role in the proposed method.

5.6. DISCUSSION 89

0

1000

2000

3000

4000

[0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]

Fr
eq

ue
nc

y

Reduction ratio of # of programmed switches
from worst to optimal root node [%]

Max.: 70%
Ave.: 29%

Figure 5.8: Histogram of reduction ratio in number of programmed switches from
worst root selection to optimal root selection.

5.6 Discussion

As is proved, the proposed method achieves the sneak path free partial reconfigu-
ration of the via-switch crossbar with minimum programming steps. This section
discusses an application example of the proposed method for the chip testing. To
verify the via-switch FPGA functionality, the manufacturer has to check whether
there are faults in manufactured FPGA chips before the shipment. In the FPGA
chip test, built-in self-test (BIST) techniques are often adopted [114–119]. The
BIST techniques utilize reconfigurability of FPGAs for testing itself without
adding dedicated testing circuits to the chip, i.e., they program some CLBs to
test the other CLBs. The following paragraphs explain that the proposed method
can accomplish further reduction of programming steps by focusing on the feature
of the BIST techniques that test patterns of the BIST can be arranged in arbitrary
order.

In the BIST, all the CLBs are configured as groups of block under test (BUT),
test pattern generator (TPG), and output response analyzer (ORA). The BIST uses
TPGs and ORAs for testing BUTs, specifically test patterns that are generated
by TPGs are applied to BUTs, and then the output of BUTs is compared with
the expected value in ORAs as illustrated in Figure 5.9. The BIST consists of
multiple test sessions so that all CLBs become BUT at least once. For example in
Figure 5.10, the BIST is composed of two test sessions. Test session #1 programs
CLBs at even rows as BUTs and CLBs at odd rows as TPGs and ORAs, and
vice versa in test session #2. Thanks to these two test sessions, all the CLBs in
the FPGA are tested. Figure 5.10 also shows that each test session has multiple
test phases to check various faults in the BUT, e.g., transistor faults, interconnect
faults, and so on. The BIST reprograms CLBs every time a test phase is shifted.

90
CHAPTER 5. MINIMIZATION OF PROGRAMMING STEPS IN PARTIAL

RECONFIGURATION OF VIA-SWITCH FPGA

ORA ORA

BUT BUT

BUTBUT

TPG TPG

BIST Start

BIST Done

Pass/Fail

Figure 5.9: Built-in self-test (BIST) approach.

In the above BIST approach, the order of test sessions and test phases is
arbitrary. For example, we can perform test session #2 before test session #1, and
test phase #1 can be moved after test phase #2 in Figure 5.10. By combining this
feature of order independence and the proposed partial reconfiguration method,
this section proposes a method that can further reduce the number of programmed
switches in the entire BIST sequence. First, this work models the BIST sequence
as a graph structure where each node represents one configuration of via-switch
FPGA. Here, the beginning and end are a configuration where all via-switches
are off-state, and many test configurations exist between them. Each edge weight
between arbitrary two nodes, which corresponds to the number of programmed
switches required for changing one configuration to another one, can be calculated
by equation (5.5). It should be noted that the edge weight from configuration A
to configuration B and the edge weight from configuration B to configuration A
are different. By calculating the edge weights of all the combinations of two
configurations, it gives a complete directed graph as depicted in the top of
Figure 5.11. After that, by solving an asymmetric traveling salesman problem
with the obtained graph, an optimal BIST sequence with minimum programming
steps can be derived as shown in the bottom of Figure 5.11. The proposed
optimization method of the BIST sequence minimizes the manufacturing test time.
The cost of manufacturing test accounts for a large percentage of a unit price of a
chip, and hence the minimization of the test time thanks to the proposed method
contributes to reducing the chip cost. The proposed method also contributes to

5.7. CONCLUSION 91

Row of TPGs

Row of BUTs
Row of ORAs
Row of BUTs
Row of ORAs
Row of BUTs
Row of ORAs
Row of BUTs
Row of ORAs
Row of BUTs

Test session #2

Config.
pattern #1

Config.
pattern #2

Config.
pattern #N

Test phase #1 Test phase #2 Test phase #N

Row of TPGs
Row of BUTs
Row of ORAs
Row of BUTs
Row of ORAs
Row of BUTs
Row of ORAs
Row of BUTs
Row of ORAs
Row of BUTs

Test session #1

Figure 5.10: Test sessions and test phases in BIST.

maximizing the number of reprogramming in the FPGA lifetime at the FPGA
user side after the shipment.

5.7 Conclusion

This chapter proposed a minimization method of the programming steps in
the partial reconfiguration of the via-switch crossbar without the sneak path
problem. The proposed method minimizes the number of programmed switches
by arranging the root node of the connection tree that represents the connection
status of signal wires in a crossbar. This chapter models the optimal root node
selection as a set cover problem with cost minimization, and also proposes a
low computational complexity method that obtains the same solution of the set
cover problem without solving it. In a test case, the proposed method reduced
the number of programmed switches by 77.4% compared to the conventional
approach, which enables 4.4X more reconfigurations of the via-switch FPGA
and reduces reconfiguration time by 77.4%. The proposed method contributes
to extending the lifetime of via-switches and speeding up the reconfiguration of

92
CHAPTER 5. MINIMIZATION OF PROGRAMMING STEPS IN PARTIAL

RECONFIGURATION OF VIA-SWITCH FPGA

All off
config

Test
config A

Test
config D

Test
config C

Test
config B

2
3

3
2

3
5

4

5

4

5

5
7

4
6

5

7

4

6
4

6

All off
config

Test
config A

Test
config D

Test
config C

Test
config B

2
3

3
2

3

Solve asymmetric
travelling salesman
problem

Figure 5.11: Complete directed graph that represents entire BIST sequence and
optimal test order derivation by solving asymmetric travelling salesman problem.

5.7. CONCLUSION 93

the via-switch FPGA for both user programming and manufacturing test.
Future work includes the generalization of the sneak path free reconfiguration

method proposed in Chapters 4 and 5 for other crossbar structures with various
types of switches beyond the via-switch FPGA. Crossbar structures are widely
adopted in many non-volatile FPGAs and memories because of high integration
density, and these circuits also suffer from the sneak path problem. When the
proposed method in this dissertation is generalized, it may solve the sneak path
problem in other FPGAs or memories than via-switch FPGA. For discussing
the generality, it is needed to define generalized crossbar structures that can
accommodate various types of switches and identify what is the necessary
condition for the generalized structures.

Chapter 6

Conclusion

This dissertation discussed primary challenges that the non-volatile via-switch
FPGA was facing at the design phase, manufacturing phase, and user program-
ming phase for practical application. This work provided solutions for each
challenge to realize the high energy efficiency, defect-free, and sneak path free
via-switch FPGA. This chapter summarizes this dissertation, and highlights its
contributions, and future works.

For the challenge at the design phase, Chapter 2 focused on the interconnect
structure that fully utilizes advantages of via-switches in terms of small footprint,
non-volatility, BEoL integration, and small parasitic load. This work proposed
an interconnect structure that has a functionality of selective repeater insertion to
signal paths and achieves low interconnect delay and high energy efficiency. This
chapter also identified the programming structure requirement at the inter-CLB
connection switch taking the sneak path problem into account. A substantial
performance improvement compared with conventional SRAM-based FPGA
thanks to the proposed interconnect structure was demonstrated by transistor-
level SPICE-based evaluation. The evaluation result showed that the proposed
structure improved the crossbar integration density by 26X and reduced 90%
of interconnect delay and 94% of energy at 0.5 V operation. The proposed
interconnect structure was actually adopted in the fabricated trial chip of the
via-switch FPGA [120].

To ensure arbitrary routings at the manufacturing phase before the shipment,
Chapter 3 discussed how to explore faulty via-switches in the crossbar. This
chapter demonstrated that on/off-states of via-switches can be discriminated by
using a general differential pair comparator. The comparator can be implemented
with a small area at the peripheral part of the via-switch FPGA chip. This
chapter also clarified fault modes of a via-switch using SPICE simulation that
injected stuck-on/off faults to atom switch and varistor. Then, this work proposed
a look-up table based fault detection and diagnosis methodology that identifies

95

96 CHAPTER 6. CONCLUSION

faulty via-switches in the crossbar, where the look-up table enumerates the
comparator response in normal and faulty cases. The proposed fault testing
method had 100% fault detectability. In terms of the fault diagnosability, the
successful ratios of 100% and 79% were accomplished in cases that the number
of faulty components in a via-switch was up to one and up to two, respectively.

At the user programming phase, the sneak path problem that unintentionally
changes on/off state of non-target via-switches may arise depending on FPGA
configuration patterns. Chapter 4 clarified the crossbar programming status that
causes the sneak path by exploring the occurrence conditions of the sneak path
problem. Then, this chapter proposed a sneak path free initial programming
method based on arranging the programming sequence of via-switches in a
crossbar. Here, the initial programming means the programming that is performed
for the crossbars whose via-switches are all off-state. This work devised
a connection tree based algorithm that effectively obtains a sneak path free
programming order, where the connection tree represents the connection status
of signal lines in a crossbar as a tree structure. This chapter also formally proved
that arbitrary non-looped on-off patterns in a crossbar necessarily had a sneak path
free programming order. The quantitative evaluation demonstrated a significant
improvement of the routing flexibility in the via-switch crossbar thanks to the
proposed method. This work confirmed that the proposed method increased
the number of available configurations by over four orders of magnitude in a
practically-sized 100x100 crossbar. In any practical configurations of via-switch
FPGA, the sneak path problem can be solved by the proposed method.

Chapter 5 extended the proposed method of Chapter 4 for partial recon-
figuration in the crossbar where some via-switches are already on-state at the
initial state. A partial reconfiguration method that minimizes programming steps
without the sneak path problem is proposed in this chapter. The proposed method
minimizes the number of programmed switches by arranging the root node of the
connection tree, and this chapter modeled the optimal root node selection as a set
cover problem with cost minimization. Furthermore, this work also proposed a
low computational complexity method that obtains the same solution of the set
cover problem without solving it. The simulation-based evaluation demonstrated
that the proposed method reduced the number of programmed switches by 77.4%
compared to the conventional approach. This 77.4% reduction enables 4.4X more
reconfigurations of the via-switch FPGA and shortens reconfiguration time by
77.4%.

This dissertation covers and solves critical challenges at all phases of via-
switch FPGA development. The interconnect structure proposed in Chapter 2
improves the operating speed and energy efficiency. The fault diagnosis method
proposed in Chapter 3 can identify defective products after manufacturing and
prevent the shipment of those products. The sneak path solution proposed in

97

Chapter 4 can program all the practical configuration patterns to the via-switch
FPGA. The partial reconfiguration method proposed in Chapter 5 extends the
lifetime of via-switches and improves the reconfiguration speed of the via-switch
FPGA for both user programming and manufacturing test. Finally, these contri-
butions enable FPGA users to implement any applications on high-performance
and defectless via-switch FPGA.

Future work in the fault diagnosis method of Chapter 3 is to develop a
fault testing method for logic circuits and interconnections. For this purpose,
the BIST technique, which is briefly introduced in Section 5.6, is one of the
suitable solutions. The BIST technique checks faults of manufactured FPGA
without adding dedicated testing circuits to the chip by utilizing the FPGA
reconfigurability, i.e., some CLBs are configured to test the other CLBs. As
discussed in Section 5.6, the proposed partial reconfiguration method can be
combined with the BIST technique, and contributes to minimization of the number
of programmed switches in the test phase and maximization of the number of
reprogramming at user side after the shipment.

Another future work includes the verification of the proposed fault testing and
sneak path avoidance methods in the trial via-switch FPGA chip. The trial chip is
based on the proposed interconnect structure in Chapter 2 and has been fabricated
with 65 nm process node [120]. For the proposed fault diagnosis method in
Chapter 3, it is necessary to confirm that the comparator can distinguish the
via-switch on/off-states and the proposed fault diagnosis method actually works in
the trial chip. Also, for the sneak path free reconfiguration methods in Chapters 4
and 5, it is needed to validate that the proposed methods surely eliminate the sneak
path and completely solve this problem.

Appendix A

Another proof for Equation (5.6)

Another proof for equation (5.6) is presented. This chapter separately gives the
proof for the two cases; when only one representative switch is given by the
solution of the set cover problem, and when multiple representative switches are
given.

When there is only one representative switch, the proof is self-evident. The
direction to the parent node is specified only by one representative switch, and
hence no contradiction occurs. Otherwise, the solution says that the representative
node is the root node, and again no contradiction occurs.

Next, the following discusses the proof for the case of multiple representative
switches. This work proves the case of two representative switches since this proof
is easily extended to the cases that there are three or more representative switches.
Figure A.1(a) illustrates the generalized tree structure with two representative
switches, and Figure A.1(b) shows all the combinations of two representative
switches. No matter how many edges a representative node has, they can be
categorized into two groups; (1) an edge directed to another representative node
and (2) other edges. All the nodes except representative nodes can be divided
into node groups A, B, and C in Figure A.1(a). Node group B contains the
nodes between the (1) edges of the two representative nodes. Nodes beyond the
edges (2) of representative nodes S and T are categorized into node groups A
and C, respectively. In Figure A.1(b), each red arrow indicates the direction
to the root node from each representative switch, and the red arrow pointing to
the representative node itself indicates that the representative node is the root
node. There are three directions for each red arrow (edge (1), edge (2), and the
representative node itself), and hence there are 3×3 = 9 patterns of two red arrows.
This work divides these 9 patterns into three cases. Case 1 contains patterns that
include at least one red arrow pointing to the representative node itself. Patterns
that have the red arrow indicating the direction of edge (2) are categorized into
case 2. Case 3 contains patterns where both the red arrows indicate the direction

99

100 APPENDIX A. ANOTHER PROOF FOR EQUATION (5.6)

Nodes
group A Edge (2)

of node S

Node
S

Switch s

Nodes
group BEdge (1)

of node S

Node
T

Switch t

Edge (1)
of node T

Nodes
group CEdge (2)

of node T

Direction of root node

Representative switch

Case 1

Pattern d

A S
s

(2) (1)
B T

t

(1)
C

(2)

A S
s

(2) (1)
B T

t

(1)
C

(2)

Pattern e

A S
s

(2) (1)
B T

t

(1)
C

(2)

Pattern a

A S
s

(2) (1)
B T

t

(1)
C

(2)

Pattern b

A S
s

(2) (1)
B T

t

(1)
C

(2)

Pattern c Pattern h

A S
s

(2) (1)
B T

t

(1)
C

(2)

A S
s

(2) (1)
B T

t

(1)
C

(2)

Pattern f

A S
s

(2) (1)
B T

t

(1)
C

(2)

Pattern g

Case 2

A S
s

(2) (1)
B T

t

(1)
C

(2)

Pattern i
Case 3

(a)

(b)

Figure A.1: All combinations of two representative switches.

of edge (1).
From now, this paragraph proves that the possible pattern is only case 3

in Figure A.1(b). In case 1, there is at least one red arrow pointing to the
representative node itself, which indicates that choosing this representative node
as the root node is optimal. To program the representative switch in the root
node, it is needed to disconnect the descendant nodes of the root node, i.e., all
the nodes of the connection tree. Therefore, another representative node is also
disconnected and can be programmed in this programming step, which means
there is a dominance relationship. From the definition, representative switches
do not dominate each other, and hence the patterns in case 1 never exist as a
solution of the set cover problem. In general, from the above reason, the red
arrow pointing to the representative node itself never exists in cases where there
are two or more representative nodes. Next, the same discussion is applied to

101

case 2 where at least one red arrow indicates the direction of edge (2). In this
case, another representative node is included in the descendant nodes of this
representative node. For example in pattern f of Figure A.1(b), representative
switch s argues that the root node is included in node group A. At that time,
another representative switch t is one of the descendant nodes of node S, and
then there is a dominance relationship. Hence, patterns in case 2 do not exist as
a solution of the set cover problem. The same discussion is applicable to cases
of three or more representative nodes. From the above discussion, the possible
pattern of red arrows is only case 3 where all the red arrows indicate the direction
to intermediate nodes of all representative nodes. All the red arrows can be
satisfied by choosing the root node from intermediate nodes of representative
switches, and the proposed method can minimize the number of programmed
switches without solving the set cover problem.

Bibliography

[1] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. Addison-Wesley Publishing Company, 2010.

[2] Intel Corporation, “Microprocessor Quick Reference Guide.”

[3] Apple, “iPhone 11 Pro,” https://www.apple.com/iphone-11-pro/.

[4] Semiconductor Industry Association, “International Technology Roadmap
for Semiconductors (ITRS).”

[5] N. Campregher, P. Y. K. Cheung, G. A. Constantinides, and M. Vasilko,
“Yield Enhancements of Design-specific FPGAs,” in Proceedings of the
2006 ACM/SIGDA 14th International Symposium on Field Programmable
Gate Arrays (FPGA), 2006, pp. 93–100.

[6] K. Flamm, “Measuring Moore ’s Law: Evidence from Price, Cost, and
Quality Indexes,” National Bureau of Economic Research, Working Paper
24553, April 2018.

[7] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A Reconfigurable
Fabric for Accelerating Large-Scale Datacenter Services,” IEEE Micro,
vol. 35, no. 3, pp. 10–22, May 2015.

[8] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A Cloud-Scale Acceleration Architecture,” in 2016 49th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Oct 2016, pp. 1–13.

[9] Microsoft Research, “Project Catapult.”

103

104 BIBLIOGRAPHY

[10] Amazon Web Services, “Amazon EC2 F1 Instances.”

[11] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin, K. S.
Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz, K. Kagi,
R. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel, B. Perez,
A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera, S. Shekar,
B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang, R. Zhao, and
D. Burger, “Serving DNNs in Real Time at Datacenter Scale with Project
Brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, Mar 2018.

[12] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek,
G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S.
Chung, and D. Burger, “A Configurable Cloud-scale DNN Processor for
Real-time AI,” in Proceedings of the 45th Annual International Symposium
on Computer Architecture (ISCA). IEEE Press, 2018, pp. 1–14.

[13] Microsoft Research, “Project Brainwave.”

[14] C. Maxfield, FPGAs: Instant Access. Newnes, 2008.

[15] V. George and J. M. Rabaey, Low-energy FPGAs: Architecture and Design.
Kluwer Academic Publishers, 2001.

[16] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for Deep-
Submicron FPGAs. Norwell, MA, USA: Kluwer Academic Publishers,
1999.

[17] I. Kuon, R. Tessier, and J. Rose, FPGA Architecture: Survey and Chal-
lenges. now, 2008.

[18] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, no. 2, pp. 203–215, Feb 2007.

[19] M. Lin, A. E. Gamal, Y. C. Lu, and S. Wong, “Performance Benefits
of Monolithically Stacked 3-D FPGA,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp.
216–229, Feb 2007.

[20] J. Backus, “Can Programming Be Liberated from the Von Neumann Style?:
A Functional Style and Its Algebra of Programs,” Communications of the
ACM, vol. 21, no. 8, pp. 613–641, Aug. 1978.

BIBLIOGRAPHY 105

[21] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams,
K. Yelick, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Keckler, D. Klein,
P. Kogge, R. S. Williams, and K. Yelick, “ExaScale Computing Study:
Technology Challenges in Achieving Exascale Systems,” 2008.

[22] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 4, pp. 473–491, April 2011.

[23] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A Survey
and Evaluation of FPGA High-Level Synthesis Tools,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 10, pp. 1591–1604, Oct 2016.

[24] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviÅienis,
J. Wawrzynek, and K. Asanovi, “Chisel: Constructing hardware in a Scala
embedded language,” in DAC Design Automation Conference 2012, June
2012, pp. 1212–1221.

[25] F. Winterstein, S. Bayliss, and G. A. Constantinides, “High-level synthesis
of dynamic data structures: A case study using Vivado HLS,” in 2013
International Conference on Field-Programmable Technology (FPT), Dec
2013, pp. 362–365.

[26] J. Choi, S. Brown, and J. Anderson, “From software threads to parallel
hardware in high-level synthesis for FPGAs,” in 2013 International Confer-
ence on Field-Programmable Technology (FPT), Dec 2013, pp. 270–277.

[27] P. Coussy and A. Morawiec, Eds., High-Level Synthesis: from Algorithm
to Digital Circuit. Springer Netherlands, 2008.

[28] K. Zaitsu, K. Tatsumura, M. Matsumoto, M. Oda, and S. Yasuda, “Non-
volatile Programmable Switch With Adjacently Integrated Flash Memory
and CMOS Logic for Low-Power and High-Speed FPGA,” IEEE Transac-
tions on Electron Devices, vol. 62, no. 12, pp. 4009–4014, Dec 2015.

[29] M. Abusultan and S. P. Khatri, “Exploring static and dynamic flash-based
FPGA design topologies,” in 2016 IEEE 34th International Conference on
Computer Design (ICCD), Oct 2016, pp. 416–419.

106 BIBLIOGRAPHY

[30] J. Y. Jia, P. Singaraju, F. Dhaoui, R. Newell, P. Liu, H. Micael, M. Traas,
S. Sammie, F. Hawley, J. McCollum, and V. den Abeelen Werner, “Per-
formance and reliability of a 65nm Flash based FPGA,” in 2012 IEEE 11th
International Conference on Solid-State and Integrated Circuit Technology,
Oct 2012, pp. 1–3.

[31] K. Zaitsu, K. Tatsumura, M. Matsumoto, M. Oda, S. Fujita, and S. Ya-
suda, “Flash-based nonvolatile programmable switch for low-power and
high-speed FPGA by adjacent integration of MONOS/logic and novel
programming scheme,” in 2014 Symposium on VLSI Technology (VLSI-
Technology): Digest of Technical Papers, June 2014, pp. 1–2.

[32] K. J. Han, N. Chan, S. Kim, B. Leung, V. Hecht, B. Cronquist, D. Shum,
A. Tilke, L. Pescini, M. Stiftinger, and R. Kakoschke, “A Novel Flash-
based FPGA Technology with Deep Trench Isolation,” in 2007 22nd IEEE
Non-Volatile Semiconductor Memory Workshop, Aug 2007, pp. 32–33.

[33] T. He, F. Zhang, S. Bhunia, and P. X. . Feng, “Silicon Carbide (SiC) Nano-
electromechanical Antifuse for Ultralow-Power One-Time-Programmable
(OTP) FPGA Interconnects,” IEEE Journal of the Electron Devices Society,
vol. 3, no. 4, pp. 323–335, July 2015.

[34] Chiang, Forouhi, Chen, Hawley, McCollum, Hamdy, and Hu, “Antifuse
structure comparison for field programmable gate arrays,” in 1992 Inter-
national Technical Digest on Electron Devices Meeting, Dec 1992, pp.
611–614.

[35] K. E. Gordon and R. J. Wong, “Conducting filament of the programmed
metal electrode amorphous silicon antifuse,” in Proceedings of IEEE
International Electron Devices Meeting, Dec 1993, pp. 27–30.

[36] Y. Tamura and H. Shinriki, “Most promising metal-to-metal antifuse based
10 nm-thick p-SiN/sub x/ film for high density and high speed FPGA
application,” in Proceedings of 1994 IEEE International Electron Devices
Meeting, Dec 1994, pp. 285–288.

[37] K. L. Chen, D. K. Y. Liu, G. Misium, W. M. Gosney, S. . Wang,
J. Camp, and H. Tigelaar, “A sublithographic antifuse structure for field-
programmable gate array applications,” IEEE Electron Device Letters,
vol. 13, no. 1, pp. 53–55, Jan 1992.

[38] Z. Zhang, Y. Y. Liauw, C. Chen, and S. S. Wong, “Monolithic 3-D FPGAs,”
Proceedings of the IEEE, vol. 103, no. 7, pp. 1197–1210, July 2015.

BIBLIOGRAPHY 107

[39] P. E. Gaillardon, D. Sacchetto, G. B. Beneventi, M. H. B. Jamaa,
L. Perniola, F. Clermidy, I. O’Connor, and G. D. Micheli, “Design
and Architectural Assessment of 3-D Resistive Memory Technologies in
FPGAs,” IEEE Transactions on Nanotechnology, vol. 12, no. 1, pp. 40–50,
Jan 2013.

[40] S. Yu and P. Chen, “Emerging Memory Technologies: Recent Trends and
Prospects,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp. 43–56,
Spring 2016.

[41] R. Rizk, D. Rizk, A. Kumar, and M. Bayoumi, “Demystifying Emerging
Nonvolatile Memory Technologies: Understanding Advantages, Chal-
lenges, Trends, and Novel Applications,” in 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2019, pp. 1–5.

[42] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-class
memory,” IBM Journal of Research and Development, vol. 52, no. 4.5, pp.
449–464, July 2008.

[43] J. Zhu, “Magnetoresistive Random Access Memory: The Path to Compet-
itiveness and Scalability,” Proceedings of the IEEE, vol. 96, no. 11, pp.
1786–1798, Nov 2008.

[44] T. Kishi, H. Yoda, T. Kai, T. Nagase, E. Kitagawa, M. Yoshikawa,
K. Nishiyama, T. Daibou, M. Nagamine, M. Amano, S. Takahashi,
M. Nakayama, N. Shimomura, H. Aikawa, S. Ikegawa, S. Yuasa,
K. Yakushiji, H. Kubota, A. Fukushima, M. Oogane, T. Miyazaki, and
K. Ando, “Lower-current and fast switching of a perpendicular TMR for
high speed and high density spin-transfer-torque MRAM,” in 2008 IEEE
International Electron Devices Meeting, Dec 2008, pp. 1–4.

[45] E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis,
V. Nikitin, X. Tang, S. Watts, S. Wang, S. A. Wolf, A. W. Ghosh, J. W. Lu,
S. J. Poon, M. Stan, W. H. Butler, S. Gupta, C. K. A. Mewes, T. Mewes, and
P. B. Visscher, “Advances and Future Prospects of Spin-Transfer Torque
Random Access Memory,” IEEE Transactions on Magnetics, vol. 46, no. 6,
pp. 1873–1878, June 2010.

[46] J. Li, P. Ndai, A. Goel, S. Salahuddin, and K. Roy, “Design Paradigm
for Robust Spin-Torque Transfer Magnetic RAM (STT MRAM) From
Circuit/Architecture Perspective,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 18, no. 12, pp. 1710–1723, Dec 2010.

108 BIBLIOGRAPHY

[47] X. Fong, R. Venkatesan, A. Raghunathan, and K. Roy, “Non-Volatile
Complementary Polarizer Spin-Transfer Torque On-Chip Caches: A
Device/Circuit/Systems Perspective,” IEEE Transactions on Magnetics,
vol. 50, no. 10, pp. 1–11, Oct 2014.

[48] E. Chen, D. Apalkov, A. Driskill-Smith, A. Khvalkovskiy, D. Lottis,
K. Moon, V. Nikitin, A. Ong, X. Tang, S. Watts, R. Kawakami, M. Krounbi,
S. A. Wolf, S. J. Poon, J. W. Lu, A. W. Ghosh, M. Stan, W. Butler,
T. Mewes, S. Gupta, C. K. A. Mewes, P. B. Visscher, and R. A. Lukaszew,
“Progress and Prospects of Spin Transfer Torque Random Access Mem-
ory,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3025–3030,
Nov 2012.

[49] D. Apalkov, S. Watts, A. Driskill-Smith, E. Chen, Z. Diao, and V. Nikitin,
“Comparison of Scaling of In-Plane and Perpendicular Spin Transfer
Switching Technologies by Micromagnetic Simulation,” IEEE Transac-
tions on Magnetics, vol. 46, no. 6, pp. 2240–2243, June 2010.

[50] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proceedings of
the IEEE, vol. 98, no. 12, pp. 2201–2227, Dec 2010.

[51] L. Wu, X. Zhou, Z. Song, M. Zhu, Y. Cheng, F. Rao, S. Song, B. Liu,
and S. Feng, “Sb-rich SiSbTe Phase-Change Material for Phase-Change
Random Access Memory Applications,” IEEE Transactions on Electron
Devices, vol. 58, no. 12, pp. 4423–4426, Dec 2011.

[52] C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni,
and F. Cazzaniga, “The Design of Rewritable Ultrahigh Density Scanning-
Probe Phase-Change Memories,” IEEE Transactions on Nanotechnology,
vol. 10, no. 4, pp. 900–912, July 2011.

[53] S. W. Fong, C. M. Neumann, and H. . P. Wong, “Phase-Change Memory
―Towards a Storage-Class Memory,” IEEE Transactions on Electron
Devices, vol. 64, no. 11, pp. 4374–4385, Nov 2017.

[54] A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez,
“Electronic switching in phase-change memories,” IEEE Transactions on
Electron Devices, vol. 51, no. 3, pp. 452–459, March 2004.

[55] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and
R. Bez, “Low-field amorphous state resistance and threshold voltage drift in
chalcogenide materials,” IEEE Transactions on Electron Devices, vol. 51,
no. 5, pp. 714–719, May 2004.

BIBLIOGRAPHY 109

[56] H. S. P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T. Chen,
and M. Tsai, “MetalOxide RRAM,” Proceedings of the IEEE, vol. 100,
no. 6, pp. 1951–1970, June 2012.

[57] B. Traore, P. Blaise, E. Vianello, H. Grampeix, S. Jeannot, L. Perniola,
B. De Salvo, and Y. Nishi, “On the Origin of Low-Resistance State
Retention Failure in HfO2-Based RRAM and Impact of Doping/Alloying,”
IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 4029–4036,
Dec 2015.

[58] D. Ielmini, “Modeling the Universal Set/Reset Characteristics of Bipolar
RRAM by Field- and Temperature-Driven Filament Growth,” IEEE Trans-
actions on Electron Devices, vol. 58, no. 12, pp. 4309–4317, Dec 2011.

[59] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Filament Conduc-
tion and Reset Mechanism in NiO-Based Resistive-Switching Memory
(RRAM) Devices,” IEEE Transactions on Electron Devices, vol. 56, no. 2,
pp. 186–192, Feb 2009.

[60] M. Bocquet, D. Deleruyelle, H. Aziza, C. Muller, J. Portal, T. Cabout, and
E. Jalaguier, “Robust Compact Model for Bipolar Oxide-Based Resistive
Switching Memories,” IEEE Transactions on Electron Devices, vol. 61,
no. 3, pp. 674–681, March 2014.

[61] J. Guy, G. Molas, P. Blaise, M. Bernard, A. Roule, G. Le Carval, V. Delaye,
A. Toffoli, G. Ghibaudo, F. Clermidy, B. De Salvo, and L. Perniola,
“Investigation of Forming, SET, and Data Retention of Conductive-Bridge
Random-Access Memory for Stack Optimization,” IEEE Transactions on
Electron Devices, vol. 62, no. 11, pp. 3482–3489, Nov 2015.

[62] S. Yu and H. . P. Wong, “Compact Modeling of Conducting-Bridge
Random-Access Memory (CBRAM),” IEEE Transactions on Electron
Devices, vol. 58, no. 5, pp. 1352–1360, May 2011.

[63] T. Tsai, F. Jiang, C. Ho, C. Lin, and T. Tseng, “Enhanced Properties
in Conductive-Bridge Resistive Switching Memory With Oxide-Nitride
Bilayer Structure,” IEEE Electron Device Letters, vol. 37, no. 10, pp.
1284–1287, Oct 2016.

[64] S. Lv, H. Wang, J. Zhang, J. Liu, L. Sun, and Z. Y. Life, “An Ana-
lytical Model for the Forming Process of Conductive-Bridge Resistive-
Switching Random-Access Memory,” IEEE Transactions on Electron
Devices, vol. 61, no. 9, pp. 3166–3171, Sep. 2014.

110 BIBLIOGRAPHY

[65] Z. Dong, H. Zhao, D. DiMarzio, M. Han, L. Zhang, J. Tice, H. Wang, and
J. Guo, “Atomically Thin CBRAM Enabled by 2-D Materials: Scaling Be-
haviors and Performance Limits,” IEEE Transactions on Electron Devices,
vol. 65, no. 10, pp. 4160–4166, Oct 2018.

[66] X. Xue, J. Yang, Y. Lin, R. Huang, Q. Zou, and J. Wu, “Low-Power
Variation-Tolerant Nonvolatile Lookup Table Design,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 3, pp.
1174–1178, March 2016.

[67] K. Huang, Y. Ha, R. Zhao, A. Kumar, and Y. Lian, “A Low Active Leakage
and High Reliability Phase Change Memory (PCM) Based Non-Volatile
FPGA Storage Element,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 61, no. 9, pp. 2605–2613, Sep. 2014.

[68] L. Ju, X. Sui, S. Li, M. Zhao, C. J. Xue, J. Hu, and Z. Jia, “NVM-Based
FPGA Block RAM With Adaptive SLC-MLC Conversion,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 11, pp. 2661–2672, Nov 2018.

[69] Z. Yuan, Y. Liu, J. Li, J. Hu, C. J. Xue, and H. Yang, “CP-FPGA:
Energy-Efficient Nonvolatile FPGA With Offline/Online Checkpointing
Optimization,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 7, pp. 2153–2163, July 2017.

[70] B. Khaleghi and H. Asadi, “A Resistive RAM-Based FPGA Architecture
Equipped With Efficient Programming Circuitry,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 65, no. 7, pp. 2196–2209, July
2018.

[71] M. Miyamura, T. Sakamoto, M. Tada, N. Banno, K. Okamoto, N. Iguchi,
and H. Hada, “Low-power programmable-logic cell arrays using non-
volatile complementary atom switch,” in International Symposium on
Quality Electronic Design (ISQED), March 2014, pp. 330–334.

[72] N. Banno, M. Tada, K. Okamoto, N. Iguchi, T. Sakamoto, M. Miyamura,
Y. Tsuji, H. Hada, H. Ochi, H. Onodera, M. Hashimoto, and T. Sug-
ibayashi, “A novel two-varistors (a-Si/SiN/a-Si) selected complementary
atom switch (2V-1CAS) for nonvolatile crossbar switch with multiple
fan-outs,” in International Electron Devices Meeting (IEDM), Dec 2015,
pp. 2.5.1–2.5.4.

[73] N. Banno, M. Tilda, K. Okamoto, N. Iguchi, T. Sakamoto, H. Hada,
H. Ochi, H. Onodera, M. Hashimoto, and T. Sugibayashi, “50x20 crossbar

BIBLIOGRAPHY 111

switch block (CSB) with two-varistors (a-Si/SiN/a-Si) selected comple-
mentary atom switch for a highly-dense reconfigurable logic,” in Interna-
tional Electron Devices Meeting (IEDM), Dec 2016, pp. 16.4.1–16.4.4.

[74] N. Banno, K. Okamoto, N. Iguchi, H. Ochi, H. Onodera, M. Hashimoto,
T. Sugibayashi, T. Sakamoto, and M. Tada, “Low-Power Crossbar Switch
with Two-Varistors Selected Complementary Atom Switch (2V-1CAS;
Via-Switch) for Nonvolatile FPGA,” IEEE Transactions on Electron De-
vices, vol. 66, no. 8, pp. 3331–3336, Aug 2019.

[75] K. Okamoto, M. Tada, T. Sakamoto, M. Miyamura, N. Banno, N. Iguchi,
and H. Hada, “Conducting mechanism of atom switch with polymer solid-
electrolyte,” in International Electron Devices Meeting (IEDM), Dec 2011,
pp. 12.2.1–12.2.4.

[76] T. Sakamoto, M. Tada, K. Okamoto, and H. Hada, “Electronic Conduction
Mechanism in Atom Switch Using Polymer Solid Electrolyte,” IEEE
Transactions on Electron Devices, vol. 59, no. 12, pp. 3574–3577, Dec
2012.

[77] M. Tada, T. Sakamoto, N. Banno, K. Okamoto, N. Iguchi, H. Hada, and
M. Miyamura, “Improved ON-State Reliability of Atom Switch Using
Alloy Electrodes,” IEEE Transactions on Electron Devices, vol. 60, no. 10,
pp. 3534–3540, Oct 2013.

[78] M. Tada, K. Okamoto, T. Sakamoto, and H. Hada, “ON-state Reliability
of Cu Atom Switch Under CurrentTemperature Stress,” IEEE Transactions
on Electron Devices, vol. 62, no. 9, pp. 2992–2997, Sep. 2015.

[79] M. Tada and T. Sakamoto, “Set/Reset Switching Model of Cu Atom Switch
Based on Electrolysis,” IEEE Transactions on Electron Devices, vol. 64,
no. 4, pp. 1812–1817, April 2017.

[80] H. Ochi, K. Yamaguchi, T. Fujimoto, J. Hotate, T. Kishimoto, T. Higashi,
T. Imagawa, R. Doi, M. Tada, T. Sugibayashi, W. Takahashi, K. Wak-
abayashi, H. Onodera, Y. Mitsuyama, J. Yu, and M. Hashimoto, “Via-
Switch FPGA: Highly Dense Mixed-Grained Reconfigurable Architecture
With Overlay Via-Switch Crossbars,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2723–2736, Dec
2018.

[81] N. Banno, M. Tada, T. Sakamoto, K. Okamoto, M. Miyamura, N. Iguchi,
T. Nohisa, and H. Hada, “Nonvolatile 32 × 32 crossbar atom switch block

112 BIBLIOGRAPHY

integrated on a 65-nm CMOS platform,” in 2012 Symposium on VLSI
Technology (VLSIT), June 2012, pp. 39–40.

[82] K. Okamoto, M. Tada, N. Banno, T. Sakamoto, M. Miyamura, N. Iguchi,
T. Nohisa, and H. Hada, “Bidirectional TaO-diode-selected, complemen-
tary atom switch (DCAS) for area-efficient, nonvolatile crossbar switch
block,” in 2013 Symposium on VLSI Technology, June 2013, pp. T242–
T243.

[83] M. Tada, K. Okamoto, N. Banno, T. Sakamoto, and H. Hada, “Three-
Terminal Nonvolatile Resistive-Change Device Integrated in Cu-BEOL,”
IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 505–510, Feb
2014.

[84] K. Okamoto, M. Tada, N. Banno, N. Iguchi, H. Hada, T. Sakamoto,
M. Miyamura, Y. Tsuji, R. Nebashi, A. Morioka, X. Bai, and T. Sug-
ibayashi, “Robust Cu atom switch with over-400 ° C thermally tolerant
polymer-solid electrolyte (TT-PSE) for nonvolatile programmable logic,”
in 2016 IEEE Symposium on VLSI Technology, June 2016, pp. 1–2.

[85] M. Tada, T. Sakamoto, M. Miyamura, N. Banno, K. Okamoto, N. Iguchi,
T. Nohisa, and H. Hada, “Highly reliable, complementary atom switch
(CAS) with low programming voltage embedded in Cu BEOL for Non-
volatile Programmable Logic,” in 2011 International Electron Devices
Meeting, Dec 2011, pp. 30.2.1–30.2.4.

[86] M. Tada, T. Sakamoto, M. Miyamura, N. Banno, K. Okamoto, N. Iguchi,
and H. Hada, “Improved Off-State Reliability of Nonvolatile Resistive
Switch With Low Programming Voltage,” IEEE Transactions on Electron
Devices, vol. 59, no. 9, pp. 2357–2362, Sep. 2012.

[87] N. Banno, M. Tada, T. Sakamoto, K. Okamoto, M. Miyamura, N. Iguchi,
and H. Hada, “Improved Switching Voltage Variation of Cu Atom Switch
for Nonvolatile Programmable Logic,” IEEE Transactions on Electron
Devices, vol. 61, no. 11, pp. 3827–3832, Nov 2014.

[88] N. Banno, M. Tada, T. Sakamoto, M. Miyamura, K. Okamoto, N. Iguchi,
T. Nohisa, and H. Hada, “A fast and low-voltage Cu complementary-atom-
switch 1Mb array with high-temperature retention,” in 2014 Symposium
on VLSI Technology (VLSI-Technology): Digest of Technical Papers, June
2014, pp. 1–2.

[89] N. Banno, M. Tada, T. Sakamoto, M. Miyamura, K. Okamoto, N. Iguchi,
and H. Hada, “Cu Atom Switch With Steep Time-to-ON-State Versus

BIBLIOGRAPHY 113

Switching Voltage Using Cu Ionization Control,” IEEE Transactions on
Electron Devices, vol. 62, no. 9, pp. 2966–2971, Sep. 2015.

[90] R. Nebashi, N. Banno, M. Miyamura, Y. Tsuji, A. Morioka, X. Bai,
K. Okamoto, N. Iguchi, H. Numata, H. Hada, T. Sugibayashi, T. Sakamoto,
and M. Tada, “High-Density and Fault-Tolerant Cu Atom Switch Technol-
ogy Toward 28nm-node Nonvolatile Programmable Logic,” in 2018 IEEE
Symposium on VLSI Technology, June 2018, pp. 127–128.

[91] T. Sakamoto, Y. Tsuji, X. Bai, M. Miyamura, A. Morioka, R. Nebashi,
N. Banno, K. Okamoto, N. Iguchi, H. Hada, T. Sugibayashi, and M. Tada,
“Atom Switch with Improved Cycle Endurance using Field Enhancement
for Nonvolatile SoC,” in 2018 IEEE International Memory Workshop
(IMW), May 2018, pp. 1–4.

[92] X. Bai, T. Sakamoto, M. Tada, M. Miyamura, Y. Tsuji, A. Morioka,
R. Nebashi, N. Banno, K. Okamoto, N. Iguchi, H. Hada, and T. Sug-
ibayashi, “A low-power Cu atom switch programmable logic fabricated in
a 40nm-node CMOS technology,” in 2017 Symposium on VLSI Technology,
June 2017, pp. T28–T29.

[93] T. Higashi and H. Ochi, “Area-Efficient LUT-Like Programmable Logic
Using Atom Switch and Its Delay-Optimal Mapping Algorithm,” IEICE
Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences, vol. E100.A, no. 7, pp. 1418–1426, 2017.

[94] T. Kishimoto, W. Takahashi, K. Wakabayashi, and H. Ochi, “Range
Limiter Using Connection Bounding Box for SA-Based Placement of
Mixed-Grained Reconfigurable Architecture,” IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences, vol.
E99.A, no. 12, pp. 2328–2334, 2016.

[95] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and single-driver
wires in FPGA interconnect,” in Proceedings. 2004 IEEE International
Conference on Field- Programmable Technology (FPT), Dec 2004, pp.
41–48.

[96] Y. Yamamoto, H. Makiyama, H. Shinohara, T. Iwamatsu, H. Oda, S. Kamo-
hara, N. Sugii, Y. Yamaguchi, T. Mizutani, and T. Hiramoto, “Ultralow-
voltage operation of Silicon-on-Thin-BOX (SOTB) 2Mbit SRAM down to
0.37 V utilizing adaptive back bias,” in 2013 Symposium on VLSI Circuits,
June 2013, pp. T212–T213.

114 BIBLIOGRAPHY

[97] D. Stroobandt, A Priori Wire Length Estimates for Digital Design.
Springer US, 2001.

[98] G. Lemieux and D. Lewis, Design of Interconnection Networks for Pro-
grammable Logic. Kluwer Academic Publishers, 2004.

[99] R. Doi, X. Bai, T. Sakamoto, and M. Hashimoto, “Fault Diagnosis of Via-
Switch Crossbar in Non-volatile FPGA,” in Design, Automation, and Test
in Europe Conference and Exhibition (DATE), (accepted).

[100] R. Doi, J. Yu, and M. Hashimoto, “Sneak Path Free Reconfiguration of Via-
switch Crossbars Based FPGA,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov 2018, pp. 1–8.

[101] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
“Memristor-based memory: The sneak paths problem and solutions,”
Microelectronics Journal, vol. 44, no. 2, pp. 176–183, 2013.

[102] M. Zangeneh and A. Joshi, “Design and Optimization of Nonvolatile
Multibit 1T1R Resistive RAM,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 8, pp. 1815–1828, Aug 2014.

[103] M. Lee, Y. Park, B. Kang, S. Ahn, C. Lee, K. Kim, W. Xianyu,
G. Stefanovich, J. Lee, S. Chung, Y. Kim, C. Lee, J. Park, I. Baek,
and I. Yoo, “2-stack 1D-1R Cross-point Structure with Oxide Diodes as
Switch Elements for High Density Resistance RAM Applications,” in
International Electron Devices Meeting (IEDM), Dec 2007, pp. 771–774.

[104] C. Jung, J. Choi, and K. Min, “Two-Step Write Scheme for Reducing
Sneak-Path Leakage in Complementary Memristor Array,” IEEE Transac-
tions on Nanotechnology, vol. 11, no. 3, pp. 611–618, May 2012.

[105] S. Ham, H. Mo, and K. Min, “Low-Power VDD/3 Write Scheme With
Inversion Coding Circuit for Complementary Memristor Array,” IEEE
Transactions on Nanotechnology, vol. 12, no. 5, pp. 851–857, Sep. 2013.

[106] Y. Yang, J. Mathew, M. Ottavi, S. Pontarelli, and D. K. Pradhan,
“Novel Complementary Resistive Switch Crossbar Memory Write and
Read Schemes,” IEEE Transactions on Nanotechnology, vol. 14, no. 2, pp.
346–357, March 2015.

[107] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky,
and R. S. Williams, “Writing to and reading from a nano-scale crossbar
memory based on memristors,” Nanotechnology, vol. 20, no. 42, p. 425204,
sep 2009.

BIBLIOGRAPHY 115

[108] M. A. Zidan, A. M. Eltawil, F. Kurdahi, H. A. H. Fahmy, and K. N. Salama,
“Memristor Multiport Readout: A Closed-Form Solution for Sneak Paths,”
IEEE Transactions on Nanotechnology, vol. 13, no. 2, pp. 274–282, March
2014.

[109] Y. Deng, P. Huang, B. Chen, X. Yang, B. Gao, J. Wang, L. Zeng, G. Du,
J. Kang, and X. Liu, “RRAM Crossbar Array With Cell Selection Device:
A Device and Circuit Interaction Study,” IEEE Transactions on Electron
Devices, vol. 60, no. 2, pp. 719–726, Feb 2013.

[110] S. Kim, J. Zhou, and W. D. Lu, “Crossbar RRAM Arrays: Selector Device
Requirements During Write Operation,” IEEE Transactions on Electron
Devices, vol. 61, no. 8, pp. 2820–2826, Aug 2014.

[111] I. Gupta, A. Serb, R. Berdan, A. Khiat, A. Regoutz, and T. Prodromakis,
“A Cell Classifier for RRAM Process Development,” IEEE Transactions on
Circuits and Systems—Part II: Express Briefs, vol. 62, no. 7, pp. 676–680,
July 2015.

[112] W. Banerjee, N. Lu, Y. Yang, L. Li, H. Lv, Q. Liu, S. Long, and
M. Liu, “Investigation of Retention Behavior of TiOx/Al2O3 Resistive
Memory and Its Failure Mechanism Based on MeyerNeldel Rule,” IEEE
Transactions on Electron Devices, vol. 65, no. 3, pp. 957–962, March 2018.

[113] R. Doi, J. Yu, and M. Hashimoto, “Sneak Path Free Reconfiguration with
Minimized Programming Steps for Via-switch Crossbar Based FPGA,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, (accepted).

[114] C. E. Stroud, A Designer’s Guide to Built-In Self-Test. Kluwer Academic
Publishers, 2002.

[115] S. Dutt, V. Verma, and V. Suthar, “Built-in-Self-Test of FPGAs With
Provable Diagnosabilities and High Diagnostic Coverage With Application
to Online Testing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 2, pp. 309–326, Feb 2008.

[116] C. Hsu and T. Chen, “Built-in Self-Test Design for Fault Detection and
Fault Diagnosis in SRAM-Based FPGA,” IEEE Transactions on Instru-
mentation and Measurement, vol. 58, no. 7, pp. 2300–2315, July 2009.

[117] M. Abramovici, C. E. Stroud, and J. M. Emmert, “Online BIST and
BIST-based diagnosis of FPGA logic blocks,” IEEE Transactions on Very

116 BIBLIOGRAPHY

Large Scale Integration (VLSI) Systems, vol. 12, no. 12, pp. 1284–1294,
Dec 2004.

[118] M. Abramovici and C. E. Stroud, “BIST-based test and diagnosis of FPGA
logic blocks,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 9, no. 1, pp. 159–172, Feb 2001.

[119] I. G. Harris and R. Tessier, “Testing and diagnosis of interconnect faults in
cluster-based FPGA architectures,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 21, no. 11, pp. 1337–1343,
Nov 2002.

[120] M. Hashimoto, X. Bai, N. Banno, M. Tada, T. Sakamoto, J. Yu, R. Doi,
Y. Araki, H. Onodera, T. Imagawa, H. Ochi, K. Wakabayashi, Y. Mit-
suyama, and T. Sugibayashi, “Via-switch FPGA: First Implementation in
65-nm CMOS and Architecture Extension for AI Applications,” in IEEE
International Solid-State Circuits Conference (ISSCC), (accepted).

