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Abstract

The integration of video streams captured by many mobile video contributors at a crowded

event into a multi-view video, that is, crowdsourced multi-view video streaming enables remote

viewers to experience the immersive views of the event as if they were attending the event.

The serviceability of crowdsourced multi-view videos streaming is not limited to entertainment

purposes. As an example, it can be extended to intelligent transportation system (ITS) in which

the videos captured by onboard cameras of di�erent vehicles at one side of an intersection can

be shared with the vehicles at the other side to provide the tra�c condition at the intersection.

Another potential application of crowdsourced multi-view video streaming is three-dimensional

(3D) virtual reconstruction of an interesting location, building, or a concert using video frames to

point cloud technology. Despite the diverse applicability, the crowdsourcing multi-view videos

over wireless network encounters many challenges due to the resource-constrained nature of

wireless networks and limited capacity of the consumer-grade mobile devices.

One of the characteristics of crowdsourced multi-view streaming is that many contributors

upload the video streams captured at close spatial location simultaneously to the video collector.

Thus, a large amount redundant video tra�c is uploaded due to the high correlation among

the video streams, which is highly ine�cient usage of scared wireless network resources. In

this case, tra�c reduction is of paramount importance to realize the e�cient of the uploading

of crowdsourced video streams. On the other hand, due to the power-hungry nature of video

streaming and limited battery supply of mobiles devices restrict the practicability of crowd-

sourced multi-view video streaming. Thus, it is demanding the tra�c-reduced and low-power

video uploading solutions to realize the e�cient crowdsourced multi-view video streaming.

This dissertation proposes three video uploading schemes considering the above-mentioned

issues. We firstly propose a tra�c reduction method for multi-view video uploading from

crowdsourced video contributors. The proposed scheme uses di�erential encoding with multiple

reference streams by means of packet overhearing. To realize di�erential encoding across the

network of contributors for higher tra�c reduction, our scheme combines three techniques:

correlation estimation, reference selection, and transmission order determination. First, we

utilize the correlation among the contributors based on the content features of the captured video
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streams using the information-bound reference (IBR). Second, in the design of the reference

selection that determines the dependencies among the contributors we use two threshold values,

determining the number of references for di�erential encoding at each contributor. Finally,

we schedule the transmission order of the contributors to increase the number of di�erential

encoding opportunities within their network.

Second, we propose a cluster-based redirect video uploading scheme for high-quality and low-

power crowdsourced multi-view video streaming. Considering the drawbacks of conventional

digital video transmission consumption our proposed scheme integrates the four approaches

of network clustering, delegate selection, soft video delivery, and four-dimensional discrete

cosine transform (4D-DCT) to redirectly upload the captured videos to the AP. Specifically,

network clustering and delegate selection leverage the redirect path between the contributors

and the AP. Soft video delivery removes power-hungry digital encoding and transmission by

directly sending frequency-domain coe�cients using multi-dimensional DCT and near-analog

modulation. 4D-DCT exploits the content correlations between the contributors to reduce

redundant transmissions.

Finally, we extend our previously proposed di�erential encoding-based video uploading

scheme using ROI-based multi- view video encoding with the goal of further tra�c reduction

considering the perceptual redundancy of human visual system (HVS). To realize the ROI-based

di�erential multi-view video uploading, we first construct a correlated network of contributors

based on the correlation degrees among them. We then select a contributor with the largest

average correlation in the network for extraction of ROI regions. The selected contributor

uploads its video stream using ROI-based single-view video encoding while the rest of the

contributors in the network overhear the transmitted stream and performs ROI-based di�erential

multi-view video encoding with the prior knowledge ROI information.

This dissertation evaluates the performance of our proposals through computer simulations

using standard multi-view video sequences. We approve the e�ectiveness of the proposed

methods through the evaluations.
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Chapter 1

Introduction

1.1 Crowdsourcing of Multi-view Videos

In June 2006, Howe, contributing editor of Wired Magazine, introduced the term crowdsourcing

and literally defined as outsourcing of a business function to the crowds, to acquire the creative

ideas or find the best solutions with an incentivizing scheme [2]. Typically, the crowdsourcing

acquries the data and intelligent from the public by the use of Information and Communication

Technology (ICT). The prime examples of crowdsourcing include Threadless.com, InnoCen-

tive.com, Amazon’s Mechanical Turk, and iStockphoto.com as mentioned in Howe’s article.

Other representative examples count the Wikipedia, YouTube, Flickr and open-source software

platforms. In fact, the earlier practices of crowdsourcing that use ICT were featured as Web-

oriented ones and the term crowds generally regarded as Desktop-based online communities [3].

In nearly past two decades, along with the proliferation of smartphones and ubiquitous

mobile communication technologies, the model of crowdsourcing has been evolved to mobile

crowdsourcing [4]. Through the sensors equipped in the smarphones such as accelerometers,

compasses, GPSs, microphones, and cameras, it can collect and analyze the data of humans in

mobility and environments, and then provide useful information and services to the end users.

Another facet of mobile crowdsourcing is crowdsourced video streaming. Empowered by the

smartphones with powerful cameras and today’s trend of social networking, the crowdsourced

video streaming allows the remote viewers to see what was happening in the world through

others’ eyes, i.e., crowdsourced video contributors. The most famous Internet platforms, which

provide crowdsourced video streaming services, are Facebook Live, Youtube, Periscope, and

. 3 .
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(a) IMPACT Westing live stream on
Periscope

(b) An event of Miss Universe 2018
on Facebook Live.

Figure 1.1: Examples of crowdsourced video streaming from a mobile phone.

Twitch [5, 6, 7, 8, 9]. Fig. 1.1 illustrates two examples of crowdsourced video streaming of

popular events via Twitter’s Periscope and Facebook Live mobile applications.

Crowdsourced multi-view video streaming [6] is an extension of crowdsourced video stream-

ing in which many contributors viewing the same event provide di�erent viewpoints of the event

at various angles. The integration of those videos into a multi-view video allows the remote

viewers to enjoy the immersive viewing of the event as if they were at the event. The service-

ability of crowdsourced multi-view videos streaming is not limited to entertainment purposes.

As an example, it can be extended to intelligent transportation system (ITS) in which the videos

captured by onboard cameras of di�erent vehicles at one side of an intersection can be shared

with the vehicles at the other side to provide the tra�c condition at the intersection. Another

potential application of crowdsourced multi-view video streaming is three-dimensional (3D)

virtual reconstruction of an interesting location, building, or a concert using video frames to

point cloud technology. Despite the convincing benefit, there are many challenges to realize

the crowdsourced multi-view video streaming. Fig. 1.2 depicts an end-to-end system of crowd-

sourced multi-view video streaming which includes three main parts: video delivery from the

crowdsourced contributors, i.e., uploading, encoding/transcoding of the streams at the streaming
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ViewersContributorsScene Cloud Server

View Data 

Access Point

Figure 1.2: An end-to-end crowdsourced multi-view video streaming system.

server such as cloud, i.e., processing, and the delivery of the streams to the viewers, i.e., down-

loading. In the literature, a large number of researches have been working on crowdsourced video

streaming, however, mainly focusing on downloading part. Accordingly, the uploading part of

crowdsourced video streaming, especially multi-view videos, is still well unexplored [10]. To

fulfill this gap, in this dissertation, we focus on the video uploading of crowdsourced multi-view

video streaming.

There are two distinguishable features of crowdsourced multi-view video streaming from the

conventional crowdsourced video streaming. First, in crowdsourced multi-view video streaming,

a large number of contributors reside in the same geographic area, i.e., in an event, and share

the limited network resources at the same time. Second, the videos captured at the same event

are highly correlated leading to the redundant transmissions which consumes large amount of

scarced network resources. Another challenge of crowdsourced multi-view video streaming is

that mobile devices are provided by limited battery sources which is unfavorable for power-

hungry video transmission. Considering the above-mentioned challenges, this dissertation

proposes the means of e�cient uploading of a large amount of video tra�c from crowdsourced

contributors within the limited network resources in power-e�cient manner.

1.2 Main Contributions

Generally, video streaming over wireless link has its requirement of QoS, i.e., high video

quality and low latency video delivery. To this end, the solutions proposed for high quality

video streaming always monitor and control the QoS parameters of the video delivery from

video encoding and/or the video transmission perspectives. As an example, the study presented
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in [11] focuses on video compression optimization based on the scalable video coding and video

content chunking to improve the video quality and reduce the delay. The study reported in [12]

jointly controls the parameters of video encoding and transmission for energy-e�cient video

communication from mobile devices.

Similarly, this dissertation proposes the solutions for high quality multi-view video upload-

ing from crowdsourcing contributors. To this end, the proposed schemes consider both video

encoding and video transmission aspects. Specifically, the proposed schemes exploit the corre-

lation and channel quality di�erences among contributors by utilizing the di�erential encoding

and soft video delivery approaches to realize tra�c reduced, high-quality, and low-power video

uploading schemes.

The main contributions in this dissertation are as follows:

• Chapter 3 presents a tra�c reduction method based on the content-aware di�erential

encoding in crowdsourced multi-view video uploading. By exploiting the captured content

correlation among the crowdsourced contributors, the proposed scheme achieves the tra�c

reduction with quality improvement.

• Chapter 4 presents a redirect soft video uploading scheme for high quality and low-power

multi-view video uploading from crowdsourced contributors. By skipping power-hungry

digital video encoding and exploiting the channel variations among the contributors, the

proposed scheme achieves the high-quality video uploading with low-power requirement.

• Chapter 5 presents a region-of-interest based tra�c reduction scheme by extending the

proposed method in Chapter 3. By considering the features of human-vision system, the

proposed scheme achieves the further tra�c reduction.

1.3 Literature Review

1.3.1 Crowdsourced Video Streaming

The term crowdsourced video delivery can be roughly divided into two categories: uploading of

the streams from the contributors to the server, such as a cloud, and downloading of the contents
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by the remote viewers. In the study presented in [13], the authors focused on the downloading as-

pect of crowdsourced mobile video streaming. They proposed a multi-object multi-dimensional

auction-based incentive framework for cooperative downloading of crowdsourced video streams,

which enables mobile users located close to each other to form cooperative groups and share

their network resources for more e�cient video streaming. Hung Tai et al. [14] tackled the

delay aspect of crowdsourced video uploading. They focused on reducing the uploading time

of mobile users sharing multimedia contents at an event. For this purpose, they proposed a

proxy o�oading server at the wireless AP, which assigns Wi-Fi bandwidths to the mobile users.

Through knowledge of the file-uploading time of each task, the uploading time of the mobile

users can be reduced. The authors of [15] considered scalable video coding (SVC) and chunked

video content for optimizing video quality and delay in live video sharing from mobile devices.

They proposed a set of uploading scheduling algorithms that select video chunks with various

layers of quality for uploading and determine the order of uploading in order to optimally bal-

ance the quality-delay tradeo�. In crowdsourced video streaming systems, the video contributors

and viewers are heterogeneous in terms of the generated video quality and network configura-

tions. The delivery of heterogeneous video streams to heterogeneous viewers requires massive

transcoding and demands high computational resources. To tackle this, in [7] a generic frame-

work that uses cloud computing services for crowdsourced live streaming with heterogeneous

contributors and viewers was presented. The authors focused on the cloud resource allocation

to the contributors for transcoding a set of video representations, i.e., on quality in order to

maximize the users’ quality of experience (QoE) and minimize the computational cost. Simi-

larly, Kashif et al. [16] proposed a generic framework for crowdsourced multi-view live video

streaming, namely, Cloud-based Multi-View Crowdsourced Streaming (CMVCS). As in [7], the

authors formulated the resource allocation problem to transcode the views in an optimal set of

representations, subject to the computational and communication resource constraints. In both

of the studies, popularity-based selection of views (contributors) and a set of representations

that optimizes the viewers’ satisfaction were considered.

The proposed methods presented in this dissertation consider the collection of the videos

from all the contributors, aiming for the applications of the multiple-viewpoints video or 3D
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space of a scene. However, in some situation, it may not be neccessary to collect all the videos

at the same time, considering the popularity of the certain views, the quality of the captured

views, available resources of the wireless network and mobile devices themselves. For example,

in [11], the authors considered the pull-based on-demand uploading of crowdsourced mobile

videos at an event, where it was not intended that all captured videos be uploaded to the server.

The videos are selected to balance the viewers’ satisfaction and the uploading cost incurred by

the smartphones, resulting in a tradeo� between the accuracy of the video clips, as required by

the orientation and temporal coverage, and the power budget of the devices. A similar research

study was conducted on a method for photo crowdsourcing from mobile devices [6] aimed at

selecting the photos with the largest utility. The method measures the extent to which the photos

cover the target area, based on metadata, such as the location, orientation, FoV, and range of a

camera.

On the other hand, selective uploading of views based on the user’s request and coverage

may incur a delay and necessitate a tradeo� between the accuracy of the request and the resource

constraint, such as the battery capacity of the devices. Due to this, this dissertation considers

the uploading of video streams from all contributors in which redundant information is removed

by exploiting the inter-view correlation in encoding, to achieve e�cient video uploading.

1.3.2 Correlation-based Content Uploading

One of the solutions of removing the redundancy, i.e., tra�c reduction, in crowdsourced multi-

view video steaming is to exploit the content correlation among the video streams. Kodera et

al. [17] considered the correlation-based tra�c reduction for crowdsourced multi-view video

streaming for tra�c reduction in multi-view video streaming with multiple mobile cameras.

They focused on reducing the amount of tra�c between the mobile cameras and the AP by us-

ing packet overhearing and bidirectional encoding. Each camera overhears two other cameras’

frames and uses bidirectional inter-view prediction to exploit the correlation between its own

and the overheard frames. In addition, the transmission order of the cameras is controlled by

the AP, which enables bidirectional encoding based on the positions of the mobile cameras,

assuming that the cameras nearest to each other have the highest correlation. The authors of [18]
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proposed a spatial correlation-based image compression framework for wireless multimedia

sensor networks to maximize the overall compression of the collected visual information. They

also proposed a di�erential encoding-based scheduling framework [19] for uploading visually

correlated images to wireless multimedia sensor networks. The paper describes the design of

a schedule for the sensor nodes to maximize the network lifetime by performing di�erential

encoding using overheard transmissions of correlated neighbors. In both studies, the authors

considered the overlapped FoV of the cameras to predict the correlation among them, calculated

using the camera setting parameters of position, sensing direction, and the location of the area

of interest. In the studies presented in [20] and [21], image processing methods were applied

to estimate the correlation among images from neighboring sensors in order to conduct collab-

orative transmission. In the study in [20], images from correlated views were approximately

registered utilizing the image feature points and feature point correspondence. In this scheme,

each sensor transmits the low-resolution version of a common area, and the sink reconstructs

the high-resolution version using the super-resolution technique [22]. In the method described

in [21], images from correlated sensors are collaboratively transmitted to the sink based on the

spatial and temporal correlation. A shape matching method is used to obtain the spatial corre-

lation between images acquired from neighboring sensors, whereas background subtraction is

used for temporal correlation.

The assumption of positional correlation [17] could be violated if cameras in close proximity

to each other project in di�erent orientations. Overlapped FoV-based correlation estimation [18,

19] may overcome the deficiency of the positional approach. However, all the camera and

geographical parameters are required in advance for estimation. In our study, we considered

the image processing-based correlation estimation approach that uses the information-bound

reference (IBR) [23,24]. As compared to the methods in [20] and [21], our IBR-based correlation

estimation is less complex, because it does not require feature extraction to reveal the similarity

between two images. Instead, it uses a multimedia fingerprint algorithm to generate a 64-bit hash-

code from the discrete cosine transform (DCT) components of the image to uniquely represent

the content features. In [19] and [18], the authors assumed a limited number of dependencies

between the cameras. Specifically, in their method each camera is dependent on the camera
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that is most closely correlated with it and it must be a direct successor of its predecessor.

In a crowdsourced environment, the dependencies among the cameras may be more complex

and it is very likely that a predecessor itself can be dependent on another camera. Thus, the

proposed scheme presented in Chapter 3 considers multiple dependencies among the cameras

by exploiting all the correlations among them. In the method described in [17], two reference

streams are used for bidirectional encoding based on the positions of the cameras, regardless

of the actual correlation among them. In contrast, the proposed scheme e�ectively selects the

number of references for a contributor for di�erential encoding based on the correlation degrees.

1.3.3 Power-E�cient Video Delivery

The power consumption in video delivery is mainly dependent on two factors: video encoding

and video transmission.

Video Encoding

The conventional digital-based video compression such as H.264/AVC consumes a large amount

of power due to its complexity. To realize power-e�cient video streaming, previous researches

tackled to reduce the complexity of the video encoding. The authors of [25] proposed an

algorithm-level encoder complexity reduction approach. It reduces the computational complex-

ity of the 4 ⇥ 4 block intra-prediction based on partial sampling prediction and symmetry of

adjacent angle modes. As the system-level reduction of complexity, the study in [26] presented

a framework which allocates the computational power of the encoder adaptive to video contents

and also scales with the available battery power using a Region Of Interest (ROI) classifica-

tion method. Raha et al. [27] proposed a hardware-oriented approach for power-e�cient video

encoder. They considered the reconfigurable approximate computing architecture adaptive to

the characteristics of the input videos. In [28], the authors presented a game-theoretic power-

e�cient scalable video encoding (PSVE) for resource-limited systems. The PVSE allocates the

power levels to four modules involved in the encoding such as ME so as to maximize the utility

of each module, which is measured by the bit rate, visual quality and power consumption.

On the other hand, the proposed scheme presented in Chapter 4 completely replaces the
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power-hungry digital video encoding process with a simple linear transform of soft video

delivery to save the encoding power consumption from the mobile contributors.

Video Transmission

Apart from the video encoding, the wireless video transmission can drain the large portion of

energy from streaming devices. For energy-e�cient video communication, the authors of [12]

introduced an approach for minimizing the power consumption on video transmission by jointly

optimizing the power consumption on video encoder, channel encoder, and the transmitter. Li et

al. [29] proposed joint optimization of video summarization, coding and modulation schemes,

and packet transmission in order to minimize the power consumption on video transmission. Ye

Li et al. [30] proposed cross-layer schemes for energy-e�cient video transmission by adjusting

parameters on physical (PHY) layer (e.g. modulation level, bit rate) and medium access control

(MAC) layer (e.g., the bu�er status). They also proposed an optimal smoothing algorithm to

reduce both the peak data rate and radio front-end power consumption. In [31], Othmane et

al. proposed a cross-layer designed framework for network lifetime extension in wireless video

sensor networks based on H.264/AVC video encoding. At the application layer, the proposed

framework adaptively adjusts its configuration on the basis of feedbacks from network layer to

meet the desired quality while extending the network lifetime. They also proposed an energy-

e�cient and reliable routing protocol that considers the information from MAC layer such as the

packet loss rate and the available bu�er size in nodes’ multi-priority queues, and the remaining

energy.

All of the above studies considered the adaptation of video encoding parameters to network

conditions for saving the transmission power consumption under the certain video quality.

However, the adaptation costs additional power consumption especially in unstable wireless

network environments [32]. In contrast to those studies, the proposed scheme in Chapter 4 uses

soft video delivery to cope with even unstable network conditions for better video quality with

low transmission power consumption. In addition, soft video delivery within the cluster reduces

the encoding and transmission power requirement, thus saving the power consumption from

the members of the cluster with no quality degradation. Since the delegate does not require
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adaption of encoding parameters, soft video delivery saves the transmission power and achieves

the graceful quality improvement.

1.3.4 Soft Video Delivery

In traditional video delivery, digital-based video encoding and transmission adopt a scheme

of transmitting fixed source data rate over a known channel. Consequently, it su�ers from

a threshold e�ect [33]; if the channel quality drops below a threshold, video quality drops

severely; even if the channel quality improves beyond the threshold, the video quality is constant

due to the quantization distortion. To overcome such cli� e�ect and constant quality e�ect, soft

video delivery schemes have been recently proposed. A pioneering work among these schemes

is SoftCast [34, 35]. SoftCast removes non-linear quantization, entropy coding and channel

coding, instead, uses a technique that directly maps linear-transformed signals based on 3D-DCT

to channel symbols and assigns transmission power for the error protection. The main advantage

of SoftCast is its graceful video quality improvement in wireless broadcast/multicast scenarios

in which the received video quality at each receiver is proportional to its channel properties.

Motivated by the virtues of SoftCast, many researches including [36, 37, 38, 39, 40, 41] have

been introduced for various scenarios. ParCast (Parallel video uniCast) [36] was designed for

unicast video delivery over the Multiple input Multiple output (MIMO)-Orthogonal Frequency

Division Multiplexing (OFDM) links. AirScale [37] focused on antenna heterogeneity of video

multicast users in Multiple User (MU)-MIMO systems. Dcast [38] employed the principle of

distributed video coding (DVC) with analog transmission in video multicast. A study called

FoveaCast [39] applied SoftCast’s features of linear transforms and power-adjustable source

components to the reduction of perceptual redundancy with graceful video quality in wireless

image broadcast/multicast scenarios. The studies in [40] and [41] considered the similar goal by

using SoftCast-based video transmission for free viewpoint and 360-degree video delivery. All

of the above studies showed the prosperity of soft video delivery in wider domains for improving

the received video quality and transmission e�ciency. Beside those benefits, soft video delivery

has the great potential of energy saving because of its simplicity for the power-restricted devices

in both video encoding and video transmission.
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Soft video delivery in above studies is designed for the direct video transmission between

a server/sender and a single or multiple receivers and showed the prosperity of soft video

delivery for improving the received video quality and transmission. Di�erence from those

studies, the study presented in Chapter 4 applies soft video delivery to crowdsourced multi-view

video uploading considering redirect video transmission between the contributors and the AP.

Although the conventional soft video delivery with direct transmission su�ers low video quality

due to unstable direct path, the proposed scheme maintains video quality by utilizing redirect

path between the contributors and the AP based on the network clusteirng.





Chapter 2

Fundamental Theories and Techniques

2.1 Introduction

This dissertation focuses on realizing the e�cient video uploading from mobile contributors

for crowdsourced multi-view video streaming. To this purpose, we have proposed three video

uploading schemes as we describe in detail in the later chapters. In this chapter, we describe the

fundamental theories and techniques applied in our studies.

2.2 Video Enoding

In 1948, Claud Shannon mathematically defined the amount of information existed in a source,

which produces a certain type of message, and established the foundation of information theory

[42]. This theory put forward some fundamental limits within which the communication channel

can carry the certain amount of information, known as channel capacity. According to Shannon’s

capacity limit, the maximum rate of information that we can transmit over a communication

channel without any error is bounded by the channel bandwidth, signal power level and noise

power level. In wireless communication system, the transmission channel is inherently prone to

error due to multipath e�ects, signal fading and noise. To successfully convey the information

over a band-limited and error-prone channel with arbitrarily small error probabilities, source

encoding and channel encoding is necessary. Source encoding, also known as data compression,

is a task of removing the redundant information present in a source in order to save the storage

and bandwidth. When the source is a sequence of images, i.e., the encoding is termed as video

encoding or compression.

. 15 .
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Traditionally, videos in its raw representation are extremely voluminous to store and transmit.

As an example, an uncompressed, raw, Ultra High Definition (UHD) video has a resoultion of

3840 ⇥ 2160 pixels at 60 frames per second (fps). Considering the 10 bit/pixel for 3 color

components, the transmission bandwidth of 3840 ⇥ 2160 ⇥ 60 ⇥ 10 ⇥ 3 = 14.92 gigabits per

second (Gbps) would be needed [43]. Unfortunately, it is almost impossible to transmit such

huge amount of data over today’s internet bandwidth of at most a few tens of hundred megabits

per second (Mbps) without any processing to reduce the data volume. In this case, video

encoding or compression [44] becomes necessary.

Since the first digital video technology coding standard, known as H.120 standardized by

International Telecommunication Union (ITU) in 1984, many video encoding standards have

been developed and in use today [45]. Currently, the most common video coding standard

is H.264/Advanced Video Coding (AVC), ratified in 2003 by the Joint Video Team (JVT) of

the ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group

(MPEG) standardization organizations. H.264/AVC is widely used by Internet streaming ap-

plications like YouTube and Netflix, video player software like Flash Player, and various High

Definition Television (HDTV) broadcasts over terrestrial, cable, and satellite channels [46].

These applications undertake the encoding of single video source which originates from the

single camera providing the single viewpoint of a scene, i.e., single-view video encoding.

Nowadays, the emerging three-dimensional (3D) video technology have laid the way for im-

mersive 3D applications such as free viewpoint video (FTV), 3DTV and and immersive video

conferencing [47, 48]. The 3D scenes rendering in these applications are portrayed by new

scene representation techniques called multi-view videos [49, 50]. A standard of multi-view

video coding (MVC) is amended to H.264/AVC [51] to support the multi-view videos. The

fundamental concepts of single-view video coding and multi-view video coding are presented

in the following sections.

2.2.1 Single-view Video Encoding

The work of video processing on transmission comprises of two fundamental components:

encoding and decoding as illustrated in Fig: 2.1. In a single view video encoding, the sender
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Figure 2.1: Video Encoding and Decoding on Transmission.

converts the uncompressed video originating from a source into a format that takes up less

capacity before transmission. At the receiver, the compressed video is converted back into

its original format by a process called decoding. Quite evidently, there are diverse ways of

compressing a video source and modern-day video encoding standards including H.264, H.265,

and VP9, define the universal syntax of an encoded bitstream and a process of decoding this

syntax. Despite the numerous compression methods, the process of video encoding includes

three complementary modules, i.e., prediction, transform and quantization, and entropy coding.

In general, video compression is the process of removing redundancies in the video which

can be broadly classified as statistical redundancy and psycho-visual redundancy [43]. The

statistical redundancy refers to the intrinsic redundancy in which the values of closely located

pixels in one frame or across the successvie frames are significantly similar due to the inherent

nature of world scene. As an illustration, Fig. 2.3 shows the frame 1 and frame 2 of claire video

sequence [1]. As we can see in the left figure, the pixels of the news annoucer’s dress, her

face and those in background area are very similar. Similarly, the pixels in frame 1 and frame

2 are almost identical, except the little changes in facial expression around the annoucer’s lips.

Such kind of similarity in Fig. 2.3(a) is known as spatial redundancy and that in Fig. 2.3(b) is

known as temporal redundancy. We say that spatially/temporally redundant pixels are strongly

correlated with each other.

The objective of the prediction is to remove such correlation that can minimize the required

number of bits to represent the video frames. When the prediction is carried out on a single frame
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Figure 2.2: Block diagram of single-view video encoding.

for removing the spatial correlation, it is termed as intra prediction, the frame itself is labeled as

intra-predictive frame or I-frame and encoding of the frame is termed as intra frame encoding.

Usually, the first frame in the video sequence is independently encoded as I-frame. In contrast,

when the prediction uses the previously encoded frame or frames as references to exploit the

temporal correlation in the successive frames, it is termed as inter-prediction, inter-predictive

frame or P-frame, and inter frame encoding, respectively. P-frame only uses forward prediction,

i.e., using the frame as reference that comes temporally before it. When the inter-prediction

uses the references frames which are temporally before or after the current frame, it is termed as

bidirectionally predictive frame or B-frames. Fig. 2.5 depicts the example of inter prediction of

P-frame and B-frame in encoding of sequence of frames. The inter-predictive encoding uses the

di�erential encoding. That is, the current frame is compared with the previously encoded frame

which is used as a reference to exploit the temporal correlation. And, it calculates the di�erence

between their pixels values, known as residual, and encodes only the residual to reduce the

frame size. For inter prediction, various techniques such as motion estimation and motion

compensation are widely used.
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After prediction is finished, the residual frames go to a series of processing states called trans-

form and quantization. The transform state converts the residual frames into a di�erent rep-

resention known as frequency domain. Several transforms including discrete consine transform

(DCT), discrete sine tranform (DST) and Hadamard transform are widely used in image/video

encoding. The most popular transform is block-based two-dimensional DCT (2D-DCT) which

is defined as follows:

F (↵, �) =
1
4

C(↵)C(�)
NX

i=1

NX

j=1
f (i, j) cos

(2i + 1)↵⇡
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(2.2)

where f (i, j) is a pixel value in each block and F (↵, �) is a frequency coe�cient, i.e., DCT

coe�cient.

Just as the block of pixels in an image shows the strong spatial correlation, the residual

blocks also show the same characteristic with the smaller values. The objective of transform

state is to provide decorrelation of the pixels of the residual frames to achieve maximum energy

compaction. What the energy compaction means is the phenomenon of concentration of the

frequency, i.e., energy of the pixels. After the transformation, the frequencies of the pixels

are concentrated on the lower frequency components with respect to the higher frequency

components. Fig. 2.4 shows the values of 8 ⇥ 8 block of pixels and its corresponding frequency

coe�cients after 2D-DCT.

After transformation, the frequency components are quantized using a quantization table.

That is, all the DCT coe�cients are divided by the values in quantization table to reduce the

range of values of the coe�cients. The divisors in the table are derived from Quantization

Parameter (QP) which is the key parameter to control the compression e�ciency and visual

quality of encoding process.

Finally, entropy coding is performed to produce a bitstream. The main philosophy behind the

entropy coding is that the information of any symbol is inversely proportional to the likelihood,

i.e., probabilities of their occurrence. Thus, the most occurring symbols are assigned fewer bits
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(a) Frame 1 (b) Frame 2

Figure 2.3: Ilustration of spatial and temporal redundancies of claire video sequence. [source:
http://ise.stanford.edu/Video/claire.qcif.gz]

and the least occurring symbols are allocated more bits. Entropy coding focuses on minimizing

the number of bits needed to encode the information symbol. In other words, it minimizes the

coding redundancy, another form of statistical redundancy. The extensively used entropy coding

schemes include variable length coding and binary arithematic coding.

2.2.2 Multi-view Video Encoding

The multi-view videos are the basic elements of 3D video applications like free viewpoint

video (FTV), 3DTV and immersive video conferencing [47, 48]. Fig. 2.7 illustrates a typical

multi-view video architecture in which multiple synchronized cameras are arranged in relatively

close positions to capture the scene in di�erent perceptive. Due to this arrangement of cameras,

the video captured in multi-view video environment exhibit the high similarities, i.e., strong

correlation among the views.

The encoding structure of multi-view video transmission varies with the adopted encoding

scheme. The most primitive scheme for multi-view encoding is H.264/AVC simulcast coding

(SCC) [52]. In SCC, video frames in each viewpoint is independently encoded using single-view

digital encoding like H.264/AVC. However, SCC is ine�cient since it does not exploit the inter-

view redundancy, and thus, generates the large amount of redundant video tra�c. To overcome

this problem, multi-view video coding (MVC), which is multi-view extension of H.264/AVC,

known as H.264/MVC, is adopted [53]. Fig. 2.12(a) and 2.12(b) shows the prediction structures

of SCC and MVC, respectively.
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Figure 2.4: Transformation of 8 ⇥ 8 block of image using 2D-DCT. 2D-DCT gathers low-
frequency coe�cients at the upper left corner and high frequency coe�cients at the lower
right.

Multi-view video encoding basically follows the same procedures as the single-view video

encoding. That is, it adopts the procedures of prediction, transform and quantization and entropy

coding. The main di�erence is that the multi-view video encoding uses the reference frames from

its adjacent viewpoints for prediction to exploit the inter-view temporal redundancy. In other

words, multi-view video coding incorporates the inter-frame prediction as well as inter-view

prediction in prediction phase to reduce the amount of tra�c.

Traditional inter-frame prediction employs the motion estimation which exploits the similar-

ities between the frames in a single viewpoint while the inter-view prediction utilizes disparity

estimation [54] to exploit the similarities between frames in di�erent viewpoints. The key idea

of disparity estimation is to find the best matching of the current microblock in the reference

frame within the reference view. Conceptually, the task of disparity estimation is quite similar

to that of motion estimation.
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In motion estimation, the best matching of current microblock is searched within the prede-

fined search range (SR) in the temporal reference frames. Once the matching block is found,

the corresponding motion vector is generated. Similarly, disparity estimation searches for the

best matching cadidate for current block within the reference frame of reference view, and once

found, points the location of the block by a disparity vector. Since the inter-frame prediction is

made across the successive frames of the same view, the motion vector denotes the displacement

of a particular object in the scene with time. In contrast, the disparity vector represents the

displacement of the given object across the views. Fig. 2.8 outlines the motion and disparity

estimation realized in multi-view video coding.

After prediction is completed, transform and entropy coding phases follow as in H.264/AVC

that completes the encoding process.

In conventional multi-view video coding, the selection of reference view is based on the
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camera position. That is, the viewpoints take their neighboring views as references. For

example, in 2.12(b), the first transmitted view, i.e., view 5, is encoded individually using single-

view video coding and served as the reference for its closet adjacent viewpoints, i.e., view

3 and 4, to achieve the better prediction and thus, better compression gain. On the other

hand, crowdsourced multi-view environment, the correlation among the viewpoints cannot be

guaranteed with the positions of the cameras due to the possible varying capturing directions.

In this case, a mechanism for deciding the reference views for each viewpoint is a critical

requirement which we address in the later chapters.
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Figure 2.9: Encoding structures of multi-view video transmission.

2.3 Human-aware Video Encoding

The typical video encoding essentially exploits the statistical redundancy, i.e., spatial, temporal,

and coding redundancy using the techniques of prediction and entropy coding to e�ectively

achieve the compression gain. To handle the pyscho-visual redundancy, also known as percep-

tual redundancy, it considers two important realities of human vision system (HVS). The first is

that human vision is much more perceptive to luminance (brightness) information (luma) than

chrominance (color) information (chroma) in the natural scene. To exploit this reality, subsam-

pling mechanism is used by subsampling the chroma components by half while preserving the

full resolution of luma components.

The second is that human eye is more sensitive to small changes in luminance over a smooth
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wider area, i.e., low frequency luminance, but less sensitive to fast luminance changes (high

frequency luminance). As an example, in Fig. 2.10, the lack of details in low frequency sky

area can be easily detected while changes in high frequency mountain ranges area are tolerable

by human eye. To this reality, transform coding and quantization takes the responsibility. The

transform coding converts the luma and chroma components from pixel domain to frequency

domain in which the components are grouped in the order of increasing frequencies. The

quantization maintains low-frequency components in prioritized manner but selectively ignores

high frequency components without a�ecting the visual quality.

On the other hand, these techniques do not fully exploit the perceptual redundancy of human

vision system. In fact, human perceptual mechanism contains diverse aspects such as contrast

sensitivity, visual masking, foveation, visual attention and multi-modality of attention [55].

According to the visual attention models, the behavior of human vision system is stimulated

by the particular characteristics of the image, such as intensity, size, color and location of the

objects. In other words, the visual perception of human vision system is content-variant, that

is, it can concentrate on the particular contents of the image such as a human face. The regions

which contain

Figure 2.11 shows some possible interesting areas of an image which human attention

concentrates on. The ability of attention to specific areas which contain their interested objects

so called region-of-interest (ROI) introduces the considerable perceptual redundancy in less

interested regions. By exploiting this fact, ROI-based video encoding has been proposed and

implemented in standard video codecs such as H.264/AVC. In the following sections, we will

describe the ROI-based video encoding and how it can be extended in multi-view videos.

2.3.1 ROI based Video Encoding

The concept of ROI is employed in several image and video coding standards such as JPEG

2000 [56] and Fine Granularity Scalability (FGS) Profile of MPEG4-part2 [57]. In addition,

a feature of H.264/AVC by which each microblock in a frame can be encoded using di�erent

quantization parameters gives a space for ROI-based encoding concept to join with it. Regardless

of the coding standards, the core idea of ROI-based video encoding is rather straightforward.
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(a) Original Frame

(b) Low Quality Frame

Figure 2.10: Loss of details in the sky area is more sensitive to human vision system than that
in mountain ranges area.

It enhances the visual quality in human interested region (ROI region) by sacrificing the visual

quality in peripheral region (non-ROI region) in the image or video frame. The key components

of ROI-based video coding include ROI detection and tracking and ROI-based rate control.

The detection of ROIs is important task in ROI-encoding and can be done by several ways

such as visual attention models, object and face detection models [58]. According to visual

attention model, the ROIs of an image often include semantic objects such as human face,

a car, a popular building and so on. On the other hand, ROI detection can be application-

dependent. Specifically, ROI in the applications like video conferencing and internet video

chatting may simply be human face which can be detected by using a face detection algorithms.

However, in video surveillance application, the security personnel are more possibly interested

in human movement in the video. In the latter case, ROI detection may require more advanced

techniques such as human motion detection. For locating the specific objects in an image and
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Figure 2.11: Example of human attention on specific regions of an image. [source:
http://ise.stanford.edu/Video/news.qcif.gz]

extracting the areas containing them, i.e., ROI detection, and tracing the movements of the

objects, i.e., ROI tracking, image processing tools are widely used. The common techniques

for object detection and tracking includes background subtraction, optical flow analysis, and

spatio-temporal filtering.

Face detection is a special class of objection detection. A lot of proposal has been reported

for face detection in the literature. The method proposed in [59] utilizes the shape recognition

algorithm considering the particular features of a face the skin color segmentation and contour

evaluation. The work in [60] improves [59] by further combining other silent features such as

color, saturation and orientation to improve the detection accuracy. On the other hand, object

tracking or movement detection can be carried out with the help of video compression tools

such as motion estimation. For example, the proposed method in [61] estimates the motion of

traces of a given object using the motion features, which are estimated based on the microbloack

motion vectors generated by motion estimation process.

After the extraction of ROI region in a frame, the ROI mask, a binary image of which pixels

values inside are ROI are set to 1 and those outside of ROI are set to 0. Using the ROI mask,

ROI-based rate control is performed to optimize the video quality in both ROI areas and non-ROI

areas.
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2.3.2 ROI-based Multi-view Video Encoding

The study in [62] extended the ROI-based encoding to multi-view video coding. The multi-

view data plus depth (MVD) data format consists of the multi-view video (MVV) and multiple

associated depth maps. These depth maps of MVD can be used to facilitate ROI extraction.

[62] proposed Depth based ROI extraction (DBDE) to extract ROI for single frame by using

motion, texture and depth information of MVD. It includes spatial ROI-extraction, temporal ROI

extraction and inter-view ROI extraction. Given the color image F and depth map D, firstly,

motion mask, Mm, foreground mask M f , contour and texture information, Mc, and discontinuity

of the depth map, Md are extracted. Secondly, a characteristic ROI region, M f \ [Mm [ Md]

is constructed as the seed of ROI depth plane. And the depth map of the resulting region is

divided into di�erent depth planes Dz. Meanwhile ROI contours are constructed by integrating

foreground, motion, depth and color contours as M f \ [Mm [ Md [ Mc]. Next, 8 ⇥ 8 block

based contour recovery and noise elimination are performed to get more accurate ROI contours,

Ml . Finally, background regions in depth planes Dz is excluded using Ml that finishes the ROI

extraction process. A macroblock (MB)-level ROI mask is created based on the extracted ROI

for the block-based multi-view video coding (MVC).

To provide a fast ROI regions extraction at the time successive frames i.e., Temporal ROI

extraction, ROI regions in the current frame are predicted by using the temporal preceding

extracted ROIs. Suppose Wk,t and W 0k,t be rectangle and predictive windows of the k-th ROI in

the frame at time t. They predict W 0k,t from DP-ROI windows of the previous p frames. The

DBDE algorithm is performed to refine DP-ROIs within the predictive windows. The areas out

of the predictive windows are directly set as background. Regarding the motions in DP-ROI

prediction, a window size scaling coe�cient correlated with motion magnitude, �� is adjusted

to guarantee DP-ROI is located within W 0k,t .

Since multi-view videos are captured at the same scene at di�erent angles, inherent cor-

relations exist among them. This correlation can be used to extract the ROI regions in view

dimensions i.e., Inter-view ROI extraction.

Suppose M = (X,Y, Z ) be a point of ROI in the world coordinate system and mi = (xi, yi)
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be the coordinate of a pixel, which is projected from M, on i-th plane of the nc-camera array.

Also, let M and m be augmented vectors of M and m, i.e., M = (X,Y, Z, I) and mi = (xi, yi),

Ii is the pixel value on i-th image plane projected from I. Once ROI of the k-th view has been

extracted, the ROI in i-th view can be generated as

Zimi = Zk Ai Ri R�1
k A�1

k mk � Ai Ri R�1
k tk + Aktk, (2.3)

where Z is the depth value, Ai is a matrix of intrinsic parameters of the i-th camera, R and t are

rotational and translational matrices. According to the Eq. (2.3), the mi is determined by mk

and Zk , thus it can be expressed as mi = f (mk, Zk ), where f is a short version of the Eq. (2.3).

Accordingly, the neighboring point m0i = (xi + lx, yi + l y, I0i ) of point mi can be calculated as

m0i = f (m0k, Z
0
k ) (2.4)

where m0k = (xk + lx, yk + l y, I0k ) is the neighboring coordinate of mk , and Z0k the neighboring

depth value of Zk .

On the other hand, because depth map is relatively smooth and with high spatial correlation

among neighboring pixels in the interior region of DP-ROI, m0i can be directly calculated by the

Eq. (2.5) instead of the Eq. (2.4).

m0i ⇡ mi

subject to |lx |  Tx, |l y |  Ty
(2.5)

Finally, small holes are filled by applying averaging filter. DP-ROI is blocklized into MB, and

MB-wise DP-ROI masks are generated for block-based MVC.

2.4 Video Streaming over Wireless Networks

The obtrusive advancement of wireless networking such as cellular networks and wireless local

area networks (WLANs)) and communication technologies, e.g., 4G, 5G has popularized the

progression of video services in wireless mobile networks. Accordingly, the explosive growth

of video streaming over wireless networks has been witnessed in recent times, embracing

the diverse applications such as live video streaming, video conferencing, video-on-demand
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Figure 2.12: Conventional digital-based video delivery vs. soft video delivery

(VoD) and Internet Protocol television (IPTV). On the other hand, increasing demands of

wireless resources, e.g., bandwidth, from enormous number of streaming users and inherent

characteristics of wireless links, e.g., fluctuation and fading, make the video delivery over

wireless networks challenging.

The conventional design of wireless video transmission tackles the problem in two separate

ways; digital video encoding and channel encoding. In general, the former is handled by video

compression part and meant for bandwidth saving. The latter is by transmission part and meant

for error protection of the encoded data during transmission. Despite the prominent use, the

conventional video transmission su�ers from two drawbacks; cli� e�ect and leveling e�ect

[63]. To overcome the drawbacks, analog-based video delivery known as soft video delivery has

been proposed in the literature [34, 35, 33, 36]. In contrast to the separate conventional design,

soft video delivery adopts a unified design that both encodes the video for compression and for

error protection. Fig. 2.12 depicts the separate design of video compression and transmission

of conventional video delivery and its analogy with soft video delivery.

2.4.1 Conventional Video Delivery

In conventional video delivery, the digital video compression and transmission operate sep-

arately. The video compression part uses video encoder such as H.264/AVC to generate a
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compressed bit stream through the various processing such as quantization and entropy coding.

In essence, the digital video encoder such as H.264/AVC employs the rate-distortion optimiza-

tion in which the compression bit rate, that is, the amount of data required to encode the video,

is regulated with the loss video quality, that is, amount of distortion. For example, in quarter

pixel-precision motion estimation, the encoder may add the extra precision to the motion of a

microblock to improve the quality with the cost of additional bits required to encode the motion

vector to a higher precision. Rate-distortion optimization measures both the deviation from

the source (uncompressed video) and the extra bit cost so that adding extra bits is worth with

the resulting increased quality. The deviation from the source is usually measured as the mean

squared error (MSE) so that peak-signal-to-noise ratio (PSNR), a typical video quality metric,

is maximized.

The transmission part uses a channel coding and a modulation scheme to protect and transmit

the encoded bit stream. The channel coding typically comprises picking an optimal transmission

rate associated with a corresponding forward error correction code (FEC), such as block codes

and convolutional codes [64]. The transmission rate determines the number of bits that can be

transmitted within a given period of time. As the transmission rate decreases due to the lower

channel quality, the distortion due to source coding i.e., video compression, increases. In that

case, the video compression part can adjust its encoding parameters to transmission rate, which

is known as joint source and channel coding. However, the conventional design requires the

sender to predict the channel quality of the receiver to choose the optimal rate. This task is

easier in point-to-point communication in which the characteristics of the channel slowly vary.

However, it is more di�cult in multicast and broadcast scenarios in which di�erent users observe

di�erent channel qualities.

Moreover, the separation of video compression and error protection causes the conventional

digital-based video delivery su�er two downsides. First, the bitstream generated by the digital

encoder is highly sensitive to the channel errors. When the channel signal-to-noise ratio (SNR)

falls under a certain threshold, the received video quality abruptly drops since the decoder cannot

decode the unsynchronized bitstream due to the bit errors occurred in the fallible wireless

channel. This phenomenon is known as cli� e�ect. Besides, even when the channel SNR



32 Chapter �. Fundamental Theories and Techniques

3D-DCT

Raw 
Video

Chunk 
Division

Power 
Allocation

Channel

LLSE 
Decoder

Chunk 
Resemble3D-IDCT

Reconstructed 
Video

Hadamard
Transform

Figure 2.13: Framework of SoftCast.

(a) 4 frames GOP (b) 3D-DCT of GOP

Chunk

(c) Discarding zero-
valued chunks
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improves, the received video quality cannot improve accordingly since the loss in quantization

and entropy coding is unrecoverable at the receiver. Such unwavering video quality is termed

as leveling e�ect.

To overcome the cli� and leveling e�ects of digital-based video delivery, soft video delivery

schemes have been proposed in the literature.

2.4.2 Soft Video Delivery

The pioneering work among soft video delivery schemes is known as SoftCast [34]. In SoftCast

scheme, the sender directly transmits the linear-transformed coe�cients of a video signal over

the noisy wireless channel and allocates the transmission power to the transformed coe�cients

conforming to their energy for the error protection. As a result, SoftCast allows the receiver to

decode the video signal in accordance with the wireless channel quality, avoiding the cli�-e�ect

and leveling e�ect. Fig. 2.13 illustrates the framework of SoftCast.
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The design of SoftCast consists of the following components: compression, error protec-

tion, resilience to packet loss, and decoding. In compression, SoftCast compresses a video by

applying a three-dimensional decorrelation transform, such as the 3D-DCT to remove redun-

dant information within a frame as well as across frames, exploiting the spatial and temporal

correlation in a GoP. Fig. 2.14(a) and 2.14(b) show 4 frames GOP and its 3D-DCT. The gray

level in DCT frames represents the magnitude of the DCT coe�cient in that pixel location. It

is noted that most of the coe�cients are zero, i.e., black, value which has no information. One

can discard those coe�cients safely without a�ecting the quality. Since SoftCast only transmits

the non-zero DCT components, it is required to send the location of the discarded coe�cients

which incurs large amount of metadata. To reduce the amount of metadata, SoftCast clusters the

nearby DCT coe�cients into chunks as shown in Fig. 2.14(c). For the error protection, Soft-

Cast performs power allocation to the DCT coe�cients based on their magnitude. Considering

the chunk-based transmission, power allocation is carried out based on scaling the magnitude

of the chunks, i.e., sum of squares of DCT components in each chunk. Let ši 2 R be a power

allocated coe�cient of i-th chunk in a frame. Each DCT coe�cients in a chunk is scaled by a

power scaling factor gi for noise reduction:

ši = gi · ci, (2.6)

where ci 2 R is the DCT coe�cient i-th chunk. The near-optimal value gi to minimize the mean

square reconstruction error is obtained as follows [34]:

gi = �
�1/4
i

s
P

PNGOP

k �k
, (2.7)

where P denotes a total transmission power budget, �i is the power of i-th chunk, and NGOP is

the number of coe�cients in one GOP.

After power allocation, each chunk is assigned to packets. For resilience to packet loss,

SoftCast ensures that each packet has equal importance by transforming the varying-energy

chunks into equal-energy slices. SoftCast generates these slices by multiplying the chunks with

the Hadamard matrix to redistribute the energy [65]. After packetization, packets are transferred

to the physical layer and transmitted over the wireless links. In the decoding process, SoftCast
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estimates the original DCT coe�cients by using Linear Least Square Estimator (LLSE) with

the knowledge of statistics of DCT component sent as metadata, and statistics of the channel as

follows:

XLLSE = ⇤xCT (C⇤xCT + ⌃)�1Ŷ (2.8)

where XLLSE is the LLSE estimate of original DCT coe�cients; Ŷ is the received values; ⇤x is

a diagonal matrix whose diagonal elements are the variances, �i, of the individual chunks; C

is the encoding matrix and ⌃ is a diagonal matrix where its diagonal elements are the channel

noise power. After obtaining the DCT coe�cients in a GoP, the decoder reconstructs the original

frames by taking the inverse of the 3D-DCT.

2.5 Summary

This chapter briefly describes the fundamental theories and techniques applied in this disserta-

tion. In the three proposed schemes for crowdsourced multi-view video streaming, the techniques

of multi-view video encoding, ROI-based encoding and soft video delivery are leveraged.



Chapter 3

Tra�c Reduction for Crowdsourced
Multi-view Video Uploading

3.1 Introduction

The proliferation of the use of smartphones with high resolution cameras together with easily

accessible wireless networks have created the current trend of sharing and reporting video

information over the Internet. The sharing of their captured video streams of the event via

the Internet by people at a crowded event, such as a concert or a tournament, is no longer

uncommon. Crowdsourced video streaming is the delivery of the video streams originating

from such crowdsources [5] to remote viewers. Well-known service providers for crowdsourced

video streaming services include Meerket, Periscope, and YouNow [5, 6, 7, 8]. Crowdsourced

multi-view video streaming [16] is an extension of crowdsourced video streaming in which many

contributors viewing the same event provide di�erent viewpoints of the event at various angles,

allowing remote viewers to experience more immersive views of the scene. The applications

of such services are not limited to entertainment but can be extended to other areas, such as

surveillance and education.

However, simultaneous uploading of video streams from crowdsources is restricted by the

inherent limitations of wireless networks, such as the available bandwidth. Therefore, the means

of e�ciently uploading a large amount of video tra�c within the limited network resources is

one of the major issues in crowdsourced multi-view video streaming.

One of the simplest methods to upload crowdsourced video streams is that each contributor

independently uploads its captured streams. However, independent uploading leads to a large

. 35 .
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video tra�c volume because of the redundant transmission of highly correlated video streams

captured at the same event. So that the uploading will be e�cient, it is necessary to reduce

the amount of video tra�c. To achieve tra�c reduction, in this study, we considered the

di�erential encoding-based video uploading approach presented in [19] and [17]. Di�erential

encoding exploits inter-camera correlations to increase the coding e�ciency, thus reducing the

amount of video tra�c. To realize di�erential encoding-based tra�c reduction, one contributor

sends its own stream, while the other contributors overhear the transmitted stream and encode

their streams using the overheard one before transmission. However, three issues are involved

in rendering the di�erential encoding e�cient across the entire network of contributors, as

explained in the following paragraphs.

The first issue is the acquisition of the correlation characteristics among the di�erent video

streams. In di�erential encoding, coding e�ciency can be achieved only if the encoding and

overheard streams are highly correlated; otherwise, mobile devices’ resources will be wasted

without any benefit being gained. To avoid this waste, it is important to determine the degrees of

correlation among the contributors in order to perform di�erential encoding. To determine the

degrees of correlation, in the study reported in [17] the topological-based approach was used in

which the correlation between two cameras is decided by their positions, assuming that adjacent

cameras have the highest correlations. This assumption could be violated when the two cameras

in close vicinity capture the scene in di�erent orientations. In other studies described in [19]

and [18], overlapped field of view (FoV) based correlation estimation was adopted. However, all

the camera and geographical parameters are needed in advance for the estimation of overlapped

FoVs.

The second issue is the number of reference streams that is used in di�erential encoding

by each contributor. In conventional video encoding, such as H.264/AVC, the use of multiple

reference frames can increase the coding e�ciency and/or video quality as compared to the

use a single reference [66, 67], by allowing the encoder to choose the best reference from the

previously decoded frames. Crowdsourced contributors can take a similar advantage, because it

is likely that the video stream of a mobile camera will be correlated with that of more than one

camera. However, the use of multiple reference streams can be expensive in terms of energy
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usage and processing power, which are limited resources in mobile devices.

The more important factor is that the coding gain is not linear to the number of references.

Specifically, although an improvement can be achieved from additional references, the coding

gain achieved by multiple reference encoding is contributed mainly by the highest correlated

reference. This is because a video encoder usually searches the best matching points in terms of

a particular metric, such as mean squared error (MSE), in the two views (frames) for removing

the inter-view redundancy. It is most likely that the best matching points will be found in the

highest correlated reference. In this case, the e�ective number of reference streams that can

improve the coding gain at the lowest resource cost is desirable for each contributor.

The third issue is the transmission order of the contributors. In di�erential encoding-based

tra�c reduction, the amount by which the tra�c is reduced is calculated by the function of the

average tra�c of all the contributors in di�erential encoding-based and individual uploading.

In this case, the tra�c reduction of the entire network is a�ected by the number of di�erential

encoding opportunities in the network of contributors. Here, the transmission order becomes

significant for the tra�c reduction.

If the previously transmitted streams do not help a successive contributor to perform di�eren-

tial encoding, then the contributor will encode its video individually and upload independently.

In this case, the number of individually encoding contributors in the network of contributors will

increase. Although the later contributors can use the transmitted streams of these contributors

as multiple references, the increased number of individual contributors will a�ect the overall

tra�c reduction. This type of situation occurs in the random transmission of contributors. For

overall tra�c reduction, the scheduling of a transmission order that can produce the smallest

number of individually encoding contributors is necessary.

In this chapter, we present an e�ective scheme for tra�c reduction in crowdsourced multi-

view video streaming. Considering the three issues mentioned above, our scheme consists of

three parts: correlation estimation, reference selection, and transmission scheduling. To address

the first issue, we use content-aware correlation estimation. Specifically, the content features

of each video are extracted and compared with those of its neighbors to reveal the similarities

between contributors. To address the second issue, we use a reference selection method in
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which a contributor optionally decides whether to conduct single-reference or multiple-reference

encoding based on its correlated neighbors. For this purpose, we define two threshold values

for determining the types of encoding: �multi_ref for multiple-reference encoding and �single_ref

for single-reference encoding. If there are two or more correlated streams having a correlation

degree greater than �multi_ref , the contributor performs multiple reference encoding; otherwise,

it selects the highest correlated stream having a correlation degree greater than �single_ref for the

di�erential encoding with a single reference.

To envisage the di�erential encoding with multiple references, a contributor would have to

listen to all the transmissions of its neighbors and determine the correlation degrees between

its own and the overheard streams, which would consume the contributors’ resources, such as

batteries. To avoid this problem, we present a centralized decision-making scheme in which an

access point (AP) determines the encoding dependencies among the contributors based on their

degrees of correlation and schedules the contributors’ transmission order. For the transmission

order determination, the AP first constructs the correlated network of contributors considering

the reference selection criterion. Then, it traverses the resulting network in a depth-first-search

manner to generate the transmission order. The decision includes the transmission slots and

overhearing slots for each contributor. Finally, the AP broadcasts the transmission order to the

contributors to initiate their uploading of video streams.

We evaluated our proposed scheme in comparison with other reference schemes, including

our previously proposed methods [68], namely, Maximum_Correlation and Multiple_References.

The evaluation results show that the proposed scheme can reduce the amount of tra�c by up to

31% as compared to individual uploading. The proposed scheme outperforms Maximum_Correlation

and Multiple_References by 9% and 1%, respectively. In terms of the number of references,

the proposed scheme uses up to four references, whereas Multiple_References uses up to seven

references in a correlated network of eight contributors.

Our contribution is three-fold.

• First, our content-based correlation estimation overcomes the weakness of the overlapped

FoV- and topological-based approaches; for example, mobile cameras that are adjacent

but facing in di�erent directions would have no correlation.
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• Second, we consider di�erential encoding with multiple reference streams by exploiting all

the correlations among the contributors to obtain a higher compression gain. Moreover, our

proposed method shows a balance between the tra�c reduction and resource requirements

of the devices achieved by selecting the e�ective reference streams for di�erential encoding

without overloading the video encoding mechanism.

• Third, our scheduling algorithm determines the transmission slots and overhearing slots

for each contributor. Consequently, a contributor needs to listen only to its correlated

neighbors, avoiding wasting its device’s resources.

3.2 Proposed System

3.2.1 System Model and Assumptions

Fig. 5.1 shows the system model of our study. In this model, mobile cameras (contributors)

capture videos of a crowded event, such as a concert or a sports competition, from di�erent

viewpoints and upload them to a video collector, e.g., server, via a wireless channel. The

collector is located at the same location as the event and continuously requests the videos from

the contributors through a wireless AP. All the contributors can reach the collector via one-hop

communication and no communication errors between the collector and contributors occur.

The correlations between the contributors vary due to the variations of the cameras, their

positions and capturing angles, the resolution of the videos, and so on. In addition, the clock drifts

of di�erent mobile cameras can incur the temporal di�erences of captured timestamps of the

frames, which a�ects the correlation exploiting across the contributors [69]. Considering those

issues, he following assumptions are made so that the high correlation among the contributors

can be obtained. Contributors are closely located with each other, capturing the scene with the

same type of cameras. The video resolutions of the contributors are the same. All the cameras are

clock-synchronized via Global Position System (GPS)-based or Network-based synchronization

protocols such as Network Time Protocol (NTP), with the synchronization accuracy to a fraction

of the duration of a frame, for example within 1 milliseconds. Regarding the mobility, we assume

that the degree of correlation between the contributors is the same during each unit interval of
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Figure 3.1: System model (Ci=1,...3 = contributors).

video transmission, that is, one group of pictures (GOP).

3.2.2 Timing Diagram

Fig. 3.2 shows the timing diagram of our video uploading scheme. In this figure, it is assumed

that the videos from three contributors are uploaded to the video collector through the AP on a

GOP basis. For the first GOP, the uploading process consists of four phases, as described below.

Initialization (Init): First, the AP broadcasts the request message, Q, in order to obtain the

number of contributors located in its communication range. On receiving the message, the

contributors notify their existence to the AP with the response message, P, within the predefined

interval set by the AP in the request message. The response message contains the location of

each contributor, e.g., GPS data.

IBR Uploading (IBR-UPL): In this phase, the AP collects the content information of the cap-

tured video from each contributor with the request, R. The contributors upload the information

in the form of the IBR with the response, Rp. The generation of the IBR from the captured

video is described in Section 3.2.3. Using the IBR of each contributor, the AP estimates the

correlation degrees among the contributors.

Transmission Order Notification (TO): With the knowledge of the correlation degrees, the AP

determines the encoding dependencies among the contributors and schedules the transmission

order of the contributor. Then, it broadcasts the decision by means of a message, O, so that

the contributors can initiate the uploading of their captured videos. The message contains the
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Figure 3.2: Timing diagram of video uploading. (BK: Backo� time; yellow boxes: receiving
packets; blue boxes: transmission packets).

information of transmission slots and overhearing slots for each contributor.

Uploading Videos (Video-UPL): In this phase, the contributors start uploading video streams

according to the transmission order. According to the encoding dependencies, some contributors

encode their videos individually and upload them independently; otherwise, they conduct the

inter-camera di�erential encoding using the overheard video streams before uploading.

Considering the correlation degree variation due to the mobility of each contributor, the IBR

is refreshed for each GOP, and the AP reschedules the transmission order. The time duration

of 1GOP is upper-bounded to the frame rate of the uploading video streams and size of the

GOP. For example, to upload 1GOP (10 frames) of the video with the frame rate of 25 frames

per second (fps) in real-time, the upper-bound duration is 0.4 second, i.e., 400 milliseconds.

This time duration encompasses of three terms; 1) IBR calculation and uploading from each

contributor, 2) transmission order determination and notification, and 3) video uploading from

each contributor. After every n GOP videos from all contributors have been uploaded, the AP
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updates the number of contributors in its communication range by restarting the initialization.

3.2.3 Information-Bound Reference Calculation

In order to estimate the degrees of correlation among the contributors, the content features of

every first frame in 1 GOP of each contributor are extracted and compared with those of its

neighbors to reveal the similarities. The content features are reported from the contributors to

the AP in the form of the image IBR.

The IBR is an alternative to the links and content references that are the interaction means

utilized by users of today’s Internet. The links and references currently used are bound to a

protocol, a host, a filename, a specific data presentation format, encoding, and resolution [23,24].

According to [23], the links are fragile and users are usually concerned with the intent of the

reference link rather than with low-level representations. Therefore, a content reference should

be bound to the underlying information of the content.

Multimedia fingerprint algorithms can be used to generate the IBR because of their similar

characteristics, such as unique representation of the content. In our study, we used the scheme

described in [24]. An IBR is generated from an uncompressed frame, which is the first frame

taken from each GOP. An overview of the image IBR generation is shown in Fig. 3.3. First, the

first frame in each GOP is resized to the baseline resolution of 128 ⇥ 128 pixels. The resized

frame contains su�ciently detailed structures of the content. Next, the YCbCr representation

of the resized image is generated. We take the Y component from this representation and apply

the DCT operation to it to obtain the DCT coe�cients. From the DCT coe�cient matrix of Y,

we take the lower end 8 ⇥ 8 submatrix. Then, we find the median value of the coe�cients and

quantize each coe�cient to be 0 or 1 if they are higher or lower than the median to generate a

64-bit hash value. Given the IBRs, the AP computes the correlation coe�cient, ↵vi,vj , between

any two contributors using

↵vi,vj = 1 � di,j

dmax
, 0  ↵vi,vj  1 (3.1)

where dmax is the maximum Hamming distance and di,j is the Hamming distance of the image

IBR of contributors i and j. The correlation coe�cient between two contributors i and j is
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Figure 3.3: Generating image information-bound reference.

symmetric, that is, ↵vi,vj = ↵vj,vi . We assume that ↵vi,vj is zero for any two contributors that are

not neighbors of each other, i.e., there is no correlation between them. The neighborhood of

each of the contributors is determined by the AP according to their locations.

3.2.4 Reference Selection

For di�erential encoding with multiple references, we proposed two reference selection meth-

ods in our previous work [68], namely, Maximum_Correlation and Multiple_References. In

Maximum_Correlation, a contributor i selects one of its correlated neighbors j with the max-

imum correlation degree, argmax j (↵i, j ), as a reference. In Multiple_References, a contributor

listens to the transmitted streams from all of its correlated neighbors. Our evaluation results

showed that Multiple_References outperforms Maximum_Correlation in a densely correlated

network of contributors. However, encoding with Multiple_References demands more re-

sources, such as energy and processing power. These resources are not abundantly available in

consumer-grade mobile devices.

Therefore, we propose an e�cient reference selection method to achieve high tra�c reduction

so that fewer resources are required. In Multiple_References, a certain contributor di�erentially

encodes its video stream using reference streams with di�erent correlation degrees. In this case,

it is more likely that the achieved coding gain is contributed mainly by the highest correlated

reference, since the best matching points for exploiting the correlation between two frames are

more likely to be found in the most highly correlated frames. An additional coding gain can

be obtained from the references with similar correlation degrees. This means that a contributor

can improve its coding gain by using multiple references only if the references have higher
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or similar correlation degrees; otherwise, it should use only the single reference from the

contributor most highly correlated with it. Considering this, we define two threshold values,

namely, �multi_ref and �single_ref , to e�ectively select the references for a contributor. �multi_ref

is the threshold of the correlation degree that can improve the coding gain from encoding with

multiple references, whereas �single_ref is the minimum correlation degree that can benefit for

di�erential encoding. In this study, we set �single_ref to 0.625, because no coding gain results

from di�erential encoding [70]. For �multi_ref , we empirically selected the correlation degree

threshold of 0.875. If two or more streams having a correlation degree above �multi_ref are

available for a contributor, it takes multiple-reference encoding; otherwise, it selects the highest

correlated reference, the correlation degree of which is greater than �single_ref , for di�erential

encoding with a single reference, as in Maximum_Correlation.

3.2.5 Transmission Order Determination

The tra�c reduction of the entire network of contributors is a�ected by the number of di�erential

encoding opportunities in the network. If the overheard streams are not useful for di�erential

encoding, then the number of individually encoding contributors increases. Although these

contributors can use the overheard streams for di�erential encoding, the increasing number of

contributors using individual encoding will a�ect the overall tra�c reduction. Fig. 3.4 shows the

e�ect of the transmission order on the number of individual contributors. Fig. 3.4(a) shows an

example network of contributors in which the undirected arrows indicate the correlation among

them. It is assumed that contributors transmit their video streams in random order. In Fig. 3.4(b),

Contributor 2 starts transmission followed by Contributor 4. The directed arrows indicate the

usefulness of overheard streams for di�erential encoding at subsequent contributors. Contributor

4 cannot use the overheard stream from Contributor 2, because they have no correlation. In this

case, the number of individually encoding contributors is 2, i.e., Contributors 2 and 4, regardless

of the transmissions order of the rest of the contributors. However, if the contributors transmit

their video streams in the order shown in Fig. 3.4(c) (starting from Contributor 1, followed by 2,

and 3, etc.), the number of contributors that take individual encoding is only 1, i.e., Contributor

1. Considering this, our goal is to schedule the transmission order of the contributors in order
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to reduce the overall video tra�c. To achieve this, we designed an algorithm, described in

Algorithm 1, for transmission order determination. Table 3.1 lists the notations used in the

algorithm and their descriptions.

The algorithm consists of two operations: the construction of the correlation graph and the

construction of the dependency graph. First, the algorithm constructs an undirected graph, G =

(V , E), called a correlation graph, where V = {vi, i = 1, 2, ..., |V|} is the set of contributors and E

is the set of edges that shows the correlation among the contributors according to the reference

selection criterion, as described in Section 3.2.4. For each contributor vi, edges (vi, v j ), where

the value of j is above 1, are added to G if the correlation degrees between contributors vi and

v j are greater than the threshold value of �multi_ref; otherwise, an edge (vi, v j ) is added to G,

which has the highest correlation degree and the correlation degree is greater than �single_ref .

The resulting correlation graph is shown in Fig. 3.5(a).

Second, the algorithm constructs a directed graph, G0, based on the correlation graph to

determine the dependencies among the contributors and to generate the transmission order.

To construct graph G0, we traverse the correlation graph in the depth-first-search manner and

convert each undirected edge to a directed edge pointing to its neighbor nodes. This type of graph

construction can guarantee that all the nodes (except the first one) become the successors of one

or more predecessors in each connected component of the correlation graph. This increases

the number of di�erential encoding opportunities for the network of contributors. Graph G0

needs to be acyclic so that the transmission order contains no loop. In other words, edges

(vi, v j ) and (v j, vi) cannot exist in graph G0 at the same time. To avoid a loop, we ensure that

a directed edge from a node does not point to its predecessor by eliminating the predecessor

from the neighbor list of each successor node (line 26). The resulting dependency graph G0

is illustrated in Fig. 3.5(b), which shows the dependencies among the contributors. In other

words, the number of reference streams used by each contributor depends on the number of its

predecessors in graph G0. The transmission order of the contributors is generated as the order

of the nodes in the graph traversal (line 19).
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Figure 3.4: E�ect of random transmission order.

0.65 0.7

0.8
0.7

0.9

1
2

5

3
4

(a) Correlation graph.

1
2

5

3
4

(b) Dependency graph

Figure 3.5: Correlation graph and corresponding dependency graph.

3.2.6 Encoding

After determining the transmission order, the AP broadcasts the decision to the contributors

to initiate the uploading of video streams from the contributors. Before transmission, each

contributor encodes its video stream in accordance with its dependency on other contributors

in graph G0. Specifically, the source nodes in graph G0, which have no predecessor, encode

their streams individually, while the successor nodes overhear the transmissions from their

predecessors and take di�erential encoding. As an example, the encoding behaviors of three

correlated contributors are illustrated in Fig. 3.6. In Fig. 3.6(a), Contributor 1 is a source

node and encodes its video individually and becomes a predecessor of Contributors 2 and

3. Contributor 2 overhears the transmission of Contributor 1 and takes di�erential encoding

with one reference, as shown in Fig. 3.6(b). In Fig. 3.6(c), Contributor 3 encodes its video

di�erentially by taking the overheard streams from its two predecessors, Contributors 1 and 2.
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Table 3.1: Summary of notations

Notation Description
Vcontributor Set of contributors in the range of the AP

IBRvi IBR value of contributor i

Nvi Set of neighbors of contributor i

Order Transmission sequence of the contributors
VG,VG0 Set of nodes in the graphs G and G0

EG, EG0 Set of edges in the graphs G and G0

(vi, vj ) Edge between nodes i and j

↵vi,vj Correlation coe�cient between nodes i and j

V adj
vi Set of adjacent nodes of node i

cal_Correlation(IBRvi , IBRvj ) Calculate the correlation coe�cient between contributors i and j

find_MultiRefNodes(�multi_ref) Find the nodes whose correlation degrees is greater than �multi_ref

3.3 Evaluation

3.3.1 Setup

In order to quantify its performance, we investigated the behaviors of our proposed method in

di�erent scenarios of crowdsourced video uploading by means of simulations using MATLAB.

Metric: We evaluated the performances of the proposed and reference schemes in terms of

video tra�c and peak signal-to-noise ratio (PSNR). Video tra�c represents the number of bits

needed to transmit from all the contributors. The PSNR is defined as

PSNR = 10 log10
(2L � 1)2

"MSE
, (3.2)

where L is the number of bits used to encode pixel luminance (typically eight bits), and "MSE is
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Table 3.2: Deployments of eight videos

Sequence Deployment 1 Deployment 2

Vassar Cam. 0 to 7 Cam. 0, 1, and 2
Ballroom - Cam. 0, 1, and 2

Exit - Cam. 0 and 1

the mean squared error (MSE) between all pixels of the decoded and the original videos.

Video Sequence: We used videos from the standard multi-view video sequences known as

Vassar, Ballroom, and Exit [71] at 25 frames per second and in quarter common intermediate

format (QCIF) with 176 ⇥ 144 resolution.

Deployment of Contributors: The deployment of the contributors is considered to reflect some

uploading scenarios of crowdsourced multi-view video streaming. For example, at some point

of the event, all the contributors may capture the same viewpoint of the event such as goal area

in a soccer game, which causes the high correlation among the contributors. At other point, the

contributors may capture their interesting viewpoints di�erently. In this case, not all contributors

in the network would have correlation with each other. Considering such situations, we arrange

the video sequences in two di�erent fashions.

• Deployment 1 considers the first situation in which all the contributors capture the same

viewpoint, resulting in a high correlation among the contributors and creating a fully

connected network of contributors.

• Deployment 2 considers the second situation in which the contributors capture three dif-

ferent viewpoints, making three di�erent groups. Each group constitutes the contributors

with high similarities of captured videos, however, some contributors have no correlation.

The arrangement of the video sequences in the two deployments is expressed in Table 3.2.

In addition, the graph structures of the deployments and the correlation degree between the

contributors are illustrated in Fig. 3.7. The length of 1 GOP is set to 10 frames. Finally, we ran

the simulations using 10 di�erent quantization parameters from 20 to 30.

Reference Schemes: We compared the video tra�c and PSNR of our proposed scheme with

those of five other schemes described as follows.
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1 2 3 4 5 6 7 8
1 - 0.938 0.813 0.781 0.750 0.688 0.688 0.625
2 0.938 - 0.875 0.844 0.813 0.719 0.719 0.656
3 0.813 0.875 - 0.969 0.906 0.813 0.813 0.750
4 0.781 0.813 0.906 - 0.938 0.844 0.844 0.781
5 0.750 0.813 0.906 0.938 - 0.906 0.875 0.844
6 0.688 0.719 0.813 0.844 0.906 - 0.969 0.938
7 0.688 0.719 0.813 0.844 0.875 0.969 - 0.938
8 0.625 0.656 0.750 0.781 0.844 0.938 0.938 -

1
3

2

8

6

4

7

5

(a) Deployment 1

7

6
2 3

4

5

1

8

1 2 3 4 5 6 7 8
1 - 0.938 0.813 - - - - -
2 0.938 - 0.875 - - - - -
3 0.813 0.875 - - - - - -
4 - - - - 0.813 0.688 - -
5 - - - 0.813 - 0.75 - -
6 - - - 0.688 0.75 - - -
7 - - - - - - - 0.844
8 - - - - - - 0.844 -

(b) Deployment 2

Figure 3.7: Graph structures of network of contributors.

1. Individual_Uploading : Individual_Uploading is the baseline method for uploading crowd-

sourced videos, in which each contributor encodes its captured stream individually and

uploads it to the AP.

2. Max_Correlation : Max_Correlation is one of our previously proposed methods. This

method conducts di�erential encoding considering only the maximum correlation degree

between the contributors to construct the correlation network.

3. Multiple_References : Multiple_References is also one of our previously proposed schemes;

it exploits all the correlations among the contributors and conducts di�erential encoding

using the multiple reference streams.

4. Random_Order : In this scheme, the AP does not control the transmission order of the

contributors; instead, the contributors transmit their streams in random order. The con-

tributors conduct di�erential encoding by overhearing without considering the degrees of

correlations between their own and overheard streams.
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Figure 3.8: Video tra�c at di�erent quantization parameters.

5. MVS/MC : MVS/MC [17] supports the transmission order control based on topological

information to realize bidirectional di�erential coding using the two overheard streams

from its adjacent contributors.

6. Proposed : This is our proposed scheme, as described in Section 5.2.
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Figure 3.9: Video quality vs. tra�c.

3.3.2 Results and Analysis

Video Tra�c

Fig. 3.8 shows video tra�c at di�erent quantization parameters for two deployments. In both

deployments, all other reference schemes achieve a tra�c level lower than Individual_Uploading,

showing the benefit of di�erential encoding for tra�c reduction.

In Deployment 1, the proposed scheme reduces the video tra�c by 31% as compared to

Individual_Uploading. In addition, the performance of the proposed scheme is superior to

that of Max_Correlation and Multiple_References by 9% and 1%, respectively. In terms of
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selecting the correlated reference, the proposed scheme achieves a 14% greater tra�c reduction

than MVS/MC. In addition, Random_Order has more video tra�c than the proposed scheme,

irrespective of the quantization parameters. This proves the e�ectiveness of the scheduling

algorithm for transmission order determination among the contributors.

However, in Deployment 2, the tra�c reduction between the proposed scheme and Individual_Uploading

decreases to 21%. In each disconnected component, there is one source node. The number

of source nodes monotonically increases with the number of disconnected components in the

network. A large number of source nodes causes a large number of individually encoding con-

tributors, and thus, low tra�c reduction. Moreover, the performances of Max_Correlation and

Multiple_References are similar to that of the proposed one scheme. This can be explained by

the fact that the numbers of references used in Max_Correlation and the proposed scheme be-

come the same. Although Multiple_References uses many references for di�erential encoding,

the coding gain is not significantly high. However, the proposed scheme still achieves a tra�c

reduction that is larger than that of MVS/MC and Random_Order by 9% and 7%, respectively.

To summarize, our proposed scheme outperforms all the reference schemes in terms of tra�c

reduction, regardless of contributor’s network.

Video Quality

Fig. 3.9 shows the video quality of the reference schemes as a function of the video tra�c. In both

deployments, it can be seen that utilizing the inter-camera correlations for compression achieves a

higher video quality. In deployment 1, the proposed scheme improves the PSNR performance by

2.7 dB as compared to Individual_Uploading at an average video tra�c of 9500 bits. Moreover,

at the same video tra�c, the proposed system achieves a quality improvement that is greater

than that of Max_Correlation and Multiple_References by 0.9 dB and 0.1 dB, respectively. In

addition, the proposed scheme outperforms MVS/MC and Random_Order by 1.5 dB and 1 dB,

respectively.

In Deployment 2, the proposed scheme improves the video quality as compared to Individual_Uploading

by 2.2 dB at a tra�c volume of 12000 bits. The same quality improvement is obtained by

Max_Correlation and Multiple_References. However, the proposed scheme improves the video
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Figure 3.10: Tra�c reduction in network of 16 contributors.

quality as compared to MVS/MC and Random_Order by 0.9 dB and 1 dB, respectively.

3.4 Discussion

3.4.1 E�ect of Large Number of Contributors

The evaluations described above were based on deployments for eight video sequences. As

shown in Fig. 3.8(b) and Fig. 3.9(b), the performances of Max_Correlation and the proposed

method are the same in Deployment 2, because they use the same number of references for dif-

ferential encoding because of the limited number of contributors. To examine the performance

di�erence of two methods in a disconnected network of contributors in more detail, we con-

sidered their behavior in Deployment 2 with a large number of contributors. For this purpose,

we increased the number of contributors by adding 8 new videos to Deployment 2 to create a

network of 16 contributors with three disconnected components. For the arrangement of the

videos, we used six videos from Vassar, six videos from Ballroom, and four videos from Exit.

The results show that the tra�c reduction of the proposed scheme increases from 21% to 27%

and a 5% performance improvement over Max_Correlation is achieved, as shown in Fig. 3.10.
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3.4.2 Number of References

In terms of tra�c reduction, the performances of the proposed and Multiple_References schemes

are not significantly di�erent in Deployments 1 and 2. Specifically, the proposed scheme out-

performs Multiple_References by only 1% in terms of tra�c reduction in both deployments.

However, the main improvement of the proposed scheme over Multiple_References is that a

smaller number of references is required for tra�c reduction. This advantage saves the re-

sources of the contributors’ devices, such as batteries. Fig. 3.11 shows the maximum number

of references used for di�erential encoding by the two schemes in the deployments of 8 and 16

contributors. As shown in the figure, Multiple_References uses a large number of references

when the number of contributors increases. However, the proposed scheme selects an e�ective

number of references based on the correlation degrees among the contributors. Specifically,

Multiple_References uses up to seven references, whereas the proposed scheme uses up to four

references in Deployment 1. On the other hand, in Deployment 2 with eight contributors,

Multiple_References and the proposed schemes use two references and one reference, respec-

tively. In Deployment 2 with 16 contributors, Multiple_References uses five references, whereas

the proposed scheme uses only three references.
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3.4.3 E�ect of Correlation Degrees in the Network

According to our results, Deployment 1 achieves a better performance in terms of tra�c reduction

than Deployment 2. In other words, the tra�c reduction is dependent on the structure of the

network, which is determined by the correlation degrees among the contributors. In this case, it

is desirable to evaluate the manner in which the correlation degrees among the contributors a�ect

the tra�c reduction. However, because we used the standard multi-view video sequences for our

evaluation, it is di�cult to construct a deployment with arbitrary correlation degrees between

the contributors. In this section, we describe the evaluation of the performance of our approach

using di�erent video contents in order to observe the e�ect of di�erent degrees of correlation

among the contributors on tra�c reduction. For this purpose, we used eight videos from the

Exit sequence to create Deployment 3. The resulting graph is a neither completely connected

nor disconnected graph, as shown in Fig. 3.12. In Deployment 3, our approach achieves an up

to 11% tra�c reduction as compared to Individual_Uploading, as shown in Fig. 3.13.

The amount of tra�c reduction in Deployment 3 is less than that in Deployments 1 and 2.

To explain this result, we investigated three attributes of each deployment that are derived from

the correlation degrees among the contributors. These attributes are 1) the number of edges

in the deployment, 2) the average correlation degree of the edges, and 3) the number of edges

with a high correlation degree, that is, greater than 0.9. Table 3.3 shows the attributes and

corresponding tra�c reduction of each deployment. Deployment 1, which achieves the highest

tra�c reduction, has 28 edges, an average correlation degree of 3.29, and 8 highly correlated

edges. In Deployment 2, the number of edges and the average correlation degree are significantly

lower than those in Deployment 1, and thus, Deployment 2 achieves a lower tra�c reduction

than Deployment 1. However, Deployment 3 achieves the lowest tra�c reduction among the

three deployments. Although Deployment 3 has a larger number of edges than Deployment 2,

it has a lower average correlation degree than Deployment 2 and there are no highly correlated

edges.

In conclusion, a large number of high correlated edges in a contributor’s network can result

in a greater tra�c reduction, regardless of the number of edges in the network.
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1 2 3 4 5 6 7 8
1 - 0.844 0.688 0.625 - - - -
2 0.844 - 0.813 0.719 - - - -
3 0.688 0.813 - 0.875 0.688 - - -
4 0.625 0.719 0.875 - 0.781 - - -
5 - - 0.688 0.781 - 0.688 0.75 -
6 - - - - 0.688 - 0.719 -
7 - - - - 0.75 0.719 - 0.656
8 - - - - - - 0.656 -

3
1

2

8

6

4

7

5

Figure 3.12: Graph structure of Deployment 3.
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Figure 3.13: Tra�c reduction in Deployment 3.

3.4.4 Overhead of Content Uploading and Transmission Order Determi-
nation

In our proposed scheme, we use a centralized approach for correlation estimation among the

contributors for every GOP transmission. Specifically, the access point collects the content

features from each contributor in the form of IBR. Each contributor calculates IBR of the first

frame of every GOP and sends it the AP. Our reason of using the IBR for content uploading is

two folds. First, the generation of IBR is simple. Each contributor takes only 10 milliseconds

for IBR calculation (Measurement is made on Ubuntu 16.04 LTS 64-bit operating system with

Intel Xenon (R) silver 4180 CPU and 64 GB memory). Second, each contributor needs to send

a small number of bits, i.e., 64 bits to the AP to estimate the correlation degrees among the

video streams. Even with the larger number of contributors, for example, 50 contributors, the

number of bits is insignificant compared to the actual video tra�c, i.e., approximately 3 Kbits
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Table 3.3: Attributes of the deployments

Deployment # of
Edges

Avg. Correlation
Degree

# of Edges with
↵vi,vj > 0.9

Tra�c
Reduction

1 28 3.29 8 31%
2 7 0.83 1 21%
3 12 0.74 0 11%

are needed to transmit to the AP.

Regarding the overhead of transmission order determination, it is assumed that the AP has

high computational capacity and thus, the time duration for transmission order determination

and notification of decision can be limited to certain time interval, for example, 100 milliseconds.

3.4.5 Discussion on Required Bandwidth

The required bandwidth of the proposed scheme is conditional on and the number of contributors,

the resolution of the video, and video frame rate. Suppose that there are three contributors

in the range of the access point, simultaneously uploading the video streams of QCIF format,

i.e., 176 ⇥ 144 resolution with the frame rate of 25 fps. To upload the video streams from all

the contributors with the GOP size of 10 frames in real time, the uploading time of one GOP

must be within 400 milliseconds. From the simulation results, the proposed scheme requires

each contributor to transmit an average number of approximately 100 Kbits for one GOP to

achieve the video PSNR (peak signal-to-noise ratio) of 40 dB which is illustrated in Fig. 3.9

(Fig. 3.9 in Chapter 3). It implies that for three contributors, approximately 300 Kbits needs to

transmit to the AP. Limiting the overheads of IBR calculation and transmission order decision

as approximately 100 milliseconds, the uploading of 300 Kbits requires the minimum data rate

(bandwidth) of 1 Mbps to satisfy the 1GOP uploading time of 400 milliseconds. (Here, the

uploading time of 200 bits for IBR is assumed to be negligible with the considered data rate.

It is also assumed the AP has the high computational capacity to conduct the scheduling of

transmission of the contributors less than 100 milliseconds.)

The number of users that can access to an AP is conditional on the available bandwidth

provided by the AP, the video resolution, the frame rate, and target video quality. The higher

capacity wireless technologies such as 802.11 a/g/n provide the usable data rates of approximately



58 Chapter �. Tra�c Reduction for Crowdsourced Multi-view Video Uploading

24 Mbps (theoretically 54 Mbps). Given the total available bandwidth of 24 Mbps and the

uploading duration of 400 milliseconds for 1 GOP, an AP can serve the simultaneous video

uploading from up to 72 contributors at the target PSNR of 40 dB with the QCIF resolution.

(Noted that the proposed scheme requires each contributor to transmit an average number of

approximately 100 Kbits for one GOP to achieve the video PSNR of 40 dB. Overhead is limited

to be 100 milliseconds.)

For the video uploading scenario mentioned above, the data rate of 1 Mbps can su�ciently

serve the simultaneous video uploading from three contributors to achieve the high video quality

of (PSNR) of 40 dB. In a limited capacity wireless network such as 802.11b with 1 Mbps, the

background tra�c will incur the delay to the delivery of the videos. On the other hand, 802.11b

wireless network theoretically provides the maximum data rate of 11 Mbps. In such networks,

there can be a space for background tra�c to coexist with the crowdsourced video tra�c.

3.5 Summary

In this chapter, we proposed a novel solution for uploading crowdsourced multi-view videos from

mobile video contributors to a video collector. To achieve a large reduction in the volume of video

tra�c from the contributors together with an improvement in the video quality, our proposed

scheme considers correlation-based di�erential encoding with multiple reference streams. By

exploiting the inter-camera correlations among the captured streams, our scheme achieves a

significant amount of tra�c reduction, as well as quality improvement. The evaluation results

show that our approach can contribute to a tra�c reduction of up to 31% with a quality

improvement of 2.7 dB as compared to the existing individual uploading schemes in a network

of eight contributors.
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Algorithm 1 Transmission Order Determination
Input: Vcontributor, IBRvi, Nvi,8vi 2 Vcontributor
Output: Order

Step 1: Constructing the Correlation Graph, G

1: VG  Vcontributor
2: while |Vcontributor | , 0 do
3: vi  v 2 Vcontributor
4: for each vj 2 Nvi do
5: ↵vi,vj  cal_Correlation(IBRvi, IBRvj )
6: Nvj  Nvj \ {vi}
7: end for
8: Vmulti_ref  find_MultiRefNodes(�multi_ref)
9: if |Vmulti_ref | > 1 then

10: EG  (vi, v j ) 8v j 2 Vmulti_ref
11: else if argmax j (↵i, j ) > �single_ref vj 2 Nvi then
12: EG  (vi, v j )
13: end if
14: Vcontributor  Vcontributor \ {vi}
15: end while

Step 2: Constructing the Dependency Graph, G0

16: VG0  VG
17: vi  v 2 VG
18: while |VG | , 0 do
19: Order Order [ {vi}
20: for each v j 2 V adj

vi do
21: if vj < Pvi then
22: EG0  (vi, v j )
23: end if
24: end for
25: VG  VG \ {vi}
26: V adj

vj  V adj
vj \ {vi}

27: if |V adj
vi | > 0 then

28: vi  v 2 V adj
vi

29: else
30: vi  v 2 VG
31: end if
32: end while
33: return Order





Chapter 4

Soft Video Uploading for Low-Power
Crowdsourced Multi-view Video
Streaming

4.1 Introduction

Video streaming from a crowded event by its attendees, i.e., crowdsourced video contributors,

with the powerful smartphones’ cameras has been a popular trend nowadays. The most famous

Internet platforms, which provide crowdsourced video streaming services, are Facebook Live,

Youtube, Ustream, and YouNow [5,6,7,8,9]. In such video streaming, the contributors provide

videos with multiple viewpoints of the event captured at di�erent perspectives. The integration

of those videos into a multi-view video allows the remote viewers to enjoy the immersive

viewing of the event as if they were at the event. Such kind of video streaming is known as

crowdsourced multi-view video streaming [16] and useful for the wide areas of applications

such as entertainment, surveillance, social sharing, and education.

Conventionally, a digital video codec such as H.264/AVC consists of complex operations

such as the motion estimation (ME), mode decision for intra- and inter-frame encoding, quan-

tization, entropy encoding, and channel coding. Besides, in crowdsourced multi-view video

streaming, the videos captured at the same event are highly correlated, resulting in the redundant

transmissions. To avoid this issue, the correlations among the video streams should be exploited

to reduce the amount of tra�c by using the disparity estimation in di�erential encoding [72,17].

This can be achieved by using Multi-view Video Coding (MVC) extension of H.264/AVC. De-

spite the reduced tra�c, MVC would consume more power due to the increase in the complexity

. 61 .
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for video encoding. It means that conventional video codec may not be e�cient for video up-

loading from the battery-constrained mobile devices. Although power-e�cient video encoding

schemes have been proposed [73] to reduce the complexity and power consumption in video

encoding, the improvement comes with video quality degradation.

Besides the video encoding, video transmission is another major cause of battery usage of the

mobile devices. Generally, power consumption for the video delivery is commensurate with the

amount of data (source data rate) to be transmitted [74]. In addition, wireless channel conditions

also a�ect the energy usage when the wireless channel is noisy and unstable in quality. A video

encoder needs to adjust its source coding rate with the wireless channel conditions, and some-

times retransmit noise-distorted packets. These operations lead to additional energy drainage

from the devices. At a low channel signal-to-noise ratio (SNR), digital video transmission may

require low order modulation scheme such as BPSK to reduce the symbol error rate, resulting in

a larger number of transmission symbols. According to the power consumption model of video

transmission [74], the transmission power consumption is linear to the number of transmission

symbols. Thus, the digital transmission requires more transmission power in lower channel

SNRs.

In addition, the digitally encoded bitstream is highly vulnerable to bit errors, the received

video quality drops significantly when the channel SNR falls under a certain threshold. This

phenomenon is referred to as cli� e�ect. Moreover, even when the channel quality improves, the

video quality remains constant due to the quantization error, known as constant quality e�ect.

The goal of our study is to realize high-quality and low-power crowdsourced multi-view

video uploading system. To achieve this goal, we were inspired by the recent studies on soft

video delivery [34,35] such as SoftCast. In soft video delivery, a video source does not care about

the wireless channel quality at the receivers. Specifically, the sender transforms pixel values

of video frames into frequency components using three dimensional discrete consine transform

(3D-DCT), and then directly maps the frequency components to transmission symbols, known

as near-analog modulation. By skipping digital video encoding and transmission, soft video

delivery can significantly decrease power consumption in video encoding as well as video

transmission. Moreover, since the received video quality is proportional to channel quality of
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the receiver, it achieves graceful quality improvement avoiding the cli� and constant quality

e�ects.

However, to apply conventional soft video delivery to crowdsourced multi-view video stream-

ing system, we need to solve the following issues. First, conventional schemes allow contributors

to directly upload the captured videos to the AP and thus it su�ers from low video quality when

channel quality of a given contributor to the AP is unstable. Although one of the typical solutions

is to exploit stable redirect path for video uploading, the conventional schemes on soft video

delivery has not been designed for redirect transmission. Consequently, conventional schemes

may su�er video quality degradation when the channel quality di�erence between the direct and

redirect paths increases. Second, since the videos captured at the same event may have high

correlation in multi-view video contents, resulting in the redundant transmissions across the

contributors. Since 3D-DCT operation in the conventional soft video delivery does not exploit

such inter-camera correlations, the conventional scheme may su�er low video quality due to the

redundant transmissions.

In this study, we propose a high-quality and low-power uploading scheme for crowdsourced

multi-view videos. Considering the above mentioned issues of the conventional digital-based

and soft video delivery schemes, our approach considers cluster-based redirect video uploading

system which combines the four approaches of network clustering, delegate selection, soft video

delivery, and four-dimensional DCT (4D-DCT). Specifically, contributors are clustered based on

their locations and contributor with the lowest power consumption rate and closest to the AP is

selected as the delegate to make redirect path between each contributor to the AP. The members

of the cluster deliver their videos to the delegate using 3D-DCT and near-analog modulation.

And the delegate performs 4D-DCT operation to exploit the correlation across the received

video streams and its own and delivers the video streams to the AP. By exploiting channel

quality di�erence between the direct and redirect paths and content correlations between the

contributors, the proposed scheme can realize the high-quality and lower-power crowdsourced

multi-view video uploading system.

Evaluation results show that the proposed scheme outperforms the conventional SoftCast

scheme when the channel quality di�erence between the direct and redirect paths increases. In
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Figure 4.1: System model. (Cn: contributors)

addition, the proposed scheme achieves better video quality at the di�erent wireless channel

qualities and reduced transmission rates compared to the digital-based video uploading schemes.

Moreover, the proposed scheme realizes low power encoding and transmission across the con-

tributors compared with the digital-based schemes because the total uploading time spent by the

proposed scheme is lower than that of the digital-based video uploading schemes.

4.2 Proposed Scheme

4.2.1 Overview

Fig. 4.1 depicts our considered system model for crowdsourced multi-view video uploading

in which multiple contributors capture the videos of a crowded event. We assume that each

contributor uses the same camera and the cameras are calibrated and synchronized before

uploading. We left what adaptation techniques can be used across mobile contributors as a

future work. As an example, the existing study on camera integration [75] discussed calibration

and synchronization across mobile devices. The captured streams are uploaded to a cloud server

via the wireless AP which is located at the event location. All the contributors are resided in

the transmission range of the AP. In this study, we show the e�ectiveness of soft video delivery

in crowdsourced multi-view video uploading by exploiting the channel quality di�erences and

content correlations between the contributors.

The video transmissions from the contributors are conducted in the basis of group of picture

(GOP). Fig. 4.2 shows a timing diagram of our proposed video uploading scheme. As shown in

the figure, each transmission of 1 GOP consists of three phases: initialization, network clustering
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Figure 4.2: Timing diagram of proposed video uploading system

and video uploading.

1) Initialization (Init): In this phase, the AP broadcasts a hello message, H , to the contributors

located in its communication range. Upon receiving the message, each contributor computes its

approximate distance to the AP based on the received signal strength. This distance value will

be utilized as one of the parameters in network clustering process.

2) Network Clustering: The clustering of the contributors can be accomplished by either

centralized or distributed manner as in traditional wireless sensor network [76]. In central-

ized approach, the AP is responsible for the network clustering by collecting the necessary

information from the contributors. The distributed approach can be implemented by message

exchange between the contributors. In this study, we consider distributed clustering approach

as in [77]. The detailed descriptions of network clustering of the contributors are provided in

subsection 4.2.2.

3) Video Uploading: In this phase, each member of a cluster encodes its captured video stream

and sends it to the delegate. After collecting the video streams from the members, the delegate

encodes all the video streams including its own stream by using 4D-DCT to exploit the inter-

camera correlations among the streams. Finally, the delegate modulates the resulting DCT
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coe�cients by using near-analog modulation, and uploads the video streams to the AP.

4.2.2 Network Clustering

The clustering of the contributors includes two main operations: the delegate selection and the

cluster formation.

Delegate Selection

After the initialization phase, the delegate selection process is initiated.

Delegate Claim (DC): At the start of the delegate selection process, contributor i broadcasts a

claim message, C (id, !i), sets its timer ⌧i and listens to the claim messages from its neighbors,

where !i indicates the weight of the contributor i, which is obtained by the Eq. (4.1):

!i =
Eresidual(i)
Einitial(i)

⇤ 1
dAP(i)

(4.1)

where Eresidual and Einitial are current and initial energy of contributor i, and dAP(i) is the distance

between contributor i and the AP. Considering the energy-e�ciency, the Eq. (4.1) includes two

terms; the first term is the energy consumption rate of the contributor and the second term is its

distance from the AP.

Delegate Announcement (DA): When the timer expires, each contributor checks the weight

values of its neighbors and the contributor with the lowest !i, i.e., argmini (!i), becomes a

delegate. After winning the selection process, the delegate broadcasts a message, A (id), to

announce its status.

Cluster formation

In this process, other contributors join the delegate to form a cluster.

Member Join (MJ): On receiving the announcement from the delegate, the contributor j sends

a member-join message, J (id), to the delegate located in its nearest vicinity, completing the

cluster formation process.

The network clustering is performed for every GOP considering the energy balancing and

mobility of the contributors. Both centralized and distributed clustering come with their re-

spective communication and computation costs [76]. Since this study mainly focuses on the
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Figure 4.3: Four-dimensional decorrelation.

e�ectiveness of the redirect video uploading with soft video delivery in a clustered network of

contributors, impacts of the clustering cost and the more sophisticated clustering algorithm for

crowdsourced multi-view video uploading will be left as a future work.

4.2.3 Video Uploading

Encoding

Each member of the cluster performs 3D-DCT operation on its captured video to remove intra-

frame and inter-frame correlations before sending to the delegate. On the other hand, the

delegate uses 4D-DCT operation, which decorrelates pixel values across the video frames as

well as across the video streams, to exploit the correlations in inter-camera domain for more

energy compaction as illustrated in Fig. 4.3.

Transmission

After multi-dimensional DCT, i.e., 3D-DCT/4D-DCT, the resulting coe�cients in frequency

domain are power allocated for transmission. Let ši 2 R be a power allocated symbol of i-th

analog-modulated symbol. Each DCT coe�cient is scaled by a power scaling factor gi for noise

reduction:

ši = gi · ci, (4.2)
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where ci 2 R is the i-th DCT coe�cient. The near-optimal value gi to minimize the mean square

reconstruction error is obtained as follows [34]:

gi = �
�1/4
i

s
P

PNGOP

k �k
, (4.3)

where P denotes a total transmission power budget, �i is the power of i-th coe�cient, and NGOP

is the number of coe�cients in one GOP. Finally, a transmission symbol xi 2 C is created by

superposing the two power allocated symbols ši and š j as follows:

xi = ši + |š j, (4.4)

where | =
p
�1 denotes the imaginary unit. After power allocation, each transmission symbol

in GOP is mapped on to I (in-phase) and Q (quadrature-phase) of the transmitted signal, and

delivered to the AP over a wireless link.

Decoding

At the AP, the decoder receives the symbol which can be modeled as follows:

yi = xi + ni, (4.5)

where yi 2 C is the i-th received symbol and ni 2 C is an e�ective noise, commonly assumed as

additive white Gaussian noise (AWGN) with a variance of �2 (which is already normalized by

wireless channel strength in the present of fading attenuation). The decoder uses minimum mean-

square error (MMSE) filter [34] to extract the DCT coe�cients from the I and Q components of

the received symbols:

x̂i =
gi�i

g2
i �

2
i + �

2
·<(yi), x̂ j =

g j� j

g2
j �

2
j + �

2
· =(yi). (4.6)

Finally, the decoder takes the inverse multi-dimensional DCT to obtain the original pixels in

each video frame.
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Analog Compression for Limited Resource

In the above mentioned designs, it is assumed that the contributor has enough resources to

transmit all the coe�cients in the spectral domain over the wireless medium. However, if the

available wireless and/or device’s resources are restricted for video uploading, the contributor

needs to selectively transmit the coe�cients to fit the amount of resources. In such cases,

our scheme conducts a sort of data compression even for soft video delivery. Specifically,

the contributor sorts the coe�cients in the descending order of their energy and picks the

higher-energy coe�cients to fill the resource. The decoder regards the discarded lower-energy

coe�cients as zero. Even though some coe�cients are discarded to reduce the amount of data,

the receiver can still achieve a graceful video quality until reaching the distortion limit due to

the compression.

4.3 Performance Evaluation

We conduct the performance comparison of our proposed video uploading scheme, conventional

SoftCast, and digital-based uploading schemes through simulations implemented in MATLAB.

4.3.1 E�ect of Cluster-based Redirect Uploading

Firstly, we evaluate the performance of the proposed and conventional SoftCast schemes to

discuss an e�ect of the cluster-based redirect uploading on crowdsourced multi-view videos.

Since conventional SoftCast is not designed to exploit correlation between captured videos, we

investigate the performance of our proposed scheme when the captured videos have correla-

tion/no correlation for fair comparison. For this purpose, we set up the evaluation settings as

follows:

Reference Schemes:

1. SoftCast: In this scheme, each contributor in the cluster individually uploads the captured

videos to the AP using 3D-DCT operation.

2. Proposed: This is the proposed analog-based scheme as explained in Section 5.2.
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Figure 4.4: Deployment of cameras and channels between the contributors and the AP.

Metric: We measure video quality in terms of average peak signal-to-noise ratio (PSNR) which

is defined as follows:

PSNR = 10 log10
(2L � 1)2

"MSE
, (4.7)

where L is the number of bits used to encode pixel luminance (typically eight bits), and "MSE is

mean square error (MSE) between all pixels of the decoded and the original videos.

Video Sequence: We use video frames from the standard multi-view video sequences known as

ballroom, ballroons, and exit provided by MERL [71]. Each video sequence consists of videos

from 8 cameras. Videos are in quarter common intermediate format (QCIF) with 176 ⇥ 144

resolution. The frame rate is 30 frames per second. GOP size of 10 frames is set for all

transmission schemes.

Network Deployments: We consider a simple network of three contributors to access the base-

line performance of cluster-based redirect video uploading scheme. We regard three successively

aligned cameras of 1, 2, and 3 from ballroom sequence as correlated contributors’ videos. On

the other hand, we use camera 1 from ballroom, ballroons and exit, respectively, to regard the

contributors without correlation. An arrangement of the cameras and communication channels

between contributors and the AP are illustrated in Fig. 4.4. In the figure, we regard channel

SNR between the delegate and the AP as ↵, between the member and the AP as �, and between

the member and delegate as �, respectively.

Fig. 4.5 and Fig. 4.6 plots the received video quality of the reference schemes with correlated

and non-correlated contributors as a function of channel quality di�erence between delegate to
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Figure 4.5: Video quality of the proposed and conventional SoftCast schemes with correlated
contributors as a function of channel quality di�erence between direct and redirect paths.

AP and contributor to AP channels, respectively. Moveover, we show the e�ect of exploiting

the correlation at the delegate in Fig. 4.5 by skipping the 4D-DCT operation. For the sake of

clarity, we assume that selected contributor in SoftCast experiences the same channel quality

between the AP. We investigate two SNR values of ↵, i.e., 20 and 25 dB under the intra-cluster

channel quality of 20 dB and 25 dB, respectively, for the proposed scheme.

As shown in Figs 4.5(a) and 4.5(b), the proposed scheme improves the video quality up

to 1 dB by exploiting the correlation between the correlated contributors. However, SoftCast

scheme su�ers quality degradation when the channel quality di�erence between delegate to AP
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and contributor to AP channels increases. Since SoftCast scheme does not consider delegate

selection and network clustering, the channel quality between the selected contributor and the

AP may significantly change compared with that of delegate to AP channel. For example,

SoftCast scheme may select three random contributors with unstable channel quality to upload

the captured videos to the AP through a certain contention-based medium access protocol.

On the other hand, by selecting the contributor with stable channel quality as a delegate and

using the higher quality member to delegate path, which is leveraged by network clustering and

delegate selection, our proposed scheme can take advantage of such channel quality di�erence

between the direct and redirect paths to improve the video quality. From Figs. 4.6(a) and 4.6(b),

we can see that the proposed scheme with non-correlated contributors also achieves the similar

performance with that with correlated contributors, showing the e�ectiveness of cluster-based

redirect uploading scheme compared to the conventional SoftCast.

4.3.2 Video Quality in Di�erent Channel Quality

In this section, we evaluate the video quality of our proposed scheme and conventional digital-

based schemes in unstable wireless environment under the following evaluation settings.

Reference Schemes:

1. Digital-based: In this scheme, each contributor in the cluster individually uploads the

captured videos to the AP using conventional digital video encoding, i.e., H.264/AVC.

2. Proposed: This is our proposed scheme as explained in section 5.2.

Network Deployments: We consider two types of network deployments.

• As deployment 1, we consider the same deployment as described in subsection 4.3.1.

• As deployment 2, we arrange a network with eight contributors to access the performance

of the reference schemes in a larger network. For this purpose, we use all the cameras in

ballroom sequence.

Wireless Configurations: The transmitted symbols of the reference schemes are impaired by an

additive white Gaussian noise (AWGN) channel. For the channel quality between the delegate
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and the AP, we use channel SNRs from 0 dB to 25 dB. For intra-cluster communication, we

consider three channel SNRs of 15, 20 and 25 dB. For the error protection in digital-based

uploading, we use rate 1/2 and 1/4 convolutional codes with a constraint length of 8. For

the modulation, we use binary phase-shift keying (BPSK), quadrature PSK (QPSK), 16-ary

quadrature-amplitude modulation (16-QAM) formats. We set the channel symbol rate for

the proposed scheme to the half of the number of DCT coe�cients to be transmitted in one

second. For example, in deployment 1, the delegate needs to transmit approximately 11.4 (=

176 ⇥ 144 ⇥ 30 ⇥ 3 ⇥ 1
2 ) Msymbols/s for three contributors. To adjust the channel symbol rate

with digital-based schemes, we control the quantization parameters in digital encoder.

Fig. 4.7 plots the PSNR performance of the reference schemes as a function of wireless

channel SNRs between the delegate and the AP in two deployments. In deployment 1, as shown

in Fig. 4.7(a), all the digital-based schemes su�er from a cli� e�ect, i.e., the video quality drops

drastically at a certain channel SNR. For example, the cli�s appear 2 dB in BPSK 1/4, 4 dB

in BPSK 1/2, 7 dB in QPSK 1/2, 13 dB in 16QAM 1/2 schemes, respectively. In addition,

the digital-based schemes receive the constant video quality in higher channel SNRs. This is

because the quantization error introduced in the quantization process cannot be recovered at the

receiver side. On the other hand, the proposed scheme prevents the cli� e�ect and the constant

video quality by skipping the quantization and entropy coding, and achieves a graceful quality

improvement with the improvement of wireless channel quality between the delegate and the AP

regardless of the intra-cluster channel quality. However, at the intra-cluster channel quality of 15,

the proposed scheme su�ers video quality degradation of 1.1 dB compared to the 16QAM 1/2

when the channel quality between the delegate and the AP is between 13 dB and 15 dB. It can be

explained that at a higher channel SNR, the digital-based scheme with higher-order modulation

can achieve the better video quality than the proposed scheme with lower intra-cluster channel.

Even this, the proposed scheme with the intra-cluster channel quality of 15 still outperforms

the 16QAM 1/2 scheme when the channel quality between the delegate and the AP is above

15 dB and below 13 dB by overcoming the cli� e�ect and the constant quality e�ect because of

the graceful quality improvement of analog video transmission. It shows the robustness of the

proposed scheme in unstable intra-cluster and cluster-AP wireless channel environments.
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Deployment 2 shows the same tendency as deployment 1. Specifically, as shown in

Fig. 4.7(b), the proposed scheme with higher intra-cluster channel quality still outperforms

the digital-based schemes, showing the e�ectiveness of our proposed scheme in a large scale

network, i.e., its scalability.

4.3.3 Transmission Power Consumption

Here, we compare the number of required transmission symbols per GOP as a function of

received PSNRs considering intra-cluster communication.

Fig. 4.8 plots the number of transmitted symbols at di�erent received PSNRs of the reference

schemes in two deployments. In this figure, we set the wireless channel quality between the

delegate and the AP to 18 dB. In deployment 1, the proposed scheme needs to transmit the

lowest number of symbols compared to all digital-based schemes regardless of the intra-cluster

channel quality. For example, at the received PSNR of 38.5 dB, the proposed scheme at

intra-cluster channel quality of 25 dB needs to transmit approximately 0.13 Msymbols/GOP,

saving 2.7 Msymbols per GOP compared to BPSK 1/4 scheme as shown in Fig. 4.8(a). More

specifically, the digital-based schemes of 16QAM 1/2, QPSK 1/2, BPSK 1/2, and BPSK 1/4

require approximately 0.3, 0.6, 1.2, and 2.5 Msymbols/GOP, respectively.

From Fig. 4.8(b), we can see the same tendency in deployment 2. Specifically, at the received

PSNR of 38.5 dB, the proposed scheme at intra-cluster channel quality of 25 dB transmits

approximately 0.4 Msymbols/GOP while the digital-based schemes of 16QAM 1/2, QPSK

1/2, BPSK 1/2, and BPSK 1/4 transmit approximately 0.9, 1.8, 3.6, and 7.2 Msymbols/GOP,

respectively. Since the digital-based schemes require more transmission symbols to achieve

a certain video quality, it means that digital-based schemes will consume more transmission

power compared to the proposed scheme irrespective of the intra-cluster channel. We can see

that the number of required transmission symbols in higher-order modulation scheme such as

16QAM 1/2 approaches to the proposed scheme for all considered intra-cluster channel quality.

Although the digital-based schemes can use the denser modulation schemes such as 64QAM to

reduce the number of transmission symbols, the transmitted symbols will become much sensitive

to the channel noise, and thus it will su�er from cli� e�ect in lower SNR regimes as shown in
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Fig. 4.7.

4.3.4 Video Quality in Reduced Transmission Rate

Due to the limited power availability, a crowdsourced contributor may intend to reduce its

transmission rate for power saving. On the other hand, reducing the transmission rate may cause

the received video quality degradation at the receiver due to discarding the source data. In this

section, we evaluate the video quality of reference schemes at the reduced transmission rate. For

comparison, we define cuto� rate as a metric. At the cuto� rate of 0.1, 10% of DCT coe�cients

will be discarded in the proposed system. For digital-based schemes, we adjust the quantization

parameters to make the number of transmission symbols equal with the proposed scheme as

much as possible for fair comparison.

Fig. 4.9 plots the video quality of the reference schemes as a function of cuto� rate in

deployment 1 at the channel SNRs between the delegate and the AP of 4 dB and 15 dB,

respectively. It is noted that we only show the video PSNRs greater than the 20 dB in these

figures. From Figs. 4.9(a) and 4.9(b), we can see that the proposed scheme performs well with

the acceptable video quality at both channel SNR values regardless of the intra-cluster channel

quality. For example, the proposed scheme with respective intra-cluster channel quality achieves

28.8 dB at the channel SNR between the delegate and the AP of 4 dB and 31 dB at 15 dB, at the

cuto� rate of 0.9, i.e., 90% of DCT coe�cients are discarded in which all of the digital-based

schemes su�er from low video quality.

In addition, at the wireless channel quality of 4 dB, all the digital-based schemes su�er

the severe quality degradation regardless of the cuto� rate. To be specific, only BPSK 1/4

scheme achieves the PSNR of 22 dB at the cuto� rate of 0.1, i.e., when 90% of coe�cients

are transmitted. On the other hand, the proposed scheme keeps almost the same video PSNR

from the cuto� rate of 0 to 0.5, i.e., 50% compression of DCT coe�cients irrespective of the

intra-cluster channel quality. The reason for this result is that maintaining higher-energy DCT

coe�cients can compensate the video quality degradation due to compression.

In Fig. 4.9(b), the digital-based schemes improve the video quality with lower cuto� rates
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whereas the proposed scheme still outperforms the digital-based schemes except at the intra-

cluster channel quality of 15 dB. At the cuto� rate of 0, 16QAM1/2 scheme slightly outperforms

the proposed scheme with intra-cluster channel quality of 15 dB by 0.4 dB. However, the proposed

scheme still achieves the similar video quality with the video quality degradation of 0.04 dB

at the cuto� rate of 0.1 regardless of the intra-cluster channel quality whereas all the digital-

based schemes su�er video quality degradation. From these results, we can conclude that the

proposed scheme can safely reduce the transmission symbols for power saving purpose up to

90%, especially in higher channel quality. We noted that in the deployment 2, the proposed

scheme achieves the similar performance even in a large network size.

4.3.5 Discussion on Power Saving

In this section, we discuss the power saving performance of the proposed scheme in comparison

with the digital-based scheme. We assume that power consumption of the video uploading

process is proportional to the total time spent of the uploading process. Specifically we define

a mixed model of encoding time and transmission time in the digital-based scheme and in the

proposed scheme as follows:

Tdigital = N
D
R
+ NTdig_encode, (4.8)

Tproposed = (N � 1)
D
R
+ (N � 1)Tana_encode +

D
R
+ ✓ · Tana_encode + Toverhead, (4.9)

where Tdigital and Tproposed represent the total encoding and transmission time of the conventional

digital-based uploading scheme and proposed scheme, respectively. In addition, N is the number

of contributors, D is the number of transmission symbols, R is an available channel symbol

rate, and ✓ represents increase rate of encoding time from 3D-DCT to 4D-DCT, respectively.

Moreover, Toverhead is the additional time required in the proposed scheme for network clustering,

synchronization across contributors, delegate selection and so on. We consider the number of

transmission symbols in the conventional digital-based scheme and the proposed scheme is the
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Table 4.1: Encoding time in each GOP

Encoding Scheme Encoding time (seconds)
3D-DCT 0.1

H.264/AVC 32.4
4D-DCT 0.1

same and the available channel symbol rate for each contributor is the same. We note that the

proposed scheme yields better video quality when the number of transmission symbols in the

digital and the proposed scheme is the same as shown in Fig. 4.8.

According to the equations, we first evaluate the encoding time of H.264/AVC used in digital-

based schemes and 3D-DCT and 4D-DCT performed in the proposed scheme. For the digital

encoding, we use open-source H.264-based MATLAB video encoder [78]. For the analog

encoding, we use multi-dimensional DCT (MDCT) provided by [79]. The specifications of the

operating environment are Ubuntu 16.04 LTS 64-bit operating system with Intel Xeon (R) silver

4108 CPU and 64 GB memory.

From the viewpoint of software video codec, the encoding time varies with the compression

rate, i.e., encoding parameters such as quantization parameters (QP), number of used reference

frames, and ME search range. In particular, QP has a significant impact on the video quality.

Due to this, we measure the encoding times at di�erent QP values from 1 to 51, i.e., highest

to lowest video qualities, and take an average of encoding times across all the quantization

parameters for the comparison.

Table 4.1 shows that the encoding times of the proposed and digital-based schemes. From

the table, Tdig_encode and Tana_encode are 32.4 and 0.1, respectively. In addition, the value of ✓ is

the 1 since the encoding time of 3D-DCT and 4D-DCT is almost the same. We consider D of

1000 KB, R of 100 KBps, and N of 3.

Fig. 4.10 shows the total uploading time of the proposed scheme and the digital-based

schemes as a function of Toverhead. From the figure, we can see that the proposed scheme spends

less time for the uploading process than the digital-based scheme when Toverhead is less than 90

seconds. It means that the proposed scheme can save more power consumption compared to the

digital-based video uploading scheme below the overhead of 90 seconds. We note that Toverhead
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is conditional on the number of contributors in the cluster, the frequency of additional operations

during the uploading process and so on. Here, with the smaller number of contributors within

the cluster, for example, three contributors, Toverhead is expected to be significantly lower than 90

seconds. In addition, when the contributors are in low mobility for a certain GOP, Toverhead may

tend to zero because synchronization and network clustering are not neccessarily conducted.

4.4 Discussion on Non-correlated Contributors

Even when the proposed scheme realizes careful adaptation across the mobile contributors, each

contributor may see di�erent angles and they may have no correlations across the contributors.

In this section, we investigate the performance of our proposed scheme in such situation. For

this purpose, we use three cameras taken each from three di�erent video sequences, namely,

ballroom, balloons and exit for evaluations.

Fig. 4.11 shows the PSNR performance of our proposed scheme and the conventional digital-

based uploading schemes. The proposed scheme still performs well compared to the digital-

based video uploading schemes even when there is no correlation between the contributors. We

note that we have discussed the performance of the proposed scheme and conventional SoftCast

scheme in Fig 4.5. We can see that the proposed scheme with non-correlated contributors yields

better video quality compared with conventional SoftCast as the channel quality di�erence

between delegate to AP and contributors to AP channels increases.

4.5 Summary

In this chapter, we propose a high-quality and low-power video uploading scheme for crowd-

sourced multi-view video streaming from synchronized crowdsourced contributors. The pro-

posed scheme adopts cluster-based redirect video uploading with soft video delivery to exploit

channel quality di�erences and content correlations between the contributors, and to reduce

power consumption in video encoding and video transmission. Evaluation results show that

the proposed scheme outperforms the conventional SoftCast and digital-based video uploading

schemes in terms of video quality and power consumption.
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Figure 4.6: Video quality of the proposed and conventional SoftCast schemes with non-
correlated contributors as a function of channel quality di�erence between direct and redirect
paths.
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Figure 4.8: Number of transmission symbols required by the proposed and conventional digital-
based schemes as a function of received PSNRs.
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Figure 4.9: Video quality of the proposed and conventional digital-based schemes as a function
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Chapter 5

ROI-based Crowdsourced Multi-view
Video Uploading

5.1 Introduction

Thanks to the advancement of wireless technology and the powerful smartphones with high

resolution cameras, video streaming of an event captured in di�erent angles by its attendees, i.e.,

crowdsourced video contributors, is very popular nowadays [5,6]. Such video streams uploaded

by the crowdsourced contributors are integrated into multi-view videos at a server and streamed

to the remote viewers as the crowdsourced multi-view video streaming services [16]. Such kinds

of services allow the viewers to experience the immersive viewing of the event as if they were

in the event. On the other hand, simultaneous uploading of video streams from the contributors

is restricted by the inherent limitations of the wireless network such as available bandwidth.

Therefore, how to e�ciently upload a large amount of video tra�c within the limited network

resources is one of the major issues in crowdsourced multi-view video streaming.

To conduct the e�cient uploading of crowdsourced multi-view videos, tra�c reduction is

paramount important. To this end, we have proposed a tra�c reduction method for crowdsourced

multi-view video uploading [80], which employs correlation-based di�erential encoding with

multiple references, exploiting the inter-camera correlations among the contributors. In dif-

ferential encoding, one contributor sends its own stream while the other contributors overhear

the transmitted stream and encode their streams using overheard one before transmission. By

exploiting the inter-camera redundancy at the overhearing contributors, our scheme achieved

better coding gain and higher tra�c reduction. To realize the di�erential encoding across the

. 85 .
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whole network of contributors, we consider three operations: correlation estimation, reference

selection, and transmission order determination. First, we calculate the correlation degrees

among the contributors based on the content features of the captured video by each contributor.

Second, we select the number of references for di�erential encoding based on the correlation

degrees of the contributors. Third, we determine the transmission order of the contributors so

that the di�erential encoding opportunities in the network increase. Finally, each contributor en-

codes their video streams according to their dependency in the network and uploads the streams

to a server through a wireless access point (AP). From the evaluation results, our proposed

scheme achieved the tra�c reduction of up to 31% along with the video quality improvement of

up to 2.7 dB.

On the one hand, our method of tra�c reduction only exploits the statistical redundancy [81]

between the captured videos of the contributors that can be explored by statistical methods.

On the other hand, visual perception of HVS turns out the perceptual redundancy in viewing

a particular scene which is redundant information that cannot be perceived by human eyes.

Many studies show that HVS is more sensitive to the spatial resolution of the currently gazing

regions of the scene, and the sensitivity becomes decreased to the peripheral regions. This

regional sensitivity of HVS can be utilized for improving the compression e�ciency in video

encoding maintaining the improved perceptual quality in the region-of-interest (ROI) at the cost

of decreased quality in low-interest regions.

Many studies on ROI-based video compression have been proposed in the literature [82,

83, 84]. However, those studies are meant for the single-view video coding. Zhang et al. [85]

proposed ROI-based video coding scheme for stereo multi-view videos by using the depth

information to extensively improve data compression e�ciency by exploiting redundancies in

depth perception. Their work includes two main operations: depth perception ROI (DP-ROI)

extraction and DP-ROI based multi-view video coding (RMVC) with optimized bit allocation.

For the sake of reducing complexity in temporal and inter-view ROI extraction, ROI regions are

extracted from the first frame of the first view, and it is tracked down subsequently in frame-by-

frame and/or view-by-view basis. The problem of such inter-view ROI tracking is that error is

propagated due to the long tracking length in the successive views. To avoid this problem, they



�.�. Introduction 87

select the center view as the reference view for extracting ROI regions.

In this chapter, we present a fundamental discussion for crowdsourced multi-view video

uploading by taking advantage of visual perception of the HVS. Specifically, we extend our

previously proposed tra�c reduction scheme [80] using a depth perceptual ROI-based multi-view

video encoding as in [85]. Our goal is to achieve further tra�c reduction with improved video

quality in ROI regions at the cost of reduced quality in non-ROI regions. To extend our approach

with ROI-based multi-view video encoding, we apply ROI extraction and tracking method

proposed in [62]. Since we already employ di�erential encoding at the subsequent transmissions

for exploiting inter-view redundancy, we can utilize (track) the already-extracted ROI from one

contributor in the successive ones to reduce the complexity required for the extraction. On the

other hand, the selection of reference view for ROI extraction in crowdsourced environment is

not straightforward as in pre-deployed multi-view video environment. Specifically, the selection

of the most central view of the scene is not so easy since it needs to know the relative positions

of all the contributors in the scene. In addition, the correlations between the contributors

cannot always be determined by their positions [80]. To solve this problem, we use the average

correlation coe�cient, which is derived from the correlation degrees among the contributors.

The entire video uploading process includes three main operations: correlation-estimation,

ROI-reference selection, and ROI-based di�erential multi-view video encoding. Firstly, the

correlation coe�cients among the contributors are estimated using the content features of the

captured videos. Secondly, we calculate the average correlation coe�cient of each contributor

using the values of correlation degrees and select the contributor with the largest average cor-

relation coe�cient as ROI-reference, i.e., a reference contributor for ROI extraction. Finally,

the ROI-reference contributor extracts ROI from the first frame of the captured video, conducts

ROI-based single-view video encoding in which the extracted ROIs are tracked at the successive

frames, and uploads the stream to the server. The subsequent contributors overhear the trans-

mission of the ROI-reference and conduct ROI-based multi-view video encoding with the prior

ROI information before uploading.
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5.2 Proposed System

5.2.1 Overview

Fig. 5.1 shows a model of our study. There are multiple mobile cameras (contributors) capturing

videos from di�erent angles at a certain crowded event such as a tournament. The contributors

upload their captured videos to a video collector, that is a server, over wireless links. The

collector is located at the event location and continuously gathers the videos from the contributors

through a wireless AP. It is assumed that all the contributors can reach the collector in one-hop

communication and uploading is error-free. Videos are uploaded in the group of pictures (GOP)

basis.

For the first GOP, the uploading process consists of the four phases as described as fol-

lows: initialization, content features uploading, reference selection and notification, and video

encoding and uploading.

Initialization: First of all, the AP broadcasts the request, Q, to obtain the number of contributors

existed in its communication range. On receiving the request, each contributor notifies its

position, e.g., GPS parameters, to the AP with the response, P.

Content Features Uploading: In this phase, the AP collects content features of the captured

video from each contributor with the request, R. Each contributor uploads the features in-

formation in the form of Information Bound Reference (IBR) with the response, Rp. Using

IBRs of multiple contributors, the AP calculates the correlation coe�cients between any two

contributors.

Reference Selection and Notification: With the knowledge of the correlation coe�cients

among the contributors, firstly, the AP constructs the correlation network of contributors. Next,

the AP calculates the average correlation coe�cient for each contributor and selects the contrib-

utor with the largest coe�cient as the ROI-reference. Finally, the AP notifies the decision to all

the contributors by means of a request, O.

Video Encoding and Uploading: In this phase, the contributors upload their videos according

to the decision made by the AP. Firstly, the ROI-reference contributor extracts ROI and conducts

ROI-based single-view video encoding and uploads the video stream to the AP. Subsequently,
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Figure 5.1: System model (Ci=1,...3 = contributors).

other contributors in the network overhear the transmission of the reference contributor and

perform ROI-based multi-view video encoding before uploading.

Considering the correlation variation due to the mobility of each contributor, the IBR is

refreshed for each GOP and the ROI-reference is reselected. After all the GOPs of captured

videos from all contributors are uploaded, the AP updates the number of contributors in its

communication range by restarting the initialization phase.

5.2.2 Correlation Estimation

In order to estimate the degree of correlation among the contributors, the content features of

every first frame in each GOP of each contributor are extracted and compared with those of its

neighbors to reveal the similarities. The content features are reported from the contributors to

the AP in the form of image IBR.

5.2.3 ROI-Reference Selection

For the ROI-reference selection, the AP firstly constructs the correlation graph G = (V , E),

where V = {vi, i = 1, 2, ..., |V|} is the set of contributors and E is the set of edges which shows

the correlation among the contributors. For each contributor vi, an edge (vi, v j ) is added to

G if ↵vi,vj is greater than the predefined correlation threshold of 0.625, because of no coding

gain from di�erential encoding. For the sake of simplicity, in this work, we consider a fully

connected network of contributors in which all the contributors in the network are correlated to

each other, that is the correlation graph is complete. After constructing the correlated network,
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Figure 5.3: Prediction structure for di�erential encoding.

the AP selects the ROI-reference contributor using the Eq. (5.1):

ṽi = argmax
i=1,...,V

H'i, (5.1)

where H'i is the average correlation coe�cient of contributor vi, which is obtained by the Eq.

(5.2).

H'i =
1

V � 1

X

i, j

↵vi,vj (5.2)

5.2.4 Proposed System

After selecting the ROI-reference contributor, the AP informs the decision to the contributors.

The decision initiates the uploading of videos from the contributors. Firstly, the ROI-reference
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contributor conducts ROI extraction, ROI-based single-view video encoding and uploads the

stream to the AP. Subsequently, the rest of the contributors overhear the ROI-reference’s trans-

mission and perform ROI tracking using the extracted ROI and di�erential encoding using it as

reference. The ROI extraction at the reference contributor and ROI tracking in temporal and

inter-view domains are depicted in Fig. 5.2, where yellow circle indicates ROI-reference and

blue circle represents other contributors. The white rectangle represents the first frame of a GOP

at the reference contributor that extracts ROI in its own, the gray rectangle represents a frame

that extracts ROI by using the ROI of previous frame and the black rectangle represents a frame

that extracts ROI by using the extracted ROI from reference contributor. The directed arrows

represent the tracking directions. The detailed description of ROI extraction and tracking is

described in [62]. In addition, the prediction structure for the di�erential encoding is illustrated

in Fig. 5.3.

In HVS, ROI regions are more visually sensitive to distortion than non-ROI regions. To

achieve better quality in ROI regions, many bits should be allocated to those regions while fewer

bits should be allocated to non-ROI regions. For this purpose, di�erent quantization parameters

(QP) are used for ROI regions and non-ROI regions.

5.3 Evaluation

5.3.1 Settings

We evaluate the performance of our ROI-based di�erential crowdsourced multi-view video

uploading scheme through the simulations implemented in MATLAB.

Metric: We evaluate the performance of our scheme in terms of video tra�c and video quality.

To consider the human visual perspective, we use peak signal-to-noise ratio within ROI region

(PSNRroi) and non-ROI region (PSNRnonroi) which are defined as follows:

PSNR

roi

= 10 log10
(2L � 1)2

"MSEroi

(5.3)

PSNR

nonroi

= 10 log10
(2L � 1)2

"MSEnonroi

(5.4)
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Table 5.1: Average correlattion of Vassar (5 cameras)

Cam. 1 Cam. 2 Cam. 3 Cam. 4 Cam. 5H'i 0.82 0.87 0.89 0.88 0.85

where L is the number of bits used to encode pixel luminance (typically eight bits), and "MSE is

the mean squared error (MSE) between all pixels of the decoded and the original videos.

Video Sequence: We use video frames of 5 cameras from Vassar [71] in quarter common

intermediate (QCIF) format. The resolution of each video is 174 ⇥ 144. The frame rate is 25

frames per second. The length of each GOP is 10 frames.

ROI-Reference: We select camera 3 as ROI-reference since it has the highest correlation

coe�cient as shown in Table 5.1. We define ROI region as a polygon R(c, r) where c and r

are the pixel column and row indices of a given image frame. For the simulation, we set a

rectangular ROI region with c = (58, 116) and r = (48, 96).

Reference Schemes:

1. Individual: This method is the baseline method for uploading the crowdsourced videos in

which each contributor individually encodes its captured stream and uploads it to the AP.

2. Uniform quality: This method conducts di�erential encoding by overhearing the video

stream from ROI-reference contributor with the uniform visual quality.

3. ROI-based: This method conducts di�erential encoding with di�erent visual quality in

ROI regions and non-ROI regions.

QP Values: For the uniform quality encoding, we use a QP of 20. For the ROI-based encoding,

we use QPs of 20 and 28 for ROI regions and non-ROI regions, respectively.

5.3.2 Results

Table 5.2 summarizes the results of three reference schemes. It can be seen that ROI-based

scheme achieves 57% of tra�c reduction compared to individual uploading and 45% of tra�c

reduction compared to uniform quality uploading. On the other hand, the video quality of non-

ROI regions in the ROI-based scheme is 4.82 dB lower than that of uniform quality uploading.

However, in view of human visual perception, the quality degradation is hardly noticeable.
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Table 5.2: Simulation results

Avg. Tra�c (bits) PSNRroi (dB) PSNRnonroi (dB)
Individual 26342 43.83 43.6

Uniform Quality 23172 44.11 43.85
ROI-based 11211 44.11 39.03

5.4 Summary

In this chapter, we present a fundamental discussion on crowdsourced multi-view video upload-

ing. We extend our previously proposed di�erential encoding-based video uploading scheme

to the ROI-based multi-view video encoding for achieving further tra�c reduction. The results

show that the ROI-based approach achieves 57% of tra�c reduction compared to an existing

scheme under the same visual quality in ROI regions and unnoticeable visual degradation in

low-interest regions. In our future work, we will investigate the e�ects of network structure and

correlation degrees between the contributors.





Chapter 6

Conclusion

6.1 Overall Summary

Chapter 1 summarizes the background and main contributions of this dissertation. We charac-

terize the features of the crowdsourced multi-view video streaming system and its challenges

for realization. The main issues on the practicability of crowdsourced video streaming are large

amount of redundant tra�c over bandwidth-limited wireless network and power-restriction of

mobile devices. Considering these issues, we propose three video uploading schemes with the

goal of providing the tra�c-reduced, high-quality and low-power multi-view video uploading

from crowdsourced video contributors.

Chapter 2 describes fundamental theories and techniques applied in this dissertation. First,

we briefly discuss the procedures involved in single-view video encoding and multi-view video

encoding. In addition, we shortly describe the region-of-interest based video encoding and its

extension on multi-view video. Moreover, we present fundamental discussion of conventional

digital-based video delivery and analog-based video delivery.

In Chapter 3, we describe our proposed content-aware video uploading scheme for crowd-

sourced multi-view video streaming with the goal of reducing the video tra�c from crowd-

sourced contributors. Our evaluation results show that the proposed scheme achieves a tra�c

reduction of up to 31% with a quality improvement of up to 2.7 dB in the connected network of

contributors.

In Chapter 4, we present cluster-based redirect video uploading scheme for high-quality

and low-power crowdsourced multi-view video streaming. Evaluation results show that our

. 95 .
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proposed scheme outperforms the conventional soft video delivery scheme when the channel

quality di�erence between the direct and redirect paths increases. In addition, our scheme

outperforms the digital- based video uploading schemes in terms of both video quality and

power consumption.

In Chapter 5, we describe ROI-based crowdsourced multi-view video uploading scheme,

which an extended version of our proposed scheme in Chapter 2. We consider that fact that

the human visual system has more sensitive spatial resolution to the currently gazing region-

of-interest (ROI) of the scene, and the sensitivity becomes decreased to the peripheral regions,

creating the considerable perceptual redundancy. Evaluation results show that our approach

achieves 57% of tra�c reduction under the same visual quality in ROI regions and unnoticeable

visual degradation in low-interest regions.

6.2 Future Works

The most important assumption of the proposed schemes in this dissertation is all the crowd-

sourcing contributors are synchronized before the video uploading. While it is technically

feasible, synchronizing the image/video capturing times across mobile phones’ cameras is a

challenging task as it is required that the contributors be synchronized to an accuracy that is

the fraction of the duration of a frame [69]. The study in [75] also discusses the opportunities

and challenges on the calibration and synchronization across mobile devices. Although Global

Position System (GPS)-based or Network-based synchronization protocols such as Network

Time Protocol (NTP) can achieve the synchronization to a high accuracy, for example, within 1

milliseconds, network latency and camera setup latency incurred by variablity of cameras may

cause temporal di�erences between captured frames of the di�erent mobile cameras [69]. The

misalignment of captured frames can a�ect the correlation among the video streams, and thus,

the performance of the proposed schemes. SocialSync [69] develops a subframe-based syn-

chronization protocol for capturing images simultaneously using a smartphone camera network

by estimating frame capture timestamps to within milliseconds accuracy. Such protocol could

be applied to crowdsourced environment, on the other hand, its performance and impact on the

proposed schemes are needed to evaluate, which will be considered in a future work.
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In addition, the proposed schemes in this dissertation consider only one access point, which

handles all the crowdsourcing video tra�c in its transmission range. For the scalability to a large

number of contributors, the proposed schemes can be extended to the multiple access points

case. The management of the contributors across the multiple access points is left as a future

work.
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