
Title Research on Detecting Malicious Nodes in
Wireless Sensor Networks

Author(s) 高, 博奇

Citation 大阪大学, 2020, 博士論文

Version Type VoR

URL https://doi.org/10.18910/76654

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Research on Detecting Malicious Nodes in

Wireless Sensor Networks

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2020

Boqi GAO

i

List of Publications

1. Journal Paper

1. B. Gao, T. Maekawa, D. Amagata, and T. Hara. Robust Malicious Node Detection

with Ensemble Learning in MANETs. IPSJ Journal, 60(2):501–513, 2019.

2. B. Gao, T. Maekawa, D. Amagata, and T. Hara. Detecting Reinforcement Learning-

based Grey Hole Attack in Mobile Wireless Sensor Networks. IEICE Trans. on

Communications, E103-B(5):OO–OO, 2020.

2. International Conference Paper

1. B. Gao, T. Maekawa D. Amagata, and T. Hara. Environment-Adaptive IPMali-

cious Node Detection in MANETs with Ensemble Learning. In Proc. of Int’l

Conf. on Distributed Computing Systems (ICDCS), pages 556–566, 2018.

3. Domestic Conference Paper (with peer-review)

1. B. Gao, D. Amagata, T. Maekawa, and T. Hara. Detecting Energy Depriving

Malicious Nodes by Unsupervised Learning in Energy Harvesting Cooperative

Wireless Sensor Networks. In Proc. of IPSJ DPS Workshop, pages 97–104, 2019.

4. Domestic Conference Paper

1. B. Gao, T. Maekawa, D. Amagata, and T. Hara. Malicious Node Detection with

Machine Learning in MANETs. In Proc. of DEIM Forum, online, 2017.

2. B. Gao, D. Amagata, T. Maekawa, and T. Hara. Detecting Malicious Nodes with

Learning Ability in Mobile Wireless Sensor Networks. In Proc. of DEIM Forum,

online, 2019.

iii

Abstract

With the rapid advances in wireless communication and digital electronics, wireless

sensor networks (WSNs) have demonstrated their feasibility for monitoring events and

environments. For example, WSNs can be deployed to monitor air conditions, water

flows, and temperatures. People can obtain useful information from the gathered data

from WSNs. A WSN is comprised of solely of sensor nodes, and no special infrastruc-

ture is required. Due to such characteristics, malicious nodes can easily join a WSN.

That is, WSNs are inherently vulnerable to malicious nodes. The malicious nodes ex-

ecute inappropriate actions (e.g., dropping packets and sending redundant packets) to

destruct the network reliability and functionality, which triggers event losses. Even

worse, such malicious nodes may lead to severe risks, particularly for real-time and

safety-critical monitoring WSN applications, such as extreme weather monitoring, wa-

ter quality monitoring, and forest fire alarming. Therefore, methods to detect malicious

nodes in WSNs are strongly required.

Recently, with the development of machine learning technologies, many studies

have proposed machine learning-based approaches to detect malicious nodes in WSNs.

Generally, machine learning-based approaches train classifiers, which are based on ob-

servation of behaviors of nodes, to classify the category of nodes. However, existing

methods ignore three main challenges. (i) Since general machine learning methods rely

on training data, trained classifiers do not work well in test environments that are differ-

ent from training environments. (ii) From the perspective of malicious nodes, malicious

nodes can also learn from the detection methods to avoid being detected. Therefore, a

fixed classifier cannot detect malicious nodes with learning ability. (iii) Energy harvest-

ing cooperative (EHC) schemes are studied a lot recently. Nodes are allowed to share

energy in EHC-WSNs, and some malicious nodes utilize this scheme to deprive energy

from other nodes. Since the residual energy storage is private data, which could be fab-

ricated by malicious nodes, regular machine learning-based methods do not work well

because learning from fabricated data is meaningless.

In this thesis, we focus on detecting malicious nodes in WSNs with machine learning-

based methods, and tackle the above-mentioned challenges. This thesis consists of five

chapters. We introduce the research background and issues for detecting malicious

iv

nodes in WSNs in Chapter 1. In Chapter 2, we address the problem of detecting ma-

licious nodes in unknown environments. In Chapter 3, we address the problem of de-

tecting malicious nodes with learning ability. Then, in Chapter 4, we focus on detecting

energy depriving malicious nodes. Finally, in Chapter 5, we summarize this thesis and

discuss our future work.

In particular, in Chapter 2, we propose an ensemble learning method to detect mali-

cious nodes in unknown network environments. We first prepare weak malicious node

detectors trained in diverse environments, and then construct a strong ensemble ma-

licious node detector, which is tailored to a given test environment, by fusing weak

detectors whose performances are estimated to be high in the test environment. We

investigate the performance of our method and confirm that our method significantly

outperforms the state-of-the-art methods in terms of detection accuracy and false detec-

tion rate.

In Chapter 3, we construct a framework where the malicious and normal nodes can

learn by competition. In our framework, malicious nodes learn to avoid being detected

and normal nodes learn to detect malicious nodes with high accuracy. We design re-

inforcement learning-based malicious nodes, and define a novel observation space and

sparse reward function for the reinforcement learning. A malicious node thus can uti-

lize this method to learn from existing detection methods. We also design an adaptive

learning method to detect these smart malicious nodes. We construct a robust classifier,

which is frequently updated, to detect these smart malicious nodes. Extensive experi-

ments show that, in contrast to existing attack models, the developed malicious nodes

can degrade network performance without being detected. We also conduct simulation

experiments to verify that our proposed method can detect malicious node with learning

ability with high detection rate, in comparison with the existing methods.

In Chapter 4, we propose an unsupervised learning-based method for detecting en-

ergy depriving malicious nodes in an energy harvesting cooperative wireless sensor net-

work (EHC-WSN). In EHC-WSNs, nodes wirelessly transfer a portion of their energy

to their neighboring nodes if their neighboring nodes lack energy. An energy depriv-

ing malicious node may forge that it has little energy, thus it can deprive energy from

its neighboring nodes. Detecting energy depriving malicious nodes is not a trivial task

because the real energy storage is a private data of each node. For detecting such ma-

v

licious nodes, we utilize an unsupervised approach because it is impossible to prepare

labeled data in a WSN in the real world. In our method, each node first observes en-

ergy of its neighboring nodes, then it utilizes this information to obtain data points for

clustering. The results through simulation experiments confirm the advantages of our

proposed method over the comparison methods in terms of detection accuracy and false

detection rate.

In Chapter 5, we conclude this thesis and discuss about our future work. Our pro-

posed methods can detect malicious nodes in WNSs with a high detection rate. In par-

ticular, our proposed methods can detect different categories of malicious nodes even in

unknown network environments. Even high-level malicious nodes that can learn can-

not avoid being detected by our proposed methods. Our proposed methods can also

detect malicious nodes in EHC-WSNs, which are a category of state-of-the-art WSNs.

Therefore, our achievements contribute to increase the security of WSN services and

utilization.

Contents

1 Introduction 1
1.1 Research Issues . 4

1.1.1 Unknown network environments 5

1.1.2 Malicious nodes with learning ability 6

1.1.3 Energy depriving attack in energy harvesting cooperative WSN 7

1.2 Research Contents . 8

1.3 Organization of Thesis . 10

2 Detecting Malicious Nodes in Wireless Sensor Networks by Ensemble Learn-
ing 13
2.1 Introduction . 13

2.1.1 Motivation . 14

2.1.2 Contribution . 15

2.2 Related work . 15

2.3 Assumption . 16

2.3.1 Network model . 16

2.3.2 Attack model . 17

2.3.3 Malicious node detection . 18

2.4 Proposed method . 19

2.4.1 Overview . 19

2.4.2 Features . 22

2.4.3 Estimating the performance of the malicious node detector . . . 25

2.4.4 Ensemble malicious node detector 29

2.4.5 Detecting malicious nodes . 29

vii

viii CONTENTS

2.5 Experiment . 30

2.5.1 Setting . 30

2.5.2 Result . 33

2.6 Conclusion . 40

3 Detecting Reinforcement Learning-based Malicious Nodes in Wireless Sen-
sor Networks 41
3.1 Introduction . 41

3.2 Related work . 42

3.3 Assumption . 44

3.3.1 Mobile nodes . 44

3.3.2 Deep Q-learning for the malicious server 44

3.4 Proposed method . 46

3.4.1 Overview . 46

3.4.2 Smart grey hole attack model 48

3.4.3 Countermeasure . 52

3.5 Experiments . 56

3.5.1 Setting . 56

3.5.2 Experimental results and analysis 58

3.6 Conclusion . 67

4 Detecting Energy Depriving Malicious Nodes in Energy Harvesting Coop-
erative Wireless Sensor Networks by Unsupervised Learning 69
4.1 Introduction . 69

4.1.1 Motivation . 70

4.1.2 Contribution . 71

4.2 Related works . 71

4.3 Assumption . 73

4.3.1 Energy harvesting and energy cooperation 73

4.3.2 Attack model . 74

4.4 Proposed method . 74

4.4.1 Preparation of data points for clustering 75

4.4.2 Clustering method . 77

CONTENTS ix

4.4.3 Energy features . 78

4.4.4 Pre-training of model . 81

4.4.5 Malicious node detection . 81

4.5 Experiment . 82

4.5.1 Setting . 82

4.5.2 Result . 85

4.6 Conclusion . 89

5 Summary 91
5.1 Summary of Contributions . 91

5.2 Future work . 93

5.2.1 Detecting malicious nodes with learning ability in unknown en-

vironments . 93

5.2.2 A light-weight malicious node detection method 93

5.2.3 Security of WSNs . 94

Acknowledgment 95

Chapter 1

Introduction

The rapid development of wireless communication technology in this era has led to

many spectacular innovations [101]. Among them, wireless sensor networks (WSNs)

[3] are one of the most highlighted innovations, where a number of small electronic

devices (in this thesis, we call them nodes) perform data sensing and enable us to obtain

the latest information from a physical world in real-time, and such information can be

utilized to monitor events and understand current conditions.

WSNs have been increasingly adopted across the world due to reliable and practical

reasons. The most important one of them is that the implementation of wireless sensor

networks is easy (compared with wired devices that run on long and weighted cables).

After the installation of wireless sensor nodes, they will form a WSN in a self-organizing

manner.

Conventionally, the generated data from sensor nodes is aggregated to a centralized

server called sink. End-users can analyze data from the sink to figure out what is hap-

pening in the monitored area. Figure 1.1 shows a forest fire monitoring WSN. In this

figure, when a forest fire occurs, a nearby node generates data of high temperature from

its temperature sensor. Then, the data is forwarded to the sink by multi-hop mecha-

nism (i.e., a node in the middle position of the other two nodes helps to transmit the

data packet), and the end-user will find that monitored temperature is abnormal. The

end-user, therefore, considers that a forest fire may occur.

Besides the forest fire monitoring, WSNs have many crucial monitoring applications

as follows.

1

2 CHAPTER 1. INTRODUCTION

Wireless link

High temperature!

Sink

!

Forest fire?!

End-user

Figure 1.1: An example of a wireless sensor network for forest fire monitoring. Data of

high temperature is forwarded to the sink by multi-hop mechanism.

1. Air condition monitoring: This monitors high values of elements (e.g., carbon

dioxide) and dangerous toxic pollutants (e.g., PM 2.5) in air in diverse areas.

2. Weather monitoring: This monitors the speed of winds, extremely high temper-

atures and moisture of an area where is easy to suffer from bad weathers (e.g.,

extremely heavy rain).

3. Underwater monitoring: This monitors the flow of a river, rhythm of a tide, and

the quality of water to prevent damage to people’s health and lives.

If these monitoring systems are effectively deployed, life-saving countermeasures

can be appropriately imposed to prevent catastrophic situations. However, everything

does not always go on as we expect. WSNs may suffer from attackers, who imple-

ment malicious nodes into them, due to the self-organizing inherence of WSNs, which

is called the intrusion of malicious nodes. The intrusion of malicious nodes carries mas-

sive damage to WSNs in different ways. Figure 1.2 shows an example of malicious node

intrusion, which influences the packet transmission. Similar to the example mentioned

above, when a forest fire occurs, a node in a forest fire monitoring WSN, which is nearby

3

Wireless link

High temperature!

Sink

!

Everything OK!

End-user

Figure 1.2: A wireless sensor network with malicious node intrusion. The malicious

node drops the received data packets. Therefore, the data packets cannot be forwarded

to the sink.

the fire, transmits data of high temperate to the sink. However, when a malicious node

intrudes into the network, the malicious node does not transmit the received message

but simply drops it. The data thus cannot be forwarded to the sink. The end-user will

not notice that there is a forest fire happening. This example shows a situation where a

packet dropping attack [110] happens.

With the development of energy harvesting cooperative (EHC) technologies, energy

harvesting cooperative WSNs (EHC-WSNs) have been created to extend the lifetime of

WSNs[34]. An EHC-WSN is a WSN where nodes can harvest energy from ambient

environments and transfer energy to other neighboring nodes with low energy storage.

Besides the above-mentioned packet dropping attack model, the malicious nodes can

also hold other attack models that influence EHC-WSNs. Malicious nodes can pretend

to have little energy storage to deprive energy from neighboring nodes. The neighboring

nodes, thus, become no function when they have no energy. The EHC-WSNs then loss

their monitoring function because nodes can no longer monitor events.

The intrusion of malicious nodes may cause severe event losses. Event would lead to

catastrophic situations, such as miss observing a sudden huge torrent in an underwater

4 CHAPTER 1. INTRODUCTION

Current: naïve machine learning-based malicious nodes detection
methods in WSNs

In various unknown
network

environments
(Chap.2)

Malicious nodes have
learning ability

(Chap. 3)

Energy concerning
attack in state-of-
the-art EHC-WSNs

(Chap. 4)

Goal: Practical and robust machine learning-based malicious nodes
detection methods in WSNs

Figure 1.3: In this thesis, we tackle three challenging issues to obtain practical and

robust machine learning-based malicious nodes detection methods in WSNs.

monitoring WSNs, and miss observing toxic pollutants in an air condition monitoring

WSN. These event losses could cause disastrous consequences, which threaten people’s

lives. Therefore, detecting malicious nodes in WSNs is a crucial task. However, it

should be noted that there is still a gap between the security of WSNs and detecting

malicious nodes in WSNs. That is, detecting malicious nodes in WSNs definitely con-

tribute to the security of WSNs, but the effect of detecting malicious nodes needs further

investigation.

1.1 Research Issues

For utilization of WSNs, we need to provide secure protocols. A large number of works

[18, 35, 41, 88, 90] have focused on enhancing the security level for wireless sensor

networks, for example, building encryption frameworks and designing handcrafted de-

tecting rules. However, faced with the fact that malicious nodes may overcome the

encryption system and intrude into the network, only an encryption framework is not

1.1. RESEARCH ISSUES 5

enough to protect the security of WSNs. Moreover, handcrafted rules are not capable of

robustly detecting malicious nodes under different kinds of attack models. Therefore,

machine learning-based methods [2, 73] have been proposed to detect malicious nodes.

Machine learning-based methods build classifiers based on the observed behaviors

of malicious nodes (e.g., the numbers of messages received and sent, and the number of

neighboring nodes), and each normal node is equipped with the classifier for detecting

malicious nodes. With the machine learning-based methods, malicious node detection

rules can be automatically built, even in environments where multiple attacks exist.

However, some challenging issues still exist when we utilize machine learning-based

techniques to detect malicious nodes in WSNs. As shown in Figure 1.3, naı̈ve machine

learning-based methods cannot solve following issues. i) Detecting malicious nodes in

unknown network environments. ii) Detecting malicious nodes with learning ability. iii)

Detecting energy depriving malicious nodes in state-of-the-art EHC-WSNs. By tackling

these challenging issues, we can obtain more practical and robust machine learning-

based malicious nodes detection methods in WSNs. In this section, we describe the

details of three research issues for accurately detecting malicious nodes in WSNs.

1.1.1 Unknown network environments

WSNs can be implemented in different places for various purposes as above-mentioned.

Different WSNs have different network parameters (e.g., network topologies, packet

transmission frequencies, and number of nodes). Since the trained classifier detects

malicious nodes based on the training data, a classifier trained in a specific environment

may not work well in other testing environments with different network parameters.

For example, assume that we have prepared a classifier A to detect packet dropping

malicious nodes in a WSN where packet frequency is low. Since nodes communicate

using wireless links where the network bandwidth is limited, the increase of packet

frequency results in packet losses. If we simply apply classifier A to another WSN where

packet frequency is high, because the packet losses in this network are naturally high,

the classifier A may classify normal nodes as malicious nodes due to the high packet

losses of normal nodes. That is, simply applying any trained classifiers to unknown

network environments is impractical.

6 CHAPTER 1. INTRODUCTION

observe

Drop rate > 50%: malicious

observe

Drop rate < 50%: normal

Too high!
Decrease
drop rate!

Before malicious node learning After malicious node learning

WSN WSN

Figure 1.4: A malicious node with learning ability learns from the detection method to

avoid being detected

It is also impractical to obtain a machine learning-based method which is trained

in a simulated training environment whose network parameters are exactly the same

as those of the real test environment. This is because the network parameters of the

real test environments are unknown in advance. Therefore, a robust malicious node

detection method that works well in diverse environments is required.

1.1.2 Malicious nodes with learning ability

Machine learning-based methods have been proposed to detect malicious nodes in WSNs.

However, the development of technology also pushes the dark side going forward. From

the perspective of malicious nodes, it is natural to consider that malicious nodes also

have learning ability. That is, malicious nodes can learn from detection methods to try

to avoid being detected.

Figure 1.4 shows an example of a malicious node with learning ability. In this

example, a trained classifier is utilized to detect malicious nodes in a WSN. Each normal

node observes the behaviors of neighboring nodes and feeds them into the classifier to

decide the category of neighboring nodes. Assume that one of the rules of this classifier

is that if a node drops 50 percent of packets, this node is decided as a malicious node.

The malicious node, which is equipped with a machine learning-based method (e.g., a

reinforcement learning-based method), is capable of learning from the built classifier.

After the learning procedure, the malicious node figures out that if the packets dropping

1.1. RESEARCH ISSUES 7

Sensor node BSensor node A

(a) Energy transferred to a neighboring node

Malicious nodeSensor node A

(b) Malicious node deprives energy

Energy beam Energy beam

Figure 1.5: Energy transferring with and without malicious node intrusion

rate of it is higher than 50 percent, it will be detected. As a result, the malicious node

can decrease its packet dropping rate to lower than 50 percent to try to avoid being

detected.

Therefore, a method to detect such kind of smart malicious nodes is required. This

detection method should be robust enough to detect malicious nodes, even if these ma-

licious nodes can learn this method.

1.1.3 Energy depriving attack in energy harvesting cooperative WSN

Wireless sensor nodes are small and lightweight electronic devices. For the purpose

of easy implementation and transportation, battery capacities of wireless sensor nodes

are often limited [74]. Therefore, the lifetime of a wireless sensor network is strictly

limited. Many studies [12, 63] have proposed methods for extending the lifetime of

WSNs. For example, duty cycle scheduling methods are a category of techniques that

let nodes sleep (i.e., stop working) and wake up periodically to save energy.

Recently, with the development of energy harvesting cooperative technology, energy

harvesting cooperative WSNs (EHC-WSNs) are created [34]. An EHC-WSN is a WSN

where nodes can harvest energy from ambient environments (e.g., harvesting from solar

energy [108] and vibration [15]) and transfer energy to other neighboring nodes. EHC-

WSNs relieve the bottleneck of energy limitation in WSNs by extending the lifetime of

nodes. However, little study concerned about the security of EHC-WSN.

Note that the ambient environments are always changing. For example, in a solar

8 CHAPTER 1. INTRODUCTION

energy harvesting system, a node harvests much less energy than others if it is covered

by shadow. Therefore, in EHC-WSNs, a node transfers energy to a neighboring node

if this neighboring node has low energy storage (Figure 1.5 (a)). However, this setting

may suffer from malicious nodes if the malicious nodes pretend to have little energy

storages (Figure 1.5 (b)). Malicious nodes thus can deprive the energy of normal nodes.

Detecting energy depriving malicious nodes is not a trivial task because the energy

storage of each node is private data. Even if energy transferring schemes of EHC-WSNs

require nodes to report their energy storages, malicious nodes can still fabricate their

energy storages to pretend to have little energy storages. Therefore, a method to detect

energy depriving malicious nodes is required.

1.2 Research Contents

In this thesis, we propose malicious node detection methods in wireless sensor net-

works. Our methods, which utilize various machine learning-based techniques, address

and solve the research issues stated in Chapter 1.1, to accomplish our goal shown in

Figure 1.3 that we create practical and robust machine learning-based malicious nodes

detection methods in WSNs. The outlines of the proposed methods are as follows.

• Detecting malicious node by ensemble learning

In Chapter 2, we address the issue of utilizing machine learning-based methods

to build classifiers to detect malicious nodes in WSNs where the test environ-

ments are unknown. To address this problem, we design an environment-adaptive

malicious node detector, as well as robust classification features, for WSNs where

multiple attacks exist. In our method, we first prepare weak malicious node detec-

tors trained in different network environments. Then, we design a weak detector

evaluator, which estimates the detection performance of a trained weak detector

when the detector is applied in a test environment where training data is unavail-

able. Therefore, utilizing the weak detector evaluator, our method can automati-

cally find detectors that would work well in the test environment, and constructs

a strong ensemble malicious node detector tailored to the test environment, based

on the found weak detectors. In addition, to robustly detect various attacks in

1.2. RESEARCH CONTENTS 9

diverse environments, we extract inherent features of these attacks for building a

weak detector. In these ways, we can detect malicious nodes in an unknown test

environment.

• Detecting malicious node with learning ability

In Chapter 3, we address the problem that malicious nodes can learn from the

detecting method to avoid being detected, and to cause stronger harmful effects

(e.g., decrease the packet transmission rate). To address this problem, we con-

struct a framework where the malicious and normal nodes can learn by compe-

tition. In our framework, malicious nodes learn to avoid being detected and to

cause stronger harmful effects, and normal nodes learn to detect malicious nodes

with high accuracy. To enable the malicious nodes to learn from the detection

method by themselves, we utilize reinforcement learning-based techniques. In

our method, malicious nodes obtain a positive reward when they degrade the per-

formance of the WSN. Therefore, to obtain more rewards, malicious nodes will

try to carry stronger harmful attacks. However, if these nodes behave too mali-

ciously, they may be easily detected by countermeasures of the WSN. We thus

assume that the malicious nodes receive a large negative reward if they are de-

tected within a time threshold. We also prepare a design of the state space to

enable the malicious nodes to recognize their current situations. After learning in

a large number of episodes, the malicious nodes, which employ a reinforcement

learning-based method, eventually learn how to perform as maliciously as possi-

ble without being detected. In addition, we design a method that robustly detects

the above attack model. We extract inherent features for the detection method

to detect malicious nodes, and the detection method is updated simultaneously

within the episodes. Over a certain period, the detection method is adaptively

updated to determine the optimal rule of attack detection.

• Detecting energy depriving malicious node in EHC-WSNs

As stated in Section 1.1.3, EHC-WSNs have been proposed to extend the lifetime

of wireless sensor networks. In an EHC-WSN, a sensor node a with plenty of

energy can wirelessly transfer its energy to a neighboring node bwith little energy

to extend the life-time of node b. However, EHC-WSNs suffer from the energy

10 CHAPTER 1. INTRODUCTION

depriving attack, where malicious nodes pretend to have little energy storages to

deprive energy from normal nodes.

In Chapter 4, we address the problem of detecting energy depriving nodes. We

propose a method that detects the energy depriving node by unsupervised learn-

ing. In our method, each normal node, playing the role as an observing node, first

obtains data about behaviors of neighboring nodes. Then, the observing nodes

create data points from the observed data and utilize the data points to form clus-

ters. After the clustering, observing nodes utilize the clustering results to identify

malicious nodes.

1.3 Organization of Thesis

This thesis consists of five chapters, and the remainder of the thesis is organized as

follows.

In Chapter 2, we introduce and discuss about the problem of detecting malicious

nodes in WSNs where a given environment is unknown in Section 2.1. Section 2.3

describes the assumptions of our work including the network environment and routing

protocol employed, and attacks which are assumed to be executed by malicious nodes.

Our proposed method is described in Section 2.4. In this section, we first describe the

overview of our method. Then, we introduce our designed features, and describe how

we ensemble weak detectors to a strong robust detector. The experiment setup and the

simulation results to exhibit the performance of our proposed method are described and

discussed in Section 2.5. In Section 2.2, we review the prior works related to the topic

of this chapter. Finally, we conclude our work in this chapter in Section 2.6. The study

in this chapter is based on our works published in [29], [30], and [31].

In Chapter 3, we introduce and discuss about the problem that the malicious nodes

can learn from the detecting method to avoid being detected in Section 3.1. Section

3.2 reviews the related work of this topic. We describe the assumptions of our work

in this chapter in Section 3.3. In Section 3.4, we describe our proposed methods. Our

proposed methods in this chapter consist of the design of malicious nodes, and a method

that detects the malicious nodes with learning ability. We compare our proposed method

1.3. ORGANIZATION OF THESIS 11

with existing methods by conducting experiments, and we conduct network parameter

analysis as well. In addition, we compare the performances of malicious nodes with and

without learning ability. The details are discussed in Section 3.5. Finally, this chapter is

summarized in Section 3.6. The study in this chapter is based on our works published

in [28] and [32].

In Chapter 4, we focus on detecting energy depriving malicious nodes in EHC-

WSNs. We give an introduction of EHC-WSNs and threats to ECH-WSNs in Section

4.1. In Section 4.2, we review related works of this topic in the chapter. The assump-

tions, which include the network model, schemes of energy harvesting and energy coop-

eration, and attack model, are described in Section 4.3. Section 4.4 shows our proposed

method. We conduct experiments to examine the performance of our proposed method,

and the setting and results of experiments are described in Section 4.5. Finally, our

work in this chapter is concluded in Section 4.6. The study in this chapter is based on

our work published in [27].

Finally, in Chapter 5, we summarize this thesis and discuss about future works.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Detecting Malicious Nodes in Wireless
Sensor Networks by Ensemble
Learning

2.1 Introduction

Recent advances in micro-electro-mechanical systems (MEMS) technology, wireless

communications, and digital electronics have enabled the development of low-cost,

low-power, multifunctional sensor nodes that are small in size and communicate un-

tethered in short distances [93]. These tiny sensor nodes, which consist of sensing,

data processing, and communicating components, leverage the idea of wireless sensor

networks (WSNs) based on collaborative effort of a large number of nodes. A WSN

is typically self-organized, i.e., it consists only of (mobile) wireless nodes, and each

node can directly communicate with other nodes, if they are within the communication

range. Since WSNs do not require any infrastructures, they can provide supports in

a wide variety of situations, for example, in fire monitoring and underwater monitor-

ing systems [23, 49, 85]. However, due to the self-organized characteristic, malicious

nodes can easily join a WSN. That is, WSNs are inherently vulnerable to malicious

nodes [26, 95, 113], and the malicious nodes disrupt communications in WSNs, caus-

ing packet transmission failures [37]; all of which presents security challenges to WSN

13

14 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

environments.

2.1.1 Motivation

Numerous studies have proposed rule-based methods for avoiding attacks [76, 82] and/or

detecting malicious nodes [11, 55, 59, 60, 98, 107]. However, they assume unrealistic

situations, specifically, where only a single kind of attack is executed in a given WSN.

We can intuitively consider that (i) malicious nodes change their attack models to es-

cape a malicious detection method for a specific attack and (ii) different malicious nodes

execute different attacks. The existing methods cannot deal with such cases, resulting

in less practical effectiveness.

The above rule-based methods cannot deal well with multiple attacks situations,

because preparing a handcrafted robust detection rule for these attacks is impractical.

Therefore, machine learning-based approaches have recently been receiving attention

[2, 21, 70]. Such approaches build a classifier based on the observed behavior of ma-

licious nodes (e.g., the numbers of messages received and sent), and each normal node

is equipped with the classifier for detecting malicious nodes. One advantage of this

approach is that it can automatically build a robust malicious detection rule, even in

environments where multiple attacks exist, if we prepare training data obtained from

similar multiple attacks environments. Note that, since the trained classifier detects ma-

licious nodes based on the training data, a classifier trained in a specific environment

may not work well in other testing environments with different network parameters

(such as the number of nodes and network size), which is an inherent problem in WSNs

environments. However, the existing machine learning-based methods [2, 21, 70] do

not address this issue (i.e., difference in training and testing environments). When we

deploy a machine learning-based malicious detection method for WSNs in a real test

environment, using a trained model in simulated environments is the most practical way

because collecting labeled data in real training environments is impractical. In such a

case, it is also impractical to prepare simulated training environments whose network

parameters are exactly the same as those of the real test environments. This is because

the network parameters of the real test environments are unknown in advance. There-

fore, a robust malicious node detection method that works well in diverse environments

2.2. RELATED WORK 15

is required.

2.1.2 Contribution

To address this problem, we design an environment-adaptive malicious node detector,

as well as robust classification features, for WSN where multiple attacks exist. In our

method, we first prepare weak malicious node detectors trained in different environ-

ments. Then, our method automatically finds detectors that may work well in a test

environment, and constructs a strong ensemble malicious node detector tailored to the

test environment, based on the found weak detectors. Our contributions of this chapter

are summarized below.

• We tackle the problem of malicious node detection in WSNs where multiple at-

tack models exist. To our knowledge, this is the first work that constructs a robust

malicious node detector based on ensemble learning. There is no other study

that tests the performance of a detection model trained in environments that are

different from a testing environment.

• We propose a method for constructing a robust malicious node detector tailored to

a test environment by combining weak detectors trained in diverse environments

that are estimated to work well in the test environment.

• We conduct empirical study to investigate the performance of our method and

confirm that our method outperforms the state-of-the-art.

The organization of this chapter is as follows. Section 2.3 introduces the assumption in

this chapter. Our proposed method is described in Section 2.4, and experimental results

are illustrated in Section 2.5. We review related works in Section 2.2, and this chapter

is concluded in Section 2.6.

2.2 Related work

Since WSN security is a challenging issue, there are many existing studies.

16 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

As a famous attack in WSNs is packet dropping one (e.g., black hole and gray hole

attacks), many works have developed techniques for avoiding the attack with sophis-

ticated multipath approaches [102], analyzing the impact of the attack [95], and pre-

venting the attack [86]. Other attacks have also been addressed. In [1], sybil attacks

are detected by using RSS (received signal strength), while [22] has proposed a method

that detects wormhole attack with topology information. In flooding attack scenario,

[90] has proposed a trust estimation method based on DSR (dynamic source routing

protocol) and [45] has considered how to prolong network lifetime, since flooding at-

tack consumes node energies. These works assume that there is a single attack model

in the network, and the proposed methods work only in their respective assumed envi-

ronments. Therefore, it is not trivial to extend the methods to deal with the case where

multiple attack models exist in a WSN and nodes can arbitrarily change attack models.

Recently, machine learning approaches have received attention [2, 70, 89], since

they require no complex system parameters (e.g., thresholds for identifying malicious

nodes). In addition, machine learning approach has potential to detect malicious nodes

in environments where multiple attack models exist. (Unfortunately, [2, 21, 89] miss

this advantage and consider only a single attack.) [70] is a state-of-the-art method but is

not designed to cope with a situation where training and test environments are different.

Hence, this method does not accurately classify nodes.

2.3 Assumption

2.3.1 Network model

The environment is assumed to be a wireless sensor network (WSN) consisting of n

wireless nodes with unique identifiers. Without loss of generality, we assume these

nodes can move. These nodes move freely and can directly communicate with other

nodes if they are within the communication range. We assume that all nodes have the

same communication range1, and if a given node is within the communication range of

other nodes, it is a neighboring node of them.

1As an exception, some malicious nodes may use different channels, which is described in Section
2.3.2.

2.3. ASSUMPTION 17

As a routing protocol, AODV [80], which is a standard routing protocol in WSNs,

is employed. That is, when a node s wants to send a data packet to another node

d, s broadcasts a route request (RReq) to create a packet transmission route, and this

message is transmitted by some intermediate nodes. When node d receives the RReq, it

sends a route reply (RRep) toward s, then s sends the data packet and it is transmitted

through the route. To maintain the route, route error (Rerr) and hello messages are also

utilized (see [80] for detail).

2.3.2 Attack model

This section introduces attacks which are assumed to be executed by malicious nodes.

Black hole attack [68, 82]. Malicious nodes act like a cosmic black hole. Specifically,

the malicious nodes send fake RReps to all RReqs and pretend to have a route to given

destination nodes. After receiving data packets, the malicious nodes drop them.

Gray hole attack [107]. This attack is similar to black hole attack. The difference is

that malicious nodes drop data packets stochastically.

Sybil attack [1]. Malicious nodes, which execute this attack, pretend to be normal

nodes. In this situation, nodes near the malicious nodes consider that the neighboring

nodes are normal, so packets are consequently dragged to the malicious nodes.

Routing packet dropping attack [60]. In this attack routing packets (e.g., RReq, RRep,

and Rerr) are randomly dropped.

Rushing attack [41]. In this attack, when a malicious node receives a RReq from its

neighboring node, it broadcasts the RReq quickly, so that it can be an intermediate node

of the packet transmission route.

Wormhole attack [25]. A malicious node executing this attack stores all received mes-

sages and data packets, and send them to another distant malicious node on their own

channel (e.g., a wired link or an out-of-band hidden channel). The distant malicious

node receiving the messages broadcasts them locally, creating an illusion that the neigh-

boring nodes of these two malicious nodes are very close to each other.

Jelly fish delay attack [55]. In jelly fish delay attack, malicious nodes hold received

messages for a while before transmission. Malicious nodes use this attack to disturb the

18 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

Table 2.1: Classification of attacks based on their objectives
Class Attack

CLF Routing packet dropping, sybil attack, jelly fish delay attack

DDP Black hole attack, gray hole attack

DRA
Sybil attack, rushing attack, wormhole attack,

black hole attack

CRT RReq flooding attack, hello flooding attack

activeness of the routing tables of their neighboring nodes.

Flooding attack [110]. The objective of this attack is energy consumption. A typical

approach of this attack is to broadcast a RReq without a destination. Since all nodes

transmit this message, redundant traffic incurs.

It is important to note that the above attack models have been extensively studied,

and are worth being considered at the same time, to improve WSN security.

To efficiently detect multiple attacks, we classify attack types into the four groups

below, according to the objectives of the attacks. The objective-based attack types are

classified as follows: (i) causing link failure (CLF), (ii) dropping data packets (DDP),

(iii) dragging routes to attackers (DRA), and (iv) causing redundant traffic (CRT).

Our attack classification is summarized in Table 2.1. Note that some attacks, such

as black hole and sybil attacks, are categorized into multiple classes. For example, in

a black hole attack, malicious nodes send RReps and drop data packets, and this attack

model has two objectives: packet dropping and route dragging.

2.3.3 Malicious node detection

Each normal node in a given WSN holds a classifier to detect malicious nodes. Specif-

ically, each normal node judges whether or not the neighboring nodes are malicious

by using our method, which employs observed behaviors of the neighboring nodes by

the normal node and the classifiers. The detection operation can be executed at any

time, as long as the information on the observed behaviors is enough for accurate detec-

tion. It is clear that less information makes machine learning approaches not function,

2.4. PROPOSED METHOD 19

Figure 2.1: Overview of the two steps of training phase in the proposed method.

so frequent execution of malicious nodes detection is hard to be assumed. In our ex-

periments, after normal nodes observe the behavior of their neighboring nodes over a

certain period (e.g., 50 or more seconds), they judge whether or not the neighboring

nodes are malicious. Therefore, the malicious node detection procedure does not incur

high computation costs of the normal nodes.

2.4 Proposed method

2.4.1 Overview

Figures 2.1 and 2.2 present an overview of the proposed method. The method, which

is based on machine learning techniques, consists of a training phase and test phase.

In the training phase, we simulate various environments with different environmental

parameters, e.g., node speed and node density, and train a weak malicious node detector

(weak detector for short) for each training environment using data obtained from the

20 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

Figure 2.2: Overview of the two steps of test phase in the proposed method.

all normal nodes in the environment (Figure 2.1 (1)). Since each normal node observes

the behavior of its neighboring nodes (e.g., packet transmission frequency) and judges

whether or not each of the neighboring nodes is malicious, the normal node extracts

features from the observed behavior of the neighboring node and feeds them into a

weak detector. These features are hereinafter called behavioral features. It is important

to note that the behavioral features are obtained from messages sent by neighbor nodes.

In other words, each normal node can obtain the behavioral features by overhearing

messages, so our method incurs no additional communication costs.

In addition, we train a weak detector evaluator, which estimates the detection per-

formance of a trained weak detector when the detector is run in a test environment where

training data is unavailable (Figure 2.1 (2)). Note that the weak detector is trained in a

training environment different from the test environment. Since we do not have ground

truth labels in the test environment and thus cannot directly compute the performance

of the weak detector in the test environment, we assume that a normal node in the test

environment estimates the performance of the weak detector using its observable infor-

mation. To achieve the performance estimation in an unseen test environment, we again

2.4. PROPOSED METHOD 21

use supervised machine learning techniques. We first select pairs of simulated training

environments and calculate training data for the performance estimation. Assume that

we select environments A and B. We then compute features that well describe environ-

ment A from observable information by nodes in the environment. We also compute

features describing environment B. After that, differences in the two environments are

calculated from the features of the two environments. In addition, we run the weak de-

tector, which is trained in environment A, in environment B to compute the detection

performance. By using the calculated environmental differences associated with the

performance of the weak detector, we train an estimator that estimates the performance

of a weak detector when it is run in an unseen test environment.

Our focus on environmental differences is derived from the supposition that a weak

detector trained in an environment with one or more parameters completely different

from those of the test environment may not work well in the latter environment. For

example, it is obvious that a weak detector trained in an environment where the node

density is high will not work well in sparse environments, since, if the node density

differs, the message reception ratio may also differ, resulting in different distributions

of behavioral features in the two environments. The inputs of the weak detector eval-

uator are features defining the difference between the test and training environments,

which is computed based on features describing characteristics of each environment,

which are hereinafter called environmental features. Note that these environmental fea-

tures are computed based on information observable by normal nodes. We assume that

such features are representative information concerning a given environment of interest

(e.g., information related to node speed), and affect the performance of a weak detector

trained in a different environment.

In the test phase, a normal node estimates the performance of each weak detector

in a test environment, using environmental features from both the test environment and

the training environment in which the weak detector was trained (Figure 2.2 (1)). The

normal node then constructs an ensemble strong detector, tailored to the test environ-

ment, by combining weak detectors whose performances are estimated to be high in the

test environment. The normal node uses the ensemble detector to detect neighboring

malicious nodes (Figure 2.2 (2)).

22 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

2.4.2 Features

Here we describes the behavioral features, which are used in malicious node detection,

and the environmental features, which are used in the performance estimation of weak

detectors.

Behavioral features

A number of attack models have been considered in WSN environments, and many stud-

ies classify such attacks based on layers or routing protocols [6]. However, to efficiently

detect multiple attacks, we classify attack types into the four groups below, according to

the objectives of the attacks; and then design features to be extracted, by focusing on the

behavior of malicious nodes attempting to achieve these objectives (see Section 2.3.2).

Note that the features are extracted from the behavior of a node of interest observed

over a specified period.

We assume that each node observes the behavior of its neighboring node. Before

we describe the behavioral features, we present the information related to the neighbor-

ing node observed by each node (Table 2.2), which is used to compute the behavioral

features. Remember that in AODV, messages are transmitted by broadcasting, and thus

observing nodes can overhear the messages.

Table 2.3 shows the 18 behavioral features used in our method, all designed based on

the classification of attacks. Many existing machine learning-based malicious detection

studies design classification features based on specific numbers (e.g., the number of

hello messages); however, here they are designed based on ratios calculated from the

information observed by nodes, because such ratios are more robust against differences

in network parameters than mere numbers. For example, it is clear that features based

solely on numbers can be easily influenced by the number of neighboring nodes.

We now explain the relationship between our designed behavioral features in Table

2.3 and the classifications in Table 2.1. RRep sent ratio (RepSenRatio), RRep ignored

ratio (RepIgnRatio), Rerr sent ratio (RerSenRatio), and Rerr received ratio (RerRecRa-

tio) are designed for CLF. A link failure is caused by network topology change and

by ignoring routing messages such as RReps. If routing messages are ignored by ma-

licious nodes, normal nodes cannot properly update their routing tables, and thereby

2.4. PROPOSED METHOD 23

Table 2.2: Information observed by each node
Information Definition

NReqRec # RReq overheard from one neighbor

NRepRec # RRep overheard from one neighbor

NRepSen # RRep sent to one neighbor

NRerRec # Rerr overheard from one neighbor

NRerSen # Rerr sent to one neighbor

NHelRec # hello messages overheard from one neighbor

NDatRec # data packets overheard from one neighbor

NDatSen # data packets sent to one neighbor

TReqRec Total # RReq overheard by observing node

TReqSen Total # RReq sent by observing node

TRepRec Total # RRep overheard by observing node

TRepSen Total # RRep sent by observing node

TRerRec Total # Rerr overheard by observing node

TRerSen Total # Rerr sent by observing node

THelRec Total # hello messages overheard by observing node

THelSen Total # hello messages sent by observing node

TDatRec Total # data packets overheard by observing node

TDatSen Total # data packets sent by observing node

cannot transmit messages according to the latest network topology. To deal with this

problem, the ratios related to the received and sent routing messages are designed to

determine whether or not neighboring nodes drop routing messages.

Data received ratio (DatRecRatio), Data ignored ratio (DatIgnRatio), RRep useless

ratio (RepUslRatio), RRep useful ratio (RepUsfRatio), and RReq useful ratio (ReqUs-

fRatio) are designed for DDP. We can know whether or not neighboring nodes transmit

data packets properly, from the ratios calculated based on the number of overheard data

packets. For example, if the DatIgnRatio of one neighboring node is much lower than

those of other neighboring nodes, it is reasonable to infer that this neighboring node has

ignored some data packets.

24 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

Table 2.3: Behavioral features
Behavioral features Definition

RepSenRatio NRepRec / TRepRec

RepRecRatio NRepRec / TReqRec

RepIgnRatio NRepRec / NRepSen

ReqRecRatio NReqRec / TReqRec

DatSenRatio NDatSen / TDatSen

DatRecRatio NDatRec / TDatRec

DatIgnRatio NDatRec / TDatSen

RerRecRatio NRerRec / TRerRec

HelRecRatio NHelRec / THelRec

AllPckRatio (NDatSen+NRepSen) / (NDatRec+NRepRec)

RepUslRatio NDatRec / NRepSen

RepReqRatio NRepRec / TReqSen

RerSenRatio NRerSen / TRerSen

HelCheckRatio NHelRec / THelSen

ReqIgnRatio NReqRec / TReqSen

RepUsfRatio NRepSen / TDatRec

ReqUsfRatio NReqRec / TDatRec

HelUsfRatio THelSen / TDatRec

Data packet sent ratio (DatSenRatio), RRep checked by RReq ratio (RepReqRatio),

RRep received ratio (RepRecRatio), all routing packets ratio (AllPckRatio), and RReq

ignore ratio (ReqIgnRatio) are designed for DRA, since, if a malicious node wants to

drag routes to itself, it will send more RReps and receive many data packets.

RReq received ratio (ReqRecRatio), Hello check ratio (HelCheckRatio), Hello re-

ceived ratio (HelRecRatio), and Hello useful ratio (HelUsfRatio) are designed for CRT,

because malicious nodes executing flooding attacks, send extra hello messages and/or

RReqs to generate redundant traffic, and these features are thus useful for identifying

such malicious nodes.

2.4. PROPOSED METHOD 25

Table 2.4: Environmental features
Env. features Definition

AvgReqRec Avg. # RReq overheard by observing node

AvgReqSen Avg. # RReq sent by observing node

AvgRepRec Avg. # RRep overheard by observing node

AvgRepSen Avg. # RRep sent by observing node

AvgDatRec Avg. # data packets overheard by observing node

AvgDatSen Avg. # data packets sent by observing node

AvgRerRec Avg. # Rerr overheard by observing node

AvgRerSen Avg. # Rerr sent by observing node

AvgHelRec Avg. # hello messages overheard by observing node

AvgHelSen Avg. # hello messages sent by observing node

AvgNeiMet Avg. # neighboring nodes

Environmental features

We extract features that well describe the characteristics of the network (environment)

in which a given node is present. Based on these features, we then find a weak detector

that performs well in a test environment. To capture the general characteristics of a

given network, we extract the features listed in Table 2.4 from information about sent

and received packets observed by a normal node over a specified period. Put simply,

each normal node counts the number of a particular kind of sent/received packet within

a given time window. Let xi be the number of such packets that a given node observes

within the time window. When ω is the duration of the window in seconds, the specific

environmental feature is simply calculated as
∑
xi
ω

.

2.4.3 Estimating the performance of the malicious node detector

After training a weak detector in each training environment, we train a weak detector

evaluator, which estimates the performance of a given weak detector in an environment

different from that in which it was trained.

26 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

Figure 2.3: Preparing training data for the weak detector.

Weak malicious node detector for each environment

We prepare labeled training data for each simulated training environment, and train a

weak detector for that environment using this training data. Assume that node a ob-

serves the behavior of node b (Figure 2.3). Node a extracts behavioral features from

the observed behavior of node b, and constructs a behavioral feature vector concate-

nating the extracted features. In addition, as it is known, in the training environment,

whether or not node b is malicious, we associate this information with the behavioral

feature vector as a label. By applying the above procedures to each pair of neighbor-

ing nodes in the training environment, we can obtain a set of labeled behavioral feature

vectors, which are used to train a weak detector in this training environment. Since a

weak detector classifies a neighboring node of interest into a malicious or normal class,

we employ the random forest [10] in [109], which is the state-of-the-art discriminative

classifier, as the weak detector. Note that we randomly undersampled the majority class

so that the proportion of training instances from each class was equal.

2.4. PROPOSED METHOD 27

Figure 2.4: Preparing training data for weak detector evaluator.

Weak detector evaluator

We then train a weak detector evaluator using the weak detectors of the training envi-

ronments and environmental features extracted from these training environments.

Here we consider the detection performance of a weak detector trained in environ-

ment A, when this detector is executed in training environment B (Figure 2.4). To

estimate its performance, we utilize the respective environmental features of these two

environments. We first construct an environmental feature vector concatenating envi-

ronmental features calculated based on the observations of each normal node in the two

training environments. Therefore, the number of constructed environmental feature vec-

28 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

tors for each training environment is identical to the total number of normal nodes in

the training environment. We then compute the averaged environmental feature vector

for each environment by employing the environmental feature vectors of all the normal

nodes in the environment. (Because the training environments are simulated environ-

ments, we can aggregate environmental features calculated by the nodes in the environ-

ments.) We compare the environmental feature vectors of these two environments to

compute features that represent the difference between these environments. Finally, we

employ the computed features as explanatory variables to estimate the projected perfor-

mance of the environment-A weak detector in environment B. As we consider that the

performance of a weak detector is affected by the difference between the training and

testing environments, we learn the relationship between the detector’s performance in

the test environment and explanatory variables representing the environmental differ-

ence.

Let xA and xB be averaged environmental feature vectors obtained in training envi-

ronments A and B, respectively. We first compute the difference between xA and xB as

follows.

d(xA,xB) =


|xA,1 − xB,1|
|xA,2 − xB,2|

...

|xA,e − xB,e|

 ,

where xA,i is the ith element of xA and e is the number of environmental features,

and then employ this computed difference in the form of explanatory variables. In

the case of the independent variable in this regression task (i.e., estimating the detec-

tor’s performance), we employ the classification accuracy (average F-measure) of an

environment-A weak detector in environment B. That is, the weak detector actually

classifies behavioral feature vectors obtained in environment B, and then its classifica-

tion accuracy is used as the independent variable. Using the above procedures, we can

compute training data for estimating the classification accuracy of the environment-A

weak detector in environment B from explanatory variables representing the difference

between these environments. We compute the training data for each pair of training

environments in the respective environments, and train the weak detector estimator on

the computed training data. The performance of the environment-A weak detector is

2.4. PROPOSED METHOD 29

estimated as:

wA = f
(
d(xA,xB)

)
,

where f(·) is a regression model that calculates the performance wA using the computed

differences. In this study, we employ the SVM regressor [92] for the regression model.

2.4.4 Ensemble malicious node detector

Here we describe procedures for constructing an ensemble malicious node detector tai-

lored to normal node a in a given test environment using environmental features com-

puted based on observed send and transmission packet information for a certain period.

We first estimate the performance of a weak detector of each training environment using

the environmental features obtained by node a; and then construct a strong ensemble

detector tailored to node a, by combining the top-k weak detectors with respect to es-

timated performance. Because the memory resource of mobile devices is limited, we

select only top-k useful detectors. The ensemble detector aggregates the detection re-

sults of the weak detectors based on their estimated performance, as follows.

Pragg(y = mal|f b) =
1

W

k∑
i=1

wiPri(y = mal|f b),

where Pri(y = mal|f b) is the probability output by the ith weak detector for which

node b is malicious, and f b is a behavioral feature vector constructed based on the

observed behavior of node b. In addition, wi is the projected performance of the ith

weak detector, which is estimated by the weak detector evaluator, and W =
k∑
i=1

wi.

Based on the aggregated result Pragg(y = mal|f b), the detection result for node b is

determined as follows:

ŷ =

{
malicious (Pragg(y = mal|f b) > 0.5)

normal (otherwise)

2.4.5 Detecting malicious nodes

We assume that node a in a given test environment constructs an ensemble detector by

fusing weak detectors of selected training environments in advance. To find efficient

30 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

weak detectors, node a first computes an environmental feature vector based on infor-

mation about send and receive packets for a specific time period, which are observed by

node a. Assume that node a estimates the performance of a weak detector of training

environment A. Node a computes the difference between the computed environmental

feature vector and an averaged environmental feature vector computed by employing

environmental feature vectors of all nodes in training environment A. Based on the

computed difference values, we estimate the performance of the weak detector of train-

ing environment A using the weak detector evaluator. Node a constructs an ensemble

detector combining the top-k weak detectors, and then detects neighboring malicious

nodes using the ensemble detector. Assume that, in a given test environment, node a is

judging whether or not neighboring node b is malicious. Node a observes the behavior

of node b over a specified period, and computes a behavioral feature vector based on

this observed behavior. The computed vector is then fed into the ensemble detector and,

the detection result for node b is obtained.

2.5 Experiment

This section summarizes our experiments evaluating the performance of the proposed

method.

2.5.1 Setting

We used Qualnet 7.4 network simulator2. Each node transmitted messages and data

packets, whose payload sizes were 256 bytes, using an IEEE 802.11b device. The

communication range of each node was adjusted to roughly 100 meters, and the network

bandwidth was 11Mbps. As with existing works [1, 26, 49, 91], we used the random

way point model [9], with a maximum movement speed of vmax and pause time of 0.

(The velocity of each node was randomly chosen from (0, vmax].) When there were n

nodes in a network, there were n ·m (m ∈ [0.1, 0.4]) malicious nodes in the network.

We randomly chose a pair of source node and destination node every f seconds. If the

source node has an active route to the destination node, the source node sends a data

2http://web.scalable-networks.com/qualnet-network-simulator-software

2.5. EXPERIMENT 31

Table 2.5: Parameter configuration
Parameter Values

n 50, 60, 70, 80, 90, 100

m 0.1, 0.2, 0.3, 0.4

vmax [m/sec] 1.0, 2.0, 3.0, 4.0

Network size [m2] 500× 500, 600× 600, 700× 700, 800× 800, 900× 900, 1000

× 1000

f [sec] 1.0, 2.0, 3.0, 4.0

t [sec] 50, 100, 200, 300, 400, 600, 800, 1,000

packet to the destination node directly. Otherwise the source node broadcasts an RReq

to find a route to the destination node. The network parameters are described in Table

2.5, and the simulation time was t [sec] (the default time was 300 [sec]).

Note that attack models were categorized into two patterns: passive and proactive.

Passive attacks included black hole attacks, gray hole attacks, sybil attacks, routing

packet dropping attacks, rushing attacks, wormhole attacks, and jelly fish attacks; and

proactive attacks included RReq flooding attacks and hello flooding attacks. When

malicious nodes received messages, they chose an attack from among the passive attacks

uniformly at random, and executed it. Malicious nodes executed RReq or hello flooding

attacks for 30 seconds, and then halted the attacks for 30 seconds after execution. (Thus,

after the halt, they recommenced one of the two attacks.) During the attacks, they

broadcasted an RReq or hello packet every 0.5 seconds.

Evaluation methods. We simulated 2,304 (6×4×4×6×4) environments with different

parameters (see Table 2.5), randomly selecting 90% of these environments as training

environments, and using the rest as test environments. To investigate the effectiveness

of the proposed method, we prepared the following methods.

• MITR13 [70]: This is a state-of-the-art technique utilizing MultiLayer Perceptron

for classification proposed by Mitrokotsa et. al. The method employs the fol-

lowing features: TReqRec, TReqSen, TRepRec, TRepSen, TRerRec, TRerSen,

32 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

TDatRec, TDatSen3, number of neighboring nodes (NeiNum), ratio of routing

table update with respect to entries (PCR), and ratio of routing table update with

respect to hop counts (PCH). As in [70], we tuned the MITR13 parameters based

on cross-validation [53].

• DC: This method employs a single malicious node detector based on a discrimi-

native classifier (e.g., SVM or Naive Bayes), which is trained on labeled training

data obtained in all the training environments. The method employs our designed

behavioral features.

• Proposed: This is the proposed method. The parameter of k is set as 10.

• Proposed w/o EV: This method constructs a malicious node detector based on

ensemble learning by fusing randomly-selected k weak detectors of training en-

vironments. Therefore, this method does not estimate the projected performances

of weak detectors using environmental features (i.e., the weights of weak detec-

tors are identical). We prepare this method to investigate the effectiveness of the

weak detector evaluator.

All data obtained during the simulation time were used to compute behavioral and en-

vironmental features. (As MITR13, DC, and Proposed w/o EV do not consider envi-

ronmental features, these were not obtained here.) We assumed that nodes executed

a classification method at the end of the simulation (only normal nodes executed the

method), in which each node classified all the nodes whose behavioral features had

been observed by the node.

Criteria. As mentioned earlier, our method incurs no additional communication costs.

Also, the computational costs of constructing an ensemble detector and testing a neigh-

boring node (i.e., malicious node judgement) are short4. We therefore focus on the

following criteria to measure the performance of the above methods.

3MITR13 does not convert these listed features to ratios, which differ from our method.
4In our experiments, which were conducted on a mini PC with 2.3 GHz Intel Core i3 processor, the

average computation costs of constructing an ensemble detector and testing are respectively 2.47 [sec]
and 46.66 [msec] (the language is C#).

2.5. EXPERIMENT 33

• Accuracy: This is represented by Tnor→nor,mal→mal

T
, where Tnor→nor,mal→mal and

T are respectively the set of correctly classified instances and the set of all in-
stances.

• Detection rate: This is represented by Tmal→mal

Tmal
, where Tmal→mal and Tmal are

respectively the set of correctly classified instances describing malicious nodes

and the set of all instances describing malicious nodes.

• Mis-Detection rate: This is represented by Tnor→mal

Tnor
, where Tnor→mal and Tnor are

respectively the set of wrongly classified instances describing normal nodes and

the set of all instances describing normal nodes.

2.5.2 Result

Selection of classifier in DC. Figures 2.5–2.7 show the performances of the varieties

of DC. We tested random forest, Naive Bayes, decision tree, and SVM as classifiers5,

and the random forest, which is known to be state-of-the-art and robust, achieves the

best performance. Hereafter, DC denotes the random forest and is compared with our

method.

Comparison with MITR13. Figures 2.8–2.10 show the performances of the methods,

and the performance of MITR13, which is a state-of-the-art malicious detection method,

is much worse than those of the other methods. In particular, MITR13 is about 40%

worse than that of Proposed with regard to the three criteria. This is because features

used in MITR13 are not designed to be applied to a situation where training and test

environments are different. By using all the training data, we computed information

gain6 of behavioral features and the features used in MITR13. They are respectively

described in Tables 2.6 and 2.7. As shown in these tables, the info. gain of features

used in MITR13 is quite low, showing its poor detection performance in the diverse

environments. On the other hand, the info. gain of behavioral features is high. We bold

5We employed Weka data mining toolkit [109] to run these classifiers. We used default parameters
of these classifiers.

6The information gain is used to find distinguishing features of instances. The information gain of a
feature increases the better the feature classifies the instances.

34 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

Figure 2.5: Accuracies of SVM,

Naive Bayes, decision tree, and

random forest

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

te
c
ti
o

n
 r

a
te

Random Decision SVMNaive

0.74 0.74 0.74 0.72

forest Bayes tree

Figure 2.6: Detection rates of SVM,

Naive Bayes, decision tree, and random

forest

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
is

−
D

e
te

c
ti
o

n
 r

a
te

Random Decision SVMNaive

0.21

0.45

0.22

0.41

forest Bayes tree

Figure 2.7: Mis-Detection rates of SVM,

Naive Bayes, decision tree, and random

forest

top-5 info. gain in Table 2.6, and the set of the corresponding features is useful to detect

all attack classes illustrated in Table 2.1 (see Section 2.4.2). This result shows that our

designed features are effective and can be employed for detecting famous attacks in

WSNs.

Comparison with DC. Figures 2.8–2.10 show the performances of our method (Pro-

posed), EL, DC, and MITR13. We can see from Figures 2.8–2.10 that the performance

of DC (random forest) is about 10% worse than that of Proposed with regard to the

2.5. EXPERIMENT 35

Figure 2.8: Accuracies of four methods Figure 2.9: Detection rates of four meth-

ods

Figure 2.10: Mis-Detection rates of four

methods

three criteria. Because DC builds a classifier using training data from all the training

environments, the trained model can fit a majority of training environments. In con-

trast, Proposed prepares a weak detector that is tailored to each training environment.

Figure 2.11 depicts the histogram, whose bin size is 0.02, of the accuracies (average

F-measure) for all the weak detectors when each of the weak classifiers was applied

to each of the test environments. As shown in the figure, we can find that many weak

classifiers do not work well in the test environments. Proposed combines weak detec-

tors that are estimated to work well in test environments, and significantly outperforms

DC. The average F-measure of weak detectors selected by Proposed was 0.89, and we

can say that Proposed successfully selects weak detectors that work well in the test

36 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

Table 2.6: Info. gain of behavioral

features
Behavioral features Info. gain

RepSenRatio 0.021

RepRecRatio 0.021

RepIgnRatio 0.141
ReqRecRatio 0.092
DatSenRatio 0.003

DatRecRatio 0.023

DatIgnRatio 0.024

RerRecRatio 0.004

HelRecRatio 0.028

AllPckRatio 0.015

RepUslRatio 0.023

RepReqRatio 0.018

RerSenRatio 0.021

HelCheckRatio 0.190
ReqIgnRatio 0.179
RepUsfRatio 0.014

ReqUsfRatio 0.103
HelUsfRatio 0.015

Table 2.7: Info. gain of features used in

MITR13
Behavioral features Info. gain

TReqRec 6.4× 10−5

TReqSen 5.4× 10−5

TRepRec 3.7× 10−5

TRepSen 3.1× 10−5

TRerRec 3.3× 10−5

TRerSen 3.2× 10−5

TDatRec 5.4× 10−5

TDatSen 5.4× 10−5

NeiNum 3.0× 10−4

PCR 3.3× 10−4

PCH 0

environments, resulting in high accuracy.

Weak detector evaluator. Figures 2.8–2.10 show the performance of Proposed w/o

EV, which does not employ the weak detector evaluator. The detection rate of Proposed

w/o EV is somewhat worse than that of DC and is also about 10% worse than that

of Proposed because randomly selected conservative weak detectors are used in some

test environments whose network parameters are very different from those of the train-

ing environments, resulting in slight improvement in the mis-detection rate. Here we

2.5. EXPERIMENT 37

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.2 0.4 0.6 0.8 1

F
re

q
u

e
n

c
y

Value of F-measure

Figure 2.11: Histogram of average F-measure for all the weak detectors used for build-

ing the weak detector evaluator

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

A
ll

A
vg

R
e
q
R

e
c

A
vg

R
e
q
S

e
n

A
vg

R
e
p
R

e
c

A
vg

R
e
p
S

e
n

A
vg

D
a
tR

e
c

A
vg

D
a
tS

e
n

A
vg

H
e
lR

e
c

A
vg

H
e
lS

e
n

A
vg

R
e
rR

e
c

A
vg

R
e
rS

e
n

A
vg

N
e
iM

e
t

M
e

a
n

 a
b

s
o

lu
te

 e
rr

o
r

Figure 2.12: Mean absolute error of estimation

38 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

120

Detection rate (Proposed)

F
re

q
u
e
n
c
y

Figure 2.13: Distribution of detection

rates of Proposed in each environment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

120

Detection rate (Proposed w/o EV)

F
re

q
u
e
n
c
y

Figure 2.14: Distribution of detection rates

of Proposed w/o EV

evaluate the performance of the weak detector evaluator, which estimates projected F-

measures of weak detectors in test environments. Figure 2.12 shows the mean absolute

error (MAE) of the estimates when all the eleven environmental features for estimation

were used. We can see from the result of All that the weak detector evaluator can esti-

mate the F-measures with a very small error. Figure 2.12 also shows the mean absolute

error when a single environmental feature is used for estimation. The MAE of the case

where a single each environmental feature is used is higher than that of the case where

all environmental features are used but the difference is slight. Since each environmen-

tal feature is correlated, each MAE is similar to each other. Therefore, even a single

environmental feature provides high estimation accuracy (although using all features

enhance the performance).

Figures 2.13 and 2.14 show the distributions of the detection rates derived from the

detection rate in each test environment (Proposed and Proposed w/o EV, respectively).

As can be seen in the results, the number of test environments with low detection rates

(e.g., 0.4, 0.5, and 0.6) in Figure 2.14 is much larger than that in Figure 2.13. These

results indicate that randomly selected weak detectors did not work well in test en-

vironments whose network parameters are very different from those of a majority of

2.5. EXPERIMENT 39

Figure 2.15: Accuracy vs.

simulation time

Figure 2.16: Detection rate vs.

simulation time

Figure 2.17: Mis-Detection rate vs.

simulation time

training environments. (In our experiment, test environments with large f sometimes

had poor detection rates.) In contrast, Proposed, which selects weak detectors to be

used by employing the weak detector evaluator, succeeded in reducing the number of

test environments with low detection rates. As above, Proposed is effective for test envi-

ronments whose high-impact network parameters are different from those of a majority

40 CHAPTER 2. DETECTING MALICIOUS NODES BY ENSEMBLE LEARNING

of training environments.

Impact of simulation time. Finally, we varied t to investigate the impact of simulation

time, and the performance of each method is shown in Figures 2.15–2.17. We can

see that Proposed keeps outperforming the other methods and has the highest accuracy

(as well as the highest detection rate and lowest mis-detection rate). This result also

implies that our designed features are effective for malicious node detection and can

grasp the difference between malicious and normal nodes, even when t is small (e.g.,

50 [sec]). We observe that MITR13 cannot detect malicious nodes well when observing

time is long. Recall that MITR13 mainly uses numbers of messages as features. As

observing time becomes longer, the difference between malicious and normal nodes

becomes smaller, resulting in poor performance.

2.6 Conclusion

In this chapter, we presented a robust malicious node detection method for WSNs. We

constructed a robust malicious detector by efficiently fusing weak malicious detectors

trained in diverse environments. The experiment revealed that the proposed method

significantly outperformed state-of-the-art malicious detection methods.

As a part of our future work, we plan to investigate the performance of a malicious

node detector trained in various simulated environments when the detector is run in real

WSN environments.

Chapter 3

Detecting Reinforcement
Learning-based Malicious Nodes in
Wireless Sensor Networks

3.1 Introduction

Wireless sensor networks (WSNs) are facing threats from malicious nodes that dis-

turb packet transmissions, leading to poor WSN performance. Existing studies have

proposed a variety of routing attack models [18]. All of which mainly aim at disturb-

ing packet transmissions and causing redundant traffic. However, the existing attacks

simply follows pre-defined routines, which means that the malicious nodes cannot mod-

ify their attack patterns, and thus are easily detected through related countermeasures

[1, 90]. Besides, the assumption that malicious nodes have no learning ability is ex-

tremely unrealistic, given the rapid development of machine learning. Therefore, in this

chapter, we assume that malicious nodes have learning ability, and can learn from the

countermeasures to avoid being detected. In particular, we focus on designing a grey

hole attack with learning ability, because the grey hole attack is a representative attack

model, which is able to destroy the routing procedure and data transmissions of a sen-

sor network (we do not consider multiple attack models because it is difficult to enable

malicious nodes to learn with different attack models). A malicious node with learning

41

42 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

ability which executes the grey hole attack can adjust its behaviors based on learning.

The above-mentioned attack countermeasures cannot deal well with learning-based at-

tack models, because a static rule is ineffective in responding to an attack model in

which nodes can change their behaviors.

Contribution. To design a grey hole attack model with learning ability, we utilize

reinforcement learning to enable malicious nodes to learn by themselves in a WSN. In

addition, we design a method that robustly detects the above attack model. We extract

inherent features for the detection method to detect malicious nodes, and the detection

method is updated simultaneously within the episodes. The following are the principal

contributions of the study in this chapter:

• We design a reinforcement learning-based grey hole attack model for WSNs. To

our knowledge, this is the first study that applies reinforcement learning algo-

rithms to build a smart grey hole attack model for WSNs.

• We propose a method for discrete-time adaptive updating of the countermeasure,

to detect the novel attack model.

• We conduct extensive experiments to investigate the performance of the proposed

attack model and corresponding countermeasure in terms of accuracy, detection

rate, mis-detection rate, and detection time. The results reveal that malicious

nodes in the attack model are hardly detected by existing countermeasures, and

that the proposed countermeasure outperforms the state-of-the-art alternatives.

Organization. Here we describe the organization of this chapter. In Section 3.2, we

review related works. Section 3.3 introduces the assumptions of the study in this chap-

ter. The proposed method is described in Section 3.4. The experimental results are

summarized in Section 3.5. Section 3.6 presents our conclusion.

3.2 Related work

Reinforcement learning. Reinforcement learning (RL) has become an increasingly

popular focus of research, due to its effectiveness in various tasks. As a model-free re-

inforcement learning technique, the Q-learning algorithm can derive the optimal strat-

3.2. RELATED WORK 43

egy, if all the feasible actions are repeatedly sampled over all the states in a Markovian

decision process [84]. Mnih et al. [71] first successfully approximated the Q function

with a deep convolutional neural network, and enabled an agent to beat a human expert

in several Atari games. Moreover, in [54], Kulkarni et al. firstly proposed the idea of

hierarchical deep reinforcement learning to separate a task into two levels. The upper

level makes decision, and the lower level executes actions. Vezhnevets et al. [105] fur-

ther developed the hierarchical method, and their method was capable of doing more

complicate tasks. Note that, the hierarchical deep reinforcement learning method is

not suitable for our problem because there is no obvious hierarchical structure in our

system.

Later on, RL algorithms have also been utilized in many WSN-related applications,

such as the scheduling of energy harvesting nodes [7] and detecting the rough edge of a

VANET [66]. In the domain of WSN security, Li et al. [61] used game theory to protect

packet transmissions against smart attacks. Xiao et al. [111] utilized RL against smart

jamming. Aiming to build a secure routing method, Liu et al. [65] utilized Q-learning to

enable a node to determine the credibility of a specific neighboring node. These studies,

however, all assume that malicious nodes follow existing patterns, and the proposed

methods are only effective for pre-defined attack models. Malicious nodes with smart

attack can learn from the a specific detection method. Therefore, the above-mentioned

methods are not capable of detecting malicious nodes with smart attack.

Grey hole attack model and countermeasures in WSNs. Security in WSNs is a chal-

lenging issue, and many existing studies have focused on it, proposing a variety of attack

models [50, 97]. The grey hole attack is particularly notable among the proposed attack

models. In this model, malicious nodes can selectively (randomly) forward packets or

reply requests, to drag routes to themselves. The ordinary grey hole attack is a smart

version of the famous black hole attack [88], and is hard for ordinary reputation-based

detection methods to counter [87]. Some studies have developed techniques for avoid-

ing the attack, using multipath approaches [102], analyzing the impact of the attack

[95], and preventing the attack [86]. Many studies utilized machine learning method

to detect malicious nodes [78, 116]. They designed features and building classifiers to

detect malicious nodes. However, the existing grey hole attack model and correspond-

ing countermeasures do not assume that the malicious nodes are equipped with learning

44 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

ability.

3.3 Assumption

In this section, we describe the assumption of our study. Our assumed network model

is the same as the network model in Chapter 2 (see Section 2.3.2).

3.3.1 Mobile nodes

In this study, we assume that the WSN contains two categories of nodes, normal and

malicious, which perform the grey hole attack; and that each node category has its own

servers (normal and malicious, respectively) with machine learning functions. In ad-

dition, we assume that malicious nodes work together to destroy the regular routing

procedure and disturb the proper data transmissions in the WSN. Furthermore, we as-

sume that the malicious nodes can use reinforcement learning to learn not to be detected

while executing malicious behaviors. The normal nodes, meanwhile, update their de-

tection method to track the latest behavioral pattern of the malicious nodes. The normal

nodes also work together to detect malicious nodes, using a specific data collecting

method (e.g., flooding through the network).

3.3.2 Deep Q-learning for the malicious server

We assume that malicious nodes employ deep Q-learning[71] as the reinforcement

learning algorithm. Below we present a brief summary of deep Q-learning.

Reinforcement learning deals with learning an optimal policy π∗ for an agent inter-

acting in an unknown environment. At each time step t, an agent observes the current

state st of the environment, decides on an action at according to a policy π, and observes

a reward signal rt. The goal of the agent is to find a policy that maximizes the expected

sum of discounted rewards Rt

Rt =
T∑
t′=t

γt
′−trt′ ,

3.3. ASSUMPTION 45

where T is the time at which the episode terminates, and γ ∈ [0,1] is a discount factor

that determines the importance of future rewards. The Q-function of a given policy π is

defined as the expected return from executing an action a in a state s:

Qπ(s, a) = E[Rt|st = s, at = a]

Finally, the updating rule for the Q-values for an action selection policy π is as follows:

Qπ(st, at) = (1− α)Qπ(st, at) + α[Rt(st, at) + γmax
a
Qπ(st+1, a)]

where

0<α<1

is the learning rate.

In the deep Q-learning method, a function approximation is used to estimate the

action-value function Q. In particular, deep Q-learning uses a neural network parametrized

by θ for approximation:

Q(s, a; θ) ≈ Q(s, a)

To find the optimal θ, we apply gradient descent by following loss function [71]:

Lt (θt) = Es,a,r,st+1

[
(yt −Qθt(s, a))

2] ,
where t is the current time step and yt = r + γmaxat+1 Qθt (st+1, at+1).

It has been shown that, with sufficiently large number of learning episodes, the deep

Q-learning algorithm converges and returns the optimal policy π∗ [33].

Instead of performing the Q-learning updates in an online learning fashion, a com-

mon practice is to use experience replay to break the correlation between successive

samples [4]. At each time step, an agent experience (st, at, rt, st+1) is stored in a replay

memory, and the Q-learning updates are performed on batches of experiences randomly

sampled from the memory. In the training of the deep Q-learning agent, we assume

that malicious nodes share the same malicious server, so note that the st and st+1 in one

experience tuple (st, at, rt, st+1) are the state and next state of a particular malicious

node.

At every training step, the next action is generated using an ε-greedy strategy: with

a probability ε, the next action is selected randomly, and with a probability 1 − ε, the

next action is the best one obtained by the deep Q-learning algorithm. In the proposed

method, we start with ε = 1 and progressively decay ε.

46 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

3.4 Proposed method

3.4.1 Overview

Here, we provide an overview of the proposed method. The method, which is based on

machine learning techniques, consists of following two phases.

• A training phase based on simulations (by a network simulator). Therefore, all

the nodes can connect to their respective server without additional packet trans-

missions.

• A test phase that utilizes the malicious and normal servers built in the training

phase.

Figure 3.1 illustrates the training phase of the method. In this phase, we simulate various

environments with different environmental parameters (e.g., initial node positions), and

train the deep Q-learning agent with reinforcement learning algorithms in an on-line

manner, using data obtained from the malicious nodes in the simulated environments.

At the same time, the normal server is also trained using the data collected from the

normal nodes. It is important to recall that, in the training phase, all the malicious and

normal nodes respectively share their own server. In the training phase, only one normal

server and one malicious server are trained, because all the data can be collected to build

a strong detection algorithm and a strong attack model. Therefore, only one detection

algorithm and one model for malicious nodes are formed.

The reason why the servers are trained on different network environments is because

training on a single network environment is not generalized [30] (i.e., in a single net-

work environment, the normal server may overfit the behavioral pattern of the malicious

nodes).

In the test phase, each normal/malicious node is equipped with a fixed normal/malicious

server obtained in the training phase. In the test phase, the categories of neighboring

nodes are unknown, which is different from the training phase. Normal nodes observe

behaviors of neighboring nodes thus to collect data. Then, a normal node use the trained

normal server to detect malicious nodes, whose action is decided by their malicious

server. In this procedure, a normal node does not transmit any observed data to any

3.4. PROPOSED METHOD 47

Training environment
(1) Malicious Server

state reward

fit select

DQN agent

action

(2) Normal Server

Instances

…

Classifier

update

Figure 3.1: Overview of the training phase of the proposed method. (1) Malicious server

monitors the WSN, utilizes our method to obtain state and reward, and then updates the

deep Q-learning agent and selects an action. (2) Normal server collects instances from

normal nodes and then updates the classifier.

neighboring node. Therefore, a malicious node cannot connect to a normal node to steal

observed data. Note that the servers are never updated in the test phase, because, (i) for

the normal server, the node category of neighboring nodes is unknown, and (ii) for the

malicious server, the reward is unknown. Therefore, in the test phase, both malicious

and normal nodes do not need to collect data from other nodes.

In addition, we assume that both malicious and normal nodes observe the behavior

of their neighboring nodes. Before we describe the data collected for the normal and

malicious servers, we illustrate the information related to the neighboring node observed

by each node in Table 2.2 (see Section 2.4.2 in Chapter 2).

48 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

3.4.2 Smart grey hole attack model

Here we describe the proposed smart grey hole attack, a novel attack model based on

reinforcement learning. Malicious nodes in this attack model aim at disturbing the

routing and data transmission of a WSN, without being detected.

Ordinary grey hole attack model

Before we illustrate our smart grey hole attack model, we first detail the ordinary grey

hole attack model. This model mainly consists of two components: i) When a grey hole

malicious node receives an RReq, it may perform normally (follow the routing protocol

of the WSN), or send back an RRep with one hop count, which means that the malicious

node states that it is near the destination. ii) When the malicious node receives a data

packet, it may also perform normally, or just drop it. The probability that malicious

nodes perform normally or not is decided by a packet dropping ratio (e.g., 50%).

However, this static pre-defined packet dropping ratio makes the grey hole malicious

nodes easy to be detected by some machine learning-based detection methods [70],

because these methods can learn from the behaviors of malicious nodes and predict

their packet dropping ratio. Therefore, in this study, we employ reinforcement learning

to enable malicious nodes to learn an appropriate behavior.

Overview of smart grey hole attack model

In the training phase of this model, we run a large number of episodes of simulations. In

each of which, we employ different network parameters. During each training episode,

the malicious server monitors the WSN and employs the proposed method to obtain a

reward and a state after any malicious node receives a packet. The malicious server then

updates itself, and selects an action for this malicious node. Each episode ends when all

the malicious nodes in the WSN have been detected, or the simulation time exceeds a

threshold value.

In the test phase, each malicious node is equipped with a trained malicious server ob-

tained in the training phase. The malicious server of each node is never further updated;

however, it still utilizes the proposed method to obtain the states and select actions for

its malicious node.

3.4. PROPOSED METHOD 49

State and reward engineering

As described in Section 3.3.2, reinforcement learning utilizes a series of tuples (st, at,

rt, st+1) for updating the policy of an agent. However, in contrast to existing simple

game-like learning tasks (e.g., the Cart-pole game from OpenAI Gym1), which have

obvious state and reward declarations, and Atari game missions, which can utilize con-

volutional neural networks to conveniently extract features from game picture frames,

the malicious server in the proposed system does not have an existing method to obtain

states and rewards from monitoring data. Thus, we design a method to obtain these

pieces of information.

State engineering. When a malicious node observes a state, it selects an action ac-

cording to the decision of the malicious server. To enable the malicious nodes to rec-

ognize their situation, we design the states (as vectors to input into neural networks)

by extracting the short-term and long-term information. In particular, we extract the

packet category ID and neighboring node ID as the short-term information. The packet

category ID shows the category of this received packet (e.g., RReq is 1 and RRep is 2),

and node ID represents the ID of the node who sends this packet. Note that the packet

category and the node IDs are not numeric data, but categorical data. For instance, com-

pared with node ID 3, node ID 2 and node ID 8 have just the same differences. However,

if we simply utilize these node IDs (2, 3, 8) as input of the neural networks, the neural

networks of the malicious server will treat 2 as more similar to 3 than 8 [19]. As a

result, we employ one-hot encoding [20] to encode the node ID and packet category ID,

in order to appropriately process the categorical data.

Figure 3.2 illustrates our one-hot encoding for node ID. In a WSN of n nodes, the

node ID k of a received packet is transformed into a vector of length n, whose the k-th

dimension is 1, and the rest dimension of the vector is 0. The one-hot encoding of the

packet category ID is the same as that of the node ID. In this way, a malicious node

can learn which neighboring node has sent the packet, and learns the behaviors of its

neighboring nodes based on the short-term information.

However, the malicious nodes cannot clearly recognize their situations based solely

on these two vectors, because the received packet category ID and neighboring node ID

1https://gym.openai.com/

50 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

Network environment Malicious node receives a packet
Received packet:

Packet category ID Node ID

Hop count ...
Time

Node ID : k. Node number: n.
One-hot embedding vector of Node ID:

0 0 0 … 0 1 0 0 … 0 0 0

k

n

Figure 3.2: One-hot encoding of node ID

may always be similar during the training simulation, and can only represent the short-

term situation. Therefore, we also extract ratios that can clearly describe the malicious

nodes’ long-term situations. Table 3.1 presents a summary of the long-term information

of malicious nodes. In this table, we calculate the connection between the sent and

received numbers of each category of packet, and the total sent and received numbers.

These ratios can not only represent the node density (ActNeiRatio) near a malicious

node, but illustrate the packets sent and received frequency of a particular category of

packet. For example, if a malicious node sends too many RReps, its RepTotSenRatio is

extremely high. In such a situation, it will soon be detected by some machine learning-

based detecton method. Consequently, this malicious node will try to send fewer RReps

not to be detected. A further advantage of the states is that the values of these processed

ratios are all between [0, 1], which means our state design does not need normalization,

and can rapidly converge.

Finally, we concatenate the one-hot vector of packet category ID, one-hot vector of

neighboring node ID, and extracted ratios together as our state vector. Therefore, our

state vector can represent both the long-term and short-term trends of the WSN for the

3.4. PROPOSED METHOD 51

Table 3.1: Long-term information of malicious nodes
Long-term information Definition

ActNeiRatio 1/ActNei

ReqTotSenRatio TReqSen / TPckSen

RepTotSenRatio TRepSen / TPckSen

RerTotSenRatio TRerSen / TPckSen

HelTotSenRatio THelSen / TPckSen

DatTotSenRatio TDatSen / TPckSen

ReqTotRecRatio TReqRec / TPckRec

RepTotRecRatio TRepRec / TPckRec

RerTotRecRatio TRerRec / TPckRec

HelTotRecRatio THelRec / TPckRec

DatTotRecRatio TDatRec / TPckRec

ReqRecTotSenRatio TReqRec / TPckSen

RepRecTotSenRatio TRepRec / TPckSen

RerRecTotSenRatio TRerRec / TPckSen

HelRecTotSenRatio THelRec / TPckSen

DatRecTotSenRatio TDatRec / TPckSen

ReqSenTotRecRatio TReqSen / TPckRec

RepSenTotRecRatio TRepSen / TPckRec

RerSenTotRecRatio TRerSen / TPckRec

HelSenTotRecRatio THelSen / TPckRec

DatSenTotRecRatio TDatSen / TPckRec

malicious nodes.

Reward shaping. The reward design in reinforcement learning is important because

it describes how the agent behaves. Therefore, we explicitly design the reward for the

malicious server.

Malicious nodes in our smart grey hole attack model aim to: i) drop data packets and

ii) remain undetected. The result of dropping data packets can be represented by how

much the transmission rate is reduced, and the result of attempting to remain undetected

52 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

can be represented as the length of time that the malicious nodes remain undetected. As

a result, the following rewards for shaping the reward function of the malicious server

are considered.

• Positive reward for lowering the transmission rate.

• Positive reward for not being detected before a pre-defined time threshold.

• Negative reward for being detected.

Next, we need to consider the fact that setting the reward magnitudes and frequen-

cies is difficult, and they often depend on the application. For instance, in the Atari’s

Pong game, the rewards are bounded by −1 and +1, while in Atari’s Mr. Pac-Man eat-

ing a single ghost can yield a reward of up to +1600. To overcome this and for learning

rapidly, we here employ bounded reward [72]. If the malicious nodes are all detected

before the pre-defined threshold, the reward is −1. Otherwise, the reward is +1. With

regard to lowering the transmission rate, the above reward design cannot show a de-

crease in the transmission rate, so we design the reward as 1 − transmission rate, to

reduce imbalance. We then add the positive and negative reward as a final reward.

Note that in our setting, we utilize the sparse reward function. That is, the malicious

server receives no non-zero reward until an episode is done. As aforementioned, an

episode is done when i) all the malicious nodes have been detected, or ii) the simulation

time passes the threshold value. We finally summarize our reward:

reward =



0 (not end)

1 + 1− transmissionrate (end &

not detected)

−1 + 1− transmissionrate (end &

detected).

3.4.3 Countermeasure

This section describes our countermeasure for the smart grey hole attack model.

3.4. PROPOSED METHOD 53

node a node b

Observed data
of node b

Normal feature
vector

Training data for
normal server

malicious or normal

Figure 3.3: Preparing training data for the normal server

Overview of countermeasure

Now we aim to build a robust classifier to detect smart grey hole malicious nodes, and a

neural network classifier in the normal server is built to classify the neighboring nodes of

each normal node. The classifier is actually trained in the training phase at the same time

as the malicious server is updated, meaning that through the large number of episodes

in this phase, the classifier is also trained, and a trained classifier is obtained at the end

of the training phase.

In the test phase, we install this trained normal server on each normal node, and

normal nodes utilize majority votes to decide the category of their neighboring nodes.

Constructing classifier in normal server

For the normal classifier’s features, we extract inherent features [30] to represent the

malicious behaviors (Table 2.3, see Section 2.3 in Chapter 2). The normal server ob-

tains these features from observed data, and these features enable the normal classifier

to identify malicious nodes in a WSN. For instance, assume that node a observes its

54 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

neighboring node b, the DatRecRatio can help node a to measure the numbers of data

packets received from node b, because if node b is a malicious node with grey hole

attack, the data packets received from it is comparably low. We also design the Act-

NeiRatio, which is calculated as 1/ActNei, to enable the normal nodes to determine the

number of surrounding active neighboring nodes.

Figures 3.3 shows the procedure of preparing training data for normal server. Simi-

lar to the above-mentioned example, node a extracts normal features from the observed

data of node b, and constructs a noraml feature vector concatenating the extracted fea-

tures. In addition, as it is known, in the training phase, whether or not node b is ma-

licious, we associate this information with the normal feature vector as a label. By

applying the above procedures to each pair of neighboring node, we can obtain a set of

labeled normal feature vectors, which are used to train the normal server in the training

phase. Since the normal server classifies a neighboring node of interest into a malicious

or normal class, we utilize SMOTE [16] to over-sample the minority class, so that the

proportion of training instances from each class is equal. Therefore the model can have

better performance because of the balanced training data.

Frequent adaptation

Since the malicious nodes employ reinforcement learning to adjust their behavioral pat-

tern, the normal nodes must frequently and simultaneously need to update their server

in the training phase. That is, the classifier is trained at the same time as the deep Q-

learning agent of the malicious server is updated. We thus ensure that normal nodes

frequently connect to the normal server to update the classifier and detect malicious

nodes. Before each adaptation, the normal server collects training data (the features and

categories of neighboring nodes) from all the normal nodes, and then uses this data to

update the normal classifier.

Pre-training of normal classifier

In the proposed method, we train a neural network classifier and utilize it to detect

malicious nodes. However, if we randomly initialize the neural network classifier, it

will have low accuracy and may slowly converge. Therefore, for the purpose of fast

3.4. PROPOSED METHOD 55

adaption and accelerating training speed, before the start of training phase, we pre-train

the classifier with data obtained in different network environments. In particular, we

run simulations involving normal and malicious nodes with ordinary grey hole attack

models in various network environments with different parameters, to obtain data by

our proposed method. We then utilize this data to construct a pre-trained classifier, and

conduct the training phase on this pre-trained classifier instead of a randomly initialized

classifier.

Detecting malicious nodes

We assume that node a in a given test environment needs to be decided its category by

its neighboring nodes. We assume that each neighboring node holds a trained classi-

fier built by our proposed detection method in advance. Assume that, in a given test

environment, node a judges whether or not node b is malicious. Node a observes the

behavior of node b over a period of time and computes a normal feature vector. The

computed vector is then fed into the classifier, and the detection category for node b by

node a is obtained.

We utilize majority voting to decide final category of a node. For instance, if node

b has three neighboring normal nodes, and two of them classify it as malicious node,

then node b is identified as a malicious node. The majority voting result for node b is

determined as follows:

ŷ =

{
normal (normal vote ratio > 0.5)

malicious (otherwise)

where normal vote ratio represents the percentage of the neighboring nodes of node b

voting it as a normal node. We set 0.5 as a detection threshold. In the training procedure

of our proposed method, all normal nodes share a same normal server. As a result, in

the testing, when the category of a node is decided, there is no difference of the weights

of voting from its neighboring nodes. Note that when the normal vote ratio of a node

is 0.5, this node is identified as malicious nodes because detecting malicious nodes is

considered as more important than mis-detecting normal nodes.

After a node m is decided as a malicious node by its neighboring normal nodes, these

neighboring nodes will ignore m from the sensor network by i) dropping all the packets

56 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

received from m, and ii) sending no packet to m. Thus, m can no longer harm the wireless

sensor network.

3.5 Experiments

3.5.1 Setting

We used the Qualnet 7.4 network simulator. Each node transmitted messages and data

packets with a payload sizes of 256 bytes, using an IEEE 802.11b device. The com-

munication range of each node was adjusted to roughly 100 meters, and the network

bandwidth was 11Mbps. Similarly to previous studies [26], [49], we used the random

way point model [9], with a maximum movement speed of 4.0[m/sec] and pause time

of 0. (The velocity of each node was randomly chosen from (0, 4.0)) When there were

n nodes in a network, there were n ·m (m ∈ [0.1, 0.4]) malicious nodes in the network.

The network parameters are described in TABLE 3.2. We conducted parameter anal-

ysis, and the default value of each parameter is also shown in TABLE 3.2. When we

investigated the influence of a particular network parameter, the other parameters were

fixed by the default values.

We randomly chose a pair of source and destination nodes every 0.2 seconds. If

the source node had an active route to the destination node, the source node sent a data

packet to the destination node directly. Otherwise the source node broadcasts an RReq

to find a route to the destination node.

We ran simulations of 1500 episodes in the training phase, and trained both mali-

cious and normal servers simultaneously with random initial node positions and random

node IDs. We also selected m from 0.1, 0.2, and 0.4 for each episode in the training

phase, and in the test phase, m was 0.3.

Figure 3.4 is the flow chart of the whole experiment procedure.

Competitors. To investigate the effectiveness of the proposed countermeasure (denoted

by P-detection), we prepared the following methods.

• MITR13 [70]: This is the same as MITR13 in Chapter 2 (see Section 2.5.1).

• Rule-based [77]: This is a technique combining rule based method with SVM.

3.5. EXPERIMENTS 57

Experiment starts

Experiment terminates

Yes

Start new episode

Time for normal

nodes connect to

normal server?

All malicious nodes

are detected or

Simulation time over?

A Malicious

node receives a

packet?

Number of

episodes >

1500?

Extract long-term and

short-term information to

build state vector

Execute action and obtain

reward by method

described in Chapter 3.3.2

Feed state into DQN agent

to obtain action

Update DQN agent

Normal server collecting

data from normal nodes

Update normal classifier

Episode terminates

No

Yes

Yes

Yes

No

No

Detect malicious nodes

No

Figure 3.4: Flow chart of our experiment

58 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

Table 3.2: Parameter configuration
Parameter Values

n 20 (default), 40, 60

m 0.1, 0.2 (default), 0.3, 0.4

Network size [m] × [m] 200 × 200, 300 × 300 (default), 400 × 400

normal node interval

contact seconds [sec] 0.4 (default), 1.2, 2

Threshold time for

giving a positive reward [sec] 5, 10 (default), 15, 20

packet dropping ratio 0.25, 0.5(default), 0.75

This method designs a rule for deciding a categories of neighboring nodes. This

method employs the following features: packet delivery ratio (PDER), packet

modification rate (PMOR), and packet misroute rate (PMISR).

Note that we also update MITR13 and SVM (decided by rule) in the same way as the

proposed countermeasure.

To investigate the effectiveness of our proposed grey hole attack model (P-attack),

we compared P-attack with ordinary grey hole attack model (O-attack).

Criteria. We focused on the following criteria to measure the performance of MITR13

and P-detection.

• Accuracy, Detection rate, and Mis-detection rate: These criteria are the same as

those in Chapter 2.

• Detection time: This indicates how much time normal nodes spend to detect all

the malicious nodes in the WSN.

3.5.2 Experimental results and analysis

Influence of minimum epsilon. We present the influence of minimum epsilon in the

average total reward of the last 50 episodes in Table 3.3. From this table, we can see

3.5. EXPERIMENTS 59

Table 3.3: Influence of minimum epsilon
Minimum epsilon 0 0.01 0.1 0.5

Avg. reward of last 50 episodes 1.39 1.41 1.28 0.94

Table 3.4: Decrease in transmission rate
Avg. first 50 episodes Avg. last 50 episodes

Trans. rate 71.7 64.7

0

10

20

30

40

50

60

70

80

90

100

1

4
2

8
3

1
2
4

1
6
5

2
0
6

2
4
7

2
8
8

3
2
9

3
7
0

4
1
1

4
5
2

4
9
3

5
3
4

5
7
5

6
1
6

6
5
7

6
9
8

7
3
9

7
8
0

8
2
1

8
6
2

9
0
3

9
4
4

9
8
5

1
0
2
6

1
0
6
7

1
1
0
8

1
1
4
9

1
1
9
0

1
2
3
1

1
2
7
2

1
3
1
3

1
3
5
4

1
3
9
5

1
4
3
6

1
4
7
7

Tr
an

sm
is

so
n

ra
te

Episodes

Figure 3.5: Transmisson rate in training phase

that the minimum epsilon value of 0.01 yields the highest average total reward. With the

minimum epsilon 0.1 and 0.5, more random actions are chosen. Those random actions

are detected by the normal nodes. The method with minimum epsilon being 0.01 also

outperforms that with being 0. Minimum epsilon of 0 has no exploration rate at all in

the last few episodes, which is easily detected by normal nodes. We consequently use

0.01 as our minimum epsilon in the whole experiment.

Decrease in transmission rate. To illustrate the performance of P-attack, we show the

decrease in the transmission rate of the WSN in the training phase (Figure 3.5). We

60 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

can see that, with the learning of the smart malicious nodes, the transmission rate of the

WSN gradually decreases during the training phase. Table 3.4 shows the a comparison

of the average transmission rates of the first and last 50 episodes. We can see that the

transmission rate drops after the training phase. This shows that the proposed P-attack

can learn to disturb the transmission of data packet in WSNs.

Key parameter analysis

Here, we investigate the performances of P-detection, MITR13, and Rule-based meth-

ods under different network parameters.

Influence of number of nodes. Figures 3.6(a)–3.6(c) show the performances of P-

detection, MITR13, and Rule-based methods with different number of nodes. All these

methods obtain better performances as the number of nodes becomes larger. This is

because when the number of nodes becomes larger, normal nodes can observe more

neighboring nodes. That is, normal nodes can obtain more data for training the classifier.

Therefore, they can more clearly find the difference between neighboring malicious and

normal nodes. From these figures, we can also see that the detection rate of P-attack is

less than that of O-attack for each method, which demonstrates the strength of P-attack.

Influence of ratio of malicious nodes. Figures 3.7(a)–3.7(c) show the performances of

P-detection, MITR13, and Rule-based methods with different ratio of malicious nodes.

The performances of all the methods decrease when the ratio of malicious nodes become

large. Grey hole attack nodes randomly drop packets, so when the number of malicious

nodes becomes larger, it is more difficult to find the difference between packet dropping

and packet loss.

Influence of interval time of normal server update. Figures 3.8(a)–3.8(c) show the

performances of P-detection, MITR13, and Rule-based methods with different interval

time of normal server update. The performances of Rule-based do not vary in these

situations because it is a pre-defined rule based method. There is no change for the

results of P-detection and MITR13 for O-attacks because O-attack does not learn from

the network, thus the interval time of server update do not have influence on these

results. The performances of P-detection and MITR13 for P-attack degrade when the

interval time becomes longer. This is because P-detection and MITR13 cannot identify

the behaviors of smart malicious nodes if they do not learn frequently. Recall that, in

3.5. EXPERIMENTS 61

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80

A
cc

u
ra

cy

Number of nodes

P-detection (O-attack) MITR13 (O-attack)
Rule-based (O-attack) P-detection (P-attack)
MITR13 (P-attack) Rule-based (P-attack)

(a) Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80

D
et

ec
ti

o
n

 r
at

e
Number of nodes

P-detection (O-attack) MITR13 (O-attack)

Rule-based (O-attack) P-detection (P-attack)

MITR13 (P-attack) Rule-based (P-attack)

(b) Detection rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80

M
is

-d
et

ec
ti

o
n

 r
at

e

Number of nodes

P-detection (O-attack) MITR13 (O-attack)

Rule-based (O-attack) P-detection (P-attack)

MITR13 (P-attack) Rule-based (P-attack)

(c) Mis-detection rate

Figure 3.6: Influence of number of nodes on P-detection, MITR13, and Rule-based

methods

each update, the normal server can obtain data from all normal nodes. Therefore, when

interval time becomes longer, the normal server has smaller amount of data for training,

and the performance becomes worse.

62 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3

A
cc

u
ra

cy

Ratio of malicious nodes

P-detection (O-attack) MITR13 (O-attack)

Rule-based (O-attack) P-detection (P-attack)

MITR13 (P-attack) Rule-based (P-attack)

(a) Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3

D
et

ec
ti

o
n

 r
at

e

Ratio of malicious nodes

P-detection (O-attack) MITR13 (O-attack)

Rule-based (O-attack) P-detection (P-attack)

MITR13 (P-attack) Rule-based (P-attack)

(b) Detection rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3

M
is

-d
et

ec
ti

o
n

 r
at

e

Ratio of malicious nodes

P-detection (O-attack) MITR13 (O-attack)

Rule-based (O-attack) P-detection (P-attack)

MITR13 (P-attack) Rule-based (P-attack)

(c) Mis-detection rate

Figure 3.7: Influence of ratio of malicious nodes on P-detection, MITR13, and Rule-

based methods

Influence of threshold for giving a positive reward. Figures 3.9(a)–3.9(c) show the

performances of P-detection, MITR13, and Rule-based methods with different time

threshold for giving a positive reward of the P-attack. When the time threshold becomes

3.5. EXPERIMENTS 63

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 1.2 2

A
cc

u
ra

cy

Interval time of normal server update [sec]

P-detection (O-attack) MITR13 (O-attack)

Rule-based (O-attack) P-detection (P-attack)

MITR13 (P-attack) Rule-based (P-attack)

(a) Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 1.2 2

D
et

ec
ti

o
n

 r
at

e
Interval time of normal server update [sec]

P-detection (O-attack) MITR13 (O-attack)

Rule-based (O-attack) P-detection (P-attack)

MITR13 (P-attack) Rule-based (P-attack)

(b) Detection rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 1.2 2

M
is

-d
et

ec
ti

o
n

 r
at

e

Interval time of normal server update [sec]

P-detection (O-attack) MITR13 (O-attack)
Rule-based (O-attack) P-detection (P-attack)
MITR13 (P-attack) Rule-based (P-attack)

(c) Mis-detection rate

Figure 3.8: Influence of interval time of normal server update on P-detection, MITR13,

and Rule-based methods

larger, the detection rates and accuracies of P-detection, MITR13, and Rule-based meth-

ods decrease because malicious nodes aim to have longer life time, so they need to per-

form more normally (i.e., to perform like normal node to avoid being detected), thus the

64 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

A
cc

u
ra

cy

Threshold for giving positive reward [sec]

P-detection MITR13 Rule-based

(a) Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
et

ec
ti

o
n

 r
at

e

Threshold for giving positive reward [sec]

P-detection MITR13 Rule-based

(b) Detection rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

M
is

-d
et

ec
ti

o
n

 r
at

e

Threshold for giving a positive reward [sec]

P-detection MITR13 Rule-based

(c) Mis-detection rate

Figure 3.9: Influence of time threshold for giving a positive reward on P-detection,

MITR13, and Rule-based methods

detection rates decrease. The detection rate of P-detection is still larger than 0.8 when

the time threshold is 20 second, outperforming MITR13 and the Rule-based method.

Influence of packet dropping ratio. Figures 3.10(a)–3.10(c) show the performances of

3.5. EXPERIMENTS 65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75

A
cc

u
ra

cy

Packet dropping ratio

P-detection MITR13 Rule-based

(a) Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75

D
et

ec
ti

o
n

 r
at

e
Packet dropping ratio

P-detection MITR13 Rule-based

(b) Detection rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75

M
is

-d
et

ec
ti

o
n

 r
at

e

Packet dropping ratio

P-detection MITR13 Rule-based

(c) Mis-detection rate

Figure 3.10: Influence of packet dropping ratio for O-attack on P-detection, MITR13,

and Rule-based methods

P-detection, MITR13, and Rule-based methods with different packet dropping ratios for

O-attack. When packet dropping ratio increases, the accuracies and detection rates of

P-detection, MITR13, and Rule-based increase. This is because when malicious nodes

66 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 300 400

A
cc

u
ra

cy

Side length of area [m]

P-detection (O-attack) MITR13 (O-attack)

Rule-based (O-attack) P-detection (P-attack)

MITR13 (P-attack) Rule-based (P-attack)

(a) Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 300 400

D
et

ec
ti

o
n

 r
at

e

Side length of area [m]

P-detection (O-attack) MITR13 (O-attack)

Rule-based (O-attack) P-detection (P-attack)

MITR13 (P-attack) Rule-based (P-attack)

(b) Detection rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 300 400

M
is

-d
et

ec
ti

o
n

 r
at

e

Side length of area [m]

P-detection (O-attack) MITR13 (O-attack)

Rule-based (O-attack) P-detection (P-attack)

MITR13 (P-attack) Rule-based (P-attack)

(c) Mis-detection rate

Figure 3.11: Influence of area size of network on P-detection, MITR13, and Rule-based

methods

drop more packets, their behaviors will be more different from normal nodes. Therefore,

malicious nodes have more possibility to be detected.

Influence of area size of network. Figures 3.11(a)–3.11(c) show the performances of

3.6. CONCLUSION 67

P-detection, MITR13, and Rule-based methods with different area sizes. From these

figures, we can see that when area size becomes larger, the accuracies and detection

rates for all three method drop. This is because i) when area size becomes larger, the

packet loss happens more frequently, thus normal nodes miss more packets, which leads

to worse performance of the classifier (because malicious nodes also drop packets), and

ii) when node density is lower, normal server obtains smaller amount of training data

from normal nodes, which influences the accuracy.

3.6 Conclusion

In this chapter, we have proposed a smart grey hole attack model, along with an effec-

tive countermeasure, for WSNs. We constructed a reinforcement learning-based attack

model, with malicious nodes detected using our adaptive server. The experimental re-

sults revealed that the model’s malicious nodes could learn from the state-of-art counter-

measures and thereby extend their lifetime. Our countermeasure, as well, outperformed

the state-of-art alternatives and detected the malicious nodes rapidly. Furthermore, faced

with a different attack, our method can also be utilized to explore the state.

As part of our future work, we will investigate a particularly powerful all-round

attack which not only utilizes the grey hole attack function, but can harm an entire

mobile WSN in various ways. Designing an all-round attack is challenging because

the state and action spaces are huge. Hence, the neural network of malicious node is

difficult to converge.

68 CHAPTER 3. DETECTING RL-BASED MALICIOUS NODES IN WSNS

Chapter 4

Detecting Energy Depriving Malicious
Nodes in Energy Harvesting
Cooperative Wireless Sensor Networks
by Unsupervised Learning

4.1 Introduction

The recent breakthrough in energy harvesting cooperation (EHC) technology [69] re-

lieves the bottleneck of energy limitation in wireless sensor networks (WSNs). There-

fore, the concept of energy harvesting cooperative wireless sensor networks (EHC-

WSNs) has come up and attracts attentions increasingly [34]. An EHC-WSN is a WSN

where nodes can harvest energy from ambient environments (e.g., harvesting from solar

energy [108] and vibration [15]) and transfer energy to other nodes.

Much effort has been devoted to extending the lifetime of EHC-WSNs. Most studies

focus on optimizing the energy transferring [34] and designing energy-aware routing

protocols [5] to enable a WSN to have a longer lifetime. Meanwhile, few works focused

on security issues of EHC-WSNs. For example, in the energy cooperative architecture,

a node can obtain energy from its neighboring nodes if it lacks energy. A malicious node

hence can claim that it lacks energy, even if it has enough energy. In this case, it can

69

70 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

deprive energy of its neighboring nodes, and they lose their energy. This kind of energy

depriving attack may destruct the network reliability and functionality, which triggers

event losses. Even worse, such an attack may lead to severe risks, particularly for real-

time and safety-critical applications, such as extreme weather monitoring [47], water

quality monitoring [23], and forest fire alarming [85]. Therefore, a valuable insight

should be offered into attacks and security issues in EHC-WSNs. In this chapter, we

focus on detecting energy depriving malicious nodes in EHC-WSNs. This is the first

study that focuses on detecting energy depriving malicious nodes.

4.1.1 Motivation

Numerous studies have figured out various attack models for malicious node and pro-

posed classifier, rule, and encryption-based methods for detecting malicious nodes in a

WSN environment [67, 79, 83]. However, these techniques cannot provide security with

EHC-WSNs because they do not consider malicious nodes that harm energy harvesting

and energy cooperation.

When developing a countermeasure for the energy depriving attack, we face two

challenges. (i) The information about energy storage of a node is private data, and it

cannot be known by other nodes. This is an inherent problem because a malicious node

can easily claim that it has little energy without any risk. Some energy-aware routing

protocols demand nodes to report their current status of the energy storage periodically

or add the status of energy storage to header [44, 104]. However, malicious nodes can

still ignore these settings and pretend to have little energy. We may be able to design a

rule-based method that decides nodes that always claim to have low energy as malicious

nodes. However, this is impractical because of the second challenge that (ii) the energy

harvesting efficiency of each node in EHC-WSN is different. For example, in forest fire

alarming EHC-WSN where nodes harvest solar energy, the movements of the sun and

clouds will result in shadows over some nodes. Therefore, the harvesting efficiencies

would be low. A rule-based method that simply decides nodes with low energy as mali-

cious nodes thereby cannot deal well with this problem. Moreover, any classifier-based

methods are not suitable for this situation because we cannot prepare enough training

data. This is because the malicious nodes have different forged amount of energy stor-

4.2. RELATED WORKS 71

ages, and different EHC-WSNs have different network environments. Therefore, it is

impossible to prepare a robust classifier based on not enough training data. Conse-

quently, a well-designed energy depriving nodes detection method in EHC-WSNs is

required.

4.1.2 Contribution

In this chapter, we design a malicious node detection method based on unsupervised

learning for EHC-WSNs, where energy depriving malicious nodes exist. Specifically,

we make the following contributions.

• We tackle the problem of energy depriving nodes detection in EHC-WSNs online.

To the best of our knowledge, we are the first to address this problem.

• We propose a deep neural network-based clustering method to detect energy de-

priving malicious nodes in EHC-WSNs.

• We propose a method to obtain data for the clustering, and propose inherent fea-

tures to represent the energy depriving attack model.

• We conduct extensive experiments to investigate the performance of our method.

Our experimental results demonstrate that our method outperforms the baseline

method.

This chapter is organized in the following way. Section 4.2 gives a brief overview

of related works. Section 4.3 introduces our assumption in this chapter. Section 4.4

presents our proposed method, and experimental results are illustrated in Section 4.5.

Finally, this chapter is concluded in Section 4.6.

4.2 Related works

Energy harvesting and energy cooperation are promising methods for extending the

lifetime of WSNs. In [81], Raghunathan et al. firstly designed a solar energy harvesting

wireless system. They proposed that wireless nodes can harvest from solar energy to

relieve energy constraints. Inspired by their work, many studies suggested that nodes

72 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

in WSNs can harvest from various ambient environments [15, 100]. Later on, with

the rapid development of wireless transfer technology, the lifetime of a WSN has been

further extended. In [42], Huang et al. firstly enabled the wireless power transfer (WPT)

in cellular networks. They designed the architecture, model, and deployment for WPT

in cellular networks. As an application of wireless energy transfer in WSNs, Shi et

al. [94] studied a scenario where nodes in a WSN charge their energy from a mobile

charging vehicle wirelessly. Their experimental results proved that the lifetime of a

WSN could be extensively extended by wireless energy transfer. Then, Gurakan et

al. [34] proposed a method that combines the energy harvesting and wireless energy

transfer to create wireless energy harvesting cooperation (EHC) systems (EHC-WSNs).

The work of Minasian et al. [69] further improved EHC systems by optimizing energy

allocation. These studies proved that EHC-WSNs are promising; however, no work

addressed security issues of EHC-WSNs.

For WSNs, a large number of studies have investigated various security issues. For

a single kind of attack detection, Li et al. [58] developed a method that detects jamming

attacks by enabling normal nodes to respond correctly to the jammers. For replica

node attacks, Ho et al. [38] utilized a sequential analysis to identify abnormal nodes in

a WSN. To address the security issues of EHC networks, Kang et al. [48] proposed 4

kinds of attack models in EHC networks, and they proposed a naı̈ve approach to mitigate

the effect of malicious nodes. A few years later, considering security issues in wireless

rechargeable sensor networks, Lin et al. [62] proposed a novel attack model, which is

called the cooperative denial of charging attack, to demonstrate that security in wireless

rechargeable sensor networks needs to be further emphasized. However, they do not

concern about the energy depriving attack.

Besides the countermeasure for a single kind of attack, many studies also design

secure routing protocols for WSNs. In [64], Liu et al. firstly proposed an application-

friendly method to detect insider attackers in WSNs by monitoring many aspects of sen-

sor networking behaviors. Hu et al. [40] presented an attack-tolerant time-synchronization

for secure data aggregation in WSNs. However, these studies consider only a WSN that

is unaware of energy issues. When energy issues are concerned, their methods become

inapplicable.

4.3. ASSUMPTION 73

4.3 Assumption

In this section, we describe the assumption of our study. We assume an energy harvest-

ing cooperative wireless sensor network (EHC-WSN) consisting of Wn wireless nodes

with unique identifiers. Similarly to existing study of EHC-WSNs [34], we assume the

nodes are static.

As a routing protocol, AODV, which is a standard routing protocol in WSNs, is

employed. Note that nodes have to add their current status of energy storage in the

headers of all the packets they send for energy cooperation.

4.3.1 Energy harvesting and energy cooperation

We assume that all nodes are capable of harvesting energy from ambient environments.

Due to the random nature of ambient sources (e.g., shadows over solar energy harvest-

ing panel), we assume that each node harvests energy with different efficiency, which is

the same as existing studies [17, 24]. All nodes have the same maximum energy stor-

ages, and cannot harvest more energy if the current energy storages reach the maximum

energy storages.

Following the groundbreaking work of Zhang et al. [115], which has proved that

the energy can be simultaneously transfered with wireless informationwe, we assume

that nodes transfer information and energy simultaneously when they send packets. The

amount of transferred energy is based on the water-filling algorithm [34]. That is, when

a node s transfers energy to a node d, it aims to balance the energy storage of them.

We also assume that when energy is transferred between nodes, a particular amount of

the energy is lost because of the power loss [75]. Let Es and Ed denote the status of

energy storage of node s and node d, respectively. Assume that Es is larger than Ed,

and let Etr and Ere denote the energy transferred from node s and received by node d,

respectively. Let λ denote the energy transferring efficiency:

Ere = λ · Etr

Consequently, in order to keep the balance of status of energy storage after energy trans-

ferring, Etr is calculated as:

Etr =
Es − Ed
1 + λ

.

74 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

4.3.2 Attack model

In the energy depriving attack in an EHC-WSN, a malicious node pretends to have less

energy level than its real energy level before it sends a packet by adding noises to its

forged amount of energy. In particular, malicious nodes remove small and different

values from their real energy storages for avoid being detected. Recall that the status of

energy storage should be included in the header.

4.4 Proposed method

In this section, we describe our proposed method for detecting energy depriving nodes

in EHC-WSNs. We utilize a clustering method because malicious nodes may have

different forged energy levels, and a classifier-based detection method may not work

well. Moreover, the energy consumptions of nodes near and far away from the sink

are different (it is clear that a node near the sink consumes more energy because of the

frequent packet transmission). Hence, it is difficult to prepare a classifier-based solution

to recognize such differences. On the other hand, in a clustering-based approach, a node

only focuses on data from neighboring nodes, and it does not suffer from the differences

of positions. Therefore, we utilize a clustering method to detect malicious neighboring

nodes.

A large number of studies, e.g., [13, 43, 112], have demonstrated that, compared

with other clustering methods, deep neural network-based clustering methods have bet-

ter performance due to the theoretical function approximation properties [39] and their

feature learning capabilities [8]. Therefore, we utilize a deep neural network-based

clustering method. Note that, in general, the task of clustering is to divide a set of data

points into some clusters. In our method, each normal node, playing the role as an

observing node, first prepares data points for clustering by observing its neighboring

nodes. Then, observing nodes utilize the data points to form clusters. Two clusters,

which are normal and malicious clusters are formed. After the clustering, observing

nodes utilize the clustering results to decide malicious nodes. For a neighboring node

a, if the data points from node a in the malicious cluster are more than data points from

node a in the normal cluster, node a is decided as a malicious node.

4.4. PROPOSED METHOD 75

4.4.1 Preparation of data points for clustering

In this section, we describe how normal nodes prepare data points for clustering. We

assume that a node clusters its neighboring nodes at time slot T , and we assume the

node holds the observed data from its neighboring nodes. In our method, we split the

observed data to create more data points for clustering because large amount of data can

elevate the performance of clustering the method.

As mentioned, nodes have to add their current status of energy storage in the headers.

Each normal node thus can observe the status of energy storage of its neighboring nodes

by overhearing their packets. At each time slot, normal nodes create features from

observed energy. These features are hereinafter called energy features. At each time

slot, an energy feature vector of each neighboring node is created. Therefore, at time

slot T , a normal node has T energy feature vectors for each of its neighboring nodes.

Figure 4.1 illustrates the energy feature vector set extraction procedure. In this fig-

ure, node a extracts the energy feature vector set of its neighboring nodes. Hereinafter,

we use the term original feature vector set to denote the set of T vectors of a neighbor-

ing node. It is important to note that the energy feature vector set of each neighboring

node is time-series data because it is obtained along with time.

Recall that our approach is to cluster the neighboring nodes of each normal node.

We have already obtained the original feature vector set of each neighboring node by

the above procedure. However, because we utilize a deep neural network-based clus-

tering method, it is impractical to treat an original feature vector set as a data point for

clustering. The reason is that the number of energy feature vector sets is usually small

(the number of energy feature vector sets is equal to the number of neighboring nodes).

It is clear that less information makes machine learning approaches not functional and

easy to overfit [14]. We hence need more data points to enable the clustering method

functional.

To deal with this problem, we propose a method that creates more data points for

clustering. Instead of using an original feature vector set as a data point for clustering,

we use subsets of it. Let k denote the size of a subset. Our method extracts vectors

between (sk + 1)-th vector to (s + 1)k-th vector from each vector set to form the

s-th subsets. In each subset, the vectors are still time-series data. Our method thus

76 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

node a
node b

Observed data of a

neighboring node
Energy feature

vector

(1) At each time slot:

(2) At time slot T, node a holds:

node c

node d node e

… … … …

Energy vector

set of node b

Energy vector

set of node c
Energy vector

set of node d

Energy vector

set of node e

Figure 4.1: An example of energy feature vector set creation. (1) At each time slot, node

a creates an energy feature vector of each neighboring node. (2) At time T , for each

neighboring node, node a holds an energy vector set which contains T energy feature

vectors.

maintains the properties of time-series in each subset. Figure 4.2 shows an example

of our method. In this example, assume that a normal node has already observed an

original feature vector set with size 10. We can create 2 subsets with size 5 from the

original feature vector set with size 10. Then, we treat these subsets as data points for

clustering. That is, a subset is a data point for clustering.

4.4. PROPOSED METHOD 77

Original feature vector set of a neighboring node

10 vectors

Create sub sets with size 5

5 vectors

Subset 1 Subset 2

5 vectors

Original feature vector set of a neighboring node

10 vectors

Figure 4.2: An example of creating subsets. Two subsets with size 5 are created from

the original feature vector set with size 10.

4.4.2 Clustering method

As mentioned above, we utilize a deep neural network-based clustering method to clus-

ter the above-mentioned subsets. In particular, we re-organize the method proposed in

[112], which is a standard deep neural network-based clustering method, called deep

embedding clustering (DEC).

We first make a brief introduction of DEC. DEC is a method that simultaneously

learns feature representations and cluster assignments using deep neural networks. DEC

learns a mapping from the data space to a lower-dimensional feature space in which it

78 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

iteratively optimizes a clustering objective. In general, the task of clustering is to cluster

a set X of x points into y clusters. Instead of clustering directly in the data space X ,

DEC aims to transform the data with a non-linear mapping fθ : X → Y , where θ is

a learn-able parameter, which is parametrized by deep neural networks, and Y is the

latent cluster space. Finally, DEC can learn the parameters of the deep neural networks,

and the deep neural networks represent a clustering model of X → Y (see more details

in [112]).

The original model of DEC only employs fully connected dense layers, which are

not good at processing time-series data [114]. Recall that our subsets for clustering are

time-series data. We thus re-organize the structure of deep neural networks of DEC

by adding 1D-convolutional layers and pooling layers to process time-series data bet-

ter, which is inspired by existing studies [56, 114]. To avoid overfitting, we discard

some fully connected layers of the original DEC structure. Figure 4.3 shows our re-

organization to original DEC.

Note that our clustering method can set the number of clusters as a hyper-parameter.

We thus set the number of clusters as two because we assume two categories of nodes

(normal and malicious nodes).

4.4.3 Energy features

Here we describe energy features, which are used in malicious node detection. We as-

sume that each node observes the status of the energy storage of its neighboring node.

Before we describe the energy features, we present the information about energy related

to neighboring nodes observed by each node (Table 4.1). This is used to compute the

energy features. To enable normal nodes to have better understandings of neighboring

nodes, we design short-term and long-term features. Short-term features enable normal

nodes to recognize the instant status of energy storage of themselves and their neighbor-

ing nodes, and long-term features let normal nodes understand the historical behaviors

about the energy of their neighboring nodes. In particular, we directly employ the cur-

rent status of energy storages of the observing node and the neighboring node as two

short-term features. They are utilized as energy features because (i) they can directly

represent the status of energy storage at that time slot, and (ii) they both have the max-

4.4. PROPOSED METHOD 79

Original DEC

…Input data

Dense

Dense

Dense

Clustering layer

1D-Conv

1D-Pooling

1D-Pooling

…Other Convs or Poolings

Replacement

Figure 4.3: Re-organization of the deep neural network structure of DEC by replacing

some dense layers with convolutional and pooling layers of dense layers to processing

time-series data

imum and minimum values, which are proper as inputs of the deep neural networks,

because they can be normalized smoothly.

Table 4.2 shows the long-term energy features used in our method, and they are

designed based on the inherence of the energy depriving attack. These long-term energy

features are all ratios calculated from the information observed by nodes. Such ratios are

more robust against the difference in node density than numbers, because it is clear that

the number of neighboring nodes can easily influence features based solely on numbers.

Here, we take TransferRatio (energy transferred ratio) and StorageRatio (energy

storage ratio) as two examples to illustrate the reason why our energy features can de-

scribe the inherence of energy depriving attack. Assume that a normal node a observes

80 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

Table 4.1: Information about energy observed by each node
Information Definition

NTra Energy transferred to one neighbor

NRec Energy received from one neighbor

TTra Total energy transfered

TRec Total energy received

SS Current status of energy storage of observing node

SN Current status of energy storage of one neighbor

TH Total energy harvested

Table 4.2: Long-term energy features
Behavioral features Definition

TransferRatio NTra / TTra

ReceiveRatio NRec / TRec

CompensateRatio NTra / TRec

IncomeRatio NRec / TTra

GiveRatio NTra / TH

VoluntaryRatio TTra / TH

StorageRatio SS / SN

DeliveryRatio TTra / TH

its neighboring node b. (i) TransferRatio: this feature of b can help node a to measure

how much energy is transferred to node b compared with all its transferred energy. If

node b is a malicious node, a transfers comparably more energy to node b than the

other neighboring nodes because it claims to have lower energy. (ii) StorageRatio: this

feature measures the ratio of the current status of energy storage of nodes b and a. If

node b is a malicious node, this feature value would be comparably lower than the fea-

ture values of the other neighboring nodes, because node b forges its status of energy

storage to a lower value. Therefore, a can utilize these two features to cluster b as a

malicious node. Other long-term energy features are also designed based on the same

intuition.

4.4. PROPOSED METHOD 81

It is important to note that the energy features are obtained from messages sent by

neighboring nodes. In other words, each normal node can obtain the energy features by

overhearing messages, so our method incurs no additional communication cost.

4.4.4 Pre-training of model

In our proposed method, we utilize a deep learning-based clustering method. However,

if we simply initialize the neural network model for clustering randomly or utilizing

methods not fit the environment, this neural network model will converge slowly. There-

fore, to elevate accuracy and accelerate training speed, we pre-train the neural network

model with data obtained in different network environments. Assume that an EHC-

WSN is deployed in a particular area. We thus can iterate simulations involving normal

and malicious nodes with energy depriving attack model in this area with different node

positions, to obtain data by our proposed method. We then utilize this data to construct

a pre-trained model.

For example, assume that we plan to detect malicious nodes when the an EHC-

WSN has been deployed in real world for 400 second.. We can conduct a simulation,

whose simulation time is 400 second to obtain training data, and utilize the training

data to construct a pre-trained model. Assume that the pre-trained model of 400 second

is model MA. In real malicious node detection, we perform training of the clustering

models from model MA when this EHC-WSN has been deployed for 400 second.

In the pre-training procedure, we utilize SMOTE [16] to over-sample the minority

class, so that the proportion of training instances from each class is equal, therefore the

pre-trained model can have better performance because of the balanced training data.

4.4.5 Malicious node detection

In this section, we describe our method for determining the categories of the two clusters

and deciding malicious nodes. After two clusters are formed, an observing node needs

to determine the categories of them, i.e., which one contains the subsets of malicious

nodes. Then, based on the result, an observing node decides malicious nodes.

Cluster of malicious subsets decision. We assume that a normal node a in a given

EHC-WSN forms clusters of subsets of its neighboring nodes. After two clusters are

82 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

formed, we calculate the average of feature SN (see Table 4.1) for both the clusters:

SNave =

∑N
i=1

∑k
j=1 SN

N · k
,

where N denotes the number of subsets from a cluster.

Then, the cluster with lower SNave is decided as a cluster that contains subsets from

malicious nodes. This is because of the inherence of the energy depriving malicious

nodes, i.e., they forge to have little energy.

Malicious node decision. After the categories of two clusters are obtained, node a

decides the malicious neighboring nodes. Assume that node a holds n subsets of each

neighboring node, and m subsets of a particular neighboring node are in the cluster

with malicious subsets. Let ŷ denote the result of malicious node decision determined

by node a for this neighboring node. ŷ is obtained as follows:

ŷ =

{
normal (m < n

2
)

malicious (otherwise)

We set n
2

as a decision threshold because during the clustering procedure, all the subsets

are obtained from the same node (node a). As a result, in the malicious node decision

procedure, there is no difference between the weights of each subset. Whenm = n
2
, this

neighboring node is identified as a malicious node because detecting malicious nodes

is considered as more important than mis-detecting normal nodes. Note that our detec-

tion method detects malicious nodes online. Therefore, the malicious node detection

procedure does not require labeled data from a particular network environment.

4.5 Experiment

This section summarizes our experiments that evaluate the performance of the proposed

method.

4.5.1 Setting

We used the Qualnet 7.4 network simulator, and we set our experiments similarly to

previous studies [17, 34, 62, 75].

4.5. EXPERIMENT 83

We randomly deployed 500 nodes in a 100m × 100m square field, and 100 nodes

were malicious nodes. Each node transmitted messages and data packets with a payload

sizes of 256 bytes, using an IEEE 802.11b device. The communication range of each

node was adjusted to roughly 3 meters, and the network bandwidth was 11Mbps. The

maximum energy of each node was 100mJ . We decided a time slot as 4 seconds, and

a node harvested energy per time slot randomly from 0.01mJ to 1mJ [17]. The energy

consumption of transmitting and receiving a packet were 0.1mJ and 0.08mJ , respec-

tively. We considered a random destination node scenario [51] because the development

of edge computing enables each sensor node to process data [93]. We randomly chose

a pair of source node and destination node every 1 seconds. If the source node has an

active route to the destination node, the source node sends a data packet to the desti-

nation node directly. Otherwise, the source node broadcasts an RReq to find a route to

the destination node. When a node forwards a data packet through a neighboring node,

if the status of energy storage of this neighboring node is less than this node, this node

transfers energy to this neighboring node simultaneously (see Section 4.3.1). The sim-

ulation time was 4000 second, which means a simulation consisted of 1000 time slots,

and the subset size k is 10. Similarly to [75], we set λ as 0.29.

Malicious nodes. In our assumption, malicious nodes forged to have little energy (Sec-

tion 4.3.2). However, if malicious nodes always forged its status of energy storage to

an extremely low value (e.g., 0), it is clear that these malicious nodes can be detected

easily. We thus added noises to their forged amount of energies. In particular, let Ereal
and Eforged denote the real status of energy storage of a malicious node and the forged

status of energy storage, respectively. To obtain Eforged, this malicious node deducts

Ereal by a Gaussian white noise [57] denoted by Egwn as:

Eforged = Ereal − Egwn.

In this way, malicious nodes remove small and different values from their real energy

storages for avoid being detected. Then, the malicious node will add Eforged into the

header when it sends a packet. The mean ofEgwn is 0.1, which is the same as the energy

consumption of transmitting a packet, and the standard deviation is 0.05.

Evaluation methods. We evaluated the following methods.

• K-means: This method clusters the original energy vector set into two clusters

84 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

by K-means [36], which is a standard method for clustering. After two clusters

are formed, each node decides the cluster with lower average SN as a cluster

that contains malicious energy vector set. Then, the neighboring nodes holds the

original energy vector set of the malicious cluster are decided as malicious nodes.

We prepare this method to investigate the effectiveness of creating subsets.

• WSK-means: This method clusters subsets into two clusters by K-means. We

prepare this method to investigate the effectiveness of our deep neural network-

based clustering method.

• WSDEC: This method clusters subsets into clusters by the original DEC [112].

Therefore, this method does not have convolutional and pooling layers in the deep

neural network model. We prepare this method to investigate the effectiveness of

our method to handle time-series data.

• WSCNNDEC: This method clusters subsets into clusters by the re-organized DEC.

Therefore, this method only utilizes the model initialization method proposed in

[112]. This method does not pre-train the neural network model. We prepare this

method to investigate the effectiveness of pre-training model.

• Proposed: This is the proposed method in this chapter.

• Proposed-one: This method clusters subsets into clusters by the re-organized

DEC with pre-training of model. However, in the method, only one pre-trained

model, which is pre-trained at 4000 second, is prepared. We prepare this method

to investigate the effectiveness of preparing multiple pre-trained models with ex-

actly same detection time.

All data obtained during the simulation time were used to compute energy features. We

assumed that nodes executed a neighboring node detection procedure every 100 time

slots.

Implementation. We implemented our deep neural network set on Keras 2.2.4 1 with

TensorFlow 2 as backend. Determining hyper-parameters by cross-validation on a val-

idation set is not an option in unsupervised clustering because we do not have labeled
1https://keras.io/
2https://www.tensorflow.org/

4.5. EXPERIMENT 85

data. Thus we use commonly used parameters for deep neural networks. In particular,

inspired by [103], we set network dimensions of WSDEC to d-25-25-100-10, where

d is the original data-space dimension determined by the subset size k and the num-

ber of time slots. All layers are densely (fully) connected. For our proposed method,

we set network dimensions to d-Conv1D(25, 10)-Conv1D(25, 10)-MaxPooling1D(4)-

Conv1D(50, 10)-Conv1D(50,10)-GlobalAveragePooling()-100-10, where Conv1D de-

notes a 1-dimension convolutional layer. The number of clusters are set as 2, because

we have two categories of nodes. In the training procedure, we utilize fine-tuning [52]

technique. That is, we only train the last two dense layers of the pre-trained neural net-

work model (see Section 4.4.4), and the other layers are fixed. This is because we have

small amount of training data, and fine-tuning helps to elevate performance in such a

situation [99].

Criteria. As mentioned earlier, our method incurs no additional communication costs.

We therefore focus on the following criteria to measure the performance of the above

methods.

• Accuracy: This is represented by Nnor→nor,mal→mal

N
, where Nnor→nor,mal→mal and

N are respectively the set of correctly decided neighboring nodes of all normal

nodes and the set of all neighboring nodes of all normal nodes.

• Detection rate: This is represented by Nmal→mal

Nmal
, whereNmal→mal andNmal are re-

spectively the set of correctly decided malicious neighboring nodes of all normal

nodes and the set of all malicious neighboring nodes of all normal nodes.

• Mis-Detection rate: This is represented by Nnor→mal

Nnor
, where Nnor→mal and Nnor

are respectively the set of wrongly decided normal neighboring nodes of all nor-

mal nodes and the set of all normal neighboring nodes of all normal nodes.

4.5.2 Result

Comparison with K-means and WSK-means. Figures 4.4–4.6 show the performances

of our method (Proposed), K-means, and WSK-means. In particular, K-means is aver-

agely 45% worse than that of Proposed with regard to the three criteria. This is be-

cause (i) K-means uses the original vector set, (ii) compared with K-means, deep neural

86 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 800 1200 1600 2000 2400 2800 3200 3600 4000

A
cc

u
ra

cy

Time [sec]

K-means WSK-means WSDEC WSCNNDEC Proposed-one Proposed

Figure 4.4: Accuracies of evaluation methods

network-based clustering method has better feature learning capabilities, and (iii) our

data points are not balanced (the data points from normal nodes is much more than those

of malicious nodes), while K-means is not good to handle unbalanced data [46]. Com-

pared with K-means, WSK-means is about averagely 5% better with regard to the three

criteria. This is because WSK-means clusters subsets, and more data points provide a

better performance.

Comparison with WSDEC and WSCNNDEC. Figures 4.4–4.6 show the performances

of Proposed, WSDEC, and WSCNNDEC. We can see that Proposed is averagely 20%

better than that of WSDEC with regard to the three criteria. This is because Proposed

utilizes pre-trained models, while WSDEC does not. Note that, compared with WS-

DEC, WSCNNDEC obtains better results. This is because subsets are time-series data,

and WSCNNDEC utilizes convolutional layers to process the time-series data more ap-

propriately.

Comparison with Proposed-one. Figures 4.4–4.6 show the performances of Proposed

4.5. EXPERIMENT 87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 800 1200 1600 2000 2400 2800 3200 3600 4000

D
et

ec
ti

o
n

 r
at

e

Time [sec]

K-means WSK-means WSDEC WSCNNDEC Proposed-one Proposed

Figure 4.5: Detection rates of evaluation methods

and Proposed-one. Compared with Proposed-one, Proposed has better performance

with regard to the three criteria. This is because we prepare pre-trained models at dif-

ferent times in Proposed, and we train models based on the pre-trained models obtained

at the same times as detection times. Proposed-one only utilizes one pre-trained model

trained at 4000 second. Therefore, only one pre-trained model cannot perform well in

all the situations with different detection times.

Influence of simulation time. From Figures 4.4–4.6, we can see that the performances

of all the methods become better as time spends. This is because longer time can gen-

erate larger amount of data points for clustering. It is clear that clustering methods can

work better with more data points.

Information gain of energy features. Table 4.3 shows the information gain of energy

features. The information gain is used to find distinguishing features of feature vectors.

The more information gain of a feature increases, the better the feature classifies the

vector. We obtained the information gain by adding ground truth label to each energy

88 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 800 1200 1600 2000 2400 2800 3200 3600 4000

M
is

-d
et

ec
ti

o
n

 r
at

e

Time [sec]

K-means WSK-means WSDEC WSCNNDEC Proposed-one Proposed

Figure 4.6: Mis-detection rates of evaluation methods

Table 4.3: Information gain of energy features
Energy features Info. gain

SS 0.009

SN 0.012

TransferRatio 0.134
ReceiveRatio 0.103
IncomeRatio 0.026

GiveRatio 0.019

VoluntaryRatio 0.011

StorageRatio 0.023

DeliveryRatio 0.014

CompensateRatio 0.091

4.6. CONCLUSION 89

feature vector. For example, if a neighboring node is malicious, the labels of energy

vectors observed from it are malicious. From this table, we can find that the informa-

tion gain of our designed features are all over 0.009. Compared with other classifier

based studies for detecting malicious nodes in WSNs [30, 70], our energy features have

competitive or better information gain. We bold top-3 information gain. This result

shows that our designed features are effective and can be employed for detecting energy

depriving attack in EHC-WSNs.

Performance of proposed method when there is no malicious node existing. We

conducted experiments to investigate the performance of the proposed method when

there is no malicious node existing. We present the mis-detection rate of the proposed

method at 4000 second (we do not present the detection rate because there is no ma-

licious node, and the detection rate is meaningless). When there is no attacker in the

network, the mis-detection rate is 11.7%. Our clustering-based method has some loss

even when there is no malicious node existing. This is because our clustering-based

method still forms two clusters of the data points when there is no malicious node.

Therefore, some data points are forced to form a malicious cluster, which causes the

increasing of mis-detection rate.

4.6 Conclusion

In this chapter, we presented an energy depriving malicious node detection method for

EHC-WSNs. We designed inherent features of energy depriving attack. We proposed a

method for obtaining more data points for clustering, as well as a deep neural network-

based clustering method. The experiments revealed that the proposed method outper-

formed the comparison methods.

As a part of future work, we will focus on a light-weight malicious node detection

method. A sensor nodes often have restricted computational resources. The computa-

tional units of the sensor node cannot handle a very large and complex detection model.

Therefore, a light-weight energy depriving malicious node detection method with high

detection accuracy is required. Furthermore, we need to decrease the mis-detection rate

when there is no malicious node existing. Our proposed method now wrongly decides a

part of neighboring nodes as malicious nodes when there is no malicious nodes existing

90 CHAPTER 4. DETECTING ENERGY DEPRIVING NODES IN EHC-WSNS

in the network. We plan to tackle this problem in the future.

Chapter 5

Summary

5.1 Summary of Contributions

In this thesis, we have discussed about detecting malicious nodes in wireless sensor

networks. In Chapter 1, we illustrated a number of crucial monitoring applications of

WSNs to protect people from disasters, and to obtain important data from a wide field.

However, these WSNs suffer from malicious nodes. We thus made clear research issues

for detecting malicious nodes in WSNs in Chapter 1.

Although some studies utilized machine learning-based approaches to detecting ma-

licious nodes in WSNs, they ignored the fact that machine learning models trained in a

particular training network environment cannot work well in an unknown test network

environment. Therefore, in Chapter 2, we have proposed an ensemble learning-based

method to detect malicious nodes in unknown network environments. In our method, we

first prepared weak malicious node detectors trained in different network environments,

and then constructed a strong ensemble malicious node detector, which is tailored to a

given test environment, by fusing weak detectors whose performances are estimated to

be high in the test environment. To prepare a weak malicious node detector, we cate-

gorized attack models in WSNs by their purposes, and then extracted inherent features

for the weak malicious node detector according to the purposes of these attack models.

The experimental results have shown that our proposed method detects malicious nodes

with the highest detection rate, in comparison with existing methods.

91

92 CHAPTER 5. SUMMARY

In Chapter 3, we have focused on detecting malicious nodes with learning abil-

ity in WSNs. Existing studies have proposed methods that detect pre-defined attacks.

However, with the rapid development of machine-learning technology, it is natural to

consider that malicious node can also employ machine learning-based methods to avoid

being detected. Hence, we designed a smart grey hole attack where malicious nodes can

smartly decide their behaviors by reinforcement learning. In particular, we designed

actions, states, and rewards for the smart grey hole malicious nodes. To detect such ma-

licious nodes, we extracted inherent features to build classifiers. Then, our classifier is

frequently updated to learn the latest behavioral patterns of smart malicious nodes. The

experimental results have shown that the smart malicious nodes are more difficultly to

be detected than malicious nodes with a pre-defined attack model. Moreover, the exper-

iments demonstrated that our proposed detection method can detect the smart malicious

nodes more quickly and with a higher detection rate than existing detection methods.

In Chapter 4, we have tackled the problem of detecting energy depriving malicious

nodes in EHC-WSNs. In an EHC-WSN, a node transmits its energy to its neighboring

node with little energy storage to extend the life-time of this neighboring node. How-

ever, malicious nodes can pretend to have little energy to deprive energy of other nodes.

Therefore, we proposed a method to detect energy depriving malicious nodes by unsu-

pervised learning. In our proposed method, normal nodes first observe the behaviors of

neighboring nodes and create data points. Then the normal nodes utilize our proposed

clustering method to cluster these data points and decide the malicious nodes. The ex-

perimental results have shown that our proposed method outperforms the comparison

methods in terms of accuracy, detection rate, and mis-detection rate.

In summary, detecting malicious nodes is a crucial issue when people are utiliz-

ing WSNs. Our proposed methods can detect malicious nodes in WSNs with a high

detection rate. In particular, our proposed methods can detect different categories of

malicious nodes even in unknown network environments. Even high-level malicious

nodes that can learn cannot avoid being detected by our proposed methods. Our pro-

posed methods can also detect malicious nodes in EHC-WSNs, which are a category of

state-of-the-art WSNs. Therefore, our achievements contribute to increase the security

of WSN services and utilization.

5.2. FUTURE WORK 93

5.2 Future work

Through this thesis work, we found the following remaining issues.

5.2.1 Detecting malicious nodes with learning ability in unknown
environments

In this thesis, we propose a method for detecting multiple attacks in unknown environ-

ments by ensemble learning (Chapter 2) and a method for detecting malicious nodes

with learning ability (Chapter 3). However, it is not a trivial task to detect malicious

nodes with learning ability in unknown environments. We cannot ensemble weak de-

tectors to detect malicious nodes with learning ability, because in different training en-

vironments where we obtain the weak detectors, the malicious nodes have different

behavioral patterns. That is, simply selecting weak detectors by a weak detector evalua-

tor (which is obtained by environmental features, see Chapter 2) is not enough. We need

to consider about different malicious node behavioral patterns as well. Therefore, we

plan to extend our methods to detect malicious nodes with learning ability in unknown

environments as a part of future work.

5.2.2 A light-weight malicious node detection method

Machine-learning based methods usually need large memory and computational re-

sources. For example, a deep neural network model with 10000 parameters is about 40

KB. However, the memory of a sensor node is strictly restricted, usually about 64–128

KB [96]. Therefore, if the sensor nodes need to store more monitored data, the memory

space for detection model needs to be smaller. Besides, a sensor node also only has

restricted computational resources [106]. The computational units of the sensor node

cannot handle a very large and complex detection model. Therefore, a light-weight

malicious node detection method with high detection accuracy is required. We plan to

extend our methods to light-weight methods as a part of future work.

94 CHAPTER 5. SUMMARY

5.2.3 Security of WSNs

In this thesis, we have proposed methods for detecting malicious nodes. It is clear that

detecting the malicious nodes can contribute to the security of WSNs. However, we

need to further investigate the influence of detecting malicious nodes on security of

WSNs. For example, in our study in Chapter 2, our method detects malicious nodes

with 90% of detection rate. We can consider that if a malicious node m is detected by

neighboring normal nodes, we have many existing methods (e.g., dropping the packets

received from m and sending no packet to m to ignore m from the WSN) to deal with

m. However, after the detected malicious nodes are ignored, we still do not know how

the WSN performs (e.g., the transmission rate and total traffic of a WSN) with the

undetected malicious nodes. Therefore, we plan to investigate the connection between

the security of WSN and detecting malicious nodes in WSN as a part of future work.

Acknowledgment

This thesis represents not only my research at Osaka University but also a part of my

life that has a good opportunity to study and live in Japan these years. Completion of

this thesis was possible because of the supports and efforts of a number of people.

First and foremost, I would like to express my sincere gratitude to my adviser, Pro-

fessor Takahiro Hara, who always gives me countless opportunities from the first step in

this laboratory. It has been an honor to be his PhD student. He has been doing his best

cultivating me to grow as a good researcher from my Master through PhD. This thesis

would not have finished without his valuable advice and his guidance.

I am grateful to my instructive professors, Professor Takuya Maekawa and Professor

Daichi Amagata, for being attentive and caring about my study during these years. They

always gave me helpful guidance and support throughout my study.

I would also like to acknowledge the committee members of my thesis, Professor

Toru Fujiwara and Professor Shinji Shimojo at the Department of Multimedia Engineer-

ing of the Graduate School of Information Science and Technology of Osaka Univer-

sity. Their insightful and constructive comments considerably improved the quality of

the thesis.

I would like to express my appreciation to Professor Makoto Onizuka and Professor

Yasuyuki Matsushita at the Department of Multimedia Engineering of the Graduate

School of Information Science and Technology of Osaka University for their innovative

lectures and warm student life support.

I am thankful to Professor Shojiro Nishio, President of Osaka University who was

my adviser during my research student years for giving warm support to my study and

daily life, Professor Tomoki Yoshihisa, Professor Masumi Shirakawa for actively work-

ing for all students and always kindly giving the valuable guidance as well as many

95

96 ACKNOWLEDGMENT

opportunities.

I would like to acknowledge my research team both past and present members, Dr.

Yuka Komai, Dr. Kamalas Udomlamlert, Dr. Masahiro Yokoyama, Dr. Keisuke Goto,

Mr. Takuji Tsuda, Mr. Yuki Nakayama, Mr. Syunya Nishio, Mr. Shunhei Hayashida,

Mr. Yusuke Arai, Mr. Ryohei Nakatani, and Mr. Hayato Nakama. Also, it is my

pleasure to work with all smart members in Hara laboratory. All of them have given me

cooperative and active supports throughout my study.

Last but by no means least it gives me immense pleasure to offer my hearty thanks

to my family. No words can express my appreciation their support and love in my life.

My parents and my wife have provided me with the greatest concerns and cares, for

which I am eternally grateful.

Finally, with all my best wishes to those wonderful people who ever gave me assis-

tance, supports and encouragements throughout my research experience.

REFERENCE

[1] S. Abbas, M. Merabti, D. Llewellyn-Jones, and K. Kifayat. Lightweight sybil

attack detection in manets. IEEE Systems Journal, 7(2):236–248, 2013.

[2] R. Akbani, T. Korkmaz, and G. Raju. Emltrust: an enhanced machine learning

based reputation system for manets. Ad Hoc Networks, 10(3):435–457, 2012.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor

networks: a survey. Computer networks, 38(4):393–422, 2002.

[4] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-

Grew, J. Tobin, O. P. Abbeel, and W. Zaremba. Hindsight experience replay. In

Proc. of Annual Conf. on Neural Information Processing Systems (NIPS), pages

5048–5058, 2017.

[5] M. H. Anisi, G. Abdul-Salaam, M. Y. I. Idris, A. W. A. Wahab, and I. Ahmedy.

Energy harvesting and battery power based routing in wireless sensor networks.

Wireless Networks, 23(1):249–266, 2017.

[6] J. Arora, P. Singh, and S. Rani. Attacks in manets–a survey. Int’l Journal of

Multidisciplinary Management Studies (EXCEL), 3(10):151–157, 2013.

[7] H. Ayatollahi, C. Tapparello, and W. Heinzelman. Reinforcement learning in

mimo wireless networks with energy harvesting. In Proc. of Int’l Conf. on Com-

munications (ICC), pages 1–6, 2017.

[8] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and

new perspectives. IEEE Trans. on Pattern Analysis and Machine Intelligence

(TPAMI), 35(8):1798–1828, 2013.

97

98 REFERENCE

[9] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa. Stochastic properties of the

random waypoint mobility model. Wireless Networks, 10(5):555–567, 2004.

[10] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[11] S. Buchegger and J.-Y. Le Boudec. Performance analysis of the confidant proto-

col. In Proc. of Int’l Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc), pages 226–236, 2002.

[12] M. Cardei and D.-Z. Du. Improving wireless sensor network lifetime through

power aware organization. Wireless networks, 11(3):333–340, 2005.

[13] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsuper-

vised learning of visual features. In Proc. of European Conf. on Computer Vision

(ECCV), pages 132–149, 2018.

[14] R. Caruana, S. Lawrence, and C. L. Giles. Overfitting in neural nets: Backprop-

agation, conjugate gradient, and early stopping. In Proc. of Annual Conf. on

Neural Information Processing Systems (NIPS), pages 402–408, 2001.

[15] S. Chamanian, S. Baghaee, H. Uluşan, Ö. Zorlu, E. Uysal-Biyikoglu, and

H. Külah. Implementation of energy-neutral operation on vibration energy har-

vesting wsn. IEEE Sensors Journal, 2019.

[16] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: syn-

thetic minority over-sampling technique. Journal of artificial intelligence re-

search (JAIR), 16:321–357, 2002.

[17] Q. Chen, H. Gao, Z. Cai, L. Cheng, and J. Li. Energy-collision aware data aggre-

gation scheduling for energy harvesting sensor networks. In Proc. of Int’l Conf.

on Computer Communications (INFOCOM), pages 117–125, 2018.

[18] X. Chen, K. Makki, K. Yen, and N. Pissinou. Sensor network security: A survey.

IEEE Communications Surveys and Tutorials, 11(2):52–73, 2009.

REFERENCE 99

[19] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder–

decoder for statistical machine translation. In Proc. of Conf. on Empirical Meth-

ods in Natural Language Processing and Int’l Joint Conf. on Natural Language

Processing (EMNLP–IJCNLP), pages 1724–1734, 2014.

[20] A. Coates and A. Y. Ng. The importance of encoding versus training with sparse

coding and vector quantization. In Proc. of Int’l Conf. on Machine Learning

(ICML), pages 921–928, 2011.

[21] H. Deng, Q.-A. Zeng, and D. P. Agrawal. Svm-based intrusion detection system

for wireless ad hoc networks. In Proc. of Vehicular Technology Conf. (VTC),

volume 3, pages 2147–2151, 2003.

[22] D. Dong, M. Li, Y. Liu, X.-Y. Li, and X. Liao. Topological detection on worm-

holes in wireless ad hoc and sensor networks. IEEE Trans. on Networking (TON),

19(6):1787–1796, 2011.

[23] W. Du, Z. Xing, M. Li, B. He, L. H. C. Chua, and H. Miao. Sensor placement and

measurement of wind for water quality studies in urban reservoirs. ACM Trans.

on Sensor Networks (TOSN), 11(3):41:1–41:7, 2015.

[24] N. Elvin and A. Erturk. Advances in energy harvesting methods. Springer Sci-

ence & Business Media, 2013.

[25] J. Eriksson, S. V. Krishnamurthy, and M. Faloutsos. Truelink: A practical coun-

termeasure to the wormhole attack in wireless networks. In Proc. of Int’l Conf.

on Network Protocols, pages 75–84, 2006.

[26] W. Galuba, P. Papadimitratos, M. Poturalski, K. Aberer, Z. Despotovic, and

W. Kellerer. Castor: Scalable secure routing for ad hoc networks. In Proc. of

Int’l Conf. on Computer Communications (INFOCOM), pages 1–9, 2010.

[27] B. Gao, D. Amagata, T. Maekawa, and T. Hara. Detecting energy depriving ma-

licious nodes by unsupervised learning in energy harvesting cooperative wireless

sensor networks. In Proc. of IPSJ DPS Workshop, pages 97–104, 2019.

100 REFERENCE

[28] B. Gao, D. Amagata, T. Maekawa, and T. Hara. Detecting malicious nodes with

learning ability in mobile wireless sensor networks. In Proc. of DEIM Forum,

online, 2019.

[29] B. Gao, T. Maekawa, D. Amagata, and T. Hara. Malicious node detection with

machine learning in manets. In Proc. of DEIM Forum, online, 2017.

[30] B. Gao, T. Maekawa, D. Amagata, and T. Hara. Environment-adaptive malicious

node detection in manets with ensemble learning. In Proc. of Int’l Conf. on

Distributed Computing Systems (ICDCS), pages 556–566, 2018.

[31] B. Gao, T. Maekawa, D. Amagata, and T. Hara. Robust malicious node detection

with ensemble learning in manets. IPSJ Journal, 60(2):501–513, 2019.

[32] B. Gao, T. Maekawa, D. Amagata, and T. Hara. Detecting reinforcement

learning-based grey hole attack in mobile wireless sensor networks. IEICE Trans.

on Communications, 2020.

[33] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with

model-based acceleration. In Proc. of Int’l Conf. on Machine Learning (ICML),

pages 2829–2838, 2016.

[34] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus. Energy cooperation in en-

ergy harvesting communications. IEEE Trans. on Communications (TCOM),

61(12):4884–4898, 2013.

[35] M. A. Hamid, M. Rashid, and C. S. Hong. Routing security in sensor network:

Hello flood attack and defense. Proc. of Int’l Conf. on Networking, Embedded

and Wireless Systems (ICNEWS), pages 2–4, 2006.

[36] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering al-

gorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),

28(1):100–108, 1979.

[37] E. Hernandez-Orallo, M. D. S. Olmos, J.-C. Cano, C. T. Calafate, and P. Manzoni.

Cocowa: A collaborative contact-based watchdog for detecting selfish nodes.

IEEE Trans. on Mobile Computing (TMC), 14(6):1162–1175, 2015.

REFERENCE 101

[38] J.-W. Ho, M. Wright, and S. K. Das. Fast detection of replica node attacks in

mobile sensor networks using sequential analysis. In Proc. of Int’l Conf. on

Computer Communications (INFOCOM), pages 1773–1781, 2009.

[39] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neu-

ral networks, 4(2):251–257, 1991.

[40] X. Hu, T. Park, and K. G. Shin. Attack-tolerant time-synchronization in wireless

sensor networks. In Proc. of Int’l Conf. on Computer Communications (INFO-

COM), pages 41–45, 2008.

[41] Y.-C. Hu, A. Perrig, and D. B. Johnson. Rushing attacks and defense in wireless

ad hoc network routing protocols. In Workshop on Wireless Security (WiSe),

pages 30–40, 2003.

[42] K. Huang and V. K. Lau. Enabling wireless power transfer in cellular networks:

Architecture, modeling and deployment. IEEE Trans. on Wireless Communica-

tions (TWC), 13(2):902–912, 2014.

[43] P. Huang, Y. Huang, W. Wang, and L. Wang. Deep embedding network for

clustering. In Proc. of Int’l Conf. on Pattern Recognition (ICPR), pages 1532–

1537, 2014.

[44] M. K. Jakobsen, J. Madsen, and M. R. Hansen. Dehar: A distributed energy har-

vesting aware routing algorithm for ad-hoc multi-hop wireless sensor networks.

In Proc. of Int’l Symposium on a World of Wireless, Mobile and Multimedia Net-

works (WoWMoM), pages 1–9, 2010.

[45] F.-C. Jiang, C.-H. Lin, and H.-W. Wu. Lifetime elongation of ad hoc networks

under flooding attack using power-saving technique. Ad Hoc Networks, 21:84–

96, 2014.

[46] M. Jianliang, S. Haikun, and B. Ling. The application on intrusion detection

based on k-means cluster algorithm. In Proc. of Int’l Forum on Information

Technology and Applications (IFITA), volume 1, pages 150–152, 2009.

102 REFERENCE

[47] E. Kanagaraj, L. Kamarudin, A. Zakaria, R. Gunasagaran, and A. Shakaff.

Cloud-based remote environmental monitoring system with distributed wsn

weather stations. In IEEE SENSORS, pages 1–4, 2015.

[48] J. Kang, R. Yu, S. Maharjan, Y. Zhang, X. Huang, S. Xie, H. Bogucka, and

S. Gjessing. Toward secure energy harvesting cooperative networks. IEEE Com-

munications Magazine, 53(8):114–121, 2015.

[49] B. Karaoglu and W. Heinzelman. Cooperative load balancing and dynamic chan-

nel allocation for cluster-based mobile ad hoc networks. IEEE Trans. on Mobile

Computing (TMC), 14(5):951–963, 2015.

[50] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks

and countermeasures. In Proc. of Int’l Workshop on Sensor Network Protocols

and Applications (SNPA), pages 113–127, 2003.

[51] M. I. Khan, W. N. Gansterer, and G. Haring. Static vs. mobile sink: The influence

of basic parameters on energy efficiency in wireless sensor networks. Computer

communications, 36(9):965–978, 2013.

[52] Y. Kim. Convolutional neural networks for sentence classification. In Proc. of

Conf. on Empirical Methods in Natural Language Processing (EMNLP), pages

1746–1751, 2014.

[53] R. Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation

and model selection. In Proc.of Int’l Joint Conf. on Artificial Intelligence (IJCAI),

volume 14, pages 1137–1145, 1995.

[54] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep

reinforcement learning: Integrating temporal abstraction and intrinsic motiva-

tion. In Proc. of Annual Conf. on Neural Information Processing Systems (NIPS),

pages 3675–3683, 2016.

[55] V. Laxmi, C. Lal, M. S. Gaur, and D. Mehta. Jellyfish attack: Analysis, detection

and countermeasure in tcp-based manet. Journal of Information Security and

Applications (JISA), 22:99–112, 2015.

REFERENCE 103

[56] Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[57] O. Lepskii. On a problem of adaptive estimation in gaussian white noise. Theory

of Probability & Its Applications (TVP), 35(3):454–466, 1991.

[58] M. Li, I. Koutsopoulos, and R. Poovendran. Optimal jamming attacks and net-

work defense policies in wireless sensor networks. In Proc. of Int’l Conf. on

Computer Communications (INFOCOM), pages 1307–1315, 2007.

[59] W. Li, A. Joshi, and T. Finin. Coping with node misbehaviors in ad hoc net-

works: A multi-dimensional trust management approach. In Proc. of Int’l Conf.

on Mobile Data Management (MDM), pages 85–94, 2010.

[60] X. Li, R. Lu, X. Liang, and X. Shen. Side channel monitoring: Packet drop attack

detection in wireless ad hoc networks. In Proc. of Int’l Conf. on Communications

(ICC), pages 1–5, 2011.

[61] Y. Li, L. Xiao, H. Dai, and H. V. Poor. Game theoretic study of protecting mimo

transmissions against smart attacks. In Proc. of Int’l Conf. on Communications

(ICC), pages 1–6, 2017.

[62] C. Lin, Z. Shang, W. Du, J. Ren, L. Wang, and G. Wu. Codoc: A novel attack for

wireless rechargeable sensor networks through denial of charge. In Proc. of Int’l

Conf. on Computer Communications (INFOCOM), pages 856–864, 2019.

[63] P. Lin, C. Qiao, and X. Wang. Medium access control with a dynamic duty cycle

for sensor networks. In Proc. of IEEE Wireless Communications and Networking

Conf. (CAT), volume 3, pages 1534–1539, 2004.

[64] F. Liu, X. Cheng, and D. Chen. Insider attacker detection in wireless sensor

networks. In Proc. of Int’l Conf. on Computer Communications (INFOCOM),

pages 1937–1945, 2007.

[65] G. Liu, X. Wang, X. Li, J. Hao, and Z. Feng. Esrq: An efficient secure routing

method in wireless sensor networks based on q-learning. In Proc. of Int’l Conf.

104 REFERENCE

on Trust, Security and Privacy in Computing and Communications (TrustCom),

pages 149–155, 2018.

[66] X. Lu, X. Wan, L. Xiao, Y. Tang, and W. Zhuang. Learning-based rogue edge

detection in vanets with ambient radio signals. In Proc. of Int’l Conf. on Com-

munications (ICC), pages 1–6, 2018.

[67] D. Mansouri, L. Mokdad, J. Ben-Othman, and M. Ioualalen. Detecting dos at-

tacks in wsn based on clustering technique. In Proc. of Wireless Communications

and Networking Conf. (WCNC), pages 2214–2219, 2013.

[68] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in

mobile ad hoc networks. In Proc. of Int’l Conf. on Mobile Computing and Net-

working (MobiCom), pages 255–265, 2000.

[69] A. Minasian, S. ShahbazPanahi, and R. S. Adve. Energy harvesting coopera-

tive communication systems. IEEE Trans. on Wireless Communications (TWC),

13(11):6118–6131, 2014.

[70] A. Mitrokotsa and C. Dimitrakakis. Intrusion detection in manet using classifi-

cation algorithms: The effects of cost and model selection. Ad Hoc Networks,

11(1):226–237, 2013.

[71] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

[72] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level

control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[73] A. Nadeem and M. P. Howarth. An intrusion detection & adaptive response

mechanism for manets. Ad Hoc Networks, 13:368–380, 2014.

[74] H. A. Nguyen, A. Förster, D. Puccinelli, and S. Giordano. Sensor node life-

time: An experimental study. In Proc. of Workshops of Int’l Conf. on Pervasive

Computing and Communications (PerCom), pages 202–207, 2011.

REFERENCE 105

[75] C. Park, S. Lee, G.-H. Cho, and C. T. Rim. Innovative 5-m-off-distance inductive

power transfer systems with optimally shaped dipole coils. IEEE Trans. on Power

Electronics (TPE), 30(2):817–827, 2014.

[76] H. P. Patel and M. Chaudhari. A time space cryptography hashing solution for

prevention jellyfish reordering attack in wireless adhoc networks. In Proc. of Int’l

Conf. on Computing, Communication and Networking Technologies (ICCCNT),

pages 1–6, 2013.

[77] M. Patel and S. Sharma. Detection of malicious attack in manet a behavioral

approach. In Proc. of Int’l Advance Computing Conf. (IACC), pages 388–393,

2013.

[78] N. J. Patel and R. H. Jhaveri. Detecting packet dropping nodes using machine

learning techniques in mobile ad-hoc network: A survey. In Proc. of Int’l Conf.

on Signal Processing And Communication Engineering Systems (SPACES), pages

468–472, 2015.

[79] A.-S. K. Pathan. Security of self-organizing networks: MANET, WSN, WMN,

VANET. CRC press, 2016.

[80] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing. In

Proc.of Workshop on Mobile Computing Systems and Applications (WMCSA),

pages 90–100, 1999.

[81] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava. Design

considerations for solar energy harvesting wireless embedded systems. In Proc.

of Int’l Conf. on Information Processing in Sensor Networks (IPSN), page 64,

2005.

[82] S. Ramaswamy, H. Fu, M. Sreekantaradhya, J. Dixon, and K. E. Nygard. Pre-

vention of cooperative black hole attack in wireless ad hoc networks. In Proc. of

Int’l Conf. on Wireless Networks (ICWN), pages 570–575, 2003.

106 REFERENCE

[83] D. R. Raymond and S. F. Midkiff. Denial-of-service in wireless sensor networks:

Attacks and defenses. Proc. of Int’l Conf. on Pervasive Computing and Commu-

nications (PerCom), pages 74–81, 2008.

[84] E. Rodrigues Gomes and R. Kowalczyk. Dynamic analysis of multiagent q-

learning with ε-greedy exploration. In Proc. of Int’l Conf. on Machine Learning

(ICML), pages 369–376, 2009.

[85] M. Saoudi, A. Bounceur, R. Euler, and T. Kechadi. Data mining techniques

applied to wireless sensor networks for early forest fire detection. In Proc. of

Int’l Conf. on Cloud Computing and Internet of Things (CCIOT), pages 71:1–

71:7, 2016.

[86] N. Schweitzer, A. Stulman, A. Shabtai, and R. D. Margalit. Contradiction based

gray-hole attack minimization for ad-hoc networks. IEEE Trans. on Mobile Com-

puting (TMC), 16(8):2174–2183, 2017.

[87] J. Sen, M. G. Chandra, S. Harihara, H. Reddy, and P. Balamuralidhar. A mecha-

nism for detection of gray hole attack in mobile ad hoc networks. In Proc. of Int’l

Conf. on Information and Communications Security (ICICS), pages 1–5, 2007.

[88] S. Shahabi, M. Ghazvini, and M. Bakhtiarian. A modified algorithm to improve

security and performance of aodv protocol against black hole attack. Wireless

Networks, 22(5):1505–1511, 2016.

[89] E. A. Shams and A. Rizaner. A novel support vector machine based intrusion

detection system for mobile ad hoc networks. Wireless Networks, pages 1821–

1829, 2017.

[90] S. K. Shandilya and S. Sahu. A trust based security scheme for rreq flooding

attack in manet. Int’l Journal of Computer Applications (IJCA), 5(12):4–8, 2010.

[91] H. Shen and Z. Li. A hierarchical account-aided reputation management system

for manets. IEEE Trans. on Networking (TON), 23(1):70–84, 2015.

REFERENCE 107

[92] S. Shevade, S. Keerthi, C. Bhattacharyya, and K. Murthy. Improvements to

the SMO algorithm for SVM regression. IEEE Trans. on Neural Networks,

11(5):1188–1193, 2002.

[93] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and chal-

lenges. IEEE Internet of Things Journal (IoT–J), 3(5):637–646, 2016.

[94] Y. Shi, L. Xie, Y. T. Hou, and H. D. Sherali. On renewable sensor networks with

wireless energy transfer. In Proc. of Int’l Conf. on Computer Communications

(INFOCOM), pages 1350–1358, 2011.

[95] T. Shu and M. Krunz. Privacy-preserving and truthful detection of packet drop-

ping attacks in wireless ad hoc networks. IEEE Trans. on Mobile Computing

(TMC), 14(4):813–828, 2015.

[96] F. Simjee and P. H. Chou. Everlast: long-life, supercapacitor-operated wireless

sensor node. In Proc. of the Int’l symposium on Low power electronics and design

(ISLPED), pages 197–202. ACM, 2006.

[97] P. K. Singh, R. R. Gupta, S. K. Nandi, and S. Nandi. Machine learning based

approach to detect wormhole attack in vanets. In Proc. of Workshops of the

Int’l Conf. on Advanced Information Networking and Applications (AINA), pages

651–661, 2019.

[98] D. Subhadrabandhu, S. Sarkar, and F. Anjum. A statistical framework for intru-

sion detection in ad hoc networks. In Proc. of Int’l Conf. on Computer Commu-

nications (INFOCOM), 2006.

[99] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway,

and J. Liang. Convolutional neural networks for medical image analysis: Full

training or fine tuning? IEEE Trans. on medical imaging (T-MI), 35(5):1299–

1312, 2016.

[100] Y. K. Tan and S. K. Panda. Energy harvesting from hybrid indoor ambient light

and thermal energy sources for enhanced performance of wireless sensor nodes.

IEEE Trans. on Industrial Electronics (TIE), 58(9):4424–4435, 2010.

108 REFERENCE

[101] D. Tse and P. Viswanath. Fundamentals of wireless communication. Cambridge

university press, 2005.

[102] F.-H. Tseng, L.-D. Chou, and H.-C. Chao. A survey of black hole attacks in

wireless mobile ad hoc networks. Human-centric Computing and Information

Sciences (HCIS), 1(1):4, 2011.

[103] L. Van Der Maaten. Learning a parametric embedding by preserving local struc-

ture. In Proc. of Int’l Conf. on. Artificial Intelligence and Statistics (AiStats),

pages 384–391, 2009.

[104] M. Veerayya, V. Sharma, and A. Karandikar. Sq-aodv: A novel energy-aware

stability-based routing protocol for enhanced qos in wireless ad-hoc networks. In

Proc. of Military Communications Conf. (MILCOM), pages 1–7, 2008.

[105] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and

K. Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In

Proc. of Int’l Conf. on Machine Learning (ICML), pages 3540–3549, 2017.

[106] M. A. M. Vieira, C. N. Coelho, D. Da Silva, and J. M. da Mata. Survey on wire-

less sensor network devices. In Proc. of IEEE Conf. on Emerging Technologies

and Factory Automation. Proceedings (EFTA), volume 1, pages 537–544, 2003.

[107] K. Vishnu and A. J. Paul. Detection and removal of cooperative black/gray hole

attack in mobile ad hoc networks. Int’l Journal of Computer Applications (IJCA),

1(22):38–42, 2010.

[108] C. Wang, J. Li, Y. Yang, and F. Ye. A hybrid framework combining solar energy

harvesting and wireless charging for wireless sensor networks. In Proc. of Int’l

Conf. on Computer Communications (INFOCOM), pages 1–9, 2016.

[109] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2004.

[110] B. Wu, J. Chen, J. Wu, and M. Cardei. A survey of attacks and countermea-

sures in mobile ad hoc networks. In Wireless Network Security, pages 103–135.

Springer, 2007.

REFERENCE 109

[111] L. Xiao, Y. Li, C. Dai, H. Dai, and H. V. Poor. Reinforcement learning-based

noma power allocation in the presence of smart jamming. IEEE Trans. on Vehic-

ular Technology (TVT), 67(4):3377–3389, 2018.

[112] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering

analysis. In Proc. of Int’l Conf. on Machine Learning (ICML), pages 478–487,

2016.

[113] K. Xing and X. Cheng. From time domain to space domain: Detecting replica

attacks in mobile ad hoc networks. In Proc. of Int’l Conf. on Computer Commu-

nications (INFOCOM), pages 1–9, 2010.

[114] J. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy. Deep convo-

lutional neural networks on multichannel time series for human activity recogni-

tion. In Proc. of Int’l Conf. on Artificial Intelligence (IJCAI), 2015.

[115] R. Zhang and C. K. Ho. Mimo broadcasting for simultaneous wireless infor-

mation and power transfer. IEEE Trans. on Wireless Communications (TWC),

12(5):1989–2001, 2013.

[116] H. Zhu, Z. Zhang, J. Du, S. Luo, and Y. Xin. Detection of selective forward-

ing attacks based on adaptive learning automata and communication quality in

wireless sensor networks. Int’l Journal of Distributed Sensor Networks (IJDSN),

14(11):1–15, 2018.

