
Title Program size, oracles, and the jump operation

Author(s) Chaitin, Gregory J.

Citation Osaka Journal of Mathematics. 1977, 14(1), p.
139-149

Version Type VoR

URL https://doi.org/10.18910/7667

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Chaitin, GJ.
Osaka J. Math.
14 (1977), 139-149

PROGRAM SIZE, ORACLES, AND
THE JUMP OPERATION

GREGORY J. CHAITIN

(Received January 17, 1976)

There are a number of questions regarding the size of programs for cal-

culating natural numbers, sequences, sets, and functions, which are best answered

by considering computations in which one is allowed to consult an oracle for the

halting problem. Questions of this kind suggested by work of T. Kamae and

D. W. Loveland are treated.

1. Computer programs, oracles, information measures, and codings

In this paper we use as much as possible Rogers' terminology and notation

[1, pp. xv-xix]. Thus N= {0, 1, 2, •••} is the set of (natural) numbers; i,j, k, n,

v, w, xy y, z are elements of N\ A, B, X are subsets of N, f, g, h are functions

from N into TV; φ, ψ are partial functions from N into N; <X, •••, #Λ> denotes

the ordered &-tuple consisting of the numbers x^ •••,#*; the lambda notation

X#[••#•••] is used to denote the partial function of x whose value is •••#•••; and

the mu notation μx[x] is used to denote the least x such that •••#••• is true.

The size of the number xy denoted lg(x), is defined to be the number of bits

in the #th binary string. The binary strings are: Λ , 0, 1, 00, 01, 10, 11, 000,

Thus lg(x) is the integer part of Iog2(#+l) Note that there are 2n numbers x

of size n, and 2n—1 numbers x of size less than n.

We are interested in the size of programs for a certain class of computers.

The #th computer in this class is defined in terms of φ(?}x [1, pp. 128-134],

which is the two-variable partial JΓ-recursive function with Gϋdel number z.

These computers use an oracle for deciding membership in the set X, and

the 0th computer produces the output φ¥)x(x9 y) when given the program x and

the data y. Thus the output depends on the set X as well as the numbers

x and y.
We now choose the standard universal computer U that can simulate any

other computer. U is defined as follows:

Ux((2x+l)2*-l, y) = φ™x(x, y).

Thus for each computer C there is a constant c such that any program of size

140 GJ. CHAITIN

n for C can be simulated by a program of size <n-\-c for U.
Having picked the standard computer C7, we can now define the program

size measures that will be used throughout this paper.
The fundamental concept we shall deal with is I(^/X)y which is the number

of bits of information needed to specify an algorithm relative to X for the partial
function -v/r, or, more briefly, the information in ψ relative to X. This is de-
fined to be the size of the smallest program for -ψ :

.= min lg(x) (ψ = λy[t/'(«, y)]) .

Here it is understood that I(ψ/X)= oo if ψ. is not partial .XT-recursive.
I(x-~*ylX), which is the information relative to X to go from the number

x to the number y, is defined as follows:

= min /(ψ/*) (ψ(*) = y) .

And I(x/X), which is the information in the number x relative to the set X, is
defined as follows:

Finally I(ψ/X) is used to define three versions I(A/X), Ir(A/X), and If(A/X)
of the information relative to X of a set A. These correspond to the three
ways of naming a set [1, pp. 69-71]: by r.e. indices, by characteristic indices,
and by canonical indices. The first definition is as follows:

I(AIX)=I(\x[if x(ΞA then 1 else undefined] /Z).
Thus I(A/X)<o° iff A is r.e. in X. The second definition is as follows:

Ir(AIX)=I(\x[iί xtΞA then 1 else 0]/-Y).
Thus Ir(A/X)<,°° iff A is recursive in X. And the third definition, which
applies only to finite sets, is as follows:

The following notational convention is used: /(ψ), I(x-*y), I(x), I(A), Ir(A),
and If (A) are abbreviations for /(ψ/φ), I(x~*y/φ)y /(#/φ), I(A/φ), Ir(A/φ), and
If(Alφ), respectively.

We use the coding r* of finite sequences of numbers into individual num-
bers [1, p. 71] T* is an effective one-one mapping from U Γ=o Nk onto N. And
we also use the notation f (x) for T* of the sequence </(0), /(I),•••, /(Λ-— 1)>
[1, p. 377]; for any function f,?(x) is the code number for the finite initial
segment of/ of length x.

The following theorems, whose straight-forwτard proofs are omitted, give
some basic properties of these concepts.

Theorem 1.
(a) I(xlX)<lg(x)+c

PROGRAM SIZE, ORACLES, AND THE JUMP OPERATION 141

(b) There are less than 2* numbers x with I(xlX)<n.
(c) \I(slX)-I(ylX)\<L2lg(\x-y\)+c
(d) The set of all true propositions of the form "I(x-*y/X)<z" is r.e. in X.
(e) I(x

Recall that there are 2n numbers x of size ny that is, there are 2n numbers x
with lg(x)—n. In view of (a) and (b) most x of size n have I(x/X)^^n. Such x
are said to be ^Γ-random. In other words, x is said to be Jf-random if I(x/X) is
approximately equal to lg(x) most x have this property.

Theorem 2.
(a)
(b)
(c)
(d) /(τ*(<X

Theorem 3.
(a) I(x^
(b) For eαcA ψ ί/zαί w partial X-recursive there is a c such that I(ψ (x)/X)<

(c) I(x^
(d) I(ftx)^*IX)£c end

Theorem 4.
(a) I(xlX)<I(\y[x]IX) and I(\y[x]IX)^I(xlX)+c
(b) I(x/X)<I,({x} /X)+c and // {x} IX)<I(xlX)+c
(c) I(xlX)^Ir({x}IX)+candI,({x}IX)<;I(xlX)+c
(d) /(*/Z) ̂ /({4 /X)+c and I({x} /X)^I(xlX)+c
(e) I,(AIX)^If(AIX)+c and I(AIX)<^Ir(AIX)+c

See [2] for a different approach to defining program size measures for
functions, numbers, and sets.

2. The jump and limit operations

The jump X/ of a set X is defined in such a manner that having an oracle
for deciding membership in X' is equivalent to being able to solve the halting
problem for algorithms relative to X [1, pp. 254-265].

In this paper we study a number of questions regarding the information
in ψ relative to the empty set, that are best answered by considering

and /(ψ/φ//), which are the information in i/r relative to the halting
problem and relative to the jump of the halting problem. The thesis of this
paper is that in order to understand I(ty/X) with X=φ, which is the case of
practical significance, it is sometimes necessary to jump higher in the arithmetical

142 GJ. CHAITIN

hierarchy to X=φ' or X=φ".
The following theorem, whose straight-forward proof is omitted, gives some

facts about how the jump operation affects program size measures.

Theorem 5.
(a) \xy[f(x-*ylX)] and \x[I(x/X)] are X'-recursive.
(b) I(^IXf)<I(^IX)+c
(c) For each n consider the least x such that lg(x)>n and I(x/X)>n. This x

has the property that lg(x)=n, I(xjX)<n+cly and I(x/X')<I(nlX')+c2

<lg_(n)+c3.
(d) I(Ά/X')<I(AIX)+c
(e) Ir(A/X')<I(AIX)+c
(f) If A is finite If(A/X')<I(A/X)+c.
(g) I(X'/X)<candI,(X'/X)=oo

It follows from (b) that ^-randomness implies .XT-randomness. However
(c) shows that the converse is false: there are .XT-random numbers that are not at
all ^-random.

Having examined the jump operation, we now introduce the limit operation.
The following theorem shows that the limit operation is in a certain sense analog-
ous to the jump operation. This theorem is the tool we shall use to study work of
Kamae and Loveland in the following sections.

DEFINITION.
Consider a function /. limx f(x) denotes a number z having the property

that there is an XQ such that f(x)=z if x>x0. If no such z exists, limxf(x) is
undefined. In other words limxf(x) is the value that/(#) assumes for almost all
x (if there is such a value.)

Theorem 6.
(a) If I(z/X')<n, then there is a function f such that z=\imxf(x) and

I(f/X)<n+c.
(b) // I(flX) <n and limx f(x)=zy then I(z/X') <n+c.

Proof.
(a) By hypothesis there is a program w of size less than n such that

Ux\w, 0)=z. Given w and an arbitrary number x, one calculates f(x)
using the oracle for membership in X as follows. Choose a fixed algorithm
relative to X for enumerating X''.

One performs x steps of the computation of Ux'(w, 0). This is done using
a fake oracle for X' that answers that v is in X' iff v is obtained during the first x
steps of the algorithm relative to X for enumerating X'. If a result is obtained
by performing x steps of Ux'(w, 0) in this manner, that is the value of f(x). If

PROGRAM SIZE, ORACLES, AND THE JUMP OPERATION 143

not, f(x) is 0.

It is easy to see that \imxf(x)=Ux/(w, 0)=* and I(flX)<lg(w)+c<n+c.
(b) By hypothesis there is a program w of size less than n such that lim^ Ux(wy x)

—z. Given w one can use the oracle for X' to calculate z. At stage i one
asks the oracle whether there is a j>i such that Ux(w,j)^Ux(w, i). If so, one
goes to stage ί+ 1 and tries again. If not, one is finished because Ux(w,i)=z.

This shows that I(zlX')<lg(w)+c<n+c. Q.E.D.
See [3] for applications of oracles and the jump operation in the context

of self-delimiting programs for sets and probability constructs; in this paper

we are only interested in programs with endmarkers.

3. The Kamae information measure

In this section we study an information measure K(x) suggested by work of
Kamae [4] (see also [5]).

I(y-*x) is less than or equal to /(#)-)-£, and it is natural to call I(x)—I(y-*x)
the degree to which y is helpful to x. Let us look at some examples. By
definition I(x)=I(Q^>x), and so 0 is no help at all. On the other hand some y

are very helpful: I(y-*x)<c for all those y whose prime factorization has 2
raised to the power x. Thus every x has infinitely many y that are extremely
helpful to it.

Kamae proves in [4] that for each c there is an x such that I(y-+x)<I(x)—c
holds for almost all y. In other words, for each c there is an x such that almost
all y are helpful to x more than c. This is surprising; one would have expected
there to be a c with the property that every x has infinitely many y that are helpful
to it less than c, that is, infinitely many y with I(y-*x)>I(x)—c.

We shall now study how I(y-*x/X) varies when x is held fixed and y goes to
infinity. Note that I(y-+x/X) is bounded (in fact, by I(xlX)-\-c). This suggests
the following definition: K(x/X) is the greatest w such that I(y-+x/X)=w holds
for infinitely many y. In other words, K(x/X) is the least v such that /(y->#/AΓ)
<v holds for almost all y.

Note that there are less than 2" numbers x with K(x/X) <n, so that K(xjX)
clearly measures bits of information in some sense. The trivial inequality
K(x/X)<I(x/X)+c relates K(x/X) and I(x/X), but the following theorem shows
that K(x/X) is actually much more intimately related to the information measures

and I(xlX") than to I(x/X).

Theorem 7.

(a) K(x/X)<I(x/X')+c
(b) I(xlX")<K(x/X)+c

Proof.
(a) Consider a number xQ. By Theorem 6a there is a function / such that

144 GJ. CHAITIN

lim,/(3θ=*0 and I(flX)<Ll(XoIX')+c. Hence I(y-+f(y)lX)<I(flX)^I(x<,lX')
-\-c. In as much asf(y)=x0 for almost all y, it follows that I(y-^x0IX)<I(x0IX/)
+c for almost all y. Hence K(x»/X) < I(xJX')+c.
(b) By using an oracle for membership in X' one can decide whether or not

I(y-*x/X)<n. Thus by using an oracle for membership in X" one can decide
whether or not y0 has the property that I(y-*x/X)<n for all y> yQ. It follows

that the set An= {x\K(x/X)<n} is r.e. in X" uniformly in n.

Suppose that x0^An. Consider j= 2n-\-k, where &=(the position of XQ in a

fixed ^"-recursive enumeration of An uniform in n). Since there are less than

2M numbers in An, k<2" and 2w<j<2n+1. Thus one can recover from y the
values of n and k. And if one is given j one can calculate XQ using an oracle for

membership in X". Thus if K(x0/X) <n, then I(x0/X//)<lg(j)+cl<n+c2.
Q.E.D.

What is the significance of this theorem? First of all, note that most x

are φ"-random and thus have 1g(x)^I(xlφ")^I(xlφ')^I(x)^K(x). In other
words, there is a c such that every n has the property that at least 99% of the x
of size n have all four quantities /(#/φ"), /(#/φ'), I(x), and K(x) inside the interval

between n— c and n-\-c. These x are "normal" because there are infinitely

many y that do not help x at all, that is, there are infinitely many y with I(y-*x)>
I(x)~c.

Now let us look at the other extreme, at the "abnormal" x discovered
by Kamae.

Consider the first φ-random number of size n, where n itself is φ//-random.

More precisely, let xn be the first x such that lg(x)~n and I(x)>n. (There is
such an xny because there are 2" numbers x of size n, and at most 2Λ— 1 of these

x have /(#)<#.) Moreover, we stipulate that n itself be φ"-random, so that

It is easy to see that these xn have the property that lg(n)^I(xn/φ/f)^I(
^K(xn) and I(xn)^lg(xn)=n. Thus most y help these xn a great deal, because

I(xn)^n and for almost all y, I(y-*xn)<log2n.
Theorem 7 enables us to make very precise statements about K(x) when

I(xlφ")***I(xlΦ'). But where is K(x) in the interval between /(#/φ") and /(#/φ')
when this interval is wide ? The following theorem shows that if /(tf/φ") and

/(#/φ') are many orders of magnitude apart, then K(x) will be of the same order

of magnitude as /(xi/φ'). To be more precise, Theorems 7a and 8 show that

Theorem 8.

// K(xJX) <n, then I(x0/X') < 2n+c.

Proof.
Consider a fixed number n and a fixed set X . Let %x be the cardinality of

PROGRAM SIZE, ORACLES, AND THE JUMP OPERATION 145

the set Bx={z\I(x-*zlX)<n}. Note that #x is bounded (in fact, by 2Λ—1).
Let i be the greatest w such that %x=w holds for infinitely many x, which is also
the least v such that #*<# holds for almost all x. L,etj=μz[#x<i if #>#], and
let A be the infinite set of x greater than or equal to j such that $x=i. Thus Bx

has exactly i elements if xeA.
It is not difficult to see that if one knows n and ί, then one can calculate j

by using an oracle for membership in Xf. And if one knows n, i, andj, by using
an oracle for membership in X one can enumerate A and simultaneously cal-
culate for each x^A the canonical index 2 2*(#e.BJC) of the /-element set Bx.

Define J(x) as follows: J(x)=(the greatest w such that I(y->xjX)=w holds
for infinitely many j>eA)=(the least ^ such that I(y-*xlX)<v holds for almost
all y^A). It is not difficult to see from the previous paragraph that if one is
given n and i and uses an oracle for membership in X'9 one can enumerate the
set of all x such that J(x) <n.

Note that there are less than 2" numbers x with/(#)<#, and that ίf.K(x/X)
<ny then J(x) <n. Suppose that #0 has the property that K(xQ/X) <n. Consider
the number k=(2n+i)2n+i2, where ί'2=(the position of x0 in the above-mentioned
^-recursive enumeration of {x\J(x)<n}). Since ί<2* and ί2<2 , one can re-
cover ny i, and ι2 from k.

It is not difficult to see that if one is given k, then one can calculate XQ using
an oracle for membership in X'. Thus if K(x0/X)<n, then /(#o/-^0<;^?(^)~r-ci
<2n+c2. Q.E.D.

4. The Loveland information measure

Define L(f/X) to be max, I(x-+f(x)IX), and to be oo if I(χ-^f(χ)jX) is
unbounded. This concept is suggested by work of Loveland [6]. Since there
are less than 2" functions / with L(f/X)<n, it is clear that in some sense L(f/X)
measures bits of information. I(x-*f(x)/X) is bounded if / is X-recursive, and
conversely A. R. Meyer [6, pp. 525-526] has shown that if I(x-^f(x)/X) is
bounded then / is ^-recursive. Thus L(f/X) < oo iff I(f/X) < oo.

But can something more precise be said about the relationship between
L(f) and /(/)? L(f)<I(f)+c, but as is pointed out in [6, p. 515], the proof
that /(/) < oo if L(f) < oo is nonconstructive and does not give an upper bound
on /(/) in terms of L(f). We shall show that in fact /(/) can be enormous for
reasonable values of L(f). The proof that /(/)<°° if L(/)<°o may therefore
be said to be extremely nonconstructive.

In [7] it is shown that /(/) < oo iff there is a c such that I(f(x))—.I(x)^c for
all x. This result is now also seen to be extremely nonconstructive, because
/(/) may be enormous for reasonable c.

Furthermore, R. M. Solovay has studied in [8] what is the situation if the
endmarker program size measure / used here is replaced by the self-delimiting

146 G.J. CHAITIN

program size measure H of [9]. He shows that there is a nonrecursive function

/ such that H(f(x))—H(x) is bounded. This result previously seemed to

contrast sharply with the fact that / is recursive if I(x->f(x)) is bounded [6] or if

I(f(x))—I(x) is bounded [7]. But now a harmonious whole is perceived

since the sufficient conditions for /to be recursive just barely manage to keep /(/)
from being 00.

Theorem 9.
If I(klX')<.n, then there is a function f such that L(f/X)<n+c and I(f/X)>

k-c.

Proof.

First we define the function £ as follows: g(x) is the first non-zero y such that

I(y/X)>x. Note that g is ^-recursive.

By hypothesis I(k\X'}<n. Hence I^fy/X^^IfilX^+c^n+c^ By

Theorem 6a, there is a function h such that I(h/X)<n+c2 and Km, h(x)=g(k).
Let xQ= μz[h(x)=g(k) if x>z]. Thus h(x)=g(k) if x>x0.

The function / whose existence is claimed is defined as follows:

O i f x<xQ9 and
, v - r ^n(x) ύ x>x0.

Ύhusf(x)=g(k)ίfx>xQ.

First we obtain a lower bound for I(f/X). The following holds for any
function/:

Hence for this particular / we see that I(flX)+c3>I(f(x0)IX)=I(g(k)IX). Thus,
by the definition of g, I(f/X)+c3>I(g(k)IX)>k.

Next we obtain an upper bound for I(x^f(x)/X). There are two cases:

x<x0 and x>x0. If x<x0y then f(x) is the code number for a sequence of x O's
and thus I(x ^f(x)/X)<I(\x[τ*«Qyx)]/X)= c4, where <0>* denotes a sequence

of x O's. If x>x0, then

*), μz[h(x) = h(y) if

Thus I(x->f(x)/X) is either bounded by ct or by n-\-c2

J

Γcβ. Hence I(x^-

<n+c7 and L(f/X)<n+c7,
To recapitulate, we have shown that this / has the property that I(f/X)>k

— c3 and L(f/X)<n+c7. Taking c=max c3, c7, we see that I(fjX)>k—c and

L(flX)<n+c. Q.E.D.

PROGRAM SIZE, ORACLES, AND THE JUMP OPERATION 147

Why does Theorem 9 show that /(/) can be enormous even though L(f) has
a reasonable value? Consider the function g(x) defined to be (•••((#!)!)!•••!)
in which there are xΓs. g(x) quickly becomes astronomical as x increases.

However, /(^(wVφO^^WJ+Ci^/ίwJ+^^feW+^aj and feM+^a *s less than
n for almost all n. Hence almost all n have the property that there is a function /
with L(f)<n+c and I(f)>g(n)—c.

In fact the situation is much worse. It is easy to define a function h that

is φ'-recursive and grows more quickly than any recursive function. In other
words, h is recursive in the halting problem and for any recursive function
g, h(x)>g(x) for almost all x. As before we see that I(h(ri)lφ')<n for almost
all n. Hence almost all n have the property that there is a function / with
L(f)<n+c and I(f)>h(n)-c.

5. Other applications

In this section some other applications of oracles and the jump operation
are presented without proof.

First of all, we would like to examine a question raised by C. P. Schnorr
[10, p. 189] concerning the relationship between I(x) and the limiting relative
frequency of programs for x. However, it is more appropriate to ask what is the
relationship between the self-delimiting program size measure H(x) [9] and the

limiting relative frequency of programs for x (with endmarkers). Define F(x, n)
to be —Iog2 of (the number of programs w less than or equal to n such that

Uφ(wy Q)=x)/(n+l). Then Theorem 12 of [10] is analogous to the following:

Theorem 10.
There is a c such that every x satisfies F(x, n)>H(x)—c for almost all n.

This shows that if H(x) is small, then x has many programs. Schnorr asks

whether the converse is true. In fact it is not:

Theorem 11.
There is a c such that every x satisfies F(x, ri)>H(x/φ')—c for almost all n.

Thus even though H(x) is large, x will have many programs if H(x/φ') is
small.

We would like to end by examining the maximum finite cardinality $A and
co-cardinality %Ά attainable by a set A of bounded program size. First we
define the partial function G:

G(x/X) = max z (I(z/X)<x) .

The following easily established results show how gigantic G is:

(a) If -ψ" is partial .XT-recursive and x>I(ψlX)-}-cy then -ψ (tf), if defined, is
less than G(x/X).

148 GJ. CHAITIN

(b) If ψ is partial -XT-recursive,) then there is a c such that ψ(G(xlX))y if defined,
is less than G(x+c/X).

Theorem 12.
(a) G(x-c)<max $A (If(A)<x)<G(x+c)
(b) G(*-£/φ') <max
(c) G(x-clφf) <max
(d) G(*

(e) G(̂

Here it is understood that the maximizations are only taken over those card-
inalities which are finite.

The proof of (e) is beyond the scope of the method used in this paper (e)

is closely related to the fact that {x\ Wx is co-finite} is 23-comρlete [1> P
and to Theorem 16 of [3].

Appendix
Theorem 3b can be strengthened to the following:

There are many other similar inequalities.
To formulate sharp results of this kind it is necessary to abandon the for-

malism of this paper, in which programs have endmarkers. Instead one must
use the self-delimiting program formalism of [9] and [3] in which programs can
be concatenated and merged. In that setting the following inequalities are
immediate:

IBM THOMAS J. WATSON RESEARCH CENTER

References

[1] H. Rogers, Jr.: Theory of recursive functions and effective computability,
McGraw-Hill, New York, 1967.

[2] GJ. Chaitin: Information-theoretic limitations of formal systems, J. ACM. 21

(1974), 403-424.
[3] GJ. Chaitin: Algorithmic entropy of sets, Comput. Math. Appl. 2 (1976), 233-

245.
[4] T. Kamae: On Kolmogorov's complexity and information, Osaka J. Math. 10

(1973), 305-307.

PROGRAM SIZE, ORACLES, AND THE JUMP OPERATION 149

[5] R.P. Daley: A note on a result of Kamae, Osaka J. Math. 12 (1975), 283-284.
[6] D.W. Loveland: A variant of the Kolmogorov concept of complexity, Inform-

ation and Control 15 (1969), 510-526.
[7] GJ. Chaitin: Information-theoretic characterizations of recursive infinite strings,

Theoretical Comput. Sci. 2 (1976), 45-48.
[8] R.M. Solovay: unpublished manuscript on [9] dated May 1975.
[9] GJ. Chaitin: A theory of program size formally identical to information theory,

J.ACM 22 (1975), 329-340.
[10] C.P. Schnorr: Optimal enumerations and optimal Godel numbering*, Math.

Systems Theory 8 (1975), 182-191.
[11] GJ. Chaitin: Algorithmic information theory, IBM J. Res. Develop. 21 (1977),

in press.

