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Abstract
We prove three conjectures of Tsukano about exponential sums stated in his Master’s thesis

written at Osaka University. These conjectures are variations of earlier conjectures made by
Lee and Weintraub which were first proved by Ibukiyama and Saito.

1. Introduction

1. Introduction
This paper is a continuation of a previous paper [6] on exponential sums originally intro-

duced by Lee-Weintraub. The present paper is dedicated to the proof of conjectures stated
by Tsukano, a student of Ibukiyama who came up with these conjectures in his Master’s
thesis [8] written at Osaka University.

Fix an odd prime p and let ψ denote the Legendre symbol mod p: ψ(a) =
(

a
p

)
. We put

ζ = exp(2πi/p). Let τ(ψ) denote the Gaussian sum τ(ψ) =
∑p−1

n=1 ψ(n)ζn. Let P(x),Q(x),R(x)
be polynomials with integer coefficients. Following Lee-Weintraub[7], we define the Lee-
Weintraub sum S [P,Q,R] by

S [P,Q,R] = −
∑′

k, j(p)

ψ(k)
(ζkP( j) − 1)(ζkQ( j) − 1)(ζkR( j) − 1)

,

where the summation is over a complete residue system modulo p, and the prime on the sum-
mation sign means that the meaningless terms are to be excluded. We note that S [cP, cQ, cR]
= ψ(c)S [P,Q,R] for any integer c. As discussed in [6], these exotic sums are related to spe-
cial values of L-functions which are related to the theory of modular forms.

Let h be an integer prime to p. We put

S h = {(a, b, c) ∈ Z3 : 1 ≤ a, b, c ≤ p − 1, ab + bc + hca ≡ 0(p)}.
Following Tsukano[8], we define I(h, p) and J(h, p) as follows.

I(h, p) =
∑

(a,b,c)∈S h

ψ(abc)
(1 − ζa)(1 − ζb)(1 − ζc)

,

J(h, p) =
∑

(a,b,c)∈S h

ψ(abc)abc.

The sums I(h, p) and J(h, p) are closely related to the Lee-Weintraub sums S [−x, x +
1, hx(x+ 1)] and S [1, hx2, h(x+ 1)2], respectively. Indeed, we have S [−x, x+ 1, hx(x+ 1)] =
ψ(−h)I(h, p), and by Proposition 4.2, we have
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S [1, hx2, h(x + 1)2]

= τ(ψ)
(
−ψ(−1)

p2 J(h, p) +
p − 1

p2 Dh − ψ(h)(p − 1)
2

B1,ψ − ψ(h)(p − 1)
4

B2,ψ

)
,

where

Dh =

p−1∑
a,b=1

abψ(a + hb).

Remark. The sums Dh are easily expressible by generalized Bernoulli numbers from the
work in [5].

In [8], Tsukano made five conjectures (modulo equivalence) expressing the character
sums I(h, p) and J(h, p) as linear combinations of generalized Bernoulli numbers. They are
the following.

Theorem 5.4 (Tsukano Conjectures [8]). When p ≡ 3(4), we have

(i) I(2, p)/τ(ψ) = − (1 + ψ(2))(p + 1)
12

B1,ψ − ψ(2) + 4
18

B3,ψ,

(ii) I(2−1, p)/τ(ψ) =
p − 2 − ψ(2)(5p + 2)

24
B1,ψ − 1 + 16ψ(2)

72
B3,ψ,

(iii) J(1, p)/p2 =
p + 1

2
B1,ψ − 1

6
B3,ψ,

(iv) J(2, p)/p2 =
4p + 1 + ψ(2)(4p + 7)

12
B1,ψ − 1 + 4ψ(2)

36
B3,ψ,

(v) J(2−1, p)/p2 =
p + 2 + ψ(2)(2p + 1)

4
B1,ψ − ψ(2)

12
B3,ψ,

where 2−1 is regarded as an element of (Z/pZ)∗, and the generalized Bernoulli numbers Bk,ψ

are given by (2.2).

The statement (i) was also conjectured by Lee-Weintraub[7] and (iii) by Ibukiyama-
Kaneko[2]; both are established in [6]. (Note that I(2, p) = ψ(−1)S [−x, x + 2, x(x + 2)].) In
this paper, we prove the three remaining Tsukano Conjectures.

By virtue of the relationship between the sums I(h, p), J(h, p) and S [−x, x+ 1, hx(x+ 1)],
S [1, hx2, h(x + 1)2], respectively, noting that S [−x, x + 1, h−1x(x + 1)] = ψ(h)S [−hx, h(x +
1), x(x+1)] and S [1, h−1x2, h−1(x+1)2] = ψ(h)S [h, x2, (x+1)2], the following three theorems
imply the Tsukano Conjectures (ii), (iv), and (v), respectively.

Theorem 5.1. For any odd prime number p, we have

S [−2x, 2(x + 1), x(x + 1)]

= τ(ψ)
(−p + 2 + ψ(2)(5p + 2)

24
B1,ψ +

1 + 6ψ(2)
4

B2,ψ +
1 + 16ψ(2)

72
B3,ψ

)
.

Theorem 5.2. For any odd prime number p, we have

S [1, 2x2, 2(x + 1)2]

= τ(ψ)
(−2p + 7 − ψ(2)(8p − 19)

12
B1,ψ +

ψ(2) + 1
4

B2,ψ − 4ψ(2) + 1
36

B3,ψ

)
.
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Theorem 5.3. For any odd prime number p, we have

S [2, x2, (x + 1)2] = τ(ψ)
(−2p + 5 − ψ(2)(p − 4)

12
B1,ψ +

1
2

B2,ψ − 1
12

B3,ψ

)
.

The proofs of the above theorems are given roughly as follows. We first rewrite the
exponential sum as a sum of triple products of P1 (defined in (2.1)) evaluated on various
parameters. By the work in [4], several such sums are known to be a linear combination
of generalized Bernoulli numbers (Theorem 3.1), but our present sums are not the same as
those. So we rewrite the sums in question, up to sums of some products of P1 and P2, to a
linear combination of several standard sums of triple products. Since both parts are known,
we are done.

2. Preliminaries

2. Preliminaries
In this section, we discuss all relevant background information needed to evaluate the

Lee-Weintraub sums given in the introduction. We omit the proofs which can be found in
the literature.

We fix the notation. Let p be an odd prime. We denote by ψ the Legendre symbol mod p:
ψ(a) =

(
a
p

)
. We put ζ = exp(2πi/p). Let τ(ψ) denote the Gaussian sum τ(ψ) =

∑p−1
n=1 ψ(n)ζn.

Let δx,y be the Kronecker delta symbol (δx,y = 1 if x = y, and 0 otherwise). We define the
kth Bernoulli polynomial Bk(x) by the generating function

tetx

et − 1
=

∞∑
k=0

Bk(x)
tk

k!

and the kth periodic Bernoulli function Pk(x) by

Pk(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if k = 1, x ∈ Z,
Bk({x}), otherwise,

(2.1)

where {x} denotes the fractional part of x. We note that Pk(−x) = (−1)kPk(x), based on
Bk(1− x) = (−1)kBk(x). We henceforth will apply this parity condition without mention. We
denote by Bk,ψ the kth generalized Bernoulli number attached to ψ:

(2.2) Bk,ψ = pk−1
∑
a(p)

Pk

(
a
p

)
ψ(a),

where the summation is over a complete residue system modulo p.
We state the well-known multiplication formula for the periodic Bernoulli functions.

Lemma 2.1. For any k ∈ Z, k ≥ 0, n ∈ N, x ∈ R, we have

1
nk−1 Pk (nx) =

∑
a(n)

Pk

(
x +

a
n

)
,

where the summation is over a complete residue system modulo n.

We next give an addition formula for the periodic Bernoulli functions.
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Lemma 2.2. Let x, y ∈ R. Then, we have

P1(x)P1(y) − P1(x)P1(x + y) − P1(y)P1(x + y)

= −1
2

(
P2(x) + P2(y) + P2(x + y)

)
+

1
4
δ(x, y),

where

δ(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1, if x, y ∈ Z,
0, otherwise.

Proof. The lemma can be checked by elementary algebra, assuming that x, y ∈ [0, 1) and
distinguishing the cases where none, one, or both of x, y are equal to 0. �

Most of the sums we encounter will contain periodic Bernoulli functions whose argu-
ments are homogeneous polynomials of degree 2. Thus we introduce the following lemma.

Lemma 2.3. Let n ∈ N, {k j}nj=1 be a set of positive integers with
∑n

j=1 k j ∈ 2Z + 1, and
{q j(k, t)}nj=1 be homogeneous polynomials of degree 2. Then for any a ∈ Z, we have

∑
k,t(p)

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

Pkj(aq j(k, t)/p)

⎞⎟⎟⎟⎟⎟⎟⎠ = ψ(a)
∑
k,t(p)

⎛⎜⎜⎜⎜⎜⎜⎝
n∏

j=1

Pkj(q j(k, t)/p)

⎞⎟⎟⎟⎟⎟⎟⎠ .
Proof. In the case p ≡ 1(4), there exists a c such that c2 ≡ −1(p). Replacing (k, t) by

(ck, ct), both sides of the lemma vanish for parity reasons. In the case p ≡ 3(4), there exists
a c such that c2 ≡ ψ(a)a−1(p). Replacing (k, t) by (ck, ct), we obtain the assertion of the
lemma. �

3. Review of Arakawa Sums and Arakawa Identities

3. Review of Arakawa Sums and Arakawa Identities
In this section, we state the relevant Arakawa sums and Arakawa Identities obtained in

[4]. They play a vital role in evaluating Lee-Weintraub sums.
Fix an odd prime p. We keep the notation used previously. The Arakawa sums

Ai(k1, k2, k3) (1 ≤ i ≤ 6) are defined by

A1(k1, k2, k3) =
∑
k,t(p)

Pk1

(
k2 − 2kt

p

)
Pk2

(
2kt
p

)
Pk3

(
t2 − k2

p

)
,

A2(k1, k2, k3) =
∑
k,t(p)

Pk1

(
k2 − 2kt

p

)
Pk2

(
kt
p

)
Pk3

(
t2 − k2

p

)
,

A3(k1, k2, k3) =
∑
k,t(p)

Pk1

(
k2 − 2kt

p

)
Pk2

(
4kt
p

)
Pk3

(
t2 − k2

p

)
,

A4(k1, k2, k3) =
∑
k,t(p)

Pk1

(
2(k2 − 2kt)

p

)
Pk2

(
2kt
p

)
Pk3

(
t2 − k2

p

)
,

A5(k1, k2, k3) =
∑
k,t(p)

Pk1

(
2(k2 − 2kt)

p

)
Pk2

(
kt
p

)
Pk3

(
2(t2 − k2)

p

)
,

A6(k1, k2, k3) =
∑
k,t(p)

Pk1

(
2(k2 − 2kt)

p

)
Pk2

(
kt
p

)
Pk3

(
t2 − k2

p

)
.

(3.1)
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For convenience, we write

(3.2)

⎧⎪⎪⎨⎪⎪⎩
Ai = Ai(1, 1, 1) (1 ≤ i ≤ 6),

a = A1(1, 0, 2).

The following are the Arakawa Identities pertinent to the evaluation of Lee-Weintraub
sums.

Theorem 3.1 (Theorem 3.3 in [4]). We have

(i) A1 − 1
3

a =
5p − 1 + 2p δp,3

24p
B1,ψ +

11
36p

B3,ψ,

(ii) A2 − 1
6

a =
4p + 1 − 3ψ(2) − 2p δp,3

24p
B1,ψ +

11
72p

B3,ψ,

(iii) A3 − 2
3

a =
(9 + ψ(2))p − 2ψ(2) − 4p δp,3

48p
B1,ψ +

11ψ(2)
144p

B3,ψ,

(iv) A4 + A5 − 2A6 − ψ(2)
12

a =
2(2ψ(2) − 3)p − 3 + ψ(2) + 8p δp,3

48p
B1,ψ +

11ψ(2)
144p

B3,ψ.

Remark. The assertion (i) in Theorem 3.1 was established by Ibukiyama-Saito[3] from
the work of Arakawa[1]. The remaining assertions are new.

The question arises whether a direct and elementary proof of these identities is possible.
This seems to be a very difficult problem.

4. Auxiliary Sums

4. Auxiliary Sums
In this section, we obtain formulas for all of the auxiliary sums needed in Section 5. We

omit the proofs which can be found in the literature. To fix our standpoint, we are satisfied
if an exponential sum or a character sum can be expressed in terms of generalized Bernoulli
numbers.

Fix an odd prime p. We keep the notation used previously. Let h be an integer prime to
p. We put

S h = {(a, b, c) ∈ Z3 : 1 ≤ a, b, c ≤ p − 1, ab + bc + hca ≡ 0(p)},
Th = {(a, b, c) ∈ Z3 : 1 ≤ a, b, c ≤ p − 1, (−a + b + hc)2 − 4hbc ≡ 0(p)},

and

J(h, p) =
∑

(a,b,c)∈S h

abcψ(abc),

K(h, p) =
∑

(a,b,c)∈Th

abcψ(c).

We also define the following character sums.

Dh =

p−1∑
a,b=1

abψ(a + hb),

αh =
∑
k(p)

P1

(
k
p

)
P1

(
hk
p

)
ψ(k),
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βh =
∑
k,t(p)

P1

(
kt
p

)
P1

(
hk(t + 1)

p

)
ψ(k),

Kh =
∑
k,t(p)

P1

(
k2

p

)
P1

(
ht2

p

)
P1

(
h(k + t)2

p

)
,

Jh =
∑
k,t(p)

P1

(
kt
p

)
P1

(
h(k2 + kt)

p

)
P1

(
t2 + kt

p

)
.

We note that in the sums Kh, Jh, it doesn’t matter which P1 factors contain the parameter
h. Indeed, replacing (k, t) by (t, k) and (−k, t + k) in the sums Kh, Jh, we get

Kh =
∑
k,t(p)

P1

(
hk2

p

)
P1

(
t2

p

)
P1

(
h(k + t)2

p

)

=
∑
k,t(p)

P1

(
hk2

p

)
P1

(
ht2

p

)
P1

(
(k + t)2

p

)
,

Jh =
∑
k,t(p)

P1

(
kt
p

)
P1

(
k2 + kt

p

)
P1

(
h(t2 + kt)

p

)

=
∑
k,t(p)

P1

(
hkt
p

)
P1

(
k2 + kt

p

)
P1

(
t2 + kt

p

)
.

We prepare a lemma to be used in Proposition 4.2 and Proposition 4.3.

Lemma 4.1. For any odd prime number p, we get

(i) D1 =

p−1∑
a,b=1

abψ(a + b) = − p2

2
(2B1,ψ + B2,ψ),

(ii)
∑
k,t(p)

P1

(
k
p

)
P1

(
hkt2

p

)
P1

(
hk(t + 1)2

p

)
ψ(k) = Kh,

(iii)
∑
k,t(p)

P1

(
k
p

)
P1

(
hkt2

p

)
ψ(k) =

∑
k,t(p)

P1

(
k
p

)
P1

(
hk(t + 1)2

p

)
ψ(k) = 0,

(iv)
∑
k,t(p)

P1

(
hkt2

p

)
P1

(
hk(t + 1)2

p

)
ψ(k) = −ψ(h)

p
B2,ψ,

(v)
∑
k,t(p)

P1

(
kt
p

)
P1

(
hk(t + 1)

p

)
P1

(
kt(t + 1)

p

)
ψ(k) = Jh,

(vi)
∑
k,t(p)

P1

(
kt
p

)
P1

(
kt(t + 1)

p

)
ψ(k) =

1
2

B2,ψ,

(vii)
∑
k,t(p)

P1

(
hk(t + 1)

p

)
P1

(
kt(t + 1)

p

)
ψ(k) = −βh.

Proof. The assertion (i) was proved in (iv) of Proposition 4.7 in [6], so we omit the proof.
Let S =

∑
k,t(p) P1

(
k
p

)
P1

(
hkt2

p

)
P1

(
hk(t+1)2

p

)
ψ(k). Since the sum S without the character van-

ishes for parity reasons, we have
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S =
∑
k,t(p)

P1

(
k
p

)
P1

(
hkt2

p

)
P1

(
hk(t + 1)2

p

)
(ψ(k) + 1)

=
∑
k,t(p)

P1

(
k2

p

)
P1

(
hk2t2

p

)
P1

(
hk2(t + 1)2

p

)
.

Replacing (k, t) by (k, k−1t) whenever k � 0(p), we see that S = Kh. Thus the asser-
tion (ii) is established. The assertion (iii) follows from

∑
t(p) P1(hkt2/p) = ψ(hk)B1,ψ and∑

k(p) P1(k/p) = 0. Let S =
∑

k,t(p) P1

(
hkt2

p

)
P1

(
hk(t+1)2

p

)
ψ(k). Replacing (k, t) by (h−1kt2, t−1)

in the sum S whenever t � 0(p), we get

S = ψ(h)
∑
k,t(p)

P1

(
k
p

)
P1

(
k(t + 1)2

p

)
ψ(k) − ψ(h)

∑
k(p)

P2
1

(
k
p

)
ψ(k).

The first sum vanishes by (iii) and the second sum is simply B2,ψ/p. Thus we get the asser-
tion (iv). The assertion (v) can be proved in a manner similar to (ii), so we omit the proof.
The assertion (vi) was proved in (xi) of Proposition 4.8 in [6], so we omit the proof. Let
S =

∑
k,t(p) P1

(
hk(t+1)

p

)
P1

(
kt(t+1)

p

)
ψ(k). Replacing (k, t) by (h−1k(hk−1t + 1)−1, hk−1t) in the

sum S , we get

S = ψ(h)
∑
k,t(p)

P1

(
k
p

)
P1

(
t
p

)
ψ(ht + k).

On the other hand, replacing (h−1k + t,−(h−1k + t)−1t) in the sum βh, we have

βh = −ψ(h)
∑
k,t(p)

P1

(
t
p

)
P1

(
k
p

)
ψ(k + ht).

Thus S = −βh and the assertion (vii) is established. �

The next two propositions allow us to express the Lee-Weintraub sums S [−x, x+1, hx(x+
1)], S [1, hx2, h(x + 1)2] by a sum of triple products of P1 functions.

Proposition 4.2. For any odd prime number p, we get

(i) S [−x, x + 1, hx(x + 1)] = τ(ψ)
(
−ψ(h)

p2 K(h, p) +
(p − 1)2(2 + ψ(h))

4
B1,ψ

)
,

(ii) S [1, hx2, h(x + 1)2]

= τ(ψ)
(
−ψ(−1)

p2 J(h, p) +
p − 1

p2 Dh − ψ(h)(p − 1)
2

B1,ψ − ψ(h)(p − 1)
4

B2,ψ

)
.

Proof. We first prove the assertion (i). Let S denote the sum S [−x, x+1, hx(x+1)]. Then,
we have

S = −
∑′

k, j(p)

ψ(k)
(ζ−k j − 1)(ζk( j+1) − 1)(ζhk j( j+1) − 1)

.

Since 1
ζn−1 =

1
p
∑p−1

a=1 aζan for any n with (n, p) = 1, we get
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S = − 1
p3

p−1∑
a,b,c=1

abc
∑
j(p)

j�0,−1(p)

∑
k(p)

k�0(p)

ζk{hc j2+(−a+b+hc) j+b}ψ(k)

= −τ(ψ)
p3

p−1∑
a,b,c=1

abc
{ ⎛⎜⎜⎜⎜⎜⎜⎝

∑
j(p)

ψ(hc j2 + (−a + b + hc) j + b)

⎞⎟⎟⎟⎟⎟⎟⎠ − ψ(b) − ψ(a)
}

= τ(ψ)
(
(p − 1)2(2 + ψ(h))

4
B1,ψ − ψ(h)

p2 K(h, p)
)
.

We next prove the assertion (ii). Let S denote the sum S [1, hx2, h(x+ 1)2]. Proceeding as
before, with the help of (i) in Lemma 4.1, we have

S = − 1
p3

p−1∑
a,b,c=1

abc
∑
j(p)

j�0,−1(p)

∑
k(p)

k�0(p)

ζk{(hb+hc) j2+2hc j+(a+hc)}ψ(k)

= −τ(ψ)
p3

p−1∑
a,b,c=1

abc
{ ⎛⎜⎜⎜⎜⎜⎜⎝

∑
j(p)

ψ((hb + hc) j2 + 2hc j + a + hc)

⎞⎟⎟⎟⎟⎟⎟⎠ − ψ(a + hc) − ψ(a + hb)
}

= τ(ψ)

⎛⎜⎜⎜⎜⎜⎜⎝ p − 1
p2 Dh − ψ(h)(p − 1)

2
B1,ψ − ψ(h)(p − 1)

4
B2,ψ − ψ(h)

p2

∑
(a,b,c)∈S h

abcψ(a + c)

⎞⎟⎟⎟⎟⎟⎟⎠ .
Since ψ(a+c) = ψ(−h)ψ(abc) for every triple (a, b, c) ∈ S h, we obtain the assertion (ii). �

Proposition 4.3. For any odd prime number p, we get

(i) K(h, p)/p3 = Kh − αh +
(p − 2)(1 + 2ψ(h))

4
B1,ψ − ψ(h)

2p
B2,ψ,

(ii) J(h, p)/p3 = −ψ(−h)
(
Jh + βh +

2 + ψ(h)
4

B1,ψ +
1
4

B2,ψ

)
.

Proof. We first prove the assertion (i). By the 1-to-1 correspondence between the sets Th

and {(hk(t + 1)2, hkt2, k) ∈ (F×p)3 | 1 ≤ k, t ≤ p − 1}, we have

K(h, p) =
∑
k,t(p)

kt(t+1)�0(p)

[k][hkt2][hk(t + 1)2]ψ(k),

where [n] denotes the least nonnegative residue of n mod p. Since [x]/p = P1(x/p) + 1/2 if
x � Z and P1(x/p) otherwise, we express K(h, p) by sums of products of P1 functions and
take full advantage of their periodicity. Thus, we have

K(h, p)/p3

=
∑
k,t(p)

kt(t+1)�0(p)

(
P1

(
k
p

)
+

1
2

) (
P1

(
hkt2

p

)
+

1
2

) (
P1

(
hk(t + 1)2

p

)
+

1
2

)
ψ(k).

Upon simplifying, with the help of (ii)-(iv) in Lemma 4.1, we obtain the assertion (i).
We next prove the assertion (ii). By the 1-to-1 correspondence between the sets S h and

{(kt(t + 1), hk(t + 1),−kt) ∈ (F×p)3 | 1 ≤ k, t ≤ p − 1}, we have
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J(h, p) =
∑
k,t(p)

kt(t+1)�0(p)

[−kt][hk(t + 1)][kt(t + 1)]ψ(−hk3t2(t + 1)2).

Proceeding as before, expressing J(h, p) by sums of products of P1 functions and simplifying
with the help of (v)-(vii) in Lemma 4.1, we obtain the assertion (ii). �

In order to evaluate the Lee-Weintraub sums given in the introduction, we need the fol-
lowing proposition.

Proposition 4.4. For any prime number p, we get

(i) D2 = ψ(2)D2−1 = − p2

4

(
2(1 + ψ(2))B1,ψ + B2,ψ

)
,

(ii) α2 = ψ(2)α2−1 =
4 + ψ(2)

4p
B2,ψ,

(iii) β2 = ψ(2)β2−1 =
ψ(2)

4
B2,ψ.

Proof. In the notation of [5], we have Dh = S 1(h, ψ; 1). Therefore, by Theorems 4.5, 4.4,
and 3.1 in [5], we get D2 = − p2

4

(
2(1 + ψ(2))B1,ψ + B2,ψ

)
. Since D2−1 = ψ(2)D2 is clear, we

have the assertion (i).
By a standard calculation as seen in Proposition 4.8 of [6], we get α2 =

4+ψ(2)
4p B2,ψ. Re-

placing k by hk in the sum αh−1 , we get αh−1 = ψ(h)αh. Thus the assertion (ii) follows.
Replacing (k, t) by (h−1k + t,−(h−1k + t)−1t) in the sum βh whenever h−1k + t � 0, we get

βh = −ψ(h)
∑
k,t(p)

P1

(
t
p

)
P1

(
k
p

)
ψ(k + ht) = −ψ(h)

(
1
p2 Dh +

ψ(h) + 1
2

B1,ψ

)
.

Thus the assertion (iii) follows from (i). �

Remark. The sum Dh has been studied in greater generality in [5].

We now introduce some new notation. Let q j(k, t) ( j = 1, 2, 3) be polynomial expres-
sions of k and t. We write S (q1(k, t), q2(k, t), q3(k, t)) and D(q1(k, t), q2(k, t)) to denote the
following sums of products of periodic Bernoulli functions.

S (q1(k, t), q2(k, t), q3(k, t)) =
∑
k,t(p)

P1(q1(k, t)/p)P1(q2(k, t)/p)P1(q3(k, t)/p),

D(q1(k, t), q2(k, t)) =
∑
k,t(p)

P1(q1(k, t)/p)P2(q2(k, t)/p).

We note that the sum S (q1, q2, q3) is invariant under permutations of its arguments, whereas
the sum D(q1, q2) is not.

We next give a proposition that is used only in Theorem 4.6.

Proposition 4.5 ([6]). Let r, s ∈ Z. We have

(i) D(rkt, s(t2 − k2)) = 0,

(ii) D(r(t2 + kt), s(k2 + 2kt)) = D(r(k2 + 2kt), s(t2 + kt)) = 0,
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(iii) D(k2 + kt, kt) = D(k2 + 2kt, 2kt) = D(t2 + kt, k2 + kt)

= ψ(2)D(2(t2 + kt), 2kt) = ψ(2)D(2(t2 + kt), 2(k2 + kt)) = − 1
3p

B3,ψ,

(iv) D(k2 + kt, 2kt) = D(t2 + kt, 2(k2 + kt)) =
1 − ψ(2)

2p
B1,ψ − ψ(2)

6p
B3,ψ,

(v) D(k2 + 2kt, kt) = ψ(2)D(2(k2 + 2kt), 2kt) =
1 − ψ(2)

4p
B1,ψ − 1

12p
B3,ψ,

(vi) D(kt, k2 + kt) = D(2kt, k2 + 2kt) =
1

3p
B3,ψ,

(vii) D(kt, k2 + 2kt) = ψ(2)D(2kt, 2(k2 + 2kt)) =
1 − ψ(2)

2p
B1,ψ +

1
6p

B3,ψ,

(viii) D(2kt, k2 + kt) = −D(2(t2 + kt), k2 + kt) = −D(2(t2 + kt), kt)

=
1 − ψ(2)

4p
B1,ψ +

ψ(2)
12p

B3,ψ,

(ix) D(k2 + 2kt, t2 + 2kt) = ψ(2)D(2(k2 + 2kt), 2(t2 + 2kt)) = −a,

(x) D(k2 + 2kt, 2(t2 + 2kt)) = −4 + ψ(2)
3

a,

(xi) D(2(k2 + 2kt), t2 + 2kt) = −A4(1, 0, 2).

Since the assertions of Proposition 4.5 can be found in Propositions 4.3, 4.5, and 4.6 in
[6], we omit the proof.

Set ε = p/2. We define the following sums which frequently arise in the evaluation of
Lee-Weintraub sums.

X1 = S (k2, t2, (k + t)2),

X2 = S (k2 + ε, t2, (k + t)2),

X3 = S (k2 + ε, t2 + ε, (k + t)2),

X4 = S (k2 + ε, t2 + ε, (k + t)2 + ε),

Y1 = S (kt, k2 + kt, t2 + kt),

Y2 = S (kt + ε, k2 + kt, t2 + kt),

Y3 = S (kt + ε, k2 + kt + ε, t2 + kt),

Y4 = S (kt + ε, k2 + kt + ε, t2 + kt + ε),

γ = D(kt, 2(k2 + 2kt)).

(4.1)

Remark. For the Lee-Weintraub sums given in [6], we encountered the sums X1, X2, X3,

and Y1, and for the Lee-Weintraub sums given in this paper, we encounter the sums X1, X2,

Y1, Y2, and Y3.

We note that in the sums Xi, Yi (i = 2, 3), it doesn’t matter which P1 factors contain the
parameter ε. Indeed, replacing (k, t) by (t, k) and (−k − t, t) in the sum X2, by (k,−k − t) and
(−k− t, t) in the sum X3, by (−k, k+ t) and (−t, k+ t) in the sum Y2, and by (t, k) and (−k− t, t)
in the sum Y3, we get
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X2 = S (k2, t2 + ε, (k + t)2) = S (k2, t2, (k + t)2 + ε),

X3 = S (k2 + ε, t2, (k + t)2 + ε) = S (k2, t2 + ε, (k + t)2 + ε),

Y2 = S (kt, k2 + kt + ε, t2 + kt) = S (kt, k2 + kt, t2 + kt + ε),

Y3 = S (kt + ε, k2 + kt, t2 + kt + ε) = S (kt, k2 + kt + ε, t2 + kt + ε).

We will routinely make use of the multiplication formula Lemma 2.1 to express periodic
Bernoulli functions shifted by 1/2 as follows.

(4.2) Pk(x + 1/2) = 1/2k−1Pk(2x) − Pk(x) (k ∈ Z, k ≥ 0, x ∈ R).

We will also regularly call upon Lemma 2.3 to “factor out” a ψ(2) from a sum of products
of periodic Bernoulli functions.

In the next theorem (Theorem 4.6), we will frequently simplify sums of triple products
of periodic Bernoulli functions by applying the addition formula Lemma 2.2 to two of the
terms, then multiplying throughout by the remaining term and carefully summing. Thus we
write [a, b; c; (d), (e)] to mean “applying Lemma 2.2 with x = a/p, y = b/p, multiplying
throughout by P1(c/p) and summing over k, t(p) with the help of (d), (e) in Proposition 4.5”.
Through this process, we express our original sum of triple products as two new sums of
triple products plus three sums of double products and a correction sum involving just one
P1. That is, we get

S (a, b, c) = S (a, a + b, c) + S (b, a + b, c) − 1
2

(D(c, a) + D(c, b) + D(c, a + b))

+
1
4

∑
k,t(p)

P1(c/p)δ(a/p, b/p),

where δ(x, y) = 1 if x, y ∈ Z, and 0 otherwise. All of the correction sums involving one P1

are easy to evaluate and require no explanation. (In fact, all of the correction sums involving
one P1 will vanish with the exception of

∑
k,t(p) P1(kt/p + 1/2)δ((k2 + 2kt)/p, (t2 + 2kt)/p))

which equals δp,3(ψ(2) − 1)B1,ψ.) All of the sums of double products have already been
evaluated in Proposition 4.5. Thus, we will only explain manipulations of sums of triple
products of periodic Bernoulli functions. We will apply the same sequence of steps to each
new sum of triple products arising. In this way, we will obtain a tree of sums. In the end,
we will condense the tree and express our original sum of triple products by Arakawa sums,
from which we can evaluate by virtue of the Arakawa Identities given by Theorem 3.1.

We remind the reader that Ai(k1, k2, k3) are the Arakawa sums given in (3.1), and that Ai, a
are the Arakawa sums given in (3.2). We now express the sums Xi, Yi (1 ≤ i ≤ 4) in terms of
γ and Arakawa sums Ai (1 ≤ i ≤ 6), a. We note that only the sums Y2, Y3 involve the sum γ.

Theorem 4.6. For any odd prime number p, we get

(i) X1 = 6
(
A1 − 1

3
a
)
− 6p − 3 + 2p δp,3

4p
B1,ψ − 2

p
B3,ψ,

(ii) X2 = 2(1 + ψ(2))
(
A1 − 1

3
a
)
− 2ψ(2)

(
A2 − 1

6
a
)
− 2

(
A3 − 2

3
a
)

+
ψ(2) − 1

4p
B1,ψ − 4 + ψ(2)

6p
B3,ψ,
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(iii) X3 = −2
(
A1 − 1

3
a
)
+ 2ψ(2)

(
A2 − 1

6
a
)
+

1 − ψ(2)
2

B1,ψ +
2 − ψ(2)

3p
B3,ψ,

(iv) X4 = −6
(
A1 − 1

3
a
)
+ 6

(
A3 − 2

3
a
)
+

1 − ψ(2)
2

δp,3B1,ψ +
4 − ψ(2)

2p
B3,ψ,

(v) Y1 = −6
(
A2 − 1

6
a
)
+

3p + 3 − 3ψ(2) − 2p δp,3

4p
B1,ψ +

3
4p

B3,ψ,

(vi) Y2 = 2
(
A1 − 1

3
a
)
− 2

(
A2 − 1

6
a
)
− 2

(
A4 + A5 − 2A6 − ψ(2)

12
a
)

− 1
4
γ +

(ψ(2) − 1)(4p − 3)
16p

B1,ψ +
7ψ(2) − 12

48p
B3,ψ,

(vii) Y3 = 2(1 − ψ(2))
(
A2 − 1

6
a
)
+ 2

(
A4 + A5 − 2A6 − ψ(2)

12
a
)

− 1
2
γ +

ψ(2) − 1
4p

B1,ψ +
2ψ(2) − 3

12p
B3,ψ,

(viii) Y4 = −6
(
A1 − 1

3
a
)
+ 6

(
A2 − 1

6
a
)
+

3ψ(2) − 3 + 4p δp,3

4p
B1,ψ +

3
4p

B3,ψ.

Proof. The assertions (i)-(iii) were proved in Theorem 5.1 in [6], so we omit the proofs.
We now prove the assertion (iv). We set

I = S (2k2, 2t2, 2(k + t)2).

By Lemma 2.3, we have I = ψ(2)X1. On the other hand, by the multiplication formula
Lemma 2.1, we get I = X1 + 3X2 + 3X3 + X4. Thus X4 = (ψ(2) − 1)X1 − 3X2 − 3X3 and the
assertion (iv) follows from (i)-(iii).

The assertion (v) was proved in Theorem 5.3 in [6], so we omit the proof. For the re-
maining assertions (vi)-(viii), we apply a sequence of transformations similarly used in the
proof of (v). We now prove the assertion (vi) by creating a tree of sums for Y2 of depth 3.
By [kt + ε, k2 + kt; t2 + kt; (ii)-(iv)], we have

Y2 = S (kt + ε, k2 + 2kt + ε, t2 + kt) + S (k2 + kt, k2 + 2kt + ε, t2 + kt)

+
ψ(2) − 1

8p
B1,ψ +

ψ(2)
24p

B3,p.

Replacing (k, t) by (−k, k + t) in the second sum on the right, we get

Y2 = S (kt + ε, k2 + 2kt + ε, t2 + kt) + S (kt, k2 + 2kt + ε, t2 + kt)

+
ψ(2) − 1

8p
B1,ψ +

ψ(2)
24p

B3,p.
(4.3)

We now evaluate the first sum on the right of (4.3). By [kt + ε, t2 + kt; k2 + 2kt +
ε; (ii), (iii), (v), (ix)-(xi)], we get

S (kt + ε, k2 + 2kt + ε, t2 + kt)

= S (kt + ε, k2 + 2kt + ε, t2 + 2kt + ε) + S (t2 + kt, k2 + 2kt + ε, t2 + 2kt + ε)

+
ψ(2) + 1

6
a − 1

2
A4(1, 0, 2) +

1
2

D(2(k2 + 2kt), kt) +
ψ(2) − 1

16p
B1,ψ +

ψ(2) − 2
48p

B3,p.
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Replacing (k, t) by (t − k, k) in the second sum on the right and applying (4.2), we obtain

S (kt + ε, k2 + 2kt + ε, t2 + kt)

= S (kt + ε, k2 + 2kt + ε, t2 + 2kt + ε) + S (kt, 2(t2 − k2), k2 − 2kt)

− A2 − A5 + A6 +
ψ(2) + 1

6
a − 1

2
A4(1, 0, 2) +

1
2

D(2(k2 + 2kt), kt)

+
ψ(2) − 1

16p
B1,ψ +

ψ(2) − 2
48p

B3,p.

(4.4)

We next evaluate the first sum on the right. By [−(k2 + 2kt) + ε, t2 + 2kt + ε; kt +
ε; (i), (vi), (vii)], we get

S (kt + ε, k2 + 2kt + ε, t2 + 2kt + ε)

= S (kt + ε, k2 + 2kt + ε, t2 − k2) − S (kt + ε, t2 + 2kt + ε, t2 − k2) − 1
2
γ

+
1 − ψ(2)

4p
B1,ψ +

ψ(2) − 2
12p

B3,p.

Replacing (k, t) by (k,−t) in the first sum and (k, t) by (t,−k) in the second sum and applying
(4.2), we get

S (kt + ε, k2 + 2kt + ε, t2 + 2kt)

= 2A1 − 2A2 − 2A4 + 2A6 − 1
2
γ +

1 − ψ(2)
4p

B1,ψ +
ψ(2) − 2

12p
B3,p.

(4.5)

We now evaluate the second sum on the right hand side of (4.3). By [kt, t2 + kt; k2 + 2kt+
ε; (ii), (v), (ix), (xi)], we get

S (kt, k2 + 2kt + ε, t2 + kt)

= S (kt, k2 + 2kt + ε, t2 + 2kt) + S (t2 + kt, k2 + 2kt + ε, t2 + 2kt) − 1
2

a

+
1
2

A4(1, 0, 2) − 1
2

D(2(k2 + 2kt), kt) +
(1 − 2p)(1 − ψ(2))

8p
B1,ψ − 1

24p
B3,ψ.

Replacing (k, t) by (t − k, k) in the second sum on the right and applying (4.2), we get

S (kt, k2 + 2kt + ε, t2 + kt)

= S (kt, k2 + 2kt + ε, t2 + 2kt) − S (kt, 2(t2 − k2), k2 − 2kt)

+ A2 − 1
2

a +
1
2

A4(1, 0, 2) − 1
2

D(2(k2 + 2kt), kt)

+
(1 − 2p)(1 − ψ(2))

8p
B1,ψ − 1

24p
B3,ψ.

(4.6)

We next evaluate the first sum on the right. By [−(k2 + 2kt) + ε, t2 + 2kt; kt; (i), (vii)], we
get

S (kt, k2 + 2kt + ε, t2 + 2kt)

= S (kt, k2 + 2kt + ε, t2 − k2 + ε) − S (kt, t2 + 2kt, t2 − k2 + ε) +
1
4
γ.
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Replacing (k, t) by (k,−t) in the first sum and (k, t) by (t,−k) in the second sum and applying
(4.2), we get

S (kt, k2 + 2kt + ε, t2 + 2kt) = −A5 + A6 +
1
4
γ.(4.7)

Then, from (4.3)-(4.7), we have

Y2 = 2
(
A1 − 1

3
a
)
− 2

(
A2 − 1

6
a
)
− 2

(
A4 + A5 − 2A6 − ψ(2)

12
a
)

− 1
4
γ +

(ψ(2) − 1)(4p − 3)
16p

B1,ψ +
7ψ(2) − 12

48p
B3,ψ.

Thus the assertion (vi) is established.
We next prove the assertion (vii) by applying a similar sequence of transformations to Y3

to obtain a tree of sums of depth 3. By [kt + ε, k2 + kt + ε; t2 + kt; (ii)-(iv)], we have

Y3 = S (kt + ε, k2 + 2kt, t2 + kt) + S (k2 + kt + ε, k2 + 2kt, t2 + kt)

+
ψ(2) − 1

4p
B1,ψ +

ψ(2) − 4
12p

B3,ψ.

Replacing (k, t) by (−k, k + t) in the second sum, we get

(4.8) Y3 = 2S (kt + ε, k2 + 2kt, t2 + kt) +
ψ(2) − 1

4p
B1,ψ +

ψ(2) − 4
12p

B3,ψ.

By [kt + ε, t2 + kt; k2 + 2kt; (ii), (iii), (ix), (x)], we get

S (kt + ε, k2 + 2kt, t2 + kt)

= S (kt + ε, k2 + 2kt, t2 + 2kt + ε) + S (t2 + kt, k2 + 2kt, t2 + 2kt + ε)

+
ψ(2) − 2

12
a +

1 − ψ(2)
8p

B1,ψ +
1

24p
B3,ψ.

Replacing (k, t) by (t − k, k) in the second sum on the right and applying (4.2), we obtain

S (kt + ε, k2 + 2kt, t2 + kt)

= S (kt + ε, k2 + 2kt, t2 + 2kt + ε) + A2 − A6 +
ψ(2) − 2

12
a

+
1 − ψ(2)

8p
B1,ψ +

1
24p

B3,ψ.

(4.9)

By [−(k2 + 2kt), t2 + 2kt + ε; kt + ε; (i), (vi), (vii)], we get

S (kt + ε, k2 + 2kt, t2 + 2kt + ε)

= S (kt + ε, k2 + 2kt, t2 − k2 + ε) − S (kt + ε, t2 + 2kt + ε, t2 − k2 + ε) − 1
4
γ

+
ψ(2) − 1

8p
B1,ψ +

ψ(2)
24p

B3,ψ.

Replacing (k, t) by (k,−t) in the first sum and (k, t) by (t,−k) in the second sum and applying
(4.2) together with Lemma 2.3, we get
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S (kt + ε, k2 + 2kt, t2 + 2kt + ε)

= −ψ(2)A2 + A4 + A5 − A6 − 1
4
γ +

ψ(2) − 1
8p

B1,ψ +
ψ(2)
24p

B3,ψ.
(4.10)

Then, from (4.8)-(4.10), we have

Y3 = 2(1 − ψ(2))
(
A2 − 1

6
a
)
+ 2

(
A4 + A5 − 2A6 − ψ(2)

12
a
)

− 1
2
γ +

ψ(2) − 1
4p

B1,ψ +
2ψ(2) − 3

12p
B3,ψ.

Thus the assertion (vii) is established.
We next prove the assertion (viii) by applying a similar sequence of transformations to Y4

to obtain a tree of sums of depth 3. By [kt+ ε, k2+ kt+ ε; t2+ kt+ ε; (ii)-(iv), (viii)], we have

Y4 = S (kt + ε, k2 + 2kt, t2 + kt + ε) + S (k2 + kt + ε, k2 + 2kt, t2 + kt + ε) +
1

3p
B3,ψ.

Replacing (k, t) by (−k, k + t) in the second sum, we get

Y4 = 2S (kt + ε, k2 + 2kt, t2 + kt + ε) +
1

3p
B3,ψ.(4.11)

By [kt + ε, t2 + kt + ε; k2 + 2kt; (ii), (iii), (v), (ix)], we have

S (kt + ε, k2 + 2kt, t2 + kt + ε)

= S (kt + ε, k2 + 2kt, t2 + 2kt) + S (t2 + kt + ε, k2 + 2kt, t2 + 2kt) +
1
2

a

+
1 − ψ(2)

8p
B1,ψ +

1
24p

B3,ψ.

Replacing (k, t) by (t − k, k) in the second sum, we get −A1 + A2. Thus, we have

S (kt + ε, k2 + 2kt, t2 + kt + ε)

= S (kt + ε, k2 + 2kt, t2 + 2kt) − A1 + A2 +
1
2

a +
1 − ψ(2)

8p
B1,ψ

+
1

24p
B3,ψ.

(4.12)

By [−(k2 + 2kt), t2 + 2kt; kt + ε; (i), (vi), (vii)], we get

S (kt + ε, k2 + 2kt, t2 + 2kt) = S (kt + ε, k2 + 2kt, t2 − k2) − S (kt + ε, t2 + 2kt, t2 − k2)

+
ψ(2) − 1 + p δp,3

2p
B1,ψ +

1
6p

B3,ψ.

Replacing (k, t) by (k,−t) in the first sum and (k, t) by (t,−k) in the second sum, we get
−A1 + A2 and A1 − A2, respectively. Thus, we have

S (kt + ε, k2 + 2kt, t2 + 2kt) = −2A1 + 2A2 +
ψ(2) − 1 + p δp,3

2p
B1,ψ +

1
6p

B3,ψ.(4.13)

Then, from (4.11)-(4.13), we get

Y4 = −6
(
A1 − 1

3
a
)
+ 6

(
A2 − 1

6
a
)
+

3ψ(2) − 3 + 4p δp,3

4p
B1,ψ +

3
4p

B3,ψ.(4.14)
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Thus the assertion (viii) is established. �

By virtue of the Arakawa Identities (Theorem 3.1), we express the sums Xi, Yi (1 ≤ i ≤ 4)
and γ as linear combinations of generalized Bernoulli numbers.

Theorem 4.7. For any odd prime number p, we get

(i) X1 = − p − 2
4p

B1,ψ − 1
6p

B3,ψ,

(ii) X2 =
p − 2 + ψ(2)(p + 4)

24p
B1,ψ − 4 + ψ(2)

72p
B3,ψ,

(iii) X3 =
p − 2 + ψ(2)(1 − 2p)

12p
B1,ψ +

2 − ψ(2)
36p

B3,ψ,

(iv) X4 =
(p − 2)(ψ(2) − 1)

8p
B1,ψ +

4 − ψ(2)
24p

B3,ψ,

(v) Y1 = − p − 2
4p

B1,ψ − 1
6p

B3,ψ,

(vi) Y2 =
(p + 1)(1 + ψ(2))

12p
B1,ψ +

2 − ψ(2)
36p

B3,ψ,

(vii) Y3 =
p − 2 + ψ(2)(1 − 2p)

12p
B1,ψ +

2 − ψ(2)
36p

B3,ψ,

(viii) Y4 = − p + 1
4p

B1,ψ − 1
6p

B3,ψ,

(ix) γ =
1 − ψ(2)

4p
B1,ψ +

ψ(2)
12p

B3,ψ.

Proof. By Theorem 4.6 and Theorem 3.1, we immediately get the assertions (i)-(v), (viii).
Thus it remains to prove the assertions (vi), (vii), and (ix). By (vi), (vii) of Theorem 4.6 and
Theorem 3.1, we get

Y2 = −1
4
γ +

4p + 7 + ψ(2)(4p + 1)
48p

B1,ψ +
8 − ψ(2)

144p
B3,ψ,

Y3 = −1
2
γ +

2p − 1 − ψ(2)(4p + 1)
24p

B1,ψ +
ψ(2) + 4

72p
B3,ψ.

(4.15)

We set

I = S (2kt, 2(k2 + kt), 2(t2 + kt)).

By Lemma 2.3, we have I = ψ(2)Y1. On the other hand, by the multiplication formula
Lemma 2.1, we get I = Y1 + 3Y2 + 3Y3 + Y4. Thus ψ(2)Y1 = Y1 + 3Y2 + 3Y3 + Y4 and the
assertion (ix) follows from (4.15) and (v), (viii). The assertions (vi), (vii) then immediately
follow from (4.15) and (ix). �

5. Evaluation of related Lee-Weintraub sums

5. Evaluation of related Lee-Weintraub sums
In this section, we evaluate the Lee-Weintraub sums given in the introduction, thus estab-

lishing the Tsukano Conjectures (ii), (iv), and (v). We remind the reader of the notation.
Fix an odd prime p and let ψ denote the Legendre symbol mod p: ψ(a) =

(
a
p

)
. We put
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ζ = exp(2πi/p). Let τ(ψ) denote the Gaussian sum τ(ψ) =
∑p−1

n=1 ψ(n)ζn. We remind the
reader that Xi, Yi (1 ≤ i ≤ 4) are the sums given in (4.1).

We now evaluate the Lee-Weintraub sums given in the introduction.

Theorem 5.1. For any odd prime number p, we have

S [−2x, 2(x + 1), x(x + 1)]

= τ(ψ)
(−p + 2 + ψ(2)(5p + 2)

24
B1,ψ +

1 + 6ψ(2)
4

B2,ψ +
1 + 16ψ(2)

72
B3,ψ

)
.

Proof. Let S denote the sum S [−2x, 2(x + 1), x(x + 1)]. By Proposition 4.2, noting that
S = ψ(2)S [−x, x + 1, 2−1(x + 1)], we get

(5.1) S =
√
ψ(−1)p

(
− 1

p2 K(2−1, p) +
(p − 1)2(2ψ(2) + 1)

4
B1,ψ

)
,

where by Proposition 4.3 together with Proposition 4.4, we get

K(2−1, p)/p3 = K2−1 +
(p − 2)(1 + 2ψ(2))

4
B1,ψ − 6ψ(2) + 1

4p
B2,ψ.(5.2)

By Lemma 2.3, and then by the multiplication formula Lemma 2.1, we get

K2−1 = ψ(2)
∑
k,t(p)

P1

(
2k2

p

)
P1

(
t2

p

)
P1

(
(k + t)2

p

)
= ψ(2)(X1 + X2).

Thus, by Theorem 4.7, we have

(5.3) K2−1 =
p + 4 − 5ψ(2)(p − 2)

24p
B1,ψ − 16ψ(2) + 1

72p
B3,ψ.

Theorem 5.1 then immediately follows from (5.1)-(5.3). �

Theorem 5.2. For any odd prime number p, we have

S [1, 2x2, 2(x + 1)2]

= τ(ψ)
(−2p + 7 − ψ(2)(8p − 19)

12
B1,ψ +

ψ(2) + 1
4

B2,ψ − 4ψ(2) + 1
36

B3,ψ

)
.

Proof. Let S denote the sum S [1, 2x2, 2(x + 1)2]. By Proposition 4.2 together with (i) in
Proposition 4.4, we have

S = τ(ψ)
(
−ψ(−1)

p2 J(2, p) − (p − 1)(2ψ(2) + 1)
2

B1,ψ − (p − 1)(ψ(2) + 1)
4

B2,ψ

)
,(5.4)

where by Proposition 4.3 together with Proposition 4.4, we get

(5.5) J(2, p)/p3 = −ψ(−2)
(
J2 +

2 + ψ(2)
4

B1,ψ +
1 + ψ(2)

4
B2,ψ

)
.

By the multiplication formula Lemma 2.1, we have

J2 =
∑
k,t(p)

P1

(
2kt
p

)
P1

(
k2 + kt

p

)
P1

(
t2 + kt

p

)
= Y1 + Y2.

Hence, by Theorem 4.7, we get
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(5.6) J2 =
−2p + 7 + ψ(2)(p + 1)

12p
B1,ψ − 4 + ψ(2)

36p
B3,ψ.

Theorem 5.2 then immediately follows from (5.4)-(5.6). �

Theorem 5.3. For any odd prime number p, we have

S [2, x2, (x + 1)2] = τ(ψ)
(−2p + 5 − ψ(2)(p − 4)

12
B1,ψ +

1
2

B2,ψ − 1
12

B3,ψ

)
.

Proof. Let S denote the sum S [2, x2, (x + 1)2]. By Proposition 4.2 together with (i) in
Proposition 4.4, noting that S = ψ(2)S [1, 2−1x2, 2−1(x + 1)2], we get

S = τ(ψ)
(
−ψ(−2)

p2 J(2−1, p) − (p − 1)(2 + ψ(2))
2

B1,ψ − p − 1
2

B2,ψ

)
,(5.7)

where by Proposition 4.3 together with Proposition 4.4, we have

(5.8) J(2−1, p)/p3 = −ψ(−2)
(
J2−1 +

2 + ψ(2)
4

B1,ψ +
1
2

B2,ψ

)
.

By Lemma 2.3, and then by the multiplication formula Lemma 2.1, we get

J2−1 = ψ(2)
∑
k,t(p)

P1

(
2kt
p

)
P1

(
2(k2 + kt)

p

)
P1

(
t2 + kt

p

)
= ψ(2)(Y1 + 2Y2 + Y3).

Hence, by Theorem 4.7, we get

(5.9) J2−1 =
2ψ(2) + 1

4p
B1,ψ − 1

12p
B3,ψ.

Theorem 5.3 then immediately follows from (5.7)-(5.9). �

We are now in position to prove the Tsukano Conjectures.

Theorem 5.4 (Tsukano Conjectures [8]). When p ≡ 3(4), we have

(i) I(2, p)/τ(ψ) = − (1 + ψ(2))(p + 1)
12

B1,ψ − ψ(2) + 4
18

B3,ψ,

(ii) I(2−1, p)/τ(ψ) =
p − 2 − ψ(2)(5p + 2)

24
B1,ψ − 1 + 16ψ(2)

72
B3,ψ,

(iii) J(1, p)/p2 =
p + 1

2
B1,ψ − 1

6
B3,ψ,

(iv) J(2, p)/p2 =
4p + 1 + ψ(2)(4p + 7)

12
B1,ψ − 1 + 4ψ(2)

36
B3,ψ,

(v) J(2−1, p)/p2 =
p + 2 + ψ(2)(2p + 1)

4
B1,ψ − ψ(2)

12
B3,ψ,

where 2−1 is regarded as an element of (Z/pZ)∗.

Proof. We note that B2,ψ vanishes in the case of p ≡ 3(4). Since I(2, p) = ψ(−1)S [−x, x+
2, x(x + 2)], the Tsukano Conjecture (i) follows from Theorem 5.1 in [6]. Since I(2−1, p) =
ψ(−2)S [−x, x + 1, 2−1x(x + 1)] = ψ(−1)S [−2x, 2(x + 1), x(x + 1)], the Tsukano Conjecture
(ii) follows from Theorem 5.1. The Tsukano Conjecture (iii) follows from Corollary 5.4 in
[6]. The Tsukano Conjecture (iv) follows from (5.5), (5.6). The Tsukano Conjecture (v)
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follows from (5.8), (5.9). �
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