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Abstract
In this short article, we give a necessary and sufficient condition for the form (1.3), like the

one in Hamza’s theorem, to be closable and prove that every regular and strongly local Dirichlet
form is the closure of a form of Hamza’s type, which can be represented in terms of effective
intervals introduced in [7].
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1. Introduction

1. Introduction
A Dirichlet form is a closed and symmetric bilinear form with Markovian property on

L2(E,m) space, where E is a nice topological space and m is a fully supported Radon mea-
sure on E. Due to a series of important works by M. Fukushima, M. L. Silverstein in 1970’s,
a regular Dirichlet form is always associated with a symmetric Markov process. We refer the
notions and terminologies in the theory of Dirichlet forms to [2, 4], and a brief introduction
will also be given in §2.

A classical method to construct a regular Dirichlet form is to start from a closable and
Markovian symmetric form with the domain C∞c (R), where C∞c (R) denotes the function
space consisting of all smooth functions with compact support on R. Then the closure of
C∞c (R) with respect to this form is a regular Dirichlet form. For example the Dirichlet form
associated with Brownian motion is the closure of the following closable form

(1.1)
D[E ] = C∞c (R),

E (u, v) :=
1
2

∫ +∞

−∞
u′(x)v′(x)dx.
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In [5], Hamza studied the following form

(1.2)
D[E ] = C∞c (R),

E (u, v) :=
1
2

∫ +∞

−∞
u′(x)v′(x)ν(dx),

where ν is a positive Radon measure on R. The Hamza’s theorem states that the form
(E ,D[E ]) is closable if and only if ν is absolutely continuous and its Radon-Nikodym de-

rivative a(x) :=
dν
dx

vanishes a.e. on its singular set S (a), where S (a) is defined as

S (a) := R \ R(a), R(a) :=
{

x ∈ R :
∫ x+ε

x−ε
1

a(ξ)
dξ < ∞ for some ε > 0

}
.

We refer to [4, Theorem 3.1.6] and [1, Appendix] for the proof of the Hamza’s theorem.
We also mention that Li et al. in [7] provide a probabilistic proof of the Hamza’s theorem,
based on a representation theorem of regular and strongly local Dirichlet forms on R (Cf. [7,
Theorem 2.1]), which roughly says that such a Dirichlet form can always be represented by
a series of so-called effective intervals {(In, sn) : n ≥ 1}. This means that the associated
process behaves as an irreducible diffusion with scale function sn on each In, and the points
outside these intervals can be regarded as ‘traps’ in the sense that the process will never
move starting from these points. We refer to [9] for the background of diffusion process,
and a short review on the representation theorem will be given in §2.

Recently in [6], the authors considered the following class of functions:

Cf := C∞c ◦ f =
{
ϕ ◦ f : ϕ ∈ C∞c (f(R))

}
.

where f ∈ S(R), and S(R) is given by

S(R) = {f : R→ R | f is strictly increasing and continuous, f(0) = 0}.
Throughout this paper, given a continuous and strictly increasing function t on an interval
I, dt represents its induced Lebesgue-Stieltjes measure on I. We also use λt for dt. If a
function u on I can be written as u = ϕ ◦ t for some absolutely continuous function ϕ, we

say u � t (or u � λt) and
du
dt
=

du
dλt

:= ϕ′ ◦ t.
We shall focus on the following form, which is similar to (1.2):

(1.3)
D[E ] = Cf,

E (u, v) :=
1
2

∫ +∞

−∞
du
dλf

dv
dλf

dν.

The main results in this paper are the following two theorems.

Theorem 1.1. The form (1.3) is closable on L2(R,m) if and only if the following condi-
tions are satisfied:

(1) ν is absolutely continuous with respect to λf;

(2) the Radon-Nikodym derivative a :=
dν
dλf

vanishes λf-a.e. on S f(a), where S f(a) :=

R \ Rf(a), and
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(1.4) Rf(a) :=
{

x ∈ R :
∫ x+ε

x−ε
1

a(ξ)
dλf(ξ) < ∞ for some ε > 0

}

are called the singular and regular set of a with respect to f, respectively.

According to this theorem, once we have a function f ∈ S(R) and a Radon measure ν
satisfying the conditions in Theorem 1.1, the form defined by (1.3) is closable and called
a form of Hamza’s type, and its closure with respect to E1 is a regular Dirichlet form. We
will call it a Dirichlet form generated by (f, a), where a = dν

dλf
. Throughout this paper, when

we say a Dirichlet form generated by (f, a), we always assume that f ∈ S(R), and ν = a · λf
is a Radon measure satisfying the conditions in Theorem 1.1. Such a pair will be called a
Hamza pair.

The Dirichlet form generated by a Hamza pair (f, a) is regular and strongly local. What
about the converse? Is every regular and strongly local Dirichlet form on L2(R,m) generated
by a Hamza pair (f, a)? The answer is yes. The following theorem is a representation
theorem of another type.

Theorem 1.2. Every regular and strongly local Dirichlet form on L2(R,m) is generated
by a Hamza pair (f, a) or equivalently, the closure of a form of Hamza’s type.

Though this conclusion is almost included in the proof of Theorem 1.1, we would still
like to write it as a theorem. Comparing to [7, Theorem 2.1], which states that every regular
and strongly local Dirichlet form can be represented by effective intervals, this representa-
tion is not only more compact, but more importantly, it may be easier to be generalized to
create a representation theorem of this type for higher dimensional regular and strongly local
Dirichlet forms. Besides, a result about how these two representations are related is given in
Theorem 4.3.

The paper is organized as follows. In §2, we shall review some terminologies and theo-
rems in [6], which will play an important role in this paper. The section §3 is mainly devoted
to the proof of Theorem 1.1 and Theorem 1.2. In §4, given a Dirichlet form generated by
(f, a), we shall formulate effective intervals of the Dirichlet form in terms of (f, a). This will
be used to present conditions under which two pairs (f1, a1) and (f2, a2) generate the same
Dirichlet form.

2. Preliminaries

2. Preliminaries
In this section we shall review some terminologies and theorems which will be heavily

used in this paper. These terminologies and theorems are originally due to [4], [7] and [6],
and for the sake of completeness and convenience, we present them here in a concise manner.

Suppose (E ,D[E ]) is a densely defined, symmetric and non-negative definite bilinear
form on a Hilbert space L2(E,m), where E is a locally compact separable metric space
and m is a fully supported Radon measure on E. (E ,D[E ]) is called closable if for any
{un} ⊂ D[E ] satisfying E (un − um, un − um) → 0 and ‖un‖L2 → 0 as n,m → ∞, it always
holds that E (un, un) → 0. It is called closed if D[E ] is a real Hilbert space under the norm
‖ · ‖E1 :=

√
E (·, ·) + ‖ · ‖L2 . And it is called Markovian if the following property holds: for

any ε > 0, there exists a function φε(t) satisfying
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(2.1)
φε(t) = t, ∀t ∈ [0, 1], −ε ≤ φε(t) ≤ 1 + ε, ∀t ∈ R,

0 ≤ φε(t′) − φε(t) ≤ t′ − t, whenever t < t′,

such that for every u ∈ D[E ],

φε(u) ∈ D[E ], E (φε(u), φε(u)) ≤ E (u, u).

If (E ,D[E ]) is both closed and Markovian, we say that (E ,D[E ]) is a Dirichlet form. We
usually use (E ,F ) to denote a Dirichlet form. For a Dirichlet form (E ,F ), a subset C of
F ∩Cc(E) is called a core if C is dense in F with E1-norm and dense in Cc(E) with uniform
norm, where Cc(E) consists of all continuous functions in E that have compact support. C is
called a special standard core if additionally C is a dense subalgebra of Cc(E) and satisfies
the following:

(1) For any ε > 0, there exists a function φε(t) satisfying (2.1) such that φε(u) ∈ C

whenever u ∈ C .
(2) For any compact set K and relatively compact open set G with K ⊂ G, there exists

u ∈ C such that u ≥ 0, u = 1 on K and u = 0 on E \G.
(E ,F ) is called regular if (E ,F ) possesses a core, and is called strongly local if E (u, v) = 0
whenever u, v ∈ F have compact support and u is a constant on a neighbourhood of the
support of v.

Now we focus on the regular and strongly local Dirichlet forms on L2(R,m). Let J :=
〈a, b〉 be an interval, where a or b may or may not be contained in J. Take a fixed point in
the interior of J as follows

(2.2) e :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a + b
2

, |a| + |b| < ∞,
a + 1, a > −∞, b = ∞,
b − 1, a = −∞, b < ∞,
0, a = −∞, b = ∞.

A function s is called a scale function on J if it is strictly increasing and continuous, with
s(e) = 0. Since s is increasing, we can define

s(a) := lim
x↓a
s(x), s(b) := lim

x↑b
s(x).

Then s is called an adapted scale function in the sense that
(AR) a + s(a) > −∞ if and only if a ∈ J;
(BR) b + s(b) < ∞ if and only if b ∈ J.

Moreover we introduce two conditions at the infinities:
(LR) a = −∞, s(−∞) > −∞ and m((−∞, 0]) < ∞;
(RR) b = ∞, s(∞) < ∞ and m([0,∞)) < ∞.

Then we state the following representation theorem of regular and strongly local Dirichlet
form on R. It is originally due to [7, Theorem 2.1].

Theorem 2.1. (E ,F ) is a regular and strongly local Dirichlet form on L2(R,m) if and
only if there exists a set {(In, sn) : n ≥ 1}, where In are a series of disjoint intervals and sn

are adapted scale functions on In, such that
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(2.3)

F =
{
u ∈ L2(R,m) : u|In ∈ F (sn),

∑
n≥1

E (sn)(u|In , u|In) < ∞
}
,

E (u, v) =
∑
n≥1

E (sn)(u|In , v|In), u, v ∈ F ,

where (E (sn),F (sn)) is given by

(2.4)

F (sn) :=
{
u ∈ L2(In,m|In) : u � sn,

du
dsn
∈ L2(In, dsn);

u(a) = 0 (resp. u(b) = 0) whenever (LR) (resp. (RR))
}
,

E (sn)(u, v) :=
1
2

∫
In

du
dsn

dv
dsn

dsn, u, v ∈ F (sn).

Moreover, the intervals {In : n ≥ 1} and scale functions {sn : n ≥ 1} are uniquely determined,
if the difference of order is ignored.

Note that m|In and u|In above denote the restriction of measure m and function u to the
interval In. The set {(In, sn) : n ≥ 1} is called the effective intervals of (E ,F ), and λs :=∑

n≥1 dsn is called the scale measure. For a function f ∈ S(R), its induced measure λf can
be decomposed into the so-called ‘effective part’ λe

f
and ‘trivial part’ λt

f
with respect to

{(In, sn) : n ≥ 1} in the following sense:

λe
f := λf|⋃n≥1 In , λt

f := λf − λe
f = λf|(⋃n≥1 In)c .

We say that Ii and I j are f-scale-connected with respect to the scale measure λs, if λt
f
([ei, e j])

= 0 and λs([ei, e j]) < ∞, where ei and e j are two fixed points in Ii and I j respectively. If
any two of the intervals are not f-scale-connected, we say that {(In, sn) : n ≥ 1} is f-scale-
isolated. With the above terminologies at hand, we are able to state the following criteria for
Cf to be a special standard core of (E ,F ). We refer to [6, Lemma 5.1 and Corollary 5.7] for
details.

Theorem 2.2. Cf is a special standard core of (E ,F ) if and only if

(1) λe
f

and λs are mutually absolutely continuous with each other, namely, λe
f
� λs and

λs � λe
f
;

(2)
dλe
f

dλs
∈ L2

loc(R, λs), i.e., for every L > 0

(2.5)
∑
n≥1

∫
In∩(−L,L)

(dλe
f

dλs

)2

dλs =
∑
n≥1

∫
In∩(−L,L)

(dλe
f

dλs

)
dλf < ∞

(3) {(In, sn) : n ≥ 1} is f-scale-isolated with respect to λs.

3. Proof of Theorem 1.1 and 1.2

3. Proof of Theorem 1.1 and 1.2
In this section we will prove Theorem 1.1 and 1.2. The proof of the sufficiency of Theo-

rem 1.1 is similar to the counterpart of the proof of [4, Theorem 3.1.6], and for the proof of
the necessity, we adopt a probabilistic method based on the effective intervals introduced in
§2, which is originally due to [7].
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Proof of Theorem 1.1. We begin with the proof of the necessity of Theorem 1.1. Suppose
that (1.3) is closable on L2(R,m). We denote the E1-closure of D[E ] by F . Clearly,(E ,F )
is a regular and strongly local Dirichlet form with Cf as a special standard core. Denote
the effective intervals of (E ,F ) by {(In, sn) : n ≥ 1}. Since Cf is a special standard core
of (E ,F ), it follows from Theorem 2.2 that λe

f
� λs, λs � λe

f
,

dλe
f

dλs
∈ L2

loc(R, λs) and
{(In, sn) : n ≥ 1} is f-scale-isolated with respect to λs.

For a function ϕ ∈ Cf, we know from (2.3), (2.4) and the fact λe
f
� λs that

2E (ϕ, ϕ) =
∑
n≥1

∫
In

(
dϕ
dsn

)2

dsn =
∑
n≥1

∫
In

⎛⎜⎜⎜⎜⎝ dϕ
dλe
f

⎞⎟⎟⎟⎟⎠
2 (dλe

f

dλs

)2

dλs

=
∑
n≥1

∫
In

(
dϕ
dλf

)2 (
dλf
dλs

)
dλf.

(3.1)

Define a measure μ on R as follows:

(3.2) μ|(⋃n≥1 In)c := 0, μ|In :=
(

dλf
dλs

) ∣∣∣∣
In

dλf =
(dλe

f

dλs

)
dλf.

It is obvious that μ � λf, and

E (ϕ, ϕ) =
1
2

∫ +∞

−∞

(
dϕ
dλf

)2

dμ,

which implies μ = ν. Moreover, it follows form (2.5) that μ is a positive Radon measure.
Denote the Radon-Nikodym derivative dμ

dλf
by a(x), and denote its regular set with respect to

f by Rf(a) (see (1.4)). We now claim that

(3.3) Rf(a) =
⋃
n≥1

I̊n

where I̊n denotes the interior of In. On one hand, take x ∈ I̊n, which means there exists an
ε > 0 such that (x − ε, x + ε) ⊂ I̊n. Since λs � λe

f
, it follows that

(3.4)
∫ x+ε

x−ε
1

a(ξ)
dλf(ξ) =

∫ x+ε

x−ε

(
dλs
dλf

)
dλf = sn(x + ε) − sn(x − ε) < ∞,

which implies x ∈ Rf(a) and
⋃

n≥1 I̊n ⊂ Rf(a). On the other hand, take x ∈
(⋃

n≥1 I̊n

)c
and

suppose that x ∈ Rf(a), i.e., there exists an ε > 0 such that

(3.5)
∫ x+ε

x−ε
1

a(ξ)
dλf(ξ) < ∞.

It follows from the definition of a and (3.2) that a = 0 λf-a.e. on x ∈
(⋃

n≥1 I̊n

)c
. Combining

with (3.5), we have

(3.6) λf

⎛⎜⎜⎜⎜⎜⎜⎝(x − ε, x + ε) ∩
⎛⎜⎜⎜⎜⎜⎜⎝
⋃
n≥1

I̊n

⎞⎟⎟⎟⎟⎟⎟⎠
c⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

We assert that (A) there exist two points ei, e j ∈ (x− ε, x+ ε), ei < e j, while ei and e j belong
to different effective intervals Ii and I j respectively. Indeed, if the above assertion does not
hold true, we have the following cases:
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Case 1: there exists an integer k ≥ 1 such that (x− ε, x+ ε) ⊂ Ik, but that contradicts the fact
that x ∈

(⋃
n≥1 I̊n

)c
;

Case 2: for every n ≥ 1, (x − ε, x + ε) ∩ In = ∅, which implies

λf

⎛⎜⎜⎜⎜⎜⎜⎝(x − ε, x + ε) ∩
⎛⎜⎜⎜⎜⎜⎜⎝
⋃
n≥1

I̊n

⎞⎟⎟⎟⎟⎟⎟⎠
c⎞⎟⎟⎟⎟⎟⎟⎠ = λf(x − ε, x + ε) > 0

since λf is a Radon measure. That violates (3.6);
Case 3: there exists a unique k ≥ 1 such that (x − ε, x + ε)∩ Ik � ∅ while (x − ε, x + ε) � Ik.

That implies that (x− ε, x+ ε)∩
(
I̊k

)c
contains an interval, which also violates (3.6).

In a word, (x − ε, x + ε) must intersect with at least two effective intervals, which proves the
assertion (A). Similar to (3.4), we have

λs
(
[ei, e j]

)
=

∫ e j

ei

1
a(ξ)

dλf(ξ) < ∞

while

λt
f

(
[ei, e j]

)
≤ λf

⎛⎜⎜⎜⎜⎜⎜⎝(x − ε, x + ε) ∩
⎛⎜⎜⎜⎜⎜⎜⎝
⋃
n≥1

I̊n

⎞⎟⎟⎟⎟⎟⎟⎠
c⎞⎟⎟⎟⎟⎟⎟⎠ = 0

That implies that Ii and I j are f-scale-connected, which contradicts the fact that {(In, sn) :
n ≥ 1} is f-scale-isolated with respect to λs. In conclusion, if x ∈

(⋃
n≥1 I̊n

)c
, then x � Rf(a)

so that (3.3) holds.
From the definition of a and (3.2) we know that a vanishes λf-a.e. on

(⋃
n≥1 I̊n

)c
= S f(a).

That proves the necessity.
As for the sufficiency, we assume that ν � λf and the Radon-Nikodym derivative a

vanishes λf-a.e. on S f(a). Suppose that {φn} ⊂ Cf constitutes an E -Cauchy sequence, i.e.,
∫
R

(
dφn

dλf
− dφm

dλf

)2

a · dλf → 0

as n,m → ∞, and ‖φn‖L2(R,m) → 0 as n → ∞. Define ψn :=
dφn

dλf
. It is seen that {ψn} is

Cauchy in L2(R, ν), so that there exists a function ψ such that
∫
R

(ψ − ψn)2a · dλf → 0. For
any interval [α, β) ⊂ Rf(a),

(∫ β

α

ψdλf

)2

≤ 2
(∫ β

α

(ψ − ψn)dλf

)2

+ 2
(∫ β

α

ψndλf

)2

= 2 (φn(β) − φn(α))2 + 2
(∫ β

α

(ψ − ψn)a · 1
a

dλf

)2

:= I1 + I2

Since ‖φn‖L2(R,m) → 0, I1 → 0 as n→ ∞ for m-a.e. α and β. We then apply Cauchy-Schwarz
inequality to I2:

I2 ≤ 2
∫ β

α

1
a

dλf

∫ β

α

(ψ − ψn)2a · dλf.

It is seen that
∫ β

α
a−1dλf < ∞ from the fact that [α, β) ⊂ Rf(a), and it follows that I2 → 0 as

n → ∞. As a result,
∫ β

α
ψdλf = 0 for any [α, β) ⊂ Rf(a), which implies that ψ = 0 λf-a.e. on
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Rf(a). Since a vanishes λf-a.e. on S f(a), ψ = 0 a · dλf-a.e. on R. In conclusion,

lim
n→∞E (φn, φn) =

1
2

∫
R

ψ2a · dλf = 0,

so that (E ,D[E ]) is closable. �

From the proof of Theorem 1.1, we may get the proof of Theorem 1.2.
Proof of Theorem 1.2. Assume that (E ,F ) is a regular and strongly local Dirichlet form

on L2(R,m) characterized by effective intervals {(In, sn) : n ≥ 1}. From [6, Theorem 5.11]
we know that there exists a function f ∈ S(R) such that Cf is a special standard core of
(E ,F ). Then we can rewrite E as (3.1) and define the measure ν as (3.2). Clearly ν is
absolutely continuous with respect to λf and the Radon-Nikodym derivative a vanishes on
λf-a.e. on its singular set S f(a) with respect to f, just as what we have proved in the proof of
necessity of Theorem 1.1. �

Remark 3.1. From the proof of [6, Theorem 5.11] we can see that the choice of f is not
unique for Cf to be a special standard core of a given regular and strongly local Dirichlet
form (E ,F ). Hence the choice of Hamza pair (f, a) for (E ,F ) is not unique. We will come
back to this issue in the next section.

4. Recovering the effective intervals

4. Recovering the effective intervals
In this section we start from a form of Hamza’s type (1.3).It follows that (E ,D[E ]) is

closable, and denote its E1-closure by (E ,F ). Namely, (E ,F ) is generated by a Hamza
pair (f, a). Our goal is to characterize the effective intervals of (E ,F ) in terms of (f, a).

From the definition of the regular set Rf(a), we know that Rf(a) is an open subset of R, so
that Rf(a) can be written as a union of disjoint open intervals (Cf. [8, §1.3 Proposition 9]).
Namely,

(4.1) Rf(a) =
⋃
n≥1

(an, bn).

For each n, fix a point en ∈ (an, bn) as (2.2) and define a function sn on (an, bn) by

(4.2) sn(x) =
∫ x

en

1
a(ξ)

dλf(ξ), x ∈ (an, bn).

Lemma 4.1. sn is continuous and strictly increasing on (an, bn).

Proof. From the definition of Rf(a) we know that
1
a
∈ L1

loc((an, bn), λf). The absolute
continuity of the integral (Cf. [8, §18.3, Proposition 17]) suggests that for each ε > 0, there
is a δ > 0 such that for any measurable set E with λf(E) < δ, we have

∫
E

1
a(ξ) dλf(ξ) < ε. For

any x ∈ (an, bn), since f is continuous, there exists a δ0 > 0 such that (x−δ0, x+δ0) ⊂ (an, bn)
and λf(x − δ0, x + δ0) < δ. Therefore, for any y ∈ (x − δ0, x + δ0), we have

|sn(x) − sn(y)| =
∣∣∣∣∣∣
∫ x

y

1
a(ξ)

dλf(ξ)

∣∣∣∣∣∣ < ε.
The continuity of sn follows. Clearly, sn is increasing, and we argue that it is strictly in-
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creasing. Suppose that sn(x) = sn(y) for some x, y ∈ (an, bn), x < y. Since f is strictly
increasing, it leads to a(ξ) = ∞ for λf-a.e. ξ ∈ (x, y), which contradicts the fact that ν = a ·λf
is a Radon measure. �
Since sn is monotone on (an, bn), we can extend it to its endpoints by

(4.3) sn(an) := lim
x↓an

sn(x), sn(bn) := lim
x↑bn

sn(x).

Set

(4.4) In := 〈an, bn〉
where an ∈ In if an + sn(an) > −∞ and bn ∈ In if bn + sn(bn) < ∞. We assert that {In : n ≥ 1}
still remain disjoint by the next lemma.

Lemma 4.2. {In : n ≥ 1} are mutually disjoint.

Proof. Suppose there exist two intervals Ii = 〈ai, bi] and I j = [a j, b j〉, and bi = a j. By the
definition of Ii and I j, si(bi) < ∞ and s j(a j) > −∞. It follows from (4.2) and (4.3) that

∫ e j

ei

1
a(ξ)

dλf(ξ) =
∫ bi

ei

1
a(ξ)

dλf(ξ) −
∫ a j

e j

1
a(ξ)

dλf(ξ) = si(bi) − s j(a j) < ∞.

Hence a j(= bi) ∈ Rf(a), which contradicts (4.1). �

Thus we obtain a set {(In, sn) : n ≥ 1}, where In are a series of disjoint intervals and sn

are adapted scale functions on In, and it is by definition a class of effective intervals. The
next theorem shows that the Dirichlet form corresponds to {(In, sn) : n ≥ 1} coincides the
E1-closure of (E ,D[E ]).

Theorem 4.3. Let (E ,F ) be the Dirichlet form generated by a Hamza pair (f, a).The
interval In and scale function sn on In are defined by (4.4) and (4.2) respectively for each
n ≥ 1. Then (E ,F ) is a regular and strongly local Dirichlet form characterized by the
effective intervals {(In, sn) : n ≥ 1}.

Proof. Denote the Dirichlet form corresponding to {(In, sn) : n ≥ 1} by (Ē , F̄ ), and we
argue that (E ,F ) = (Ē , F̄ ). Firstly we prove that Cf is a special standard core of (Ē , F̄ )
by checking the conditions in Theorem 2.2. Indeed, the fact that λs � λe

f
is clear from the

definition and (4.2). Clearly 1
a > 0 λf-a.e. on In, so that dλe

f
= a · dλs on In. It follows that

λe
f
� λs and a =

dλe
f

dλs
∈ L2

loc(R, λs), due to the fact that

∑
n≥1

∫
In∩(−L,L)

a2 · dλs =
∑
n≥1

∫
In∩(−L,L)

a · dλf = ν(−L, L) < ∞.

To check that {(In, sn) : n ≥ 1} is f-scale-isolated with respect to λs, suppose that there
exist Ii and I j which are f-scale-connected, i < j, i.e., λt

f
([ei, e j]) = 0 and λs([ei, e j]) < ∞.

From (4.1) we know that there exists a point x ∈ (ei, e j) ∩ S f(a). Take ε > 0 such that
(x − ε, x + ε) ⊂ [ei, e j], and we have∫ x+ε

x−ε
1

a(ξ)
dλf(ξ) =

∫ x+ε

x−ε
1

a(ξ)
dλe
f (ξ) +

∫ x+ε

x−ε
1

a(ξ)
dλt
f(ξ).
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The second term vanishes since λt
f
([ei, e j]) = 0, and the first term equals λs(x − ε, x +

ε) ≤ λs([ei, e j]) < ∞. In other words,
∫ x+ε

x−ε
1

a(ξ) dλf(ξ) < ∞, which contradicts the fact that
x ∈ S f(a).

From Theorem 2.2 we can conclude that Cf is a special standard core of (Ē , F̄ ). More-
over, for any ϕ ∈ Cf, similar to (3.1),

2Ē (ϕ, ϕ) =
∑
n≥1

∫
In

(
dϕ
dsn

)2

dsn =
∑
n≥1

∫
In

(
dϕ
dλf

)2 (
dλf
dλs

)
dλf

=
∑
n≥1

∫
In

(
dϕ
dλf

)2

a · dλf =
∑
n≥1

∫
In

(
dϕ
dλf

)2

dν

= 2E (ϕ, ϕ).

Thus E = Ē on Cf × Cf and thus F = F̄ . That finishes the proof. �

Now we come back to Remark 3.1 below the proof of Theorem 1.2. We shall answer
under what conditions, two different Hamza pairs (f1, a1) and (f2, a2) generate the same
Dirichlet form.

Corollary 4.4. Two Hamza pairs (f1, a1) and (f2, a2) generate the same Dirichlet form if
and only if

(1) Rf1 (a1) = Rf2 (a2);
(2) Write Rf1 (a1) =

⋃
n≥1(an, bn), then for every n ≥ 1,∫ x

en

1
a1(ξ)

dλf1 (ξ) =
∫ x

en

1
a2(ξ)

dλf2 (ξ), x ∈ (an, bn).

Proof. The proof follows from the unique characterization of regular and strongly local
Dirichlet forms in the form of effective intervals (Cf. Theorem 2.1), and Theorem 4.3. �
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[5] M. Hamza: Détermination des formes de Dirichlet sur Rn. Thèse 3e cycle, Orsay, 1975.
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