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Abstract

In this short article, we give a necessary and sufficient condition for the form (1.3), like the
one in Hamza’s theorem, to be closable and prove that every regular and strongly local Dirichlet
form is the closure of a form of Hamza’s type, which can be represented in terms of effective
intervals introduced in [7].
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1. Introduction

A Dirichlet form is a closed and symmetric bilinear form with Markovian property on

L*(E, m) space, where E is a nice topological space and m is a fully supported Radon mea-

sure on E. Due to a series of important works by M. Fukushima, M. L. Silverstein in 1970’s,
aregular Dirichlet form is always associated with a symmetric Markov process. We refer the
notions and terminologies in the theory of Dirichlet forms to [2,4], and a brief introduction

will also be given in §2.

A classical method to construct a regular Dirichlet form is to start from a closable and
Markovian symmetric form with the domain C’(R), where C;°(R) denotes the function
space consisting of all smooth functions with compact support on R. Then the closure of
C2(R) with respect to this form is a regular Dirichlet form. For example the Dirichlet form

associated with Brownian motion is the closure of the following closable form

(1.1)

P18 = C2R),

EW,v) = %f 00u’(x)v'(x)dx.

o0
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In [5], Hamza studied the following form

2161 = C2R),

2

where v is a positive Radon measure on R. The Hamza’s theorem states that the form
(&, 2[&)) is closable if and only if v is absolutely continuous and its Radon-Nikodym de-

1.2 +oo
(12 Eu,v) = ! f u’ (V' (x)v(dx),

d
rivative a(x) := d_v vanishes a.e. on its singular set S (a), where S (a) is defined as
x

S(a) :=R\ R(a), R(a) = {xeR: fx £Ld§< ooforsomes>0}.
e ad)

We refer to [4, Theorem 3.1.6] and [1, Appendix] for the proof of the Hamza’s theorem.
We also mention that Li et al. in [7] provide a probabilistic proof of the Hamza’s theorem,
based on a representation theorem of regular and strongly local Dirichlet forms on R (Cf. [7,
Theorem 2.1]), which roughly says that such a Dirichlet form can always be represented by
a series of so-called effective intervals {(Z,,s,) : n > 1}. This means that the associated
process behaves as an irreducible diffusion with scale function s, on each [,,, and the points
outside these intervals can be regarded as ‘traps’ in the sense that the process will never
move starting from these points. We refer to [9] for the background of diffusion process,
and a short review on the representation theorem will be given in §2.
Recently in [6], the authors considered the following class of functions:

¢ i=Clof={pof:peCClR)}.
where f € S(R), and S(R) is given by
S(R) = {f : R — R | { is strictly increasing and continuous, {(0) = 0}.

Throughout this paper, given a continuous and strictly increasing function t on an interval
I, dt represents its induced Lebesgue-Stieltjes measure on /. We also use A, for dt. If a
function u on [ can be written as u = ¢ o t for some absolutely continuous function ¢, we

d d
say u < t(oru<</lt)and£ = d_/:tt =¢ ot.
We shall focus on the following form, which is similar to (1.2):
D8] = 6,
(1.3) 1 (" du dv
& , = = —d
(wo)=3 Lo dtdi”

The main results in this paper are the following two theorems.

Theorem 1.1. The form (1.3) is closable on L*(R, m) if and only if the following condi-
tions are satisfied:
(1) v is absolutely continuous with respect to A;;

(2) the Radon-Nikodym derivative a := ﬁ vanishes As-a.e. on Si(a), where Si(a) :=
i
R\ Ri(a), and
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X+E 1
(1.4) Ri(a) := {x eR: f ——d (&) < oo for some & > O}
ve alé)
are called the singular and regular set of a with respect to §, respectively.

According to this theorem, once we have a function f € S(R) and a Radon measure v
satisfying the conditions in Theorem 1.1, the form defined by (1.3) is closable and called
a form of Hamza’s type, and its closure with respect to & is a regular Dirichlet form. We
will call it a Dirichlet form generated by (f, a), where a = %. Throughout this paper, when
we say a Dirichlet form generated by (i, a), we always assume that f € S(R), and v = a - 4;
is a Radon measure satisfying the conditions in Theorem 1.1. Such a pair will be called a
Hamza pair.

The Dirichlet form generated by a Hamza pair (f, @) is regular and strongly local. What
about the converse? Is every regular and strongly local Dirichlet form on L?(R, m) generated
by a Hamza pair (f,a)? The answer is yes. The following theorem is a representation
theorem of another type.

Theorem 1.2. Every regular and strongly local Dirichlet form on L*(R, m) is generated
by a Hamza pair (f, a) or equivalently, the closure of a form of Hamza’s type.

Though this conclusion is almost included in the proof of Theorem 1.1, we would still
like to write it as a theorem. Comparing to [7, Theorem 2.1], which states that every regular
and strongly local Dirichlet form can be represented by effective intervals, this representa-
tion is not only more compact, but more importantly, it may be easier to be generalized to
create a representation theorem of this type for higher dimensional regular and strongly local
Dirichlet forms. Besides, a result about how these two representations are related is given in
Theorem 4.3.

The paper is organized as follows. In §2, we shall review some terminologies and theo-
rems in [6], which will play an important role in this paper. The section §3 is mainly devoted
to the proof of Theorem 1.1 and Theorem 1.2. In §4, given a Dirichlet form generated by
(f, a), we shall formulate effective intervals of the Dirichlet form in terms of (f, ). This will
be used to present conditions under which two pairs (f;, a;) and (f», a,) generate the same
Dirichlet form.

2. Preliminaries

In this section we shall review some terminologies and theorems which will be heavily
used in this paper. These terminologies and theorems are originally due to [4], [7] and [6],
and for the sake of completeness and convenience, we present them here in a concise manner.

Suppose (&, Z[&]) is a densely defined, symmetric and non-negative definite bilinear
form on a Hilbert space L?(E,m), where E is a locally compact separable metric space
and m is a fully supported Radon measure on E. (&, Z[&]) is called closable if for any
{u,} € (8] satistying & (u,, — vy, Uy, — u) — 0 and ||u,|l;2 — 0 as n,m — oo, it always
holds that & (u,, u,) — 0. It is called closed if Z[&] is a real Hilbert space under the norm
II-llg == VEC, )+ - lz2- And it is called Markovian if the following property holds: for
any € > 0, there exists a function ¢.(¢) satisfying
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o(t)=t, Vtel0,1], -e<¢.()<1+e VteR,

@2.1) , , /
0<¢.(t')—¢.(t) <t —t, whenevert<t,

such that for every u € 2[&7],
P(u) € D[E],  E(Pe(u), pe(u)) < E(u, u).

If (&, Z[&]) is both closed and Markovian, we say that (£, Z[£]) is a Dirichlet form. We
usually use (&, .%) to denote a Dirichlet form. For a Dirichlet form (&, .%), a subset 4 of
F NC(E)is called a core if € is dense in .% with &-norm and dense in C.(E) with uniform
norm, where C.(E) consists of all continuous functions in E that have compact support. € is
called a special standard core if additionally % is a dense subalgebra of C.(E) and satisfies
the following:

(1) For any & > 0, there exists a function ¢.(¢) satisfying (2.1) such that ¢.(u) € €
whenever u € €.

(2) For any compact set K and relatively compact open set G with K C G, there exists
ue ¢ suchthatu >0, u=1onKandu=0o0nE\G.

(&,.%) is called regular if (&£, %) possesses a core, and is called strongly local if &(u,v) = 0
whenever u,v € .% have compact support and u is a constant on a neighbourhood of the
support of v.

Now we focus on the regular and strongly local Dirichlet forms on L*(R,m). Let J :=
(a, b) be an interval, where a or b may or may not be contained in J. Take a fixed point in
the interior of J as follows

+b

= lal+ bl < oo,
2.2) e:=1 a+tl, a>-co,b=oco,

b-1, a=-0c0,b< 0,

0, a=—co,b=oco.

A function s is called a scale function on J if it is strictly increasing and continuous, with
s(e) = 0. Since s is increasing, we can define

s(a) :=lims(),  s(b) = lim s(x).

Then s is called an adapted scale function in the sense that
(Ag) a+ s(a) > —co if and only if a € J;
(Bg) b+ s(b) < coifandonly if b € J.
Moreover we introduce two conditions at the infinities:
(L) a = =00, s(=00) > —0c0 and m((—0,0]) < oo;
(Rg) b = 00, s(00) < 0o and m([0, 00)) < oo.
Then we state the following representation theorem of regular and strongly local Dirichlet
form on R. It is originally due to [7, Theorem 2.1].

Theorem 2.1. (&,.%) is a regular and strongly local Dirichlet form on L*(R, m) if and
only if there exists a set {(I,,s,) : n > 1}, where I,, are a series of disjoint intervals and s,
are adapted scale functions on I,,, such that
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F = {u e L*(R,m) : ul, € Fs0 Z 5(5")(M|1 ulg,) < 00}

(2.3) r=l
Ev) = ) E )l 0l), wveZ,

n>1

where (&0, FS0) is given by

d
FE) = {u € LX(I,,ml;) 1 u < sy, % € L2 (I, ds,);

n

2.4) u(a) = 0 (resp. u(b) = 0) whenever (Lg) (resp. (RR))},
E(u,v) 1= f du_dv —ds,, u,ve.F.
ds, ds,

Moreover, the intervals {I, : n > 1} and scale functions {s, : n > 1} are uniquely determined,
if the difference of order is ignored.

Note that m|;, and u|;, above denote the restriction of measure m and function u to the
interval I,. The set {(1,,s,) : n > 1} is called the effective intervals of (&,.%), and Ag :=
Yus1ds, is called the scale measure. For a function f € S(R), its induced measure 4; can
be decomposed into the so-called ‘effective part’ /lfe and ‘trivial part’ /l; with respect to
{(1, sp) : n > 1} in the following sense:

/l? = ﬂf|Un21 1"’ A; = /lf - /l? = /lfl(UnZI [n)(.'

We say that I; and /; are f-scale-connected with respect to the scale measure As, if ﬁ;([ei, e;l)
= 0 and As([e;, e;]) < oo, where e; and e; are two fixed points in /; and /; respectively. If
any two of the intervals are not f-scale-connected, we say that {(/,,s,) : n > 1} is f-scale-
isolated. With the above terminologies at hand, we are able to state the following criteria for
¢; to be a special standard core of (&, .%). We refer to [6, Lemma 5.1 and Corollary 5.7] for
details.

Theorem 2.2. %; is a special standard core of (&, .F) if and only if

(D) /l? and As are mutually absolutely continuous with each other, namely, /l?' < Ag and

As < /le~

ax

2) M € leoc(R’ As), i.e., for every L >0

i 2 dx
2.5 dig = dl; < oo
@) Z»]I-O(LL)( ) me(LL)( ) e

3) {(I,, sy) : n = 1} is f-scale-isolated with respect to As.

3. Proof of Theorem 1.1 and 1.2

In this section we will prove Theorem 1.1 and 1.2. The proof of the sufficiency of Theo-
rem 1.1 is similar to the counterpart of the proof of [4, Theorem 3.1.6], and for the proof of
the necessity, we adopt a probabilistic method based on the effective intervals introduced in
§2, which is originally due to [7].
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Proof of Theorem 1.1. We begin with the proof of the necessity of Theorem 1.1. Suppose
that (1.3) is closable on L*(R, m). We denote the &;-closure of 2[&] by .%. Clearly,(&,.%)
is a regular and strongly local Dirichlet form with %; as a special standard core. Denote
the effective intervals of (&,.%) by {(I,,s,) : n = 1}. Since %; is a special standard core
of (&,.%), it follows from Theorem 2.2 that /le < A, s < /lf, % € LIZDC(R, Ag) and
{(I,;, sp) : n > 1} is f-scale-isolated with respect to As.

For a function ¢ € %;, we know from (2.3), (2.4) and the fact /le < A that

28(p, ) = Zﬁ(j:) w1
-3 (5] (e

n>1

2

20 3] () =

3.1

Define a measure u on R as follows:

das

dds
s

d/l?
3.2) 'u|(Un21 b)Y =0, /,t|[n = ( d/lf ( )d/l,

1 (de\
5(¢,¢)—§Lo (d/l,) du,

which implies u = v. Moreover, it follows form (2.5) that u is a positive Radon measure.
Denote the Radon-Nikodym derivative j—ﬁ‘i by a(x), and denote its regular set with respect to
f by Ri(a) (see (1.4)). We now claim that

(33) Ri(a) = |_J I,

nx1

It is obvious that 4 < A5, and

where I°n denotes the interior of 7,. On one hand, take x € in, which means there exists an
&> 0 such that (x — &, x + &) C . Since A < 1S, it follows that

(3.4) fx a (—f)d/lf(f) j::(cdl//ll )d/lf =s,(x+¢&) —s,(x—g) < oo,

which implies x € Rj(a) and |, I, c R;(a). On the other hand, take x € (Unzl Io,,)C and
suppose that x € R;(a), i.e., there exists an € > 0 such that

3.5 —d/l 0o,
(3.5) f 2@ f(§) <

It follows from the definition of @ and (3.2) that a = 0 As-a.e. on x € (Unzl Ion)c. Combining
with (3.5), we have

(3.6) A ((x—s,x+s) N [U in] ] = 0.

n>1
We assert that (A) there exist two points ¢;,e; € (x — &, x+ &), ¢; < e, while ¢; and e; belong
to different effective intervals /; and /; respectively. Indeed, if the above assertion does not
hold true, we have the following cases:
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Case 1: there exists an integer k > 1 such that (x — &, x + €) C I, but that contradicts the fact

that x € (Unzl Ion)c;
Case 2: foreveryn > 1, (x — &, x + &) N I,, = (), which implies

/lf[(x—s,x+8)ﬂ[Ulon)]z/lf(x—s,x+s)>0

n>1
since A; is a Radon measure. That violates (3.6);
Case 3: there exists a unique k > 1 such that (x — &, x+ &) N I # O while (x — &, x+ &) ¢ I.
That implies that (x—&, x+ &) N (Iok)c contains an interval, which also violates (3.6).

In a word, (x — &, x + £) must intersect with at least two effective intervals, which proves the
assertion (A). Similar to (3.4), we have

e 1
k@mm=f56M@Kw

while

A ([eie]) < /lf[(x—a,x+a)ﬂ[UI°n} ) =0

n>1

That implies that /; and /; are f-scale-connected, which contradicts the fact that {(/,, s,) :
n > 1} is f-scale-isolated with respect to As. In conclusion, if x € (Unzl Ion)c, then x ¢ R:(a)
so that (3.3) holds.

From the definition of a and (3.2) we know that a vanishes A;-a.e. on (U,,Z 1 Ion)c = Si(a).
That proves the necessity.

As for the sufficiency, we assume that v <« A; and the Radon-Nikodym derivative a
vanishes A;-a.e. on S;(a). Suppose that {¢,} C 6; constitutes an &-Cauchy sequence, i.e.,

d¢,  dpn\’
~EPm) adas -0
fR(d/lf d/lf)a T
de,

as n,m — oo, and [|¢,ll2®m — 0 asn — oo. Define ¢, := T It is seen that {i,,} is
i

Cauchy in L*(R, v), so that there exists a function i such that fR(zp —y)a - dl: — 0. For
any interval [a,8) C Ri(a),

B 2 B 2 B
( [ wdﬂf) sz( [ (sb—wn)dﬂf) +2( [ wncmf)

B 1 2
= 2(u(B) — pu(@))* + 2([ W —Yna- Zd/lf) =hL+Dh

2

Since ||¢nll 2w m — 0, I1 = 0 as n — oo for m-a.e. @ and 5. We then apply Cauchy-Schwarz

inequality to I5:
51 B
L <2 f —dX; f W — ¥)’a - das.
a a a

It is seen that f( f Cl_ld/lf < oo from the fact that [a,5) C Ri(a), and it follows that I, — 0 as
n — oo. As aresult, ff YdA; = 0 for any [e, 8) C Ri(a), which implies that ¢ = 0 4;-a.e. on
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R;(a). Since a vanishes As-a.e. on Si(a), ¥y = 0 a - dAs-a.e. on R. In conclusion,

lim &($p, Pn) = l flﬂza -d; =0,
n—oo 2 R

so that (&, Z[&]) is closable. O

From the proof of Theorem 1.1, we may get the proof of Theorem 1.2.

Proof of Theorem 1.2. Assume that (&', .%#) is a regular and strongly local Dirichlet form
on L*(R, m) characterized by effective intervals {({,,, s;) : n > 1}. From [6, Theorem 5.11]
we know that there exists a function f € S(R) such that %; is a special standard core of
(&,.%). Then we can rewrite & as (3.1) and define the measure v as (3.2). Clearly v is
absolutely continuous with respect to 4; and the Radon-Nikodym derivative a vanishes on
As-a.e. on its singular set Ss(a) with respect to f, just as what we have proved in the proof of
necessity of Theorem 1.1. m|

Remark 3.1. From the proof of [6, Theorem 5.11] we can see that the choice of f is not
unique for %; to be a special standard core of a given regular and strongly local Dirichlet
form (&, .%). Hence the choice of Hamza pair (f, @) for (&, .%) is not unique. We will come
back to this issue in the next section.

4. Recovering the effective intervals

In this section we start from a form of Hamza’s type (1.3).It follows that (&, Z[&]) is
closable, and denote its &;-closure by (&’,.%). Namely, (&£,.%) is generated by a Hamza
pair (f, @). Our goal is to characterize the effective intervals of (&£, .%#) in terms of (f, a).

From the definition of the regular set R;(a), we know that R;(a) is an open subset of R, so
that R;(a) can be written as a union of disjoint open intervals (Cf. [8, §1.3 Proposition 9]).
Namely,

@.1) Ri@) = |_J(a. b.
n>1
For each n, fix a point e, € (a,, b,) as (2.2) and define a function s, on (a,, b,) by
|
42) 5100 = [ —dd®. xe (@b
. a1

Lemma 4.1. s, is continuous and strictly increasing on (a,, b,).

((an, bn), A;). The absolute

continuity of the integral (Cf. [8, §18.3, Proposition 17]) suggests that for each & > 0, there
is a 6 > 0 such that for any measurable set £ with 4;(E) < &, we have fE %‘f)dﬂf(é‘:) < &. For
any x € (ay, b,), since f is continuous, there exists a og > 0 such that (x— 08y, x+0g) C (an, b,)
and A;(x — dg, x + 89) < 6. Therefore, for any y € (x — ¢, x + dp), we have

o1
_d/l.

The continuity of s, follows. Clearly, s, is increasing, and we argue that it is strictly in-

loc

1
Proof. From the definition of R;(a) we know that — € L}
a

ISn(x) — sn(y)l = <é&.
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creasing. Suppose that s,(x) = s,(y) for some x,y € (a,,b,), x < y. Since f is strictly
increasing, it leads to a(¢) = oo for As-a.e. € € (x, y), which contradicts the fact that v = a - A;
is a Radon measure. m
Since s, is monotone on (a,, b,), we can extend it to its endpoints by

(4.3) Su(ay) := 1ilm Sn(X),  Su(by) = 1iTII§1 Su(x).
Set
(44) In = <anv bn>

where a,, € I, if a, + s,,(a,) > —o0 and b, € I, if b,, + s,(b,) < co. We assert that {I, : n > 1}
still remain disjoint by the next lemma.

Lemma 4.2. {I, : n > 1} are mutually disjoint.

Proof. Suppose there exist two intervals I; = {a;, b;] and I; = [a;, b;), and b; = a;. By the
definition of /; and I, s;(b;) < co and s(a;) > —oo. It follows from (4.2) and (4.3) that

T i Y1
f @daf@): f @cmf(g)— f @dﬂf(fhsi(bi)—sj(a/)@@

Hence a;(= b;) € R;(a), which contradicts (4.1). ]

Thus we obtain a set {(/,,s,) : n > 1}, where I, are a series of disjoint intervals and s,
are adapted scale functions on 7,, and it is by definition a class of effective intervals. The
next theorem shows that the Dirichlet form corresponds to {(,,s,) : n > 1} coincides the
&1-closure of (&, 2[&)).

Theorem 4.3. Let (&,.F) be the Dirichlet form generated by a Hamza pair (f,a).The
interval I,, and scale function s, on I, are defined by (4.4) and (4.2) respectively for each
n > 1. Then (&,.%) is a regular and strongly local Dirichlet form characterized by the
effective intervals {(1,,s,) : n > 1}.

Proof. Denote the Dirichlet form corresponding to {(/,,s,) : n > 1} by (&, %), and we
argue that (£,.%) = (&, 7). Firstly we prove that %; is a special standard core of (&,.%)
by checking the conditions in Theorem 2.2. Indeed, the fact that s < A7 is clear from the
definition and (4.2). Clearly é > 0 A;-a.e. on [, so that a’/lfe =a-dls on I,. It follows that

S

dA
/l? < Adsanda = # € L2 (R, As), due to the fact that
S

loc

2
a’-dig = f a-dl; =v(-L,L) < 0.
Z ‘fl;ﬂ(—L,L) Z I T

n>1 n>1 nN(=L,L)
To check that {(,,s,) : n > 1} is f-scale-isolated with respect to As, suppose that there
exist /; and /; which are {-scale-connected, i < j, i.e., A;([ei,ej]) = 0 and As([e;, e;]) < oo.
From (4.1) we know that there exists a point x € (e;,e;) N Si(a). Take € > 0 such that
(x—&,x+¢&) Cle;,e], and we have

X+E 1 X+E 1 X+E 1
——dA; = ——dA¢ ——dAO).
f e f @™ e+ f PENANL
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The second term vanishes since /l;([el-,e i) = 0, and the first term equals As(x — &, x +

g) < As([ej, ej]) < oco. In other words, fx XJ;S a(g)d/lf(cf) < oo, which contradicts the fact that
x € Si(a).

From Theorem 2.2 we can conclude that %; is a special standard core of (&,.%). More-
over, for any ¢ € %;, similar to (3.1),

2‘”@“”’9”)_Zf(dsn) Zf(cmf)( T

n>1
= dA; =
Zf (d/lf) e Z f (d/l,)
=28(p, ).
Thus & = & on 6; X ; and thus .% = .%. That finishes the proof. m]

Now we come back to Remark 3.1 below the proof of Theorem 1.2. We shall answer
under what conditions, two different Hamza pairs (f,a;) and (f,,a;) generate the same
Dirichlet form.

Corollary 4.4. Two Hamza pairs (T, a1) and (12, ax) generate the same Dirichlet form if
and only if

(1) Rs,(a1) = Ry,(a2);
(2) Write R; (a1) = U,>1(an, by), then for every n > 1,

" n |
——dA s D).

Proof. The proof follows from the unique characterization of regular and strongly local
Dirichlet forms in the form of effective intervals (Cf. Theorem 2.1), and Theorem 4.3. O
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