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Abstract
In this paper we prove two results about SLF(U,), the algebra of symmetric linear forms on
the restricted quantum group l_/q = Uq (s1(2)). First, we express any trace on finite dimensional
projective U,-modules as a linear combination in the basis of SLF(U,) constructed by Gain-
utdinov - Tipunin and also by Arike. In particular, this allows us to determine the symmetric
linear form corresponding to the modified trace on projective U,-modules. Second, we give the
explicit multiplication rules between symmetric linear forms in this basis.

1. Introduction

Let U, = Uy(sl(2)) be the restricted quantum group associated to sl(2) and SLF(U,) its
space of symmetric linear forms, which is naturally endowed with an algebra structure. In
[9] and [1], an interesting basis of SLF(Uq) is introduced, that will be called the GTA basis
in the sequel, and whose construction is based on the simple and the projective U,-modules
(see section 3). In this paper, we prove two results about this basis, namely the relation
with traces on projectives modules, and the formulas for multiplication of symmetric linear
forms.

First, we show in the general setting of a finite dimensional k-algebra A that there is a
correspondence between traces on finite dimensional projective A-modules and symmetric
linear forms on A (Theorem 4.1). In the case of A = U,, the natural question is to express
the image of a trace through this correspondence in the GTA basis. We answer this question
and show that this basis is relevant with regard to this correspondence in Theorem 4.2. The
modified trace computed in [3] is an interesting example of a trace on projective U,-modules.
We determine the symmetric linear form corresponding to the modified trace, and get that it
is u(KP*1.), where y is a suitably normalized right integral of l_]q (see section 4.3). This last
result has been found simultaneously in [2] in a general framework including Uq.

With regard to the structure of algebra on SLF(U,), a natural and important problem is to
determine the multiplication rules of the elements in the GTA basis. In section 5, we find
the decomposition of the product of two basis elements in the GTA basis. The resulting
formulas are surprisingly simple (Theorem 5.1). Note that a similar problem (namely the
multiplication in the space of g-characters qCh(U,), which is isomorphic as an algebra to
SLF(Uq)) has been solved in [9], but I was not aware of the existence of this paper when
preparing this work. It turns out that our proofs are different. In [9], they use the fact that the
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576 M. Farre

multiplication in the canonical basis of Z(U,) is very simple. They first express the image of
their basis of qCh(U,) through the Radford mapping in the canonical basis of Z(U,). This
gives a basis of Z(Uq) called the Radford basis. Then they use the S-transformation of the
SL,(Z) representation on Z(Uq) to express the Drinfeld basis (which is the image of their
basis of qCh(U,) by the Drinfeld map) in the Radford basis. This gives the multiplication
rules in the Drinfeld basis. Since the Drinfeld map is an isomorphism of algebras between
th(l_]q) and Z(Uq), this gives also the multiplication rules in the GTA basis. Here we
directly work in SLF(U,). We first prove an elementary lemma which shows that there are
not many coefficients to determine, and then we compute these coefficients by using the
evaluation on suitable elements of U,.

To make the paper self-contained and fix notations, we recall some facts about the struc-
ture of U, and its representation theory in section 2. In section 3, we introduce SLF(U,) and
the GTA basis. We then state some properties that are needed to prove our results.

In [5], the GTA basis and its multiplication rules are extensively used to describe in detail
the projective representation of SLy(Z) (the mapping class group of the torus) on SLF(U,)
provided by the graph algebra of the torus with the gauge algebra U, (which is a quantum
analogue of the algebra of functions associated to lattice gauge theory on the torus).

Norartions. If A is a k-algebra (with k a field), V is a finite dimensional A-module and

x € A, we denote by = End(V) the representation of x on the module V. We will work only
with finite dimensional modules and mainly with left modules, thus often we simply write
“module” instead of “finite dimensional left module”. The socle of V, denoted by Soc(V)
is the largest semi-simple submodule of V. The fop of V, denoted by Top(V), is V/Rad(V),
where Rad(V) is the Jacobson radical of V. See [4, Chap. IV and VIII] for background
material about representation theory.

For g € C\ {-1,0, 1}, we define the g-integer [n] (with n € Z) and the g-factorial [m]!
(with m € N) by:

[n] = q _q_l , [0l =1, [m]! =[1][2]...[m] form > 1.
q9-9
In what follows g is a primitive 2p-root of unity (where p is a fixed integer > 2), say g =
e™/P. Observe that in this case [n] = Sg‘ﬁfg’;;p)), [p] =0and [p —n] = [n].

As usual, ¢; ; will denote the Kronecker symbol and /, the identity matrix of size n.

2. Preliminaries

2.1. The restricted quantum group Uq(sI(Z)). As mentioned above, ¢ is a primitive
root of unity of order 2p, with p > 2. Recall that U,(s1(2)), the restricted quantum group
associated to sl(2), is the C-algebra generated by E, F, K together with the relations

K- K!

EP =FP =0, K*’ =1, KE =q¢*EK, KF =q 2FK, EF = FE + —.
q-9q

It will be simply denoted by U, in the sequel. It is a 2p*-dimensional Hopf algebra, with
comultiplication A, counit € and antipode S given by the following formulas:
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ANE)=1E+EQ®K, AF)=F®1+K'®F, AK)=K®K,
&E) =0, &(F)=0, &K) =1,
S(E)=-EK™', S(F) = -KF, S(K) =K.

The monomials E"F"K' with 0 < m,n < p—1,0<1<2p-1, form a basis of Uq,
usually referred as the PBW-basis. Recall the formula (see [11, Prop. VII.1.3]):

()  AE"F'K') = Z Z M= )=2(m=i)n=j) ["_1

]["]Em—"F/K“f‘” ® EFr-igimei
—d £ i|lJ
i=0 j=0

J
Recall that the g-binomial coefficients are defined by [Z] = % fora > b.
Since K is annihilated by the polynomial X*” — 1, which has simple roots over C, the
action of K is diagonalizable on each U,-module, and the eigenvalues are 2p-roots of unity.
Due to the Hopf algebra structure on U, its category of modules is a monoidal category
with duals. It is not braided (see [12]).

2.2. Simple and projective U,-modules. The finite dimensional representations of U,
are classified ([15] and [7]). Two types of modules are important for our purposes: the sim-
ple and the projective modules. As in [6] (see also [10]), we denote the simple modules by
X(s), with @ € {£},1 < s < p. The modules X*(p) are simple and projective simultane-
ously. The other indecomposable projective modules are not simple. We denote them by
Pe(s)ywitha e {+},1 <s<p-—1.

The module X“(s) admits a canonical basis (v;)o<i<s— such that

() Kv; = ag* "7, Evy =0, Ev; = alil[s — ilvi_1, Fvi = viy1, Fos_y = 0.
The module P%(s) admits a standard basis (b,-, Xjy Yks al)o OS]?;SS_ 1 1 such that
<Jk<p—s—
Kb; = ag*~ b, Eb; = alills — ilbi-1 + ai-y, Fb; = bi,1,
Ebg = xp_5-1, Fby 1 = yo,
Kxj=—aq'*""%x;, Exj=—aljllp—s— jlxj1, Fxj =X,
(3) EX() = O, Fxp_s_l = qap,
Ky = —aq" "y, Eyi = —alkllp— s = Klye-1, Fuy = et
Eyo = as-1, pr—s—l =0,
Ka; = ag* ' ?a, Ea; = o[l][s — lai,, Fa; = a1,
Eay =0, Fa,_1 =0.

Note that such a basis is not unique up to scalar since we can replace b; by b; + Ada; (with
A € C) without changing the action.

In terms of composition factors, the structure of P“(s) can be schematically represented
as follows (with the basis vectors corresponding to each factor and the action of E and F):
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“)
Top (P(s5)) = X(s), (bi)osi<s-1

e

(Xj)o<j<p-s-1, X" (p —5) E X7Up = 95), (Yr)osksp-s-1
F
E
Soc (P(s)) = X(s), (arosi<s-1
If we need to emphasize the module in which we are working, we will use the following

notations: v{(s) for the canonical basis of X*(s) and b (s), x?(s), y; (s), af (s) for a standard
basis of P?%(s) (these are the notations used in [1]).

Let us recall the Uq-morphisms between these modules. Observe that X%(s) is l_]q-
generated by v (s) and P(s) is Uq—generated by b (s), so the images of these vectors suffice
to define U,-morphisms. X“(s) is simple, so by Schur’s lemma Endy, (X“(s)) = CId. Since

X(s) = Top (P(s)) = Soc (P*(s))
there exist injection and projection maps defined by:
XY(s) <= PUs) and Pes) —-» X%s)
vy(s) > ag(s) by(s) = vy(s).

We have Endgq (P%(s)) = Cld ® Cp¢ and Hoqu (Pe(s), P *(p—-s) =CP¢® Cﬁ(;, where:

& pr(B5e) =ags).  PY(BS®) =x"(p=s). P (b)) = 5" (p — ).
The other Hom-spaces involving only simple modules and indecomposable projective mod-

ules are null.

2.3. Structure of the bimodule Uq(Uq)U and the center of U,. Recall that if M is a left

module (over any k-algebra A), then M* =qum@(M, k) is endowed with a right A-module
structure, given by:

VaeA, Voe M, ga= ¢(a)

where - is the place of the variable. We denote by R*(M) the so-defined right module. Note
that if we define R*(f) as the transpose of f, then R* becomes a contravariant functor. If A
is a Hopf algebra, one must be aware not to confuse R*(M) with the categorical dual M~,
which is a left module on which A acts by:

VaeA, Voe M, ap = ¢(S(a)).
Lemma 2.1. The right Uq-module R*(X“(s)) admits a basis (0;)p<i<s—1 Such that

1_S+2il_)'

l_)l'K =Qaq is l_)l'E = CL’[i][S - i]l_)i_l, l_)()E = O, U,'F = Uj+1, l_)s_lF =0.

The right U,,-module R*(P*(s)) admits a basis (l;i, X, Yk Eu) 0<il<s—1 Such that
0<jk<p—s—1
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biK = ag'~**%b;, biE = a;_y + alills — ilbi—1, biF = by,
' bOE = )_Cpfsfl, bS*IF = go’
%K = —aq Py, KE = —aljllp - s - j1%io, EF = X,
X()E = 0, Xp—s—[F = a09
7K = —a/q*p*”l*zkyk, yE = —a/[k][P - 5= k]gk—lv UiF = Yrs,
YyokE = as-y, yp—s—lF =0,
aK = a/ql s+2lg aE = a[l][s — la;-1, alF = apy,
agE =0, as F =0.

Such basis will be termed respectively a canonical basis and a standard basis in the sequel.

Proof. Let (v')o<i<,— be the basis dual to the canonical basis given in (2). Then 7; = v*~!~*
gives the desired result. Similarly, let (bi , X, yk, al) o0<ii<s—1 be the basis dual to a standard
0<jk<p—s—1
basis given in (3). Then
1_71' — as—l—i’ )_Cj — yp—s—l—j’ gk — xp—s—l—k’ a = bs—l—l

gives the desired result. m|

We denote by Uq(Uq)U the regular bimodule, where the left and right actions are respec-
q

tively the left and right multiplication of U, on itself. Recall that a block of Uq(U ")U is just

an indecomposable two-sided ideal (see [4, Section 55]). The block decomposition of Uq is
(see [6])

P
=P o
s=0

where the structure of each block Q(s) as a left Uq—module 1s:

Q0) = pX~(p), Q(p) = pX*(p),

©) O(s)=sPHs)®e(p—s)P (p—s) forl <s<p-1

and the structure of each block as a right U,-module is:

Q(0) = pR*(X~(p)), Q(p) = pR* (X" (p)),
O(s) = sR*(P*(s)®(p—s)R*(P (p—5)) forl <s<p-1.

The following proposition is a reformulation of [6, Prop. 4.4.2] (see also [10, Th. II.1.4]).
It will be used for the proof of Theorem 4.2.

Proposition 2.1. For 1 < s < p — 1, the block Q(s) admits a basis
(Bir(5), X (), Y7 (8), AL (5), By (), X{7(8), Y (5), A5 ()

with0 < a,b,d, f,g,h,k,m<s—1, 0<c,e,i,jln,0,r <p—s—1, suchthat
1.VO< j<s—1, (B[.+j+(s),Xk‘]ff(s), +(s) A++(s)) 0<im<s—1 1S a standard basis of

0<k,l<p-s—1
P*(s) for the left action.
2.V0<j<p-s—-1, (B"(s) T(s), Y (s) Amj(s)) 0<ki<s—1 1S a standard basis

0<i,m<p-s—1
of P~(p — s) for the left action.
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3.V0<i<s—1, (B;;*(s),X;(_(s), Yl.’l“_(s),A;;;(s)) 0<jm<s—1 1S a standard basis of
0<k,I<p—s-1
R* (P*(s)) for the right action.

4. V0<i<p-s-1, (Bl.‘j_(s), X2+ (s), YJ+(S)’A;(S))0<OJ'S::{S;{_S£1 is a standard basis

of R* (P~ (p — s)) for the right action.

The block Q(0) admits a basis (A;;(0))

1.VO<j<p-1, (Ai‘j‘(O))OsiSp_l

2.¥0<i<p-1, (A70)
action.

The block Q(p) admits a basis (A;T(p))

. such that
0<i,j<p-1

is a standard basis of X~ (p) for the left action.

o<j<p-1 is a standard basis of R* (X~ (p)) for the right

o jp1 such that
1.VO<j<p-1, (A;r]fr(p))(KKp_1 is a standard basis of X*(p) for the left action.
2.V0<i<p-1, (A;T(p)) is a standard basis of R* (X*(p)) for the right

action.

0<j<p-1

As in [6], the structure of Q(s) in terms of composition factors can be schematically repre-
sented as follows (each vertex represents a composition factor and is labelled by the basis
vectors of this factor):

(B ) (B )
F F
(x5 (9) E ) (X:7(9) £ (V3 ()
E E
(A5 (5)) (A5 (s)

for the left action, and

(B (s) (B, ()

(X)) (Vi (5)

(A ()

gh

(A (5))
for the right action.
The knowledge of the structure of the bimodule Uq(U ‘1)17 allows us to determine the center
_ q
of U,. Indeed, each central element determines a bimodule endomorphism and conversely.
Recall from [6] that Z(U,) is a (3p — 1)-dimensional algebra with basis elements e, (0 <

s < p)and w; (1 <t < p—1). The element e; is just the unit of the block Q(s), thus by (6)
and (4) the action of e, on the simple and the projective modules is given by
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For s =0, eoui (1) = 0, eov, (1) = 61,pv, (P), eoby (1) = 0,
Forl <s<p-1, ewj(t)=0d,05(s), e (t) =0, s05(p—5),

esba—(t) = 5s,tba—(s)a esba(t) = 5l,p—sb6(p - S)’
For s = p, epvg (1) = 61,05 (p),  epuy (1) =0, epbi(t) =0

(N

while for the elements wy:

wivg(t) =0, wibl(t) = 6s.ai(s), wiby(r) =0,

8
®) wivg (1) =0, wibj(t) =0, wiby (1) = 6 p—say(p — ).
Observe that

P P

Wy = Py Wy :ppfs‘

The action of the central elements on P“(s) is enough to recover their action on every mod-
ule, using projective covers. From these formulas, we deduce the multiplication rules of
these elements:

+ + +_  +
9 ese; = 0.5, ew; = o5,ws, wyw; =0.

Let us mention that the idempotents e, are not primitive: there exists primitive orthogonal
idempotents e;; such that e; = 3; e;,;, see [1].

3. Symmetric linear forms and the GTA basis
Let A be a k-algebra, and let SLF(A) be the space of symmetric linear forms on A:
SLE(A) ={p € A"V x,y € A, @(xy) = @(yx)}.

If A is a bialgebra, then A* is an algebra whose product is defined by:

Pu(x) = D e W)
(x)
with A(x) = X, X’ ® x” (Sweedler’s notation, see e.g. [11, Chap. 3]). Then SLF(A) is a
subalgebra of A*. Indeed, if ¢, € SLF(A), we have:

wu) = > ey WY ) = > ey Xy ) = puyx)
(). (%)
which shows that ¢y € SLF(A). If moreover A is finite dimensional, then A* is a bialgebra
whose coproduct is defined by A(p)(x ® y) = ¢(xy), but SLF(A) is not in general a sub-
coalgebra of A*, see Remark 1 below.
Recall (see [6]) that there is a universal R-matrix R belonging to the extension of U, by
a square root of K. It satisfies RR’ € U,f’z, where R” = 7(R), with 7 the flip map defined by
7(x®y) = y®x. Moreover U, is factorizable (in a generalized sense since it does not contain
the R-matrix) and K”*! is a pivotal element, thus it is known from general theory that the
Drinfeld morphism which we denote D provides an isomorphism of algebras

D: SLKU, — 2Z(U,)

(10) ¢+ (peId)((K"*'®1)-RR')

Let A be a k-algebra, and V an n-dimensional A-module. If we choose a basis on V, we
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4
get a matrix 7' € Mat,(A"), simply defined by

14 14
(11) T(x)=x

where ; is the representation of x € A in End(V) expressed in the choosen basis. In our case,
we will always choose the canonical bases of the simple modules and standard bases of the
projective modules.

An interesting basis of SLF(U,) was found by Gainutdinov and Tipunin in [9] and by
Arike in [1]. To be precise, a basis of the space qCh(U,) of g-characters is constructed in
[9], but the shift by the pivotal element g = K”*! provides an isomorphism

aCh(U,) — SLEU,), 4 = y(g>).
This basis is built from the simple and the projective modules. First, define 2p linear
forms' y¢, @ € {+},1 < s < p, by:

X(s)
(12) X =t( T

They are obviously symmetric. Observe that y] = & is the unit for the algebra structure on
SLF(U,) described above. To construct the p— 1 missing linear forms, observe with the help
of (4) that the matrix of the action on P“(s) has the following block form in a standard basis:

(b)) (x)) () (@)

X(s)
T 0 0 0] (b)
o _Lae CFT 0 0|
X(ps)
B o T o|w
X(s)
e o ¢ T .

It is not difficult to see that these matrices satisfy the following symmetries:
A, = C;, B, = Dy, D, = B, C,s= Al
. . P+(S) PP (s P'(p—s) P~ (p-s)P~(p-s) .
By computing the matrices (xy) = )éb) y(b) and (xy) = v § ’ , these symmetries
allow us to see that the linear form G, (1 < s < p — 1) defined by

(13) G, = tr(H) +tr(H,_,)

is a symmetric linear form.

It is instructive for our purposes to see a proof that these symmetric linear forms are
linearly independent. Let us begin by introducing important elements for 0 < n < p -1
(they are discrete Fourier transforms of (KI)()S[Szp_ 1):

IThe correspondence of notations with [1]is: T = x7, 7§ = x,,_,. The letter T is here reserved for the

v
matrices 7" described above.
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2p-1

1 —nl ]
Q=5 ) (ag") K"
ZP;

The following easy lemma shows that these elements allow one to select vectors which have
a given weight, and this turns out to be very useful.

Lemma 3.1. 1) Let M be a left U,-module, and let m?(s) be a vector of weight g1

—s—1-2i s—1-2i
’

m; (p — s) be a vector of weight —gP7172% = g , m; () be a vector of weight —q

m; (p — s) be a vector of weight g2 = 12 Then:
D7 m; (s) = §iomy(s), @7 ym;(p—s)=0,
D ym; (5) = Si0mg(s), @_ym;(p—s)=0.

2) Let N be a right U,-module, and let nf(s) be a vector of weight g'=s+2 n (p—s)bea

vector of weight —ql‘(p_s)fﬁ = q“”%ﬂ n; (s) be a vector of weight —q'~**, nf(p — s) be a
vector of weight '~ P=9%2 = _g+5*2  Then:
nf ()Q7y = iy (s), n; (p— 9O, =0,
n; ()P, = 6i5-1n,_(s), n(p—s)®,_, =0.
Proof. It follows from easy computations with sums of roots of unity. O

We can now state the key observation.

Proposition 3.1. Let
)4 p-1 B
o= > (xt+45x;)+ ) peGy € SLF(T,).
s=1 s'=1
Then:
o(wy) gy

A =¢(0e), A4 =¢(0 ), py = — = p=s"

Proof. It is a corollary of (7) and (8). Indeed, we have:

X*(s) X*(s) X7(s)
T (e) = 6545, T (wti) =0, T (e) = ds,p—tISv
=0 He)=0.  Hw) =0yl
Hiw)=0,  H, @) =0, H, (w)=05ulys
This gives the formula for ;. The formulas for A7 follow from this and Lemma 3.1. m|

If we have 37 (Aixt + A;x;) + 202, 1y Gy = 0, we can evaluate the left-hand side on the
elements appearing in Proposition 3.1 to get that all the coeflicients are equal to 0. Thus we
have a free family of cardinal 3p—1, hence a basis of SLF(Uq), since dim(SLF(Uq)) =3p-1

by (10).

Theorem 3.1. The symmetric linear forms y; (1 < s < p)and Gy (1 < 5" < p—1) form
a basis of SLF(Uq).
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Definition 3.1. The basis of Theorem 3.1 will be called the GTA basis (for Gainutdinov,
Tipunin, Arike).

RemMark 1. Let ¢ € SLF(Uq). It is easy to see that (K/E"F™) = 0 if n # m. From this
we deduce that SLF(U,) is not a sub-coalgebra of U’q*. Indeed, write A(x3) = X, ¢; ® ¥, and
assume that ¢;, y; € SLF(l_Jq). Then 1 = xJ(EF) = 3; i(E)(F) = 0, a contradiction.

Remark 2. If we choose a basis of Z (l_]q), then its dual basis can not be entirely contained
in SLF(U,). Indeed, let ¢ = 3.7_ A5y +Zf:_11 usGs € SLE(U,). Then g(w!) = suy, p(wy) =
(p — s)us, and we see that there does not exist ¢ € SLF(U,) such that p(w?) = 1, p(w;) = 0.
Hence, SLF(U,) c U; is not the dual of Z(U,) ¢ U,.

4. Traces on projective U,-modules and the GTA basis

4.1. Correspondence between traces and symmetric linear forms. Let A be a finite
dimensional k-algebra. We have an anti-isomorphism of algebras:

A — Endy(A), aw p, defined by p,(x) = xa.

Observe that the right action of A naturally appears. Let 7 be a trace on A, that is, an element
of SLF(End4(A)). Then:

l(pab) = I(Pb Opa) = t(pa Opb) = t(pba)-
So we get an isomorphism of vector spaces

{Traces on Ends(A)} = SLF (Ends(A)) — SLF(A)
t ¢ defined by ¢'(a) = t(p,).

whose inverse is:

SLF(A) — {Traces on Ends(A)} = SLF (End4(A))
¢ ¥ defined by *(p,) = ¢(a).

In the case of A = U,, we can express ¢ in the GTA basis, which will be the object of the
next section.

Let Proj, be the full subcategory of the category of finite dimensional A-modules whose
objects are the projective A-modules.

Definition 4.1. A trace on Proj, is a family of linear maps t = (ty : Enda(U) — k) yeproj,
such that

V f € Homy(U, V), Vg € Homu(V, U), tv(go f) =tu(f o g).
We denote by Tpyoj, the vector space of traces on Proj,.

This cyclic property of traces on Proj, is one of the axioms of the so-called modified
traces, defined for instance in [8]. Note that this definition could be restated in the following
way (and could be generalized to other abelian full subcategories than Proj,).

Lemma 4.1. Let t = (ty : Enda(U) — k)yeproj, be a family of linear maps. Then t is a
trace on Proj, if and only if:
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e V f,g € Ends(U), ty(go f)=1tu(fog),
o tyev(f) =ty(pyo foiy)+ty(pyo foiy), where py, py are the canonical projection
maps and iy, iy are the canonical injection maps.

Proof. If t is a trace and f € End(U & V), we have:

tuev(f) = tuev((iupu + ivpv)f) = tu(pu fiv) + tv(pv fiv).

Conversely,let f : U —» V,g:V — U. Define F =iy fpy,G = iygpy. Then FG =iy fgpy
and GF = iUgpr. We have pUGFiU = gf, vaFiV =0, pUFGiU =0, vaGiV = fg,
thus:

tv(fg) = tuev(FG) = tyev(GF) = ty(gf).

This shows the equivalence. o

Now, consider:

I, : Teroj, — SLF(End4(A)) — SLF(A)
1 = (ty)ueobproj,) 1A ¢ defined by ¢'(a) = 14(p,).

Theorem 4.1. The map 14 is an isomorphism. In other words, t4 entirely characterizes
1= (ty).

Proof. For all the facts concerning PIMs (Principal Indecomposable Modules) and idem-
potents in finite dimensional k-algebras, we refer to [4, Chap. VIII]. We first show that I14
is surjective. Let:

l=e+...+¢,

be a decomposition of the unit into primitive orthogonal idempotents (e;e; = ; je;). Then
the PIMs of A are isomorphic to the left ideals Ae; (possibly with multiplicity). We have
isomorphisms of vector spaces:

Homy(Ae;, Aej) — eidej, [+ f(e).
For every ¢ € SLF(A), define 7, by:
15, () = @(f(e).

Let f : Ae; — Aej, g : Ae; — Ae;, and put f(e;) = e;jarej, g(e;) = ejaze;. Then using the
idempotence of the ¢;’s and the symmetry of ¢ we get:

5,900 = elgof(en) = ¢ ((eiase)ejage)) = ¢ ((ejagen(eare))) = ¢(fogle)) = t, (fog).

We know that every projective module is isomorphic to a direct sum of PIMs, so we
extend #* to Proj, by the following formula:

e, A ()= D taliro f o p)
1

where p; and i; are the canonical injection and projection maps. By Lemma 4.1, this defines
a trace on Proj,. We then show that I14(#¥) = ¢, proving surjectivity:
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M4(#)(@) = () = ) 15, (Piopacis) = > @ (piopate)) = . ¢(pac(eja)
j=1 j=1 j=1
= Z 90(pAej(ejaek)) = Z 90(€ja€j) = Sﬂ(aej) = p(a).
Jk=1 j=1 j=1

Note that we used that the ¢;’s are idempotents and that a = Z;le aej. We now show
injectivity. Assume that I14(#) = 0. Then:

n
VaeA, tapa) = ) tae(pjopaci)) =0
=1

Let f : Ae; — Aej, with f(e)) = e;aye;. Since py,)(e)) = d;.ejare;, we have pjopye,oij =
Sfand pjopge,oip=0ifl# j. Hence:

tAEj(f) = tA(pf(e])) = 0
Then Tae; = 0 for each j, so thatt = 0. O
4.2. Link with the GTA basis. We leave the general case and focus on A = U,. The
following theorem expresses I1, in the GTA basis.
Theorem 4.2. Let t = (ty)yepro o be a trace on Proj 0, Then:

p-1
Mg, (1) = txsAd)y), + ta-p(Id)x, + Z (tp+ (@A) + tp-(yd)x; + tp+(5)(PS)Gy) -

s=1

Proof. First of all, we write the decomposition of the left regular representation of U,,
assigning an index to the multiple factors:

p—1 [ s-1 p-1
U, = @ 6? Pi(s)® P;(s)] ® E@ X/ (p)® X (p).
§= J= J=

Thus, since 7 is a trace:

p—-1 (s-1
tg,(Pa) = Z (Z 0] (PP;(s) ©pq© iP;(s)) +1p=(s) (ij’(s) ©pq © in’(s))
s=1 \ j=0

p—-1
+ Z 12+ (p) (Pf\{;(p) ©pq © i?f_;'(p)) +1x:(p) (PX;(m ©pa© ix;(p)) :
=0
Consider the following composite maps for 1 < s < p — 1 (note that the blocks appear
because p, is the right multiplication by a):

1

hja® 7’*<s)—>7)+(s) s Q) 25 0(s) =5 P+(s)( ), P*(s),
I lP (s) pP ® (I_ )—l
a7 =5 PI(s) = 0(p = 5) 25 O(p = 5) = Pj(s) =5 P(s)

where I; ; and [/ jare the isomorphisms defined by (see Proposition 2.1):
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I3 (b7 () = B (9), IH (x5 () = Xi7 (), It () = Y3 (s, Iy () = AT (s),
I (b7 (8)) = By (p = ). I, ;(x7 () = Xi(p = 9), I () = Y (p = s),
I (a; () = A; (p — 9).

For s = p, consider:

Px+p) (1;’].)_l

— X"(p),
()"

=5 X7(p)

It i . ,
. XE(p) L5 X (p) > 0(p) 25 Q(p) —> X (p)

_ _ L, iX;(p) a Parpy
hpja s X~ (p) = X (p) — Q(0) — Q(0) — X} (p)

where I;, i and I, are the isomorphisms defined by (see Proposition 2.1):
+ o+ A+t - (- A
Ip,j(vj (p) = A,’j (p) and Ip,j(U,' (p) = A,’j 0).
Thenforl <s<p-1:
tp;*(s)(PP;(s) © 4 © iP;.'(s)) = tpoo(h2 1)
and for s = p:
tXf(p)(PX}*(p) ©pPa° iX7<p)) = f«\*ﬂ(p)(hz, j,a) -

We must determine the endomorphism A ia when a is replaced by the elements given in
Proposition 3.1. Using (8), we get:

Vs £V, h:_:,j,w; =0 and £ ;,.=0
and:

Since this does not depend on j and since the block Q(s) contains s copies of P*(s), we find
that 75, (ow) = stp+(5(pT). So by Proposition 3.1, the coefficient of G, is tp+(5)(p).
Next, assume that 1 < s < p — 1, and let us compute hz‘, 0 e By (7), we see that
sSo¥ g 1Es

Vs ¢{s,p-s}V] hf,,j’q):_ley =0 and V, h;j,d?;_les =0, h;fs’j’q):_lej =0.
Then, Proposition 2.1 together with Lemma 3.1 gives:
Y J, h;_s’j’q);]es =0 and V0<j<s-2, h;r,j,@;]es =0 and h-s'—,s—l,(D;IeS =Id.

It follows that 77, (pq,;]ex) = tp+(5(Id). So by Proposition 3.1, the coefficient of x? is
tp+(s)(Id).

We now consider h;*’/ O e This time, (7) shows that
I 1€p-s
Vs ¢{s,p—shLV] hj’j@;lem =0 and Vj, hl_’—&is‘b;lew.v =0, h;ﬁ@;lem =0.
Then, Proposition 2.1 together with Lemma 3.1 gives:
v, h;—s,i@;leuf: =0 and VO<j<s-2, h O ey = 0 and hs_’s_l’q);_leﬂ =1d.

It follows that 1g, (pq);lgp_x) = tp-(5»(Id). So by Proposition 3.1, the coefficient of x| is
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tp-(5(1d).
Finally, in the case where s = p:

’ . + — = —
Vs #p, Vi) kg e, = 0 and hp,j,CD;,le,, =

Then, Proposition 2.1 together with Lemma 3.1 gives:

VO<j<p-2, I =0 and K’ =Id.

p.J®y_ep p-p=1.0, e,

It follows that 77, (p(l);i]ep) = tx+(p(Id). So by Proposition 3.1, the coeflicient of y is
tx+(p)(Id) One similarly gets the coefficient of /. m|

By Proposition 3.1, the coefficient of G, is also given by: ﬁtgq(pw;). Taking back the
notations of the proof above, we see using (8) that

Vs #p-sYj ht. =0 and h'

s, jws p=S,jwy

=0
and:
Vi By ju; = Ppes:

Since this does not depend on j and since the block Q(s) contains p — s copies of P~(p — s),
we find that th(pw;) =(p— tp-(p- s)(p[‘,_s). So by Proposition 3.1, the coefficient of Gy is
tp-(p-5)(P—s). We thus have:

(14) tr-(p-5)(Pp_s) = tr+(5)(D3)-

Note that there is an elementary way to see this. Indeed, the morphisms P; and P,_, defined
in (5) satisfy:

P, oP{=p{, P{oP,  =p,,
Hence, we recover (14) by property of the traces. From this, we deduce the following
corollary.

Corollary 4.1. Let

p—1

P
0= Z (xt + x;) + ZMGS, € SLF(T,).
s=1

s'=1

Then the trace t¥ = l'Il__]1 (¢) associated to ¢ is given by:
q

4 —_ )% ¥ — )% ¥ Ty — ¥ - —
t(\)i(p)(ld) - /lpa tpi(s)(ld) - /ls s tp+(s/)(ps') - tpf(p_sl)(pp—s’) - #S'-

4.3. Symmetric linear form corresponding to the modified trace on Proj a,r Let H be
a finite dimensional Hopf algebra. Let us recall that a modified trace t on Proj, is a trace
which satisfies the additional property that for U € Projy, for each H-module V and for
f € Endy(U ® V) we have:

tuev(f) = tu(trr(f))

where trp = Id®tr, is the right partial quantum trace (see [8, (3.2.2)]). These modified traces
are actively studied, having for motivation the construction of invariants in low dimensional



SYMMETRIC LINEAR FORMS AND TRACES ON l_]q(sl(2)) 589
topology. We refer to [8] for the general theory in a categorical framework which encapsu-
lates the case of Proj.

In [3], it is shown that there exists a unique up to scalar modified trace t = (iyy) on Proj 0,
Uniqueness comes from the fact that X*(p) is both a simple and a projective module. The
values of this trace are given by:

tepId) = (=D, ta-(pId) =1, tp+p(Id) = (=1)*(¢* + ¢7°),
tp-dd) = (D" NG + 7). (P} = (11 o)) = thrp-s)(P)_y)-

Let H be a finite dimensional unimodular pivotal Hopf algebra with pivotal element g and
let u € H* be a right co-integral on H, which means that

VxeH, (u®lId)(A(x)) = u(x)1.

From [14], we know that u(g-) is a symmetric linear form. In the recent paper [2], it is
shown that modified traces on Proj, are unique up to scalar, and that the corresponding
symmetric linear forms are scalar multiples of u(g-). Here, we show how Theorem 4.2 and
computations made in [9] (see also [1]) and [6] quickly allow us to recover this result in the
case of H = U,. First, recall that right integrals yu, of U, are given by:

ﬂ((FmEnKj) = {Omp-10np-10p+1,
where ¢ is an arbitrary scalar. Hence:
p (KPP E"KY) = L6, p-160,p-16 j0-

Using formulas given in [9] (see also [17%), we have (1 < s < p— 1)

—_

! A

_ —(=2t=)l pp=1 pp—1 gl .
ey = iy — 112 Z Z q FP7 EPT K" + (terms of lower degree in E and F),
=0 1=0
p—12p-1
es = g g 2D pp=tpp=l gl 4 (terms of lower degree in E and F),
=0 [=0
1 p—12p—1
_ —(p2t=)l pp—1 pp—-1 g~ .
e,= ———— FP7 EP7 K" + (terms of lower degree in E and F),

where « is given in the last page of [1] as:
s—1

_ (=1 S
T T oplp s - 1125 112 PR Np-s-1)

I=1 =1

In order to simplify this, it is observed in [13, Proof of Proposition 2], that

s—1 1 p—s—1 1

_ _=@+q)
Z[l][s—l] Z[l][p—s—l] (s>

=1 =1

So, since:

_[p-117

[p—s—11"P[s— 1] I

2In notations of [1], we have e, = et D+ X e (p— s w).
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we get:
(_1)p_s_1 s —s
=—(¢°+ .
S 2= 1]!2(61 q°)
Using formulas given in [6] (see also [10, Prop. 11.3.19]), we have:
+ (G L S :
w! = —————[s]"sF”7 E”"" + (other monomials),
b 2plp-1112

__ !
B Vi
T 2plp- 117

We now use Proposition 3.1 to get the coefficients of u,(K”*!) in the GTA basis. For
instance:

[s1*(p — $)F""'EP~' + (other monomials).

pe(KP wt) (!

2
= s]e,
s 2plp — 1]!2[ ]
o p—12p-1
1 _ s 1 -1 -1 —(s—D)(I+))+2tl g l+j
/l_((K[H— q):_les) — 5#( Krtipp-1pp Z Z q (s=D(U+)+ tK+]
t=0 1,j=0
p—12p-1
=¢* g = ¢a
= = 5e
p t=0 [=0

Choose the normalization factor to be / = (—1)?~'2p[p—1]!?, and let  be the so-normalized
integral. Then:

p—1
p(KPy = (=17 s+ x + (D + g W+ DN+ g G

s=1

+ (-1)'[s°Gy).

By Theorem 4.2, we recover Iy, (t) = u(K?*').

5. Multiplication rules in the GTA basis

We mentioned in section 3 that SLF(Uq) is a commutative algebra. In this section, we
address the problem of the decomposition in the GTA basis of the product of two elements
in this basis. The resulting formulas are surprisingly simple.

Let us start by recalling some facts. For every U,-module V, we define the character of V
as (see (11) for the definition of T'):

14
¥ =1t(T).
This splits on extensions:
0-oVoM-o-Wo0 = yYM="+,W

Due to the fact that U, is finite dimensional, every finite dimensional U,-module has a
composition series (i.e. is constructed by successive extensions by simple modules). It
follows that every y" can be written as a linear combination of the y* = y**. Moreover,
we see by definition of the product on U , that
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Vv W
(15) T =TT,
w

14 14 w
where Ty = T ® lgimow) and T2 = Ilgimy) ® T. Thus ¥ = vV, Hence multiplying
two x’s is equivalent to tensoring two simples modules and finding the decomposition into
simple factors. This means that

VeCt(X?)ae{i},ISSSp ;) (B(Uq) ®z C7 XI = [I]

where ®(U,) is the Grothendieck ring of U,. By [6], we know the structure of G(U,). Recall
the decomposition formulas (with2 < s < p — 1):

XT(DHOX(s) = X7(s), X" (2)®X(s) = X (s—1)@X (s+1), X (2)®X(p) = P*(p-1)
so that
(16) XIXs =X XX =Xt XS XX, =20 + 2"

We see in particular that y; generates the subalgebra vect(x{)ac(+)1<s<p. The x§ are ex-
pressed as Chebyschev polynomials of x7, see [6, section 3.3] for details.

Theorem 5.1. The multiplication rules in the GTA basis are entirely determined by (16)
and by the following formulas:

17 x3G1 = [2]G,

(18) X;Gsz ﬂGs—l +wG3+1 for2 <s<p-2,
[s] [s]

(19) X3Gp1 = [21G 2,

(20) X1Gs = =G, foralls,

2D GG, =0 forall s,1.

Before giving the proof, let us deduce a few consequences.

Corollary 5.1. Forall 1 < s < p—1 we have:
1
Gy = —xiGy, x'G,=0.
K [s]X5 L XpUi
1t follows that (x§ + x,_)G, = 0, and that V = vect(xs + X ,_s X > X)1<s<p-1 is an ideal of
SLE(T,).

Proof of Corollary 5.1.  The formulas for x;G; are proved by induction using y7 , =
XiX5 — X1, together with formula (18). We deduce:
X
[7]
It is straightforward that V is stable by multiplication by x7, so it is an ideal. m|

(x? +Xp-s)Gr = %(X:Gl +Xp-sG1) = T ([81Gs + [sly Gp-s) = 0.

REMARK 3. We have y”'®) = 2()(‘; + /\(I‘,S‘s) for 1 < s < p—1. Thus V is generated by
characters of the projective modules. It is well-known that if H is a finite dimensional Hopf
algebra, then the full subcategory of finite dimensional projective H-modules is a tensor

ideal. Thus we can deduce without any computation that V is stable under the multiplication
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by every x'.

We now proceed with the proof of the theorem. Observe that we cannot apply Proposition
3.1 to show it since we do not know expressions of A(e;) and A(w;) which are easy to
evaluate in the GTA basis. Recall ([12], see also [10]) the following fusion rules:

(22) X (1)@ PYs) =P %s) foralls,

(23) XT2)®@PY(1) = 2X % (p)® P*(2),

(24) XT2Q)@P (s) =P (s—1@P¥s+1) for2<s<p-1,
(25) X*2Q)ePYp—1)=2X%p)® P*(p - 2).

They imply the following key lemma.
Lemma 5.1. There exist scalars vy, Bs, A5, s, 05 such that
X3Gs =BGt +¥5Goat + A(X ) +Xposi1 —Xio1 = Xpy1) (for2<s<p-2),
X361 =11Ga+ (X, = X3 ~Xpa)» X3Gp1 =Bp1Gpa+ pi(p o + X5 —X})
X1Gs = 1.Gpy + 5o +X7) -
Proof. Letus fix 2 < s < p — 2; by (12), (13), (15) and (24) we have:

X*t(2) P*(s) X*(Q2) P (p-s) XY ()P (s) XT(2)®P~ (p-s)
X2G € vect T - Ty, Tij - Ty = vect Tijkl , Tijkl
ijkl ijkl

P*(s—1) P*(s+1) P (p=s+l) P (p-s-1)
= vect T,'j , Tij 5 T,'j . T,'j
ij

v
where T;; is the matrix element at the i-th row and j-th column of the representation matrix

14 Vew
T and T;jy is the matrix element at the (i, j)-th row and (k, /)-th column of the representation

vew
matrix 7 . Hence, since x; G, is symmetric, it is necessarily of the form

X2Gs = BsGy1 +¥sGort + 21Xy + 22X + 23X 1 T 2N
Evaluating this equality on K and K?, we find (since G,(K") = 0 for all ¢ and [):

[s—=11(z1—z3) +[s+ 1l(z2 —24) =0, [s—1lp(z1 —z3) +[s+ 1]p2(z2a—2) =0

. 2n_ ,—2n . . . .
with [n], = "qz_q,z . The determinant of this linear system with unknowns z; — 73,20 — 4

2 sin((s—1 sin((s+1
AU ISR CEIID (cos((s + 1)m/p) — cos((s = D/p)) # 0. Hence 21 = 23, 22 = 2a.

Moreover, evaluating the above equality on 1, we find p(z; + z2) = 0. Letting A, = z;, the
result follows. The other formulas are obtained in a similar way using (22), (23) and (25).
|

We will use the Casimir element C of U, to make computations easier. It is defined by:

K+q'k' & 5 _
c=rE+ L1 — Zc,e, + 3w +wp) e 2(0,)
k=1

g-q ) =
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where ¢; = (;]f;—‘f;z. The second equality is obtained by considering the action of C on the
PIMs P%(s). Observe that

(26) Vxe Uy, x5(Cx)=acy(x), GyCx)=c;Gy(x) + (xs + X))

Then by induction we get G(C") = npc';‘1 for n > 1. We will also denote cg = ql((qt(f]__lll;_l .

Proof of Theorem 5.1. e Formula (18). We first evaluate the corresponding formula of
Lemma 5.1 on FE. It holds G,(FE) = G/(C) = p, (x; +x,-)(FE) = (x] + x,-)(C) = pc,
for all 7 and x3 G(FE) = x3(K")G,(FE) = [2]p. Thus we get:

(27) Bs +Ys+ (Cs—l - Cs+1)/ls = ﬁs +Ys— [S]/ls = [2]
Next, we evaluate the formula of Lemma 5.1 on (FE)?. On the one hand,
(W3 G((FEY) = x3(K)G((FE)’) = x3(K)G,(C* = 2Ccx + i)
= x3(K)G(C?) = 2p(q" + g ).
For the first equality, we used that @(E'F iKY = 0, jgo(EiF ‘K" for all ¢ € SLF(U,{), that
Gy(K") = 0 and that G(FEK") = 0 for 1 <1 < p — 1. The third equality is due to (26) and

to the fact that (y; + X;_S)(Kl) =0for 1 <[ < p—1. On the other hand, using again the
Casimir element,

BsGs1((FEY) +7,Gont (FEV) + (v i) +Xpose1 = Xiu1 = Xpsr (FEY)
= BiGs1(C?) + 7,61 (C?) + AL+ dsn =X =i )(C7)
= 2pcs 1By + 2pConYs + Py = Co)As
Since cf_l - C§+1 = —(q + g Hey[s], we get

(28) 265185 + 2¢501Ys — (@ + ¢ Hes[s14, = 2(¢* + g e

In order to get a third linear equation between S, v, and A, we use evaluation on ) 2l
This has the advantage to annihilate all the y¢ appearing in the formula of Lemma 5.1. First:

EPUFP(s) = By (9) = ()P p = s = 1PE(s)

—5—1
(29) = (—a)”i‘la“‘l[p — 5= 1]P[s - 1]1%a(s)
= ()P 1! p =117 [_s]lz]!zag(s)
and EP~'FP~! annihilates all the other basis vectors. Hence:
Gy(E Pty = 21y 2 Le
[s]?

Next by (1), we have:
X3 ®1d(AEP FPh) = —[21EP7' P! - BV FPK.
As in (29), we find:

e
= U e,

2EP2RBA(s) = (=) et T =
EPTPFPKDG(s) = (—a)a’q [s + 1][s]
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EP2FP2Kb((s) = (o)™ 'a g 3—[[p ][]‘]2 a(s)

and all the others basis vectors are annihilated. Hence:

s [p-17  ¢72]
[s1> [s—1s+1]

G,(EP2FP2K) = 2(-1

‘We obtain:
+ -1 -1\ _ _ —s _ 2¢
X5 ® G (AETFIH) = 21" [p 11 s
and thus:
(30) Bs Ys (2]

+ = .
[s—=117 [s+1]12 [s—1][s+1]
Asa result we have a linear system (27)—(28)—(30) between By, v, and A. It is easy to check

that 8, = Ls SI],)’s = [S[J;]”, Ay = 0 1is a solution. Moreover this solution is unique. Indeed, a
straightforward computation reveals that
1 1 —[s]

2 2
det 2013_1 2cls+1 —(q+q0_1)cs[s] = [s[j]l]z + [s[i]l]z >
[s=117  [s+1F
e Formulas (17) and (20). Evaluating as above the corresponding formulas of Lemma
5.1 on FE and (FE)?, one gets linear systems with non-zero determinants. It is then easy to
see that 8; = [2],4; = 0 and n; = —1,0, = 0 are the unique solutions of each of these two

systems.

e Formula (19). It can be deduced from the formulas already shown:
X2Gp-1 = —x2x1G1 = —x[[21G2 = [2]G .

e Formula (21). Recall the isomorphism of algebras D defined in (10). Taking into ac-
count that o(K'F"E™) = 0 if n # m for any ¢ € SLF(l_Jq) and that G,(K") = 0 for all i, and
making use of the expression of RR’ given in [6], we get:
2p—-1 (2p-1
Z Z (q 2 n(/—i—l)—ist(Kp+i+lEnFn) KIF"E"

< [n]'

M_

D(Gy)

=
»— O

"s
)
=
,_

/1 inK F"E"

‘M

n=1

for some coeflicients 4;, (observe that n > 1). From this it follows that for all @ € {+} and
I <r < p-1:D(Gy)by(r) € Cag(r). By (7), we deduce that D(Gy) € vect(wy)i<r<p—1 for
all s. Thus D(G,G,) = 0, thanks to (9). ]
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