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Abstract
Relatively cuspidal representations attached to a p-adic symmetric space G/H are thought of

as the building blocks for all the irreducible H-distinguished representations of G. This work
provides certain new examples of relatively cuspidal representations. We study three examples
of symmetric spaces; GLn(E)/GLn(F), GL2m(F)/GLm(E), and GLn(F)/

(
GLn−r(F) × GLr(F)

)
where E/F is a quadratic extension of p-adic fields. Those representations are given by in-
duction from cuspidal distinguished representations of particular kinds of parabolic subgroups
stable under the involution.

Introduction

Let G be a reductive p-adic group, H the fixed point subgroup of an involution σ on
G, and Z the center of G. A smooth representation π of G is said to be H-distinguished if
it carries a non-zero H-invariant linear form. Such representations are the main object of
harmonic analysis of the symmetric space G/H, via Frobenius reciprocity

HomH(π, 1) � HomG
(
π,C∞(G/H)

)
.

H-matrix coefficients of π are the right H-invariant functions ϕΛ,v on G defined by

ϕΛ,v(g) = 〈Λ, π(g−1)v〉 (g ∈ G)

for Λ ∈ HomH(π, 1) and v ∈ π. We say that an H-distinguished representation π of G is
H-relatively cuspidal if all the H-matrix coefficients of π are compactly supported modulo
ZH.

In our earlier work [13, Theorem 7.1], we gave the following result which might be
regarded as a basic theorem towards the classification of irreducible H-distinguished repre-
sentations of G:

For an irreducible H-distinguished representation π of G, there exists a σ-
split parabolic subgroup Q of G and an irreducible L∩H-relatively cuspidal
representation ρ of L = Q ∩ σ(Q) such that π is a subrepresentation of
IndG

Q(ρ).
Here, a parabolic subgroup Q of G is said to be σ-split if Q and σ(Q) are opposite. This
theorem is a symmetric space analogue of Jacquet’s subrepresentation theorem [2, 2.5].
Hence, as an analogue of Harish-Chandra’s philosophy of cusp forms, relatively cuspidal
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representations are thought of as “building blocks” for all distinguished representations.
In this paper, we give a construction of relatively cuspidal representations for the follow-

ing three symmetric spaces:
• GLn(E)/GLn(F) (in Section 2).
• GL2m(F)/GLm(E) (in Section 3).
• GLn(F)/

(
GLn−r(F) × GLr(F)

)
(in Section 4).

Here, E/F is a quadratic extension of non-archimedean local fields. The method of con-
struction is the induction from cuspidal distinguished representations of σ-stable parabolic
subgroups. So the examples provided in this paper are non-cuspidal but relatively cuspidal
ones. Note in particular that there is no irreducible cuspidal distinguished representation for
the third case with n − r � r [15].

It is known that cuspidal distinguished representations are relatively cuspidal [13, Propo-
sition 8.1]. Such representations have been studied by several authors (e.g., [6], [7], [8]).
There were only few examples of non-cuspidal but relatively cuspidal representations. At
first, [13, 8.2, 8.3] gave such examples for the symmetric spaces GL2n(F)/Spn(F) and
GLn(F)/

(
GLn−1(F) × GL1(F)

)
. The method employed in this paper is, in a sense, a sim-

plified reformulation of the one in [13]. A part of our results is found also in [18], [20] for
the symmetric space GLn(E)/GLn(F), and in [14], [20] for GL2m(F)/

(
GLm(F) × GLm(F)

)
.

We claim that the representations of the form IndG
P (ρ), for σ-stable parabolic subgroups

P = MU and cuspidal M ∩ H-distinguished representations ρ of M, are H-relatively cusp-
idal (for the above three symmetric spaces). On the contrary, we believe that H-relatively
cuspidal representations will not appear in the composition series of representations IndG

Q(ρ)
for any proper σ-split parabolic subgroup Q and any L ∩ H-distinguished representation ρ
of L = Q ∩ σ(Q) (again from the analogy with the philosophy of cusp forms). Some related
matter will appear at the end of section 4.

Let us summarize the contents of this paper. Section 1 gives preparations for whole of the
paper, including the construction of H-distinguished representations by induction from σ-
stable parabolic subgroups (1.2) and the criterion of relative cuspidality in terms of Jacquet
modules along σ-split parabolic subgroups (1.4). From sections 2 to 4, the study for the
three cases will be given separately. However, the procedures of these three sections are
parallel and constituted from the following issues:

• Determination of σ-stable parabolic subgroups suitable for our construction: 2.2,
3.2, and 4.3 or 4.8.
• Computation of the character μM∩H used in the construction of H-distinguished rep-

resentations: 2.2, 3.3, and 4.9.
• Statement of the main result: 2.4, 3.5, and 4.11.
• Description of maximal σ′-split parabolic subgroups for a suitable conjugate σ′ of
σ: 2.5, 3.6, and 4.12.
• Proof of relative cuspidality by studying Jacquet modules along maximal σ′-split

parabolic subgroups: 2.6, 3.7, and 4.13.
Section 5 is for an additional discussion on the choice of stable parabolic subgroups used in
our construction. We consider some candidates for relevant parabolic subgroups based on
maximal σ-split tori which are F-anisotropic modulo the center.

We are grateful to the referee for his or her careful reading, useful comments and sugges-
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tions.

1. Preliminaries and preparations

1. Preliminaries and preparations1.1.
1.1. Let F be a non-archimedean local field, of which the residual characteristic is not

equal to 2. Let G be a connected reductive F-group, σ an F-involution on G, and H the
subgroup of σ-fixed points in G. Let Z denote the center of G. For an algebraic F-group
denoted by a boldface capital letter, the group of its F-points is denoted by the corresponding
ordinary capital, such as G = G(F).

By a representation of G (or a G-module), we always mean a smooth representation of G
on a complex vector space. For a representation π of G and an automorphism φ on G, φπ
denotes the representation π ◦ φ−1 of G on the same vector space. If ρ is a representation of
a subgroup M of G and φ = Ad(w) for w ∈ NG(M), the normalizer of M in G, then φρ is
denoted also by wρ.

For a quasi-character μ of H, a representation π of G is said to be (H, μ)-distinguished
if HomH(π, μ) � {0}, and H-distinguished if it is (H, 1)-distinguished, where 1 denotes the
trivial character of H.

The following elementary lemma is easy to prove.

Lemma. Let π be an H-distinguished representation of G.
(1) If π has a central character, then it is trivial on Z ∩ H.
(2) Any filtration of π consisting of G-submodules of finite length has an H-distinguished
subquotient.

Right H-invariant functions on G of the form

ϕΛ,v(g) = 〈Λ, π(g−1)v〉
for v ∈ π and Λ ∈ HomH(π, 1) are called H-matrix coefficients of π. An H-distinguished
representation π of G is said to be H-relatively cuspidal if the support of ϕΛ,v is compact
modulo ZH for any v ∈ π and Λ ∈ HomH(π, 1).

1.2.
1.2. If a parabolic F-subgroup P of G is σ-stable, then so is its unipotent radical U =

Ru(P). Also, there exists a σ-stable Levi subgroup, say M, of P. We shall call such a pair
(P,M) a σ-stable pair. For such a pair, we have a Levi decomposition

P ∩H = (M ∩H)(U ∩H).

Let δP (resp. δP∩H) be the modulus character of P (resp. of P ∩ H). For each σ-stable pair
(P,M), we define the quasi-character μM∩H of M ∩ H by

μM∩H = δP∩H · δ−1/2
P |M∩H .

The following is an easy way to construct H-distinguished representation of G.

Proposition. If ρ is an (M ∩ H, μM∩H)-distinguished representation of M, then the nor-
malized induced representation IndG

P (ρ) is H-distinguished.

Proof. Given a non-zero λ ∈ HomM∩H(ρ, μM∩H), one has a non-zero H-invariant linear
form Λ on IndG

P (ρ) defined by
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〈Λ, φ〉 =
∫

P∩H\H
〈λ, φ(ḣ)〉 dḣ

where dḣ denotes a fixed quasi-invariant measure on P ∩ H\H. See [19] for details. �

We expect that this proposition applied to cuspidal (M ∩ H, μM∩H)-distinguished repre-
sentations ρ of M provides H-relatively cuspidal representation of G, under certain relevant
choices of P and M. In the three examples mentioned in the introduction we show that our
expectation is true, under some regularity condition on ρ. The results will be stated in 2.4,
3.5, and 4.11.

1.3.
1.3. An F-torus S of G is said to be σ-split if σ(s) = s−1 for all s ∈ S. A σ-split torus

which is also F-split is said to be (σ, F)-split. It is well-known that maximal σ-split F-tori
(resp. maximal (σ, F)-split tori) are mutually conjugate in G. The dimension of maximal
σ-split F-tori (resp. maximal (σ, F)-split tori) is called the rank (resp. the F-rank) of σ, or
of G/H.

A parabolic F-subgroup Q of G is said to be σ-split if Q ∩ σ(Q) is a Levi subgroup of
Q. Such subgroups are used in characterizing relative cuspidality of distinguished represen-
tations (see the next subsection).

Several facts about H = H(F)-conjugacy of σ-split parabolic subgroups are recollected
in [13, §2]. Here let us recall the following (from [13, 2.5]):

Lemma. Let A be a maximal (σ, F)-split torus of G. If ZG(A) ∩ H has trivial Galois
cohomology over F, then there exists a minimal parabolic subgroup P0 ⊃ A such that every
σ-split parabolic subgroup is H-conjugate to a σ-split one containing P0.

1.4.
1.4. From now on, we say briefly that P is a parabolic subgroup of G if it is the group

of F-points of a parabolic F-subgroup P of G. For a representation π of G and a parabolic
subgroup Q of G, let πQ denote the normalized Jacquet module of π along Q. In [13, §6]
we gave a criterion for relative cuspidality of π in terms of invariant linear forms on Jacquet
modules along σ-split parabolic subgroups. For our later use, we record a variant of it in the
following form:

Proposition. Let π be an admissible H-distinguished representation of G. If πQ is not
L ∩ H-distinguished for every maximal σ-split parabolic subgroup Q of G (where L =
Q ∩ σ(Q)), then π is H-relatively cuspidal.

Proof. This is a direct consequence of [13, 6.9 and 5.9]. �

1.5.
1.5. For our convenience, we often change the involution by inner automorphisms. For

an element γ ∈ G, consider

σ′ = Int(γ) ◦ σ ◦ Int(γ−1)

where Int(γ) denotes the inner automorphism g �→ γgγ−1 on G. Such an involution σ′ is
said to be Int(G)-conjugate to σ. The σ′-fixed point subgroup H′ in G is related to H as

H′ = γHγ−1.

In this situation we note the following obvious facts:
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(1) A pair (P,M) is σ-stable if and only if (γPγ−1, γMγ−1) is σ′-stable.
(2) For a representation π of G, one has

HomH(π, 1) � HomH′(π, 1)

by Λ �→ Λ ◦ π(γ−1). This isomorphism shows that π is H-distinguished (resp. H-relatively
cuspidal) if and only if it is H′-distinguished (resp. H′-relatively cuspidal).

1.6.
1.6. In the following sections we mainly deal with general linear groups and use the

notation G = Gn = GLn(F) (or GLn(E) in Section 2 where E is a quadratic extension of
F). Let B = Bn (resp. D = Dn) be (the F-points of) the Borel subgroup (resp. maximal
torus) consisting of upper triangular (resp. diagonal) matrices in G. A parabolic subgroup
is referred to as standard if it contains B, and is said to be of type (n1, . . . , nk) (which is a
partition of n, i.e.,

∑k
i=1 ni = n) if it is of the form

P =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1 ∗
. . .

0 xk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣ xi ∈ Gni (i = 1, . . . , k)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ .
The Levi subgroup

M =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1 0
. . .

0 xk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣ xi ∈ Gni (i = 1, . . . , k)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
of P is called a standard Levi subgroup of type (n1, . . . , nk). We also say that (P,M) is a
standard pair. The modulus character δP of the above P is given by

δP

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1 ∗
. . .

0 xk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
∏

1�i< j�k

∣∣∣det(xi)
∣∣∣n j · ∣∣∣det(x j)

∣∣∣−ni

where
∣∣∣ · ∣∣∣ denotes the normalized absolute value of the field of entries, either F or E.

1.7.
1.7. In sections 3 and 4, we study the symmetric spaces of G = Gn = GLn(F) defined

by inner involutions. Those are given by σ = Int(ε) where ε2 is central in G. There are the
following two possibilities:

(I) ε2 = τ · 1n where τ ∈ F× is not a square in F×. In this case, the eigenvalues of ε are
±√τ only. Put E = F(

√
τ). The Galois automorphism of E over F permutes the corre-

sponding eigenvectors, hence the multiplicities of
√
τ and −√τ are the same. As a result n is

necessarily even, say n = 2m. It is easy to see that any such ε is G-conjugate to the element

ε1 :=
(

0 1m

τ · 1m 0

)
.

We consider σ1 = Int(ε1). For any other ε such that ε2 = τ · 12m, the involution σ =
Int(ε) is Int(G)-conjugate to σ1. Indeed, if ε = γε1γ

−1, then σ = Int(ε) coincides with
Int(γ) ◦ σ1 ◦ Int(γ−1).

Theσ1-fixed point subgroup H1 in G is isomorphic to GLm(E) (see 3.1). So the symmetric
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space in this case is of the form GL2m(F)/GLm(E).

(II) ε2 = c2 · 1n for some c ∈ F×. Replacing ε by a scalar multiple, we may assume ε2 = 1n

in this case. Then ε is G-conjugate to the element

ε1 = ε
(r)
1 :=

(
1n−r 0

0 −1r

)
,

for some r, 0 � r � n. We consider σ1 = σ
(r)
1 = Int(ε(r)

1 ). For any other ε such that ε2 = 1n,
the involution σ = Int(ε) is Int(G)-conjugate to σ(r)

1 if ε is G-conjugate to ε(r)
1 .

The σ1-fixed point subgroup H1 in G is isomorphic to the direct product GLn−r(F) ×
GLr(F) (see 4.1). Therefore we may (and will) assume that 1 � r � [n/2] where [x] for
x ∈ R denotes the greatest integer less than x.

1.8.
1.8. As the ingredients for our construction of relatively cuspidal representations, we use

cuspidal distinguished representations of stable Levi subgroups. Concretely we need such
representations for the symmetric spaces GLn(E)/GLn(F), GL2m(F)/GLm(E), and
GL2r(F)/

(
GLr(F) × GLr(F)

)
. As for the first and third cases, examples of those are con-

structed in [7]. Examples for the second case is not seen in the literature. However, at
least when E/F is unramified, one can obtain such representations by using the method of
[6] and the result concerning a similar problem over finite fields: Let K = GL2m(F) and
K1 = 12m +�FMat2m(F), so that K/K1 is isomorphic to GL2m over the residue field of F.
Here, F (resp. �F) denotes the valuation ring (resp. a prime element) of F. If τ in 1.7 (I)
belongs to 

×
F , then σ leaves K and K1 stable, inducing the same kind of involution on the

finite GL2m. By the result of [1] and [10], one can find irreducible cuspidal distinguished
representations for this finite symmetric space. Starting from such representations, inflate
these to representations of K and induce up to G by compact-mod-Z induction (with trivial
central character). Then we obtain irreducible cuspidal representations of G, and these are
actually GLm(E)-distinguished by the Mackey decomposition theorem in [8, 2.1].

2. The case of Galois involution on GLn

2. The case of Galois involution on GLn2.1.
2.1. Let E be a quadratic extension of F. The Galois automorphism of E over F is

denoted by x �→ x. We consider the group G = Gn = GLn(E) and the Galois involution
σ = σn on G:

σ(g) = g
(
= (gi j) if g = (gi j) ∈ G

)
.

The subgroup H = Hn of σ-fixed points in G is GLn(F). The center Z = Zn of G consists of
scalar matrices, and is identified with E×. Note also that Z ∩ H coincides with the center of
H, and is identified with F×.

2.2.
2.2. In this Galois case, all standard parabolic subgroups of G (together with standard

Levi subgroups) are σ-stable. If P is the standard parabolic subgroup of type (n1, . . . , nk),
then P∩H is the standard parabolic subgroup of H = GLn(F) of the same type. The modulus
characters δP and δP∩H are given by the formula of 1.6, using the absolute values of E and
F respectively. By the relation

∣∣∣ · ∣∣∣1/2E =
∣∣∣ · ∣∣∣F on F×, we have δ1/2P |P∩H = δP∩H . Thus the

quasi-character μM∩H on M ∩ H considered in 1.2 is trivial in this Galois case.

2.3.
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2.3. Let us recall the following result due to Flicker, on irreducible GLn(F)-distinguished
representations of GLn(E).

Proposition. If an irreducible representation π of G is H-distinguished, then σπ is equiv-
alent to the contragredient π̃ of π.

Proof. In [3, Proposition 12], it was shown that such a π is invariant under the unitary
involution g �→ tg−1 on G. Also, by the work of Gel’fand-Kazhdan [4], the orthogonal
involution g �→ tg−1 on G sends π to its contragredient π̃. �

2.4.
2.4. Now we state the main claim of this section. A part of this result is found also in

[18] and [20].

Theorem. Let (n1, . . . , nk) be a partition of n and (P,M) the corresponding standard σ-
stable pair. For each i, take an irreducible cuspidal Hni-distinguished representation ρi of
Gni and form ρ = ⊗k

i=1ρi, which is an irreducible cuspidal M ∩ H-distinguished representa-
tion of M.

Suppose that ρi � ρ j for any i � j. Then,
(1) The induced representation IndG

P (ρ) is H-distinguished and irreducible.
(2) The induced representation IndG

P (ρ) is H-relatively cuspidal.

Proof of (1). H-distinction of IndG
P (ρ) was already seen in 1.2. As is well-known, IndG

P (ρ)
is reducible if and only if ρi �

∣∣∣det(·)∣∣∣±1
E · ρ j for some i � j (such that ni = n j) [2]. However,

the central characters of ρi and ρ j are both trivial on Z∩H � F× by (1) in 1.1. By comparison
of the central characters restricted to Z ∩ H, we cannot have the reducibility. �

H-relative cuspidality will be seen in 2.6, using the criterion recorded in the proposition
of 1.4.

2.5.2.5. Let w0 =

( 0 1

...
1 0

)
be the anti-diagonal permutation matrix in G. By Hilbert’s Theo-

rem 90, there exists an element γ ∈ G such that γσ(γ)−1 = w0. We consider the involution

σ′ = σ′n := Int(w0) ◦ σ
(
= Int(γ) ◦ σ ◦ Int(γ)−1

)
on G, with the fixed point subgroup H′ = H′n. Then, the basis of the root system of (G,D)
corresponding to B is a σ′-basis, so that every σ′-split parabolic subgroup is G-conjugate to
a σ′-split one containing B (see [13, §2] for details).

For each 
, 1 � 
 �
[
n/2

]
, let Q = Q
 be the standard parabolic subgroup of type

(
, n−2
, 
). These are maximalσ′-split parabolic subgroups. On the standard Levi subgroup
L of Q, the action of σ′ is seen as

σ′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1 0

x2

0 x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
σ′
(x3) 0

σ′n−2
(x2)
0 σ′
(x1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
so that the σ′-fixed point subgroup L ∩ H′ of L is of the form

L ∩ H′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x 0
y

0 σ′
(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣ x ∈ G
, y ∈ H′n−2


⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
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As a maximal (σ, F)-split torus of G, we take

A =
{

diag(a1, . . . , an)
∣∣∣∣ ai ∈ F×, an−i+1 = a−1

i , and
a[n/2]+1 = 1 if n is odd

}
.

Then the centralizer ZG(A) is the maximal torus of all diagonal matrices (with entries in E×).
As a result,

ZG(A) ∩ H′ =
{
diag(t1, . . . , tn)

∣∣∣ ti ∈ E×, tn−i+1 = ti for all i
}
,

which is the product of
[
n/2

]
-copies of E×, and one more factor F× if n is odd. Anyway, the

Galois cohomology of ZG(A)∩H′ over F is trivial. By the lemma in 1.3 (where we can take
P0 = B), it turns out that any maximal σ′-split parabolic subgroup of G is H′-conjugate to
one of Q
, 1 � 
 �

[
n/2

]
.

2.6.
2.6. Proof of 2.4 (2). IndG

P (ρ) is also H′-distinguished by 1.5 (2). We use the criterion in
1.4 to deduce H′-relative cuspidality. Then we can conclude H-relative cuspidality again by
1.5 (2).

Thus, from the description at the end of 2.5 and the argument in [13, 6.10], it is enough
to show the following:

Claim. For each maximal σ′-split parabolic subgroup Q = Q
 given in 2.5, the Jacquet
module

(
IndG

P (ρ)
)

Q is not L ∩ H′-distinguished.

Suppose that
(
IndG

P (ρ)
)

Q is L ∩ H′-distinguished for some Q = Q
. By the theory of
Bernstein-Zelevinsky (so-called Geometric Lemma, [2, 2.12 and 2.13 (a)]) applied to the
case of irreducible cuspidal ρ, we have a filtration of L-submodules of

(
IndG

P (ρ)
)

Q whose
successive quotients are isomorphic to

w(ρ) := IndL
L∩wPw−1 (wρ)

for w in a set of representatives of Q\G/P such that L∩wPw−1 is a proper parabolic subgroup
in L. Note that we can take w as a permutation matrix in G. By (2) in 1.1, there must be a
representative w such that w(ρ) is L ∩ H′-distinguished.

As a representation of L � G
 × Gn−2
 × G
, we may put w(ρ) = I1 ⊗ I2 ⊗ I3 where I1

and I3 are representations induced up to G
, and I2 is one up to Gn−2
, with the inducing data
chosen from {ρ1, . . . , ρk}. In particular, there are disjoint sets J1, J3 ⊂ {1, . . . , k} of indices
such that

∑
i∈J1

ni =
∑

i∈J3
ni = 
, and that I1 (resp. I3) is induced from the data {ρi

∣∣∣ i ∈ J1}
(resp. {ρi

∣∣∣ i ∈ J3}) in a suitable order.
Look at the restriction to the product of the first and the third factors. The L ∩ H′-

distinction implies that I1 ⊗ I3, a representation of G
 ×G
, is Δσ
′

(G
)-distinguished, where

Δσ
′

(G
) =

{
(x, σ′
(x)) ∈ G
 ×G


∣∣∣ x ∈ G

}
.

This is equivalent to saying that there is a non-zero G
-morphism from I1 to ˜(I3)σ
′

 . Here,

we can see that I3 is irreducible and H′
-distinguished, by the same discussion as that of 2.4.
Applying the proposition in 2.3 to I3, we have

˜(I3)σ
′

 � ˜̃I3 � I3.
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Hence the inducing data {ρi

∣∣∣ i ∈ J1} and {ρi

∣∣∣ i ∈ J3} must be equal up to order, by [2, 2.9].
This contradicts to the assumption that ρi � ρ j for any i � j. �

3. The case of inner involutions on GLn (I)

3. The case of inner involutions on GLn (I)3.1.
3.1. Take an element τ ∈ F× which is not a square and form a quadratic extension E =

F(
√
τ) of F. We consider the group G = G2m = GL2m(F) and the involution

σ1 = Int(ε1), ε1 =

(
0 1m

τ · 1m 0

)
on G. In the m × m-block form, σ1 is written as

σ1

(
a b
c d

)
=

(
d τ−1c
τb a

)
,

hence the σ1-fixed point subgroup H1 = H1,2m in G is of the form

H1 = H1,2m =

{(
a b
τb a

)
∈ G

∣∣∣∣ a, b ∈ Matm×m(F)
}
,

which is isomorphic to the group GLm(E) via

a +
√
τ · b �→

(
a b
τb a

)
.

Note that the restriction of det( · ) to H1 gives the relation

det
(

a b
τb a

)
= det

(
a +
√
τ · b) · det

(
a − √τ · b)

since
(

a b
τb a

)
is conjugate to

(
a+
√
τb 0

0 a−√τb
)

over E.
Put

X = X2m =
{
ε ∈ G

∣∣∣ ε2 = τ · 12m

}
.

Then ε1 ∈ X, and any ε ∈ X is G-conjugate to ε1 (see 1.7). Hence for any ε ∈ X, the
inner involution σ = Int(ε) is Int(G)-conjugate to σ1, and the σ-fixed point subgroup H is
G-conjugate to H1.

3.2.
3.2. Let us describe σ-stable pairs (P,M) among the standard class, to which we can

apply the proposition in 1.2. By 1.5 (1) we observe the following: For a σ1-stable pair
(P1,M1) which is not necessarily standard, there is a standard σ-stable pair (P,M) where σ
is Int(G)-conjugate to σ1. So we shall determine standard pairs (P,M) which can be stable
under σ = Int(ε) for some ε ∈ X.

Let (P,M) be the standard pair in G = G2m of type (n1, . . . , nk). If it is a σ-stable pair for
σ = Int(ε) with ε ∈ X, then each ni has to be even: Indeed, if P and M are stable under σ,
then

ε ∈ NG(P) ∩ NG(M) = P ∩ NG(M) = M.

Say, ε =

⎛⎜⎜⎜⎜⎜⎝ ε
(1) 0
. . .

0 ε(k)

⎞⎟⎟⎟⎟⎟⎠, ε(i) ∈ Gni . Since ε2 = τ · 12m, we must have
(
ε(i)

)2
= τ · 1ni for each i,
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which implies that ni is even by 1.7.
Thus, as the ingredients, we use only the standard pairs (P,M) in G = G2m of type

(2m1, . . . , 2mk) where m =
∑k

i=1 mi. As for the element ε ∈ X such that σ = Int(ε) leaves

(P,M) stable, we shall take ε =

⎛⎜⎜⎜⎜⎜⎝ ε
(1) 0
. . .

0 ε(k)

⎞⎟⎟⎟⎟⎟⎠ where

ε(i) =

(
0 1mi

τ · 1mi 0

)
∈ G2mi .

In this case, M ∩ H is given by

M ∩ H =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝ x1 0
. . .

0 xk

⎞⎟⎟⎟⎟⎟⎠ ∣∣∣∣ xi ∈ H1,2mi (i = 1, . . . , k)

⎫⎪⎪⎬⎪⎪⎭ .
3.3.
3.3. We shall see that the quasi-character μM∩H defined in 1.2 is trivial, for every σ-stable

standard pair (P,M) of type (2m1, . . . , 2mk).
At first, δP on M ∩ H is computed as

δP

⎛⎜⎜⎜⎜⎜⎝ x1 0
. . .

0 xk

⎞⎟⎟⎟⎟⎟⎠ = ∏
1�i< j�k

|det(xi)|2mj

F · ∣∣∣det(x j)
∣∣∣−2mi

F

by the formula in 1.6. Further, if

⎛⎜⎜⎜⎜⎜⎝ x1 0
. . .

0 xk

⎞⎟⎟⎟⎟⎟⎠ ∈ M ∩ H, then xi ∈ H1,2mi is of the form

xi =

(
ai bi

τbi ai

)
, ai +

√
τbi ∈ GLmi(E).

By the remark in 3.1, we have∣∣∣det(xi)
∣∣∣
F =

∣∣∣det(ai +
√
τbi) det(ai −

√
τbi)

∣∣∣
F =

∣∣∣det(ai +
√
τbi)

∣∣∣
E ,

hence

δ1/2P

⎛⎜⎜⎜⎜⎜⎝ x1 0
. . .

0 xk

⎞⎟⎟⎟⎟⎟⎠ = ∏
1�i< j�k

∣∣∣det(ai +
√
τbi)

∣∣∣mj

E ·
∣∣∣det(a j +

√
τb j)

∣∣∣−mi

E .

Next we compute δP∩H . To determine the elements

⎛⎜⎜⎜⎜⎜⎜⎝
12m1 bi j

. . .
0 12mk

⎞⎟⎟⎟⎟⎟⎟⎠ of U ∩ H, look at the

relation ⎛⎜⎜⎜⎜⎜⎝ ε
(1) 0
. . .

0 ε(k)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

12m1 bi j

. . .
0 12mk

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ ε

(1) 0
. . .

0 ε(k)

⎞⎟⎟⎟⎟⎟⎠
−1

=

⎛⎜⎜⎜⎜⎜⎜⎝
12m1 bi j

. . .
0 12mk

⎞⎟⎟⎟⎟⎟⎟⎠ .
We must have ε(i)bi jε

( j)−1
= bi j for each upper right block bi j. Write bi j =

( A B
C D

)
where A,

B, C, D are mi × mj-matrices. By the relation(
0 1mi

τ1mi 0

) (
A B
C D

) (
0 τ−11mj

1mj 0

)
=

(
A B
C D

)
,

the block bi j is of the form
( A B
τB A

)
, which can be identified with the element A +

√
τB ∈

Matmi×mj(E).
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In the adjoint action of M ∩ H on U ∩ H, the part

bi j �→ xi · bi j · x−1
j

can be regarded as the left action of ai +
√
τbi, and the right action of (ai +

√
τbi)−1, on the

matrix A +
√
τB ∈ Matni×n j(E): Indeed, the operation(

ai bi

τbi ai

) (
A B
τB A

)
=

(
aiA + τbiB aiB + biA
τbiA + τaiB aiA + τbiB

)
from the left corresponds to the relation

(ai +
√
τbi) · (A +

√
τB) =

(
aiA + τbiB

)
+
√
τ
(
biA + aiB

)
,

and similarly from the right. Gathering all parts 1 � i < j � k, we have

δP∩H

⎛⎜⎜⎜⎜⎜⎝ x1 0
. . .

0 xk

⎞⎟⎟⎟⎟⎟⎠ = ∏
1�i< j�k

∣∣∣det
(
ai +
√
τbi

)∣∣∣mj

E ·
∣∣∣det

(
a j +
√
τb j

)∣∣∣−mi

E .

As a consequence we have δ1/2P |M∩H = δP∩H , hence μM∩H ≡ 1 on M ∩ H.

3.4.
3.4. We recall the following result due to Guo [5] on irreducible GLm(E)-distinguished

representations of GL2m(F).

Proposition. If an irreducible representation π of G is H-distinguished, then π is self-
contragredient.

3.5.
3.5. Now we state the main claim of this section.

Theorem. Let (m1, . . . ,mk) be a partition of m, (P,M) the standard pair in G = G2m of
type (2m1, . . . , 2mk), and σ = Int(ε) given at the end of 3.2. For each i, take an irreducible
cuspidal H1,2mi-distinguished representation ρi of G2mi and form ρ = ⊗k

i=1ρi, which is an
irreducible cuspidal M ∩ H-distinguished representation of M.

Suppose that ρi � ρ j for any i � j. Then,
(1) The induced representation IndG

P (ρ) is H-distinguished and irreducible.
(2) The induced representation IndG

P (ρ) is H-relatively cuspidal.

Proof of (1). H-distinction of IndG
P (ρ) can be seen by 1.2 and 3.3. Since inner involutions

are trivial on the center, the central characters of ρi are all trivial, hence the reducibility
condition ρi �

∣∣∣det(·)∣∣∣±1
F · ρ j of [2] cannot be satisfied for any i � j. �

H-relative cuspidality will be seen in 3.7.

3.6.
3.6. We consider the involution

σ′ = σ′2m = Int(ε′), ε′ =
(

0 w0

τ · w0 0

)

on G = G2m, where w0 denotes the m × m anti-diagonal permutation matrix. Since (ε′)2 =

τ · 12m, the involution σ′ is Int(G)-conjugate to σ1, and also to σ in 3.2. Let H′ = H′2m be
the σ′-fixed point subgroup in G. By the same reason as that in 2.5, every σ′-split parabolic
subgroup is G-conjugate to a standard σ′-split one.

Maximal σ′-split parabolic subgroups among standard ones are given by Q = Q
, the
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standard one of type (
, 2m − 2
, 
), for 1 � 
 � m. On the standard Levi subgroup L of Q,
the action of σ′ is given by

σ′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1 0

x2

0 x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
w0x3w

−1
0 0
σ′2m−2
(x2)

0 w0x1w
−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where w0 is now of size 
 × 
. Hence

L ∩ H′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x 0
y

0 w0xw−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣ x ∈ G
, y ∈ H′2m−2


⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
As a maximal (σ, F)-split torus of G, we may take

A =
{
diag(a1, . . . , a2m)

∣∣∣ ai ∈ F×, an−i+1 = a−1
i (1 � i � m)

}
.

Then ZG(A) is the maximal torus of all diagonal matrices and

ZG(A) ∩ H′ =
{
diag(t1, . . . , t2m)

∣∣∣ ti ∈ F×, tn−i+1 = ti (1 � i � m)
}
.

As an algebraic F-group, the Galois cohomology of ZG(A) ∩ H′ over F is trivial. So, by
the lemma in 1.3, we can assert that any maximal σ′-split parabolic subgroup of G is H′-
conjugate to one of Q
, 1 � 
 � m.

3.7.
3.7. Proof of 3.5 (2). By the same discussion as in 2.6, it is enough to prove the following:

Claim. For each maximal σ′-split parabolic subgroup Q = Q
 given in 3.6, the Jacquet
module

(
IndG

P (ρ)
)

Q is not L ∩ H′-distinguished.

Suppose the contrary. As in 2.6, at least one of

w(ρ) := IndL
L∩wPw−1 (wρ)

has to be L ∩ H′-distinguished, where w is in a set of representatives of Q\G/P such that
L ∩ wPw−1 is a proper parabolic subgroup in L. Put w(ρ) = I1 ⊗ I2 ⊗ I3 where I1 and I3

are representations induced up to G
, and I2 is one up to G2m−2
. There are disjoint sets
J1, J3 ⊂ {1, . . . , k} of indices such that

∑
i∈J1

2mi =
∑

i∈J3
2mi = 
, and that I1 (resp. I3) is

induced from the data { ρi

∣∣∣ i ∈ J1} (resp. { ρi

∣∣∣ i ∈ J3}) in a suitable order. It is irreducible
from the same discussion as that in 3.5. By the form of L∩ H′ in 3.6, the L∩ H′-distinction
of w(ρ) implies that I1 � Ĩ3. Here Ĩ3 is induced from { ρ̃i

∣∣∣ i ∈ J3}, and for each i we have
ρ̃i � ρi by 3.4. As a result we must have I1 � I3, which contradicts to the assumption that
ρi � ρ j for any i � j. �

4. The case of inner involutions on GLn (II)

4. The case of inner involutions on GLn (II)4.1.
4.1. Put

X = {ε ∈ Gn

∣∣∣ ε2 = 1n}.
In this section we consider the inner involution σ = Int(ε) on G = Gn for ε ∈ X. For each r,
0 � r � n, consider the element
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ε1 = ε1(n − r, r) =
(
1n−r 0

0 −1r

)
and the corresponding involution σ1 = σ1(n − r, r) = Int (ε1(n − r, r)). The σ1-fixed point
subgroup H1 = H1(n − r, r) is given by{(

a 0
0 b

) ∣∣∣∣ a ∈ Gn−r, b ∈ Gr

}
� Gn−r ×Gr.

For each r, Let X(n−r, r) be the set of all elements of X which are G-conjugate to ε1(n−r, r).
Then X can be decomposed as the disjoint union

⊔
0�r�n X(n − r, r). If ε ∈ X(n − r, r), then

the fixed point subgroup H of σ = Int(ε) is G-conjugate to H1(n − r, r) � Gn−r ×Gr. Thus,
in studying H-distinguished representations it is enough to consider the case 1 � r � [n/2].
In such a case, it is well-known that the rank and the F-rank of G/H1(n− r, r) are both equal
to r.

As a particular case, we call the pair (Gn, σ) even type if n is even, say n = 2m, and
σ = Int(ε) for ε ∈ X(m,m). Hence the corresponding symmetric space (of even type) is
isomorphic to GL2m(F)/ (GLm(F) × GLm(F)).

4.2.
4.2. We recall the following result on cuspidal distinguished representations due to Ma-

tringe.

Proposition. Suppose that n > 1. Let σ = Int(ε) be the inner involution on G = Gn

with ε ∈ X(n − r, r), 1 � r � [n/2], and H the σ-fixed point subgroup in G. Let μ be
any quasi-character of H. Then there exists an irreducible cuspidal (H, μ)-distinguished
representation of G only if (G, σ) is of even type.

Proof. This is given in [15] for trivial μ. The proof in [15] also works for a general μ by
[16, Proposition 3.1]. �

4.3.
4.3. Let (P,M) be the standard pair in G of type (n1, . . . , nk) and σ = Int(ε) with ε ∈

X(n − r, r), 1 � r � [n/2]. If σ leaves both P and M stable, then we must have ε ∈ M as

in 3.2. So we may put ε =

⎛⎜⎜⎜⎜⎜⎝ ε
(1) 0
. . .

0 ε(k)

⎞⎟⎟⎟⎟⎟⎠ where ε(i) ∈ Gni . Since ε ∈ X(n − r, r), we have

ε(i) ∈ X(ni − ri, ri) for some ri such that
∑

1�i�k ri = r. The pair (M, σ|M) can be regarded as
the direct product of (Gni , σ

(i)) where σ(i) = Int(ε(i)), 1 � i � k.
The following is an immediate consequence of the previous proposition.

Corollary. Let μ be any quasi-character of M∩H. If there exists an irreducible cuspidal
(M ∩ H, μ)-distinguished representation of M, then for all 1 � i � k, either (Gni , σ

(i)) is of
even type or ni = 1. �

4.4.
4.4. According to the above corollary, we may only consider the standard pairs of which

the sizes ni of diagonal blocks are even or equal to 1. In such cases, put
∑

ni: even ni = 2r′.
Then we may further suppose that r � r′ by the above corollary, where r is the rank of G/H.

Our main target is the case where r = r′, dealt with in 4.8 – 4.14. As for the treatment
in the case that r > r′, see 4.15. Also, for the proof of the main result of this section we
prepare one lemma (in 4.7) concerning the excluded case that r < r′.

4.5.
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4.5. We shall give some description of representatives of the double cosets P\G/H1

which is needed for the proof of Lemma in 4.7.
Let r be a fixed integer with 1 � r � [n/2] and consider the involution σ1 = σ1(n − r, r).

Put

Ỹ = {y ∈ G
∣∣∣ σ1(y) = y−1},

on which G acts from the left by

g ∗ y := gyσ1(g)−1 (g ∈ G, y ∈ Ỹ).

Then G/H1 is identified with the G-orbit Y := G ∗ 1n ⊂ Ỹ through the orbit map g �→ g ∗ 1n.
The description of P\G/H1 is equivalent to that of P-orbits in Y under the ∗-action.

Let W be the group of permutation matrices in G (which is identified with the Weyl group
of the maximal torus D consisting of diagonal matrices) and put

W(2) = {w ∈ W
∣∣∣ w2 = 1n}.

Note that wε1 ∈ Ỹ if w ∈ W(2). Regarding w ∈ W(2) as a permutation, let p(w) be the number
of pairs of indices interchanged by w. For each w ∈ W(2), put

D−w = {t ∈ D
∣∣∣ wtw−1 = t−1}

and consider the homomorphism

τw : D→ D, τw(t) = twt−1w−1

on D. Then, the image τw(D) is of finite index in D−w. It is easy to see that

D−w/τw(D) � {±1}n−2p

where p = p(w). As representatives for D−w/τw(D), we may take δ ∈ D−w whose diagonal
entries are ±1, and in particular the i-th diagonal entry is 1 if i is an index interchanged by
w.

Now, the B-orbit decomposition of Ỹ and Y are given as follows:

Lemma. (1) Ỹ =
⊔
w∈W(2)

( ⊔
δ∈D−w/τw(D)

B ∗ (δwε1)
)
.

(2) Y =
⊔
w∈W(2),
p(w)�r

( ⊔
δ∈D−w/τw(D),

δw is conjugate to ε1

B ∗ (δwε1)
)
.

Proof. (2) readily follows from (1) if one considers the condition for δwε1 to belong to Y .
For (1), first we have

Ỹ =
⊔
w∈W(2)

(
Bwε1B ∩ Ỹ

)
(disjoint)

by Bruhat decomposition intersected with Ỹ . We consider B-orbit decomposition of Bwε1B∩
Ỹ for eacn w ∈ W(2). By a standard argument as in [9, 6.6], we obtain

Bwε1B ∩ Ỹ = U ∗ (Dwε1 ∩ Ỹ)

where U is the unipotent radical of B. Next, it is easy to see that
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Dwε1 ∩ Ỹ = D−w · wε1

and the right hand side is decomposed as

D−w · wε1 =
⊔

δ∈D−w/τw(D)

D ∗ (δwε1)

for, if we write t = δτw(t0) with t0 ∈ D, one has twε1 = t0 ∗ (δwε1). This completes the proof
of (1). �

Corollary. Let P be a parabolic subgroup containing B. Then, as a complete set {ξ} of
representatives for P\G/H1, one can take those ξ such that

ξσ1(ξ)−1 = δwε1

with (i) w ∈ W(2), p(w) � r, (ii) δ ∈ D−w/τw(D), and (iii) δw is conjugate to ε1 in G. �

4.6.
4.6. Let P = MU be any standard parabolic subgroup of G and take a representative ξ of

P\G/H1 as in the above corollary. Put

σξ = Int(ξ) ◦ σ1 ◦ Int(ξ−1).

Note that σξ = Int(δw), since ξσ1(ξ)−1 = δwε1. Let Mξ be the σξ-fixed point subgroup in
M ∩ σξ(M) and consider the quasi-character μξ of Mξ defined by

μξ = δ
−1/2
P |Mξ · δPξ ,

where Pξ = P ∩ ξHξ−1. The following proposition is a refinement of Mackey theory for
P\G/H1 due to Offen.

Proposition. Let ρ be an irreducible cuspidal representation of M. If the induced repre-
sentation IndG

P (ρ) is H1-distinguished, then there exists a representative ξ of P\G/H1 such
that σξ(M) = M and ρ is (Mξ, μξ)-distinguished.

Proof. This is just an adaptation of [19, Corollary 5.2] to our case. �

4.7.
4.7. Using the above proposition we have the following assertion, which will be used in

the proof of the main theorem of this section.

Lemma. Let P = MU be the standard parabolic subgroup of G of type (n1, . . . , nk)
where each ni is even or equal to 1. Suppose that

∑
ni: even ni > 2r where r is the rank of

G/H1. Then, the induced representation IndG
P (ρ) is not H1-distinguished for any irreducible

cuspidal representation ρ of M.

Proof. As a representation of M � Gn1 × · · · ×Gnk we write ρ = ρ1 ⊗ · · · ⊗ ρk where ρi is
an irreducible cuspidal representation of Gni . Suppose that IndG

P (ρ) is H1-distinguished. Let
ξ be a representative of P\G/H1 obtained by the proposition of 4.6 with ξσ1(ξ)−1 = δwε1

as in the corollary in 4.5. Then, σξ |M is given by Int(δw), with (δw)2 = 1. Since σξ(M) =
wMw−1 = M, the blocks of M are either stable or interchanged by Int(w). Let us look at only
even-size blocks of M. Put
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J =
{

1 � i � k
∣∣∣∣ ni is even and the i-th block

is stable under Int(w)

}
and

J′ =
{

1 � i � k
∣∣∣∣ ni is even and the i-th block

is interchanged by Int(w)

}
.

For i ∈ J, σξ is an inner involution on the i-th diagonal block Gni whose fixed point
subgroup is of the form Gai ×Gbi , ai + bi = ni. The irreducible cuspidal representation ρi of
Gni has to be distinguished with respect to the subgroup Gai ×Gbi and some quasi-character
arising from μξ. By the result of Matringe in 4.2, we must have ai = bi. As a result, the rank
of (Gni , σξ |Gni

) is equal to 1
2 ni.

Next, let i, j ∈ J′ be indices such that the i-th block Gni and the j-th block Gn j are
interchanged by Int(w). By the remark on the diagonal entries of δ mentioned before the
lemma in 4.5, we have Int(δw)|Gni×Gn j

= Int(w)|Gni×Gn j
, hence the rank of (Gni×Gn j , σξ |Gni×Gn j

)
is equal to ni (= n j).

Putting this all together, the rank of σξ restricted to
∏

ni:even Gni is equal to∑
i∈J

1
2

ni +
1
2

∑
i∈J′

ni =
1
2

∑
ni: even

ni,

which is strictly greater than r by assumption. However, the rank of σξ on G is equal to r by
the choice of ξ in 4.5. This leads to a contradiction. �

4.8.
4.8. Let us go back to 4.3 and now take the involution into account. Consider the standard

pair (P,M) of type (n1, . . . , nk) where each ni is even or equal to 1 and put
∑

ni: even ni = 2r′.
Let σ = Int(ε) be as in 4.3 where ε ∈ M ∩ X(n − r, r). As our main target we study the case
that r′ = r. So, we consider standard pairs of type

(2r1, . . . , 2rk, 1, . . . , 1︸��︷︷��︸
n−2r

)

where
∑

i ri = r. We put s = n − 2r. Note that s � 0 in general, and s = 0 means that the
symmetric space is of even type. We may further assume that ε ∈ X(n − r, r) is of the form

ε =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε(1) 0
. . .
ε(k)

0 1s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , ε(i) = ε1(ri, ri) =
(
1ri 0
0 −1ri

)
.

In such a case M ∩ H consists of matrices of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

. . . 0
xk

t1

0
. . .

ts

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

xi =

(
ai 0
0 bi

)
, ai, bi ∈ Gri ,

t j ∈ F×.

4.9.
4.9. Let us compute the character μM∩H in 1.2 for the above P, M and σ. At first, by the

formula in 1.6 we have
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δP

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

. . . 0
xk

t1

0
. . .

ts

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

∏
1�i< j�k

∣∣∣det(ai) det(bi)
∣∣∣2r j

∣∣∣det(a j) det(b j)
∣∣∣−2ri

×
∏

1�i�k

∣∣∣det(ai) det(bi)
∣∣∣s ∏

1� j�s

∣∣∣t j

∣∣∣−2r ∏
1�i< j�s

∣∣∣ti∣∣∣∣∣∣t j

∣∣∣−1
.

Next, by considering conjugation from ε1(n − r, r) to ε, we may regard P ∩ H as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
parabolic of type

(r1, . . . , rk, 1, . . . , 1︸��︷︷��︸
s

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ×
(
parabolic of type

(r1, . . . , rk)

)

in H � GLn−r(F) × GLr(F). Under this identification, δP∩H is computed as follows:

δP∩H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

. . . 0
xk

t1

0
. . .

ts

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

∏
1�i< j�k

∣∣∣det(ai)
∣∣∣r j

∣∣∣det(a j)
∣∣∣−ri

∏
1�i�k

∣∣∣det(ai)
∣∣∣s

×
∏

1� j�s

∣∣∣t j

∣∣∣−r ∏
1�i< j�s

∣∣∣ti∣∣∣∣∣∣t j

∣∣∣−1 ∏
1�i< j�k

∣∣∣det(bi)
∣∣∣r j

∣∣∣det(b j)
∣∣∣−ri
.

As a consequence, μM∩H = δP|−1/2
P∩H · δP∩H is given as follows:

μM∩H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

. . . 0
xk

t1

0
. . .

ts

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

∏
1�i�k

∣∣∣det(ai)
∣∣∣s/2∣∣∣det(bi)

∣∣∣−s/2

×
⎛⎜⎜⎜⎜⎜⎜⎝ ∏

1�i< j�s

∣∣∣ti∣∣∣∣∣∣t j

∣∣∣−1

⎞⎟⎟⎟⎟⎟⎟⎠
1/2

.

Here, xi =
(

ai 0
0 bi

)
∈ G2ri , ai, bi ∈ Gri , and ti ∈ F×.

Note that μM∩H is trivial if s = 0, i.e., if (G, σ) is of even type.

4.10.
4.10. We recall the following result due to Jacquet and Rallis in [11].

Proposition. Let H be the fixed point subgroup of σ = Int(ε) in G = Gn, for ε ∈ X. If an
irreducible representation π of G is H-distinguished, then π is self-contragredient. �

In the case of even type, let μr,z be the quasi-character of the subgroup H1(r, r) of G2r

defined by

μr,z

(
a 0
0 b

)
=

∣∣∣det(a)
∣∣∣z∣∣∣det(b)

∣∣∣−z
(z ∈ C).

We also notice the following lemma shown by using the results of [12] and [11]:
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Lemma. Let π be an irreducible cuspidal representation of G2r. If π is H1(r, r)-
distinguished, then it is also (H1(r, r), μr,z)-distinguished for any z ∈ C.

Proof. By [12, Theorem 5.6], an irreducible cuspidal H1(r, r)-distinguished representation
π has a non-zero Shalika functional, say 
. Using this, [11, §6] gives a linear form I(·, z) on
π by the integral

I(v, z) =
∫

Gr

〈
, π
(
a 0
0 1r

)
v〉 · ∣∣∣det(a)

∣∣∣z−1/2
da

for Re(z) sufficiently large. If π is cuspidal, then I(·, z) can be extended to an entire function
on z ∈ C, and is non-zero as a linear form on π (see [11, p. 117]). This shows that π is
(H1(r, r), μr,z)-distinguished for any z ∈ C. �

4.11.
4.11. We state the main claim of this section. For the even type case s = 0, the same

result is found also in [14] and [20].

Theorem. Let (r1, . . . , rk) be a partition of r where 1 � r � [n/2] and put s = n − 2r.
Let (P,M) be the standard pair of type (2r1, . . . , 2rk, 1, . . . , 1︸��︷︷��︸

s

) and consider the involution

σ = Int(ε) given in 4.8. For each i, take an irreducible cuspidal H1(ri, ri)-distinguished
representation ρi of G2ri and form

ρ = ρ1 ⊗ · · · ⊗ ρk ⊗ δ1/2Bs

(where we understand that ρ = ρ1 ⊗ · · · ⊗ ρk if s = 0).
Suppose that ρi � ρ j for any i � j. Then,

(1) The induced representation IndG
P (ρ) is H-distinguished.

(2) If s � 1, then IndG
P (ρ) is irreducible.

(3) The induced representation IndG
P (ρ) is H-relatively cuspidal.

Proof of (1) and (2). By 4.9 and the lemma in 4.10 for z = s/2, we can see that ρ is
(M ∩ H, μM∩H)-distinguished. Hence IndG

P (ρ) is H-distinguished by 1.2. The irreducibility
in the case s � 1 can be shown exactly in the same way as 3.5. �

The proof of (3) will be given in 4.13.

4.12.
4.12. We consider the involution

σ′ = σ′(n,r) = Int(ε′), ε′ = ε′(n,r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
w0

1s

w0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where w0 denotes the r × r anti-diagonal permutation matrix. Note that ε′ ∈ X(n − r, r), so
σ′ is Int(G)-conjugate to σ1 = σ1(n − r, r). Let H′ = H′(n,r) be the σ′-fixed point subgroup
in G. As in 2.5, every σ′-split parabolic subgroup is G-conjugate to a standard σ′-split one.

Maximal σ′-split parabolic subgroups among standard ones are given by Q = Q
, the
standard one of type (
, n − 2
, 
), for 1 � 
 � r. On the standard Levi subgroup L of Q, σ′

acts as



On Some Relatively Cuspidal Representations 729

σ′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1 0

x2

0 x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
w0x3w

−1
0 0
σ′(n−2
,r−
)(x2)

0 w0x1w
−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where w0 is now of size 
 × 
. So we have

L ∩ H′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x 0
y

0 w0xw−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣ x ∈ G
, y ∈ H′(n−2
,r−
)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
The subtorus

A =
{
diag

(
a1, . . . , ar, 1, . . . , 1︸��︷︷��︸

s

, a−1
r , . . . , a

−1
1

) ∣∣∣ ai ∈ F×}

gives a maximal σ′-split torus of G which is also F-split. One has

ZG(A) ∩ H′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t 0
x

0 w0tw−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣ ti ∈ Dr, x ∈ Gn−2r

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ � Dr ×Gn−2r.

Hence, as an algebraic F-group, ZG(A) ∩ H′ has trivial Galois cohomology over F. From
the lemma in 1.3, any maximal σ′-split parabolic subgroup of G is H′-conjugate to one of
Q
, 1 � 
 � r.

4.13.
4.13. Proof of 4.11 (3). As in the proof of 2.6 and 3.7, it is enough to show that the

Jacquet module
(
IndG

P (ρ)
)

Q
is not L ∩ H′-distinguished for each Q = Q
, 1 � 
 � r. So we

show that the pieces w(ρ) = IndL
L∩wPw−1 (wρ) are not L ∩ H′-distinguished for all w in a set

of representatives of Q\G/P as in 2.6.
Suppose that some of w(ρ) is L ∩ H′-distinguished. Write w(ρ) as I1 ⊗ I2 ⊗ I3 where I1

and I3 are representations induced up to G
, and I2 is one up to Gn−2
. Looking at the form
of L ∩ H′ in 4.12, the L ∩ H′-distinction implies the following two conditions:

(i) I1 and I3 share a common irreducible subquotient.
(ii) I2 is H′(n−2
,r−
)-distinguished.

Now, if s � 1, then the inducing data (for I1, I2 and I3) are ρ1, . . . , ρk, and possibly
one more character. So the condition (i) leads to a contradiction as in the argument of 3.7
together with the proposition in 4.10. For the rest of the proof, we suppose that s � 2.
In this case the condition (i) can be achieved by choosing suitable characters coming from
δ1/2Bs

for the inducing data of I1 and I3. So we look at the condition (ii) in such a case. The
inducing data of I2 must contain all of ρ1, . . . , ρk. However, the rank of Gn−2
/H′(n−2
,r−
) is
r − 
, which is less than r. Hence I2 cannot be H′(n−2
,r−
)-distinguished by the lemma in 4.7,
a contradiction. �

4.14.
4.14. In the case where s � 2, the representation IndG

P (ρ) in Theorem 4.11 is reducible.
However, we can show the following.

Corollary. Let P, M, ρ and σ = Int(ε) be as in 4.11 and suppose that s = n − 2r � 2.
Let (P′,M′) be the standard parabolic and Levi subgroup of type (2r1, . . . , 2rk, s). Then, the
induced representation
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π′ := IndG
P′

(
ρ1 ⊗ · · · ⊗ ρk ⊗ 1Gs

)
is an irreducible quotient of IndG

P (ρ) which is H-distinguished and H-relatively cuspidal.

Proof. By induction in stages, IndG
P (ρ) is identified with

IndG
P′

(
ρ1 ⊗ · · · ⊗ ρk ⊗ IndGs

Bs
(δ1/2Bs

)
)
.

The induced representation IndGs
Bs

(δ1/2Bs
) has one dimensional trivial quotient, hence π′ is a

quotient of IndG
P (ρ). Irreducibility of π′ can be shown by the discussion on segments in [21,

Theorem 4.2]. Furthermore, π′ is H-distinguished, as will be seen below. Note that (P′,M′)
is a σ-stable pair. The σ-fixed point subgroup M′ ∩H of M′ consists of matrices of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 0
. . .

xk

0 y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , xi =

(
ai 0
0 bi

)
, ai, bi ∈ Gri , y ∈ Gs.

One can compute the character μM′∩H in the same way as 4.9. The result is:

μM′∩H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1 0
. . .

xk

0 y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
∏

1�i�k

∣∣∣det(ai)
∣∣∣s/2∣∣∣det(bi)

∣∣∣−s/2
.

Thus the representation ρ1 ⊗ · · · ⊗ ρk ⊗ 1Gs of M′ is (M′ ∩ H, μM′∩H)-distinguished, and in
turn, π′ is H-distinguished by 1.2. Finally, all the H-matrix coefficients of π′ are given by
those of IndG

P (ρ) since π′ is a quotient of IndG
P (ρ). Hence the claim readily follows by the

result of 4.11 and the definition of relative cuspidality. �

Remark. The above corollary is a generalization of [13, 8.2] where only the case r = 1
was treated.

4.15.
4.15. As a final remark of this section, we mention the case where r > r′ noticed in 4.4.

Let (P,M) be the standard pair of type

(2r1, . . . , 2rk, 1, . . . , 1︸��︷︷��︸
n−2r′

), where
∑

1�i�k

ri =: r′ < r.

We consider the involution σ = Int(ε) with

ε =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε(1) 0
. . .
ε(k)

1n−r−r′
0 −1r−r′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , ε(i) = ε1(ri, ri) =
(
1ri 0
0 −1ri

)
.

Then σ is of rank r, leaving the pair (P,M) stable, and there is an irreducible cuspidal
(M ∩ H, μM∩H)-distinguished representation ρ of M. However, the proof in 4.13 does not
work for this case. Actually we do not expect that IndG

P (ρ) is relatively cuspidal according
to the following observation (see a comment in Introduction):
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There exists an involution σ′′ which is Int(G)-conjugate to σ, a proper σ′′-
split parabolic subgroup Q of G, and an L∩H′′-relatively cuspidal represen-
tation ρ′ of L = Q ∩ σ′′(Q) where H′′ denotes the σ′′-fixed point subgroup,
such that IndG

P (ρ) = IndG
Q(ρ′).

To observe this, regard M as the product G2r1 × · · · ×G2rk ×Ds ×Dr−r′ ×Dr−r′ . Then M ∩H
consists of ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

. . . 0
xk

t1
0 t2

t3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
xi =

(
ai 0
0 bi

)
, ai, bi ∈ Gri ,

t1 ∈ Ds, t2, t3 ∈ Dr−r′ .

The computation of μM∩H can be carried out as in 4.9. We have

μM∩H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1

. . . 0
xk

t1
0 t2

t3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
∏

1�i�k

μri,s/2(xi) · δ1/2Bs
(t1) · χ(t2) · χ̌−1(t3),

where χ is a suitable character of Dr−r′ and χ̌ = χ ◦ Int(w0). So, an irreducible cuspidal
(M ∩ H, μM∩H)-distinguished representation ρ of M is of the form

ρ = ρ1 ⊗ · · · ⊗ ρk ⊗ δ1/2Bs
⊗ χ ⊗ χ̌−1,

where ρi is an irreducible cuspidal H1(ri, ri)-distinguished representation of G2ri . Now let
Q be the parabolic subgroup of type (2r′ + s, 1, . . . , 1︸��︷︷��︸

2(r−r′)

). Regard its Levi subgroup L as

the product G2r′+s × Dr−r′ × Dr−r′ and let π′ be the representation of G2r′+s induced from
ρ1 ⊗ · · · ⊗ ρk ⊗ δ1/2Bs

. Then, by induction in stages, we have

IndG
P (ρ) = IndG

Q(π′ ⊗ χ ⊗ χ̌−1).

There is an involution σ′′ which is Int(G)-conjugate to σ such that Q is σ′′-split and further,

σ′′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
g′ 0

t1
0 t2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε′g′ε′−1 0

t2
0 t1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where ε′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε(1) 0
. . .
ε(k)

0 1s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. The representation π′ of G2r′+s is distinguished (and is relatively

cuspidal) with respect to the fixed point subgroup of Int(ε′) by 4.11, hence ρ′ := π′ ⊗χ⊗ χ̌−1

is L ∩ H′′-distinguished and L ∩ H′′-relatively cuspidal.

5. Remarks on the stable pairs

5. Remarks on the stable pairs5.1.
5.1. In sections 2-4, we have obtained relatively cuspidal representations of the form

IndG
P (ρ) starting from σ-stable pairs (P,M). Especially in Section 4, we have excluded the

case where M has no irreducible cuspidal M ∩ H-distinguished representations. But, such
a limitation seems to be not enough as was suggested by 4.15. There is a more apparent
case, the group case. Let G be the direct product G0 × G0 where G0 is a reductive p-adic
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group, σ the involution given by σ(g1, g2) = (g2, g1). Then, an irreducible H-distinguished
representation of G is of the form π0 ⊗ π̃0 where π0 is an irreducible representation of G0.
It is H-relatively cuspidal if and only if π0 is cuspidal (see [13, 1.5]). Now, σ-stable pairs
are of the form (P,M) = (P0 × P0,M0 × M0) where P0 = M0U0 is any parabolic subgroup
of G0. One can take an irreducible cuspidal M ∩H-distinguished representation of M in the
form ρ = ρ0 ⊗ ρ̃0 where ρ0 is an irreducible cuspidal representation of M0. However, the
representation IndG

P (ρ) � IndG0
P0

(ρ0) ⊗ IndG0
P0

(ρ̃0) is not relatively cuspidal since IndG0
P0

(ρ0) is
not cuspidal.

5.2.
5.2. We have an expectation that there is a relationship between relatively cuspidal rep-

resentations and maximal σ-split tori which are F-anisotropic modulo the center. Based
on such a point of view, we consider some candidates for σ-stable pairs suitable for the
construction of relatively cuspidal representations as follows.

Suppose that we have a maximal σ-split F-torus S of G which is F-anisotropic modulo Z
(or equivalently, modulo the σ-split part of Z). Take a maximal F-torus T of G containing
S. Then T, as well as its F-split part Td, is σ-stable. Put

M = ZG(Td),

the centralizer of Td in G. We have a decomposition Td = (Td ∩H)0 · Sd, where ( · )0 stands
for the identity component. Since Sd is central in G by assumption on S, we can see that

M = ZG
(
(Td ∩H)0).

Hence, by [9, the proof of 3.4], there is a σ-stable parabolic F-subgroup P of G having
M as a Levi subgroup. We consider the parabolic and Levi subgroups arising in this way
are relevant ones for the construction of relatively cuspidal representations applied to the
proposition in 1.2.

Remark. (i) The stable pair (P,M) in 4.15 will not arise in the above way, since the rank
of σ|M is less than that of σ on G. In the group case, it is easy to see that there is no proper
stable pair arising in the above way.
(ii) Murnaghan’s recent work [17] seems to have a similar point of view. In the terminology
of [17], a maximal F-torus T is said to be σ-elliptic in G if its (σ, F)-split part is central in
G. Our T’s are σ-elliptic ones which further contain some maximal σ-split F-torus.

Also, in [20], a σ-stable F-Levi subgroup is called a σ-elliptic Levi subgroup if it is not
contained in any proper σ-split parabolic subgroup of G (or equivalently, if its (σ, F)-split
component is central in G). Our Levi subgroups M = ZG(Td) arising in the above way are
particular ones among σ-elliptic Levi subgroups.

For the rest of this section we shall verify that the stable pairs we have used in sections 2,
3, and 4.8 actually arise from suitable tori S and T as above.

5.3.
5.3. The case of Galois involution.

(1) At first, take an extension k/F of degree n such that the compositum K := k · E is
a quadratic extension of k. Then the degree of K over E is n, hence the multiplicative
group K× can be embedded in G = GLn(E). The image, say T = Tn, is a maximal F-
torus. The embedding can be chosen so that T is σ-stable and σ|T coincides with the Galois
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involution on K× over k. Let S = S n be the subtorus of T corresponding to the norm kernel
K×1 := ker

[
NK/k : K× → k

]
. Then S is F-anisotropic, σ-split, of dimension n over F, hence

is maximal σ-split. The F-split part Td of T is the scalars from F×, hence this only gives
ZG

(
(T )d

)
= G in the procedure of 5.2.

(2) In general, take an arbitrary partition (n1, . . . , nk) of n and let M be the corresponding
standard Levi subgroup, isomorphic to the product

∏k
i=1 Gni . For each i, take an extension

ki/F of degree ni such that Ki := ki · E is a quadratic extension of ki. Then we obtain a
maximal torus Tni � K×i of Gni , containing a maximal σni-split torus S ni � (K×i )1 of Gni . As
subgroups of M =

∏k
i=1 Gni , put

T =
k∏

i=1

Tni , S =
k∏

i=1

S ni .

Then,

dimF(S ) =
∑

i

dimF
(
(K×i )1

)
=

∑
i

ni = n,

so S is a maximal σ-split torus of G which is F-anisotropic. The F-split part Td of T is the
product of scalars from F× in Gni , hence ZG(Td) coincides with M. In this way, any standard
pair (P,M) of type (n1, . . . nk) arises as a particular one in 5.2.

5.4.
5.4. The case of inner involutions (I).

(1) First we deal with the case where m = 1 in Section 3, that is, G = GL2(F), σ1 = Int
(

0 1
τ 0

)
and H1 � E×. The norm image in F× from E× contains a non-square in F×. Take one such
τ′ and form E′ = F(

√
τ′). (Note that we may take τ′ = τ and E′ = E if −1 is in the norm

image from E.) Since τ′ · (−τ) is in the norm image from E×, we can write

τ′ · (−τ) = x2 − τy2

by some x, y ∈ F. We must have x � 0, for τ′ is not a square. Now put

T = T2 := γ ·
{(

a b
τ′b a

)
∈ G2

∣∣∣ a, b ∈ F
}
· γ−1, γ =

(
1 y

0 x

)
.

This is a maximal F-torus of G2 isomorphic to (E′)×. By a direct computation it is seen that
σ1 acts on T as the Galois involution of E′/F. So, the σ1-split part S = S 2 of T corresponds
to the norm kernel of E′/F, hence is F-anisotropic (and is maximal σ1-split).
(2) Next we consider G = G2m = GL2m(F) and σ1 = Int

(
O 1m
τ1m O

)
for a general m. Take an

extension k/F of degree m so that K := k · E is a quadratic extension of k. Regarding the
multiplication of k on k � Fm as an F-linear action, we have an embedding k

ι
↪→ Matm(F)

and further, Mat2(k)
ι
↪→ Mat2m(F) by(

a b
c d

)
�→

(
ι(a) ι(b)
ι(c) ι(d)

)
∈ Mat2

(
Matm(F)

) � Mat2m(F).

Thus we may regard GL2(k) as a subgroup of G = G2m. The restriction of σ1 to the image
of GL2(k) is given by Int

(
0 1
τ 0

)
on GL2(k). By using the discussion in (1) we can obtain a

maximal torus T2 � (K′)× of GL2(k) where K′ = k(
√
τ′) for a non-square τ′ ∈ k in the

norm image from K, and also a maximal Int
(

0 1
τ 0

)
-split torus S 2 ⊂ T2 of GL2(k) which is
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F-anisotropic. Let us put

T = ι(T2) � (K′)×, S = ι(S 2) � ker(NK′/k).

Then T (resp. S ) has dimension 2m (resp. m) over F, hence is a maximal torus (resp. a
maximal σ1-split torus) of G2m. Since the F-split part Td of T is the scalars from F×, this
only gives ZG

(
(T )d

)
= G.

(3) Now, for any partition (m1, . . . ,mk) of m, let (P,M) be the standard pair of type (2m1, . . . ,

2mk) which is stable under σ = Int(ε) in 3.2. Putting σ(i) = Int(ε(i)), we may regard (M, σ|M)
as the direct product of (G2mi , σ

(i)), 1 � i � k. By (2), we can take a maximal F-torus T (i)

of G2mi which is F-anisotropic modulo the center of G2mi , and a maximal σ(i)-split torus
S (i) ⊂ T (i) of G2mi which is F-anisotropic. Let T (resp. S ) be the product of all the T (i)

(resp. S (i)). Then S is an F-anisotropic σ-split torus of G, and is maximal σ-split since its
dimension over F is

∑
i mi = m. Also, T is a maximal torus of G containing S . The F-split

part Td is the product of scalar matrices in G2mi , hence ZG(Td) = M.

5.5.
5.5. The case of inner involutions (II).

(1) First we deal with the case of even type, that is, n = 2r and G = G2r, σ1 = Int(ε1) where
ε1 =

(
1r 0
0 −1r

)
. Take an arbitrary quadratic extension E = F(

√
τ) of F, and an extension k of

F of degree r such that the compositum K := E · k is a quadratic extension of k. There are
natural embeddings

K
× ↪→ GLr(E) ↪→ GL2r(F) = G,

where the latter one is given in 3.1. Notice that σ1 acts on GLr(E) as

σ1

(
a b
τb a

)
=

(
a −b−τb a

)
,

hence is the same as the Galois automorphism of E/F on GLr(E). Furthermore, the re-
striction of σ1 to the image of K× coincides with the Galois automorphism of K/k. Let T
be the image of K× in G. It is F-anisotropic modulo the center of G. Also, by the above
observation, the σ1-split part S of T is identified with the norm kernel of K/k, which is
F-anisotropic. We have dimF(T ) = 2r, dimF(S ) = r, hence T (resp. S ) is a maximal F-torus
(resp. maximal σ1-split torus) of G. Since Td is the center of G, we only have ZG

(
(T )d

)
= G.

(2) Let us turn to the general case, G = Gn and σ1 = Int(ε1) where ε1 =
(

1n−r 0
0 −1r

)
. Let

(r1, . . . , rk) be any partition of r and consider the standard pair (P,M) of type (2r1, . . . , 2rk,

1, . . . , 1︸��︷︷��︸
s

) where s = n − 2r, and the involution σ = Int(ε) in 4.8 which leaves (P,M) stable.

By (1) we can take a maximal σ(i)-split F-torus S i of G2ri which is F-snisotropic, and a
maximal F-torus Ti of G2ri containing S i. Set

S :=

⎛⎜⎜⎜⎜⎜⎜⎝
k∏

i=1

S i

⎞⎟⎟⎟⎟⎟⎟⎠ × {1} × · · · × {1}︸�����������︷︷�����������︸
s

, T :=

⎛⎜⎜⎜⎜⎜⎜⎝
k∏

i=1

Ti

⎞⎟⎟⎟⎟⎟⎟⎠ × F× × · · · × F×︸�����������︷︷�����������︸
s

.

Then, the dimension of S is
∑k

i=1 ri = r, hence S is a maximal σ-split F-torus of G which is
F-anisotropic. Also, T is a maximal torus of G which gives ZG(Td) = M.
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