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Abstract

Relatively cuspidal representations attached to a p-adic symmetric space G/H are thought of
as the building blocks for all the irreducible H-distinguished representations of G. This work
provides certain new examples of relatively cuspidal representations. We study three examples
of symmetric spaces; GL,(E)/GL,(F), GLy,(F)/GL,,(E), and GL,(F)/(GL,_.(F) x GL,(F))
where E/F is a quadratic extension of p-adic fields. Those representations are given by in-
duction from cuspidal distinguished representations of particular kinds of parabolic subgroups
stable under the involution.

Introduction

Let G be a reductive p-adic group, H the fixed point subgroup of an involution o on
G, and Z the center of G. A smooth representation 7 of G is said to be H-distinguished if
it carries a non-zero H-invariant linear form. Such representations are the main object of
harmonic analysis of the symmetric space G/H, via Frobenius reciprocity

Homy(n, 1) ~ Homg(, C*(G/H)).
H-matrix coeflicients of & are the right H-invariant functions ¢, , on G defined by

enu(g) = (A,mg™ ) (g€ G)

for A € Homg(m,1) and v € 7. We say that an H-distinguished representation 7 of G is
H-relatively cuspidal if all the H-matrix coeflicients of & are compactly supported modulo
ZH.

In our earlier work [13, Theorem 7.1], we gave the following result which might be
regarded as a basic theorem towards the classification of irreducible H-distinguished repre-
sentations of G:

For an irreducible H-distinguished representation nt of G, there exists a o -
split parabolic subgroup Q of G and an irreducible LN H-relatively cuspidal
representation p of L = Q N o(Q) such that & is a subrepresentation of
Indg(p).
Here, a parabolic subgroup Q of G is said to be o-split if Q and o(Q) are opposite. This
theorem is a symmetric space analogue of Jacquet’s subrepresentation theorem [2, 2.5].
Hence, as an analogue of Harish-Chandra’s philosophy of cusp forms, relatively cuspidal
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712 S. Karo anD K. TAKANO

representations are thought of as “building blocks” for all distinguished representations.

In this paper, we give a construction of relatively cuspidal representations for the follow-

ing three symmetric spaces:

e GL,(E)/GL,(F) (in Section 2).

e GL,,(F)/GL,,(E) (in Section 3).

e GL,(F)/(GL,-(F) x GL,(F)) (in Section 4).
Here, E/F is a quadratic extension of non-archimedean local fields. The method of con-
struction is the induction from cuspidal distinguished representations of o-stable parabolic
subgroups. So the examples provided in this paper are non-cuspidal but relatively cuspidal
ones. Note in particular that there is no irreducible cuspidal distinguished representation for
the third case with n — r # r [15].

It is known that cuspidal distinguished representations are relatively cuspidal [13, Propo-
sition 8.1]. Such representations have been studied by several authors (e.g., [6], [7], [8]).
There were only few examples of non-cuspidal but relatively cuspidal representations. At
first, [13, 8.2, 8.3] gave such examples for the symmetric spaces GL,,(F)/Sp,(F) and
GL,(F)/(GL,-1(F) x GL{(F)). The method employed in this paper is, in a sense, a sim-
plified reformulation of the one in [13]. A part of our results is found also in [18], [20] for
the symmetric space GL,(E)/GL,(F), and in [14], [20] for GL,,,(F)/(GL,,(F) x GL,,,(F)).

We claim that the representations of the form Indg(p), for o-stable parabolic subgroups
P = MU and cuspidal M N H-distinguished representations p of M, are H-relatively cusp-
idal (for the above three symmetric spaces). On the contrary, we believe that H-relatively
cuspidal representations will not appear in the composition series of representations Indg(p)
for any proper o-split parabolic subgroup Q and any L N H-distinguished representation p
of L = O Nno(Q) (again from the analogy with the philosophy of cusp forms). Some related
matter will appear at the end of section 4.

Let us summarize the contents of this paper. Section 1 gives preparations for whole of the
paper, including the construction of H-distinguished representations by induction from o-
stable parabolic subgroups (1.2) and the criterion of relative cuspidality in terms of Jacquet
modules along o-split parabolic subgroups (1.4). From sections 2 to 4, the study for the
three cases will be given separately. However, the procedures of these three sections are
parallel and constituted from the following issues:

e Determination of o-stable parabolic subgroups suitable for our construction: 2.2,
3.2, and 4.3 or 4.8.

e Computation of the character wy~gy used in the construction of H-distinguished rep-
resentations: 2.2, 3.3, and 4.9.

e Statement of the main result: 2.4, 3.5, and 4.11.

e Description of maximal o”'-split parabolic subgroups for a suitable conjugate o’ of
o: 2.5, 3.6, and 4.12.

e Proof of relative cuspidality by studying Jacquet modules along maximal o”-split
parabolic subgroups: 2.6, 3.7, and 4.13.

Section 5 is for an additional discussion on the choice of stable parabolic subgroups used in
our construction. We consider some candidates for relevant parabolic subgroups based on
maximal o-split tori which are F-anisotropic modulo the center.

We are grateful to the referee for his or her careful reading, useful comments and sugges-
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tions.

1. Preliminaries and preparations

1.1. Let F be a non-archimedean local field, of which the residual characteristic is not
equal to 2. Let G be a connected reductive F-group, o an F-involution on G, and H the
subgroup of o-fixed points in G. Let Z denote the center of G. For an algebraic F-group
denoted by a boldface capital letter, the group of its F-points is denoted by the corresponding
ordinary capital, such as G = G(F).

By a representation of G (or a G-module), we always mean a smooth representation of G
on a complex vector space. For a representation 7 of G and an automorphism ¢ on G, %n
denotes the representation 7 o ¢~! of G on the same vector space. If p is a representation of
a subgroup M of G and ¢ = Ad(w) for w € Ng(M), the normalizer of M in G, then %p is
denoted also by “p.

For a quasi-character u of H, a representation 7 of G is said to be (H, u)-distinguished
if Hompy(m, ) # {0}, and H-distinguished if it is (H, 1)-distinguished, where 1 denotes the
trivial character of H.

The following elementary lemma is easy to prove.

Lemma. Let 7 be an H-distinguished representation of G.
(1) If m has a central character, then it is trivial on Z N H.
(2) Any filtration of nt consisting of G-submodules of finite length has an H-distinguished
subquotient.

Right H-invariant functions on G of the form

ean(g) = (A, (g™ ")

for v € mand A € Homg(m, 1) are called H-matrix coefficients of 7. An H-distinguished
representation « of G is said to be H-relatively cuspidal if the support of ¢u, iS compact
modulo ZH for any v € m and A € Homg(m, 1).

1.2. If a parabolic F-subgroup P of G is o-stable, then so is its unipotent radical U =
R,(P). Also, there exists a o-stable Levi subgroup, say M, of P. We shall call such a pair
(P,M) a o-stable pair. For such a pair, we have a Levi decomposition

PnH=MnH)(UnNH).

Let 0p (resp. 0pny) be the modulus character of P (resp. of P N H). For each o-stable pair
(P,M), we define the quasi-character wyny of M N H by

-1/2
HMmnE = OpnH * Op P o
The following is an easy way to construct H-distinguished representation of G.

Proposition. If p is an (M N H, uynp)-distinguished representation of M, then the nor-
malized induced representation Indg(p) is H-distinguished.

Proof. Given a non-zero A € Homy;ng (0, tyng), one has a non-zero H-invariant linear
form A on Ind$(p) defined by
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(N, ) = f (A, p(h)) dh
PNH\H
where dh denotes a fixed quasi-invariant measure on P N H\H. See [19] for details. m]

We expect that this proposition applied to cuspidal (M N H, pyng)-distinguished repre-
sentations p of M provides H-relatively cuspidal representation of G, under certain relevant
choices of P and M. In the three examples mentioned in the introduction we show that our
expectation is true, under some regularity condition on p. The results will be stated in 2.4,
3.5, and 4.11.

1.3. An F-torus S of G is said to be o--split if o-(s) = s~! for all s € S. A o-split torus
which is also F-split is said to be (o, F)-split. It is well-known that maximal o-split F-tori
(resp. maximal (o, F')-split tori) are mutually conjugate in G. The dimension of maximal
o-split F-tori (resp. maximal (o, F)-split tori) is called the rank (resp. the F-rank) of o, or
of G/H.

A parabolic F-subgroup Q of G is said to be o-split if Q N o(Q) is a Levi subgroup of
Q. Such subgroups are used in characterizing relative cuspidality of distinguished represen-
tations (see the next subsection).

Several facts about H = H(F)-conjugacy of o-split parabolic subgroups are recollected
in [13, §2]. Here let us recall the following (from [13, 2.5]):

Lemma. Let A be a maximal (o, F)-split torus of G. If Zg(A) N H has trivial Galois
cohomology over F, then there exists a minimal parabolic subgroup Py D A such that every
o-split parabolic subgroup is H-conjugate to a o-split one containing P,.

1.4. From now on, we say briefly that P is a parabolic subgroup of G if it is the group
of F-points of a parabolic F-subgroup P of G. For a representation 7 of G and a parabolic
subgroup Q of G, let 7y denote the normalized Jacquet module of 7 along Q. In [13, §6]
we gave a criterion for relative cuspidality of & in terms of invariant linear forms on Jacquet
modules along o--split parabolic subgroups. For our later use, we record a variant of it in the
following form:

Proposition. Let  be an admissible H-distinguished representation of G. If ng is not
L N H-distinguished for every maximal o-split parabolic subgroup Q of G (where L =
0N o(Q)), then is H-relatively cuspidal.

Proof. This is a direct consequence of [13, 6.9 and 5.9]. ]
1.5. For our convenience, we often change the involution by inner automorphisms. For
an element y € G, consider
o’ =1Int(y) o oo Int(y™")

where Int(y) denotes the inner automorphism g +— ygy~! on G. Such an involution ¢’ is
said to be Int(G)-conjugate to 0. The o’-fixed point subgroup H’ in G is related to H as

H = yHy_l.

In this situation we note the following obvious facts:
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(1) A pair (P, M) is o--stable if and only if (yPy~!, yMy~') is o’-stable.
(2) For a representation  of G, one has

Homy(m,1) ~ Homy (1, 1)

by A = A o m(y~"). This isomorphism shows that r is H-distinguished (resp. H-relatively
cuspidal) if and only if it is H’-distinguished (resp. H’-relatively cuspidal).

1.6. In the following sections we mainly deal with general linear groups and use the
notation G = G, = GL,(F) (or GL,(E) in Section 2 where E is a quadratic extension of
F). Let B = B, (resp. D = D,) be (the F-points of) the Borel subgroup (resp. maximal
torus) consisting of upper triangular (resp. diagonal) matrices in G. A parabolic subgroup
is referred to as standard if it contains B, and is said to be of type (n1,...,n;) (which is a
partition of n, i.e., Zﬁ.‘zl n; = n) if it is of the form

X *
p= |x,-eGn,,(i:1,...,k)
0 Xk
The Levi subgroup
X1 0
M= |xieGni(i:1,...,k)
0 Xk

of P is called a standard Levi subgroup of type (ni,...,n;). We also say that (P, M) is a
standard pair. The modulus character dp of the above P is given by

X1 *

Sp = 1_[ 'det(xi)|n’ . |det(xj)|_ni

<7<
0 Xk 1<i<j<k

where | . | denotes the normalized absolute value of the field of entries, either F or E.

1.7. In sections 3 and 4, we study the symmetric spaces of G = G, = GL,(F) defined
by inner involutions. Those are given by o~ = Int(g) where & is central in G. There are the
following two possibilities:

(@) &> = -1, where T € F* is not a square in F*. In this case, the eigenvalues of & are
++4/7 only. Put E = F(y/7). The Galois automorphism of E over F permutes the corre-
sponding eigenvectors, hence the multiplicities of v/ and —+/7 are the same. As a result 7 is
necessarily even, say n = 2m. It is easy to see that any such & is G-conjugate to the element

(0
=\r.1, o)

We consider oy = Int(e;). For any other & such that & = 7 1y, the involution o =
Int(e) is Int(G)-conjugate to o-y. Indeed, if & = yg;y~!, then o = Int(e) coincides with
Int(y) o oy o Int(y™1).

The o -fixed point subgroup H; in G is isomorphic to GL,,,(E) (see 3.1). So the symmetric
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space in this case is of the form GL,,,(F)/GL,,(E).

(II) &2 = ¢? - 1, for some ¢ € F*. Replacing & by a scalar multiple, we may assume & = 1,,
in this case. Then € is G-conjugate to the element

r 1n—r 0
(i 2)

for some r, 0 £ r £ n. We consider o = U(]r) = Int(s(]r)). For any other € such that e =1,
the involution o = Int(g) is Int(G)-conjugate to 0'(lr) if € is G-conjugate to s(lr).

The o-fixed point subgroup H; in G is isomorphic to the direct product GL,_,(F) X
GL,(F) (see 4.1). Therefore we may (and will) assume that 1 < r < [n/2] where [x] for

x € R denotes the greatest integer less than x.

1.8. As the ingredients for our construction of relatively cuspidal representations, we use
cuspidal distinguished representations of stable Levi subgroups. Concretely we need such
representations for the symmetric spaces GL,(E)/GL,(F), GL,,(F)/GL,,(E), and
GL,,(F)/(GL,(F) x GL,(F)). As for the first and third cases, examples of those are con-
structed in [7]. Examples for the second case is not seen in the literature. However, at
least when E/F is unramified, one can obtain such representations by using the method of
[6] and the result concerning a similar problem over finite fields: Let K = GL,,,(OF) and
K| = 1y, + wrMaty,,(OF), so that K/K; is isomorphic to GL,,, over the residue field of F'.
Here, Of (resp. @) denotes the valuation ring (resp. a prime element) of F. If 7in 1.7 (I)
belongs to OF, then o leaves K and K stable, inducing the same kind of involution on the
finite GL,,,. By the result of [1] and [10], one can find irreducible cuspidal distinguished
representations for this finite symmetric space. Starting from such representations, inflate
these to representations of K and induce up to G by compact-mod-Z induction (with trivial
central character). Then we obtain irreducible cuspidal representations of G, and these are
actually GL,,(E)-distinguished by the Mackey decomposition theorem in [8, 2.1].

2. The case of Galois involution on GL,

2.1. Let E be a quadratic extension of F. The Galois automorphism of E over F is
denoted by x — x. We consider the group G = G, = GL,(F) and the Galois involution
o=o0,onG:

o(g9) =9 (= (gi)) if g=(g;)) € G).
The subgroup H = H, of o-fixed points in G is GL,(F). The center Z = Z, of G consists of

scalar matrices, and is identified with E*. Note also that Z N H coincides with the center of
H, and is identified with F*.

2.2. In this Galois case, all standard parabolic subgroups of G (together with standard
Levi subgroups) are o-stable. If P is the standard parabolic subgroup of type (ny,...,n),
then PN H is the standard parabolic subgroup of H = GL,(F) of the same type. The modulus
characters 6p and dpny are given by the formula of 1.6, using the absolute values of £ and
F respectively. By the relation Hz/z = ||F on F*, we have 6}3/2|Pn[-1 = Opnp. Thus the
quasi-character pyng on M N H considered in 1.2 is trivial in this Galois case.
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2.3. Letus recall the following result due to Flicker, on irreducible GL,,(F)-distinguished
representations of GL,(E).

Proposition. Ifan irreducible representation nt of G is H-distinguished, then 1t is equiv-
alent to the contragredient 7 of 7.

Proof. In [3, Proposition 12], it was shown that such a 7 is invariant under the unitary
involution g — ta_l on G. Also, by the work of Gel’fand-Kazhdan [4], the orthogonal
involution g > ‘g~ on G sends 7 to its contragredient 7. |

2.4. Now we state the main claim of this section. A part of this result is found also in
[18] and [20].

Theorem. Let (ni,...,ny) be a partition of n and (P, M) the corresponding standard o -
stable pair. For each i, take an irreducible cuspidal H, -distinguished representation p; of
G, and form p = ®f:1pi, which is an irreducible cuspidal M N H-distinguished representa-
tion of M.

Suppose that p; % pj for any i # j. Then,

(1) The induced representation Indg(p) is H-distinguished and irreducible.
(2) The induced representation Indg(p) is H-relatively cuspidal.

Proof of (1). H-distinction of Indg(p) was already seen in 1.2. As is well-known, Indg(p)
is reducible if and only if p; ~ |det(-)'z_l - pj for some i # j (such that n; = n;) [2]. However,
the central characters of p; and p; are both trivial on ZNH ~ F* by (1) in 1.1. By comparison
of the central characters restricted to Z N H, we cannot have the reducibility. O

H-relative cuspidality will be seen in 2.6, using the criterion recorded in the proposition
of 1.4.

0 1

2.5, Letwy = ( ) be the anti-diagonal permutation matrix in G. By Hilbert’s Theo-

10
rem 90, there exists an element y € G such that yo(y)~! = wy. We consider the involution

/

o’ = o) :=Int(wp) o o (: Int(y)oo o Int(y)_l)

on G, with the fixed point subgroup H’ = H,. Then, the basis of the root system of (G, D)
corresponding to B is a 0”-basis, so that every o’-split parabolic subgroup is G-conjugate to
a o”’-split one containing B (see [13, §2] for details).

For each ¢, 1 £ ¢ < [n/2], let Q = Q; be the standard parabolic subgroup of type
(¢,n—-2¢,¢). These are maximal o”'-split parabolic subgroups. On the standard Levi subgroup
L of Q, the action of ¢’ is seen as

X1 0 o (x3) 0

o xz U;,_Z[(XZ) ’
0 X3 0 o (x1)

so that the o”’-fixed point subgroup L N H" of L is of the form
X 0
LNH = y |x€G5,yEHI’1_2[ .
0 o (x)



718 S. Karo anD K. TAKANO

As a maximal (o, F)-split torus of G, we take

i € F*, ay_is1 = a7, and
A:{diag(al,...,an) i n-ix1 =4, an}

apnj21+1 = lif nis odd

Then the centralizer Zg(A) is the maximal torus of all diagonal matrices (with entries in E*).
As a result,

Zg(A)N H = {diag(tl, e ly) ’ t; € EX, lh—iv1 = l_l for all l},

which is the product of [n/2]-copies of E*, and one more factor F* if n is odd. Anyway, the
Galois cohomology of Zg(A) NH’ over F is trivial. By the lemma in 1.3 (where we can take
Py = B), it turns out that any maximal o”-split parabolic subgroup of G is H’-conjugate to
one of Q¢, 1 £ € < [n/2].

2.6. Proof of 2.4 (2). Indg(p) is also H’-distinguished by 1.5 (2). We use the criterion in
1.4 to deduce H’-relative cuspidality. Then we can conclude H-relative cuspidality again by
1.5 (2).

Thus, from the description at the end of 2.5 and the argument in [13, 6.10], it is enough
to show the following:

Cram. For each maximal o”-split parabolic subgroup Q = Q, given in 2.5, the Jacquet
module (Indg(p))Q is not L N H’-distinguished.

Suppose that (Indg(p))Q is L N H’-distinguished for some Q = Q. By the theory of
Bernstein-Zelevinsky (so-called Geometric Lemma, [2, 2.12 and 2.13 (a)]) applied to the
case of irreducible cuspidal p, we have a filtration of L-submodules of (Indg(p))Q whose
successive quotients are isomorphic to

Fulp) := Tndy ., (")

for w in a set of representatives of Q\G/P such that LnwPw™" is a proper parabolic subgroup
in L. Note that we can take w as a permutation matrix in G. By (2) in 1.1, there must be a
representative w such that F,,(p) is L N H’-distinguished.

As a representation of L ~ Gy X G,_2¢ X Gy, we may put Fy(p) = I} ® I, ® Iz where [
and /5 are representations induced up to Gy, and I, is one up to G,,_»,, with the inducing data
chosen from {py,...,px}. In particular, there are disjoint sets J;, J3 C {1,...,k} of indices
such that }};c;, n; = Xy, ni = €, and that Iy (resp. [3) is induced from the data {p; ' ieJy)
(resp. {o; | i € J3}) in a suitable order.

Look at the restriction to the product of the first and the third factors. The L N H’-
distinction implies that /; ® I3, a representation of Gy X Gy, is A” ?(Gg)—distinguished, where

ATH(Gy) = {(x,o(x) € Ge X Gy | x € Gr.

—~—

This is equivalent to saying that there is a non-zero G,-morphism from I; to (13)7¢. Here,
we can see that /3 is irreducible and Hj-distinguished, by the same discussion as that of 2.4.
Applying the proposition in 2.3 to /3, we have

(1)t =I5 ~ L.
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Hence the inducing data {p; | i €J;}and {p; | i € J3} must be equal up to order, by [2, 2.9].
This contradicts to the assumption that p; % p; for any i # j. |

3. The case of inner involutions on GL,, (I)

3.1. Take an element 7 € F* which is not a square and form a quadratic extension E =
F(+/7) of F. We consider the group G = G»,, = GL,,,(F) and the involution

0 1,,
o1 = Int(ey), 81:(7’-1 0)

on G. In the m X m-block form, o~ is written as
- a b\ (d e
Ne a/ " \eop a )
hence the o-fixed point subgroup H; = Hj», in G is of the form

H, = H1,2m = {(:lb Z) €eG | a,be Mathm(F)} s

which is isomorphic to the group GL,,(E) via

a+\/?-b|—>(a b).
™ a

Note that the restriction of det( - ) to H; gives the relation

det(“ b) = det(a + V7 - b) - det(a — V7 - b)
™ a

a+tyth 0
0 a—+tb

ab
h a

since ( ) is conjugate to (

Put

) over E.

X=X2m={8€G|82=T~12m}.

Then &, € X, and any € € X is G-conjugate to &; (see 1.7). Hence for any ¢ € X, the
inner involution o = Int(e) is Int(G)-conjugate to o, and the o-fixed point subgroup H is
G-conjugate to H;.

3.2. Let us describe o-stable pairs (P, M) among the standard class, to which we can
apply the proposition in 1.2. By 1.5 (1) we observe the following: For a o-stable pair
(P, M) which is not necessarily standard, there is a standard o--stable pair (P, M) where o
is Int(G)-conjugate to 0. So we shall determine standard pairs (P, M) which can be stable
under o~ = Int(g) for some € € X.

Let (P, M) be the standard pair in G = G, of type (ny,...,n;). If it is a o-stable pair for
o = Int(e) with &£ € X, then each n; has to be even: Indeed, if P and M are stable under o,
then

g€ Ng(P)NNg(M)=PNNg(M) =M.
&M 0 )
Say, € = ( ) &9 € G,,. Since &2 = 7 - 15, we must have (s(i)) =71, foreach i,

0 £®
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which implies that n; is even by 1.7.
Thus, as the ingredients, we use only the standard pairs (P,M) in G = Gy, of type

(2my,...,2my;) where m = Zf-‘zl m;. As for the element £ € X such that o = Int(g) leaves
& 0
(P, M) stable, we shall take & = [ ) where
0 e
; 0 1,
@ = "ile G
& (T- ln, O ) 2m;:
In this case, M N H is given by
X1 0

MNH= ( ]|Xi€H1’2mi(l.=1,...,k) .
0 Xk

3.3. We shall see that the quasi-character py;~y defined in 1.2 is trivial, for every o-stable

standard pair (P, M) of type (2my, ..., 2my).
At first, 6p on M N H is computed as

X1 0
5,:( ]z [T 1deto™ - |detcep],™

0 Xg 1<i<j<k

X1 0

by the formula in 1.6. Further, if ( ] € M N H, then x; € Hj 3, is of the form

0 .xk

X = (“i b"), a; + \7b; € GL,, (E).
™h; a;
By the remark in 3.1, we have

|det(x;)| . = |det(a; + V7by) det(a; — V7by)| . = |det(a; + V7b;)

E’
hence
X1 0
5})/2( ] = l_[ |det(ai + \/;bz)r;] : |det(aj + \/;bj)|me ’
0 Xk l§i<j§k

Lom, bij

Next we compute dpny. To determine the elements [ ] of U N H, look at the

0 lka

[8(1) 0 ][ Lom, bij ](s(l) 0 )—] [ Lom, bij )
0 g® 0 12mk 0 W 0 12mk

We must have £7b; js(j)_l = b;; for each upper right block b;;. Write b;; = (2 5) where A,
B, C, D are m; X mj-matrices. By the relation

0 1,\(A B\(0 7',\ (A B

w,, o/\c p)\1,, o )T\c b}
the block b;; is of the form ( 7 §), which can be identified with the element A + V7B €
Mat,,sim; (E).

relation
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In the adjoint action of M N H on U N H, the part
b,’j =X bij . )C]_-l

can be regarded as the left action of a; + v/7b;, and the right action of (a; + \Tb;)~!, on the

matrix A + 7B € Mat,,x,,(E): Indeed, the operation

( a; b,) ( A B) _ ( a;,A + th;B a;B + b;A )

™™h; a;)]\tB A T™h;A + ta;B  a;A + Th;B

from the left corresponds to the relation
(a; + V1b;) - (A + VTB) = (a;A + tH;B) + \1(b;A + a;B),

and similarly from the right. Gathering all parts 1 < i < j < k, we have

X1 0
T Tt it

0 X 1gi<j<k
1/2
As a consequence we have 6P/ |mMnE = Opnm, hence puynyp =1 on M N H.

3.4. We recall the following result due to Guo [5] on irreducible GL,,(E)-distinguished
representations of GL,,(F).

Proposition. [f an irreducible representation  of G is H-distinguished, then n is self-
contragredient.

3.5. Now we state the main claim of this section.

Theorem. Let (my,...,my) be a partition of m, (P, M) the standard pair in G = Gy, of
type 2my,...,2my), and o = Int(g) given at the end of 3.2. For each i, take an irreducible
cuspidal H\ y,-distinguished representation p; of Ga,, and form p = ®'l’.‘=1p,-, which is an
irreducible cuspidal M N H-distinguished representation of M.

Suppose that p; % p; for any i # j. Then,

(1) The induced representation Indg(p) is H-distinguished and irreducible.
(2) The induced representation Indg(p) is H-relatively cuspidal.

Proof of (1). H-distinction of Indg(p) can be seen by 1.2 and 3.3. Since inner involutions
are trivial on the center, the central characters of p; are all trivial, hence the reducibility
condition p; ~ |det(-)|;1 - pj of [2] cannot be satisfied for any i # j. m|

H-relative cuspidality will be seen in 3.7.

3.6. We consider the involution

o =05, =Int(e), &= (T -Owo u())())
on G = G»,,, where wy denotes the m X m anti-diagonal permutation matrix. Since (&')> =
T+ Iy, the involution ¢ is Int(G)-conjugate to oy, and also to o in 3.2. Let H" = H), be
the o’-fixed point subgroup in G. By the same reason as that in 2.5, every ¢”-split parabolic
subgroup is G-conjugate to a standard o”’-split one.
Maximal o”-split parabolic subgroups among standard ones are given by Q = Oy, the
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standard one of type (¢, 2m — 2¢,{), for 1 £ £ < m. On the standard Levi subgroup L of Q,
the action of ¢’ is given by

X1 0 w0x3w6] 0
g X2 = O-lzm_zg(XZ) s

0 X3 0 WoX1 Wy !

where wy is now of size £ X {. Hence

X 0
LNH = y |x€Gg,y€Hém_2€ .
0 w()xw61

As a maximal (o, F)-split torus of G, we may take
A = {diag(ay,...,aom) | @i € F*, @y_is1 =a;' (1 i< m)).
Then Z;(A) is the maximal torus of all diagonal matrices and
Zg(A) N H' = {diag(t1,....ta) | ti € F*, tycis1 =1; (1 i< m)).

As an algebraic F-group, the Galois cohomology of Zg(A) N H' over F is trivial. So, by
the lemma in 1.3, we can assert that any maximal o”-split parabolic subgroup of G is H'-
conjugate to one of Q;, 1 < € < m.

3.7. Proof of 3.5 (2). By the same discussion as in 2.6, it is enough to prove the following:

Cram. For each maximal o”-split parabolic subgroup Q = Q, given in 3.6, the Jacquet
module (Indg(p))Q is not L N H’-distinguished.

Suppose the contrary. As in 2.6, at least one of

Fu(p) :=Ind}, o . (“p)

has to be L N H’-distinguished, where w is in a set of representatives of Q\G/P such that
LNnwPw!'isa proper parabolic subgroup in L. Put F,(p) = I, ® I, ® I5 where I} and I3
are representations induced up to G, and I, is one up to Gy,,—oe. There are disjoint sets
Ji, J3  {1,...,k} of indices such that };c; 2m; = };c;, 2m; = ¢, and that Iy (resp. I3) is
induced from the data { p; | i € Jy} (resp. {p; | i € J3}) in a suitable order. It is irreducible
from the same discussion as that in 3.5. By the form of L N H’ in 3.6, the L N H’-distinction
of F,(p) implies that /; =~ E Here E is induced from { p; | i € J3}, and for each i we have
0i = p; by 3.4. As a result we must have I; =~ I3, which contradicts to the assumption that
pi ¥ pjforanyi# j. m|

4. The case of inner involutions on GL,, (II)

4.1. Put
X=1{e€G, | =1,}

In this section we consider the inner involution o = Int(¢) on G = G,, for € € X. For each r,
0 £ r £ n, consider the element
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L O )

£l =sl(n—r,r)=( 0 -1

and the corresponding involution oy = o(n — r,r) = Int(g;(n — r,r)). The o-fixed point
subgroup H, = H(n — r,r) is given by

{(g 2) | a€G, . be G,} ~G,_, %G,

For each r, Let X(n—r, r) be the set of all elements of X which are G-conjugate to gy(n—r, r).
Then X can be decomposed as the disjoint union |_Jo<,<, X(n — 1, 7). If € € X(n — r, 1), then
the fixed point subgroup H of o = Int(g) is G-conjugate to H;(n — r,r) = G,_, X G,. Thus,
in studying H-distinguished representations it is enough to consider the case 1 < r < [n/2].
In such a case, it is well-known that the rank and the F-rank of G/H(n —r, r) are both equal
tor.

As a particular case, we call the pair (G, o) even type if n is even, say n = 2m, and
o = Int(e) for e € X(m,m). Hence the corresponding symmetric space (of even type) is
isomorphic to GL,,,(F)/ (GL,,(F) X GL,,(F)).

4.2. We recall the following result on cuspidal distinguished representations due to Ma-
tringe.

Proposition. Suppose that n > 1. Let o = Int(g) be the inner involution on G = G,
with e € X(n—r,r), 1 £ r £ [n/2], and H the o-fixed point subgroup in G. Let u be
any quasi-character of H. Then there exists an irreducible cuspidal (H, u)-distinguished
representation of G only if (G, o) is of even type.

Proof. This is given in [15] for trivial u. The proof in [15] also works for a general u by
[16, Proposition 3.1]. O

4.3. Let (P, M) be the standard pair in G of type (n1,...,n,) and o = Int(e) with € €

X(n—r,r),1 £r £ [n/2]. If o leaves both P and M stable, then we must have € € M as
& 0

in 3.2. So we may put & = ( ) where £? € G,.. Since & € X(n — r,r), we have

_ 0 &®
9 e X(n; — r;, r;) for some r; such that 2i<i<k ti = r. The pair (M, o|y) can be regarded as

the direct product of (G,,, o) where o = Int(e?), 1 £ i £ k.
The following is an immediate consequence of the previous proposition.

Corollary. Let u be any quasi-character of M N H. If there exists an irreducible cuspidal
(M N H, p)-distinguished representation of M, then for all 1 < i £ k, either (G,,, ") is of
even type or n; = 1. |

4.4. According to the above corollary, we may only consider the standard pairs of which
the sizes n; of diagonal blocks are even or equal to 1. In such cases, put . cyen i = 27’.
Then we may further suppose that » = 7’ by the above corollary, where r is the rank of G/H.

Our main target is the case where r = r’, dealt with in 4.8 — 4.14. As for the treatment
in the case that r > 7/, see 4.15. Also, for the proof of the main result of this section we
prepare one lemma (in 4.7) concerning the excluded case that r < 7.
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4.5. We shall give some description of representatives of the double cosets P\G/H,
which is needed for the proof of Lemma in 4.7.

Let r be a fixed integer with 1 < r < [n/2] and consider the involution oy = o1(n — 1, 7).
Put

Y={yeGlow=y"},
on which G acts from the left by

gy :=gyori(g)”" (geG, ye).

Then G/H, is identified with the G-orbit ¥ := G* 1, C Y through the orbit map g — g = 1,,.
The description of P\G/H, is equivalent to that of P-orbits in Y under the *-action.

Let W be the group of permutation matrices in G (which is identified with the Weyl group
of the maximal torus D consisting of diagonal matrices) and put

W(z) :{wEW’wZ: 1,,}.

Note that we; € Y if w € W(). Regarding w € W) as a permutation, let p(w) be the number
of pairs of indices interchanged by w. For each w € W(y), put

D" ={teD|ww ' =r")
and consider the homomorphism
Ty : D —> D, 71,0 = fwt'w™!
on D. Then, the image 7,(D) is of finite index in D™™. It is easy to see that
D™ /1,(D) = {£1}"~%F

where p = p(w). As representatives for D™ /1,(D), we may take 6 € D™ whose diagonal
entries are +1, and in particular the i-th diagonal entry is 1 if i is an index interchanged by
w.

Now, the B-orbit decomposition of Y and Y are given as follows:

Lemma. (1) Y= I_I ( I_I B * ((5w81)).

weW) 6€D™"[7,(D)

Q)Y = u ( u B x (Swe)).

weW(a), 6eD™" |1,(D),
p(w)Sr ow is conjugate to &

Proof. (2) readily follows from (1) if one considers the condition for dwe; to belong to Y.
For (1), first we have

Y= |_| (BweiBNY)  (disjoint)

we W(z)

by Bruhat decomposition intersected with Y. We consider B-orbit decomposition of Bwe; BN
Y for eacn w € W(y). By a standard argument as in [9, 6.6], we obtain

Bwe;BNY = U = (Dwe; NY)

where U is the unipotent radical of B. Next, it is easy to see that
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Dwe; NY =D - we
and the right hand side is decomposed as

D™ we = LI D x (bwe,)
6eD~"/7,(D)

for, if we write t = d71,(tp) with 7y € D, one has twe| = ty * (dwe;). This completes the proof
of (1). O

Corollary. Let P be a parabolic subgroup containing B. Then, as a complete set {£} of
representatives for P\G/H, one can take those & such that

E01(&)! = ows,
with (i) w € W, p(w) £ r, (ii) 6 € D™ /7,(D), and (iii) éw is conjugate to & in G. ]

4.6. Let P = MU be any standard parabolic subgroup of G and take a representative & of
P\G/H, as in the above corollary. Put

o¢ = Int(€) o oy o Int(€™").

Note that oy = Int(6w), since éo1(£)! = Swe;. Let M, be the o¢-fixed point subgroup in
M N o¢(M) and consider the quasi-character ug of M, defined by

1/2|

He =6p |, - Op,,

where P, = P N EHE'. The following proposition is a refinement of Mackey theory for
P\G/H, due to Offen.

Proposition. Let p be an irreducible cuspidal representation of M. If the induced repre-
sentation Ind,G)(p) is Hy-distinguished, then there exists a representative ¢ of P\G/H; such
that o¢(M) = M and p is (Mg, ji¢)-distinguished.

Proof. This is just an adaptation of [19, Corollary 5.2] to our case. O

4.7. Using the above proposition we have the following assertion, which will be used in
the proof of the main theorem of this section.

Lemma. Let P = MU be the standard parabolic subgroup of G of type (ny,...,n;)
where each n; is even or equal to 1. Suppose that }, . ..., ni > 2r where r is the rank of
G/H,. Then, the induced representation Indg(p) is not H-distinguished for any irreducible
cuspidal representation p of M.

Proof. As a representation of M ~ G,, X --- X G, we write p = p; ® - - - ® pr where p; is
an irreducible cuspidal representation of G,,. Suppose that Indg(p) is H;-distinguished. Let
& be a representative of P\G/H, obtained by the proposition of 4.6 with &0 (¢)™' = dwe;
as in the corollary in 4.5. Then, o¢|y is given by Int(éw), with (6w)*> = 1. Since oe(M) =
wMuw™' = M, the blocks of M are either stable or interchanged by Int(w). Let us look at only
even-size blocks of M. Put
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k ‘ is stable under Int(w)

~
I
—
IA
IA

n;is even and the i-th block}

and

- {1 ci<k | n;is even and the i-th block}.

is interchanged by Int(w)

For i € J, o¢ is an inner involution on the i-th diagonal block G, whose fixed point
subgroup is of the form G,, X Gy, a; + b; = n;. The irreducible cuspidal representation p; of
G, has to be distinguished with respect to the subgroup G,, X G, and some quasi-character
arising from p¢. By the result of Matringe in 4.2, we must have a; = b;. As a result, the rank
of (G, O'éch”i) is equal to %ni.

Next, let i, j € J’ be indices such that the i-th block G,, and the j-th block G, are
interchanged by Int(w). By the remark on the diagonal entries of ¢ mentioned before the
lemma in 4.5, we have Int(dw)lcnixcnj = Iﬂt(w)|Gn,.><an, hence the rank of (G, XG,,, 0'{-‘|G,,[><G,,j)
is equal to n; (= n;).

Putting this all together, the rank of o restricted to [],;,.eyen Gy, 18 €qual to

1 1 1
PN LAS DILEE IR
ieJ ieJ’ n;:even

which is strictly greater than r by assumption. However, the rank of o on G is equal to r by
the choice of ¢ in 4.5. This leads to a contradiction. m|

4.8. Letus go back to 4.3 and now take the involution into account. Consider the standard
pair (P, M) of type (n1,...,n;) where each n; is even or equal to 1 and put 3}, . cven i = 27”.
Let o = Int(e) be as in 4.3 where e € M N X(n — r,r). As our main target we study the case
that ¥’ = r. So, we consider standard pairs of type

Qri,. o 2m 1,01
—
n-2r

where };r; = r. We put s = n — 2r. Note that s = 0 in general, and s = 0 means that the
symmetric space is of even type. We may further assume that £ € X(n — r, r) is of the form

&0 0

)

s

. 1, O
() — RN B
, V=g (r,nr (0 _1r,-)‘

In such a case M N H consists of matrices of the form

X1

a; 0
0 xX; = , a;, beqG,,
o i (0 bz) i» Di Ti
31 ’
0 tjEFX.

1
4.9. Let us compute the character tyny in 1.2 for the above P, M and o. At first, by the
formula in 1.6 we have
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X1

5p . = l—[ |det(a,~) det(bi)|2r/ |det(a j)det(b j)|_

151
1i<jsk

27‘,'

Iy

x [ ] ldetcan detwo Tl T lellef™

I<isk 1<j<s 1<i<j<s

Next, by considering conjugation from &;(n — r, r) to &, we may regard P N H as

[ parabolic of type ] “ (parabolic of type)

R 7 T |
(r] Tl \,_/) (rl,...,rk)
N

in H =~ GL,_(F) X GL,(F). Under this identification, d pny is computed as follows:

X1

Spn " = [ Idettan|”|detcap| " | | |detcan]’

1
1<i<jsk 1<isk

ty

-r -1 ri —r;
< [Tl 1 lsllsl™ ] |detn|”|detcsp] ™.
1<j<s 1<i<j<s 1<i<j<k
As a consequence, Uyny = O pl;,rl@ - Opnp 18 given as follows:

X1

Xk S/2

= 1—[ |det(al-)|s/2|d€t(bi)|_

Isisk

HmnH 4

I

1/2
< Tkl

1<i<j<s

Here, x; = (((l)' 1(7),) € G2rl-, a;, b; € Gr,-, and t; € F*.
Note that uyng is trivial if s = 0, i.e., if (G, o) is of even type.

4.10. We recall the following result due to Jacquet and Rallis in [11].

Proposition. Let H be the fixed point subgroup of o = Int(¢) in G = G, for e € X. If an
irreducible representation r of G is H-distinguished, then 1 is self-contragredient. m|

In the case of even type, let .. be the quasi-character of the subgroup H(r,r) of G,
defined by

o (g 2) = |det(@)[|det(r)|*  (z € ©).

We also notice the following lemma shown by using the results of [12] and [11]:
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Lemma. Let m be an irreducible cuspidal representation of Go.. If m is H(r,r)-
distinguished, then it is also (H,(r, 1), i,;)-distinguished for any z € C.

Proof. By [12, Theorem 5.6], an irreducible cuspidal H(r, r)-distinguished representation
m has a non-zero Shalika functional, say €. Using this, [11, §6] gives a linear form (-, z) on
7 by the integral

I(v,2) = f (f,ﬂ(g lo)v) . |det(a)’z_1/2 da
G, r

for Re(z) sufficiently large. If  is cuspidal, then I(:, z) can be extended to an entire function
on z € C, and is non-zero as a linear form on  (see [11, p. 117]). This shows that r is
(H,(r,r), uy.-)-distinguished for any z € C. m|

4.11. We state the main claim of this section. For the even type case s = 0, the same
result is found also in [14] and [20].

Theorem. Let (ry,...,r;) be a partition of r where 1 < r < [n/2] and put s = n — 2r.
Let (P, M) be the standard pair of type (2ry,...,2r, 1,...,1) and consider the involution
N e’

N
o = Int(e) given in 4.8. For each i, take an irreducible cuspidal H,(r;, r;)-distinguished
representation p; of Go,, and form

P=p1® - ®p @,

(where we understand that p = p; ® -+~ Q py if s = 0).
Suppose that p; % pj for any i # j. Then,
(1) The induced representation Indg(p) is H-distinguished.
(2) If s £ 1, then Ind$(p) is irreducible.
(3) The induced representation Indg(p) is H-relatively cuspidal.

Proof of (1) and (2). By 4.9 and the lemma in 4.10 for z = s/2, we can see that p is
(M N H, pynm)-distinguished. Hence Indg(p) is H-distinguished by 1.2. The irreducibility
in the case s < 1 can be shown exactly in the same way as 3.5. m|

The proof of (3) will be given in 4.13.

4.12. We consider the involution

o =0, =htE), &=¢g,,= 1,

Wo
where wy denotes the r X r anti-diagonal permutation matrix. Note that &’ € X(n — r,r), so
o’ is Int(G)-conjugate to oy = o71(n — r,r). Let H" = H{ , be the o”’-fixed point subgroup
in G. As in 2.5, every o”-split parabolic subgroup is G-conjugate to a standard o”’-split one.
Maximal o”-split parabolic subgroups among standard ones are given by Q = Oy, the
standard one of type (£,n — 2¢, ), for 1 < £ < r. On the standard Levi subgroup L of Q, o’

acts as
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X 0 WoX3W;, ! 0
’
o X2 = T (uatr—0)(X2)

0 X3 0 woxlwgl

where wy is now of size £ X £. So we have

X 0
LNH = y x€Gy, Y€ H(’n_%r_[)
0 woxwa1
The subtorus
A = (diag(ay,....an 1,.... La',....a]") | a; € F¥}
——

gives a maximal o”-split torus of G which is also F-split. One has

t 0
Zg(A)NH = X tieD,, x€G, o ¢=D,xXG, .
0 wotw51

Hence, as an algebraic F-group, Zg(A) N H’ has trivial Galois cohomology over F. From
the lemma in 1.3, any maximal o”-split parabolic subgroup of G is H’-conjugate to one of
O 1t

4.13. Proof of 4.11 (3). As in the proof of 2.6 and 3.7, it is enough to show that the
Jacquet module (Indg(p))Q is not L N H’-distinguished for each Q = Q;, 1 £ £ = r. So we

show that the pieces F, (o) = Indimw p,-1("P) are not L N H'-distinguished for all w in a set
of representatives of Q\G/P as in 2.6.

Suppose that some of F,,(p) is L N H’-distinguished. Write F,,(p) as I} ® I, ® I3 where [,
and I3 are representations induced up to G, and I, is one up to G,_,. Looking at the form

of LN H’ in 4.12, the L N H’-distinction implies the following two conditions:

(1) I, and I3 share a common irreducible subquotient.
(i) I 1is H(’n_zar_é,)—distinguished.

Now, if s < 1, then the inducing data (for 7, I, and I3) are py,...,pr, and possibly
one more character. So the condition (i) leads to a contradiction as in the argument of 3.7
together with the proposition in 4.10. For the rest of the proof, we suppose that s = 2.
In this case the condition (i) can be achieved by choosing suitable characters coming from

o 113/ % for the inducing data of /; and /3. So we look at the condition (ii) in such a case. The

’

inducing data of /, must contain all of py, ..., pr. However, the rank of G,_»;/ H(n_% 0 is
r — ¢, which is less than r. Hence I, cannot be H(’n_% ,_py-distinguished by the lemma in 4.7,
a contradiction. O

4.14. In the case where s = 2, the representation Indg(p) in Theorem 4.11 is reducible.
However, we can show the following.

Corollary. Let P, M, p and o = Int(e) be as in 4.11 and suppose that s = n — 2r = 2.
Let (P', M) be the standard parabolic and Levi subgroup of type (2ry, ..., 2rt, s). Then, the
induced representation
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= Indg, P1® - ®@m®1g,)
is an irreducible quotient of Indg(p) which is H-distinguished and H-relatively cuspidal.
Proof. By induction in stages, Indg(p) is identified with
Indf, (01 ®- -+ ® pr ® Ind(3*(6%)).

The induced representation Indgf(ég %) has one dimensional trivial quotient, hence 7’ is a

quotient of Indg(p). Irreducibility of 7" can be shown by the discussion on segments in [21,
Theorem 4.2]. Furthermore, 7’ is H-distinguished, as will be seen below. Note that (P’, M")
is a o-stable pair. The o-fixed point subgroup M’ N H of M’ consists of matrices of the form

X1 0
a 0
R , ai, bi€G,., y€G,.
Xk 1 (0 bl) 1 1 S
0 y
One can compute the character uy; g in the same way as 4.9. The result is:
X1 0
s/2 —s/2
Ko = [ [ ldet(a|"”|detwn] ",
Xk 1<i<k
0 y

Thus the representation p; ® - - ® px ® 1, of M" is (M’ N H, pprnp)-distinguished, and in
turn, 7’ is H-distinguished by 1.2. Finally, all the H-matrix coefficients of 7" are given by
those of Indg(p) since 7’ is a quotient of Indg(p). Hence the claim readily follows by the
result of 4.11 and the definition of relative cuspidality. O

RemArk. The above corollary is a generalization of [13, 8.2] where only the case r = 1
was treated.

4.15. As a final remark of this section, we mention the case where r > r’ noticed in 4.4.
Let (P, M) be the standard pair of type

Q2ri,...,2r, 1,...,1), where Z ri=r <r.
n=2r' l=igk

We consider the involution o~ = Int(g) with

&M 0

- ; I, O

&= - , 8():81(ri,ri)=(0 _1”)-

0 n—r—r _1,‘7,‘,

Then o is of rank r, leaving the pair (P, M) stable, and there is an irreducible cuspidal
(M N H, uynp)-distinguished representation p of M. However, the proof in 4.13 does not
work for this case. Actually we do not expect that Indg(p) is relatively cuspidal according

to the following observation (see a comment in Introduction):



ON SoME RELATIVELY CUSPIDAL REPRESENTATIONS 731

There exists an involution o’ which is Int(G)-conjugate to o, a proper " -

split parabolic subgroup Q of G, and an LNH" -relatively cuspidal represen-

tation p’ of L = Q N 0"’ (Q) where H" denotes the o -fixed point subgroup,

such that Indg(p) = Ind(Q;(p’).
To observe this, regard M as the product G, X -+ X Gay X Dy X Dy_p X D,_,». Then M N H
consists of

B a; 0
.,‘Xk 0 xi:(o bi), a;, biEGr,-,
1 ’
0 & ne Dsa I, I3 € Dr—r'-

3

The computation of uyny can be carried out as in 4.9. We have

X1

puon| % = [ | #rsn@ - 6,70 - x() - X7 13),

0 h b 1<igk
where y is a suitable character of D,_,- and ¥ = y o Int(wg). So, an irreducible cuspidal
(M N H, uynp)-distinguished representation p of M is of the form

P =pi ®"'®Pk®6113/2 xex ",

where p; is an irreducible cuspidal H,(r;, r;)-distinguished representation of G,,. Now let
QO be the parabolic subgroup of type (2" + s,1,...,1). Regard its Levi subgroup L as
N e’

2(r=r")
the product Gy,-4s X D,_,» X D,_,» and let 7’ be the representation of G, ., induced from

PI® QP ®F ;;/ 2. Then, by induction in stages, we have
Ind$(p) = Indg(n’ x®x .

There is an involution 0" which is Int(G)-conjugate to o such that Q is o”’-split and further,

g/ 0 8/ g/ 8/—1 0
o’ f = IS
0 153 0 n
& 0
where & = .. . The representation 7’ of Gy, is distinguished (and is relatively
)
0 1

cuspidal) with respect to ythe fixed point subgroup of Int(g’) by 4.11, hence p’ := 7’ ® y ® ¥ !
is L N H”-distinguished and L N H” -relatively cuspidal.

5. Remarks on the stable pairs

5.1. In sections 2-4, we have obtained relatively cuspidal representations of the form
Indg(p) starting from o-stable pairs (P, M). Especially in Section 4, we have excluded the
case where M has no irreducible cuspidal M N H-distinguished representations. But, such
a limitation seems to be not enough as was suggested by 4.15. There is a more apparent
case, the group case. Let G be the direct product Gy X Gy where G is a reductive p-adic
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group, o the involution given by o(g1, g2) = (g2,91). Then, an irreducible H-distinguished
representation of G is of the form 7y ® 7y where 7 is an irreducible representation of Gj.
It is H-relatively cuspidal if and only if 7 is cuspidal (see [13, 1.5]). Now, o-stable pairs
are of the form (P, M) = (Py X Py, My X My) where Py = MyUj is any parabolic subgroup
of Gy. One can take an irreducible cuspidal M N H-distinguished representation of M in the
form p = py ® po where py is an irreducible cuspidal representation of M. However, the
representation IndIG)(p) S Indgg(po) ® Indgg (o) is not relatively cuspidal since Indgg (0o) is
not cuspidal.

5.2. We have an expectation that there is a relationship between relatively cuspidal rep-
resentations and maximal o-split tori which are F-anisotropic modulo the center. Based
on such a point of view, we consider some candidates for o-stable pairs suitable for the
construction of relatively cuspidal representations as follows.

Suppose that we have a maximal o-split F-torus S of G which is F-anisotropic modulo Z
(or equivalently, modulo the o-split part of Z). Take a maximal F-torus T of G containing
S. Then T, as well as its F-split part Ty, is o-stable. Put

M = Zg(Ta),

the centralizer of T, in G. We have a decomposition T; = (T; " H)? - S, where (- )° stands
for the identity component. Since S, is central in G by assumption on S, we can see that

M = Zg((T, n H)°).

Hence, by [9, the proof of 3.4], there is a o-stable parabolic F-subgroup P of G having
M as a Levi subgroup. We consider the parabolic and Levi subgroups arising in this way
are relevant ones for the construction of relatively cuspidal representations applied to the
proposition in 1.2.

Remark. (i) The stable pair (P, M) in 4.15 will not arise in the above way, since the rank
of oy, is less than that of o on G. In the group case, it is easy to see that there is no proper
stable pair arising in the above way.

(i1) Murnaghan’s recent work [17] seems to have a similar point of view. In the terminology
of [17], a maximal F-torus T is said to be o-elliptic in G if its (o, F)-split part is central in
G. Our T’s are o-elliptic ones which further contain some maximal o-split F-torus.

Also, in [20], a o-stable F-Levi subgroup is called a o-elliptic Levi subgroup if it is not
contained in any proper o-split parabolic subgroup of G (or equivalently, if its (o, F)-split
component is central in G). Our Levi subgroups M = Z;(T,) arising in the above way are
particular ones among o-elliptic Levi subgroups.

For the rest of this section we shall verify that the stable pairs we have used in sections 2,
3, and 4.8 actually arise from suitable tori S and T as above.

5.3. The case of Galois involution.
(1) At first, take an extension k/F of degree n such that the compositum K := k - E is
a quadratic extension of k. Then the degree of K over E is n, hence the multiplicative
group K* can be embedded in G = GL,(E). The image, say T = T,, is a maximal F-
torus. The embedding can be chosen so that T is o-stable and o |y coincides with the Galois
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involution on K* over k. Let S = §,, be the subtorus of 7 corresponding to the norm kernel
K} := ker[Ngx : KX — K]. Then § is F-anisotropic, o-split, of dimension n over F, hence
is maximal o-split. The F-split part T; of T is the scalars from F*, hence this only gives
Zs((T)4) = G in the procedure of 5.2.

(2) In general, take an arbitrary partition (ny,...,n;) of n and let M be the corresponding
standard Levi subgroup, isomorphic to the product ]_[f:1 G,,. For each i, take an extension
k;/F of degree n; such that K; := k; - E is a quadratic extension of k;. Then we obtain a
maximal torus 7, = le of G,,, containing a maximal o, -split torus §,,, = (Kl?()l of G,,. As
subgroups of M = Hf:l G,,, put

Then,
dimp($) = )" dimp((K)1) = Y mi = n,

1

so § is a maximal o-split torus of G which is F-anisotropic. The F-split part T,; of T is the
product of scalars from F* in G,,, hence Z(T,) coincides with M. In this way, any standard
pair (P, M) of type (ny,...ny) arises as a particular one in 5.2.

5.4. The case of inner involutions (I).
(1) First we deal with the case where m = 1 in Section 3, thatis, G = GL,(F), o, = Int (9 (1))
and H; ~ E*. The norm image in F* from E* contains a non-square in F*. Take one such
7/ and form E’ = F(v7"). (Note that we may take 7 = 7 and £’ = E if —1 is in the norm
image from E.) Since 7’ - (—7) is in the norm image from E*, we can write

2

7 (-1) =% -1y

by some x, y € F. We must have x # 0, for 7’ is not a square. Now put

a b _ 1
T W -

This is a maximal F-torus of G, isomorphic to (E’)*. By a direct computation it is seen that
o acts on T as the Galois involution of E’/F. So, the oj-split part S = S, of T corresponds
to the norm kernel of E’/F, hence is F-anisotropic (and is maximal o -split).

(2) Next we consider G = Gy, = GL,,,(F) and o-; = Int ( T(l)m 10) for a general m. Take an
extension k/F of degree m so that K := k - E is a quadratic extension of k. Regarding the
multiplication of k on k ~ F" as an F-linear action, we have an embedding k < Mat,,(F)
and further, Mat, (k) < Mat,,,(F) by

a b Wa) ub) -
(c d) ” (t(c) L<d))€Mat2(Matm(F)) - Ml

Thus we may regard GL,(k) as a subgroup of G = G»,,. The restriction of o to the image
of GL,(K) is given by Int(? (1)) on GL,(k). By using the discussion in (1) we can obtain a
maximal torus 7, =~ (K')* of GL,(k) where K’ = k(v/7) for a non-square 7" € k in the
norm image from K, and also a maximal Int(g é)—split torus S, C T, of GL,(Kk) which is
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F-anisotropic. Let us put
T =uTy) = X&), §=uS2) =ker(Ng )

Then T (resp. S) has dimension 2m (resp. m) over F, hence is a maximal torus (resp. a
maximal oy-split torus) of G,,,. Since the F-split part T, of T is the scalars from F*, this
only gives Zg((T)y4) = G.

(3) Now, for any partition (my, ..., my;) of m, let (P, M) be the standard pair of type (2m;, ...,
2my) which is stable under o = Int(g) in 3.2. Putting o = Int(¢”), we may regard (M, oy,
as the direct product of (G, o, 1 i<k By (2), we can take a maximal F-torus A
of Gy, which is F-anisotropic modulo the center of G,,,, and a maximal O'(i)—split torus
SO c TW of G,,, which is F-anisotropic. Let T (resp. S) be the product of all the 7
(resp. S¥). Then S is an F-anisotropic o-split torus of G, and is maximal o-split since its
dimension over F is ),;m; = m. Also, T is a maximal torus of G containing S. The F-split
part 7, is the product of scalar matrices in G»,,,, hence Z5(Ty) = M.

5.5. The case of inner involutions (II).
(1) First we deal with the case of even type, that is, n = 2r and G = G»,, 01 = Int(e;) where
e = ( 10 _({r ) Take an arbitrary quadratic extension E = F(4/7) of F, and an extension k of
F of degree r such that the compositum K := E - k is a quadratic extension of k. There are
natural embeddings

K* < GL,(E) = GLy,(F) = G,

where the latter one is given in 3.1. Notice that o} acts on GL,(E) as
o (48)=(2972)

hence is the same as the Galois automorphism of E/F on GL,(E). Furthermore, the re-
striction of o7 to the image of K* coincides with the Galois automorphism of K/k. Let T
be the image of K* in G. It is F-anisotropic modulo the center of G. Also, by the above
observation, the o -split part S of T is identified with the norm kernel of K/k, which is
F-anisotropic. We have dimg(7T) = 2r, dimg(S) = r, hence T (resp. ') is a maximal F-torus
(resp. maximal o1 -split torus) of G. Since T is the center of G, we only have Z5((T),) = G.
(2) Let us turn to the general case, G = G, and o = Int(g;) where & = (lgr —(i,-)‘ Let
(r1,..., ) be any partition of r and consider the standard pair (P, M) of type (2ry,...,2ry,

1,...,1) where s = n — 2r, and the involution o = Int(¢) in 4.8 which leaves (P, M) stable.

N

By (1) we can take a maximal O'(i)—split F-torus S; of Go,, which is F-snisotropic, and a
maximal F-torus 7; of G,,, containing §;. Set

k k
S ;=[1:[5,»]><{1}><m><{1}, T:=[HTi]><FX><---><FX.

s i=1 Ky

Then, the dimension of § is Zf?zl r; = r, hence S is a maximal o-split F-torus of G which is
F-anisotropic. Also, T is a maximal torus of G which gives Z5(T,) = M.
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