<table>
<thead>
<tr>
<th>Title</th>
<th>AN INVARIANT DERIVED FROM THE ALEXANDER POLYNOMIAL FOR HANDLEBODY-KNOTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okazaki, Shin'ya</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 57(3) P.737-P.750</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2020-07</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/76683</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/76683</td>
</tr>
</tbody>
</table>
AN INVARIANT DERIVED FROM THE ALEXANDER POLYNOMIAL FOR HANDLEBODY-KNOTS

SHIN’YA OKAZAKI

(Received November 8, 2018, revised April 15, 2019)

Abstract

A handlebody-knot is a handlebody embedded in the 3-sphere. We introduce an invariant for handlebody-knots derived from their Alexander polynomials. The value of the invariant is a vertex-weighted graph. As an application, we describe a sufficient condition for a handlebody-knot to be irreducible and a necessary condition for a link to be a constituent link of a handlebody-knot.

1. Introduction

A genus g handlebody-knot is a genus g handlebody embedded in the 3-sphere S^3, denoted by H. Any handlebody-knot can be represented by some connected spatial graph. Two handlebody-knots are equivalent if one can be transformed into the other by an isotopy of S^3. Suzuki [12] introduced the notion of neighborhood congruence for spatial graphs. The neighborhood congruence class of a connected spatial graph corresponds to a handlebody-knot.

In this paper, we introduce an invariant for handlebody-knots whose value is a vertex-weighted graph. We introduce an equivalence relation \sim on the Laurent polynomial ring $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}]$. We define the vertex-weighted graph G_f for a Laurent polynomial $f \in \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}]$ as an invariant for $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}]/\sim$. The d-th Alexander polynomial $\Delta^{(d)}_{(H,M)}(t_1, t_2, \ldots, t_g)$ is an invariant for a pair of a genus g handlebody-knot H and its (oriented and ordered) meridian system M. This invariant is in $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$. We define an invariant G_H for handlebody-knots as $G^{(g)}_{H(t_1, t_2, \ldots, t_g)}$. The invariant G_H does not depend on the choice of the meridian system of H.

In Section 2, we recall the definition of the Alexander polynomial for a pair of a handlebody-knot H and its meridian system M, and we define an invariant G_H for handlebody-knots. As applications of the invariant G_H, we describe a sufficient condition for a handlebody-knot to be irreducible in Section 3 and a necessary condition for a link to be a constituent link of a handlebody-knot in Section 4. In Section 5, we introduce an equivalence class of handlebody-knots, and demonstrate that G_H is an invariant for this equivalence class of handlebody-knots. The appendix contains a table of G_H and \hat{G}_H for handlebody-knots in the table of genus 2 handlebody-knots with up to six crossings in [4].

2010 Mathematics Subject Classification. 57M25, 57M27.
2. An invariant for handlebody-knots

Throughout this paper, we work in the PL category. A genus g handlebody-knot is a genus g handlebody embedded in the 3-sphere S^3, denoted by H. Any handlebody-knot can be represented by some connected spatial graph. A diagram of a handlebody-knot is a diagram of a connected spatial graph that represents the handlebody-knot. Two handlebody-knots are equivalent if one can be transformed into the other by an isotopy of S^3.

We recall the definitions of the universal abelian covering spaces and the Alexander polynomial for handlebody-knots [6, 10]. Let H be a genus g handlebody-knot in S^3 and $M = \{m_1, m_2, \ldots, m_g\}$ an (oriented and ordered) meridian system of H. Let E be the exterior of H, that is, the closure of $S^3 \setminus H$. Let $G = \pi_1(E)$ be the fundamental group of E. Let t_i be the homology class in the integral homology group $H_1(E)$ represented by m_i for $i = 1, 2, \ldots, g$. Then, $H_1(E)$ is a free abelian group of rank g generated by t_1, \ldots, t_g. Let $\gamma : G \to H_1(E)$ be the Hurewicz epimorphism. The covering space over E corresponding to the subgroup $\text{Ker}(\gamma) = \{[G, G] \mid G\}$ of G is called the universal abelian covering space E_γ of E. Because $H_1(E)$ acts on E_γ as the covering transformation group, $H_1(E_\gamma)$ is regarded as a module over the integral group ring $\mathbb{Z}H_1(E)$ of $H_1(E)$. By regarding $H_1(E)$ as the multiplicative free abelian group $\Pi_{\{m\}}(t_i)$ with basis t_1, t_2, \ldots, t_g, we identify $\mathbb{Z}H_1(E)$ with the Laurent polynomial ring $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$ in the variables t_1, \ldots, t_g. Thus, we can regard $H_1(E_\gamma)$ as a $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$-module. Let $p : E_\gamma \to E$ be the covering projection and b be a point in E. Then, $H_1(E_\gamma, p^{-1}(b))$ can also be regarded as a $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$-module.

Definition 2.1 (Alexander polynomial for handlebody-knots). The Alexander matrix A of a pair consisting of a handlebody-knot H and its meridian system M is an $m \times n$ presentation matrix of $H_1(E_\gamma, p^{-1}(b))$. The d-th Alexander polynomial $A_{(H,M)}^{(d)}(t_1, t_2, \ldots, t_g)$ of (H, M) is defined to be the greatest common divisor of all $(n-d)$-minors of A for $d = 0, 1, \ldots, n-1$. For $d \geq n$, we define $A_{(H,M)}^{(d)}(t_1, t_2, \ldots, t_g) = 1$.

The Alexander polynomial is an invariant for a basis of $H_1(E)$ up to multiplication by units in $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$. We fix a meridian system M of H. Then, we can assume that basis of $H_1(E)$ is M. Thus, the Alexander polynomial is an invariant for a pair consisting of H and M up to multiplication by units in $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$. For simplicity, we denote $A_{(H,M)}^{(g)}(t_1, t_2, \ldots, t_g)$ by $A_{(H,M)}(t_1, t_2, \ldots, t_g)$, because $A_{(H,M)}^{(g)}(t_1, t_2, \ldots, t_g)$ is useful for genus g handlebody-knots. We can obtain $A_{(H,M)}^{(d)}(t_1, t_2, \ldots, t_g)$ using Fox’s free calculus [5] or the C-complex for H [10].

The Alexander polynomial for (H, M) corresponds to the Alexander polynomial for a spatial graph Γ that represents H. In [7] and [8], Kinoshita introduced the Alexander polynomial for spatial graphs. In [9], Kinoshita introduced a basis of $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$ as a basis z of the integral first homology group $H_1(\Gamma)$ of Γ which is a dual basis of $H_1(E)$, and introduced the elementary ideals $E_d(\Gamma, z)$ associated with z as an invariant for spatial graphs. In [12], Suzuki introduced a representation of H as a g-leafed rose C. The basis of $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$ is determined by meridians of the constituent link of C for calculating the one-variable elementary ideal of H.

Let $\text{MCG}(\partial H)$ be the mapping class group of ∂H. Let $\text{MCG}^*(\partial H)$ be a subgroup of $\text{MCG}(\partial H)$ consisting of those homeomorphisms which can be extended to homeomor-
phisms of H onto itself. Let $\phi \in MCG(\partial H)$. Replacing a meridian system M with $\phi(M)$ of H corresponds to a change of basis for $H_1(E)$, which is represented by a matrix in $GL(g, \mathbb{Z})$.

That is, there exists a matrix

$$\begin{bmatrix}
x_1^1 & x_2^1 & \cdots & x_g^1 \\
x_1^2 & x_2^2 & \cdots & x_g^2 \\
\vdots & \vdots & \ddots & \vdots \\
x_1^n & x_2^n & \cdots & x_g^n
\end{bmatrix} \in GL(g, \mathbb{Z})$$

to $t_i' = x_1^i, x_2^i, \ldots, x_g^i$ for $i = 1, 2, \ldots, g$. Here $\{t_1, t_2, \ldots, t_g\}$ and $\{t'_1, t'_2, \ldots, t'_g\}$ are the basis of $H_1(E)$ induced from M and $\phi(M)$, respectively. Throughout this paper, we assume that the action of $GL(g, \mathbb{Z})$ on $\mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]$ is as above. Then the following lemma holds.

Lemma 2.2. $A_{(H, \phi(M))}(t_1, t_2, \ldots, t_g) = A_{(H,M)}(t'_1, t'_2, \ldots, t'_g)$.

We introduce an equivalence relation on $\mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]$ as follows: For two Laurent polynomials f_1 and f_2 in $\mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]$, we say that f_1 and f_2 are equivalent, denoted by $f_1 \sim f_2$, if f_1 is equal to f_2 up to multiplication by units in $\mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]$ and the action of $GL(n, \mathbb{Z})$ on $\mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]$.

We define an invariant for $\mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]/\sim$ as follows: For a Laurent polynomial $f = \sum_{i=1}^m c_i t_1^i t_2^i \cdots t_g^i \in \mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]$, let $T_i = c_i t_1^i t_2^i \cdots t_g^i$ be the i-th term of f, C_f the set $\{c_i\}$ of coefficients of terms T_1, T_2, \ldots, T_m, and P_f the set $\{p^i = (x_1^i, x_2^i, \ldots, x_g^i) \in \mathbb{R}^g\}$ of position vectors determined by the exponents of T_i for $i = 1, 2, \ldots, m$. Note that $x_j^i \in \mathbb{Z}$ for $j = 1, 2, \ldots, n$. The terms T_1, T_2, \ldots, T_m of f are mapped to mutually different terms of $\mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]$ through multiplication by units in $\mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]$ and the action of $GL(g, \mathbb{Z})$. Thus, the following lemmas hold.

Lemma 2.3. The set C_f, up to multiplication by ± 1 to all elements of C_f, is an invariant for $f \in \mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]/\sim$.

Lemma 2.4. The set P_f, up to parallel translation to all elements of P_f and linear transformation by $GL(n, \mathbb{Z})$ on \mathbb{R}^n to all elements of P_f, is an invariant for $f \in \mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]/\sim$.

Definition 2.5 (Vertex-weighted graph G_f). The vertex-weighted graph G_f for $f = \sum_{i=1}^m c_i t_1^i t_2^i \cdots t_g^i \in \mathbb{Z}[t_1^1, t_2^1, \ldots, t_g^1]$ is a simple bipartite graph whose vertex set is a disjoint union of a black vertex set and a white vertex set. The black vertex set consists of black vertices b_1, b_2, \ldots, b_m whose labels are c_1, c_2, \ldots, c_m, respectively. For each $(n+1)$-tuple of position vectors p^0, p^1, \ldots, p^g in P_f whose convex hull in \mathbb{R}^n contains no vectors of $P_f \setminus \{p^0, p^1, \ldots, p^g\}$, we take a white vertex labeled by the absolute value of the determinant of

$$\begin{bmatrix}
x_1^1 - x_1^0 & x_2^1 - x_2^0 & \cdots & x_g^1 - x_g^0 \\
x_1^2 - x_1^0 & x_2^2 - x_2^0 & \cdots & x_g^2 - x_g^0 \\
\vdots & \vdots & \ddots & \vdots \\
x_1^n - x_1^0 & x_2^n - x_2^0 & \cdots & x_g^n - x_g^0
\end{bmatrix}$$

The white vertex is connected to the $(n+1)$ black vertices $b_{i_0}, b_{i_1}, \ldots, b_{i_n}$ by edges. The simple bipartite graph thus obtained is G_f.

According to Lemma 2.3, the set of labels of black vertices up to multiplication by ± 1
are invariants for $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}] \sim$. The label of a white vertex is the n-volume of the n-parallelotope determined by the n vectors $p_i - p_j$, $p_j - p_k$, ..., $p_k - p_i$ in \mathbb{R}^n, which is an invariant for n-parallelotopes up to parallel translation and the linear transformation given by $GL(n, \mathbb{Z})$ on \mathbb{R}^n. Thus, according to Lemma 2.4, the labels of white vertices are invariants for $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}] \sim$. Note that if $m < n + 1$, then G_f does not have a white vertex and G_f is not connected.

An isomorphism of the vertex-weighted graphs G_f and G'_f is a bijection between the vertex sets of G_f and G'_f that maps the black vertex set and the white vertex set of G_f to the black vertex set and the white vertex set of G'_f, respectively, such that any two vertices of G_f are adjacent if and only if the images of the two vertices are adjacent in G'_f. If an isomorphism exists between G_f and G'_f, then G_f and G'_f are said to be isomorphic. The following lemma holds.

Lemma 2.6. The isomorphism class of the vertex-weighted graph G_f up to multiplication by ± 1 to all labels of the black vertices is an invariant for $f \in \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}] \sim$.

We define the vertex-weighted graph G_H for (H, M) as $G_{\Delta(H,M)(t_1,t_2,\ldots,t_n)}$. Note that G_H does not depend on the choice of the meridian system of H. We have the following theorem. This is the main result of this paper.

Theorem 2.7. The isomorphism class of the vertex-weighted graph G_H up to multiplication by ± 1 to all labels of the black vertices is an invariant for handlebody-knots.

Example 2.8. Let H be a handlebody-knot and M its meridian system as depicted in Fig.1. Then, the Alexander polynomial $\Delta_{(H,M)}(t_1, t_2)$ of (H, M) is $t_1^2 - t_1 + t_2 - t_2 + t_1 t_2$. We have $T_1 = t_1^2$, $T_2 = -t_1$, $T_3 = t_2^3$, $T_4 = -t_2$, and $T_5 = t_1 t_2$; $c_1 = 1$, $c_2 = -1$, $c_3 = 1$, $c_4 = -1$, and $c_5 = 1$; and $p_1 = (2, 0)$, $p_2 = (1, 0)$, $p_3 = (0, 2)$, $p_4 = (0, 1)$, and $p_5 = (1, 1)$ in \mathbb{R}^2, as depicted in Fig.2. We take the black vertex b_1 labeled with $c_1 = 1$. Similarly, we have b_2, b_3, b_4, and b_5 as depicted in Fig.3. For three tuple of position vectors $p_1, p_2,$ and p_3 in $P_{\Delta_{(H,M)}(t_1,t_2)}$ whose convex hull in \mathbb{R}^3, p_3 is in the convex hull. Therefore, G_H does not contain a white vertex connected to $b_1, b_2,$ and b_3.

For three tuple of position vectors $p_1, p_2,$ and p_4 in $P_{\Delta_{(H,M)}(t_1,t_2)}$ whose convex hull in \mathbb{R}^3 contains no vectors of $P_{\Delta_{(H,M)}(t_1,t_2)} \setminus \{p_1, p_2, p_3\}$, we take a white vertex labeled by 1 which is the absolute value of the determinant of $\begin{bmatrix} 1 & -2 & 0 & -2 \\ 0 & -1 & 0 & -1 \end{bmatrix}$. The white vertex is connected to the three black vertices $p_1, p_2,$ and p_4 by edges. Similarly, we have other white vertices, and we have G_H as depicted in Fig.3.
Fig. 2. Position vectors $p^1, p^2, p^3, p^4,$ and p^5

The following example shows that there exist infinitely many handlebody-knots whose invariants are mutually different.

Example 2.9. Let H_n be a handlebody-knot for $n \neq 0$ and M its meridian system, as depicted in Fig. 4. We have $A_{(H_n,M)}(t_1, t_2) = t_1^n + t_2 - 1$. The invariant G_{H_n} is as depicted in...
detecting the irreducibility using the quandle coloring invariant.

In this section, as an application of Theorem 2.7, we describe a sufficient condition for a handlebody-knot to be irreducible. A handlebody-knot H is reducible if there exists a 2-sphere in S^3 such that the intersection of H and the 2-sphere is an essential disk properly embedded in H. A handlebody-knot is irreducible if it is not reducible. In [12], Suzuki introduced the irreducibility as the “primeness” of handlebody-knots and demonstrated the uniqueness of the factorization of H. In [3], Ishii and Kishimoto provided methods for detecting the irreducibility using the quandle coloring invariant.

Let B_1 and B_2 be 3-balls in S^3 such that $B_1 \cup B_2 = S^3$ and $B_1 \cap B_2 = \partial B_1 = \partial B_2$. Let H_i be a genus g_i handlebody-knot in B_i for $i = 1, 2$. When $H_1 \cap H_2$ is one disk, $H_1 \cup H_2$ is a genus $g_1 + g_2$ handlebody-knot in S^3. We denote this by $H_1 \# H_2$, where we remark that the handlebody-knot $H_1 \# H_2$ depends only on the handlebody-knots H_1 and H_2. If a handlebody-knot H is reducible, then there exist handlebody-knots H_1 and H_2 such that $H = H_1 \# H_2$. As $S^3 \setminus H$ is the boundary-connected sum of those of H_1 and H_2, the fundamental group of $S^3 \setminus H$ is the free product of those of H_1 and H_2. Thus, the following lemma holds [12].

Lemma 3.1. For a genus g_1 handlebody-knot H_1 and genus g_2 handlebody-knot H_2 and their meridian systems M_1 and M_2, respectively, The Alexander polynomial $\Delta^{(g_1+g_2)}_{(H_1,H_2,M_1\cup M_2)}(t_1,t_2,\ldots,t_{g_1+g_2})$ of $(H_1\# H_2, M_1 \cup M_2)$ is the product of $\Delta^{(g_1)}_{(H_1,M_1)}(t_1,t_2,\ldots,t_{g_1})$ and $\Delta^{(g_2)}_{(H_2,M_2)}(t_{g_1+1},t_{g_1+2},\ldots,t_{g_1+g_2})$.

Because $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}]$ is a unique factorization domain, a Laurent polynomial $f \in \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}]$ can be uniquely expressed as $c f_1 f_2 \cdots f_m$, where $f_i \in \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}]$ is irreducible for $i = 1, 2, \ldots, m$ and $c \in \mathbb{Z}$. For a Laurent polynomial $f \in \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}]$, we define the set \hat{G}_f as follows:

$$\hat{G}_f = \begin{cases} \{ G_f | f \in \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}] \} & \text{if } f = 0 \\ \{ G_f | 1 \leq i \leq m \} & \text{otherwise}. \end{cases}$$

If $f = 0$, then \hat{G}_f is an infinite set. If $f = 1$, then \hat{G}_f is an empty set. From the definition of \hat{G}_f, we have the following lemma. We use this to prove Theorem 4.2 in Section 4.

Lemma 3.2. For Laurent polynomials f and f' in $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}]$, if $f | f'$, then $\hat{G}_f \subset \hat{G}_{f'}$.

![Fig.5. The vertex-weighted graph G_{H_n}](image)
We define the set $\hat{G}^{(d)}_H$ by $\hat{G}^{(d)}_{(H,M)}(t_1, t_2, \ldots, t_g)$ for the d-th Alexander polynomial $A^{(d)}_{(H,M)}(t_1, t_2, \ldots, t_g)$ of (H,M). By Theorem 2.7, $\hat{G}^{(d)}_H$ is an invariant for handlebody-knots.

For simplicity, we denote $\hat{G}^{(g)}_H$ by \hat{G}_H for genus g handlebody-knots. The following theorem gives a sufficient condition for a handlebody-knot to be irreducible.

Theorem 3.3. For a handlebody-knot H, if there exists $G_f \in \hat{G}_H$ that has a white vertex with a nonzero label, then H is irreducible.

Proof. Let H_i be a genus g_i handlebody-knot and M_i its meridian system for $i = 1, 2$. Set $H = H_1 \# H_2$ and $M = M_1 \cup M_2$. Note that H is a genus $g_1 + g_2$ handlebody-knot and M is its meridian system. We show that, for any $G_f \in \hat{G}^{(g_1+g_2)}_H$, all labels of white vertices of G_f are equal to zero. By Lemma 3.1, $A^{(g_1+g_2)}_{(H,M)}(t_1, t_2, \ldots, t_{g_1+g_2})$ is equal to the product of $A^{(g_1)}_{(H_1,M_1)}(t_1, t_2, \ldots, t_{g_1})$ and $A^{(g_2)}_{(H_2,M_2)}(t_{g_1+1}, t_{g_1+2}, \ldots, t_{g_1+g_2})$. Let $f \in \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_{g_1+g_2}^{\pm 1}]$ be an irreducible polynomial that is a factor of $A^{(g_1+g_2)}_{(H,M)}(t_1, t_2, \ldots, t_{g_1+g_2})$. Then, f is a factor of $A^{(g_1)}_{(H_1,M_1)}(t_1, t_2, \ldots, t_{g_1})$ or $A^{(g_2)}_{(H_2,M_2)}(t_{g_1+1}, t_{g_1+2}, \ldots, t_{g_1+g_2})$, because $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_{g_1+g_2}^{\pm 1}]$ is a unique factorization domain.

If f is a factor of $A^{(g_1)}_{(H_1,M_1)}(t_1, t_2, \ldots, t_{g_1})$, then all labels of white vertices of G_f are zero, because the label of the white vertex of G_f is the absolute value of the $(g_1 + g_2)$-volume of the degenerated $(g_1 + g_2)$-parallelepiped determined by the $g_1 + g_2$ vectors in the g_1-dimensional vector space $\mathbb{R}^{g_1} \subset \mathbb{R}^{g_1+g_2}$. Similarly, if f is a factor of $A^{(g_2)}_{(H_2,M_2)}(t_{g_1+1}, t_{g_1+2}, \ldots, t_{g_1+g_2})$, then all labels of white vertices of G_f are zero. Thus, Theorem 3.3 holds. \qed

Example 3.4. The handlebody-knot depicted in Fig.6 is 4_1 in the table of genus 2 handlebody-knots with up to six crossings in [4]. Let M be a meridian system of 4_1, as depicted in Fig.6. We have $A^{(4_1,M)}(t_1, t_2) = t_1 + t_2 - 1$, and $\hat{G}^{(4_1)}_4$ is as depicted in Fig.7. As $t_1 + t_2 - 1$ is irreducible, we have $\hat{G}^{(4_1)}_4 = \{4_1\}$. Because 4_1 has a white vertex whose label is 1, 4_1 is irreducible by Theorem 3.3.

The following example shows that there exists an irreducible genus g handlebody-knot for each genus g.

Example 3.5. Let H_g be a genus g handlebody-knot and M a meridian system of H_g, as depicted in Fig.8. Note that H_2 is 4_1. Taniyama showed that H_g is irreducible as a spatial graph [13]. We show that H_g is irreducible as a handlebody-knot using Theorem 3.3.

We have
Fig. 7. The vertex-weighted graph G_{41}

$G_{41}:

\begin{center}
\begin{tikzpicture}
\node[vertex] at (0,0) (1) {1};
\node[vertex] at (1,1) (2) {1};
\node[vertex] at (1,-1) (3) {-1};
\draw (1) -- (2);
\end{tikzpicture}
\end{center}

Fig. 8. A handlebody-knot H_g

\begin{center}
\begin{tikzpicture}
\node[vertex] at (0,0) (1) {m_1};
\node[vertex] at (1,1) (2) {m_2};
\node[vertex] at (1,-1) (3) {m_g};
\node at (2.5,0) {\ldots};
\draw (1) -- (2);
\draw (1) -- (3);
\end{tikzpicture}
\end{center}

\[A_{(H_g,M^g)}(t_1,t_2,\ldots,t_g) = \prod_{i=1}^{g} (t_i - 1) - \prod_{i=1}^{g} t_i = \sum_{i=1}^{g-1} (-1)^{g+i} \sum_{j_1,j_2,\ldots,j_i \in S} t_{j_1}t_{j_2}\cdots t_{j_i} + (-1)^g, \]

where $S = \{1,2,\ldots,g\}$ and j_1,j_2,\ldots,j_i are mutually different elements in S. By induction on g, we can check $A_{(H_g,M^g)}(t_1,t_2,\ldots,t_g)$ is irreducible. Hence, we have $\hat{G}_{H_g} = \{G_{H_g}\}$. The set $P_{(H_g,M^g)}(t_1,t_2,\ldots,t_g)$ has unit vectors e_1,e_2,\ldots,e_g and the zero vector 0 in \mathbb{R}^g. For each $(g+1)$-tuple of position vectors e_1,e_2,\ldots,e_g and 0 in $P_{(H_g,M^g)}(t_1,t_2,\ldots,t_g)$ whose convex hull in \mathbb{R}^g contains no vectors of $P_f \setminus \{e_1,e_2,\ldots,e_g,0\}$, we take a white vertex labeled by 1. Thus, G_{H_g} has a white vertex whose label is 1, and H_g is irreducible by Theorem 3.3.

4. Constituent links of a handlebody-knot

In this section, as an application of Theorem 2.7, we describe a necessary condition for a link to be a constituent link of a handlebody-knot. In [12], Suzuki introduced a g-leafed rose that is a connected spatial graph as follows: A g-leafed rose $C = K_1 \cup K_2 \cup \cdots \cup K_g \cup T$ consists of a g-component link $L = K_1 \cup K_2 \cup \cdots \cup K_g$ and a star graph T, as depicted in Fig. 9.
We call L the constituent link of C. For a genus g handlebody-knot, there exist infinitely many g-leafed roses representing the handlebody-knot. We define a constituent link of H as the constituent link of a g-leafed rose that represents H. Therefore, there exist infinitely many constituent links of H.

Let M be the meridian system of the constituent link L of C. Let $E_d(C,M)$ and $E_d(L)$ be the d-th elementary ideals of (C,M) and L, respectively; that is, the ideal of $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$ generated by all $(n-d)$-minors of the Alexander matrix of C and L, respectively. The following theorem was proved by Suzuki in [11].

Theorem 4.1. [11] $E_{d+g-1}(C,M) \supset E_d(L)$.

Proof. Let L be a g-leafed rose that represents H and M be the meridian system of the constituent link L of C. Then, we have the $(d+g-1)$-th Alexander polynomial $A_{d+g-1}^{(d+g-1)}(t_1, t_2, \ldots, t_g)$ of the pair (C,M) and the d-th Alexander polynomial $A_d^{(d)}(t_1, t_2, \ldots, t_g)$ of L.

The Alexander polynomials $A_{d+g-1}^{(d+g-1)}(t_1, t_2, \ldots, t_g)$ and $A_d^{(d)}(t_1, t_2, \ldots, t_g)$ can be uniquely expressed as $uf_1f_2 \cdots f_n$ and $u'f'_1f'_2 \cdots f'_m$, respectively, because $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$ is a unique factorization domain. Here, u and u' are units of $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$, and f_i, f'_j are irreducible in $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$ for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$. We have $\hat{G}_{H}^{(d+g-1)} = \hat{G}_{L}^{(d+g-1)}(t_1, t_2, \ldots, t_g)$.

By Theorem 4.1, $E_{d+g-1}(C,M) \supset E_d(L)$. If $A_{d+g-1}^{(d+g-1)}(t_1, t_2, \ldots, t_g) \neq 0$, then $A_{d+g-1}^{(d+g-1)}(t_1, t_2, \ldots, t_g) \nmid A_d^{(d)}(t_1, t_2, \ldots, t_g)$. By Lemma 3.2, $\hat{G}_{H}^{(d+g-1)} \subset \hat{G}_{L}^{(d)}$. If $A_{d+g-1}^{(d+g-1)}(t_1, t_2, \ldots, t_g) = 0$, then $A_d^{(d)}(t_1, t_2, \ldots, t_g) = 0$ by Theorem 4.1. Thus, we have $\hat{G}_{H}^{(d+g-1)} \subset \hat{G}_{L}^{(d)}$.

For simplicity, we denote $\hat{G}_{L}^{(1)}$ as \hat{G}_{L}. By Theorem 4.2, for a constituent link L of a genus g handlebody-knot H, $\hat{G}_{H} \subset \hat{G}_{L}$.
Fig. 10. The Hopf link L and the vertex-weighted graph G_L.

Example 4.3. In Example 3.4, we used G_{4_1} for 4_1. The 1st Alexander polynomial of the Hopf link L is 1, and G_L is as depicted in Fig.10. We have $\hat{G}_L = \emptyset$. As $\hat{G}_{4_1} \subset \hat{G}_L$, the Hopf link is not a constituent link of 4_1 by Theorem 4.2.

5. An equivalence class of handlebody-knots

In this section, we introduce an equivalence class of handlebody-knots. A handlebody-knot is represented by a connected spatial graph. A *crossing change* of a handlebody-knot H is a crossing change of a connected spatial graph that represents H. For a handlebody-knot H, a crossing change between two edges of H whose meridians are null-homologous in $S^3 \setminus H$ is called an N-*crossing change*. We say that handlebody-knots H_1 and H_2 are N-*equivalent* if they are transformed into each other by a finite sequence of N-crossing changes and an isotopy of S^3.

The following proposition shows that the Alexander polynomial is an invariant for N-equivalence classes of handlebody-knots up to multiplication by units in $\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_g^{\pm 1}]$. This proposition is thought to be mathematical folklore.

Proposition 5.1. The Alexander polynomial of a spatial graph Γ does not change under the N-crossing change on Γ.

Proof. Spatial graphs Γ_+ and Γ_-, which are as depicted in Fig.11, are identical outside a small 3-ball. Let G_+ and G_- be the fundamental groups of $S^3 \setminus \Gamma_+$ and $S^3 \setminus \Gamma_-$, respectively. We take the generators $a_i, a_{i+1}, a_j,$ and a_{j+1} of the Wirtinger presentation of G_+ and G_- around the crossing point, as depicted in Fig.11.

We have $r_1 : a_i = a_{i+1}$ and $r_2 : a_j a_i = a_{i+1} a_{j+1}$ as relators of G_+, and $r'_1 : a_j = a_{j+1}$ and $r_2' : a_j a_i = a_{i+1} a_{j+1}$ as relators of G_-. Therefore, we have the following presentations of G_+ and $G_-:

$$G_+ = \langle a_1, a_2, \ldots, a_m | r_1, r_2, \ldots, r_n \rangle, \quad G_- = \langle a_1, a_2, \ldots, a_m | r'_1, r_2, \ldots, r_n \rangle.$$
We assume that the generators \(a_i, a_{i+1}, a_j, \) and \(a_{j+1} \) are mapped to 1 by the abelianizer \(\alpha_+ \) of \(G_+ \) and \(\alpha_- \) of \(G_- \). Let \(A_+ \) and \(A_- \) be the Alexander matrices of \(G_+ \) and \(G_- \), respectively.

\[
A_+ \sim \begin{bmatrix}
\cdots & 0 & 1 & -1 & 0 & \cdots & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 1 & -1 & 0 & \cdots & 0 & 1 & -1 & 0 & \cdots \\
\cdots & * & c_i & c_{i+1} & * & \cdots & * & c_j & c_{j+1} & * & \cdots
\end{bmatrix}
\]

\[
A_- \sim \begin{bmatrix}
\cdots & 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 1 & 0 & 0 & \cdots & 0 & 1 & -1 & 0 & \cdots \\
\cdots & * & c_i & c_i + c_{i+1} & * & \cdots & * & c_j & c_{j+1} & * & \cdots
\end{bmatrix}
\]

\[
A_+ \sim \begin{bmatrix}
\cdots & 0 & 1 & 0 & 0 & \cdots & 0 & 1 & -1 & 0 & \cdots \\
\cdots & * & c_i + c_{i+1} & * & \cdots & * & c_j & c_{j+1} & * & \cdots
\end{bmatrix}
\]

\[
A_- \sim \begin{bmatrix}
\cdots & * & c_i + c_{i+1} & * & \cdots & * & c_j + c_{j+1} & * & \cdots
\end{bmatrix}
\]

Similarly, \(A_- \sim \begin{bmatrix}
\cdots & * & c_i + c_{i+1} & * & \cdots & * & c_j + c_{j+1} & * & \cdots
\end{bmatrix} \). Thus, we have \(A_+ \sim A_- \). □

By Proposition 5.1, we have the following corollary of Theorem 2.7.

Corollary 5.2. The isomorphism class of the vertex-weighted graph \(G_H \), up to multiplication by \(\pm 1 \) to all labels of the black vertices, is an invariant for the \(N \)-equivalence classes of handlebody-knots.

Example 5.3. The handlebody-knot depicted in Fig.12 is \(5_4 \) in the table of genus 2 handlebody-knots with up to six crossings in [4]. It is clear that \(5_4 \) is \(N \)-equivalent to the trivial handlebody-knot \(0_1 \). Thus, \(\Delta_{(5_4,M)}(t_1,t_2) = \Delta_{(0_1,M)}(t_1,t_2) = 1 \).

\[
5_4:
\]

Fig.12. The handlebody-knot \(5_4 \)

Appendix A Table of \(G_H \) and \(\hat{G}_H \)

In this appendix, we present the table of \(\Delta^{(2)}_{(H,M)}(t_1,t_2), G_H, \) and \(\hat{G}_H \) for handlebody-knots in the table of genus 2 handlebody-knots with up to six crossings in [4]. Here, \(M \) is a
meridian system of H. Let G_1, G_2, G_3, G_4, and G_5 be the vertex-weighted graphs depicted in Fig.13. Then, we have Table 1.

Acknowledgements. The author would like to thank A. Ishii for helpful comments. This work was (partly) supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

Fig.13. The vertex-weighted graph G_1, G_2, G_3, G_4, and G_5.
Invariant Derived from Alexander Polynomial

Table 1. Table of $\Delta^{(2)}_{(H,M)}(t_1, t_2)$, G_H, and \hat{G}_H.

<table>
<thead>
<tr>
<th>H</th>
<th>$\Delta^{(2)}_{(H,M)}(t_1, t_2)$</th>
<th>G_H</th>
<th>\hat{G}_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_1</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4_1</td>
<td>$t_1 + t_2 - 1$</td>
<td>G_3</td>
<td>$[G_3]$</td>
</tr>
<tr>
<td>5_1</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>5_2</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>5_3</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>5_4</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_1</td>
<td>$t_1^2 + t_2 - 1$</td>
<td>G_4</td>
<td>$[G_4]$</td>
</tr>
<tr>
<td>6_2</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_3</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_4</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_5</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_6</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_7</td>
<td>$t_1t_2 - t_1 - t_2 + 2$</td>
<td>G_5</td>
<td>$[G_5]$</td>
</tr>
<tr>
<td>6_8</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_9</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_{10}</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_{11}</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_{12}</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_{13}</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6_{14}</td>
<td>$t_1^2 - t_1 + 1$</td>
<td>G_2</td>
<td>$[G_2]$</td>
</tr>
<tr>
<td>6_{15}</td>
<td>$t_1^2 - t_1 + 1$</td>
<td>G_2</td>
<td>$[G_2]$</td>
</tr>
<tr>
<td>6_{16}</td>
<td>1</td>
<td>G_1</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

References

Osaka City University
Advanced Mathematical Institute
3–3–138 Sugimoto, Sumiyoshi-ku Osaka 558
Japan

e-mail: sokazaki@sci.osaka-cu.ac.jp