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Introduction

It is well known that for solutions of nonsingular finite-dimensional

stochastic differential equations (and, more generally, for strongly Feller

irreducible Markov processes in locally compact state spaces) there are

only two possibilities of asymptotic behavior. If there exists a stationary

distribution (that is, an invariant probability measure) then all solutions

converge to it in distribution and the strong law of large numbers holds

true. On the other hand, if there exists no stationary distribution then

all solutions "escape to infinity in distribution'' (in the sense specified

by the formula (0.4) below). More specifically, consider a stochastic

differential equation

(0.1) dξ(t) = b(ξ(t))dt + σ(ξ(t))dωty ξ(0) = xeR\

in Rn where the coefficients b: Rn^Rn and σ: Rn-*RnXn are, for

simplicity, globally Lipschitzian, ωt is a standard w-dimensional Wiener

process and (τ(y)σ*(y)>0y yeRn. If there exists a stationary distribution

μ for the equation (0.1) then

(0.2) PJi Γφ(ξ(t))dt-+ Ldμ,T->α> 1 = 1

holds for every xeRn and every μ-integrable function φ: Rn-±Ry and

(0.3) P(tyxyA)-+μ(A)y t-+co

holds for xeRn and Ae@(Rn) (the Borel sets on Rn)y where P = P(tyxyA)

stands for the transition probability function corresponding to the solutions

of (0.1). If there exists no stationary distribution, then

(0.4) P(t,x,K)-+0, t^co
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holds for any xeRn and K cz Rn, K compact ([20], [31], [32]). The aim

of the present paper is to check validity of a similar statement for

semilinear stochastic evolution equations. In order to demonstrate the

principal difference between finite and infinite dimensional stochastic

differential equations let us consider the linear stochastic evolution quation

of the form

(0.5) dX=AXdt + dWu X(0) = x

in a real separable Hubert space H, where A is an infinitesimal generator

of a strongly continuous semigroup S = S(-) on H and Wt stands for a

cylindrical Wiener process on H with a bounded self-adjoint (not

necessarily nuclear) covariance operator Q>0. It is assumed that

ί
Jo

(0.6) |S(O01/2lSsdf<oo, Γ>0,
Jo

where | | H S stands for the Hilbert-Schmidt norm, so there exists a mild

solution to (0.5) which is given by the formula

(0.7) X(t) = S(t)x+ S(t-r)dWr, t>0.

Jo

Although the equation (0.5) is a (linear) infinite-dimensional analogue of

(0.1) the picture described by (0.2)-(0.4) is no more true. For instance,

in [28] (Example 3.8) an equation of the form (0.5) is studied which

admits infinitely many stationary distributions, so (0.2) and (0.3) cannot

hold. In this example, one has iϊ=L2(0,oo), the semigroup generated

by A is

S(t)x(s) = eλtx(t + s), ί>0,5>0,

where λ>0 is fixed, and W is a suitable Wiener process in H such that

Q>0 and Q is nuclear. (The counterexample in [28] is a modification

of Zabczyk's example proposed in [37], Prop. 7. See also [22], Sect. 5,

for a discussion of a closely related example with the operator A bounded.)

However, even in the case when the semigroup S is exponentially stable

and, therefore, there exists a unique stationary distribution, (0.2) and

(0.3) need not be true (cf. Remark 3.9 below). Nevertheless, as shown

in the present paper, there exists a fairly large class of semilinear stochastic

evolution equations, covering stochastic parabolic problems with noise

term "enough nondegenerate", for which the dischotomy (0.2)-(0.4) holds

true.

The classical proof of (0.2)-(0.4) is based on the well known method
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of embedded Markov chains or cycles (cf. [16], [20], [21], [32]), and the
method used in this paper is basically the same. Some difficulties are
caused by lack of local compactness of the state space, and the above
mentioned counterexamples suggest that this problem is substantial. It
is avoided by an assumption that the solutions live in a smaller space
compactly embedded into H which is typically satisfied for parabolic
problems. The method of embedded cycles itself can be of some
independent interest as it is widely used, for instance, in control theory.
Existence and uniqueness of stationary distributions and the related
problems of asymptotic and ergodic behavior for stochastic evolution
systems were studied by numerous authors, for instance, [2]—[5],
[12]-[14], [18], [19], [24]-[29], [36], [37]. The present paper is especially
related to the previous results on invariant measures by G. Da Prato and
J. Zabczyk ([2], [4], [5], [36], [37]), M. Freidlin ([12]), T. Funaki ([13],[14])
and one of the authors ([26]-[29]). For example, the statement on the
uniqueness of the invariant measure (Corollary 3.7) is an extension of
some earlier results contained in the above quoted papers.

The paper is divided into four sections including this Introduction.
Section 1 contains some basic notation and preliminary results on the
equation under consideration. Also, the basic assumptions are formulated
there. Since the assumptions are given in a rather general form, some
sufficient conditions for the particular assumptions to be fulfilled are also
stated. The main result of Section 2 is Theorem 2.9 stating that there
exists a σ-finite invariant measure provided the solution is recurrent. For
this purpose a Lyapunov type statement for exit from a bounded domain
is established (Lemmas 2.2, 2.3) and an embedded Markov chain is
constructed. The main result of Section 3 is the strong law of large
numbers of Hopf s type (the ratio ergodic theorem, Theorem 3.2) and
its consequences, including uniqueness of an invariant measure and the
dichotomy of the type (0.2)-(0.4). Two Examples are given at the end
of Section 3 (one of them being a system of stochastic reaction-diffusion
equations). An abstract theorem on the uniqueness of a σ-finite invariant
measure for fairly general Markov processes, that is needed in Section
3, is deferred to Appendix.

Given a Banach space Y we denote by &( Y) the σ-algebra of Borel
sets on y, $P{ Y) stands for the space of probability measures on Y, Var
is the total variation of a signed measure over the whole space. A nonzero
non-negative σ-finite measure μ on J ( 7 ) is called an invariant measure
for a Markov process with a state space Y and a transition probability
function P=P(t,xyA),t>0,xe Y,Ae@(Y), if

μ{A)=\ P(t,x,A)dμ(x)
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holds for all Ae3#(Y)y ί>0. An invariant measure μe£P(Y) is also called
a stationary distribution. We denote by B(Y) and C(Y) the spaces of
all bounded measurable and continuous functions on Y, respectively,
and Cl r A stands for the closure of the set A a Y in the topology of
Y. By ££(X, Y) we denote the space of all bounded linear operators
defined on a Banach space X with the range in the space Y and we put
S?(X) = &(XyX). The symbols 3> and M stand for the domain and the
range of an operator, respectively. By Clf2(G) we denote the space of
all functions v: G->Ry G ^ Λ + x Z a n open set, such that the Frechet
derivatives vtyvχyvxx (teR + yxeX) exist and are continuous on G. The
symbol N(ayΓ) stands for the Gaussian measure with the mean value a
and the covariance operator Γ. Some more notation is introduced in
Section 1.

1. Assumptions and preliminary results

In this section the general assumptions are formulated and in some cases
sufficient conditions for them to be satisfied are given. Consider a
semilinear stochastic evolution equation of the form

(1.1) dX(t) = (AX{t) +f(X(t)))dt + άWu X(0) = x

in a real separable Hubert space H where the linear operator A generates
a strongly continuous semigroup S on Hy Wt is a cylindrical Wiener
process defined on a probability space (Ωy^yP) with a bounded covariance
operator Q which is positive, i.e., <Q^,>')>0 holds for a\\yeHyyΦ0. The
norm in H will be denoted by | | H or, if there is no danger of confusion,
simply by | |. Our first assumption is

(Al) |S(ί)01/2lHsdf<oo for some T>0.

Jo

The assumption (Al) is obviously satisfied if the operator Q is
nuclear,which corresponds to the important particular case when the
Wiener process is a genuine //-valued Wiener process (see also Examples
3.8 and 3.10). If (Al) is fulfilled then the process

Zx(t) = S(t)x+\ S{t-r)άWry t>0y xeH
Jo

is a well defined //-valued Gaussian process with the transition semigroup
Pt on B(H) of the form
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Φ(y)dN(S(t)x,Qt)(y), t>O,xeH,ΦeB{H),

where

Qt=\ S(r)QS*(r)dr.
Jo

However, we need the process Zx to evolve as a Markov process in a
smaller space. Therefore we will assume
(A2) There exists a separable Banach space E=(E, || ||) compactly embedded
into H such that the restriction S\E is a strongly continuous semigroup on
E and the process

I S(--r)dWr

o

has an E-valued, E-continuous modification Z. There exists a family
of sub-σ-fields in 3F such that the process Z is (3F^-adapted and for arbitrary
t>0 the processes

Z(r) = Z(t + r)-S(r)Z(t), r>0,

are independent of 3P\ and have distributions identical with Z(r).
The condition (A2) has been studied in various aspects, for instance, in
[2], [6] and [36] (see also Examples 3.8 and 3.10 below). The following
assumption (A3) is in fact a condition on the nonlinear term /. It is
formulated in terms of the deterministic integral equation

• Γ S ( t -
Jo

(1.2) u(t) = S(t)x+\ S(t-r)f(u(r))dr + Φ(t), t>0,

where xeH, and

ΦeC0([0,T],E) : = {ξeC([0,T],E); ξ(0) = 0}.

Denote by u(.,x>Φ) the solution to (1.2) provided it exists and assume

(A3a) The function f: E-^H is H-Lipschitzian on bounded sets in Ey that
is, \f(x)~f(y)\<LN\x-y\ holds for all xiyeE9\\x\\ + \\y\\<N9N>09 where
LN<co.
(A3b) For every xeH, ΦeCo([0,ϊ],jB) there exists a unique solution
u = u(,x,Φ) of the equation (1.2), ueC(ίO9T],H)nC((O9T\,E). Moreover,
u(',x,Φ)eC([09T]9E)for xeE.

The mild solution of the equation (1.1) is defined as an //-continuous
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(#\)-nonanticipative process X satisfying

(1.3) X(t) = S(t)x+\ S(t-r)f(X(r))dr + Z(t), t>0.
)o

The above definition corresponds to the usual concept of a mild solution
of a stochastic evolution equation. Taking into account the fact that

= u(t,x,Z) we have by (A3) and [36] (Theorem 3)

Proposition 1.1. Let (A1)-(A3) be satisfied. Then there exists a
unique mild solution of the equation (1.1). The family of solutions to (1.1)
for all xeE defines a homogeneous Markov process (X(t),Px) on E (and,
consequently, on H).

The following assumption (A4) has more technical nature. It is a
kind of "uniform nonexplosion" and "continuous dependence" condition
on the solutions of the integral equation (1.2). In the sequel we denote
by E = E(T) the space Co([0,T],E) endowed with the norm ||g||_
= sup{ ||£(f)||; ίe[0,ΓI}. Assume
(A4a) For every R>0

sup{Kf,*,Φ)||; te[0,RlxeE,\\x\\£R,ΦeE(R)Λ\Φ\\~£R}<co,

(A4b) u(,xnyΦn)^>u(',x,Φ) in E(T) for every T>0 whenever xn-^x in
EyΦn->Φ in E(T).

In the following proposition we give more explicit sufficient conditions
for (A3), (A4) to be satisfied.

Proposition 1.2. Assume that /: E->H is globally Lίpschίzian,
S{i)eSe{HyE) for t>0 and the estimate \\S{t)\\^{HE)<ct~a,te{QyT)y holds
for some £>0,T>0,0<α<l.

Then the assumptions (A3b) and (A4) are fulfilled.

Proof. (A3b) is shown by a fixed point argument in the Banach space

y = {yeC(φ,T\,E) \\y\\y.= sup f\\y{t)\\ <«>}
ίe(0,Γ]

(cf. [33], Proposition 4.1 for a related proof)- Fix xeH, Φe£ and for
YeS? set

• Γ S ( t -
Jo

A(Y)(t) = S(t)x+\ S(t-r)f(Y(r))dr + Φ(t), te(0,T}.
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It can be checked in a standard way that A(y)( ) e C((0,T]yE). Moreover,

sup t"\\A(Y)(t)\\<k\x\+ sup t*\\ I S(t-r)f(Y(r))dr\\
0<t<T 0<t<T Jo

+ sup f||Φ(ί)||
0<ί<Γ

upία (t-r)~a\\
t Jo

F(r) II dr

for some constants k> Kly K2. Thus

and it follows that Λ maps Of into Sf\ In order to show contractivity
of Λ introduce an equivalent norm || ||6,

\\y\\h= sup e-btf\\y{t)\\,
o<t<τ

where b>0. For X,Y&£f we have

r)(f(X(r))-f(Y(r)))dr\\< supe-
bIia|| f S(t-

t Jθ

<cKf\\X-Y\\bsupe-btta {t-
t Jo

where Kf is the Lipschitz constant of/: E-+H. Therefore for enough
large b the mapping Λ is a contraction and, consequently, the integral
equation (1.2) has a unique solution in C((OyT\yE) for xeH. For xeE
we have

\\u(t,x,Φ)\\<\\S(t)\\^E)\\x\\+cL\ (t-r)-«dr
Jo

I/o
for some constant L. For R>0 set
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So if \\x\\<R, | |Φ|U<i? then

\\u(tyxyΦ)\\<CR + cL (t-r)-"\\u(ryxyΦ)\\dry te(OyT].
Jo

By the generalized Gronwall lemma ([17], Lemma 7.1.1) there exists a
constant MR depending only on CRycyL and T such that

sup ||fi(f,
0<ί<Γ

and (A4a) follows. Furthermore, for xneEyΦneE we have

|| u(tyxnyΦn)-u(tyx,Φ)|| < ||S(t)|| <?(E)\\xn-x\\

+ \\Φn(t)-Φ(t)\\+ I (t-ry*\f(u(ryxnyΦn))-f(u(ryxyΦ))\dr.

By the Lipschitz continuity of / we get

\\u(tyxnyΦn) — u(tyxyΦ)\\<K(\\xn — x\\ + \\Φn — Φ\\^

+ Γ (t-rΓ*\\u(ryxnyΦn)-u(ryxyΦ)\\ dr)
Jo

and (A4b) follows by the generalized Gronwall lemma. We shall verify
(A3b). For xeH we have

S(t-r)f(u(r))dr\< sup |5(ί)|^(ιi, f IΛ«(r))| dr
0 0<ί<Γ J

f IΛ«(
Jo

<KL\ (l + ||fi(r)||)dr^«wMf. | |u | |^ r~adr->0, t-+0-
Jo Jo

and it follows that ueC([OyT]yH). Furthermore, if xeE then

|| \ S(t-r)f(u(r))dr\\<c\ (t-rΓ"\f(u(r))\dr
Jo Jo

<cL sup (l + ||M(ί)ll) (t-r)-"dr->Oy

0<t<T Jo
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by (A4a). Thus ueC([0,T],E) and (A3b) is verified.
Q.E.D.

The remaining assumptions (A5), (A6) can be viewed as "nondegener-
acy conditions". It is well known (cf. [21], Chapter 4) that if the
dimension of H is finite then (A5) and (A6) are always satisfied (recall
that the covariance operator Q of the Wiener process W is positive).
Denote by P = P(tyxyA)yt>OyxeHyAe@(H)y the transition probability
function corresponding to the solution of (1.1). Assume
(A5) (the strong Feller property in H)

P(tyxnyA)-*P(tyxyA) as xn-+x in H

for all t>OyAe@(H).
The strong Feller property has been studied in the context of stochastic
evolution equations in [4], [24], [26]. In the linear case (f=Q) the
assumption (A5) is equivalent to the condition

(1.4) #0S(f)) ^ @(Ql/2) for all t > 0

(cf. [29], Proposition 2.5). For the general case a sufficient condition is
given in the statement below.

Proposition 1.3. Let (A1)-(A4) be fulfilled. Let {et} be an
orthonormal basis in H contained in Q)(A). Denote by Un the orthogonal
projections onto

and set

An = UnAUni Sn(t) = exp(tAn),

Bt = QΓ 1/2S(t), Bun = Q-^2Sn(t)Πny Qun = I Sn(r)ΠnQπnS*n(r) dr.
Jo

Assume that {ej can be chosen such that

(1.5) sup{\Sn(t)Unx-S(t)x\; te[0,T\}"^?0, Γ>0, x

(1.6) sup \Sn(t)\^(H)<C, te[OyT]
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(1.7) sup\BtJ^H) + \Bt\^H)<CΓβ, te(0,T]

hold for some C>0, /?e(O,l).
Then the strong Feller property (A5) holds true.

If / is extendable to a bounded globally Lipschitzian function on H
then the proof of Proposition 1.3 follows immediately from [1], Theorem
4.2, where appropriate smoothing properties of the backward Kolmogorov
equation corresponding to (1.1) are proved under the conditions
(1.5)-(1.7). These results yield

Yar(P(t,x,-)-P(t,y, ))<C2t^\x-y\, x,yeH,te(0,T]

for any T>0 and some C2 = C2(T)>0. For general / we can proceed
by the truncation procedure (cf. [29] for details).

The last assumption is
(A6) For every T>0 the Gaussian measure λ induced by the process Z in
the space 2? = C([0,T],i?) is full in E, i.e., the closed support supρ(A) of λ
is the whole space E.
Define the operator Jf: L2(0,T,//)^C0([0,T],/7) by

Jίry(t)=\ S(t-r)Qlί2y(r)dr, te[0,T].
Jo

If (A2) is fulfilled and

(1.8)

(1.9)

holds for all T>0 then (A6) is satisfied. This follows from the fact that
the reproducing kernel Hubert space Hλ of λ on E coincides with
equipped with the norm

|v|λ = inf {|M|L2(0,7\H);

(cf. [34], the proof of Theorem 3), thus

Proposition 1.4. Assume (A2) and let one of the conditions (D1),(D2)
be fulfilled:

(Dl) Qx/2e&(H,E) and @(Q1/2) is dense in E,
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(D2) S(t)e^(HyE) for t>0 and \\S(t)\\<?(H E)<h(t)y fe(0,Γ), where
heL2(0,T).

Then (A6) is satified.

Proof. It is straightforward to verify that each of the conditions
(Dl), (D2) implies (1.8),(1.9) (cf. [29], Proposition 2.7 and Proposition
2.8 for details).

Q.E.D.

The assumption (A6) is used below in the proof of irreducibility of
the solution X of (1.1) (Proposition 1.5) and the embedded Markov chain
(Lemma 3.1).

Proposition 1.5. Assume (A1)-(A4) and (A6). Then the transition
probability function P(tyxy.) corresponding to the equation (1.1) has the
irreducibility property: (I) P(tyx,U)>0 holds for every xeH, t>0y U^Ey

U open and nonempty.

Proof. Without loss of generality put U={veE; \\v — z\\<r} for
some zeEy r>0. At first assume that xeE and set

, . . 5 t—S

Φ(s) = -z + x,

= Φ(s)-S(s)x- S(s-u)f(Φ(u))duy

Jo

5 6[0,T]. Clearly ξeE and by (A4b) there exists an ε>0 such that

\\u('yxye)-u('yxyξ)\\E<r

whenever eeE, \\e — ξ\\^<ε. Therefore (I) holds true because X{t) =
u(tyxyZ) and

P[||Z( ) - ί l U < β ] > 0

by (A6). Now we drop the assumption xeE. For any τ>0, xeH we
have P{τyxyE) = \ by (A3), so taking 0 < τ < ί we get

P(tyxyU)=\ P(t-τyyyU)P(τyxydy)=\ P(t-τyyyU)P(τyxydy)>0
JH JE
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by the preceding part of the proof.

2. Existence of a σ-finite invariant measure

QΈ.D.

In this section a σ-finite invariant measure for recurrent solutions of
(1.1) is constructed. For this purpose some auxiliary results are proved
at first. Lemma 2.1 below is a version of the Itό formula. Denote by
TV the trace of an operator and by Jέf 1(iί) the space of nuclear operators
on H endowed with the trace norm \-\i. Together with (1.1) let us
consider the equation

(2.1) dX(t) = (AX(t)+g(X(t))dt + dWo

where g: H-^ H is globally Lipschitzian.

Lemma 2.1. Assume (Al) and let there exist a function υeCi2

((0,T)xH) such that (vx(tyx),Ax} ,(*,*) e (0,7) x 9(A), is extendable to a
continuous function h on [OyT]xHy vxx(t,x)e Sf^H) and

(2.2) I vt(t,x)\ +1 v(t,x)\ +1 vx{t,x)\H +1 vxx{t,x)\ x + h(tyx)

<£(1+|*|&), (t,x)e[0,T\xH,

for some k>0, p>0. Then

υ(t,X(t))-v(s,X(s))

(2.3)

\vx(u,X(u)),dWu}

holds for 0<s<t<T.

This statement is basically proved in [18], Theorem 3.2. The
difference is that Q need not be a nuclear operator in Lemma 2.1 which
is however compensated by nuclearity of vxx (see also [8], Proposition
3.4 for a similar result).
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L e m m a 2.2. Let the assumptions of Lemma 2.1 be satisfied for every
T > 0 with a function veCx 2(R + xH) and let U be an open domain in Hy

xeU. Assume that v>0 on R+ x Uy

(2.4) Lv(syy)< -a(s)y (S)y)e(OyT)x {β(A)nU)y

where a>0 satisfies the condition

Jo
(2.5) b(t)=\ «(s)di->oo, ί->oo,

and

( 2 6 ) Lv(s,y) = (Ay,vx(s,y)} + (g(y),vx(s,y)}

Then

(2.7)

where τ is the exit time of X from the domain U. Moreover,

(2.8) Exb(τ)<v(0yx)y xeU.

Proof. Denote by τn the exit time from the ball {yeH; \y\ <«}, τπ(ί) =
min(τ,τn,ί) Lemma 2.1 and (2.4) yield

= EX

(g(X(r))yvx(ryX(r))} + X-Tr{v xx{r yX{r))Q)\dr

<-Ex\ a(r)dr=-Exb(τn(t))
Jo

for t>0. It follows that

Exb(τn(t))<v(Oyx)y

thus taking at first M->OO we obtain

(2.9) Exb(min(τyt))<v(O,x)
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and then passing ί->oo we get (2.8) by the Fatou lemma. Now (2.7)
follows directly from (2.5) and (2.8).

Q.E.D.

Denote by τυ the exit time of the solution of (1.1) from an open
set U^E.

Lemma 2.3. Assume (A1)-(A3) and let U be a bounded open set in
E. Then

(2.10) sup^τ^; xeU}<oo.

Proof. From (A3) it follows that there exists a globally Lipschitzian
function g: H -> H such that g(x) =f(x) for xβU. Let We: H be a bounded
open set in H such that UaW and denote by τ the exit time of the
solution X of the equation (2.1) from W. Clearly τυ<τ a.s., hence it
suffices to prove

(2.11) supl^τ; xeU}<oo.

We use Lemma 2.2 with the Lyapunov function

2]y (tyx)eR+xHy

where ze&ι(A*)y zΦQ is fixed and y>0, c>0, d>0 and weiVare constants
which are specified below. Take d>0 such that

y xeWy

and neN such that

- 2«*,*> + d)«M(x),z} + <x,A*z}) - {In -1 )<^,^> < - 1 , xeW,

and set

xeW

Thus we get v(tyx)>0 for ί>0, xeW and since

(2.12) + n((xyz} + d)2n~2[- 2((xyz} + d)«g(x)yz)

+ <xyA*z))-(2n-\KQzyz}]\y
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teJR + , xe^(A), we obtain choosing γ>0 small enough

for some k1>0. Furthermore, the function

2-1(xyA*zy, teR + ,

is continuously extendable on R+ x H, vxx(t>x) is nuclear and the estimate
(2.2) holds with suitably large k>0y p>0. Thus we can apply Lemma
2.2 which yields

Exe
γτ<kϊxγ(l+v(O,x))y xeW.

Consequently,

sup Exτv < sup Exτ < oo.
xeU xeW

Q.E.D.

REMARK. The preceding two lemmas are infinite-dimensional
analogues of corresponding results for diffusions in Rn (cf. [21], Theorem
3.7.1 and Corollary 3.7.2). Note that the condition Q>0 can be relaxed
to QΦO (then there exists ze@(A*) such that (Qz,z}>0).

Lemma 2.4. Assume (A1)-(A4). Then given a bounded set A^E
there exists a centered open ball W in E containing A and such that

(2.13) lim sup Px[τw<i]=0,
t->0+ xeA

where τw stands for the exit time of the solution of (1.1) from W.

Proof. Take R>0 such that A a UR = {xeE; \\x\\<R}. By (A4)
there exists an M>R such that for the solution u = u(yx,Φ) of the equation
(1.2) we have

sup{||M(f,*,Φ)||; xeURy te[0,R], Φe£(Λ), ||Φ|

The ^-continuity of Z and Z(0) = 0 yield

lim P[sup \\Z(s)\\>R] = 0.
ί->0+ S€[O,ί]
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Since X(t) = u(t,xyZ(t)), we can set W= UM = {xeE; | | * |
Q.E.D.

For A^E we will denote by τA the first hitting time of C\EA by
the solution of the equation (1.1).

DEFINITION 2.5. Let U be an open nonempty set in E. Then
the process X defined by (1.1) is said to be U-recurrent if

(2.14) PJV 7 < oo] = 1

holds for all xeE. The process X is said to be recurrent if it is [/-recurrent
for every nonempty open set U in E.

REMARK 2.6. Note that if (A1)-(A3) is assumed and the process X is
[/-recurrent then (2.14) is satisfied for all xeH, because for any t>0,
XGH we have P(t,xyE) = 1, and therefore

Px[τu<oo]> I Py[τu<oo]P(t,xydy)=\ Py[τu <oo]P(t,xydy) = l.
JH JE

Now we are ready to construct a Markov chain which plays an essential
role in the proofs of the main results of the paper. The Markov chain
is obtained by stopping the process X at certain random times similarly
as, for instance, in [16], [20], [21], [32]. Assume that the conditions
(A1)-(A5) are satisfied and X corresponding to (1.1) is [/-recurrent with
respect to a bounded open set U in E. Note that since X is a continuous
Feller process, it is strongly Markov. Denote by W the open ball in E
containing U such that

lim sup PJC[τWr<ί] = 0
t-+0 + xeU

the existence of which follows from Lemma 2.4. Let τ 0 be the first
hitting time of B = C\EU by the process X. Let σ1 =inf{ ί>τ 0 ; X(t)φ W)
be the first exit time from W after τ 0 . By the /^-continuity of trajectories
of X we have σi > τ 0 a.s. and by the strong Markov property and Lemma
2.3 it follows that σ x <oo a.s.. Define further τ 1 = i n f { ί > σ 1 ; X(i)eB)
the first hitting time of B after σ± and by induction

σn + ϊ = inf{t>τn; X(t)φW}, τn + 1=inf{t>σn + 1; X(t)eB}y neN.
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Obviously τπ, σn are stopping times and τn_ γ <σn<τn for neN. It follows
from [30], Theorem 3, that the random sequence

Yn = X(τn)y neNy

is a homogeneous Markov chain. Denote by p=p(xyA)y xeH, Ae@l{H)y

the transition probability function of the chain Y, i.e., p(xyA) = Px[Y1 eA]y

and set

p"(x,A)=Px[YneA].

Lemma 2.7. Assume (A1)-(A5) and let the process X be U-recurrent
with respect to a bounded open set UczE. Then the Markov chain (Yn) is
strongly Feller in Hy i.e., pn(-yA) is continuous on H for every neNy

Ae^(H).

Proof. Let us choose n>\ and a bounded measurable function φ:
H -> R arbitrarily, we aim at proving that the function Φ: H-+Ry

Φ(x):=Ex\l/(X(τn)) is continuous on H. For any t>0 we have

First,

lim sup|Φ[2)(Λ;)|<sup|^| lim sup Px[τn<i]
ί-*0+ xeH H ί->0+ xeH

= sup\φ\ lim sup Py[τn<t]p°(xydy)
H t-+0+ xeH JB

<suρ|^| lim sup Py[τw<t]p°(xydy) = 0
H t-+0+ xeH JB

by Lemma 2.4, where p°(xy.) stands for the probability distribution of
X(τ0). Further, take ue(0yt) and define a bounded measurable function
κt.u on H by fcί.ll(y) = £^(X(τII))χ[τι i>l_ l l ]. Then

Φ?\x) = ExEX(u)[φ(X(τn))χ[τn>t_u]] =Exκt_u(X(u))

= κt_u(z)P(uyxydz)y

JE

therefore all the functions Φjυ, ί>0, are continuous by (A5). Thus Φ
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is a uniform limit of continuous functions Φ\ ' on H and the strong Feller
property of (Yn) follows.

Q.E.D.

In the sequel denote by dU the Z?-boundary of J7, that is

eυ=c\E(U)\u.

Proposition 2.8. Assume (A1)-(A5) and let the process X be
U-recurrent with respect to a bounded open set U^E. Then there exists a
stationary distribution μ (that is, an invariant measure in έP(dU)) for the
Markov chain Y.

Proof. The chain Y evolves in the set dU and, therefore, also in the
bigger set K=C\H(dU). The set K is compact in H due to compactness
of the embedding E c; H. Thus Y is a Markov process which is Feller
and takes values in a compact state space. Hence there exists an invariant
measure μ in &(K), clearly μe^(dU).

Q.E.D.

Now we can formulate the main result of the section.

Theorem 2.9. Assume (A1)-(A6) and let the process X be U-recurrent
for a bounded open set U^E. Then there exists a σ-finite invariant measure
μ for the process X.

Proof. Let

be the time spent in A "during the first cycle" and set
Jdi

(2.15) μ(A)=\ Exτ(A)dμ(x), A
dU

We show that μ is a σ-finite measure. Clearly μ is a measure because
it is additive and σ-additivity follows from the monotone convergence
theorem. Setting

; \\x\\<n}
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we have

thus for verification of σ-finiteness of μ it suffices to show

(2.16) μ(,4)<oo

for any A of the form A = C\n(β), where % a E is bounded in E. By
Proposition 1.5 it follows that

(2.17) ^ [ τ ^ < ί ] > 0 , t>0y xedU,

and

(2.18) inf Py[τu<t]>Oy
yedW

since dW is relatively compact in H and the function

is continuous on H\ U by (A5). Let vx be the probability distribution
on R+ of the exit time τw of the process X> for which X(0) = xedU. By
(2.17) we have vx((O,t))>O for £>0, xedU, therefore we obtain by the
strong Markov property

Py [τυ<t- s]Px[τw e ds, X(τw) e dy]
0 JdW

(2.19)

inf Py[τu < t - s]dvx(s) > 0, xedU.ί
JoSimilarly as in the proof of Lemma 2.7 it can be shown that (A5) implies

continuity on H of the function y^Py\?i <i\, therefore we have

(2.20) inf P y [τ 1 <ί]>0,
yedU

thus for xeH we obtain

Λ[τ(i4) < ί] = I P,[τ(i4) < t]p°(xydy)
JdU

>\ Py[τ1<φ°(x,dy)>0.
JdU
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Using again (A5) and compactness of A in H we arrive at

(2.21) ί = supP x[τ(i4)>ί]<l.
xeΛ

Set

Ω, = {ωeΩ; τ(A)>ή, κ(t) = mϊ{v>τ0; Γ χA{X{u))άu = ή.
Jto

It is easy to check that κ(t) is a stopping time and the iί-continuity of
trajectories of X implies X(κ(t))eA. Hence by the strong Markov
property we get

supPJ[(Ω2t) = sup I P[Ωt\X(κ(t))]dPx<s2.
xeΛ xeΛ J Qt

Proceeding similarly by induction we obtain sup{Px{Ωnt)\ xeA}<sn

y neN,
hence

sup Exτ(A)<sup Σ(nt)Pχi(n-*)*<τ(A)<nt]
,j ~~^ xeΛ xeA neN

<£[/**? ~X < 0 0 .

Without loss of generality we can assume °U 3 dU and so (2.22) implies
(2.16) which concludes the proof of σ-finiteness of μ. The proof of the
invariance of μ is now literally the same as in [20], Theorem 2.1.

Q.E.D.

Corollary 2.10. Assume (A1)-(A6) and let there exist a bounded open
set U a E such that

(2.23) sup{Exτ
u; xeG}<oo

holds for any bounded set G cz E. Then there exists an invariant measure

Proof. From the construction of the invariant measure μ it follows
that (2.23) and Lemma 2.3 imply μ(E) = μ{H) < oo. Thus we may put

= μ{A)/μ(H), Ae@{H).
Q.E.D.
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3. Ergodicity

The main result of the present section is the strong law of large
numbers of the Hopf type presented in Theorem 3.2. As an auxiliary
statement we establish at first irreducibility of the Markov chain Y
introduced in Section 2. Note that if the process X is U-recurrent for a
bounded open set U c: E then it is also [/^-recurrent for UR: = {xeE;
\\x\\<R} with some R>0.

L e m m a 3.1. Assume (A1)-(A6) and let the process X be UR-recurrent
for some R>0. Then

pn(x,V)>0

holds for every neN> xedU, §ΦV ^ dU, V open in dU in the topology
induced from E.

Proof. By the Chapman-Kolmogorov equality it suffices to prove the
assertion for n = ί. Take T > 0 , yeV arbitrary and let r > 0 be such that
Ur => W (for the definition of W see the construction of the Markov chain
Y in Section 2). Set x1 =(2r/R)x, yi=(2r/R)y and define a continuous
curve φ = {φ(t)yte[09T\} in E such that φ(0) = x9 φ(T/3) = xlyφ(2T/3)=yly

φ(Γ) = 0, φ is linear on the intervals [0,773] and [27/3,7] and \\φ(t)\\>r
for ίe[773,2773]. Find ε > 0 such that | |φ( f ) | |> r + 8 for te [Γ/3,2T/3],
ε<R and

{zeE; | | ^ - φ ( 0 l l < ε for some fe[2773,T]}nδE/c V.

Set

ξ(t) = φ(t)-S(t)x- S(t-u)f(φ(u))du, te[0,T\.
Jo

Clearly ξeE and by (A4b) there exists a δ>0 such that

\\u(tyx,γ)-φ(t)\\<ε

holds for all te[0,T] and γeE = E(T) satisfying

\\γ(t)-ξ(t)\\<δy te[0,T\.

It follows that

n p(x,V)P(x,V)
>P[\\Z-ξ\\^<δ]
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and the last term in (3.1) is positive by (A6).
QΈ.D.

Theorem 3.2. Assume (A1)-(A6) and let the process defined by the
equation (1.1) be U-recurrent for a bounded open set U a E. Then

(3.2) PX\ ̂ r n \ l ] r ; : ; r ; = ι ^ μ 1=1
J

holds for every xeH, φψ: H -• R μπntegrable such that J^dμ^O, where μ
is the invariant measure constructed in Theorem 2.9.

Proof. Step 1. At first we establish ergodicity of the chain Y. Due
to the irreducibility of Y (Lemma 3.1) and the strong Feller property
(Lemma 2.7) the strong law of large numbers in the form

Γ i » «->oo f 1
PA - Σt(Yi) - ξdμ =1

L « i = i Jdu J

(3.3)

holds for jίί-almost all yedU and all /ϊ-integrable ξ: dU -> R. Using again
Lemmas 2.7 and 3.1 it is easy to see by the Chapman-Kolmogorov equality
that the measures μ and pn(x,') are equivalent for w>l, xβdU. Conse-
quently, (3.3) holds for all yedU and

(3.4) pn(x,A)^μ(A), n^cc,

for every xedU, Ae^(dU) (cf. [7], Theorem 5).
Step 2. In this part of the proof we show (3.2) with x replaced by X,

where X is an #Ό-measurable random variable with probability distribution
μ. Without loss of generality we can assume that φ>0. Set

β~ I φ(X(t))dt, ieN.

The sequence (βι) is a stationary process and from (3.4) it follows that (/?;
is ergodic, that is,

(3.5) P* I - Σ βt -> Egβo=\ φdμ I = 1 .

Let
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\n, τn<T<τn+unsN,
k(T) = -

U, T<τu

be the number of cycles up to time T. We have

k(T)

i = 0

thus

(3.6) P$ Γ - 1 - [Tψ{X{t))άtT^ ί φdμ 1 = 1
L k(T) Jo Jf; J

; (Γ)-1 CT

Σ A^
i = 0 Jo

which together with the same result with φ replaced by \j/ implies

P - Γ H m ffo(*W)d'Jrf*fr Ί = 1X L Γ^oo lZΨ(X(t))dt J£<AdμJ '

hence there exists a measurable set M ^ dU, μ(M) = 1, such that (3.2) holds
for every xeM.

Step 3. Let xeH be arbitrary, fix w > l and set

We have

= J ŷ Γ i f T

= \ Py\ (\Tφ(X(t))dt) ΊTφ(X(t))dt - C J pm(x,dy)

since />m(jc,M) = l due to the equivalence of pm(x, ) and jti.

Corollary 3.3. Assume (A1)-(A6) and let the process defined by the
equation (1.1) be U-recurrent for a bounded open set U a E. Then it is
recurrent.
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Proof. We preserve the notation from Theorem 3.2. Let G be a
nonempty bounded open set in E. At first we show

(3.7)

Using (3.5) with φ = χG we get

PjT-a.8.
1 n C

l i m - Σ A =
Π-+QO ^ i = 0 J

since μ(G) < oo as shown in the proof of Theorem 2.9. Proposition 1.5 yields

μ(G)= P(tyxyG)dμ(x)>0, t>0y

JE

thus

this proves (3.7). It follows that

holds for any yeN ^ dUy μ{N) = 1. Since μ and pm(x> ) are equivalent for
xeHy m>\y we obtain

P J C [ τ G < o o ] > ,

Q.E.D.

Corollary 3.4. Assume (A1)-(A6) and let the process X defined by the
equation (1.1) be recurrent. Let μ be the invariant measure provided by
Theorem 2.9. Then

(i) // μ(H)<co then μ*(-) = μ(')/μ(H) is a stationary distribution
satisfying

(3.8) Px Γ lim 1 Γ φ(X(ί))dί= f φdμ*\ = \
L r-+oo ^ Jo JH J

(3.9) lim P{T,x,A) = μ\A),
Γ-+00

/or ύf// xeHy Ae&(H) and μ*-integrable φ:
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(ii) // μ{H) = oo then

- φ(X(t))dt>ε =0
L^Jo J

limPx - φ(X(t))dt>ε
Γ->oo L ^ J o

for any ε>0 and every xeH and φ: H-*R μ-integrable. In particular,

(3.10) - P(t,x,D)dt -+ 0, T-^oo,

for every xeHy D<^Ey D bounded and measurable.

Proof. The formula (3.8) is obtained directly from Theorem 3.2 by
putting ψ = \. Furthermore, by the strong Feller property (A5) and
irreducibility (I) (Proposition 1.5) it follows that the transition probabilities
P(tyx,•) and the measure μ* are equivalent for t>0, xeH, (see, for instance,
[24], Theorem 2.2). Therefore (3.9) is a consequence of (3.8) (cf. [7],
Theorem 5). We will prove (ii) by the contradiction. If the assertion
is false, then there exists a nonnegative μ-integrable function φ, xeH, a
sequence (Tn) of positive numbers growing to infinity and a number δ>0
such that

(3.11) Px \^ I φ(X(t))dt>δ\>δy neN.
L *n JO J

Take a sequence {Mk) in 3$(H) such that μ(Mk)< oo, keN, and μ(Mk) -+ oo,
k-+ oo. By (3.11) it follows that

Γ g rtAW)*

L Jί- w^ ίwJί
holds for all keN. We can use Theorem 3.2 which yields

Γ f?"
L ίJ"

( 3 1 2 ) p Γ f?φ(Xω)^ " T W Φ Ί
X L ίJ" (^(O)dί (M) J

and (3.12) contradicts (3.11) for k enough large. Finally, (3.10) follows
by the dominated convergence theorem. (Note that μ(D) < oo by the proof
of Theorem 2.9.)

QΈ.D.

Proposition 3.5. Let (A1)-(A6) be satisfied and assume that the process
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X defined by the equation (1.1) is not recurrent. Then

f°° P(tyxyl
Jo

(3.13) I P{tyxyD)άt<oo

and

(3.14) P(ί,*,£>)-> 0, *->oo,

holds for every xeH and DaE, D bounded and measurable.

Proof. Let U be a bounded open set in E such that U=>D. By
Corollary 3.3 there exists zeH such

From the strong Feller property (A5) it follows that the function zv->
Pz [1^ = 00] is continuous on JFZ\C7 (and, therefore, also on E\U), so there
exists an open nonempty neighborhood VczE such that

(3.15) r = infPy[τ l7 = o
yeV

Set

Jo

For yeV we have by the the strong Markov property

(3.16) l-Py[σu

Furthermore, due to relative compactness of U in H Proposition 1.5
together with (A5) imply

v = inf{P(ίyyyV); yeClEU}>0.

Thus by (3.16)

Py[σu>ί]<l-rv = k<ίi yeC\EUy

and, consequently,

P x [σ ι / >1]<^, XGH.

Using repeatedly the strong Markov property similarly as in the proof of
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Theorem 2.9 we obtain by induction

Px[σu>n]<kn

y xeHy neN,

and hence

\ P{t,x,D)dt< Γ P(t,x,U)dt=Ex \ χv(X(t))dt
Jo Jo Jo

The statement (3.14) will be proved by contradiction. Suppose that
there exists a sequence (tn)y tn -> oo, xeH and positive numbers δy L, such
that

(3.17) P(tnyxyUL)>δy neNy

where UL = {yeE; \\y\\ <L). By (A4a) there exists a positive M such that
\\u{t,y,φ)\\<M holds for yeU, ts[0,\] and φeE(\)y | | φ | U < L . By (A6)
we have

η:=P[sup{\\Z(t)\\; ί e [

thus by (A4a) it follows that

(3.18) P(s,y,UM)>ί-η, se[0M yeUL.

From (3.17) and (3.18) we obtain by the Chapman-Kolmogorov equality

Pis + t^U^δV-η), se[0,l], neN,

which contradicts to (3.13).
Q.E.D.

In the following proposition we show that (3.13) in a sense charac-
terizes non-recurrent solutions of (1.1).

Proposition 3.6. Assume (A1)-(A6), let the process X defined by the
equation (1.1) be recurrent. Let μ be its σ-finite invariant measure provided
by Theorem 2.9. Then

Γ
J

oo

P(tyxy U)άt = + oo, x e Hy

o
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for any Ue^(H) such that μ(U)>0.

REMARK. In fact, we will prove more, namely

for any xeH, Ue&(H) such that μ(U)>0. In other words, a recurrent
solution to (1.1) defines a Markov process fulfilling the Harris condition,
which is known to be sufficient for the existence of a σ-finite invariant
measure ([16]). Nevertheless, to establish the Harris recurrence we ne-
eded a rather detailed knowledge of the invariant measure μ and its
properties.

Proof. We will use the ideas and notation of the proof of Theorem
3.2. Let Y be the solution to (1.1) such that the law of X: = Y(0) is just
μ-the invariant measure for the embedded chain. Take Ue&(H) such that
0<μ(t/)<oo. We know that

Γ i n Γτi+ί n-*co ~|

P " Σ I Xu(Y(t))dt -+ μ(U)\ = ί,

hence for almost all ω there exist ik(ω)eNt ik(ω)-*co, such that

i; u(U)
χv(Y(t,ω))dt>?γ->0, keN.

But this implies

χυ{Y{tyω))άt> X I χu(Y(tyω))dt = i

for almost all ω. As

1

we have

Γ
Jo

= Pχ\ Γ χϋ(X(ί))dί=ooj = j J
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for μ-almost any yeH. Thus we obtain

\ j Xu(X(t))dt = co = |

for arbitrary xeH due to the equivalence of μ and p2(x>'). (Recall that
p2(xy') = Px[Y2eA]y (Yn) being the embedded Markov chain.) Proposition
3.6 follows.

Q.E.D.

Corollary 3.7. Assume (A1)-(A6). Then:

(i) // the process X defined by the equation (1.1) is recurrent, then there
exists a unique-up to a multiplicative constant- σ-finite invariant measure for
X.

(ii) If the process X is not recurrent, then there exists no finite invariant
measure.

REMARK. Note that the second part of Corollary 3.7 says that the
existence of a finite invariant measure for (1.1) implies that the solution to
(1.1) is [/-recurrent for any U^E open nonempty. (Cf. [37], Theorem 4,
where a closely related result is established for linear equations.)

Proof. The first assertion of Corollary follows immediately from
Theorem A.I (established in the Appendix) if we take into account
Proposition 3.6 and the fact that the transition probabilities P(tyx,-), £>0,
xeH, are equivalent in virtue of irreducibility and the strong Feller
property.

The second assertion can be proved as in the finite dimensional case
(see [20], Theorem 3.3); we repeat the simple argument for completeness.
Let v be a finite invariant mesure for the non-recurrent solution X, let
D a E be an arbitrary bounded set. As (3.13) implies

1 fΓ

lim — P(tyxyD)dt = 0, xeH,
T J

we have by the dominated convergence theorem

1 Γ Γ
v(D)=lim - P(tyx,D)dv(x)dt

Γ->oo T J o JH

= | Γlim ~ f P(t,x,D)dt\dv(x) = 0,
JH LΓ->OO J J O J
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that yields v = 0, which is a contradiction.
Q.E.D.

EXAMPLE 3.8. Suppose that the generator A and the covariance
operator Q have the form

(3.19) ^ = - α Λ , Qet = kfiu ieNy

where {et} is an orthonormal basis of the Hubert space H and

0<α£ -• +oo; 0<A ί</lo<oo, ieN.

In this case we have

which simplifies the discussion of the conditions imposed in this paper.
Below we check the particular assumptions (A1)-(A6). The condition
(Al) is satisfied if and only if

(3.20) ^t<O°-

The remaining conditions depend also on the choice of the Banach space
E. Take E = Ea = @(( — A)a) equipped with the graph norm, αe(0,l).
The embedding Ea c; H is compact. Assume that (3.20) is strengthened to

for some ε>0.. The assumption (A2) is fulfilled for E = EΛ with 0<α<ε
due to [6], Theorem 4, and [36], Proposition 1. The condition (A6) is
satisfied due to Proposition 1.4 either if 0<α<l/2 (then (D2) holds with
h(t) = ct~a for some c>0) or if the sequence {(αί)

α(/lί)
1/2} is bounded (then

(Dl) is fulfilled). Furthermore, we have
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BA = QΓ ll2S{t)ei = exp{ -«,<} / ^ I I e,,
Vλ,(l-exp{-2α,ί})

therefore if there exist positive constants T, c and βe(0,ί) such that

(3.22) sup / - *' <ct~\ te[0,T}9

V ^ ( { 2 ί } 1 )

then (1.4)—(1.7) are satisfied. Assume, in addition, that the function/:
E = EΛ^>H, 0<α<min(l/2,ε), satisfies (A3a) and

(Cl) There exists C<oo such that \f(x)-f(y)\<C\\x-y\\ for all x,yeE.

(For instance, this is always true for f:H-+H globally Lipschitzian.)
Then the remaining conditions (A3b), (A4) and (A5) are fulfilled by
Propositions 1.2 and 1.3. We can summarize that if A and Q have the
form (3.19) with (αf), (^) satisfying (3.21) and (3.22) and/: Ea->H satisfies
(A3a) and (Cl) for some 0<α<min(l/2,ε) then all assumptions (A1)-(A6)
are fulfilled and Theorems 2.9, 3.2, Corollaries 3.4, 3.7 and Proposition 3.5
are applicable. In particular, there exists at most one stationary distribu-
tion and if the solutions of (1.1) are recurrent then the strong law of large
numbers of Hopfs type holds true.

REMARK 3.9. In the linear case (/=0) the strong Feller property can
be verified directly and it is easy to see that it is equivalent to (1.4) (cf.
[29], Proposition 2.5). We will show-in the situation of Example 3.8 with
/=0-that if 3t(S(t))φ M{Ql12), ί>0, then the strong law of large numbers
does not hold. Indeed, in this case there exists a sequence i{n) -» oo such
that

1

Xj =

j=i(n),neNy
n

0, jΦiiti).

For any t>0 we have

-Σ ! » e x p { " > ' }

Π
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n>t A ί (w) Π

= 0 0 ,

therefore S(t)x φ 3fί(Q\11). Since the semigroup S( ) is exponentially stable
there exists a unique stationary distribution μ* e &{H)y μ* = ΛΓ(O,Γ), where

(cf. [37]). Set A = M{T)y it is straightforward to verify that 0t{Q]l2) =
for £>0, hence

P{t,xyS{t)x + 0t{Q\11)) = P(t,x,S(t)x

and since S(t)xφA, we get

P(tyxyA) = Oy t>0.

On the other hand we have μ*(A) = l, therefore the measures μ* and

Lτ ί P(ίΛ )dί

are singular for all T>0 and it follows that the strong law of large numbers
does not hold in this case. (However, note that P(tyy,-) converges weakly
to μ* as ί-> oo for every yeHy cf. [28], Proposition 3.1.)

EXAMPLE 3.10. Consider the system of reaction-diffusion equations
formally described as

(3.24) — ui(tyx) = Aui(tyx) + Fi(u1(tyx)y'-yun(tyx)) + ηi(tyx)y
ot

i=\y2y" yny (tyx)eR+x(Oyπ)y

(3.25) Mi(0,*) = *?(*), xG(0yπ)y

(3.26) ui(ty0) = ui(tyπ) = 0y teR + y ί = l , 2 , . ,π,

where F=(Fi): Rn -+ Rn is globally Lίpschitzian and η = {η^) stands formally
for a space-time white noise in Rn. A mathematically rigorous sense to the
problem (3.24)-(3.26) is given in a usual manner. An equation of the form
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(1.1) is considered, where

r 2 7 Γ 2
xz ox1

is an infinitesimal generator of a strongly continuous semigroup on the
Hubert space H=(L2(0,π))n,

Ax)(γ): = {*Ί(*(v))>-,FMy))), xeH, ye(0,π),

and Wt stands for a cylindrical Wiener process on H with the covariance
operator Q = I (identity). This example is in a sense a particular case
of Example 3.8: Choose the orthonormal basis {eitj} in H, ieNy

jeJ = {ly...ytι}y

ίl
«ij(y) = (O, , /- sin(z», . ,0), 0-th place), ye(0,π),

V π

then

Aeij = i2eiJy QeiJ = eiJy ieN, jeJ.

Since

for any 0<ε<l/4, there exist positive constants C, T such that

1 = < CΓ112, ί6(0,71, ie-JV.
Ve^ί^PT

Moreover, the function/: H -• i/ is globally Lipschitzian, so similarly as in
Example 3.8 we obtain that all assumptions (A1)-(A6) are satisfied for
E — EΛ with 0<α<l/4. In the present example we have (see [15],
Theorem 1) Ea — H2<x(0yπ)y 0<α<l/4. Another possibility is to choose
for E the space Vδ=[hδ

o[0yπ]]n

y δe(0,1/4) fixed, where

Λj[0,π]

= {^C M [0,π]; lim
\χ-y\
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is equipped with the norm induced from the space C°'δ[0,π] of <5-Hόlder
continuous functions. Note that we can take for E neither the space
[C[O,π]]M(because it is not compactly embedded into [L2(0,π)D nor the
space [C°'<5[0,π]]M (since it is not separable). The spaces Vδ are separable
(cf. [10], Theorem A) and the restriction S(-)\Vδ is a strongly continuous
semigroup on Vδ (cf. [23], Theorem 2.14). Furthermore, for μ>δ>0
the space

[C8 "[0,π]]-: = {v e [C° "[0,π]]"; v(0) = v(π) = 0}

is continuously embedded into Vδ. Thus (A2) follows from [3], Theorem
2, and (D2) is satisfied because

S(ί)eJSf([L2(O,π)]", [Cg "[0,π]]-), ί>0,

and

\S(t)\se([L2(0,π)]n,[C°^[0,π])n)^Ct μ , tβ(0yT]y

holds for all μe(0,1/4) and some C = C(μ)<oo. It follows that all assump-
tions (A1)-(A6) are fulfilled for E= Vδy δ e (0,1/4), and we can again make
the same conclusion as in Example 3.8.

Appendix

In this Appendix we aim at establishing a theorem on the uniqueness
of a σ-finite invariant measure, which is used in the proof of Corollary
3.7. We will prove the result in a more general setting than we need as it
may be of independent interest.

Let (Ey$) be a measurable space, (Pt(xy '))t>o a semigroup of Markov
transition kernels on {EyS)y that is

(i) ΊAeS W>0, Pt( 9A) is ^-measurable,
(ii) VxeE Vί>0 Pt(x,-) is a probability measure on S,

(iii) Wίe<? VxeE V^,ί>0 Pt+s(x,A)= Pt(yyA)Ps(xydy).
JE

We will assume further

(iv) ^AeS (tyx)\-+Pt{xyA) is @{{0yoo))®$-measurable.

Here we denote by ^((0,oo)) the Borel σ-algebra in (0,oo). (Note that
(iv) is fulfilled e.g. if there exists a measurable i?-valued Markov process
with the transition probability function Pt(x, )y see [9], Remark following
Lemma 5.3.) Let us denote by B = B(Ey$) the Banach space of all bounded
real ^-measurable functions on E equipped with the supremum norm. Set
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T,f=\ f(y)Pt(Ay), t>0,feB;
JE

let T* be the adjoint operator acting on the dual space B*. In particular,
any finite measure φ on S belongs to the space β*, hence T\ φ is well-defined
and one has

(A.i) τ;φ= I pt(x,)dψ(x), t>o.
JE

Obviously, the formula (A.I) makes it possible to define T\ φ for any
nonnegative measure φ on $. Let us define the resolvent kernel by

Λx,

U(xyA)= e~tPt(xyA)dty xeEy AeS
Jo

and for a nonnegative measure φ set

φu= | U(xy-)dφ(x).
JE

A nonnegative measure φφO is called invariant provided T^φ = φ for any
ί>0. Note that if a σ-finite measure q is invariant, then q — qU.

For brevity, we will occasionally set (φ,f) for §Efdφ.

Proposition A.I. Let (Pt(x,'))t>o be a semigroup of transition kernels
on (Ey$) satisfying (i)-(iv) above. Let us assume:
(A) All the measures U(xy')> XGE, are equivalent.
Let μ be a σ-finite invariant measure such that there exists a μ-ίntegrable
nonnegative feB, / > 0 , satisfying

Γ Ttf(x)dt =
Jo

(A.2) Ttf(x)dt=oo for any xeE.

Jo
Then any σ-finite invariant measure differs from μ only by a multiplicative
constant.

Proof. Fix an arbitrary xoeE and set m=U(xOy-). Obviously, (A)
implies that any σ-finίte invariant measure is equivalent with m. Let p be
an arbitrary σ-finite invariant measure. One can find a strictly positive
function heB satisfying <μ,λ><oo, <p,/*><oo. Take a constant ceR +



1000 B. MASLOWSKI and J. SEIDLER

such that for v = cp the identity

(A.3) <μ,A> = <v,A><oo

holds. Our aim is to prove μ = v. The measures μ, v have densities u, v
with respect to ra, μ = umy v = vm. By the σ-finiteness of μ, v, the functions
uy v may be taken finite everywhere, hence the measure (μ — v)+ ={u — v) + m
is well defined. Using the minimality of the Jordan decomposition it is easy
to see that T*(μ-v)+ (B)>(μ-v)+ (B) for an arbitrary set BeS with
μ(jB)-hv(J5)<oo, therefore for any BeS by the σ-finiteness.

Taking ty T>0 arbitrary we derive the following estimate:

= Γ (T;(μ-v)+-(μ-v)\Tsf)ds
Jo

=1
+ t

-V) + ,/>d5

rτ+, rτ+t
< <Γs*(μ-v) + ,/>d5 =

Jr JT
rτ+t rτ+t

<\ <μ,TJ)ds=\ <ΓX

JT JT

Passing T->oo and taking (A.2) into account we obtain

(A.4) 77(μ-v) + =(μ-v) + , t>0.

If (μ —v)+=0, then (u — v)+=0 m-a.e., hence μ<v and the equality μ = v
follows by (A.3). The proof will be completed if we establish that the case
(μ — v) + >0 is excluded. Towards this end, set Ξ = {xeEy u(x)>v(x)}y

obviously (μ — v) + (£\Ξ) =0. As the measure (μ —v)+ is non-zero and
invariant by (A.4), it is equivalent to ra, so m(E\Ξ) = 0. It follows that
u>v m-almost everywhere, but this contradicts (A.3).

Q.E.D.

REMARK. The idea of the proof goes back to [11], Th.VI.A, where the
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case of a single Markov operator in an //-space was treated. The result
was extended to continuous time Markov processes with a locally compact
state space by L. Stettner ([35], Corollary 8).
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