

Title	Polymer Light-Emitting Device with a Cathode Fabricated from Silver Nanoparticles by Wet Processing
Author(s)	Kajii, Hirotake; Maki, Hideki; Kin, Zenken et al.
Citation	電気材料技術雑誌. 2005, 14(2), p. 43-46
Version Type	VoR
URL	https://hdl.handle.net/11094/76801
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Polymer Light-Emitting Device with a Cathode Fabricated from Silver Nanoparticles by Wet Processing

Hirotake Kajii, Hideki Maki, Zenken Kin, Taichiro Morimune and Yutaka Ohmori

Center for Advanced Science and Innovation, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan TEL/FAX: +81-6-6879-4213 E-mail: kajii@casi.osaka-u.ac.jp

Recently, organic light emitting diodes (OLEDs) utilizing fluorescent dye [1] or conducting polymer [2] have been realized to have a long lifetime and excellent durability for flat panel display applications. Organic devices utilizing conducting polymers have attracted considerable interest because of their advantages in large-area device fabrication. An additional advantage for OLED is that they are simply fabricated by wet-process, including spin coating and ink-jet printing method on various kinds of substrates.

Recently, electrodes fabricated from metal nanoparticles have been attracting considerable attention due to their simple and low-cost processes. Each metal nanoparticle is covered with a dispersing agent, because each metal nanoparticle coheres easily. Therefore, a nanopaste with high metal content formed from many metal nanoparticles acts as a liquid. As its formation temperature is approximately 200 °C, a super-fine circuit can be formed on an organic board using a simple printing process such as inkjet printing. Metal nanoparticles are also expected to be applied as electrodes of organic devices such as transistors [3]. To create the patterning of devices by wet processing, cathode formation using nanopaste plays an important role.

In this study, we investigated the fabrication and characteristics of a polymer device utilizing a cathode fabricated from Ag nanoparticles by wet processing to realize organic devices simply fabricated by wet-process as an initial step.

Figure 1 indicates the annealing temperature dependence of the resistivity of the Ag films which were fabricated by spin coating the Ag nanopaste on a glass substrate and annealing for 1 h in N₂ atmosphere. Ag nanopaste (NPS-J) was purchased from Harima chemicals Inc. The average diameter of Ag nanopaste (nano-Ag film) rapidly decreased at temperatures between 180 and 190 °C. The resistivity of the nano-Ag film reached 1.65 x 10^{-5} Ω cm at an annealing temperature of 210 °C and is ten times the value of the deposited Ag film. The surface color of the nano-Ag film at 210 °C is metallic. The AFM images of Ag films at annealing temperatures of 180 and 190 °C are shown in Fig. 2. The grain size of Ag

電気材料技術雑誌 第14巻第2号 J.Soc.Elect.Mat.Eng. Vol.14, No.2, 2005

nanoparticles at a substrate temperature of 180 °C is estimated to be about $50 \sim 100$ nm from the AFM image. Each grain boundary between Ag nanoparticles at 190 °C is fused compared with that at 180 °C. This result suggested that the dispersing agent on the Ag nanoparticles decomposes at an annealing temperature between 180 and 190 °C. The fusion of the Ag nanoparticle grain boundaries results in the decrease in the resistivity of the nano-Ag films.

1<u>00nm</u> (a) 180 °C (a) 190 °C

Fig.1. Annealing temperature dependence of resistivity in Ag films. The line is a guide for the eye.

Fig.2. AFM images of Ag films at annealing temperatures of 180 and 190 °C.

Organic layers were fabricated by spin coating on an indium tin oxide (ITO)-coated glass substrate. The substrate was degreased with solvents and cleaned in a UV ozone chamber. First, a poly(ethylenedioxythiophene) : poly(styrene sulfonic acid) (PEDOT:PSS) hole injection layer was spun over the ITO-coated glass substrate at 35 nm thickness. A regioregular poly(3-hexylthiophene-2,5-diyl) (PAT6) film and poly[2-methoxy-5-(2'ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) film was spin-coated from chloroform solution, respectively. The typical thickness of the PAT6 and MEH-PPV film was about 140 and 150 nm, respectively. The a-C:N buffer layer which prevents Ag nanoparticles from penetrating into the organic layer was deposited using a mirrortron-type sputtering system (Thin-Film Process Soft Inc., Japan) with facing targets under a pure Ar flow rate of 45 sccm and a N2 flow rate of 20 sccm. Finally, the Ag nanopaste was dropped using a micropipette or ink brush on the pattered organic layer and then baked at 210 °C for 1 h in N₂ atmosphere. Figure 3 shows the EL spectra of polymer OLEDs with an amorphous carbon nitride (a-C:N) buffer layer and a Ag cathode fabricated from the Ag nanopaste. The PAT6 and MEH-PPV device emits a red EL band centered at about 700 and an orange EL band at 650nm, respectively.

電気材料技術雑誌 第14巻第2号 J.Soc.Elect.Mat.Eng. Vol.14, No.2, 2005

Fig.3. EL spectra of EL spectra of PAT6 and MEH-PPV devices with a nano-Ag cathode.

Fig.4. Fabrication process for the pattered polymer device in this study.

The patterned polymer device with the cathode using Ag nanoparticles was fabricated as follows. After spin-coating the organic layer and depositing an a-C:N buffer layer, the surface of the organic layer with the a-C:N buffer layer was patterned using photolithography as shown in Fig. 4. First, the positive-tone photoresist used to make the insulator layer was spun onto a film of PEDOT:PSS / PAT6 / a-C:N (10 nm) and baked at 110 °C for 5 min in an ambient atmosphere. The thickness of the photoresist was approximately 500 nm. We reported the a-C:N buffer layer on the organic layer is also useful for blocking the photodegradation influence of UV light, and this effect was improved further in vacuum [4]. Next, a UV light was irradiated on the photoresist for 15 s under a base pressure of 2 Pa. After prebaking the devices at 110 °C in an ambient atmosphere, these were developed by resolvent, cleaned by deionized water and then baked at 210 °C in N₂ atmosphere. The Ag nanopaste was dropped using a micropipette or ink brush on the pattered organic layer and then baked at 210 °C for 1 h in N₂ atmosphere. The typical thickness of an Ag cathode fabricated from the Ag nanopaste (nano-Ag cathode) was about 400 ±100 nm. The active area of the devices has a diameter of 400 or 500 µm. For comparison, the Ag cathode was vapor-deposited at a background pressure of 10⁻⁶ torr. Finally, these devices were covered with a glass plate and encapsulated by epoxy resin in an Ar gas atmosphere.

Figure 5 shows the dependence of the current density and luminance on the applied voltage for the PAT6 devices with the nano-Ag and deposited Ag cathodes. Both devices have the same turn-on voltage. The luminance increased superlinearly with increasing applied voltage. The patterning of the emission from the PAT6 device with the nano-Ag cathode can

電気材料技術雑誌 第14巻第2号 J.Soc.Elect.Mat.Eng. Vol.14, No.2, 2005

be carried out as shown in Fig. 6. In the case of the device with the nano-Ag cathode, a luminance of about 2 cd/m^2 has been obtained at an applied voltage of 13 V. The luminance of the device with the nano-Ag cathode is half that with the deposited Ag cathode. On the other hand, the current density of the device with the nano-Ag cathode is similar to that with the deposited Ag cathode. This result indicates that decreased device performance is attributed to the lowering of electron injection from the nano-Ag cathode. We demonstrated the possibility of polymer OLEDs using a cathode fabricated from Ag nanoparticles by wet processing.

Fig.5. Dependence of current density and luminance on applied voltage for PAT6 devices with nano-Ag and deposited Ag cathodes.

Fig.6. Photograph of the patterned emission from an OLED of an ITO / PEDOT:PSS / PAT6 / a-C:N / nano-Ag cathode with an active area

Acknowledgments

Part of this work was financially supported by the Ministry of Education, Culture, Sports, Science and Technology under a Grant-in-Aid for Scientific Research (No. 16360173). The authors would like to thank S. Uesugi and M. Adachi of Cluster Technology Co., Ltd. for AFM measurements.

References

- [1] C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett., 51 (1987) 913-915.
- J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. M. Marks, K. Mackay, R. H. Friend,
 P. L. Burns and A. B. Holmes, Nature, 347, (1990) 539-541.
- [3] M. Ando, M. Kawasaki, S.Imazeki, H. Sasaki and T. Kamata: Appl. Phys. Lett., 85 (2004) 1849.
- [4] Z. Kin, H. Kajii and Y. Ohmori: to be published in Thin Solid Films.