

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ASYMPTOTIC SUFFICIENCY I: REGULAR CASES

TADAYUKI MATSUDA

(Received October 4, 1982)

1. Introduction. The concept of asymptotic sufficiency of maximum likelihood (m.l.) estimator is due to Wald [16] and this work was succeeded by LeCam [4] and Pfanzagl [10]. Higher order asymptotic sufficiency has been subsequently studied by Ghosh and Subramanyam [3], Michel [7] and Suzuki [14], [15].

Let Θ be an open subset of the *s*-dimensional Euclidean space. Suppose that x_1, \dots, x_n are independent and identically distributed random variables with joint distribution $P_{n,\theta}$, $\theta \in \Theta$, which has a constant support and satisfies certain regularity conditions. For $\theta \in \Theta$ and $z_n = (x_1, \dots, x_n)$ let $G_n^{(m)}(z_n, \theta)$ denote the *m-th* derivative relative to *θ* of the log-likelihood function. In Michel [7], it was shown that for $k \ge 3$ a statistic $T_{n,k} = (T_n, G_n^{(2)}(z_n, T_n), \cdots,$ $G_{n}^{(k)}(z_{n}, T_{n})$), where $\{T_{n}\}\$ is a sequence of asymptotic m.l. estimators of order $o(n^{-(k-2)/2})$ (see Definition in Section 3), is asymptotically sufficient up to order $o(n^{-(k-2)/2})$ in the following sense: For each $n \in \mathbb{N}$, $T_{n,k}$ is sufficient for a family $\{Q_{n,\theta}$; $\theta \in \Theta\}$ of probability distributions and for every compact subset *K* of θ

$$
\sup_{\theta\in\mathcal{K}}||P_{n,\theta}-Q_{n,\theta}||=o(n^{-(k-2)/2}),
$$

where $|| \cdot ||$ means the total variation of a measure. Suzuki [14], [15] also showed that for $k \in \mathbb{N}$ a statistic $(\hat{\theta}_n, G_n^{(1)}(z_n, \hat{\theta}_n), \dots, G_n^{(k)}(z_n, \hat{\theta}_n))$, where $\hat{\theta}_n$ is a reasonable estimator including m.l. estimator, is asymptotically sufficient up to order $o(n^{-(k-1)/2})$ under a stronger moment condition than in Michel [7].

In this paper we give a refinement of their results on higher order asym ptotic sufficiency. Our result includes that (1) $T_{n,k} = (T_n, G_n^{(2)}(z_n, T_n), \cdots,$ $G^{(k)}_{n}(z_{n}, T_{n})$) is asymptotically sufficient up to order $O(n^{-k/2})$ for any sequence ${T_n}$ of asymptotic m.l. estimators of order $O(n^{-k/2})$ and (2) a sequence of asymptotic m.l. estimators of order $O(n^{-r/2})$ with some $r \in (0, 1)$ is asymptotically sufficient up to order $O(n^{-r/2})$ under mild moment conditions for the first and the second derivatives of the log-likelihood function.

In the case $k=1$, Pfanzagl ([10], Theorem 1) proved that a sequence of estimators with properties analogous to those of asymptotic m.l. estimators of order $O(n^{-1/2})$ is asymptotically sufficient up to order $O(n^{-1/2})$, and showed in [11] that this order of convergence cannot be improved in general. Thus our result is an extension of his and it seems to be impossible to improve the con vergence order *O(n~k/2).*

In Section 2 we present a result concerning probabilities of deviations for sums of independent and identically distributed random variables with a restricted moment. In Section 3 we investigate asymptotic sufficiency of $T_{n,k}$ constructed by asymptotic m.l. estimators T_n . In the final Section 4 we give conditions under which a sequence of m.l. estimators becomes the one of asymptotic m.l. estimators of order $O(n^{-r/2})$ with some $r > 0$.

2. Probabilities of deviations. Let Y_1, \dots, Y_n be a sequence of random variables (r.v.'s) and put $S_m = \sum_{i=1}^{m} Y_i$, $1 \leq m \leq n$. Using the elementary inequality

$$
E|S_n|' \leq \sum_{i=1}^n E|Y_i|', \qquad r \leq 1,
$$

it follows from Markov's inequality that for *x>0*

(2.1)
$$
P\{|S_n| \ge x\} \le x^{-r} \sum_{i=1}^n E|Y_i|^{r}.
$$

If the r.v.'s satisfy the relations

(2.2)
$$
E(Y_{m+1}|S_m) = 0 \text{ a.s.} \qquad 1 \leq m \leq n-1,
$$

then von Bahr and Esseen [1] showed that

(2.3)
$$
E|S_n|' \leq 2 \sum_{i=1}^n E|Y_i|', \qquad 1 \leq r \leq 2.
$$

The condition (2.2) is fulfilled if the r.v.'s are independent and have zero means. In this case, (2.3) together with Markov's inequality implies the following inequality

$$
(2.4) \tP\{|S_n| \ge x\} \le 2x^{-r} \sum_{i=1}^n E|Y_i|^r, \t1 \le r \le 2,
$$

for *x>0.*

The following theorem includes a uniform version of Corollary 2 in Nagaev $[9]$.

Theorem 1. Let Y_1, \dots, Y_n be a sequence of independent and identically *distributed random variables with a common distribution* P_{θ} , $\theta \in K$, where K is *any set.* Let $h(y, \theta)$ be a measurable function of y for any fixed $\theta \in K$ and put $S_{n,\theta} = \sum_{i=1}^{n} h(Y_i, \theta)$. If $E_{\theta}(h(Y_1, \theta)) = 0$ for all $\theta \in K$ and ξ _{*r*} = sup $E_{\theta} |h(Y_1, \theta)|$ ^{*r*} < ∞ *for some* $r>0$ *, then*

(2.5)
$$
\sup_{\theta \in \mathcal{K}} P_{\theta} \{ |S_{n,\theta}| \geq x \} = O(n x^{-r}), \qquad 0 < r \leq 2,
$$

for $x>0$ *, and*

(2.6)
$$
\sup_{\theta \in \mathcal{K}} P_{\theta} \{ |S_{n,\theta}| > \xi^{1/r} x \} = O(n x^{-r}), \qquad r > 2,
$$

for $x \ge \sqrt{8(r-2)n \log n}$.

Proof. (2.5) is an immediate consequence of (2.1) and (2.4).

For the proof of (2.6) we use the following inequality which is a slight modification of Theorem 1 in Nagaev [9]: For $x>0$ and $y>0$,

$$
(2.7) \tP_{\theta}\{|S_{n,\theta}| > x\} < 2nP_{\theta}\{|h(Y_1, \theta)| > y\} + 2\left[\frac{n\xi_r, \theta_r}{y^r}\right]^{x/y} \times \exp\left\{2n\left[\frac{r\log y - \log(n\xi_r, \theta_r)}{y}\right]^{2}\xi_r, \theta^{2/r} + 1\right\},\,
$$

where $d_r = 1 + (r+1)^{r+2} \exp(-r)$ and $\xi_{r,\theta} = E_{\theta} |h(Y_1, \theta)|^r$. In order to show (2.7) it is enough to note that the relation (2.3) in [9] becomes

$$
\left|\int_{-\infty}^{1/h} \exp\left\{h[h(Y_1,\theta)]\right\}dP_{\theta}-1\right| < 2h^2\xi_{r,\theta}^{2/r}.
$$

Setting $x = \xi_{r,0}^{1/r} n^{1/2} t$ and $y = x/2$ for $t \ge \sqrt{8(r-2) \log n}$ in (2.7), then we obtain

(2.8)
$$
n P_{\theta} \{ |h(Y_1, \theta)| > y \} \leqq n \xi_{r, \theta} y^{-r} = 2^r n^{(2-r)/2} t^{-r}
$$

and

(2.9)
$$
\left[\frac{n\xi_{r,\theta}d_r}{y^r}\right]^{x/y} = 2^{2r}d_r^2n^{2-r}t^{-2r}.
$$

Let us assume that $n \geq \exp \left\{\frac{1}{2(1-n)}\right\}$. (For $n < \exp \left\{\frac{1}{2(1-n)}\right\}$, (2.6) is trivially true.) Since $0 \le t^{-1} \log t < 1/2$ for $t \ge 1$, we have

$$
2n\left[\frac{r\log y - \log (n\xi_{r,\theta}d_r)}{y}\right]^2 \xi_{r,\theta}^{2/r}
$$

= $8t^{-2}\left[r\log t + \frac{r-2}{2}\log n - r\log 2 - \log d_r\right]^2$
 $\leq 8t^{-2}\left[r^2\left(\log t\right)^2 + \frac{(r-2)^2}{4}\left(\log n\right)^2 + r(r-2)\log n \log t + c_1\right]$
 $\leq 2r^2 + \frac{r-2}{4}\log n + r\log t + c_2$,

where c_1 and c_2 denote positive constants depending only on r . From this fact and (2.9) it follows that the second term on the right side of (2.7) has an upper bound of the type $c_3 n^{3(2-r)/4}t^{-r}$. This, together with (2.8), implies (2.6).

REMARK. (1) In the case $r \ge 3$, Michel [7] showed a result analogous to Theorem 1 (cf. also Lemma 1 in Pfanzagl [12]).

(2) Let Y_1, \dots, Y_n be a sequence of independent r.v.'s with zero means. It follows from an inequality due to Marcinkiewicz and Zygmund [5] that

$$
(2.10) \t E|\sum_{i=1}^n Y_i|^{r} \leq cn^{(r-2)/2} \sum_{i=1}^n E|Y_i|^{r}, \t r \geq 2,
$$

where c is a positive constant depending only on r (see Chung [2], page 348). This leads to Lemma 2 in Pfanzagl [12] which requires a stronger moment condition than in Theorem 1 to evaluate probability of moderate deviations or large deviations.

3. Asymptotic sufficiency. Let Θ be an open subset of the s-dimen sional Euclidean space \mathbb{R}^s and for each $\theta \in \Theta$, let P_{θ} be a probability measure on a measurable space (X, \mathcal{A}) . It is assumed that P_{θ} , $\theta \in \Theta$, is dominated by a σ -finite measure μ on (X, \mathcal{A}) and has a positive density $p(x, \theta)$. For each $n \in \mathbb{N} = \{1, 2, \dots\}$, let (X^n, \mathcal{A}^n) be the Cartesian product of *n* copies of (X, \mathcal{A}) and $P_{n,\theta}$ be the product measure of *n* copies of P_{θ} . Furthermore, let μ_n denote the product measure of *n* copies of μ and write $p_n(z_n, \theta) = dP_{n,\theta}/d\mu_n$ for $\theta \in \Theta$ and $z_n = (x_1, \dots, x_n) \in X^n$.

For a function $h(z, \cdot)$: $\mathbf{R}^s \rightarrow \mathbf{R}$ denote the *m*-th derivative relative to θ of *h(z, θ)* by

$$
h^{(m)}(z, \theta) = \left(\frac{\partial^m}{\partial \theta_{i_1} \cdots \partial \theta_{i_m}} h(z, \theta); i_1, \cdots, i_m \in \{1, \cdots, s\}\right).
$$

In particular, we write

$$
h^{(1)}(z, \theta) = \left(\frac{\partial}{\partial \theta_1} h(z, \theta), \cdots, \frac{\partial}{\partial \theta_s} h(z, \theta)\right),
$$

$$
h^{(2)}(z, \theta) = \left(\frac{\partial^2}{\partial \theta_i \partial \theta_j} h(z, \theta)\right),
$$

that is, $h^{(1)}$ means a row vector and $h^{(2)}$ a matrix. The Euclidean norm $||\cdot||$ of $h^{(m)}$ is defined by

$$
||h^{(m)}(z,\,\theta)||^2=\sum_{i_1,\cdots,i_m=1}^s\left(\frac{\partial^m}{\partial\theta_{i_1}\cdots\partial\theta_{i_m}}h(z,\,\theta)\right)^2.
$$

For any $\sigma{=}(\sigma_1, \, \cdots, \, \sigma_s){\in}R^s$ define

$$
h^{(m)}(z,\,\theta)\sigma^m=\sum_{i_1,\cdots,i_m=1}^s\frac{\partial^m}{\partial\theta_{i_1}\cdots\partial\theta_{i_m}}h(z,\,\theta)\,\prod_{p=1}^m\sigma_{i_p}\,.
$$

Then, it is easy to see that

$$
|h^{(m)}(z, \theta)\sigma^m| \leq ||h^{(m)}(z, \theta)|| \, ||\sigma||^m.
$$

Let $k \in N$ and $r > 0$ be fixed. We shall impose the following Conditions *A*, *B*, and $C_{k,r}$ on $p(x, \theta)$.

Condition *A*

(i) For each $x \in X$, $\theta \rightarrow p(x, \theta)$ admits continuous partial derivatives up to the order 2 on Θ.

Let $g(x, \theta) = \log p(x, \theta)$ and $g^{(m)}$ be the *m*-th derivative of g defined above. Moreover, for $\theta \in \Theta$ let $J(\theta) = E_{\theta}(-g^{(2)}(\cdot, \theta)).$

(ii) For every $\theta \in \Theta$

(a) $E_{\theta}(g^{(1)}(\cdot,\theta))=0$

(b) *J(θ)* is positive definite.

Condition *B^r*

For every compact $K \subset \Theta$

$$
\sup_{\theta \in K} E_{\theta}(||g^{(1)}(\cdot,\,\theta)||^{r+2}) < \infty
$$

Condition $C_{k,r}$

(i) For each $x \in X$, $\theta \rightarrow p(x, \theta)$ admits continuous partial derivatives up to the order $k+1$ on Θ .

(ii) For every $\theta \in \Theta$ there exist a neighborhood U_{θ} of θ and a measurable function $\lambda(x, \theta)$ such that

- (a) for all $x \in X$, τ , $\sigma \in U_{\theta}$, $||g^{(k+1)}(x, \tau) g^{(k+1)}(x, \sigma)|| \leq ||\tau \sigma||\lambda(x, \theta)$
- (b) for every compact $K \subset \Theta$, sup $E_r(\lambda(\cdot, \theta)^{(r+2)/2}) < \infty$

(c)
$$
\sup_{\tau \in \mathcal{T}_a} E_{\tau}(\|g^{(k+1)}(\cdot,\tau)\|^{v(\tau)}) < \infty,
$$

where

$$
\nu(r) = \frac{2+r}{2-r}, \quad \text{if} \quad 0 < r < 1, = r+2, \quad \text{if} \quad r \ge 1.
$$

(iii) For every compact $K \subset \Theta$ there exist $\delta_K > 0$ and $\eta_K > 0$ such that $\theta \in K$ and $\tau \in \Theta$ with $||\theta - \tau|| < \delta_K$ imply

$$
||E_{\theta}(g^{(k+1)}(\cdot,\,\theta))-E_{\tau}(g^{(k+1)}(\cdot,\,\tau))||\leq\eta_K||\theta-\tau||\;.
$$

REMARK. (1) Condition (iii) in $C_{k,r}$ follows from conditions (3)(a) and (3) (b) in Suzuki [15] (see also (3.4) in [14]).

(2) It is easily seen that condition (ii) in $C_{k,r}$ and the following condition (iii)' imply condition (iii) in $C_{k,r}$.

(iii)' For every $\theta \in \Theta$ there exist a neighborhood U_{θ} of θ and a measurable function $\lambda^*(x, \theta)$ such that for all $x \in X$, $\tau \in U$

 $\vert p(x, \tau) / p(x, \theta) - 1 \vert \leq \vert |\tau - \theta| \vert \lambda^*(x, \theta) \vert$

and for every compact $K \subset \Theta$

$$
\sup_{\tau\in K} E_\tau(\lambda^*(\cdot, \theta)^{\nu(r)/(\nu(r)-1)}) < \infty.
$$

The following definition is due to Michel [7].

DEFINITION. T_n , $n \in N$, is a sequence of *asymptotic maximum likelihood (m.l.) estimators of order* $O(n^{-r/2})$ *,* $r > 0$ *, if there exist positive constants* π_1 and *2* (depending on *r*) such that for every compact K ⊂ Θ

$$
\begin{aligned}\n(\alpha_r) \quad & \sup_{\theta \in \mathcal{K}} P_{n,\theta} \{ z_n \in X^n; \, n^{1/2} || T_n(z_n) - \theta || \geq (\log n)^{\pi_1} \} = O(n^{-r/2}) \\
(\beta_r) \quad & \sup_{\theta \in \mathcal{K}} P_{n,\theta} \{ z_n \in X^n; \, n^{r/2} || \sum_{i=1}^n g^{(1)}(x_i, \, T_n(z_n)) || \geq (\log n)^{\pi_2} \} = O(n^{-r/2}).\n\end{aligned}
$$

Asymptotic m.l. estimators can be obtained from suitable initial estimators by applying a Newton-Raphson method (see Michel [6] and Pfanzagl [13]).

To simplify our notations we shall use n_K (depending on compact K) as a generic constant instead of the phrase "for all sufficiently large n". In the same manner we shall use c_K as a generic constant to denote factors occurring in the bounds which depend on compact K but not on $\theta \in K$ and $n \in N$.

Lemma 1. Assume that Condition $C_{k,r}$ is fulfilled for some $k \in \mathbb{N}$ and r>0. Let T_n , $n \in N$, be a sequence of estimators with the property (α_r) . *). Then for every compact* $K \subset \Theta$

$$
\sup_{\theta \in \mathcal{K}} P_{n,\theta} \{ \sup_{n^{1/2} \|T_n - \tau\| \leq (\log n)^{\pi_1}} \| \sum_{i=1}^n [g^{(k+1)}(x_i, \tau) - E_{\tau}(g^{(k+1)}(\cdot, \tau))] \| \geq \psi(n, r) \} = O(n^{-r/2}),
$$

where

$$
\psi(n, r) = n^{(2-r)/2}, \quad \text{if} \quad 0 < r < 1, = n^{1/2} (\log n)^{\pi_1 + 1/2}, \quad \text{if} \quad r \ge 1.
$$

Proof. Let $0 < r < 1$ and K be a compact subset of Θ . Condition (ii) implies that there exist $d_K > 0$ and $\lambda_K(x)$ such that $\theta \in K$ and $\tau \in \Theta$ with $||\theta - \tau|| < d_K$ imply $||g^{(k+1)}(x, \theta) - g^{(k+1)}(x, \tau)|| \leq ||\theta - \tau||\lambda_K(x)$ for all $x \in X$, and such that $\sup_{\theta \in \mathcal{K}} E_{\theta}(\lambda_K(\cdot)^{(r+2)/2}) < \infty$. Let

$$
D_{n,\theta,K} = \{z_n \in X^n; \mid \sum_{i=1}^n \left[\lambda_K(x_i) - E_{\theta}(\lambda_K(\cdot)) \right] \mid < n \}.
$$

According to Theorem 1

$$
\sup_{\theta\in\mathcal{K}} P_{n,\theta}\{(D_{n,\theta,K})^c\} = O(n^{-r/2}).
$$

Furthermore, Theorem 1 together with condition (ii) (c) implies that

(3.2)
$$
\sup_{\theta \in \mathcal{K}} P_{n,\theta} \{ (F_{n,\theta})^c \} = O(n^{-r/2}),
$$

where

$$
F_{n,\theta} = \{z_n \in X^n; \; ||\sum_{i=1}^n [g^{(k+1)}(x_i, \theta) - E_{\theta}(g^{(k+1)}(\cdot, \theta))]| \; |< 1/2 \; n^{(2-r)/2}\}.
$$

Let $e_K > 0$ be such that $\{\tau \in \mathbb{R}^s; \inf ||\theta - \tau|| \leq e_K\} \subset \Theta$. Choose n_K to satisfy $2n^{-1/2}(\log n)^{r_1}$ \lt min $\{d_K, e_K, \delta_K\}$ for all $n \geq n_K$, where δ_K appears in condition (iii). Then, by conditions (ii) and (iii), for $n \ge n_K$, $\theta \in K$, $\tau \in \mathbb{R}^s$ with $\|\theta - \tau\| \le$ $(n)^{\pi_1}$ and $z_n \in D_{n,\theta,I}$

$$
\| \sum_{i=1}^{n} [g^{(k+1)}(x_i, \tau) - E_{\tau}(g^{(k+1)}(\cdot, \tau))] \|
$$
\n
$$
\leq \|\sum_{i=1}^{n} [g^{(k+1)}(x_i, \tau) - g^{(k+1)}(x_i, \theta)] \| + \|\sum_{i=1}^{n} [g^{(k+1)}(x_i, \theta) - E_{\theta}(g^{(k+1)}(\cdot, \theta))] \|
$$
\n
$$
+ n \| E_{\theta}(g^{(k+1)}(\cdot, \theta)) - E_{\tau}(g^{(k+1)}(\cdot, \tau)) \|
$$
\n
$$
\leq n [1 + \sup_{\theta \in \mathcal{K}} E_{\theta}(\lambda_K(\cdot)) + \eta_K] \| \theta - \tau \| + 1/2 n^{(2-\tau)/2}
$$
\n
$$
< n^{(2-\tau)/2}.
$$

Taking account of (3.1) and (3.2), for every compact $K \subset \Theta$ we obtain

$$
\sup_{\theta \in \mathcal{K}} P_{n,\theta} \{ \sup_{n^{1/2} \|\theta - \tau\| \leq 2(\log n)^{\pi_1}} || \sum_{i=1}^n [g^{(k+1)}(x_i, \tau) - E_{\tau}(g^{(k+1)}(\cdot, \tau))] || \geq n^{(2-\tau)/2} \}
$$

= $O(n^{-r/2})$.

This together with the property (α_r) leads to the desired assertion.

In the case $r \ge 1$, it is enough to show that there exists $c_K > 0$ such that

(3.3)
$$
\sup_{\theta \in \mathbb{F}} P_{n,\theta} \{ (F_{n,\theta,K})^c \} = o(n^{-r/2}),
$$

where

$$
F_{n,\theta,K} = \{z_n \in X^n; \|\sum_{i=1}^n [g^{(k+1)}(x_i,\,\theta) - E_\theta(g^{(k+1)}(\,\cdot\,,\,\theta))] \|\leq c_K (n \log n)^{1/2}\}.
$$

This follows from Theorem 1 and condition (ii) (c).

Lemma 2. *Assume that Conditions A> B^r and Clr are fulfilled for some* $r>0$. Let T_n , $n \in \mathbb{N}$, be a sequence of asymptotic m.l. estimators of order $O(n^{-r/2})$. *Then for every compact* $K \subset \Theta$

$$
\sup_{\theta \in \mathcal{K}} P_{n,\theta} \{ z_n \in X^n; \, ||T_n(z_n) - \theta - n^{-1} \sum_{i=1}^n g^{(1)}(x_i, \theta) J(\theta)^{-1} || \geq \omega(n, r) \} = O(n^{-r/2}),
$$

where

246 T. MATSUDA

$$
\omega(n, r) = n^{-(r+1)/2} (\log n)^{2\pi_1}, \quad \text{if} \quad 0 < r < 1 ,
$$

= $n^{-1} (\log n)^{2\pi_1 + 1/2}, \quad \text{if} \quad r \ge 1 .$

Proof. Let $0 < r < 1$ and K be a compact subset of Θ . Condition (ii) in $C_{1,r}$ implies that there exist $d_K > 0$ and $\lambda_K(x)$ such that $x \in X$, $\theta \in K$ and $\tau \in \Theta$ with $||\theta-\tau||<\!>d_K$ imply $||g^{(2)}(x,\theta)-g^{(2)}(x,\tau)|| \leq ||\theta-\tau||\lambda_K(x)$ and such that $\sup_{\theta \in \mathcal{K}} E_{\theta}(\lambda_K(\cdot)^{(r+2)/2}) < \infty$. As in the proof of Lemma 1, we define

$$
D_{n,\theta,K} = \{z_n \in X^n; \ |\sum_{i=1}^n [\lambda_K(x_i) - E_{\theta}(\lambda_K(\cdot))] | < n\},
$$
\n
$$
F_{n,\theta} = \{z_n \in X^n; \ |\sum_{i=1}^n [g^{(2)}(x_i, \theta) + J(\theta) || < 1/2 \ n^{(2-r)/2}\}.
$$

It follows from Theorem 1, condition (ii) (a) in *A* and Condition *B*, that there exists $c_K > 0$ such that

(3.4)
$$
\sup_{\theta \in K} P_{n,\theta} \{ (H_{n,\theta,K})^c \} = o(n^{-r/2}),
$$

where

$$
H_{n,\theta,K} = \{z_n \in X^n; \, ||\sum_{i=1}^n g^{(1)}(x_i, \theta)|| < c_K(n \log n)^{1/2}\}.
$$

Let $U_{n,\theta}$ and $V_{n,r}$ be defined by

$$
U_{n,\theta} = \{z_n \in X^n; n^{1/2} || T_n(z_n) - \theta || < (\log n)^{\pi_1}\},
$$

$$
V_{n,r} = \{z_n \in X^n; n^{r/2} || \sum_{i=1}^n g^{(1)}(x_i, T_n(z_n) || < (\log n)^{\pi_2}\}.
$$

Choose $e_K>0$ such that $K^*{=}\{\tau{\in} \boldsymbol{R}^s; \, \inf \|\theta{-}\tau\|{\leq}e_K\} \,{\subset}\, \Theta$ and n_K such that $n^{-1/2}(\log n)^{\tau_1}$ is determined by condition (iii) in $C_{1,r}$. It is obvious that $n \ge n_K$, $\theta \in K$ and $z_n \in U_{n,\theta}$ imply $T_n(z_n) \in K^*$. Since K^* is a compact subset of Θ , conditions (ii) (b) in *A* and (iii) in $C_{1,r}$ imply that

$$
\rho_{K^*} = \sup_{\tau \in K^*} ||f(\tau)^{-1}|| < \infty.
$$

Using the equality

$$
\sum_{i=1}^n g^{(1)}(x_i, \theta) = \sum_{i=1}^n g^{(1)}(x_i, T_n) + (\theta - T_n) \sum_{i=1}^n g^{(2)}(x_i, T_n, \theta)
$$

with $g^{(2)}(x, \theta, \sigma) = \int g^{(2)}(x, (1-t)\theta + t\sigma)dt$, we obtain

$$
T_n - \theta - n^{-1} \sum_{i=1}^n g^{(1)}(x_i, \theta) J(\theta)^{-1} + n^{-1} \sum_{i=1}^n g^{(1)}(x_i, T_n) J(T_n)^{-1}
$$

= $T_n - \theta - n^{-1} \sum_{i=1}^n g^{(1)}(x_i, \theta) [J(\theta)^{-1} - J(T_n)^{-1}] + (T_n - \theta) n^{-1} \sum_{i=1}^n g^{(2)}(x_i, T_n, \theta) J(T_n)^{-1}$

$$
= (T_n - \theta) [J(T_n) - J(\theta)] J(T_n)^{-1} - n^{-1} \sum_{i=1}^n g^{(1)}(x_i, \theta) J(\theta)^{-1} [J(T_n) - J(\theta)] J(T_n)^{-1}
$$

+ $(T_n - \theta) n^{-1} \sum_{i=1}^n [g^{(2)}(x_i, T_n, \theta) - g^{(2)}(x_i, \theta)] J(T_n)^{-1}$
+ $(T_n - \theta) n^{-1} \sum_{i=1}^n [g^{(2)}(x_i, \theta) + J(\theta)] J(T_n)^{-1}$.

Hence we have for $n \ge n_K$, $\theta \in K$ and $z_n \in D_{n,\theta,K} \cap F_{n,\theta} \cap H_{n,\theta,K} \cap U_{n,\theta} \cap V_{n,r}$

$$
||T_{n} - \theta - n^{-1} \sum_{i=1}^{n} g^{(1)}(x_{i}, \theta) J(\theta)^{-1}||
$$

\n
$$
\leq ||n^{-1} \sum_{i=1}^{n} g^{(1)}(x_{i}, T_{n}) J(T_{n})^{-1}|| + ||T_{n} - \theta - n^{-1} \sum_{i=1}^{n} g^{(1)}(x_{i}, \theta) J(\theta)^{-1}
$$

\n
$$
+ n^{-1} \sum_{i=1}^{n} g^{(1)}(x_{i}, T_{n}) J(T_{n})^{-1}||
$$

\n
$$
\leq \rho_{K^{*}} n^{-(r+2)/2} (\log n)^{\pi_{2}} + (c_{K} \eta_{K} \rho_{K^{*}}^{2} n^{-1/2} (\log n)^{1/2} + 1/2 \rho_{K^{*}} n^{-r/2}) ||T_{n} - \theta||
$$

\n
$$
+ \rho_{K^{*}} (1 + \eta_{K} + \sup_{\theta \in K} E_{\theta}(\lambda_{K}(\cdot))) ||T_{n} - \theta||^{2}
$$

\n
$$
\leq c_{K} n^{-(r+1)/2} (\log n)^{\pi_{1}}.
$$

This implies the desired result because of (3.1), (3.2), (3.4) and the properties $(\alpha_r), (\beta_r).$

For the case $r \ge 1$, the proof is also similar except that $F_{n,\theta}$ is replaced by $F_{n,\theta,K}$ in (3.3) with $k=1$.

For simplicity, we write

$$
G_n^{(m)}(z_n, \theta) = \sum_{i=1}^n g^{(m)}(x_i, \theta), \quad z_n = (x_1, \dots, x_n) \in X^n, \quad \theta \in \Theta.
$$

Now we can present a result on asymptotic sufficiency of the statistic

$$
T_{n,k} = T_n, \qquad k=1,
$$

= $(T_n, G_n^{(2)}(z_n, T_n), \cdots, G_n^{(k)}(z_n, T_n)), \qquad k \ge 2,$

where T_n , $n \in N$, is a sequence of asymptotic m.l. estimators.

Theorem 2. Assume that Conditions A, B_r , $C_{1,r}$ and $C_{k,r}$ hold for some $k \in \mathbb{N}$ and $r > 0$. Let T_n , $n \in \mathbb{N}$, be a sequence of asymptotic m.l. estimators of *order O(n~r/2). Then there exists a sequence of families of probability measures* ${Q}_{n,\theta}^k$; $\theta \in \Theta$ }, $n \in N$ *, such that*

- (a) for each $n \in \mathbb{N}$, $T_{n,k}$ is sufficient for $\{Q_{n,\theta}^k; \theta \in \Theta\}$
- (b) for every compact $K \subset \Theta$

248 T. MATSUDA

$$
\sup_{\theta \in \mathcal{K}} ||P_{n,\theta} - Q_{n,\theta}^k|| = O(n^{-r/2}), \quad \text{if} \quad r < k,
$$
\n
$$
= O(n^{-k/2}), \quad \text{if} \quad r \geq k.
$$

Proof. Let

$$
U_{n,\theta} = \{z_n \in X^n; n^{1/2} || T_n - \theta || < (\log n)^{\pi_1}\},
$$

\n
$$
V_{n,r} = \{z_n \in X^n; n^{r/2} || \sum_{i=1}^n g^{(1)}(x_i, T_n) || < (\log n)^{\pi_2}\},
$$

\n
$$
W_{n,r} = \{z_n \in X^n; \sup_{n^{1/2} || T_n - \tau || \leq (\log n)^{\pi_1}} || \sum_{i=1}^n [g^{(k+1)}(x_i, \tau) - E_{\tau}(g^{(k+1)}(\cdot, \tau))] || < \psi(n, r)\},
$$

where $\psi(n, r)$ is the same as in Lemma 1. We define

$$
\overline{q}_{n,k}(z_n, \theta) = I_{U_{n,\theta} \cap V_{n,r} \cap W_{n,r}}(z_n) \exp \{G_n(z_n, T_n) + \sum_{m=2}^k \frac{1}{m!} G_n^{(m)}(z_n, T_n) (\theta - T_n)^m + \frac{1}{(k+1)!} [E_{\theta} (G_n^{(k+1)}(\cdot, \theta))] (\theta - T_n)^{k+1} \},
$$

$$
q_{n,k}(z_n, \theta) = v_n(\theta) \overline{q}_{n,k}(z_n, \theta),
$$

where $v_n(\theta) = \left[\begin{array}{cc} 0 & \bar{q}_{n,k}(z_n, \theta)d\mu_n \end{array}\right]^{-1}$. Here and hereafter $I_{\nu}(\cdot)$ means the in dicator function of a set U. For $\theta \in \Theta$ and $n \in \mathbb{N}$, we denote by $\overline{O}_{n,q}^k$ and $O_{n,q}^k$ the measures given by

$$
\frac{d\overline{Q}_{n,\theta}^{\ k}}{d\mu_n} = \overline{q}_{n,k} \quad \text{and} \quad \frac{dQ_{n,\theta}^{\ k}}{d\mu_n} = q_{n,k} \, .
$$

Then it follows from the factorization theorem that for each $n \in N$, $T_{n,k}$ is sufficient for $\{Q_{n,\theta}^k; \theta \in \Theta\}.$

In order to prove the second assertion (b) we fix a compact subset *K* of Θ. Using the Taylor expansion

$$
G_n(z_n, \theta) = G_n(z_n, T_n) + \sum_{m=1}^k \frac{1}{m!} G_n^{(m)}(z_n, T_n) (\theta - T_n)^m + \frac{1}{(k+1)!} G_n^{(k+1)}(z_n, T_n^*)(\theta - T_n)^{k+1}
$$

where max $\{\|T^*_n - \theta\|, \|T^*_n - T_n\|\} \leq \|T_n - \theta\|$, we have for $z_n \in U_{n,\theta} \cap V_{n,r} \cap W_{n,r}$

$$
(3.5) \qquad \qquad \left| \log \frac{\overline{q}_{n,k}(z_n, \theta)}{p_n(z_n, \theta)} \right|
$$

$$
\leq ||G_n^{(1)}(z_n, T_n)|| \, ||T_n - \theta|| + \frac{1}{(k+1)!} ||G_n^{(k+1)}(z_n, T_n^*)|
$$

$$
-E_{\theta}(G_n^{(k+1)}(\cdot, \theta)) || \, ||T_n - \theta||^{k+1}.
$$

Since

$$
||G_n^{(k+1)}(z_n, T_n^*)-E_{\theta}(G_n^{(k+1)}(\cdot, \theta))||
$$

\n
$$
\leq ||G_n^{(k+1)}(z_n, T_n^*)- [E_{\tau}(G_n^{(k+1)}(\cdot, \tau))]_{\tau=\tau_n^*}||
$$

\n
$$
+ ||[E_{\tau}(G_n^{(k+1)}(\cdot, \tau))]_{\tau=\tau_n^*}-E_{\theta}(G_n^{(k+1)}(\cdot, \theta))||
$$

it follows from (3.5) and condition (iii) in $C_{k,r}$ that for $n \ge n_K$, $\theta \in K$ and $z_n \in$
 $U_{n,\theta} \cap V_{n,r} \cap W_{n,r}$

$$
(3.6) \qquad \left|\log \frac{\overline{q}_{n,k}(z_n, \theta)}{p_n(z_n, \theta)}\right| \leq n^{-(r+1)/2} (\log n)^{\pi_1 + \pi_2} + n^{-(k+1)/2} (\log n)^{(k+1)\pi_1} \psi(n, r).
$$

This implies that for $n \ge n_K$, $\theta \in K$ and $z_n \in U_{n,\theta} \cap V_{n,r} \cap W_{n,r}$

$$
(3.7) \qquad \qquad \left|\log \frac{\overline{q}_{n,k}(z_n, \theta)}{p_n(z_n, \theta)}\right| \leq \log 2.
$$

Using the inequality $|1 - \exp(x)| \leq 2|x|$ for $|x| \leq \log 2$, then from (3.7) we have for $n \ge n_K$ and $\theta \in K$

$$
(3.8) \qquad ||P_{n,\theta}-\overline{Q}_{n,\theta}^{k}||
$$
\n
$$
\leq \int_{U_{n,\theta}\cap V_{n,r}\cap W_{n,r}} \left|1-\frac{\overline{q}_{n,k}(z_n,\theta)}{p_n(z_n,\theta)}\right| dP_{n,\theta}+P_{n,\theta}\left\{(U_{n,\theta}\cap V_{n,r}\cap W_{n,r})^c\right\}
$$
\n
$$
\leq 2E_{\theta}\left[\left|\log\frac{\overline{q}_{n,k}(\cdot,\theta)}{p_n(\cdot,\theta)}\right|I_{U_{n,\theta}\cap V_{n,r}\cap W_{n,r}}(\cdot)\right]+P_{n,\theta}\left\{(U_{n,\theta}\cap V_{n,r}\cap W_{n,r})^c\right\}.
$$

By the properties (α_r) , (β_r) and Lemma 1

(3.9)
$$
\sup_{\theta \in K} P_{n,\theta} \{ (U_{n,\theta} \cap V_{n,r} \cap W_{n,r})^c \} = O(n^{-r/2}).
$$

Then it is obvious that the assertion (b) holds for the case $1 \le r < k$ and for the case $k \ge 2$ and $0 < r < 1$ because of (3.6), (3.8) and (3.9). It remains to prove the assertion (b) for the case $r \ge k$ and for the case $k=1$ and $0 < r < 1$.

In the case $r{\geq}k$, we shall show that the first term on the right side of (3.8) has upper bound of order $O(n^{-k/2})$. Because of condition (ii) in $C_{k,r}$, choose $d_K > 0$, $\lambda_K(x)$ and $D_{n,\theta,K}$ as in the proof of Lemma 1. Let

$$
M_{n,\theta} = \{z_n \in X^n; ||T_n - \theta - n^{-1} \sum_{i=1}^n g^{(1)}(x_i, \theta) J(\theta)^{-1}|| < n^{-1}(\log n)^{2\pi_1 + 1/2}\}.
$$

According to Lemma 2

(3.10)
$$
\sup_{\theta \in \mathbb{R}} P_{n,\theta} \{ (M_{n,\theta})^c \} = O(n^{-k/2}).
$$

We must again estimate the second term on the right side of (3.5). Since for $\theta \in K$ and $z_n \in M_{n,\theta}$

$$
||T_n-\theta|| <\rho_K n^{-1}||\sum_{i=1}^n g^{(1)}(x_i, \theta)||+n^{-1}(\log n)^{2\pi_1+1/2}
$$

with $\rho_K=$ sup $||J(\theta)^{-1}||$, it follows from Minkowski's inequality that

$$
[E_{\theta}(|T_{n}-\theta|{|^{k+2}I_{M_{n},\theta}}(\cdot))]^{1/(k+2)} \leq \rho_{K}n^{-1}[E_{\theta}(||\sum_{i=1}^{n}g^{(1)}(\cdot,\theta)|{|^{k+2}})]^{1/(k+2)} + n^{-1}(\log n)^{2\alpha_{1}+1/2}.
$$

(2.10) with Condition *B^r* implies that for

$$
E_{\theta}(\|\sum_{i=1}^n g^{(1)}(\cdot,\,\theta)\|^{k+2}) \leq c_K n^{(k+2)/2},
$$

which leads to

$$
(3.11) \qquad [E_{\theta}(||T_n-\theta||^{k+2}I_{M_n,\theta}(\cdot))]^{1/(k+2)} \leq c_K n^{-1/2}
$$

Thus we have for $n \ge n_K$ and $\theta \in K$

$$
(3.12) \tE_{\theta}(||G_{n}^{(k+1)}(\cdot, T_{n}^{*})-G_{n}^{(k+1)}(\cdot, \theta)|| \ ||T_{n}-\theta||^{k+1}I_{U_{n,\theta}\cap D_{n,\theta,K}\cap M_{n,\theta}}(\cdot))
$$

$$
\leq (1+\sup_{\theta\in K}E_{\theta}(\lambda_{K}(\cdot)))nE_{\theta}(||T_{n}-\theta||^{k+2}I_{M_{n,\theta}}(\cdot)) \leq c_{K}n^{-k/2}.
$$

By Holder's inequality

$$
E_{\theta}(||G_{n}^{(k+1)}(\cdot,\theta)-E_{\theta}(G_{n}^{(k+1)}(\cdot,\theta))|| ||T_{n}-\theta||^{k+1}I_{M_{n},\theta}(\cdot))
$$

\n
$$
\leq [E_{\theta}(||G_{n}^{(k+1)}(\cdot,\theta)-E_{\theta}(G_{n}^{(k+1)}(\cdot,\theta))||^{k+2}]^{1/(k+2)}[E_{\theta}(||T_{n}-\theta||^{k+2}I_{M_{n},\theta})]^{(k+1)/(k+2)},
$$

\nso that (2.10) with condition (ii) (c) in $C_{k,r}$ and (3.11) imply that for $\theta \in K$
\n(3.13)
$$
E_{\theta}(||G_{n}^{(k+1)}(\cdot,\theta)-E_{\theta}(G_{n}^{(k+1)}(\cdot,\theta))|| ||T_{n}-\theta||^{k+1}I_{M_{n},\theta}(\cdot)) \leq c_{K}n^{-k/2}.
$$

Taking account of (3.7), we obtain for $n \ge n_K$ and $\theta \in K$

$$
E_{\theta}\Big(\Big|\log\frac{\overline{q}_{n,k}(\cdot,\theta)}{p_n(\cdot,\theta)}\Big|I_{U_{n,\theta}\cap V_{n,r}\cap W_{n,r}}(\cdot)\Big)\Big|
$$

$$
\leq E_{\theta}\Big(\Big|\log\frac{\overline{q}_{n,k}(\cdot,\theta)}{p_n(\cdot,\theta)}\Big|I_{U_{n,\theta}\cap V_{n,r}\cap W_{n,r}\cap D_{n,\theta,K}\cap M_{n,\theta}}(\cdot)\Big|
$$

$$
+ (\log 2)P_{n,\theta}\{(D_{n,\theta,K}\cap M_{n,\theta})^c\}.
$$

Thus, the first term on the right side of (3.8) has upper bound of order $O(n^{-k/2})$ because of (3.1), (3.5), (3.10), (3.12) and (3.13).

This, together with (3.8) and (3.9), implies that

$$
\sup_{\theta\in\mathcal K}||P_{n,\theta}-\overline{Q}_{n,\theta}^{\;k}||=O(n^{-k/2})\,.
$$

Since

$$
\sup_{\theta \in \mathcal{K}} |1-v_n(\theta)^{-1}| = \sup_{\theta \in \mathcal{K}} |P_{n,\theta}\{X^n\} - \overline{Q}_{n,\theta}^k\{X^n\}|
$$

= $O(n^{-k/2}),$

we have

$$
\sup_{\theta \in \mathcal{K}} ||P_{n,\theta} - Q_{n,\theta}^{\;k}|| \leq \sup_{\theta \in \mathcal{K}} ||P_{n,\theta} - \overline{Q}_{n,\theta}^{\;k}|| + \sup_{\theta \in \mathcal{K}} ||\overline{Q}_{n,\theta}^{\;k} - Q_{n,\theta}^{\;k}||
$$

$$
\leq \sup_{\theta \in \mathcal{K}} ||P_{n,\theta} - \overline{Q}_{n,\theta}^{\;k}|| + \sup_{\theta \in \mathcal{K}} |1 - v_n(\theta)^{-1}|
$$

$$
= O(n^{-k/2}),
$$

which is the desired result.

In the case $k=1$ and $0 < r < 1$, $M_{n,\theta}$ is replaced by the following set $M_{n,\theta,r}$

$$
M_{n,\theta,r} = \{z_n \in X^n; ||T_n - \theta - n^{-1} \sum_{i=1}^n g^{(1)}(x_i, \theta) J(\theta)^{-1}|| < n^{-(r+1)/2} (\log n)^{2\pi_1} \}.
$$

Then, a similar argument shows that

$$
\sup_{\theta\in\mathcal{K}}||P_{n,\theta}-Q_{n,\theta}^{-1}||=O(n^{-r/2}).
$$

This completes the proof.

REMARK. (1) If $r \ge k$, it is possible to choose $Q_{n,\theta}^k$ independent of *r* because $V_{n,r}$ and $W_{n,r}$ in the definition of $\overline{q}_{n,k}$ can be replaced by $V_{n,k}$ and $W_{n,k}$, respectively.

(2) In the case $k=1$, it follows from Theorem 2 that a sequence of asymptotic m.l. estimators of order $O(n^{-r/2})$ is asymptotically sufficient up to order $O(n^{-r/2})$ if $0 < r < 1$ and $O(n^{-1/2})$ if $r = 1$. The latter result has been already shown by Pfanzagl [10] under similar circumstances to ours.

(3) Michel [7] showed that $T_{n,k}$, $k \ge 3$, constructed by asymptotic m.l. estimators of order $o(n^{-(k-2)/2})$ is asymptotically sufficient up to order $o(n^{-(k-2)/2})$. According to Theorem 2, the convergence order concerning asymptotic suffi ciency of $T_{n,k}$ can be improved up to $O(n^{-k/2})$ if $\{T_n\}$ is a sequence of asymptotic m.l. estimators with higher order than Michel's one.

(4) In [14], [15] Suzuki assumes the existence of moment generating function of $g^{(k+1)}(x, \theta)$ to evaluate probability of large deviations. Of course this condition is stronger than ours.

4. Properties of m.l. estimators. We shall investigate conditions under which a sequence of m.l. estimators has the properties (α_r) and (β_r) for some *r>0.*

Let $\overline{\Theta}$ denote the closure of Θ in $\overline{R}^s = [-\infty, \infty]^s$. Assume that $g(\cdot, \theta)$: $X\rightarrow R$, $\theta \in \Theta$, admits a measurable extension $g(\cdot, \theta)$: $X\rightarrow \overline{R}$, $\theta \in \overline{\Theta}$.

Condition *A**

(i) $E_{\theta}(g(\cdot, \tau)) < E_{\theta}(g(\cdot, \theta))$ for all $\theta \in \Theta$, $\tau \in \overline{\Theta}$, $\theta \neq \tau$.

(ii) For every $x \in X$, $\theta \rightarrow g(x, \theta)$ is continuous on $\overline{\Theta}$.

Condition *Bf*

(i) For every $\theta \in \Theta$ and every compact $K \subset \Theta$

$$
\sup_{\tau\in\mathcal{K}}\, E_{\tau}(\hspace{1pt}| \hspace{1pt} g(\hspace{1pt}\boldsymbol{\cdot}\hspace{1pt},\theta)\hspace{1pt}|^{\hspace{1pt} (r+2)/2})\hspace{1pt}<\infty\,\hspace{1pt}.
$$

(ii) For every $\theta \in \overline{\Theta}$ there exists a neighborhood U_{θ} of θ such that for every neighborhood *U* of *θ*, *U*⊂*U*_θ, and every compact *K*⊂θ

$$
\sup_{\tau\in\mathcal{K}}E_{\tau}(\vert \sup_{\sigma\in\overline{U}}g(\boldsymbol{\cdot},\,\sigma)\vert^{(\tau+2)/2})<\infty\,\,.
$$

(iii) For each $x \in X$, $\theta \rightarrow g(x, \theta)$ admits continuous partial derivatives up to the order 2 on Θ . For every $\theta \in \Theta$ there exist a neighborhood U_{θ} of $θ$ and a measurable function $\lambda(x, θ)$ such that

- (a) for all $x \in X$, τ , $\sigma \in U_{\theta}$, $||g^{(2)}(x, \tau)-g^{(2)}(x, \sigma)|| \leq ||\tau-\sigma||\lambda(x, \theta)$
- (b) for every compact $K \subset \Theta$, $\sup_{\tau \in K} E_{\tau}(\lambda(\cdot, \theta)^{(r+2)/2}) < \infty$

(c)
$$
\sup_{\tau \in \mathcal{J}_a} E_{\tau}(|g^{(2)}(\cdot,\tau)||^{(r+2)/2}) < \infty
$$
.

(iv) $\theta \rightarrow J(\theta)$ is continuous on Θ .

A *maximum likelihood estimator* for the sample size *n* is an estimator *Tⁿ* for which $T_{n} \in \overline{\Theta}$ and

$$
\sum_{i=1}^n g(x_i, T_n) = \sup_{\theta \in \overline{\Theta}} \sum_{i=1}^n g(x_i, \theta).
$$

Condition (ii) in *A** insures that m.l. estimators for the sample size *n* exist. Let \hat{T}_n , $n \in \mathbb{N}$, be a sequence of m.l. estimators.

The following lemma can be obtained in a way analogous to the one used in the proof of Lemma 4 in Michel and Pfanzagl [8] except that Theorem 1 is used instead of Chebyshev's inequality.

Lemma 3. *Let Condition A* and conditions* (i), (ii) *in Bf be satisfied for some* $r > 0$ *. Then for every* $\varepsilon > 0$ *and every compact* $K \subset \Theta$

$$
\sup_{\theta\in K}P_{n,\theta}\{z_n\!\!\in\!\!X^n;\,||\hat{T}_n(z_n)\!-\!\theta||\!\geq\!\varepsilon\}=O(n^{-r/2})\,.
$$

The following proposition is an immediate consequence of Lemma 3.

Proposition 1. Let Condition A^* and conditions (i), (ii) in B_r^* be satisfied *for some r*>0. *Moreover, assume that for each* $x \in X$, $\theta \rightarrow g(x, \theta)$ *is continuously differentiable on* Θ . *Then for every compact* $K \subset \Theta$

$$
\sup_{\theta \in \mathcal{K}} P_{n,\theta} \{ z_n \in X^n; \, || \sum_{i=1}^n g^{(1)}(x_i, \hat{T}_n(z_n)) || > 0 \} = O(n^{-r/2}).
$$

Lemma 4 (cf. Lemma 5 in Michel and Pfanzagl [8]). *Let Condition A* and conditions* (i)–(iii) *in B_i*^{$*$} *be satisfied for some r*>0. *Then for every* δ >0

and every compact $K \subset \Theta$ *there exists d*>0 *such that*

$$
\sup_{\theta \in \mathcal{K}} P_{n,\theta} \{ z_n \in X^n; \sup_{\|\hat{T}_n - \tau\| \leq d} ||n^{-1} \sum_{i=1}^n \left[g^{(2)}(x_i, \tau) + J(\theta) \right] || \geq \delta \} = O(n^{-r/2}).
$$

Proof. Let $\delta > 0$ be given and K be a compact subset of Θ . By condition (iii) in B_r^* we may choose $d_K > 0$, $\lambda_K(x)$ and $D_{n,\theta,K}$ as in Lemma 1 with $k=1$. We write

$$
F_{n,\theta,\delta} = \{z_n \in X^n; ||n^{-1}\sum_{i=1}^n [g^{(2)}(x_i, \theta)+J(\theta)]|| < \delta/2\}.
$$

From condition (iii) (c) in *B?* it follows that

$$
\sup_{\theta\in\mathcal{K}} P_{n,\theta}\{(F_{n,\theta,\delta})^c\}=O(n^{-r/2})\,.
$$

Taking $2d = \min \{d_K, \delta/[2(1 + \sup_{\theta \in K} E_{\theta}(\lambda_K(\cdot)))]\}$, we see that for $z_n \in D_{n,\theta,K}$ $F_{n,\theta,\delta}$, $||T_n-\theta|| < d$ and $||T_n-\tau|| \leq d$

$$
||n^{-1}\sum_{i=1}^{n} [g^{(2)}(x_i, \tau)+J(\theta)]|| \leq ||n^{-1}\sum_{i=1}^{n} [g^{(2)}(x_i, \tau)-g^{(2)}(x_i, \theta)]||
$$

$$
+||n^{-1}\sum_{i=1}^{n} [g^{(2)}(x_i, \theta)+J(\theta)]|| < \delta.
$$

This together with Lemma 3 implies the desired assertion.

Lemma 3 and Lemma 4 yield the following proposition.

Proposition 2 (cf. Lemma 6 in [8] and Lemma 3 in Pfanzagl [12]). *Assume that Conditions A, A*, B^r and Bf are fulfilled for some* r>0. *Then for every compact* $K \subset \Theta$ *there exists* $c_K > 0$ *such that*

$$
\sup_{\theta \in K} P_{n,\theta} \{ z_n \in X^n ; n^{1/2} || \hat{T}_n(z_n) - \theta || \geq c_K (\log n)^{1/2} \} = O(n^{-r/2}).
$$

Proof. Let *K* be a fixed compact subset of Θ. It follows from condi tions (ii) (b) in *A* and (iv) in B_r^* that there exists $\delta_K > 0$ such that $\theta \in K$ and matrix *J* with $||J-J(\theta)||<\delta_K$ imply that *J* is regular and $||J^{-1}-J(\theta)^{-1}||<1$. Let

$$
W_{n,\theta}^* = \{z_n \in X^n; \sup_{\|\hat{T}_n - \tau\| \leq d_K} ||n^{-1} \sum_{i=1}^n [g^{(2)}(x_i, \tau) + \bar{f}(\theta)]|| < \delta_K\},\
$$

where $d_K>0$ is chosen to satisfy that

$$
\sup_{\theta\in K} P_{n,\theta}\{(W_{n,\theta}^*)^c\} = O(n^{-r/2})
$$

because of Lemma 4. Choose $e_K > 0$ such that $e_K \le d_K$ and $\{\tau \in \mathbb{R}^s\}$; inf $||\theta - \tau|| \le$ e_K } $\subset \Theta$. Let

254 T. MATSUDA

$$
U_{n,\theta}^* = \{z_n \in X^n; \|\hat{T}_n - \theta\| < e_K\}.
$$

In view of Lemma 3 we have

$$
\sup_{\theta\in K} P_{n,\theta}\{(U_{n,\theta}^*)^c\} = O(n^{-r/2}).
$$

Since for $\theta \in K$ and $z_n \in U_{n,\theta}^*$

$$
\sum_{i=1}^n g^{(1)}(x_i, \theta) = (\theta - \hat{T}_n) \sum_{i=1}^n g^{(2)}(x_i, \hat{T}_n, \theta),
$$

it follows that for $\theta \in K$ and $z_n \in U_{n,\theta}^* \cap W_{n,\theta}^*$

$$
||n^{1/2}(\hat{T}_n - \theta)|| \leq ||n^{-1/2} \sum_{i=1}^n g^{(1)}(x_i, \theta)|| ||(-n^{-1} \sum_{i=1}^n g^{(2)}(x_i, \hat{T}_n, \theta))^{-1}||
$$

$$
\leq (1 + \sup_{\theta \in \mathcal{K}} ||f(\theta)^{-1}||)n^{-1/2}|| \sum_{i=1}^n g^{(1)}(x_i, \theta)||.
$$

In order to complete the proof it is enough to note that there exists $c_K > 0$ such that

$$
\sup_{\theta \in K} P_{n,\theta} \{ z_n \in X^n; \|\sum_{i=1}^n g^{(1)}(x_i, \theta) \| \geq c_K (n \log n)^{1/2} \} = o(n^{-r/2}).
$$

This follows from Theorem 1, condition (ii) (a) in *A* and Condition *B^r .*

REMARK. (1) Proposition 2 remains to hold for a sequence of minimum contrast estimators with obvious modification.

(2) If every $(r+2)/2$ in Condition B_r^* is replaced by a number greater than it, then Proposition 2 holds with $o(n^{-r/2})$ instead of $O(n^{-r/2})$.

(3) Proposition 2 improves Lemma 3 of Pfanzagl [12] in the following sense:

(a) This result still holds for $0 < r < 1$.

(b) In the case $r \ge 1$, the moment conditions used in Proposition 2 are weaker than in [12] because of the use of Theorem 1 instead of Lemma 2 of [12] (see Remark (2) of Theorem 1).

From Theorem 2, Proposition 1 and Proposition 2, the following theorem is immediate.

Theorem 3. Assume that Conditions A, A^* , B_r , (i), (ii) in B_r^* , $C_{1,r}$ and *C*_{*k*}, are fulfilled for some $k \in N$ and $r > 0$. Then, $\hat{T}_{n,k} = (\hat{T}_n, G_n^{(2)}(z_n, \hat{T}_n), \dots,$ $G_n^{(k)}(z_n, \hat{T}_n)$) is asymptotically sufficient up to order $O(n^{-r/2})$ if $r < k$ and $O(n^{-k/2})$ *if* $r \ge k$. Here $\hat{T}_{n,1}$ means \hat{T}_n .

It is remarked that we need the $(2+r)$ -th absolute moment of $g^{(1)}$ and the $(2+r)/(2-r)$ -th absolute moment of $g^{(2)}$ in order to show that a sequence

of m.l. estimators is asymptotically sufficient up to order $O(n^{-r/2})$ with $0 < r \leq 1$. Acknowledgment. The author wishes to express his hearty thanks to

Professor Takeru Suzuki for informing me of the literature [10].

References

- [1] B. von Bahr and C.-G. Esseen: *Inequalities for the rth absolute moment of a sum of random variables,* 1≤r≤2, Ann. Math. Statist. 36 (1965), 299-303.
- [2] K.L. Chung: *The strong law of large numbers,* Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1951, 341-352.
- [3] J.K. Ghosh and K. Subramanyam: *Second order efficiency of maximum likelihood estimators,* Sankhya Ser. A 36 (1974), 325-358.
- [4] L. LeCam: *On the asymptotic theory of estimation and testing hypotheses,* Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1956, Vol. 1, 129-156.
- [5] J. Marcinkiewicz and A. Zygmund: *Sur les fonctions independantes,* Fund. Math. 29 (1937), 60-90.
- [6] R. Michel: *A multidimensional Newton-Raphson method and its applications to the existence of asymptotic Fn-estimators and their stochastic expansions,* J. Multivariate Anal. 7 (1977), 235-248.
- [7] R. Michel: *Higher order asymptotic sufficiency,* Sankhya Ser. A 40 (1978), 76-84.
- [8] R. Michel and J. Pfanzagl: *The accuracy of the normal approximation for minimum contrast estimates,* Z. Wahrsch. Verw. Gebiete 18 (1971), 73-84.
- [9] S.V. Nagaev: *Some limit theorems for large deviations,* Theor. Prob. Appl. 10 (1965), 214-235.
- [10] J. Pfanzagl: *Further results on asymptotic normality* I, Metrika 18 (1972), 174- 198.
- [11] J. Pfanzagl: *Further results on asymptotic normality* II, Metrika 19 (1973), 89- 97.
- [12] J. Pfanzagl: *Asymptotic expansions related to minimum contrast estimators,* Ann. Statist. 1 (1973), 993-1026.
- [13] J. Pfanzagl: *Asymptotically optimum estimation and test procedures,* Proceedings of the Prague Symposium on Asymptotic Statistics, 1974, Vol. 1, 201-272.
- [14] T. Suzuki: *Asymptotic sufficiency up to higher orders and its applications to statistical tests and estimates,* Osaka J. Math. 15 (1978), 575-588.
- [15] T. Suzuki: *A remark on asymptotic sufficiency up to higher orders in multi-dimensional parameter case,* Osaka J. Math. 17 (1980), 245-252.
- [16] A. Wald: *Tests of statistical hypotheses concerning several parameters when the number of observations is large,* Trans. Amer. Math. Soc. 54 (1943), 426-482.

Faculty of Economics Wakayama University Nishitakamatsu Wakayama 641, Japan