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The mobility of ions in liquid hydrocarbons is discussed within the framework of Stokes’ formula. In the Stokes model,
the ions are considered as submicroscopic spheres, consisting of the ionic core (the ionized parent molecule) surrounded
by a more or less solid shell of neutral molecules, which are bound by the polarization force to the ionic core. Under the
influence of an applied electric field these charged particles (clusters) move with a velocity given by the Stokes’ mobility
formula and the applied electric field strength. The retarding effect of the liquid is assumed to be friction and the motion
proceeds in a laminar regime. One result is Walden’s rule. Sometimes Walden’s rule is not fulfilled. Taking into account
the temperature dependence of the cluster radius in Stokes’ formula allows modification of Walden’s rule.

A discussion of the ionic drift velocity at the high field strengths on the basis of Reynold’s number or Newtons law of
friction leads to the conclusion that the mobility of these ionic clusters at temperatures near the melting point will be
independent of the applied electric field strength up to very high values. The measured data reported in the literature
support this finding.

In another set of experiments, the radius of positive ions was increased by pre-irradiation with y - rays. Formation of
dimers led to ions with larger radii.
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Fig. 4: Thick layer method [5]
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Fig. 5a: Test of Walden’s rule for positive ions in liquid

ethane, adapted from [5]
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Fig. 5b: Comparison of the measured data of Fig. 5a with
corrected data according to Eq. 5.
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In another method, the space between the electrodes is
irradiated by a pulse of high energy x-rays. By tailoring the
conditions for the generation of defined ions, mobilities can be
measured (see [5]). In pure ethane, free electrons as negative
charge carriers and positive ionized ethane molecules were
observed [5]. For the positive ions Walden’s rule was obeyed
except for a small decrease of the product at higher temperatures

(see Fig. 5a).
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Fig. 6: Mobility of Cgy and Cyg-ions in liquid hydrocarbons
as a function of viscosity,
upper trace without pre-irradiation, lower trace with
pre-irradiation; the data points refer to cyclohexane,
neopentane, n-pentane, and tridecane at different
temperatures, in this log-log representation the
points for Cg and Cy, fall on the same trace (adapted

from [6])
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The slight decrease of the product at higher temperatures
(lower 1/T values) can be rationalized with a decrease of the
radius R, as given by Eq. 5. In Fig. 5b the data of Fig. 5a are
compared to estimates according to Eq. 5.

If both ions are large and of similar size, then the influence of
polarization becomes smaller, as was shown for positive and
negative fullerene ions [6]. The mobilities of positive and
negative ions of Cg and Cq;; were measured in various
hydrocarbons and CS,. Positive ions are formed by charge
transfer from ionized solvent molecules, while negative ions are
produced by electron attachment, respectively. The ionization
energy of the hydrocarbons in the liquid phase is approximately
10 eV. The ionization energy of Cg is about 7.6 eV. The
electron affinity is 2.67 eV. Charge transfer from positive ions
to the fullerenes and electron attachment to the fullerenes

produces the fullerene ions,
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Fig. 9: Effect of pre-irradiation on the drift velocity of
' positive Cg ions; the data of n-pentane refer to the
positive n-pentane molecular ion, T=295K [12]
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6. Structure of ions
The structure of the ions in liquid hydrocarbons is determined

by two physical processes: a) the polarization of the surrounding
neutral molecules and b) by the repulsive action of the ionic
shells of the ion and the neutrals.

In the case of positive ions, polarization is the predominant

effect. One or several layers of induced dipoles are formed

around the positive core. The radius of this cluster, RO is given
by Eq. 5.

In ultra-pure hydrocarbon liquids, the negative carriers are
electrons. In most other cases, the electrons become attached to
impurity molecules (in many cases oxygen) or to voluntarily
added scavengers (electro-negative molecules) present in the
liquid, The lone electron exerts a repulsive action on the neutral
molecules around it. Khrapak has formulated a model potential
acting on the electron and solved the Schrédinger Equation for
this case [14]. An important result is the fact that the radius of
the orbit of the lone electron depends on the electron affinity of
the scavenger molecule. Scavengers with a high electron affinity
lead to the formation of negative ions, where the electron is
incorporated into the electronic shell of the scavenger (for
instance halogens) and the formation of a polarization cluster
around the ion takes place, just like for positive ions. In the case
of a low electron affinity, the electron orbit extends to a certain
part outside of the scavenger molecule and repulsion of the
surrounding neutrals takes place. A region of lower density is the

result. Further outside, the polarization prevails. A delicate

balance between repulsion and polarization determines the
radius of the ion. In the early years of mobility measurements on
negative and positive ions in n-hexane a difference in mobility

was found, p. > p. [15] [16]. It is likely that the negative ions

in these measurements were OZ- ions, with a smaller radius

than the positive n-hexane ions.

The influence of the competition of polarization attraction and
exchange repulsion is very much apparent in liquid helium, due
to its weak polarizability. A detailed study of the structure of

4 various ions has been made recently [17].

In the case of non-polar liquids with a dielectric constant of
approximately 2, in addition to the simple electrostatic argument
of polarization, electrostriction and subsequently changes of the
viscosity around the ions have to be taken into account. For ions

in liquid xenon this has been attempted [18].

7. Concluding remarks
The interpretation of the ionic mobility in liquid hydrocarbons

within the framework of Stokes’ theory yields satisfactory
results. Especially, it predicts that the mobility remains constant
up to the highest values of the applied electric field strength. The
scarce data available in the literature confirm this prediction.
Near the boiling point and in supercritical conditions, the
polarization shells melt away and movement of the bare ionic
core has to be considered. In addition the strong fluctuations in

density may lead to a different transport mechanism.
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