

Title	Preparation of photovoltaic polymer-fullerene composite films by electrophoretic deposition
Author(s)	Tada, Kazuya; Onoda, Mitsuyoshi
Citation	電気材料技術雑誌. 2011, 20(2), p. 53-56
Version Type	VoR
URL	https://hdl.handle.net/11094/76876
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Preparation of photovoltaic polymer-fullerene composite films by electrophoretic deposition

Kazuya Tada, Mitsuyoshi Onoda

Division of Electrical Engineering, University of Hyogo,

2167 Shosha, Himeji, Hyogo 671-2280, Japan

E-mail: tada@eng.u-hyogo.ac.jp

Abstract

Although the neat fullerenes such as C₆₀ and C₇₀ are the most desirable materials in terms of the cost-effectiveness and the environmental friendliness, the lack of suitable preparation method prohibited the application of bulk heterojunction composite based on the neat fullerenes for photocells. Here, a method for the preparation of bulk heterojunction composites based on neat fullerenes utilizing electrophoretic deposition is reported.

1. Introduction

The discovery of the photoinduced charge transfer between conjugated polymers and fullerenes which gives dramatic enhancement of the photoconductivity has brought the unique and prospective photophysical properties of polymer-fullerene composite systems to the attention of a number of researchers. [1-3] Although it is unquestionable the neat C₆₀ is the cheapest and the most environmental-friendly fullerene, its poor solubility in common organic solvents such as chloroform and toluene makes it difficult to prepare bulk heterojunction composites using neat C₆₀ by means of traditional coating technologies such as spin-coating or printing. Usually, this problem is solved by chemical modifications of fullerenes which require multiple reaction steps followed by purification. This must not only raise the cost but also increase environmental load.

In comparison with conventional coating

techniques such as spin-coating and printing, electrophoretic deposition (EPD) only requires dilute solutions. [4,5] This makes it possible to prepare bulk heterojunction composites using neat C₆₀. We have reported that EPD can yield composites of a conjugated polymer poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEHPPV) containing large amount of unmodified C₆₀. [6] However, the porosity in the composite films had made it difficult to check photovoltaic effect in the composites. Here, we report the preparation of flat and dense composite films consisting of conjugated polymers and neat C₆₀ by means of EPD, with preliminary results on their photovoltaic effect. [7-9]

2. Experimental

The suspensions of polymer-C₆₀ composites were prepared by mixing the equivalent volumes of acetonitrile and toluene solution containing a polymer and C₆₀. In this study, we used two

polymers, MEHPPV and poly[(9,9-dioctyl-2,7-divinylene-fluorenylene)-*alt*-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PDOI-MEHPV), whose molecular structures are shown in Fig. 1. Employing toluene (i.e. good solvent for the polymer and fullerene) –rich suspensions is the key to obtain smooth and dense films applicable to sandwich-type device with an active layer of a few hundred nm thick.

EPD was carried out by using a thin-slab vessels consisting of a silicone rubber spacer sandwiched by two ITO electrodes on glass plates. The application of DC 50-200 V between the electrodes spacing 1-2 mm resulted in the film deposition on one of the electrodes. Every deposition carried out in this study resulted in the deposition on positively biased electrodes, indicating that the colloidal particles in the suspension are negatively charged. The thickness of the composite films was on the order of 100 nm.

For photovoltaic measurements, ITO electrodes covered with PEDOT was used as deposition electrode and Al electrodes prepared by vacuum deposition were used as cathode. The

measurement was carried out in air by using a solar simulator. Detailed experimental procedure can be found in the references. [7-9]

3. Results and discussion

Figure 2 (a) shows the optical absorption spectra of the suspensions containing MEHPPV:C₆₀ = 1:3 and an EPD film prepared from it. It is clearly observed that the optical absorption at around 330 nm, which comes from C₆₀, in the suspension was not appeared in the EPD film, indicating that the concentration of C₆₀ in the composite film is much lower than that in the suspension from which the films was prepared. It is suggested that the most C₆₀ is dissolved in the dispersion medium consisting of equivalent volumes of acetonitrile and toluene, although it is reported that acetonitrile does not dissolve C₆₀. [10]

On the other hand, reasonable amount of C₆₀ is incorporated in the composite film deposited in the suspension containing more C₆₀, as shown in Fig. 2(b). The optical absorption at around 330 nm remains relatively sharp, indicating that aggregation degree of C₆₀ in the composite film is relatively low. In contrast, considerable red-shift as well as broadening of the peak was found in the composites with DOI-MEHPV. In the EPD films prepared from a suspension containing DOI-MEHPV and concentrated C₆₀, it was observed that a lot of C₆₀ microcrystals cover the surface of the films. [9] These results indicate that the aggregation degree of C₆₀ is strongly influenced by the polymer.

Figure 3(a) shows short-circuit current (I_{sc}) and power conversion efficiency (PCE) in the Al/MEHPPV-C₆₀ composite/PEDOT/ITO devices as functions of C₆₀ content in the suspension. The

Fig. 1 Molecular structures of MEHPPV and DOI-MEHPV.

Fig. 2 The optical absorption spectra of the suspensions containing MEHPPV:C₆₀ = (a)1:3 and 1:7, and EPD films prepared from them. The spectra of suspensions in 1-mm thick cell and those of films deposited in 2-mm thick vessels were recorded.

dependence of PCE is quite similar to that of I_{sc} , because open-circuit voltage (V_{oc}) and fill-factor FF moderately depend on C₆₀ content. A distinct peak can be found at MEHPPV:C₆₀=1:3, and the dependence is similar to that reported for composite films consisting of MDMOPPV and PCBM. [11] The result can be understood as follows: At low C₆₀ content, the network of C₆₀, or the transport path for electrons, does not percolate throughout the composites, yielding small PCE. If the content of C₆₀ is too high, similar problem occurs on the transport path of holes.

On the other hand, in the PDOF-MEHPV-based system, an abrupt improvement of PCE was

Fig. 3 Dependence of I_{sc} and PCE in Al/polymer-C₆₀-composite/PEDOT/ITO devices on C₆₀ content in the suspension (AM1.5G, 1 sun). (a) and (b) correspond to MEHPPV and PDOF-MEHPV, respectively.

found between polymer:C₆₀=1:3 and 1:4, and additional C₆₀ resulted in relatively small variation in PCE. It is speculated that the spontaneous stratification accompanied by the formation of C₆₀ microcrystals plays a key role in the increase of PCE in this system. Since the content of C₆₀ in the colloidal particles of the polymer-C₆₀ mixture is limited, the problem on the hole transport path at high C₆₀ content, which should be the reason why PCE in the MEHPPV-based devices drops at high C₆₀ content, does not arise. The small drop in PCE for PDOF-MEHPV:C₆₀=1:10 device can be

attributed to high series resistance due to the thick C₆₀ microcrystals layer.

4. Conclusion

Although PCE on the order of 10⁻³% is quite low compared with state-of-the-art organic photocells based on conjugated polymer-fullerene composites, it has been successfully demonstrated that EPD can yield flat and dense bulk heterojunction composites with neat C₆₀. As a researcher who was a student studying conjugated polymers in the laboratory of Prof. Katsumi Yoshino in 1990's, one of the authors (KT) has thought that it is like a longstanding homework to find the way for the preparation of bulk heterojunction composites using neat fullerene C₆₀. He is happy if the present result can be recognized as an answer for this issue.

Acknowledgement

This work was supported by JSPS Grant-in-Aid for Young Scientists (23760019).

References

- [1] S. Morita, A. A. Zakhidov, K. Yoshino, *Solid State Commun.* **82** (1992) 249
- [2] K. Yoshino, X. H. Yin, K. Muro, S. Kiyomatsu, S. Morita, A. A. Zakhidov, T. Noguchi, T. Ohnishi, *Jpn. J. Appl. Phys.* **32** (1993) L357.
- [3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, *Science* **258** (1992) 1474.
- [4] K. Tada, M. Onoda, *Adv. Funct. Mater.* **12** (2002) 420.
- [5] K. Tada, M. Onoda, submitted to *J. Soc. Elect. Mat.. Eng.* [in Japanese]
- [6] K. Tada, M. Onoda, *Adv. Funct. Mater.* **14** (2004) 139.
- [7] K. Tada, M. Onoda, *Jpn. J. Appl. Phys.* **49** (2010) 101602.
- [8] K. Tada, M. Onoda, *Sol. Ener. Mater. Sol. Cel.* **95** (2011) 688.
- [9] K. Tada, M. Onoda, *Mater. Lett.* **65** (2011) 1367.
- [10] R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents: *J. Phys. Chem.* **97** (1993) 3379.
- [11] J. K. J. van Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen: *Adv. Funct. Mater.* **14** (2004) 425.