

Title	Ambipolar Carrier Transport of Discotic Liquid Crystalline Phthalocyanine and Its Application for Solar Cells
Author(s)	Fujii, Akihiko; Hori, Tetsuro; Duy, Dao Quang et al.
Citation	電気材料技術雑誌. 2011, 20(2), p. 61-62
Version Type	VoR
URL	https://hdl.handle.net/11094/76878
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Ambipolar Carrier Transport of Discotic Liquid Crystalline Phthalocyanine and Its Application for Solar Cells

Akihiko Fujii¹, Tetsuro Hori¹, Dao Quang Duy¹, Tetsuya Masuda¹, Takeshi Hayashi¹, Kaoru Fukumura¹, Hiroyuki Yoshida¹, Fabien Nekelson^{1,2}, Yo Shimizu², and Masanori Ozaki¹

¹ Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan

² National Institute of Advanced Industrial Science and Technology (AIST), Kansai Center, 1-8-31 Midorioka, Ikeda, Osaka, 563-8577, Japan

Liquid crystalline organic semiconductor is one of the promising materials for electronic device applications, because of the potentially high carrier mobility comparable to that of a-Si ($0.1 \text{ cm}^2/\text{Vs}$). In this paper, we report on a non-peripherally alkyl-substituted phthalocyanine homologue (Fig.1), such as, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C_6PcH_2) exhibiting ambipolar characteristics with high drift mobility in both columnar mesogenic and crystalline phases and its application for organic thin-film type solar cells.

C_6PcH_2 is a low-molecular-weight organic semiconductor and has high solubility for typical organic solvents due to the long substituents. C_6PcH_2 exhibits liquid crystalline phase, such as, hexagonal disordered columnar mesophase between 161 and 170 °C.

The carrier drift mobilities estimated by a time-of-flight (TOF) technique in the hexagonal columnar (Col_{hd}) phase were c.a. $0.2 \text{ cm}^2/\text{Vs}$ (hole) and c.a. $0.3 \text{ cm}^2/\text{Vs}$ (electron). The higher mobility in excess of $1 \text{ cm}^2/\text{Vs}$ could be

observed in the crystalline phase¹. These values of carrier mobility are independent of the applied field and increased with decreasing temperature. These high carrier mobilities in both Col_{hd} and crystalline phases were measured even in non-homeotropic alignment films, in which the columnar axis is perpendicular to the field direction. This indicates that carriers could be preferably transported along the lateral axis of column and suggests the possibility of new molecular design for the liquid crystalline semiconductor².

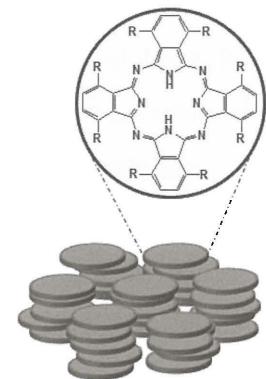


Fig. 1 Molecular structure of phthalocyanine derivative used in this study and its columnar structure.

Organic thin-film solar cells based on a bulk hetero-junction utilizing C₆PcH₂, have also been studied.

The blend uniform thin film with the C₆PcH₂ and 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C₆₁ (PCBM) could be fabricated by a spin-coating method. Solar cells with C₆PcH₂:PCBM bulk hetero-junction active layer have demonstrated a high external quantum efficiency above 70% in the Q-band absorption region of C₆PcH₂ as shown in Fig. 2 and a high energy conversion efficiency of 3.1%³.

The photovoltaic properties of the solar cell with bulk heterojunction of C₆PcH₂ and PCBM demonstrated the strong dependence of active layer thickness, and the optimized active layer thickness was clarified to be 120 nm. By inserting MoO₃ hole transport buffer layer between the positive electrode and active layer, the FF and energy conversion efficiency were improved to be 0.50 and 3.2%, respectively⁴. The tandem organic thin-film solar cell has also been studied by utilizing active layer materials of C₆PcH₂ and poly(3-hexylthiophene) and the interlayer of LiF/Al/MoO₃ structure, and a high V_{oc} of 1.27 V has been achieved⁴.

C₆PcH₂ is available as a dopant for conventional organic thin-film solar cells with an bulk hetero-junction active layer composed of poly(3-hexylthiophene) (P3HT) and PCBM. The improvement of long-wavelength sensitivity in P3HT:PCBM bulk hetero-junction solar cells by doping C₆PcH₂ has been succeeded⁵.

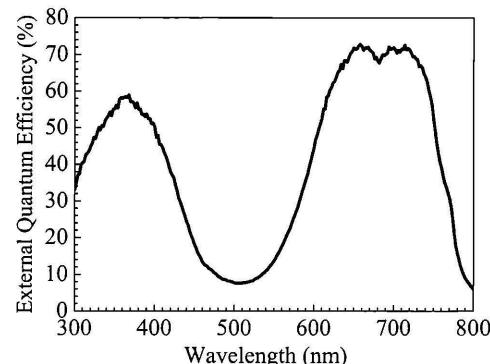


Fig. 2 EQE spectra of the solar cell with structure of ITO/PEDOT:PSS/ C₆PcH₂ : PCBM/ Al, the composite ratio of which is 2 : 1 in weight.

References

- [1] Y. Miyake, Y. Shiraiwa, K. Okada, H. Monobe, T. Hori, N. Yamasaki, H. Yoshida, M. J. Cook, A. Fujii, M. Ozaki and Y. Shimizu, *Appl. Phys. Express*, **2011**, 4, 021604.
- [2] Y. Shimizu, Y. Miyake, H. Yoshida, H. Monobe, M. J. Cook, A. Fujii and M. Ozaki, *Mol. Cryst. & Liq. Cryst.*, **2011**, 549, 127.
- [3] T. Hori, Y. Miyake, N. Yamasaki, H. Yoshida, A. Fujii, Y. Shimizu and M. Ozaki, *Appl. Phys. Express*, **2010**, 3, 101602.
- [4] T. Hori, N. Fukuoka, T. Masuda, Y. Miyake, H. Yoshida, A. Fujii, Y. Shimizu and M. Ozaki, *Solar Energy Materials and Solar Cells*, **2011**, 95, 3087.
- [5] T. Hori, T. Masuda, N. Fukuoka, Y. Miyake, T. Hayashi, T. Kamikado, H. Yoshida, A. Fujii, Y. Shimizu and M. Ozaki, to be published in *Organic Electronics*, **2012**, 13, 335.