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Abstract 

In order to achieve higher power conversion efficiencies within organic photovoltaics (OPVs), more solar light 
must be absorbed from a broader spectrum. We demonstrate that OPVs with different photoactive layers can 
be connected in parallel to form monolithic tandems using mechanically strong, electrically conductive, and 
transparent networks of carbon nanotubes as charge collectors. We show how our earlier results on such parallel 
tandems [l] can be significantly improved by using the inverted OPV structures with charge selective layers of 
inorganic oxide films. Such robust inorganic layers allow inverting the usual Indium Tin Oxide (ITO) anode 
into a cathode, and also protect it from electrical shorting by sharp carbon nanotubes (CNTs) nanoneedles. 
To further improve OPV tandems we show how doping affects CNTs to lower their sheet resistance as well as 
reducing the incidence of shorting within the small molecule sub-cell. 

1 lntrod uction 

Organic photovoltaics have been the focus of much re-
search as a potential source of cheap renewable energy 
for many different applications. They are attractive due 
to the ease of processing, use of abundant materials, and 
the possibility of roll-to-roll manufacturing. However, 
the record power conversion efficiency (PCE) for OPVs 
is just over 8% for single junction polymeric cells [2], 
and over 9% for series connected small molecule cells [3], 
which is still below the 10% limit needed for various mar-
ket applications. OPVs are hindered due to a short ex-
citon diffusion length (Ln ~ 10 nm), resulting in re-
combination of excitons generated further than the dif-
fusion length from an acceptor molecule. This small Ln 
requires either very thin active layers or mixed donor-
acceptor architectures with nanoscale control of the mor-
phology. Similarly, a short charge carrier mean free path, 
Lp ~ 100 nm, results in many photogenerated charges 
(electrons and holes) recombining before they reach col-
lecting electrodes which are placed at distances larger 
than Lp. This small Lpく 100nm limits the thickness of 
photoactive layers in OPVs, decre邸 ingtheir efficiency 
and lifetime as less light is absorbed due to a reduced 
thickness. Unlike inorganic semiconductors the fine band 
structure of organic materials limits the width of the ab-
sorption spectrum and prevents broadband absorption. 

Within polymeric photovoltaics (PPVs), the problem 
of short diffusion lengths for both excitons and charges 
h邸 receivedmuch attention. Groups have focused on 

improving the nanoscale morphology through the use of 
thermal annealing [4], slow drying [5], and special addi-
tives [6] within the bulk heterojunction. All these pro-
cessing steps have helped improve both device perfor-
mance and an understanding of the behavior of excitons 
within the polymer-fullerene matrix, but they do not ad-
dress the problem caused by the limited spectral coverage 
of many polymers. 

Groups have created many copolymers with alternat-
ing donor and acceptor blocks resulting in a smaller op-
ti cal band gaps [7]. However, in many cases this reduc-
tion of the band gap has only red shifted the absorption 
spectrum of the polymer instead of creating the desired 
broadband absorber capable of covering the entire spec-
tral region. One solution is to use multiple polymers 
stacked within a single device such that each polymer's 
absorption spectra complements one another. 

We propose the use of semi-transparent carbon nan-
otube sheets as electrodes to enhance charge collection 
within the bulk heterojunction and to function as an elec-
trode within multi-junction devices. We have shown that 
using a porous carbon nanotube network within the pho-
toactive layers collects more charges, as the sheets act as 
3D porous electrodes which may allow for thicker devices 
without charges recombining due to the short Lp [8]. Sec-
ondly, the nanotube sheets make excellent transparent 
interlayer electrodes in series and parallel tandem solar 
cells due to their high transparency, low resistance, and 
processing compatibility. 

Stacked cells can be configured in either series or par-
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allel configurations. In the series configuration, the junc-
tion between two different photoactive regions acts as a 
recombination slte for holes from one sub-cell and elec-• trons from the other. The result is a configuration in 
which the open circuit voltage (Voe) is the sum of the 
open circuit voltages for each sub cell while the short cir-
cuit current (Jsc) will be limited by the smaller Jsc of 
the two sub-cells. In the parallel configuration, the junc-
tion between each photoactive region will act as either a 
common anode or cathode. The J sc will be the sum of 
the two sub-cells'Jsc while the Voe will be between the 
lowest and the highest, depending on the filling factors 
of each sub-cell and any contact resistance incurred by 
the interlayer electrode. Series connections require care-
ful optimization of each active layer in order to achieve a 
balance of the currents within the two cells. Conversely, 
parallel tandem cells do not require such careful consid-
erations as the V oc of the sub-cells do not depend on 
incident light intensity and tend to be similar for most 
organic materials, allowing high efficiencies to be more 
quickly realized. 

2
 
Fullerene Based Molecules as 

Electron Acceptors in High 

Performance Organic Photo-

voltaics 

C50. 
Detailed studies into the mechanisms of photoinduced 
charge transport were made by Yoshino and Zakhidov 
[23-27]. Belt polaron formation on the ideally symmetric 
sphere of C50 was suggested to be responsible for ultra-
fast PCT [19, 20], and accompanied suppression of back 
transfer from the C函ionto PAT+, due to polaronic self-
trapping and spatial localization of the polaron. The for-
mation of a belt polaron has been suggested as a further 
step in PCT [28]. Later experiments on both bulk hetero-
junction and planar organic photocells with C60 proved 
the existence and importance of resonant energy transfer 
from the conjugated polymer chains to C50, followed by 
back hole transfer from C6。tothe polymer chain. This 
process was called "energy-charge transfer ping-pong," 
and is now being carefully studied in OPVs as a mecha-
nism of superior charge transfer from donor polymers and 

small molecules, to acceptor C50 fullerene molecules and 
fullerene derivatives [29]. More detailed studies will fur-
ther clarify the role of C60 in PCT with different classes 
of conjugated polymers within OPVs, and other related 
systems (photodetectors, etc). There is no doubt that 
the physics of C50's元 electroniccloud is unusually rich, 
due to its high symmetry and self-trapping effects. Such 
electronic features of C50 are responsible for a number of 
exciting effects; filling of the 1r-electron band with 3 elec-
trons (e.g. donated from alkali metal dopant) leads to su-
perconductivity in alkali-doped fullerides [30-32], while 
only single electron filled bands induces ferromagnetic or-
dering in tetrakis(dimethylamino)ethylene-C60 (TDAE-
C60) [33]. It is not surprising that electron mobility 
within C50 molecular networks in the bulk heterojunc-
tions of OPVs is higher than the hole mobility for many 
polymers, including highly crystalline P3HT. Based on 
these fundamental studies the Yoshino and Zakhidov 

The discovery 20 years ago at Osaka University 

(by Yoshino and Zakhidov team) that the C50 
fullerene molecule can strongly suppress photolumi-
nescence of various poly-alkyl-thiophenes (PAT) [9-
11], poly-hexyl-thiophenes (PHT) [12], poly-octyl-
thiophenes (POT) [13] and other conjugated polymers 
such as poly(p-phyenylenevinylene) derivatives and poly-
acetylene derivatives [13-15], has been critical towards 
an understanding of the photophysics within conjugated 
polymer-fullerene systems. Upon this discovery, it was 
immediately suggested that either photoinduced charge 
transfer (PCT) from the PAT polymer to C60, or en- 3 

ergy transfer from an exciton on the PAT polymer chain 
to C50 molecule, can be responsible for such a phe-
nomenon [9-13, 15]. In order to uncover which mecha-
nism is responsible for this effect, the photoconductivity 

of PAT/ C50 mixtures was studied and a strong enhance-
ment of the photoconductivity was discovered [14-17], 
which proved that the primary means of the charge trans-
fer mechanism is indeed an exciton dissociation process 

on C50, followed by electron transfer to the 1r-electron 
system of the fullerene. The Osaka group showed that 
an increased concentration of holes on PAT chains is re-
sponsible for the increased photoconductivity [18]. Pho-
tocells using planar layers of PAT on thin films of C60 

were used to study the spectral dependence of PAT /C60 
systems [14, 19, 20]. The effect was extended to C70 and 
higher fullerenes [18, 20-22], and it was shown that such 

higher fullerenes exhibit weaker PCT, as compared to 

group proposed many novel concepts and device struc-
tures to realize highly efficient photovoltaic devices with 
conducting polymers/fullerene structures [34-37]. 

Previous Work 

OPV Tandems 

on Parallel 

In our previous work [1], we reported a monolithic paral-
lel tandem which utilized a transparent multiwalled car-

bon nanotube (MWNT) interlayer electrode and com-
plementing absorbing layers comprised of a Poly (3-
Hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid 
methyl ester bulk hererojunction (PCBM) polymeric 
front cell (green absorber) and a Copper Phthalocyanine 
(CuPc):C60 small molecule back cell (red absorber). The 
device is shown schematically in Figure 1. The bottom 
cell is electrically "inverted" when compared to conven-
tional cells: ITO functions as a cathode while the car-
bon nanotube interlayer is a common anode. The dif-
ference between the work functions of ITO ("'4.8 e V) 
and MWNT ("'5.2 eV) is relatively small, thus the in-
ternal electric field which helps photogenerated charges 
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move towards appropriate electrodes is also small. With-
out the guiding influence of a strong internal elec-
tric field, photogenerated charges could move to either 
electrode within the P3HT:PCBM active layer. This 
can result in recombination as evident in reduced cur-
rent as well as losses in the front cell's filling factor 
(FF). A thin layer of Poly(3,4-ethylenedioxythiophene) 
poly(styrenesulfonate) (PEDOT:PSS) was introduced on 
either side of the MWNT sheet to act as an electron 
blocking layer and to increase the contact area by filling 
in voids between bundles of carbon nanotubes. It was 
noted that the performance of the front cell improved 
by 24% when the top electrode was sandwiched between 
layers of PEDOT:PSS rather than just a single layer of 
PEDOT:PSS. The performance of this cell is modest and 
is shown in Table 2 as devices A, B and C, but it demon-
strates the concept of a parallel tandem cell: the current 
and efficiency was larger than that of each individual cell 
but not exactly the sum. These losses are attributed to 
resistive losses at the interlayer electrode and significant 
shunts through the thin small molecule top cell by CNTs 
protruding from the electrode. From the external quan-
tum efficiency, it is clear that the tandem cell has spectral 
contributions from both the P3HT:PCBM front cell, in 
the range of 400-650nm, and from the CuPc:C60 back 
cell, in the range of 600-750nm. Additionally, due to the 
contact resistance between the MWNT and organic lay-
ers, the front cell had a small internal electric field due 
to the similar work functions of the two electrodes. It 
was suggested that a different choice in transparent con-
ducting oxide would help with the internal electric field, 
however, this is not required; only proper inversion of the 
bottom cell using charge selective layers is required. 

There are three major tasks to improve the perfor-
mance of this basic parallel tandem device. First, we 
need to improve the quality of the inverted front cell with 
inversion layers. Secondly, we must improve the conduc-
tivity and transparency of the interlayer electrode. Fi-
nally, we need to improve the fabrication of the back cell 
so that the roughness of the front cell and CNT interlayer 
electrode do not result in many shorts. 

4 Inorganic Inversion Layers 

In order to improve the performance of the previous tan-
dem, the front polymeric cell must be properly inverted, 
using improved inversion and charge selective layers. The 
first concern is that PEDOT:PSS is dispersed in water 
while the polymeric layers are hydrophobic. This mis-
match in surface energies produces nonuniform layers 
with many defects. Even when mixed with three parts 
methanol, PEDOT:PSS does not form high quality, con-
tinuous films on top of polymers. This can cause pin-
holes, shunts, and recombination sites. As a replacement 
to PEDOT:PSS, there are several semiconducting metal 
oxides available which can function as an electron block-
ing and hole transport layer (HTL); examples include 

氾05,Mo03 and W03. To evaluate the effectiveness of 
Molybdenum Trioxide as a hole transport/electron block-
ing layer, conventionally structured devices were fabri-
cated on ITO (15 0/口） which had a Mo03 layer coated 
on top instead of PEDOT:PSS. A P3HT:PCBM bulk het-
erojunction and an Aluminium top electrode finished the 
devices. Various thicknesses of Mo03 were tested, from 
0 nm to 30 nm. The devices'schematic band structure 
and JV curves are shown in Figure 2, and device per-
formance under 100 mW  /cm2 AM1.5G illumination is 
shown in Table 2 as devices D-G. With the inclusion of a 
thin 10 nm thick layer of Mo03, the device can achieve 
a high PCE. The FF is comparable to that of devices 
in which PEDOT:PSS was used, and the JV curves lack 
the S-type shape representative of charge build up at in-
terfaces [38]. It is clear that Mo03 can be used as a 
replacement to PEDOT:PSS. As the thickness of Mo03 
increases, there is a subtle decrease in the current of the 
device which is due to the overlapping absorption spec-
trum of both Mo03 and the polymer. 

Inverting the ITO anode into a cathode is best ac-
complished by metal oxides such as titanium dioxide or 
zinc oxide. Titanium dioxide has been demonstrated in 
dye sensitized solar cells with great success [39] when in 
the anatase crystalline phase due to its high photocon-
ductivity and electron mobility. However, these char-
acteristics require sintering at temperatures in excess of 
350°C [40], which is too high for organic materials. Zinc 
oxide nanoparticles (ZnO-NP) have been demonstrated 
as an alternative to fullerenes within an acceptor in bulk 
heterojunction devices [41] and are a strong candidate as 
an n-type charge selective layer for use in inverted solar 
cells. ZnO-NPs are simple to synthesize, can be dispersed 
in alcohols, and do not require any further treatment 
such as annealing, sintering, or hydrolysis after deposi-
tion [42]. The ZnO-NPs are a wide band gap inorganic 
semiconductor, and thus can provide a large optical win-
dow for incoming photons to be absorbed within the pho-
toactive polymeric layers. Additionally, a deep HOMO 
level prevents holes from reaching the cathode. 

To evaluate the effectiveness of the zinc oxide 
nanoparticles, we fabricated conventionally structured 
devices in which a layer of ZnO-NP was spin-coated on 
top of the polymer to form a hole blocking layer. The 
device schematic and resulting JV curves are shown in 

Figure 3, while device characteristics are tabulated in 
Table 2 as devices H-K. The JV curves show a high Jsc; 
this is only possible if the ZnO-NPs have electron mo-
bilities comparable or larger than the fullerene network 
within the bulk heterojunction. Otherwise, there would 
be charge build up and the JV curves would show an 
S-shape [38]. 

To test the effectiveness of ZnO-NPs and Mo03 as 
inversion layers for the front cell of the tandem, sev-
eral inverted single junctions were fabricated. The ro-
bustness of this configuration was demonstrated by using 
two different transparent conducting oxides; fluorinated 
tin oxide (FTO) and ITO, with work functions ~4.4 eV 
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Figure 1: Device structure diagram (Left), J-V characteristic (Center) and external quantum efficiency (Right) of 
Tanaka et. al. parallel tandem OPV. 

and ,....,4_g eV, respectively, were used as cathodes. Sim-
ilarly, the anodes were varied using gold and aluminum 
with work functions of 5.1 eV and 4.1 eV, respectively. 
The device schematics and JV characteristics are shown 
in Figure 4, with performance characteristics shown in 
Table 2 as devices L-N. Remarkably, all configurations 
show nearly identical JV characteristics despite having 
different anode and cathode materials. The different 
electrode materials would normally change the internal 
electric field and could, in the case of ITO/ Al, have an 
electric field that is opposite to the preferred direction 
for charges to travel. However, the use of the charge se-
lective layers essentially screens the electric field due to 

the electrodes, and generates a new electric field from 
the LUMO level of ZnO-NP (,....,4.4 eV) and the HOMO 
level of Mo03 (,....,5.4 eV), as compared to the electric field 
which would have been seen with ITO (,....,4.4 e V) and Al 
(,....,4.1 eV). 

After producing high quality inverted devices with 
conventional electrodes, inverted devices with semi-
transparent nanotube electrodes were developed. For 
this purpose, we employed single walled carbon nano-
tubes (SWNT) which have higher conductivities and 
transparency than the MWNTs we used previously. The 
SWNT films are named after the number of minutes that 
nanotubes were collected within the reactor; the longer 
the duration, the more opaque and conductive the nan-
otube films. Table 1 shows three typical samples'sheet 
resistance and transmittance [43]. To form a transparent 
anode, SWNT sheets were laminated on top of a Mo03 
film on an inverted device similar in structure to those 
described previously. The devices were measured, with 
the illuminated electrode being noted within the paren-
thesis of Figure 5, and device performance characteris-
tics are noted in Table 2 as devices 0-R. The "16min" 
sample (having a sheet resistance of 200 0/□ and trans-
mittance of 60%) shows the highest performance when il-
luminated through the highly transparent ITO layer due 
to the SWNT's low sheet resistance. However, when il-

luminated through the SWNT side, a 40% reduction in 
the current is seen and the fill factor is reduced. This is 
not the case for the more transparent sample, "8min," 
which has a sheet resistance of 500 n/口andtransmit-
tance of 90%; this device shows nearly the same per-
formance when illuminated through either the ITO or 
SWNT, as the electrodes are almost equally transparent. 
Using ZnO-NP and Mo03 as charge selective layers re-
solves many of the problems from the previous front cell; 
these materials are robust and compatible with nanotube 
device architectures and will allow for higher efficiency 
tandem structures. 

5
 
Doping of Carbon 

using F4-TCNQ 

Nanotubes 

To improve the conductivity of the carbon nanotubes and 
to produce thick hole transport layers in small molecule 
OPVs, we employed P-Type doping with the organic 
acceptor molecule tetrauoro-tetracyano-quinodimethane 
(F4-TCNQ) [44-46). It is possible to do this type of 
doping by a solution method in which the F 4-TCNQ is 
dissolved in a solvent and applied to the nanotubes, or 
via thermal evaporation. Our experiments have shown a 
four-fold increase in the conductivity of SWNTs coated 
with this molecule, while sheets of MWNTs show an im-
provement in conductivity of up to 50%. For the less 
transparent sheets, this doping may reduce the sheet re-
sistance below 100 !1/口， whilenot affecting the sheet's 
overall transparency. 

Doping by sublimation in high vacuum was employed 
in these tandem devices, as the same dopant can be used 
to simultaneously dope the carbon nanotubes and hole 
transport layer. The total doping effect is less than that 
of the solution method, with only a two-fold improve-
ment in conductivity, as there is less coverage of the 
nanotubes. 

Using the hole transport material N,N,N,N-
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Figure 2: The energy band diagram (Left) and the J-V characteristics (Right) for a traditional cell with Mo03 as 

the hole transport layer. 
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Figure 3: The energy band diagram (Left) and the J-V characteristics (Right) for a traditional cell with PEDOT:PSS 

as the hole transport layer and ZnO-NPs introduced as an electron transport layer. 

Tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), and 6 
F 4-TCNQ as a p-type dopant, 50 nm thick hole trans-

port layers were created by co-depositing each material, 
producing a hole transport layer with high conductivity 

and optical transparency. Devices fabricated on ITO 

substrates with a thick p-doped hole transport layer 

show no loss in performance when compared to devices 
without the hole transport layer. This type of doping 

and the ability to deposit thicker films is important 

when building the back cell of the parallel tandem stack 

because such thick HTLs provide a larger separation be-

tween the interlayer SWNTs and the top electrode, thus 
preventing any shunts and minimizing leakage current. 

Furthermore, the doped HTL also dopes the SWNT in-

terlayer electrode, increasing the conductivity without 

any optical losses. 

Tandem Cell with SWNT Inter-

layer Electrode 

By incorporating the improvements within the polymeric 

sub-cell in the form of charge selective inversion layers 

and the doped layers of the small molecule sub-cell, we 

fabricated a parallel tandem cell utilizing highly trans-
parent and conductive SWNTs as an interlayer electrode. 

The device layer structure is shown in Figure 6. The front 

cell of the tandem was built on top of patterned ITO (15 
n; ロ） which had a thin layer of ZnO-NP spin-coated on 
top. The green absorbing photoactive layer is composed 

of P3HT donor and PCBM accepter molecules. A hole 
transport layer, Mo03, was vacuum deposited on top of 
the polymeric stack, and SWNTs were laminated on top 

to form the front sub-cell. The device was placed into a 

vacuum system in which the small molecule cell was fab-

ricated. First, a 50 nm hole transport layer of MeO-TPD 

doped by F4-TCNQ (p-MeO-TPD) was evaporated, fol-

lowed by 5 nm of CuPc, and a 60 nm thick layer of co-
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deposited CuPc and C6o. An additional 5 nm of C50 was 7 
evaporated, followed by 10 nm of the electron transport 
material, bathrocuproine (BCP). The device was masked 
and 100 nm of Aluminium was deposited as the top cath-
ode. 

Individual sub-cells were characterized under 100 
mW/c記 AM1.5Gsimulated sunlight. The JV curve is 
shown in Figure 6, and the device characteristics are sum-
marized in Table 2 as devices S""、U.This device demon-
strates significant improvements to the previous attempt 
and demonstrates a short circuit current that is closer 
to the sum of the individual sub-cells. Furthermore, us-
ing proper inversion layers and a doped hole transport 
layer, the device's diode behavior is improved and the 
fill factors are higher. The voltage loss could be reduced 
by using sub-cells with better matched open circuit volt-
ages, or through changing of the built-in potential by 
introducing n-type and p-type dopants within the small 
molecule cell. 

Duration Transmission Sheet Resistance 
minutes ％ n; ロ
16 60 200 
12 80 300 
8 90 500 

Conclusion 

¥¥e have presented a sequential analysis of the perfor-
mance of our previous device and improved upon the 
design through the use of charge selective layers within 
the polymeric stack, doped SWNT interlayers, and a 
doped hole transport layer within the small molecule 
stack. The introduction of charge selective layers effi-
ciently inverts the polarity of the front cell while main-
taining a high and properly oriented electric field which 
facilitates efficient charge collection for the green light 
absorbing P3HT:PCBM sub-cell. The introduction of 
a doped hole transport layer decreases the incidence of 
shorting and dopes the single walled carbon nanotubes. 
These modifications resulted in a 600% improvement in 
power conversion efficiency: from 0.31 % to 2.26%. These 
improvements were achieved while also demonstrating 
the enhanced spectral sensitivity and addition of short 
circuit currents from the two sub-cells. 
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Device HTL ETL Anode Cathode Voe Jsc FF rJ Notes 
V mA/cm2 ％ 

Tandem 
A PEDOT:PSS None MWNT ITO 0.51 2.3 0.26 0.30 Front Cell [1] 
B BCP Al 0.42 1.8 0.28 0.21 Back Cell [I] 
C ITO/Al 0.46 2.6 0.26 0.31 Parallel Tan-

dem [1] 
Regular 
D None None ITO Al 0.24 2.4 0.14 0.08 
E Mo03, 10nm 0.54 9.3 0.51 2.56 
F 20nm 0.56 8.6 0.45 2.18 
G 30nm 0.59 8.3 0.51 2.54 
Regular 
H PEDOT:PSS ZnO-NP, 1500RPM ITO Al 0.58 12.9 0.47 3.53 
I 2000RPM 0.54 11.4 0.47 2.91 
J 2500RPM 0.50 10.2 0.43 2.11 
K 3000RPM 0.49 12.0 0.42 2.50 
Inverted 
L Mo03 ZnO-NP Al ITO 0.63 9.2 0.67 3.91 
M Au 0.63 9.1 0.66 3.82 
N Al FTO 0.63 9.3 0.66 3.88 
Inverted 

゜
Mo03 ZnO-NP SWNT, 16min ITO 0.56 10.7 0.51 3.12 ITO Side 

p 0.56 6.2 0.37 1.31 SWNT Side 

Q SWNT, 8min ITO 0.56 8.2 0.27 1.25 ITO Side 
R 0.54 6.0 0.33 1.09 SWNT Side 
Tandem 
s Mo03 ZnO-NP SWNT, 8min ITO 0.59 9.0 0.38 1.89 Front Cell 
T p-MeO-TPD BCP Al 0.32 4.9 0.29 0.45 Back Cell 
u Mo03/p-MeO-TPD BCP/ZnO-NP ITO/Al 0.48 11.8 0.40 2.26 Parallel Tan-

dem 

Table 2: A summary of device photovoltaic properties under simulated AM1.5G sunlight 
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