

Title	湿潤オゾンによるイオン注入レジストの除去に関する 研究
Author(s)	堀邊, 英夫; 山本, 雅史
Citation	電気材料技術雑誌. 2012, 21, p. 31-45
Version Type	VoR
URL	https://hdl.handle.net/11094/76894
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

湿潤オゾンによるイオン注入レジストの除去に関する研究

堀邊 英夫¹⁾²⁾ · 山本 雅史¹⁾

¹⁾ 金沢工業大学 バイオ・化学部 応用化学科 (〒924-0838 石川県白山市八束穂 3-1)
 ²⁾ 大阪大学 産業科学研究所 (〒567-0047 大阪府茨木市美穂ヶ丘 8-1)

従来の薬液を使用したレジスト除去方法に代わり、環境負荷の少ない湿潤オゾン法を用いて、B、P、 Asイオンが70KeVの加速エネルギーで5×10¹²から5×10¹⁵個/cm²注入されたノボラック系ポジ型レジスト の除去を行った。イオン注入量が5×10¹³個/cm²以下のレジストはすべて除去でき、5×10¹⁵個/cm²のレジ ストはどのイオン種でも除去できなかった。5×10¹⁴個/cm²のイオン注入量において、Bイオン注入レジス トのみ低速ながらも除去でき、P、Asイオン注入レジストは除去できなかった。この注入量において、B イオン注入レジストの硬さは未注入レジストの約1.8倍、Pイオンでは約8倍、Asイオンでは約5倍であっ た。湿潤オゾンによる除去が可能な硬さの閾値は、未注入レジストの約2倍程度と予測される。注入イ オンからレジストに与えられるエネルギーはB、P、Asイオンの順で表面側に集中し分布していた。レジ ストはイオン注入によって、OH基、CH基およびO1sが減少し、C=CやC1s、π共役系が増加する炭化また は架橋により硬化したと推測される。

キーワード:湿潤オゾン、レジスト除去、イオン注入レジスト、ナノインデンテーション、塑性変形硬さ

Study on the Removal of Ion-implanted Resist Using Wet Ozone

Hideo Horibe^{1),2)} and Masashi Yamamoto¹⁾

¹⁾Department of Applied Chemistry, College of Bioscience and Chemistry, Kanazawa Institute of Technology,

> 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan
> ²⁾ The Institute of Scientific and Industrial Research, Osaka University, 8-1Mihogaoka, Ibaraki, Osaka, 567-0047, Japan

We removed B-, P-, and As-ion-implanted positive-tone novolak resists with an implantation dose of $5x10^{12}$ to $5x10^{15}$ atoms/cm² at 70keV, using wet ozone. Ion-implanted resists with $5x10^{15}$ atoms/cm² could not be removed, but resists implanted below $5x10^{13}$ atoms/cm² could be removed. Resist implanted with B ions at $5x10^{14}$ atoms/cm² was removed slowly, but resists implanted with P and As ions were not removed. The peak hardness of resist with B ions implanted at $5x10^{14}$ atoms/cm² was 1.8 times greater than that of the non-implanted resist (AZ6112), that of the P-ion-implanted resist was eight times greater, and that of As-ion-implanted resist was five times greater. We determined that the hardness threshold of the resist that could be removed using wet ozone was almost 2 times higher than that of AZ6112. The ion-implanted resists were hardened by cross-linkage.

Keywords: wet ozone, resist removal, ion-implanted resist, nanoindentation, plastic deformation hardness

J. Soc. Elect. Mat. Eng. Vol.21, No.1 2012

1. はじめに

電子デバイス製造工程は、大きく分けて、成膜、 リソグラフィー (レジスト塗布、露光/現像)、 エッチング、イオン注入、レジスト除去、洗浄で 構成されている。とりわけ、イオン注入工程は、 p/n 型半導体を製造するために不可欠である。イ オン注入工程では、リソグラフィー工程にて Si 基板上に形成したレジストの微細パターンをマ スクとして 13/15 族の元素(B、P、As など)を Si 基板全面に加速して照射する。このとき、マス クとなったレジストにもイオンが注入されるこ とになり、イオン注入によってレジストが変性し て除去が困難となる。現状では、酸素プラズマに よるアッシングと、硫酸・過酸化水素水 (SPM) やアンモニア・過酸化水素水(APM)を用いた薬 液方式とを組み合わせることで、困難ながらも除 去している。ただし、酸素プラズマアッシングで は、基板や金属配線の酸化が危惧されている。一 方、薬液方式の SPM は硫酸と過酸化水素水を混 合した瞬間に最も活性となるため、基板接触の直 前に混合タイミングを制御することが重要とな る。そのため、薬液は常にフレッシュな状態が要 求されるほか、混合した薬液の分離・再利用には 膨大なコストと労力が必要となる。APM では、 寿命が短い、金属不純物が堆積する、表面を劣化 させるなどの問題がある。また、APM は、数 Å/min のエッチング速度で Si や SiO,をエッチングして しまうため^{1)、2)}、45nm 世代以降の極薄膜(1nm 程度)のSiO2絶縁膜がエッチングされてしまうこ とも危惧されている。

今回、我々は、薬液フリーな湿潤オゾン方式に よるイオン注入レジストの除去とイオン注入に よるレジストの硬化との関係について検討を行 った。湿潤オゾン方式は、オゾンとレジストとの 反応中に少量の水を加えることでレジストを水 溶性のカルボン酸に加水分解する³⁻⁵⁾。オゾンは 洗浄効果に加え、反応後は酸素に戻るため残留性 がなく、薬液方式に比べて非常に環境に優しいレ ジスト除去方式である。また、薬液を用いないの で、薬液のコストをカットすることができる。オ ゾンによる金属酸化に関しては、水の代わりに

100%溶剤を用いてカルボン酸の電離を抑えるこ とで酸化を防止することができる 6)。ノボラック 系ポジ型レジストに B、P、As を 70keV で 5×10¹² ~5×10¹⁵個/cm²注入したレジストについて、湿潤 オゾンによる除去を行った。一般的に、イオン注 入レジストは、イオン注入によりレジスト表面が 硬化していると言われている 7-11)。しかしながら、 イオン注入レジストの硬さは定量的に評価され ていない。今回、我々はイオン注入レジストの硬 さに関して、微小押し込み硬さ試験12-15)により硬 さを計測し、湿潤オゾンによる除去性と硬さとの 関係を明らかにした。また、イオン注入レジスト の硬化について、SRIM2008¹⁶⁾による数値シミュレ ーションに加え、赤外/紫外分光計測(FT-IR、 UV) および X 線光電子分光分析 (XPS: X-ray Photoelectron Spectroscopy) により化学的に検討し た。

2. 実験

2.1湿潤オゾンによるイオン注入レジスト除去 湿潤オゾンによるレジスト除去装置(Mitsubishi Electric Corp. and SPC Electronics Corp.)の模式図 を図1に示す。オゾンガスはオゾナイザー (OP-300C-S; Mitsubishi Electric Corp.)により生成 した。オゾンガスの濃度および流量は、それぞれ 230g/m³(10.2vol%)、12.5L/minである。オゾンガ スを温水にバブリングさせ、蒸気と混合させるこ とで湿潤オゾンを生成し、これをシャワーヘッド ノズルからレジスト表面に照射した。レジストを

- 図1 湿潤オゾン装置の模式図
- Fig. 1 Schematic diagram of the experiment apparatus.

— 32 —

表1 湿潤オゾンによるレジスト除去条件

Table 1 Experiment conditions for resist removal by wet ozone.

湿潤オゾン温度 (<i>T</i> 1)	60°C		
基板温度 (T2)	50°C		
1 サイクルごとの湿潤オゾン照射時間	10 秒		
リンス水温度	70°C		
1 サイクルごとのリンス時間	5 秒		
1 サイクルごとの乾燥時間	10 秒		
1 サイクルごとの湿潤オゾンプロセス時間	25 秒		
基板回転数	2000rpm		
オゾン濃度	230g/m ³ (10.2vol%)		
オゾン流量	12.5L/min		

塗布した基板を 2000rpm で回転させ、基板全面に 均一に湿潤オゾンを照射した。レジストの加水分 解に必要な微量の水の調整は、湿潤オゾン温度 (*T*₁=60°C)と基板温度(*T*₂=50°C)との温度差に より生じる結露量を制御することで行った。

レジスト除去の実験条件を表1に示す。湿潤オ ゾン方式では、レジスト表面層をカルボン酸に変 化させて、これを純水で洗い流すことでレジスト を表面から徐々に分解・除去する。そのため、湿

潤オゾンによるレジスト除去では、湿潤オゾン照 射、純水洗浄、乾燥を1サイクルとして、これを 繰り返す。1 サイクルでの湿潤オゾン照射時間、 純水洗浄時間、乾燥時間は、それぞれ 10、5、10 秒とした。実際のレジスト除去プロセスに要する 時間は、これらの時間の足し合わせとなる。本実 験では、数サイクルごとのレジスト膜厚の変化を 計測することで、湿潤オゾン照射時間に対するイ オン注入レジストの除去性を評価した。

表2 イオン注入レジストのサンプル条件

注入イオン	イオン注入量	膜厚	ビーム電流	注入時間
(70keV)	[個/cm ²]	[µm]	[µA]	[秒]
-	Non-implantation	0.9-1.0	-	-
В	5×10 ¹²	0.84	4.5	33
В	5×10 ¹³	0.85	29.3	51
В	5×10 ¹⁴	0.85	46.9	320
В	5×10 ¹⁵	0.73	616	2410
Р	5×10 ¹²	0.99	4.9	38
Р	5×10 ¹³	0.99	31.0	48
Р	5×10 ¹⁴	0.95	52.8	282
Р	5×10 ¹⁵	0.93	63.5	2325
As	5×10 ¹²	0.98	5.0	30
As	5×10 ¹³	0.93	30.9	49
As	5×10 ¹⁴	0.86	53.6	278
As	5×10 ¹⁵	0.78	615	2435

Tabla	9 Film	thickness	ion current	and im	nlantation	time	for the	ion-im	alantad	regist
rable	4 P IIIII	unickness,	1011 current	, anu im	plantation	ume	tor the	10II IIII	Jianieu	resist.

ウェハ上にレジストをスピンコータ(ACT-300A;

レジストにはノボラック系ポジ型レジスト Active)により2000rpmで20秒間スピンコートし、 (AZ6112; AZ-Electronic Materials) を用いた。Si ホットプレート (PMC 720 Series; Dataplate) によ り100℃で1分間プリベークした。レジスト膜厚 J. Soc. Elect. Mat. Eng. Vol.21, No.1 2012

は触針式表面形状測定器(DekTak 6M; ULVAC) で計測した。レジストの初期膜厚は 0.9-1.0µm で ある。このレジストに、B、P、As をそれぞれ 70keV の加速エネルギーで 5×10¹²~5×10¹⁵個/cm²注入し た。イオン注入時の真空度は 10⁻⁶Pa のオーダーで ある。基板の初期温度は 23°C(室温)としている が、イオン注入時に基板の冷却は行っていないた め、基板温度は数 100°C 程度にまで上昇している と考えられる¹⁷⁾。イオン注入レジストの膜厚と、 各イオン注入時の電流値、注入時間を表 2 に示す。 これらのイオン注入レジストに関して、湿潤オゾ ンによる除去性と硬さとの関係を調べた。

2.2 イオン注入レジストの硬さ評価

微小押し込み硬さ試験(ENT-1040; ELIONIX) によるイオン注入レジストの硬さ評価の模式図 を図2に示す。微小押し込み硬さ試験では、設定 した最大荷重まで荷重を増加させていき、そこで 荷重を一時的に保持した後、除荷していくことで 負荷-除荷曲線(図2のI-II)を得る。Pmaxおよび h₁はそれぞれ図2に示す最大荷重と押し込み深さ である。微小押し込み硬さ試験の条件を表3に示 す。最大荷重は 1-320mgf の間で設定した。荷重 ステップは、荷重が 1-8mgf までは 0.004mgf/s と

図2 微小押し込み方試験の模式図

Fig. 2 Schematic diagram of the nanoindentation experiment apparatus.

した。8mgf以上では荷重の2000分の1とした。 保持時間は2秒である。稜角115°のバーコビッチ 型ダイヤモンド圧子を使用し、異なる荷重におけ る除荷曲線(図2のII)から得られる塑性変形硬

表3微小押し込み硬さ試験の実験条件

Table 3 Experiment conditions for evaluating ion-implanted resist hardness by nanoindentation.

最大荷重 (P _{max})	1-320mgf
負荷-除荷速度	0.004maf/ma
$(P_{max}=1-8mgf)$	0.004mgi/ms
負荷-除荷速度	(P /2000) maf/ma
$(P_{\max} \ge 8 \text{mgf})$	$(T_{\text{max}}/2000)$ mg/ms
荷重保持時間	2秒
圧子材質	ダイヤモンド
口乙以中	バーコビッチ
压于形状	(先端部稜角 115°)

さによりイオン注入レジストの硬さを評価した。 塑性変形硬さは、除荷曲線における接線とx軸と の交点 h_2 (塑性変形深さ)から求められ、試料の 塑性を表す。塑性変形硬さ(H_2)は次式で定義さ れる。

$$H_{2} = K \cdot \frac{P_{\max} [\text{mgf}]}{h_{2}^{2} [\mu \text{m}^{2}]}$$
(1)

ここで、K は圧子形状に起因する係数で、今回 用いたバーコビッチ型の圧子の場合 37.926 であ る。荷重を変化させることで様々な押し込み深さ での塑性変形硬さを計測し、イオン注入レジスト 膜内の硬さ分布を得た。イオン注入レジストの硬 さを、イオン注入していないレジスト (AZ6112) の塑性変形硬さで規格化(規格化した H₂)して評 価した。

2.3 イオン注入レジストの硬化メカニズムの 検討

イオン注入レジストの湿潤オゾンによる除去 性と硬化のメカニズムとの関係について、計算と 化学的手法により検討した。イオン注入レジスト は、イオン注入時に与えられるエネルギーにより 硬化しており⁷⁻¹¹⁾、除去が困難と考えられる。そ こで、まず、注入イオンのレジスト内での分布お よび注入イオンからレジスト(レジストを構成す る元素:H、C、O)に与えられるエネルギーを、 SRIM2008を用いて求めた。SRIM2008では、ベン ゼン環のような共鳴安定化効果を盛り込むこと が困難であるため、構造が容易な PMMA をレジ ストの模擬として計算を行った。

赤外分光光度計 (7000 FT-IR; varian、 Ge prism ATR) およびラマン分光光度計 (Ramanar T-64000; Jobin Yvon)を用いて、イオン注入によるレジス ト内の分子振動の変化を調べた。赤外分光光度の 計測は、波数領域を 670~4000cm⁻¹、波数分解能 を4 cm⁻¹とした。ラマン分光光度の計測は、出力 ImWのAr+レーザー(波長 514.5nm、ビーム径 1 μm)を励起光源として、波数領域を 600~ 2000cm⁻¹とした。回折格子には 600gr/mm を用い、

スリット幅を 100 μ m とした。検出器には 1024 channel CCD (Charge Coupled Device)を用いた。 紫外分光光度計 (UV-2450; Shimadzu) によりイオ ン注入レジスト内の π - π *吸収に起因する共役系 の変化を調べた。 π - π *吸収は 190~280nm の波長 領域に見られることから、この領域における吸収 スペクトルを 8°入射積分球 (ISR-2200; Shimadzu、 反射モード)を用いて計測した。波長分解能は 0.5nm とした。

加えて、XPS 測定(ESCA-3400、 Shimadzu) によりイオン注入レジスト表面の元素分析を行 った。極表面は空気中の C、O、H などによる影 響が考えられるため、分析前に Ar で表面をエッ チングした。このとき、Ar エッチングによるレジ スト表面の改質を抑えるために、加速電圧を 1kV、 電流を 10mA として 1 分間エッチングした。Ar ガス圧は 5×10⁻⁴Pa とした。また、X 線照射による レジストの変性を抑えるために、X 線照射時間を 15 分程度とした。X 線には Mg-Kα を用い、電圧 を 10kV、電流を 10mA とした。X 線照射時の真 空度は 10⁻⁶Pa 以下である。スキャンステップは 0.2eV で結合エネルギー1000eV までのワイドスキ ャンを行った。 3. 結果と考察

3.1 湿潤オゾンによるイオン注入レジスト除去

図3に、Bイオンが注入されたレジストの湿潤 オゾンによる除去過程を示す。Bイオンが5×10¹²、 5×10¹³個/cm²注入されたレジストは、AZ6112(未 注入レジスト)と同様に、湿潤オゾンの照射とと もに膜厚が減少した。レジスト除去速度は、5×10¹³ 個/cm²の方が5×10¹²個/cm²に比べて若干遅く、 5×10¹²個/cm²のとき1.26 μ m/min、5×10¹³個/cm²の とき0.83 μ m/minであった。一方、Bイオンが5×10¹⁴ 個/cm²になると、オゾン照射時間が120秒までは 膜厚の減少がほとんど見られなかったが、それ以 降は通常のレジストと同様に除去することがで きた。最終的に、0.28 μ m/minの速度でレジストを 除去することができた。5×10¹⁵個/cm²のイオン注

- 図3 Bイオン注入レジストの湿潤オゾン照射時 間に対する膜厚の変化
- Fig.3 Dependence of B-ion-implanted resist film thickness on wet-ozone irradiation time. AZ6112 was a positive-tone novolak resist without ion implantation. B-ion implantation doses were 5x10¹² to 5x10¹⁵ atoms/cm².

入レジストに関しては、照射時間を増やしても膜 厚に変化は見られず、レジストを除去することが できなかった。イオン注入量の増加とともに除去 速度が低下しており、高ドーズ量のイオン注入レ ジストになるほど除去が困難になった。

図4に、Pイオンが注入されたレジストの湿潤

- 35 -

電気材料技術雑誌 第21巻第1号 J. Soc. Elect. Mat. Eng. Vol.21, No.1 2012

オゾンによる除去過程を示す。Bイオンのときと 同様に、Pイオンが 5×10^{12} 、 5×10^{13} 個/cm²注入さ れたレジストは除去された。レジスト除去速度は、 5×10^{12} 個/cm²のとき $1.19 \mu m/min$ 、 5×10^{13} 個/cm²の とき $0.99 \mu m/min$ であった。一方、 5×10^{14} 個/cm² の注入量においては、Bイオン注入レジストは低 速ながらも除去されたが、Pイオン注入レジスト は除去できなかった。注入量が 5×10^{15} 個/cm²では、 Bイオンの場合と同様に除去されなかった。

図 4 P イオン注入レジストの湿潤オゾン照射時 間に対する膜厚の変化

Fig.4 Dependence of the P-ion-implanted resist film thickness on wet-ozone irradiation time. AZ6112 was a positive-tone novolak resist without ion implantation. P-ion implantation doses were 5x10¹² to 5x10¹⁵ atoms/cm².

図 5 に、As イオンが注入されたレジストの湿潤 オゾンによる除去過程を示す。As イオン注入レジ ストでは、 5×10^{12} 個/cm²のときのレジスト除去速 度は 1.28μ m/min、 5×10^{13} 個/cm²のときのレジスト 除去速度は 0.90μ m/min であった。一方、 5×10^{14} 個/cm²以上の注入量においては、P イオンの場合 と同様に、As イオン注入レジストも除去できなか った。

以上の結果から、各イオン種に関して、5×10¹³ 個/cm²以下のイオン注入レジストは、AZ6112(未 注入レジスト)と同様に、湿潤オゾンにより除去 された。除去速度はイオン注入量が 5×10¹³個/cm² の方が、5×10¹²個/cm²に比べて若干遅くなった。 イオン注入量が 5×10¹⁴個/cm²になると、B イオン 注入レジストのみ低速ながらも除去され、P、As イオン注入レジストは除去されなかった。5×10¹⁵ 個/cm²のイオン注入レジストに関しては、どのイ オン種でも除去されなかった。このことから、 5×10¹⁴個/cm²以上の注入量になると、イオン注入 によってレジスト表面に硬化層が形成され始め ると考えられる。ただし、Bイオンが5×10¹⁴個/cm² 注入されたレジストは、その他のイオン注入レジ ストに比べて表面の硬化層が柔らかいためオゾ ン照射時間を増やすことで除去されたと推測さ れる。そこで、次に、イオン種、イオン注入量に よる除去性の違いを検討するために、イオン注入 レジストの表面硬化層の硬さを調べた。

- 図5 Asイオン注入レジストの湿潤オゾン照射時 間に対する膜厚の変化
- Fig. 5 Dependence of the As-ion-implanted resist film thickness on wet-ozone irradiation time. AZ6112 was a positive-tone novolak resist without ion implantation. As-ion implantation doses were 5x10¹² to 5x10¹⁵ atoms/cm².

3.2 イオン注入レジストの硬さ

図6に、Bイオン注入レジストの微小押し込み 硬さ試験の測定結果を示す。これは、AZ6112の 塑性変形硬さで規格化したイオン注入レジスト の硬さの深さ分布を示している。5×10¹³個/cm²以 下のイオン注入量では、硬さはAZ6112と同様で あった。注入量が5×10¹⁴個/cm²以上になると、注 入量が増加するに従って硬さが増加した。イオン

図6 Bイオン注入レジストの規格化した H₂の深 さ分布

Fig.6 Depth profiles of normalized plastic deformation hardness (normalized H_2) of the B-ion-implanted resists. Normalized H_2 was obtained by dividing H_2 of ion-implanted resist by H_2 of AZ6112. The B-ion implantation doses were 5×10^{12} to 5×10^{15} atoms/cm².

図7 Pイオン注入レジストの規格化した H₂の深 さ分布

Fig.7 Depth profiles of normalized plastic deformation hardness (normalized H_2) of the P-ion-implanted resists. Normalized H_2 was obtained by dividing H_2 of the ion-implanted resist by H_2 of AZ6112. The P-ion implantation doses were $5x10^{12}$ to $5x10^{15}$ atoms/cm². 注入量が 5×10^{14} 個/cm²のとき、深さ $0.09\mu m$ 付近 をピークにして約 $\pm 0.05\mu m$ の幅の硬化領域が見ら れた。一方、 5×10^{15} 個/cm²の注入量において、硬 さが 10 以上(規格化した $H_2=10$)の領域が約 $0.06\mu m$ 、2 以上(規格化した $H_2=2$)の領域が約 $0.20\mu m$ と、幅広い領域が硬化していた。硬さのピ ークは、注入量が 5×10^{14} 個/cm²のとき 1.8、 5×10^{15} 個/cm²のとき 19 であった。

図7に、Pイオン注入レジストの微小押し込み 硬さ試験の測定結果を示す。 5×10^{13} 個/cm²以下の イオン注入量では、Bイオン注入レジストと同様 に、硬さはAZ6112とほぼ同じであった。また、 イオン注入量が 5×10^{14} 個/cm²以上になると、注入 量が増加するに従って硬さが増加した。注入量が 5×10^{14} 個/cm²において、表面から約 0.08 μ m の深 さまでで、硬さが 2 以上の硬化領域が見られた。 注入量が 5×10^{15} 個/cm²においては、規格化した $H_2=10$ の領域が約 0.04 μ m、規格化した $H_2=2$ 以上 の領域が約 0.16 μ m と、B イオン注入レジストに 比べて硬化領域が表面側にシフトしていた。硬さ のピークは、注入量が 5×10^{14} 個/cm²のとき 6.3、 5×10^{15} 個/cm²のとき 17 であった。

図 8 As イオン注入レジストの規格化した H₂の 深さ分布

Fig.8 Depth profiles of normalized plastic deformation hardness (normalized H_2) of As-ion-implanted resists. Normalized H_2 was obtained by dividing H_2 of ion-implanted resists by H_2 of AZ6112. The As-ion implantation doses were $5x10^{12}$ to $5x10^{15}$ atoms/cm².

-37 -

表4 各イオン注入レジストの塑性変形硬さが10以上のときと2以上のときの硬化層の厚み

Table 4 Surface-hardened layer for each ion-implanted resist obtained from the nanoindentation results of Fig. 6, 7, and 8.

イオン注入量 [atoms/cm ²]	硬さ	Bイオン [μm]	Pイオン [μm]	Asイオン [µm]
5×10 ¹⁴	規格化した H ₂ ≥2	-	0.08	0.07
5×10 ¹⁴	規格化した H₂≥10	-		
5×10 ¹⁵	規格化した H ₂ ≥2	0.20	0.16	0.13
5×10 ¹⁵	規格化した H ₂ ≥10	0.06	0.04	0.02

:図8に、Asイオン注入レジストの微小押し込み 硬さ試験の測定結果を示す。 5×10^{13} 個/cm²以下の イオン注入量では、B、P イオン注入レジストと 同様に、硬さは AZ6112 とほぼ同じであった。ま た、イオン注入量が 5×10^{14} 個/cm²以上になると、 注入量が増加するに従って硬さが増加した。注入 量が 5×10^{14} 個/cm²において、表面から約 0.07μ m の深さまで、硬さが2以上の硬化領域が見られた。 注入量が 5×10^{15} 個/cm²においては、規格化した $H_2=10$ の領域が約 0.02μ m、規格化した $H_2=2$ 以上 の領域が約 0.13μ mと、Pイオン注入レジストに比

- 図 9 B、P、As が 5×10¹⁴ 個/cm² 注入されたレジ ストの湿潤オゾン照射時間に対する膜厚 の変化
- Fig.9 Dependence of the B-, P-, and As-ion-implanted resist film thickness on wet-ozone irradiation time. AZ6112 was a positive-tone novolak resist without ion implantation. The ion implantation dose was 5x10¹⁴ atoms/cm².

べて硬化領域が表面側にシフトしていた。硬さの ピークは、注入量が 5×10¹⁴個/cm²のとき 5、5×10¹⁵ 個/cm²のとき 13 であった。図 6、7、8 に示した ように、イオン注入量が増加するに従って硬さが 増加した。硬さの増加は 5×10¹⁴ 個/cm²の注入量を 境に増加する傾向があった。イオン注入量が 5×10¹⁵個/cm²になると注入量による硬さの違いは 見られなかった。これは、イオン注入によるレジ ストの硬化が飽和しているためと考えられる。加 えて、5×10¹⁴個/cm²以上の注入量において、注入 イオン種の原子番号が増加するほど硬化領域が 表面側にシフトしていた。表4に、イオン注入量 が5×10¹⁴個/cm²以上のイオン注入レジストの塑性 変形硬さが 10 以上のとき (規格化した H2>10) と 2以上のとき(規格化した H₂≥2)の硬化領域の結 果を示す。注入イオン種の原子番号が増加するほ ど硬化領域の幅が狭くなった。以上のことから、 注入イオン種の原子番号が増加するとともに、硬 化領域が表面側に集中していることがわかる。こ れは、注入イオンのレジスト中での分布や注入イ オンからレジストに与えられるエネルギーが、硬 化領域や硬化層の硬さに影響していると考えら れる。次に、湿潤オゾンによる除去性および硬さ の変化の閾値と考えられる5×10¹⁴個/cm²のイオン 注入レジストに注目し、検討した。

図9に、図3、4、5で示した、各イオンが5×10¹⁴ 個/cm² 注入されたレジストの湿潤オゾンによる 除去性を示す。AZ6112(未注入レジスト)では、 湿潤オゾン照射時間に比例して膜厚が減少した。 一方、イオン注入レジストでは、湿潤オゾン照射 に伴う膜厚の減少が見られなかった。ただし、B

- 38 -

図 10 B、P、As が 5×10¹⁴ 個/cm² 注入されたレジ ストの規格化した H₂の深さ分布

Fig.10 Depth profiles of normalized plastic deformation hardness (normalized H_2) of the B-, P-, and As-ion-implanted resists with an ion-implantation dose of $5x10^{14}$ atoms/cm².

図 11 注入量が 5×10¹⁴ 個/cm² 以下のイオン注入 レジストのピーク硬さとレジスト除去速 度との関係

Fig.11 Relationship between the resist removal rate and the peak hardness of the resist with an ion-implantation dose of below $5x10^{14}$ atoms/cm².

イオン注入レジスト(5×10¹⁴ 個/cm²)では、表面 から約 0.15μm の層が除去されるまでは徐々に膜 厚が減少していき、その後は AZ6112 と同様にオ ゾン照射時間に比例して膜厚が減少した。

図 10 に、図 6、7、8 で示した、各イオンが 5×10¹⁴ 個/cm²注入されたレジストの AZ6112 で規格化し た塑性変形硬さを示す。B イオン注入レジストの 硬さは、P や As イオン注入レジストに比べて硬 さの増加が少なく、柔らかいと言える。また、注 入イオンの原子番号が大きくなるにつれて、硬さ のピーク位置が表面側にシフトした。B イオン注 入レジストは、深さ 0.09µm 付近をピークにして 約±0.05µm の幅の硬化領域が見られ、AZ6112 に 比べて約 1.8 倍の硬さを示している。P、As イオ ンの場合、表面側ほど硬くなっている。P イオン 注入レジストの表面側の硬さはAZ6112の約8倍、 As イオンでは約5倍となっている。

さらに、図 11 に、5×10¹⁴個/cm²以下のイオン注 入量におけるレジスト除去速度とピーク硬さ(規 格化した H₂)との関係を示す。規格化した H₂が 約2以上になると、レジスト除去速度は0µm/min となり除去されなかった。すなわち、湿潤オゾン によるレジスト除去における除去可能な硬さの 閾値が、AZ6112の2倍程度であると推測される。 イオン種による硬化領域や硬さの違いを検討す るために、SRIM2008を用いてレジストへのイオ ン注入の数値シミュレーションを行い、注入イオ ンのレジスト内での分布と注入イオンからレジ ストに与えられるエネルギーを求めた。

3.3 イオン注入レジストの硬化のメカニズム

注入イオン種による硬化領域や硬さの違いを 検討するために、SRIM2008 を用いてレジストへ のイオン注入の数値シミュレーションを行い、注 入イオンのレジスト内での分布と注入イオンか らレジストに与えられるエネルギーを求めた。

図 12 に、各注入イオンのレジスト内での分布 を示す。B イオンが最も深い領域に広く分布し、 P、Asの順で表面側に集中して分布している。す なわち、原子番号が大きい重いイオンほど、レジ ストに注入されたイオンの分布は表面側にシフ トした。図6、7、8に示した微小押し込み硬さ試 験の結果より、重いイオンほど硬化領域が表面側 にシフトしている。したがって、注入イオンのレ

電気材料技術雑誌 第21巻第1号 J. Soc. Elect. Mat. Eng. Vol.21, No.1 2012

ジスト内での分布は、イオン注入レジストの硬化 領域の傾向とよく一致していると考えられる。た だし、SRIM により求められたイオンの分布は、 硬さ計測で得られた硬化領域より深い領域に広 がっている。これは、まず、レジストとしてベン ゼン環を有さない PMMA を用いたことで、実際 のノボラック系レジストに比べて炭素含有率が 低く阻止能も小さいため、イオンが深くまで進入 するようにシミュレーションされたと考えられ

図 12 各注入イオンのレジスト深さ分布 (SRIM シミュレーション)

Fig.12 Distributions of B, P and As ions implanted into resist (PMMA) were SRIM. calculated by The ion-acceleration energy was 70keV.

る。また、実際のレジストでは、イオン注入時に 硬化が起こるため、徐々に表面側が硬くなり、イ オンが進入しにくくなると考えられる。加えて、 イオン注入量が多くなると、表2に示したように、 膜厚が減少 (スパッタリングもしくは収縮) する ため、硬化層の厚みが薄くなると考えられる。イ オン注入によるレジストの硬化は、イオンとレジ

表5 注入イオン1個からレジストに与えられる核・ 電子的エネルギー(E_N、E_e)、 エネルギー分布深

ストとの相互作用における核阻止能や電子阻止 能によるエネルギー付与によって引き起こされ ると推測される。そこで、各イオン種に関して、 注入イオンからレジストに与えられる核的・電子 的エネルギーを計算した。

図 13 に、注入イオン1個からレジストに与え られる核的・電子的エネルギー(EN、E)のレジ スト内分布を示す。核的エネルギーは、注入イオ ンからレジストを構成している元素(C、O、Hな ど) に与えられる核の衝突に関するエネルギーで あり、レジストへのダメージを表す指標である。 電子的エネルギーは、注入イオンからレジスト中 の電子に与えられる電子励起に関するエネルギ ーであり、レジスト中でのイオン化やラジカル生 成などにともなう新しい結合の形成に寄与する。 重いイオンほど、レジストに与えられる核的エネ ルギーが電子的エネルギーに比べ大きく、表面側 に集中している。イオン注入によってレジストに 与えられる総エネルギー量は、注入量の増加とと もに増加する。そのため、図6、7、8で示したよ うに、イオン注入量が多くなるほど硬化したと考 えられる。表5に、注入イオンからレジストに与 えられる核的エネルギー (E_N)、電子的エネルギ ー (E_e)、エネルギーの分布深さ(D) および深さ 方向に対する各エネルギー密度(E_N/D、E_e/D)を それぞれ示す。ここで、核的・電子的エネルギー および各エネルギー密度は、Bイオンのものを1 として規格化している。各注入イオン1個からレ ジストに与えられる核的(電子的)エネルギーの 比は、Bイオンで1(1)、Pイオンで2.5(0.42)、 As イオンで 3.3 (0.14) である。各イオンからレ

さ (D) およびエネルギー密度 (E_N/D 、 E_e/D) Table 5 Nuclear and electronic energy (E_N, E_e) , energy distribution depth (D), and energy

densit	ty $(E_{\rm N}/D, E_{\rm e}/D)$	given to the	resist from ea	ch implanted ion.	
注入イオン	$E_{\rm N}$ [arb.unit]	E _e [arb.unit]	<i>D</i> [μm]	$E_{\rm N}/D$ [arb.unit]	E_{e}/D [arb.unit]

注入イオン	$E_{\rm N}$ [arb.unit]	E _e [arb.unit]	<i>D</i> [μm]	$E_{\rm N}/D$ [arb.unit]	E_{e}/D [arb.unit]	
Bイオン	1	1	0.50	1	1	
Pイオン	2.5	0.42	0.25	5	0.8	
Asイオン	3.3	0.14	0.08	21	0.9	

ジストに与えられるエネルギーの分布深さがそ れぞれ異なっていたため、深さ方向に対する各エ ネルギー密度で比較した。分布深さは、Bイオン で 0.50μ m、Pイオンで 0.25μ m、Asイオンで 0.08μ m であった。 E_N/D は、Bイオンで 1、Pイオンで 5、 Asイオンで 21 と高くなっており、重いイオンほ どレジストにダメージを与えやすいと考えられ る。一方、 E_e/D はB、P、Asイオンでほぼ同じで あり、新しい結合の形成に関わるエネルギーは同 程度と考えられる。ただし、ダメージが与えられ たレジストほど原子間の結合が切断するため、そ の部分に新しい結合が形成されやすいと推測さ れる。このため、図 6、7、8 で示したように、B、

図 13 各注入イオン1個からレジストに与えら れる核・電子的エネルギーの深さ分布

Fig.13 Distributions of the energies from B, P and As ions to C, O and H elements that compose PMMA were calculated by SRIM. The ion-acceleration energy was 70keV.

P イオンを注入したレジストでは、注入量が 5× 10^{14} 個/cm²で硬化がはじまったのに対し、As イオンを注入したレジストでは、5× 10^{13} 個/cm²で硬化しはじめたと考えられる。

次に、イオン注入レジストの組成について、分 光学的分析手法(FT-IR、UV、ラマンおよび XPS) により検討した。図 14 に、B イオンを注入した レジストの各イオン注入量における FT-IR、UV ス ペクトルを示す。FT-IR スペクトルの結果から、 イオン注入量の増加とともに、O-H 伸縮振動 (3400cm⁻¹付近)、C-H 伸縮振動(2900cm⁻¹付近) および C-H 変角振動(1400-1500cm⁻¹)による吸 収が減少し、C=C(1600-1700cm⁻¹)の吸収が増加 した。ただし、O-H 伸縮振動の吸収は、その他の 吸収に比べてあまり変化していなかった。イオン

- 図 14 B イオン注入レジストの FT-IR(上図) お よび UV スペクトル(下図)
- Fig.14 Dependence of FT-IR spectra (upper) and UV spectra (lower) of B ion-implanted resist.

注入量の増加に対して、C-O-C (1100-1250cm⁻¹) の吸収量の増加は見られなかった。イオン注入レ ジストの化学構造に関して、ノボラック樹脂間に イオン種が介在した架橋モデル(イオンー樹脂間 の共有結合)が提唱されている⁷⁰。また、Bイオ ンが注入されたレジストの化学構造について、 B-O (1300-1500cm⁻¹)^{18,19)}および B-C (1100-1200、 -1500-1700cm⁻¹)^{18,20)}の吸収が、イオン注入量の 増加とともに増加するということが報告されて いる²¹⁾。しかしながら、今回の結果では、Bイオ ンが介在した吸収は観測されなかった。

UV スペクトルの結果から、B イオン注入量の 増加とともに 190~280nm の幅広い波長域でπ-π*

電気材料技術雑誌 第21巻第1号

J. Soc. Elect. Mat. Eng. Vol.21, No.1 2012

吸収に起因する吸収が増加した。このことから、 イオン注入によって多彩なπ共役系が形成されて いると考えられる。

図 15 に、Pイオンを注入したレジストの各イオ ン注入量における FT-IR、UV スペクトルを示す。 FT-IR スペクトルの結果から、B イオンを注入し たレジストの場合と同様に、イオン注入量の増加 とともに、OH および CH に帰属する吸収が減少 し、C=C に帰属する吸収が増加した。ただし、P イオンを注入したレジストにおける OH の吸収量 の変化は、B イオンの場合に比べて大きくなった。 イオン注入量の増加に対する C-O-C の吸収量の 増加は見られなかった。また、P-C (1290-1330、 1400-1480cm⁻¹)、P-O (850-1040、1160-1260cm⁻¹) などのイオン種が介在するような吸収も観測さ れなかった。

図 15 P イオン注入レジストの FT-IR (上図) お よび UV スペクトル (下図)

Fig.15 Dependence of FT-IR spectra (upper) and UV spectra (lower) of P ion-implanted resist. UV スペクトルの結果は、B イオンを注入した レジストと同様に、イオン注入量が増加するほど 190~280nm (π-π*) の吸収量が増加する傾向が 得られた。ただし、B、P イオンを注入したレジ ストの吸収量を同じ注入量で比較すると、P イオ ンを注入したレジストの方が B イオンを注入し たレジストに比べて大きかった。P イオンを注入 したレジストの方が、B イオンの場合に比べてよ り多くの多彩な・共役系が形成されていると考 えられる。P イオンを注入したレジストの方が B イオンを注入したレジストよりもエネルギーが 表面側に集中していることから (図 13)、P イオ ンが B イオンよりもレジストを変質させると推 測される。

- 図 16 As イオン注入レジストの FT-IR (上図) お よび UV スペクトル (下図)
- Fig.16 Dependence of FT-IR spectra (upper) and UV spectra (lower) of As ion-implanted resist.

図 16 に、As イオンを注入したレジストの各イ オン注入量における FT-IR、UV スペクトルを示す。 FT-IR スペクトルの結果から、B、P イオンを注入 したレジストの場合と同様に、イオン注入量の増加とともに、OH および CH に帰属する吸収が減少し、C=C に帰属する吸収が増加した。As イオンを注入したレジストにおいても、P イオンの場合と同様に、OH の吸収量の変化が B イオンの場合に比べて大きかった。イオン注入量の増加に対する C-O-C の吸収量の増加は見られなかった。加えて、As-C (600-700、800-1000cm⁻¹)や As-O (500付近、800-900cm⁻¹)などのイオン種が介在するような吸収も観測されなかった。

UV スペクトルの結果は、P イオンを注入した レジストと同様の傾向が見られた。ただし、P、 As イオンを注入したレジストの 190~280nm (π-π*)の吸収量を同じ注入量で比較すると、As イオンを注入したレジストの方がPイオンを注入 したレジストに比べて大きかった。As イオンの方 がPイオンよりも多くの多彩な・共役系が形成さ れていると考えられる。As イオンを注入したレジ ストの方がPイオンを注入したレジストよりもエ ネルギーが表面側に集中していることから(図 13)、As イオンが P イオンよりもレジストを変質 させると推測される。

図 17 B、P、As が 5×10¹⁴ 個/cm² 注入されたレジ ストのラマンスペクトル

Fig.17 Raman spectra of resist B, P, As ion-implanted resist. The implantation doses was 5x10¹⁴ atoms/cm².

図 17 に、イオン注入量が 5×10¹⁴ 個/cm²の B、 P、As イオンを注入したレジストのラマンスペク トルを示す。970cm⁻¹付近のピークは基板である。 Si の 2 次光である 1390cm⁻¹付近の D バンドおよ び 1580cm⁻¹付近の G バンドが、B→P→As の順で 増加していることがわかる。原子番号が大きく重 いイオンほど、イオン注入によるレジストの炭化 または架橋が進んでいると推測される。このため、 図 6、7、8 で示したように、5×10¹⁴ 個/cm² の注入 量において、P、As イオンを注入したレジストの 方が B イオンよりも硬くなったと推測される。ま た、B、P イオンを注入したレジストでは注入量 が 5×10¹⁴ 個/cm² 以上で硬化層が見られたが、As イオンでは 5×10¹³ 個/cm² で硬化層が見られたこ とも、このことが関係していると考えられる。

XPS スペクトルより、各イオン注入レジストに おけるイオン注入によるレジスト中のOおよびC の信号量を比較した。ここで、各イオン注入レジ ストにおいて注入イオンに基づくピークは見ら れなかったため、XPS スペクトルから Ols および Cls 以外の信号をバックグラウンドとして除外し た。図 18、19、20 に B、P、As イオンを注入した レジストの XPS スペクトルを示す。

図 18 の B イオンを注入したレジストでは、OIs のピークは注入量に対してほぼ一定であったが、 Cls のピークは注入量の増加とともに増加した。 B イオンを注入したレジストでは、炭素結合の増 加にともなう炭化または架橋により硬化したと 考えられる。

	20000		· · ·	, , , , , , , , , , , , , , , , , , , ,	· ·	<u> </u>	٦
unit]	18000	-	AZ6112		01s:600	C1s:2700	-
	16000	-	B-5×10 ¹²		,01s:600	C1s:2200	1
E [arb.	12000		B-5×10 ¹³		01c:700	C1a;2000	-
号強度	10000	-	D-3×10		015.700	018:2900	-
価	8000		B-5×10 ¹⁴		01s:600	C1s:2800	-
	6000	-	B-5×10 ¹⁵		,01s:600	C1s:3200	1
	4000 10	00	800	600	400	200	0
				結合エネ	ルギー [eV]		

図 18 Bイオン注入レジストの XPS スペクトル Fig.18 XPS wide scan spectra of B ion-implanted resist.

P、Asイオンを注入したレジストでも、Clsの ピークは注入量の増加とともに増加する傾向を 得た。但し、Bイオンを注入したレジストと異な

電気材料技術雑誌 第21巻第1号 J. Soc. Elect. Mat. Eng. Vol.21, No.1 2012

り、P、As イオンの場合では、O1s のピークが注 入量に対して減少した。とりわけ、イオン注入量 が 5×10^{15} 個/cm² になると、O1s のピークが大き く減少した。同様の傾向が、図 15、16 に示す OH 吸収においても見られる。図 13 に示すように、B イオンに比べ、P、As イオンではレジストに与え られるエネルギーが表面側に集中している。また、

図 19 Pイオン注入レジストの XPS スペクトル

Fig.19 XPS wide scan spectra of P ion-implanted resist.

図 20 Asイオン注入レジストの XPS スペクトル Fig.20 XPS wide scan spectra of B ion-implanted resist.

新たな結合に寄与する電子的エネルギー密度は 各イオン種で同程度であるが、レジストへのダメ ージの指標である核的エネルギー密度は重いイ オンほど大きい。重いイオンほどレジスト中の化 学結合を切断しやすいため、P、Asイオンを注入 したレジストは、結合エネルギーの低い OH 基の 脱離が起こったと考えられる。この脱離にともな い、XPS スペクトルにおいて OIs のピークの減少 が観測されたと考察する。P、Asイオン注入レジ ストでは、Bイオンを注入したレジストとは異な り、Oの減少および炭素結合の増加にともなう炭 化または架橋により硬化したと推測される。

4.おわりに

湿潤オゾンによるイオン注入レジストの除去 性と硬さとの相関について明らかにした。また、 イオン注入によるレジストの硬化のメカニズム について、数値シミュレーションおよび化学的分 析により検討した。

湿潤オゾンを用いて、B、P、As イオンが 5×10¹² から5×10¹⁵個/cm²注入されたレジストの除去を行 った。5×10¹³個/cm²以下のイオン注入レジストは、 未注入のレジストとほぼ同じ硬さであり、どのイ オン種でも除去できた。5×10¹⁵個/cm²以上の注入 量のイオン注入レジストは、未注入のレジストに 比べて 10倍以上の硬さであり、どのイオン種で も除去できなかった。5×10¹⁴個/cm²では、Bイオ ン注入レジストのみ低速ながらも除去できたが、 P、As イオンイオン注入レジストは除去できなか った。この注入量において、Bイオン注入レジス トの硬さは未注入レジストの約1.8倍、Pイオン では約8倍、Asイオンでは約5倍であった。湿潤 オゾンにより除去可能な硬さの閾値として、未注 入レジストの硬さの約2倍程度であると言える。

イオン注入レジストの硬化は、レジストがイオ ンからエネルギーを得ることで引き起こされる。 軽い B イオンでは核的エネルギーよりも電子的 エネルギーの方が大きいため、イオンはレジスト の奥深くまで入り込み、硬化層は厚いが軟らかく なる。一方、重い As イオンでは電子的エネルギ ーよりも核的エネルギーの方が大きいため、イオ ンはレジストの表面側に分布し、硬化層が薄いが 硬くなる。新たな結合に寄与する電子的エネルギ 一密度は各イオン種で同程度であるが、レジスト へのダメージの指標である核的エネルギー密度 は重いイオンほど大きい。重いイオンは、軽いイ オンに比べてレジスト表面側に集中して注入さ れる。UV、Raman スペクトル分析より、イオン 注入レジストは、表面側の OH 基、CH 基および

論文:湿潤オゾンによるイオン注入レジストの除去に関する研究

Ols が減少し、C=CやCls、π共役系が増加して炭 化または架橋により硬化したと推測される。

謝辞

本研究は、平成 16 年度 NEDO 産業技術研究 助成事業によって行われた。また、支援頂いた 三菱電機(株)、島田理化工業(株)に、心よ り感謝いたします。

参考文献

- M. Itano, F. W. Jr. Kern, M. Miyashita, and T. Ohmi, IEEE Trans. Semicond. Manuf., 6, 258 (1993).
- K. Yamamoto, A. Nakamura, and U. Hase, *IEEE Trans. Semicond. Manuf.*, 12, 288 (1999).
- H. Horibe, M. Yamamoto, T. Ichikawa, T. Kamimura and S. Tagawa, J. Photopolym. Sci. Tech., 20, 315-318 (2007).
- S. Noda, M. Miyamoto, H. Horibe, I. Oya, M. Kuzumoto, and T. Kataoka, J. Electrochem. Soc., 150, G537 (2003).
- S. Noda, H. Horibe, K. Kawase, M. Miyamoto, M. Kuzumoto, and T. Kataoka, J. Adv. Oxid. Technol., 6, 132 (2003).
- S. Noda, K. Kawase, H. Horibe, I. Oya, M. Kuzumoto, and T. Kataoka, J. Electrochem. Soc., 152, G73 (2005).
- S. Fujimura, J. Konno, K. Hikazutani and H. Yano, Jpn. J. Appl. Phys., 28, 2130-2136 (1989).
- P. M. Visintin, M. B. Korzenshi and T. H. Baum, J. Electrochem. Soc., 153, G591-G597 (2006).
- 9) K. K. Ong, M. H. Liang, L. H. Chan and C. P. Soo, J. Vac. Sci. Technol. A, 17, 1479-1482 (1999).
- 10) M. N. Kawaguchi, J. S. Papanu and E. G. Pavel, J. Vac. Sci. Technol. B, 24, 651-656 (2006).
- 11) M. N. Kawaguchi, J. S. Papanu, B. Su, M. Castle and A. Al-Bayati, J. Vac. Sci. Technol. B, 24, 657-663 (2006).
- A. Nakaue and N. Kawakami, Kobe Steel Engineering Reports, 52, 74-77 (2002).
- M. Lichinchi, C. Lenardi, J. Haupt and R. Vitali, *Thin Solid Films*, 312, 240-248 (1998).

- 14) X. Chen and J. J. Vlassaka, J. Mater. Res, 16, 2974-2982 (2001).
- 15) B. D. Beake, G. J. Leggett and M. R. Alexander, J. Mater. Sci., 37, 4919-4927 (2002).
- 16) J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, "SRIM, The Stopping and Range of Ions in Matter", Lulu Press Co., Morrisville, NC, USA, 2008. (http://www.srim.org).
- T. C. Smith, "Photoresist and Particulate Problems," in *Handbook of Ion Implantation Technology*, Ed. J. F. Ziegler, Elsevier Science Publishers B. V., (1992).
- 18) Y. J. Zou, X. W. Zhang, Y. L. Li, B. Wang, H. Yan, J. Z. Cui, L. M. Liu, and D. A. Da, *J. Mater. Sci.*, 37, 1043-1047 (2002).
- 19) G. D. Soraru, N. Dallabona, C. Gervais, and F. Babonneau, *Chem. Mater*, 11, 910-919 (1999).
- 20) A. Annen, M. Sass, R. Beckmann, A. Von Keudell, and W. Jacob, *Thin Solid Films*, 312, 147 (1998).

(2012年3月16日受理)

堀邊 英夫

1985年京都大学工学部合成化学科卒。1985 年三菱電機(株)材料研究所(現先端技術総 合研究所)入社、研究員、主任研究員、主 席研究員、2001、02年島田理化工業(株)

島田製作所オゾン事業化プロジェクト副部長(兼)。2003 年高 知工業高等専門学校助教授、2007 年金沢工業大学バイオ・化 学部教授、2007 年より大阪大学招聘教授(兼)。博士(工学) (大阪大学)。専門は高分子材料化学。第46回化学技術賞、

第14回平賀源内大賞等受賞。高分子学会、応用物理学会、日本放射線化学会会員。

山本 雅史

2007年大阪大学大学院工学研究科電気電 子情報工学専攻修了。2010年金沢工業大学 大学院工学研究科材料設計工学専攻博士 後期課程修了。博士(工学)(金沢工業大

学)。現在、(株)明電舎に勤務。2005年電気学会100周年記 念基金学術振興助成優秀論文賞、H19年度応物北陸・信越支部 発表奨励賞受賞。

- 45 -