|

) <

The University of Osaka
Institutional Knowledge Archive

Title On multiply transitive groups. VII

Author(s) |Oyama, Tuyosi

Osaka Journal of Mathematics. 1968, 5(2), p.

Citation 155-164

Version Type|VoR

URL https://doi.org/10.18910/7692

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Oyama, T.
Osaka J. Math.
5 (1968), 155-164

ON MULTIPLY TRANSITIVE GROUPS Vii

Tuvost OYAMA

(Received April 16, 1968)

1. Introduction

Let G be a 4—fold transitive group on Q={1,2,-:+, n}, and let P be a Sylow
2-subgroup of a stabilizer of four points in G. If P=1, then by a theorem of
M. Hall [1. Theorem 5.8.1] G must be one of the following groups: S,, S;, 4,
A; or M,,. From a recent result of H. Nagao [7] it follows that, if P=1 is semi-
regular and leaves exactly four or five points fixed, then G must be one of the
following groups: S, Sy, 4, A4, or M.

The purpose of this paper is to extend the result of H. Nagao. Namely we
shall prove the following

Theorem. Let G be a 4-fold transitive group. If a Sylow 2—subgroup of a
stabilizer of four points in G is semi-regular and not identity, then G must be S,
S7’ AS’ AQ) M12 or MZS‘

DEFINITION AND NOTATION. A permutation x is called semi-regular if there
is no point fixed by x. A permutation group H is called semi-regular if every
nonidentity element of H is semi-regular on the points actually moved by H.
For a permutation group G on (, let G;;.., denote the stabilizer of the points
%, j,7inG. Forasubset Sof G we denote the normalizer (or centralizer) of
S'in G by Ng(S) (or C4(S)). Let ay(x) denote the number of i-cycles of a
permutation x. The totality of points left fixed by a set X of permutations is
denoted by I(X), and if a subset A of Q is a fixed block of X, then the restriction
of X on A is denoted by X*.

2. Proof of the theorem

To prove the theorem we may assume that a stabilizer of four points in
G fixes exactly four points (See [6]). In the proof of the theorem, we shall also
make use of the fact [1. p. 80] that a 4—fold transitive group of degree less than
35 is one of the known groups.

Let P be a Sylow 2-subgroup of G,,,,. Then |I(P)]| is four, five, six, seven
or eleven, and Ng(P)'® is S,, S,, 4, A, or M, (cf. [5]. Lemma 1). By the
theorem of H. Nagao, we may treat only the last three cases,
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Case L. |I(P)| =11, NP)y® = M,,.

Let a be a central involution of P, and suppose that P has an involution b
different from a. Then a and & fix the same eleven points and generate a four
group. Therefore we may assume that

a= (1) @(11) (ij) (R )+,
b= (1) (2)(11) G &) (j D).

Then (a, b> normalizes G;;;; and hence it normalizes some Sylow 2-subgroup
P’ of Gy, Since a’®” is an involution of M, it fixes three points. Now I(a)
=I(b)={1, 2,--+, 11}. Hence b'®" fixes these three points and the four group
{a, bY'®" is contained in a stabilizer of three points of M,,. But this is impos-
sible, because a stabilizer of three points of M,, is a quaternion group.

Thus P has only one involution, and hence P must be a cyclic group or a
generalized quaternion group [1. Theorem 12.5.2.]. By Theorem 1 in [8] P is
not cyclic, and by the following unpublished result of H. Nagao we have a
contradiction.

Lemma 1. (H. Nagao) Let G be a 4—fold transitive group, and P=%1 a
Sylow 2—subgroup of G,. If P fixes eleven points, then P is not a generalized
quaternion group.

Thus we have no group in this case.
Case II. [I(P)|=60r7, NgP)® = A4;or A4,.

In the proofs of the following series from i) to v) we assume that Ng(P)"?
=A,, and we need the following result [8. Theorem 2] that any involution of
G fixes exactly six points. The proofs in the case Ng(P)"®=4, are similar.

i) If an element a of G has a 4—cycle, then it’s order is an odd multiply of 4 or 8.

1) If a is of order 4, then o,(a)=2 and aa)=2. (When Ng(P)'®
=A4,, a(a)=2 and a,(a)=3).

2) If a is of order 4t with t odd, then a,a)=2 and a,a)=2. (When
Ng(P)'®=A4,, aa)=2 and o,(a)=0 or 3).

3) If a is of order 8t with t odd, then a,(a)=1 and o, (a)=1.

Proof. 1) Let a be an element of order 4. Then we may assume that
a=(1234)...

Since a normalizes G,,,,, @ normalizes some Sylow 2-subgroup of G,.. We
may assume that ¢ normalizes P, Since Ng(P)"® =4, a must be of the follow-
ing form
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a=(1234)(56),

where I(P)={1,2, 3,4, 5, 6}. Since a* is an involution and a,(a*)=6,a,(a)
=0. 2 or 4. If ,(a)=0, then a,(a)=3 and a is of the form

a=(1234)(56)(t7) (o) -

From this form @ normalizes some Sylow 2-subgroup P’ of G, j, and a'® "

=(56) (,4,) (3,7.), which is contrary to Ng(P')/#*=A, Therefore a,(a)=0.
Since P is semi-regular, P is elementary abelian by Lemma 2 in [8]. Therefore
a,(a)+4. Hence we have that «,(a)=2 and consequently a,(a)=2.

2) Let abe of order 4¢ with ¢ odd, then a,(a’)=2 and a,(a’)=2. Therefore
a(a)=2 and «a,(a)=2.

3) Letabeof order 8. Then from 1) ar,(a®)=2. Hence a,(a)=1. Thus
we may assume that a is of the following form

a=(1234)-.

Then @ normalizes some Sylow 2-subgroup of G,,,,. We may assume that a
normalizes P. Since Ng(P)'®=A4,, a must be of the following form

a=(1234)(56),

where I(P)={1, 2, 3,4, 5, 6}. Since a,(a’)=2, a,(a)=1. This is also true for
an element of order 8¢ with ¢ odd.

Since an element of order 8 has only one 4—cycle, G has no element of order
16.

1) P is an elementary abelian group of order 16.

Proof. By Lemma 2 in [8] P is elementary abelian. Therefore it suffices
to prove that the order of P is 16. Let a=(12)(34)-:- be an involution of G.
Then a normalizes a Sylow 2-subgroup of G,,. We may assume that a nor-
malizes P. Let I(P)={1,2,3,4,5,6}. Since a’® must be an even permuta-
tion, a is of the following form

a=(12)(34)(5)(©).

Let a fixes the point 7 and let A be the P-orbit containing 7. Then a fixes at
most four points of A and P is regular on A. Therefore by Lemma in [4] we
have that the order of P is at most 16.

Now let K be the kernel of the natural homomorphism Ng(P)—Ng(P)"®.
Then KC4(P)|Cy(P)=K/KNCyxP), and NG P)>K-CsP)>K. Since
Ng(P)|[K=Ng(P)'® N4P)/K is asimple group. Therefore Ng(P)=K-Cg(P)
or K:-CyzP)=K. Since G,,>K>KNCyx{P)=P and P is a Sylow
2-subgroup of G, K/K N Cyx(P)is of odd order. If Ng(P)=K-Cg(P), then
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from KCy(P)/Co(P)=K|K N Cx(P), Ng(P)/Ce(P) is of odd order. Hence any
2-element of Ng(P) belongs to Cz(P). On the other hand there is an element
x of order four, which is of the following form

x=(1234).

Then x normalizes G,,,, and hence we may assume that x normalizes P. From
Ng(P)'®=4,, x must be of the form

x=(1234)(56)-,

where I(P)={1, 2, 3,4, 5,6}. By 1) of i) x fixes two points of Q—I(P). Since
P is semi-regular on Q—I(P), x commutes with exactly two elements of P. But
by Theorem 1in [8] |P|>2. Therefore xe£ Cg(P), which is a contradiction.
Thus K-Cg(P)=K.

Now Ng(P)/C4(P)is a subgroup of the automorphism group of P. From
Ng(P)/K=A, and K>Cg(P), the order of the automorphism group of P is
not smaller than the order of A, Since P is elementary abelian and it’s order
is at most 16, the order of P must be 16.

Next we also need a theorem of G. Frobenius (See [3]. Proposition 14.5),
which will be stated here as Lemma 2.

Lemma 2. (G. Frobenius) Let GS,, then

5 <a1(x)) (agsx)) = m- |G|

e\ ok Forgle2hon e

Here m is an integer obtained in the following way. Let Q®={(z,,---,
Tes Jis J1' 5**s Jas ja's+++)} be a family of ordered sets consisting of ¢ (=x—+2x+-++)
points of Q such that there is at least one element x of G of the form
x = () (@) ) (Gadn ) -
When G is regarded as a permutation group on Q% by setting
(al PR at)x = (alx PR atx)
for x€G and (a, ,'*-, a,)€Q®, m is the number of G-orbits in Q®.

iii) Let x be an involution of Ng(P)—P. Then any fixed point of an element
(F1) of <z, P)°7I® 45 contained in exactly ome orbit of P. The number of
P-orbits in Q—I(P) is odd.

Proof. Since the order of P is 16, by Lemma in [4] x commutes with four
elements of P. Since P is semi-regular and x fixes four points of Q—I(P), these
points must be contained in the same P-orbit, say A. Put Q=<{x, P>. The
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order of Q is 32 and Q fixes A. For an element a of P if x commutes with a,
then xa is of order 2, and if not, then xa is of order 4, since (xax)a belongs to
P and it is not the identity. Let xa be of order 4, then by 1) of i) a,(xa)=2 and
xa has no fixed point on Q—I(P). Therefore

23 a(y) = ay(1%)+ 2,’ ay(y')
yeQ y
= 16+ ?‘7,’ a(y?),
where y’ ranges over all involutions of Q—P. On the other hand from Lemma 2
,;; a(y*)=10%=32.

Hence >} a,(y'*)=16. Since O—P has four involutions and these involutions
y/

have four fixed points in Q—I(P) respectively, these 16 points are all contained
in A. Hence Q is semi-regular on Q—{I(P)U A}, in which any Q-orbit con-
tains exactly two P-orbits. 'Thus the number of P-orbits in Q—I(P) is odd.

iv) G has an element of order 8.
Proof. Let a be an element of order four and of the following form
a=(1234)-.

Then a normalizes a Sylow 2-subgroup of G,,. We may assume that a
normalizes P. From Ng(P)"®=A4,, a must be of the following form

a=(1234)(56),

where I(P)={1,2,3,4,5,6}. By 1) of i) a fixes two points of Q—I(P), and
these points are contained in a P-orbit, say A. Put Q=<{P, a>. Then the order
of Qis 4-16 and A is a Q-orbit. Suppose that Q has no element of order 8.
From iii) any fixed point of an element (1) of <{P, a®>% /® js contained

in A. Let a’ be any element of Pa or Pa™'. Then a’ is of the following form

(1234)(56)- or (1432)(56)-.

We assumed that O has no element of order 8. Hence a’ is of order 4, and a’
has exactly two fixed points. Since Q/P is a cyclic group of order 4, a’* belongs
to <P, a*»> 'Therefore a’ fixes two points of A.

From Q=P+ Pa+Pa’+ Pa™

D)2 G ar B e 3 )
=16+2-16+2-16=5-16.
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On the other hand by Lemma 2
Ea&x"): |O| =4-16,
which is a contradiction. Thus Q has an element of order 8.

Since G is 4—fold transitive, by Lemma 2

1
,Zeg a(x) = %8
and

T ax) =75,

where g=|G|. From i) if a,(x)+0, then a,(x)- a,(x)=2-a,(x) or a,(x). Since
there is an element of order 8, from i) we have

25 X)) < 25 () a(x) <2 2] (%)
and hence 1< % <2. Thus m=3, and

3
éaz(x)’aA(x) - ?g .
From two equations above, we obtain
, ' 1
2 o)+ 2V aly) = -8,
/ / , 3
2V 2+ 2 () = 8

where y and y’ range over all elements of order 4z and 8¢ (¢: odd) respectively.
Hence

SV a(y) =58

On the other hand
a,(x) . _ m'-g
2(47) = %

Since an element of order 8¢ with ¢ odd has only one 2—cycle, and an element of
order 4¢ with ¢ odd has two 2—cycles,

2 <a2§x)>'a4(x) = Z/ a(y) = %g )

rE6
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Therefore
m-g _ 1
2.2.4 8%’
hence
m = 4.

From the remark of Lemma 2, G has four orbits on Q® ={(i,, #,, 1, Jz» R1s Ros Ry Ry)
| x=(i, 1,) (j. ],) (k, k, ky k,)-- EG, x is of order 4}. Since G is 4-fold transitive
on Q, G,,,,=H has four orbits on Q®={(k,, k,, ky, k,)|a=(12) (34) (k, k, ks k,)*
€G, a is of order 4}.
When H is regarded as a permutation group on Q®, we denote it by H*.
If (k,, k,, ky, k)=Q®, then there is an element a of G of the form

a=(12)(34)(k k, ks k) .

Since a'=(12)(34)(k k, k,k,)-=G, we have eight points (k, k&, k,, &,),
(k2) kar ku kl)) (ksy ku kn kz)) (ku kl) kza ks)) (kv ku k3a kz)) (ku ka: kz’ kl)’ (kay kzy ku k4)
and (k,, k,, k,, k) of Q.

v) Let (ky, ky, ky, R)EQ®. Then (R, k,, ks, k)" and (k,, k,, k,, k)" are
the different H*-orbits.

Proof. Since any 2—element of H is of order 2, H has no element as follows:

<k1 kz ka k4"'
kb k, By

Therefore (k,, k,, ky, k)7 %= (k,, ko Ry, k)P

>:®h&h%m

From now on we treat two cases Ng(P)'® =4, and A4, separately. For the
proofs in these cases the result that the number of H*-orbits is four is important.

A) Ny(P)® = 4,.

Let I(P)={1,2,3,4,5,6}. and G,,,=H. Then the points 5 and 6 are
contained in H-orbits of odd length. Put 57=A, and 6¥=A,.

Suppose that A,=A,. Since P-orbits in Q—I(P) are of even length, the
length of A, is even, which is a contradiction. Therefore A,==A,. Furthermore
the other H-orbits in Q—I(H) are all of even lengths.

From Ng(P)"® =4, there is an element x of the following form

x=(12)(3) (4) (5 6)-- .

Since ¥ Ng(H), A"=A,. Hence |A,|=]|A,|. Suppose that H-orbits in
Q—I(H) are A, and. A,. From iii) the number of P-orbitis in Q—I(P) is odd,
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and all P-orbits in Q—I(P) are of the same length. Hence |A,| = |A,|, which
is a contradiction. Therefore H has at least three orbits in Q—I(H).

If |A,|=|A,|=1, then |I(H)|=6, contradicting the assumption that
|I(H)| =4. Therefore |A,|=|A,|>1.

Let (&, k,, k;, k,) be a point of Q®. Then there is an element

a=(12)(34) (ki k, ks F))---
in G. We may assume that a& Ng(P) and a is of the form
a=(12)(34)(5) (6) (ki ko ko k,)--- .

By the assumption a is of order four, and from 1) of i) any point in Q—{1, 2,---, 6}
appears in some 4—cycle of a. Since A=A, and A,=A,, we may assume
that {7, 7, 25, 2} CA, and  {Jy, jo Jos Juf C© Ay Where a=(i,1,7,2,) (J1J2Jafs) -
Then from V) (2, 2, 25, 2,)7", (2 25 15, 1)7"5 (Jus Jo Ja» Jo)2 " and (fa Ju» Ju J1)*" are
all different H*-orbits. Thus we have four H*-orbits. But H has at least
three orbits in Q—1I(H). Hence there is a 4—cycle (/,1,1,1,) of a such that
{1, 1, 1, L} & A UA, Therefore (1,1, 1, L)*" is the different H*-orbit from
these four H*-orbits. Hence we have five H*-orbits, which is a contradiction.
Thus we have no group in this case.

B) N(P)® = 4,.

Let [(P)={1,2,3,4,5,6,7} and H=G,,,. 'Then from Ng(P)'®=A4,, there
is an element

x=(1)(2)B)#)(567)-.

Since x= H, three points 5, 6 and 7 belong to the same H-orbit, say A,. Then
A, is the only H-orbit in Q—I(H) of odd length. If H has only one orbit in
Q—I(H), namely, H is transitive on Q—I(H), then a stabilizer of one point in G
satisfies the assumption of Case II. A), which is a contradiction. Therefore H
has at least two orbits, say A, and A,, in Q—I(H).

Suppose that |A,|>3. Let (k,, &, &, k) EQ®. Then there is an element

a= (1 2) (3 4) (kl k; k, k4)'"

of G. By the assumption a is of order four, and from 1) of i) the cycles of a are
all 4—cycles except two 2—cycles and three 1-cycles. Since a&Ng(H), A, is an
H-orbit. Assume that A, A,. Since the length of A, is even, A,*+A,. We
may assume that k€A, and hence k,éA,UA,. Then we shall show that
(kyy Ry Ry R, (Ryy Ray Ry R, (Ry, ke Rsy R)E" and (ky, Ry, Ry, k)E" are all differ-
ent H*-orbits. From v) (k,, ks, ks, k)" (ko ks, kyy k)" and (R, k,, ks, k)2
:':(kl’ k3’ k2’ kl)H*’
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If (R, ky, kyy R )2 =(Ry, Ry, ks, k,)7*, then H has a following element

kl kaak‘... - oo
= <k1 k4 k:-x kz"’) - (kl) (ks) (kz k4) °

Since the order of x is even, there is a Sylow 2-subgroup of H fixing the point &,.
By the conjugacy of Sylow 2-subgroups of H, k, must be contained in A,, which
is a contradiction. Therefore (k,, k,, ks, k)?" 5= (k,, ky, ks, k)7, In the same
way (ko ks, Rey B2 5 (R, Ray ko By)H*. '

If (R, ks, Ry R)*=(Ry, Ry, ks, k,)H", then H has a following element

bk ok
(kn k, R, kz"‘> - (kl kz) (k3 k4)--.

But this is impossible, for kA, and k,&A, Therefore (k,, &, &, k)?"
=+ (Ry, kyy Ry B)E™

Since a’=(1) (2) (3) (4) (k, k;) (k, k,)---belongs to H and (k,, ki, k., k)*
=(Ry, ki Ry, ky), (R Ryy Roy R =(R,, Ry, R,y Ry)™*.  Therefore in the same way
(ko Ry oy BT = (R, Ry, Ry, BT =(R,, ke, Ry, BT

Thus we have four H*-orbits. On the other hand since |A,|>3 and
A*=A,, there is a 4—cycle of a, say (j, j,Js J), such that {j,, ju, js jot CA,. Then
(Jus Jo» Jo» Jo)* is different from these four H*-orbits. Thus we have five H*-
orbits which is a contradiction. Therefore A,’=A,.

If H has an orbit different from A, and A, in Q—I(H), then as proved above
a fixes these three orbits respectively. By v) H* has at least six orbits, which is
a contradiction. 'Thefore H-orbits in Q—I(H) are A, and A,.

Now we shall show that |A;| >3 leads to a contradiction. Since A=A,
and A,°=A,, we may assume that {7, 7,, i, t,} CA, and { ,, ju js Juf CA,, where
a=(12)(34)(4,7,7,4,) (J1 Jo Js Ju) =+~ Since A, 5= A,, by V) (2, 1y, 13, 1), (4 1, 2,
1) (Jo Jo Jo Jo)™ and (Ju Js Joo J1)® are all different. We shall show that
(23 T4y 15, 2,)7" is different from these four H *-orbits. FromA,=+A,, (i, i,, t,, 1,)7"
F (s Jor Jo JOT and (Jo J» Joo J)™T I (3, By 25, 1) =(4,, 2y, 15, 2,)%", then H has
a following element

=(rii)=@@6n.
Since x is of order even, there is a Sylow 2-subgroup of H fixing 1, 2, 3, 47, and ¢,.
Thus any Sylow 2-subgroup of H; ;, is a Sylow 2—-subgroup of H. On the other
hand @’=(1) (2) (3) (4) (?,4,) (i, 4,)---normalizes H;,;. Hence a* normalizes a
Sylow 2-subgroup P’ of H,;, and a’®”=(1)(2)(3)(4) (i,7,):-, contrary to
Ng(P)®>=4,. Thus (i, 1, 15 1) % (1, 1y, g, Y. I (8, 14y B, 1) =1y, 4,
15, 1,)"", then H has a following element
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h= ("2 f i A

1,8, 150y
Then
ah = (12) (34) (i) () G i)~ -

Since a,(ah) =3, from 1) ah is of order 2t with £ odd. Put b=(ah)’. 'Then b nor-
malizes a Sylow 2-subgroup P” of H. Since A, contains an odd number of P"-
orbits, from iii) the four points of I(b) are contained in A, and the three points
1,2, and some one of I(b) are contained in A,. Since b&Ng(P"), I(P")
D{1,2,3,4,i,4,}. Therefore a*=(1)(2)(3)(4) (¢,7,)---normalizes a Sylow
2-subgroup of H; ;,, which is also a Sylow 2-subgroup P’’’ of H. Thus (a*)"®""
=(1) (2) (3) (4) (i, i,)---, which contradicts the assumption Ng(P''')/¢"">=A4,.
Therefore (3, i, i,, 1,)7" 3 (i, 1,, 15y 1,)7"

Thus H* has at least five orbits, which is a contradiction. Therefore
[A|=3.

In the proof of Case II of [5. Theorem 2] we needed only the following con-
dition: The number of the fixed points of an involution is seven, and every Sylow
2-subgroup of H fixes the same points. Therefore in the same way we have that
G is M,,
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