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Modern Method of Ultimate Strength Analysis of Offshore

Structures?

Yukio UEDA ™ and Sherif M. H. RASHED* *

Evaluation of ultimate strength and history of collapse of structures in their intact and damaged conditions is one of
the key issues in advanced design techniques based on explicit safety evaluation and collective optimization. This paper
describes an efficient method, the Idealized Structural Unit Method, to evaluate ultimate strength of structures. Its
application to offshore frame structures is presented taking account of the nonlinear behavior of members, joints and the
structure as a whole. Methods to account for strain hardening, damage effects and local shell buckling are summarized.
Examples are presented to demonstrate the accuracy and efficiency of this method.

KEY WORDS : (Ultimate strength) (Idealized Structural Unit Method) (Tubular element) (Joint model) (Dent)

(Damage) (Strain hardening)

1. Introduction

Traditionally, structural design has been based on
providing a higher structural capacity at first failure (such
as buckling or yielding) than the anticipated load
multiplied by a certain factor of safety. Loads considered
are those of frequent occurrence, while extreme loads are
not explicitly dealt with. Safety has been taken into
account implicitly based on the value of the factor of
safety and past experience with similar structures.

With the trend towards building ever larger structures
and devising different structural layouts to suit new types
of structures in different environments, safety could not
be evaluated based on solely past experience. An explicit
consideration of safety is needed for such structures. At
present, two main streams of safety assessment may be
recognized. A deterministic approach, where ultimate
strength of the structure (as designed) is compared to the
extreme load expected during the lifetime of the
structure; and a statistical approach aiming to estimate the
probability of collapse. In both approaches, evaluation of
ultimate strength under certain circumstances is one of the
key issues to be considered.

Many designers also show a great interest in the
history of collapse in order to design efficient layouts of
structural members with ample redundancy.

Effects of damage, in the form of fatigue cracks or
deformation caused by accidental loads (such as dents on
offshore structures caused by collision) are also gaining a

lot of attention ; not only for the purpose of evaluating
the safety and serviceability of a damaged structure, but
also for integrated design/inspection/repair optimization at
the design stage. Here also, evaluation of ultimate
strength of the structure in such damaged conditions is an
essential step in this context.

In evaluating the ultimate strength, the “collapse
mechanism method” [1] has been successfully used,
specially with frame structures. It has been also extended
to statistical assessment of safety {2, 3]. The method is
simple and only ultimate strength of individual structural
members is required. However, it sometimes turns out to
be a very lengthy procedure due to the large number of
mechanisms to be considered. This method is limited to
structures which do not show significant large
displacement effects and do not provide any information
on the history of collapse.

A general reliable theoretical approach to ultimate
strength must take into account the effect of plasticity and
large displacement not only on strength, but also on
stiffness of individual structural members. Such local
failures as buckling or plasticity may cause redistribution
of the internal forces and a structure may display a highly
nonlinear behavior until its ultimate collapse.

Although analytical solutions may be obtained in very
simple cases, for more realistic structures, numerical
methods, especially the finite element method is a very
powerful tool. However, the limits of cost associated with
data preparation and computer time restrict the size of
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problems to be handled. Error control is difficult and it
requires long personal experience in order to reduce the
risk of misleading results.

In order to overcome some of these difficulties with
offshore braced frames, many brace models have been
proposed. According to Zayas [4], they may be classified
into two groups. The first is the “physical theory brace
models” presented by Higginbotham (5], Nilforoushan [6]
and Singh [7]. They used a pin-ended model with
equivalent effective length and a plastic hinge at the
center. The analytical formulations are based on assuming
an axial force-moment interaction curve and an elasto-
perfectly-plastic moment-curvature relationship at the
center hinge. The second group is the “phenomenological
brace models”. The basis of these models is to pre-define
the shape of the axial force-axial displacement response of
a truss element representing the brace by employing
either mathematical or empirical results. Models of this
type have been developed by Higginbotham [5],
Nilforoushan [6], Singh [7], Marshall [8], Roeder [9], Jain
[10] and Maison [11]. In these models, however, only the
axial force acting on the member is considered. End
moments and/or lateral load are not taken into account.
These, in many cases, have a large effect on buckling and
post-buckling behavior of braces.

For efficient, accurate and reliable analysis of large
size structures of various types, the authors, in 1974,
proposed a new method of nonlinear analysis [12, 13],
which has later been named the Idealized Structure Unit
Method (ISUM) [14], using large structural units as
elements and representing their idealized elastic large
deflection behavior in concise analytical-numerical forms
and taking account of plastic behavior with the aid of the
plastic node method [15, 16].

The ISUM has been successfully applied to ultimate
strength analyses of transverse rings [12, 13] and decks
[17, 18] of a tanker, double bottom structures [14], and
offshore structures [19, 20]. At present several elements
have been developed, such as (ieep -girders [12, 13],
rectangular plates [14, 17], stiffened plates [18], tubular
members [19-25] with particular features and joint models
[26]. o ‘
In this paper, application of ISUM to offshore
structures is described introducing several idealized
tubular members [19-25] and joint models [26].

2. Outline of the Idealized Structural Unit Method

In the ISUM, a structure is divided into a relatively
small number of elements. An element is taken as the
largest possible structural unit. Each element should have
a limited number of nodal points where the least required
number of degrees of freedom is provided. Such elements
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may be grouped according to their type. These types are
few for a specified type of structures, such as jack-up rigs,
jackets etc. Under an increasing load, each type of
elements exhibits complicated nonlinear behavior.
Therefore, the behavior of each type of these structural
units is investigated based on fundamental theories,
refined theoretical analysis such as a finite element
analysis and/or experimental studies. The behavior is then
idealized and conditions are formulated for all possible or
expected failures in an element, such as buckling of some
components of the element and/or yielding of some areas,
etc. Stiffness matrices are also derived in each stage of
nonlinear behavior, i. e. before any failure and after
different combinations of failures.

Once establishing failure conditions and deriving
incremental stiffness matrices for various types of such
large elements and keeping them ready for use, various
types of structures may be readily modeled and easily
analyzed.

The incremental method is suitable for this nonlinear
analysis. At any loading level, knowing the state of
failures of each element, the corresponding incremental
stiffness matrix can be selected. The assembly of the
stiffness matrices of all elements yields overall stiffness
matrix of the structure.

Under the appropriate boundary conditions, a load
increment may be applied, the corresponding structural
response may be determined and the state of failures is
examined in each element. The coordinates of nodal
points, and stiffness matrices of the elements may then be
updated and load increments may be applied until the
structure shows its ultimate strength.

3. Outline of Nonlinear Behavior of Offshore Tubular
Space Frames

Offshore tubular space frames are usually constructed
of several tubular chords (legs) braced by a large number
of tubular bracing members. A member running between
two joints is usually a prismatic circular tube. The
thickness of the members is sometimes increased locally at
the joints to increase their strength.

When an offshore structure of this type is exposed to
extreme loads, structural members exhibit very highly
nonlinear behavior. Many researchers have investigated
this highly nonlinear behavior of tubular members,
considered as beam-columns [27-34].

Based on these studies, an outline of the no linear
behavior of these tubular structural members is described.

When a tubular member is subjected to an increasing
load, various types of failures may take place depending
on the dimensions and material of the member, its
boundary condition and the ration of the load components.
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Fig. 1 Tubular element and joint model in offshore structure.

If the member wall is thick enough, no local shell
buckling of the tube wall may take place under com-
pression [31]. When such a tube of high or medium
slenderness ratio is subjected to a load combination with
dominating axial compression, it exhibits a failure free
behavior until overall elastic or elastic-plastic buckling
occurs. In this case, plastic hinges are formed at the
regions of maximum bending moments (midspan and
fixed or restrained ends). A tube with lower slenderness
ratio does not buckle and it shows its fully plastic
strength, irrespective of the type of loading.

Thinner tubes may exhibit local shell buckling before
or after the overall buckling.

When bending moment and/or distributed loads are
pronounced, the tube tends to deflect laterally so as to
produce plastic hinges. Once a plastic hinge is formed, the
internal forces must satisfy the condition of plastic
strength (with or without strain-hardening effect), but the
combination of internal forces may change. The structure
with such plastic hinges may sustain further load
increments until the structure collapses plastically forming
a mechanism with a sufficient number of plastic hinges
induced, or when successful internal force redistribution
can not be achieved.

In a tubular frame with simple (unstiffened) joints,
joints may exhibit considerable flexibility in the elastic as
well as the elastic-plastic ranges. Some joints may reach
their ultimate strength. These may cause excessive
deflections and different internal force distribution in the
structure.

In the analysis, the structure may be modeled as a
group of prismatic tubular members, modeled by “tubular
elements”, and joint cans, modeled by “joint elements”,
as shown in Fig. 1.

The behavior of an element, before and after failures,
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Fig. 2 The tubular element.

may be expressed by the relationship between the nodal
force vector and the nodal displacement vector. Since the
behavior is nonlinear, the incremental procedure is used
in this method.

4. Idealized Tubular Structural Unit [19]

4. 1 Elastic stiffness matrix

For a tubular element, if a conventional displacement
function, such as a polynomial of 3rd order is adopted,
the geometrical nonlinearity, such as buckling, large
displacement, may not be taken into account with
sufficient accuracy unless the tubular member is divided
into many small elements. Naturally, this causes enormous
increase of the total number of degrees of freedom.

In order to deal accurately with the geometrical
nonlinearity using one element to model one whole
member, a sophisticated displacement function should be
employed. Here, the tubular element is dealt with as a
beam-column.

An element is considered to be subjected to nodal
force {Rl = [R; R]" and a linearly distributed lateral
load g as shown in Fig. 2. Six degrees of freedom are
considered at each nodal point i and j. Nodal
displacement and force vectors, {U} and {R| may be
expressed as

lut =[U; U)", (R} =I[R R}, 1)
where { Ul! = [Uxi) in: Uzi: g xb 0 yis g zi]T
{ lj]! = [ij: ij: Uzj: 0 xj> g yi g zj]T

{Rl! = [be Pyi) Pzi’ Mxi’ Myi: Mzi]T
— T

{R]l - [ij; Pyj) sz; ij My] MZj

[ 1¥ = transposed matrix of [ |

Before buckling or yielding takes place, the behavior
of the structural unit dealt with as a beam column may be
expressed by the following differential equation :
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where  w, and w, = lateral deflections in the xy and zx
planes

=4/ P/EI is a common variable in the two
equations
P = internal axial force
E = Young’s modulus
I = cross-sectional moment of inertia
qy and g, = components of the lateral load g in
y and z directions

The above two equations may be solved inde-
pendently. When the internal axial force P is compressive
(positive), the general solution of the first part of Eq. (2)
may be written as

wy=acos kx + bsinkx +cx +d+ fig,) (3)

f(qy) is dependent on the distribution of the lateral load
gy,. The constants of integration a, b, ¢ and d are
determined from the boundary conditions at nodal points
i and j, in terms of the nodal displacement {U}. Based on
this displacement function, the relationship between nodal
force |R} and nodal displacement {U/| may be obtained,
using the following relations.

The bending moment M, and axial force P, may be
expressed as

M, = — Eldw,Jdx* 4)
Pxi = _Px] = EA(uxi - uxj_ ub)/L (5)

where u, = the axial shortening due to bending of the
element (see Appendix I)

Neglecting small terms of higher order, an increment
of the nodal force {dR} may be expressed as follows.
{dR} + {dQ} = [K] {aU} (6)
[K] = the tangential stiffness matrix
{dQ} = a load vector associated with the

distributed load applied on the
element

where

The explicit forms of [K] and {dQ| are given in
Appendix I.

When the internal axial force is tensile (negative) the
same [K] and {dQ! are obtained in which k in a; and a,
(See Appendix I) is replaced by k* = [ P [ /EI.
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It is to be noted that the effect of the lateral load
appears not only in {dQ}, but also in [K]. Here, the exact
solution, Eq. (3), of the large deflection differential
equations is employed as the displacement function of the
element. Accordingly, the effect of elastic large deflection
is taken into account.

4.2 Ultimate Strength of Tubular elements [19]

The nodal force-displacement relationship, Eq. (6)
holds until the element buckles and/or yielding starts.
After yielding has started, even locally, the stiffness of the
element decreases. However, Eq. (6) is assumed to hold
in the analysis until the element buckles, or one or more
full plastic cross sections are developed.

In the following, the conditions of the buckling
strength and the full plastic strength of a cross section are
represented and the ultimate strength condition is
constructed as the combination of these.

Buckling Strength.

Since one member is modeled by one element, initial
out-of-straightness and residual stresses may not be
explicitly considered. These have no effect on full plastic
strength of cross-sections. However they have an effect on
buckling strength, which may be taken into account by
using a suitable column curve.

From numerous reports on column strength, suitable
column curves may be selected. In this study, one of
those presented in Ref. [32] is used. The buckling
condition is then derived in terms of a buckling function
T pas

p=P—Pg=0 (M

Short columns may attain their full plastic axial
compressive strength Pp without buckling. The above
equation in this case may be rewritten as,

Ppg=P—Pp=0 (7)

Effective Length for Buckling.

In the case of three dimensional frame structures,
determination of the plane of minimum restraint and the
buckling configuration requires a complicated and time
consuming process. However, the restraining stiffness at
nodal points i and j about y and z axes may be obtained
from the global tangential stiffness matrix and the
restraining stiffness at i and j and then the effective
buckling length may be determined [34].

Full Plastic Strength.
As the effect of shearing stresses on plastic strength is
assumed to be negligible, the internal shearing forces P,



Modern Method of Ultimate Strength Analysis of Offshore Structures (11)

and P,, and the internal twisting moment M, do not affect
the full plastic strength interaction relationship. This is
expressed by the full plastic function I p as,

Tp=(lvM?+ M7 IMp)—cosz | P|/2P,=0
®

where Mp = the full plastic bending moment of the
cross-section
Pp = the full plastic axial force of the cross-
section
Equation (8) may be represented as shown in Fig. 3.

Ultimate Strength Interaction Relationship.

Depending on the mechanical properties of the
element and the nature of the increasing load vector
applied on it, it reaches the ultimate strength, which is
either the buckling strength, or the plastic strength, that
is, the ultimate strength function T, is,

Fy=Tp or I',=Tp ©)

The assembly of these conditions represents the
ultimate strength interaction relationship of the tubular
structural unit as shown in Fig. 3.

4.3 Elasto-plastic Stiffness Matrix

As the load increases, the ultimate strength condition,
for buckling or fully plastic strength, may be satisfied at
nodal point i, nodal point j and/or the location of
maximum bending moment along the element. The
internal force vector at such a location must continue to
satisfy Eq. (9). The unit may continue to deform while
redistribution of the internal forces takes place, and the

1P

P e BUCKLING STRENGTH
PE L” ) ‘N —
FULL PLASTIC STRENGTH
- M
-* Bo e v/n§ o

Fig. 3 Ultimate strength interaction relationship.

ratios of the components of the internal force vector may
change. In the following, the stiffness equation of such a
structural unit is derived considering three separated cases
(Fig. 4).

(a) First, let a structural unit in which Eq. (9) is
satisfied at nodal points i or/and j be considered. A plastic
node [16] is inserted there. Equation (9) is regarded as a
plastic potential and the plastic flow theory is applied.

The incremental form of the stiffness equation is
derived as

{dR} + {dQF| = (KF) {dU} (10)

where,
[KP) = K] — [K @) (@)K [®@]) [@]"K

[®]=[1¢: 14}
{¢d=10T,/0{RIl, {¢;} =10T,/2{R}!
{dQF} = elastic-plastic incremental force vector

of the distributed load

The explicit form of [K*] is shown in Appendix II.

(b) If the condition of ultimate strength is satisfied at
point a where the position of maximum bending moment
occurs along the length of the element, the element is
divided at this position into two beam-column elements ia
and gj. A plastic node is inserted at point a on either
element ia or element gj. Considering the condition of
nodal points i and j, elastic or elastic-plastic stiffness
matrices and distributed load vectors are evaluated for the
two elements. Then the extra nodal displacements at
point a are eliminated in the normal way.

£ - = - —

FULL PLASTIC INTERACTION

\ &' FIRST YIELD INTERACTION

0 My %

ACTUAL PATHS IDEALIZED PATHS
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Y
ocd MP —— oc'b MP
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Fig. 4 Idealization of tubular elements.
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Fig. 5 Structural beam-column element and plastic zone.

(c) If the magnitude of the axial compressive force
reaches that of buckling, the element is allowed to buckle.
The axial force being maintained at the buckling load, the
bending moment increases due to the increase of
deflection until Eq. (9) is satisfied at one or both ends
and/or any point along the element’s length, where a
plastic node is then inserted as in (a) and/or (b).

In (b) and (c), the position of maximum bending
moment in the middle portion of the element is usually
very close to the midlength. In the analysis it may be
reasonably assumed at midlength.

4.4 Strain-Hardening Effect (including softening effect)

In deriving K? mentioned in the preceding section, the
material is assumed to be elastic-perfectly plastic.
Consequently, the size of the plastic strength function I' p
does not change, even when the plastic deformation
increases. This treatment is satisfactory in most cases.
However, the theory has been extended to take into
consideration strain-hardening (or softening) effects [35]
which may be essential in some cases.

Generalized stress { o | and generalized strain | ¢ | at
a cross section of a unit are defined as

lel=IN M', {el=l K" (11)

where N and M = axial force and bending moment
e and K = average axial strain and curvature.

Then, introducing the strain-hardening effect, the yield
conditon may be expressed as

f=Ylo})— oo(eh)=0 (12)

where Y = yield (fully plastic) function

6, = a parameter expressing the size of the
yield surface

€ P = equivalent plastic strain

Strain-hardening coefficient H, for a cross section may
be defined as

Transactions of JWRI
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H, =doyde? (13)

H, in the above may be evaluated by integrating the
stress and plastic strain distributions in a cross section.
The result may be shown as

H, = HC {A(——af )2y 2L |2

oH oM (14)

where C = o /i o |T{0flo |0}

A and I = area and moment of inertia of cross-section

Usually, the plastic region extends not only in the
cross-section of node i but also over a length ;P from
node i as illustrated in Fig. 5.

When no distributed loads are acting, the plasticity
condition at node i is expressed in terms of nodal force
{ X1 as

FpiZYi({X})— o, €F) =0 (15)
Under loading at node i, the following loading condition
should be satisfied :

dl ;= 1{¢:4"1dRl — Hy/de ;P =0 (16)

The stiffness of the element evaluated at plastic node i
should be equivalent to that of an element with actual
elastic-plastic stress distribution. In other words, the
plastic work done in both cases should be the same. From
this condition, the strain-hardening coefficient for nodal
displacement at i, H,;, may be obtained and the loading
condition is rewritten as

dei= “‘Si}T{dR! —H,dA;=0 17
where | ¢;}d A; = {dU?} = increment of plastic nodal
displacement

o HW R} 84

Hoi = Hoihi =775 x)g )

Hy/ {2flafsl}’do|

8() = g7 ofio e da

The loading condition at a plastic node is expressed by
Eq. (17) which includes an additional term H,'d 4;
compared with no strain-harding material. Except this,
following the same procedure as for elastic perfectly
plastic material [16], the incremental stiffness equation is
obtained in the form,

|dR} = [KP) {dU} (18)

[K") = K] — (K] [®] (H] + [®][K (@)~

[@]7K]

[K*] = elastic-plastic stiffness matrix

[H] = matrix composed of strain-hardening
coefficients for nodal displacement

where
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5. Joint Model [26]

In structural analysis of frames, members are usually
assumed to be connected rigidly to each other at nodal
points. The first step of improvement of this treatment is
to introduce a rigid joint model to a joint can so as to
maintain the true length of each member for evaluation of
the stiffness and locations of plastic hinges.

However, in a tubular frame with simple (unstiffened)
joints, the joint may exhibit considerable flexibility in the
elastic as well as the elastic-plastic ranges. Some joints
may reach their ultimate strength. These may cause
excessive deflections and different internal force dis-
tribution in the structure. To take these into account, one
most conventional method is to use shell finite elements
for joint cans and beam eclements for the members. This
treatment introduces an excessive number of elements and
nodes  which and
computation time.

In order to overcome this difficulty, in the scope of the
“Idealized Structural Unit Method (ISUM)”, joint models
based on simple elements with elastic-plastic behavior
have been developed [26]. Joint models for T, Y, TY, K,
and V joints have been developed. Here, single joint
model, for T and Y joints, is described.

T and Y joints are modeled by a group of elements 4,
b, and cr or cy as shown in Fig. 6. Elements a and b
represent cord and brace respectively and element ¢ or
¢y account for wall deformation, exhibiting elastic-plastic
behavior. ¢y and cy are composed of a rigid element and
an elastic-plastic element as illustrated in Fig. 7. The
behavior of a joint model of this type in the plane of the
joint (x-z plane in Fig. 6) is considered, since the out-of-
plane loads are usually small. In this model, there are
three nodes, i, s and j. External load is applied to node j
on the brace end and is transmitted to node i on the
chord center line. Node s is an internal node and the
stiffness equation of this joint model is expressed as the
relationship of nodal forces to nodal displacements at
nodes i and j. This relation is derived in the following
way.

require  enormous  modelling

) -
s ) b,
T Cr b 5_:_ Ty x
2 a
<o~ <>~
(a) T joint {b) Y joint

Fig. 6 Modeling T and Y joints by line elements.

13

(13)

Nodal displacement vector {U;} at s, is defined in the
same way as Eq. (1)

{US} = [uxs uys uZS HXS 0 ys 0 ZS]T (19)
Similarly, nodal force vector {R;} at s,
{RS} = [PXS PyS PZS MXS Mys MZS]T (20)

The stiffness equation for the elastic-plastic element is
expressed in the elastic range by

{el=1x1 {7}

where

3y

<
—

[K,] = translational and rotational matrix. whose
explicit form is given in Appendix III

As nodal displacement {Uj} is transmitted to node i by
the rigid element, {U;| may be represented in terms of
{U;} in the following form.

(U= 91U = %) e

7

~
-~

where, [] = transformation matrix

[Z] = unit matrix

In the same way as with the nodal displacement, the
nodal force {R;} is expressed as,

(oy=0 D)=t {7

) ] ]

I @

The stiffness equation of the joint element may then
be derived as

IRl = K] {U (24)

—
eleaent <]

s
-— Rigid element

2 !_.(I 2

%

Fig. 7 Idealized “Y joint element”.
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Fig. 8 Idealized “K joint element”.
where R} =R RI", (Ul = U, UT

(K = [T,|T [K,] [T,] = elastic stiffness matrix

When the components of internal force in element ¢
or cy satisfy the plasticity condition
Fp=0 (25)

a plastic node is inserted at j and the stiffness equation is
expressed in an incremental form as,

{dR} = (K") {dU} (26)

where  [K"] = [K] — [K] [@] ([®] [K] [@]) "
[@]" [K°]
[KP] = elastic-plastic stiffness matrix

,

H = strain hardening (softening) coefficient

The explicit form of the matrix is the same as that of case
(b) in Appendix II.

In a similar way, a joint model for K joint has been
proposed as shown in Fig. 8. In this model, in addition to
rigid elements and elasto-plastic elements,
element is introduced to express the interaction between
the two braces.

a beam

6. Tubular Element Considering the Influence of Local
Denting and Overall Bending Damages

Accidental loads may act on bracing members due to
supply boat collisions or objects dropping from platform
decks. Such accidental loads lead to local denting and/or
overall bending damages. The strength reduction of
members due to damage may have serious implications
when a structural system is exposed to severe en-
vironmental loads before a repair is made. For nonlinear
analysis using ISUM, a tubular element considering the
influence of bending and denting damage has been
proposed [21-23].
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THE DENTED ZONE
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- (a) Configuration of local dent

(b) Cross section at bottom of dent

{c) Forces and moments at dented part

Fig. 9 Idealization of local dent.

The configuration of a dent is idealized as in Fig. 9
[21-22]. The relationship between the force and the
bending moment at the flattened bottom part of the dent
is expressed as

M;= 7F, 27)
Introducing the fully plastic condition at the bottom part
of the dent, the reduced plastic strength of this part is
written in the following form.

Fpp=Decoy(V4y2+ £ —2n) (28)

In Ref. [23], an empirical coefficient, 80t/D, is multiplied
to Eq. (28) to include the effect of D/t ratio. This plastic
strength of the dented part may be used to evaluate the
full plastic strength function of the cross-section of the
element at the dent.

The element is then divided into three regions as
shown in Fig. 10. Considering the boundary conditions at
the nodal points and continuity conditions at the
boundaries between these three regions, the relationship
between nodal forces and nodal displacements in the
elastic state is derived as follows [22].

{RI = [K*] {U} + {L} + {C} (29)
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Fig. 10 Model for dented tube.

(2.0) (2.¢)

{R} = nodal forces
{K*} = stiffness matrix in a secant form
{U} = nodal displacement

where

{L}| = equivalent nodal force due to initial
deflection
{C} = equivalent nodal force due to the

eccentricity caused by the dent

The elastic stiffness equation in a tangential form is
obtained from Eq. (29).

Performing the overall incremental analysis, the
ultimate strength analysis of the dented portion is also
performed simultaneously in an analytical manner based
on the equilibrium conditions. If the ultimate strength is
attained at a certain incremental step, a plastic node [16]
is introduced at the middle of the dented part. The
analysis hereafter is similar to that of ordinary tubular
elements except for the fully plastic strength interaction
relationship, which is written as

P F 1
I'p=M — Mpcos {—g-(P—P—Tfi&)+7a}
1 F,
+ Mp[5sina ~~72L—;‘”—
P
sin
{cos a +—‘*(ﬂ _aa) f (30)

Equation (30) is for the case where the dent bottom line
is located perpendicular to the plane of bending, and the
dent is in the compression side of bending. The fully
plastic strength interaction relationships for general cases
are given in Ref. [22] as illustrated in Fig. 11.

(2.4) {2.9)

Compression is positive and tension is negative

Fig. 11

15

Fully plastic stress distribution in a dented cross section.
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Fig. 12 Fully plastic stress distribution after local buckling.

7. Tubular Element Considering Local Shell Buckling

Tubular bracing members in semi-submersible drilling
units have such diameter to thickness ratios that local
shell buckling takes place after the ultimate strength of a
member has been attained. In order to simulate such
behavior, a tubular element has been proposed in Refs.
[24, 25].

In the elastic range, the influence of initial deflection
in the overall mode is taken into account. The ultimate
strength analysis is also performed simultaneously in an
analytical manner at the most stressed cross section based
on the equilibrium condition. The elastic stiffness
equation in an incremental form is the same as Eq. (6).
The elastic incremental analysis is continued until the
ultimate strength is attained.

The elasto-plastic stiffness matrix is then calculated for
this element as in the case of an ordinary tubular element
with the necessary modification on the ultimate strength
function so as to take account of the effect of local shell
buckling. In the elasto-plastic range, the initiation of local
shell buckling is checked based on a strain criterion [25].
The strain at the cross section of a plastic node is
evaluated with an axial force, P, and a bending moment
M related by the following equation.

n P

M = Mp cos 2 Pp

~ aM(5)" (31)
The part of the cross section at a plastic node where the
compressive strain exceeds the critical buckling strain is
considered to have locally buckled. The fully plastic stress
distribution for this state is illustrated in Fig. 12. The fully
plastic strength interaction relationship is expressed as

x P F, a
FP=M—Md—MPCOS[7(P—P‘P—i) + =

1
+ 5 Mpsina =0 (32)

where F; and M, = the axial force and the bending
moment at the locally buckled
part

a = half the angle of the buckled part as
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indicated in Fig. 12
a in Eq. (32) is a function of the plastic components of
the nodal displacements, u”, and 6. As a result, Eq.
(32) reduces to

FP(P: My uP; 0P) =0 (33)

The condition to maintain the plastic state is expressed as;

an aFP aFP

dT p=-ZpdP + S 3dM + 5 Tdu
oTp .
+ 5 grdf =0 (34)

The third and the fourth terms represent the influence of
local buckling. The elasto-plastic stiffness matrix is
derived from Eq. (34).

Although the parameter n in Eq. (31) may be chosen
between 8 and 12, the results of analysis are very close to
each other. The post-local buckling behavior is well
simulated with this element. The exact estimation of n
and the critical local buckling strain remains as a future
work.

8. Procedure of Analysis

In the analysis, a structure is divided into the above
developed tubular elements and the incremental load
method is used. First, the structure free from loading is
considered. The incremental stiffness matrix of each
element is constructed and transformed into the global
coordinates. The global incremental stiffness matrix of the
whole structure is then assembled. After the boundary
conditions are introduced, the first load increment is
applied. The deformation of the structure is obtained and
the internal forces in each element are evaluated. Each
element is then checked for buckling and/or plastification.

Since the stiffness matrix of the tubular element is
dependent on deformation and internal forces, a new
stiffness matrix is constructed and transformed into global
coordinates for each element after each load increment.
The global stiffness matrix is reassembled and the next
increment of load is applied.

When buckling and/or plastification of a structural unit
or units are detected within a loading step, the load
increment is scaled down to that just necessary to cause
such failure. This prevents the internal force vectors from
shooting out of the ultimate strength interaction surfaces.

The ultimate strength of the structure is detected by
consideration of excessive plastic deformation.

Following the procedure outlined in the foregoing, a
computer program, NOAMAS, has been completed.
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9. Numerical Examples

a) Tubular element
Figure 13 presents examples of comparison among test

results of 18 tubular members subjected to axial
16
[ " M,
" 4 | e—
/ /N L= 1316 m.
1’ / De 322 m
w te T m
o« 10k ! N\
2 / \\\
< 8 J~
- ) U by
g I
S 6 / —F=
. EXPERIMENTAL =
e TUBULAR STRUCTURAL UNIT
2
cmmmee FEM
[1] 1 i i I 1 J
0 1 2 2 4 s 6
SHORTENING mm,
PuCKN M ®6.5CKNm. Hs6.5CKimm,
16
" M,
1 P —é(::::a— 4
: L1316 m.
12 .
o : :: .
.. . .
“ o / D
2 ! N
YN
g ) \:\
= 6 ‘~-~“
. / —————— EXPERIMENTAL —
[ 1
e = —v— TUBULAR STRUCTURAL UNIT
2
------ F.E'n
0 A ; \ A . )
0 ) H ] ‘ s ¢
SHORTENING mm.

Fig. 13

P = CKN. H‘-Cm.m. nz-u.lcm.m

Comparisons of load-shortening curves of tubular
structural units.

200 260 -
Pligf) P(kgf)
F/p = 0
150 |- - 150
/ F/p = 35
(A _/—
/-/ oo
106 }- T 1
',/ F/P =70
o/'
; PCH , Yield criterfon - 1
50 b S0
=== 3 PN, Yield criterion - 2
——-—; FEN
1 1 1 L J
0 10 20 30 40 50 0

w (m)

Load - defliection relationship
(H* = 10CO kgf/mm?)

compression and end bending moments [36], results of
elastic plastic large deformation finite element analyses
and results obtained using the tubular element of ISUM
[19]. In the finite element analyses a member is divided
into 8 beam-column elements with large deflection and
plastic capabilities. Each elements has 40 integration
points along the circumference of the member at the
middle of the element. It may be seen that the ISUM
element is capable of accurate representation of the
behavior of tubular members. Of particular practical
interest, loss of stiffness prior to ultimate strength and
post-buckling loss of strength are accurately predicted.

b) Strain-hardening effect

Elasto-plastic behavior of a cantilever beam of
rectangular cross-section is analysed by the plastic node
method and FEM with consideration of strain-hardening
effect as indicated in Fig. 14 [35]. A vertical load P and
axial force F are applied proportionally. In the analysis by
FEM, the beam is divided into 10 elements in length and
20 layers in depth. From comparison of the results, it is
shown that the predicted accurately element has very
accurate capability.

¢) Tubular element with damages

Figure 15 shows the results of analysis of a damaged
tubular column wunder axial compressive load with
eccentricity [23]. Damage is in the form of dent and
overall bending. The results are compared with
experimental results. The ISUM model is seen to simulate
accurately the actual behavior of the test specimen both
before and after the ultimate strength. In the axial force-
axial strain curve, the unloading and reloading paths are
also plotted. These calculations are easily performed by
changing only the sign of the load increment. It may be

§ F, u
L
Lxbxh=300x12x20 (em)
E = 21000 kgf/m?®
0’Y = 30 kgf/m?

0.5 1.0 1.5
u (om)

Lcad - axial displacement
relationship (H' = 1000 kgf/mm?)

Fig. 14 Elastic-plastic analysis of a cantilever beam under concentrated lateral load and/or axial load at end.
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Fig. 15 Behavior of damaged tubular element under axial com-
pression with eccentricity. :

seen that this unit is applicable not only for a monotonic
loading, but also for cyclic loading and for the overall
collapse analysis of a system.

d) Joint models

In order to assess the capability of the present model
to represent accurately the nonlinear behavior of actual
joints, analysis of the nonlinear behavior of a “K” joint
subjected to different loading conditions is carried out
using the finite element method (shell model) and the
present joint model, and the results are compared to each
other. Dimensions and material properties of the “K”
joint used in the comparison are shown in Fig. 16.

In the analysis by the present model, joint stiffness
constants are calculated according to the equations and
methods presented in Ref. 26. The yield strength of each
individual joint is, however, taken according to finite
element results in order to avoid errors involved in the
ultimate strength equations available in the literature, and
to limit the errors to those due to the modeling itself.

Load-displacement relationships under various loading
conditions evaluated by the finite element analysis and
those evaluated by the present model are compared and
some examples are shown in Fig. 17.
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Fig. 17 Local normal load (N)-deflection ( ¢ ) relationships of
TY joint and behaviors of idealized “TY joint model”.

It may be seen that the present model represents the
behavior of joints with satisfactory accuracy.

e) Ultimate strength of jack-up rig in survival conditon

A three-legged jack-up rig illustrated in Fig. 18 is
analysed by ISUM. Its particulars are indicated in Table
1. Each leg is a lattice structure composed of three chords
braced in K system and arranged as shown in Fig. 19. The
rig is designed according to the rules of classification
societies to operate in the North Sea.

The rig is fitted with teethed clamps to support vertical
forces between the legs and the platform. Tubular
elements are used to model the chords and braces while
joint elements are used to model joints. The platform
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(deck) is considered as a rigid body. The connections of
legs to the platform is shown in Fig. 20. Clamps are
modeled by equivalent springs parallel to the chords of
the legs. Leg guides are modeled such that the legs may
deform until the clearance between the chords and guide
is closed up. Once a chord comes into contact with a
guide, relative motion normal to the chord is presented,
while friction is not taken into account.

The survival loading condition in waves is considered ;
gravity loads, boundary of the legs and wind loads are
applied as initial loads and kept constant. The extreme
wave load pattern is applied proportionally starting from
zero until ultimate strength has been reached. The
direction of wind and wave loads are as shown in Fig. 19
such that the severest condition may be produced in leg
A.

Table 1 Principal particulars of jack-up rig

A RIG
ATF

T |
MAX. WATER DEPTH (FEET 350
WAVE HEIGHT (m) 300
CURRENT VELOCITY (m} 0.8
WIND VELOCITY {m/s) 450
AIR GAP (m) 21.0
LEG PENETRATION (m) 5.0
WIND FORCE (ton) 413
WAVE FORCE (ton) 1,775
0.T.M BY WIND (ton-m) 59,830
OT.M 8Y WAVE (fon-m)| 154,610
‘s;ﬁﬁmlﬁgéﬁuwmmm» 16,100
TYPE OF JACKING UNIT gﬁ:ﬁg@g&&
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Fig. 18 Calculation model for survival condition.
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The relationship between the applied wave load and
horizontal displacement of the deck is shown in Fig. 21.
Initial displacement caused by the initial load may be
observed. Failures occur in only one leg, close to the
clamps and leg guides. Because of the presence of clamps,
which have large stiffness, the bending moments applied
on the legs at their connections with the platform are
supported directly by axial forces in the leg chords. Forces

HORI ZONTAL
/.sm
S CHORD_
o \&
\ /
WAVE DIRECTION DIAGONAL
LBBAQE__

CENTER_RIR

Fig. 19 Arrangement of legs, chords and braces.
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Fig. 20 Reaction forces on jacking units and leg guides.
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in the braces between the guides do not grow very large
while axial forces in the chords continue to increase.
Therefore, buckling of the braces is not observed while
plastic zone spreads in one leg chord until the rig
collapses. Almost no redistribution of internal forces to
the other two legs is observed after the first yield until
collapse. This indicates- that redundancy of the three-
legged jack-up rigs is very small.

In this case the collapsed leg may be regarded as a
cantilever which collapsed in bending. Ultimate load is
found to be 1.62 times the design extreme wave load.

The model has 1953 nodes and 2568 elements. 29 steps
are carried out to reach ultimate strength. The analysis
requires 6000 seconds of CPU time on a CRAY1
computer to be completed.

10. Summary and Conclusions

In the above, the Idealized Structural Unit Method,
ISUM is outlined. Elements used in the analysis of
offshore tubular frames are presented, namely, a Tubular
element, a Tubular element with strain hardening
capability, a Damaged tubular element, a Tubular
element with shell buckling capability and Joint elements
for T and Y joint.

Examples of analysis demonstrating the accuracy and
efficiency of this method are also presented. It may be
seen that this method produces results with accuracy
similar to that of a carefully performed FEM analysis
while requiring only a small fraction of modelling and
computing efforts required by the FEM to analyse similar
structures. This makes this method practical for
application to actual large size offshore structures.
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4. Tangential stiffness matrix and distributed load vector
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fi =?+ +(1- a)ZkZL 2— a =)
a1+2L/3 «L a,+L/3

al L kZLZ
fi =St (el )
L +L/3 a 2L/3
foo =50 —Zkg(z—kzL—“1+a2 )

Transactions of JWRI

72+ 722y

7 71z 0 —7s3 7 3y ]
“71’721y T 0 =773 N3tTR73
Yty 1k 0 =15 775 Y1273
0 0 =15 0 0
V27 1y 131727, 0 1 7nYsn — V2V
Yyl Y712 0 =773 14tTyYs
Y1y Y1z 0 73 V3
Nt 721y Y1z 0 7y73 N5 VT
7T 0 7151757, — 71273
Ts 0 0
772+7%’z V373
1175 —
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8n =[d3(0mi+ ij+2 ¢n)+d4( 0mi+ 0mj)+d5 ¢n
+2d6qni]/e

8 =(2qy8,+ D q.8.)/ D gy

€=[J+EA(by1+bzI)]
dd;

dd,
nl = dP (

dP (0m1_ 0 mj)z

b ﬁmi+ 6mj+2¢n)2

dd dd,
+ d}f qni Sizmz_i_ 0m]+2dZn)+—P_ Gni (ﬁmi
ml) + d}f qm 6 qzm

$ 0= (Uni— Un))/ L

m=y, z n—=z,y

Appendix 11

EXPLICIT FORMS OF THE ELASTIC-PLASTIC
STIFFNESS MATRIX AND INCREMENTAL
DISTRIBUTED LOAD VECTOR

a. End i plastic and end j elastic.
':Kii_Kii9Si¢iTKii/AI K;—K; $:9TKilA; ]
Kp:
Ki¢:$ KA, Kj—K;$:9TKjA;
{ AQ,—(B//A)K; ¢
AOF=

$ Q;— (B/A)K;; ¢
Ar=¢"K; ¢, B;=¢%1AQ;

b. End i elastic and end j plastic.

» {:Kn Kl] ¢ ¢ /A2 Kij_Kij ¢j ¢]TI(”/A2 :l
KP=
Ki—Kjj$;9/KilA2 Kj—K;$,;4]K;lA;
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A Qi—(BylA)K; $ j Appendix III
o |

$ Qi—(ByIA2)Kj; ¢ ; ( k -K .
A= 47Ky 4, B,= 700, b & ’

k, -K,
¢. Both sides plastic. - ke
P K K; 1 K¢, K¢ j Ky 0 ~ky
K= _I G [Ks] = kmz —kmz
K Kjj Kié¢: K;é; k,
ky

oo [ Ar$1Ki—Ap ¢ Ky Ay¢TK—Ap, ¢,TK,,] k,

A $]Ki— Ay $TK; A;¢TK— Az 7K, Sty ine .

my
! k
AQP= { 801 {A:B1=ApBy)Kis ¢ i+ (ArBy~ Ay By)K 8 | } - m
- 1
AQ;‘I[(AZBI‘AJZBZ)KMi+(AIBz_A2131)Kﬁ¢ 1 where k,, k), k;, K kmy, and k,,, are stiffness constants

in three translational and rotational directions.
Ap=9¢"K;$;

An=¢7K;$,
A=A1A,—A Ay
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