

Title	The fixed subrings of a finite group of automorphisms of %₀-continuous regular rings
Author(s)	Kado, Jiro
Citation	Osaka Journal of Mathematics. 1984, 21(3), p. 683–686
Version Type	VoR
URL	https://doi.org/10.18910/7699
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Kado, J. Osaka J. Math. 21 (1984), 683-686

THE FIXED SUBRINGS OF A FINITE GROUP OF AUTOMORPHISMS OF %-CONTINUOUS REGULAR RINGS

JIRO KADO

(Received June 13, 1983)

Let R be an associative ring, G a finite group of automorphisms of R, and let R^{G} be the fixed subring of G on R. A. Page has proved that if R is a left self-injective regular ring and the order |G| of G is invertible in R, then R^{G} is also a left self-injective regular ring [8]. This theorem is very useful when we investigate some structure of a nonsingular ring and the fixed subring of a finite group of automorphisms.

Recently D. Handelman has discovered an \aleph_0 -continuous regular ring which coordinates the lattice of projections of a finite Rickart C^* -algebra as a subring of the maximal quotient ring of its C^* -algebra [4]. We shall prove in this note the following generalization of Page's theorem: if R is a left \aleph_0 continuous, left \aleph_0 -injective regular ring and |G| is invertible in R, then R^G is again a left \aleph_0 -continuous, \aleph_0 -injective regular ring. We shall show as a corollary that if R is a left \aleph_0 -continuous regular ring with $|G|^{-1} \in R$, R^G is a left \aleph_0 -continuous regular ring and S^G is the maximal left \aleph_0 -quotient ring of R^G , where S is the maximal left \aleph_0 -quotient ring of R.

1. Skew group rings

DEFINITION [7]. Let R be a ring with identity element 1 and G a finite group of automorphisms of R. The skew group ring, R*G, is defined to be a free left R-module with basis $\{g: g \in G\}$ and multiplication given as follows: if $r, s \in R$ and $g, h \in G$, then $(rg)(sh) = rs^{g^{-1}}gh$.

DEFINITION [3]. A regular ring R is left \aleph_0 -continuous if the lattice of principal left ideals of R is upper \aleph_0 -continuous. A ring T is left \aleph_0 -injective if every homomorphism from a countably generated left ideal of T into T is extendable to a T-module endomorphism of T. For modules A and B, $A \subset_e B$ implies that A is an essential submodule of B.

A regular ring R has a maximal left \aleph_0 -quotient ring S which is a quotient ring defined by the filter-like set \mathfrak{X} consisting of all countably generated, essen-

tial left ideals of R [3, § 14]. An element x in the maximal left quotient ring of R is contained in S if and only if there exists some $J \in \mathfrak{X}$ such that $Jx \subset R$. Let $g \in G$. Then J^g is also contained in \mathfrak{X} and we define $x^g: J^g \to R$ by setting $rx^g = (r^{g^{-1}}x)^g$ for any $r \in J^g$. Then x^g determines a left R-homomorphism from J^g to R and thus x^g is a uniquely determined element of S.

K.R. Goodearl has proved the following fundamental result.

Lemma 1 [3, Th. 14.12]. Let R be a left \aleph_0 -continuous regular ring, and let S be the maximal left \aleph_0 -quotient ring of R. Then S is a left \aleph_0 -continuous, left \aleph_0 -injective, regular ring and R contains all the idempotents of S.

It is well-known that if R is a left self-injective regular ring and |G| is invertible in R, then R*G is a left self-injective regular ring. We shall show an analogous result for left \aleph_0 -continuous, left \aleph_0 -injective regular rings. Of course, left \aleph_0 -continuous, left \aleph_0 -injective regular rings are not necessarily selfinjective (See for example, [3, p. 174]).

Theorem 1. Let S be a left \aleph_0 -continuous, left \aleph_0 -injective regular ring and G a finite group of automorphisms of S with $|G|^{-1} \in S$. Then the skew group ring S*G is a left \aleph_0 -continuous, left \aleph_0 -injective regular ring.

Proof. By [5, Th. 3.2], S*G is already a regular ring. First we shall show the \aleph_0 -injectivity. Let I be any countably generated left ideal of S*Gand ϕ any homomorphism from I to S*G. I is countably generated as an S-module. Then there exists an S-endomorphism ψ of S*G such that ψ is equal to ϕ on *I* by [3, Prop. 14.19]. Define $\bar{\psi}(x) = |G|^{-1} \sum_{x} g \psi(g^{-1}x)$ for any x in S*G. One easily checks that ψ is an S*G-homomorphism and it is an extension of ϕ . Since S is left \aleph_0 -continuous and left \aleph_0 -injective, any matrix ring over S is also a left \aleph_0 -continuous, left \aleph_0 -injective regular ring by [3, Prop. 14.19]. Therefore the lattice consisting of all finitely generated S-submodules of $S \ast G$ is upper \aleph_0 -continuous. Now let J be any countably generated left ideal of S*G. Then we have finitely generated S-submodule A of S*G such that $J \subset_{e} A$ as an S-module. Put $B = \bigcap gA$, then it is finitely generated as an S-module and a left ideal of S*G. As B is a direct summand as S-module, B is a direct summand of S*G as S*G-module by Maschke's Theorem (See for example, [7, Th. 0.1]). Since $J \subset_{e} B$ as an S-module, we have $J \subset_{e} B$ as an S*G-module. Now our assertion follows by [3, Cor. 14.4].

Corollary. Let G be a finite group of automorphisms of a left \aleph_0 -continuous, left \aleph_0 -injective regular ring S. Assume that |G| is invertible in S. Then S^G is again a left \aleph_0 -continuous, left \aleph_0 -injective regular ring.

Proof. As in [7], consider S as an $S*G-S^{c}$ -bimodule. As a left S*G-

684

module, S is projective and isomorphic to the principal left ideal (S*G)e, where $e = |G|^{-1} \sum_{s} g$. Since S*G is left \aleph_0 -continuous, left \aleph_0 -injective regular ring, End_{S*G}(S) is a left \aleph_0 -continuous, left \aleph_0 -injective regular ring by [3, Prop. 14.19]. On the other hand we have $S^G \cong \operatorname{End}_{S*G}(S)$ by [7, Prop. 0.3] and the proof is complete.

2. The fixed subring in an \aleph_0 -continuous regular ring

Let R be a left \aleph_0 -continuous regular ring, Q the maximal left quotient ring of R and S the maximal left \aleph_0 -quotient ring of R. A finite group G acting on R may be extended to automorphisms on Q and on S as well. We assume that $|G|^{-1} \in \mathbb{R}$. Then Q^c is the maximal left quotient ring of \mathbb{R}^c by [8, Th. 3.6]. Hence it is natural to ask whether S^c is the maximal left \aleph_0 quotient ring of \mathbb{R}^c . This is true. We need next two lemmas for its proof.

Lemma 2. Let I be an essential, countably generated left ideal of R^{c} . Then RI is an essential, countably generated left ideal of R.

Proof. Since RI is a countably generated left ideal of R, there exists a principal left ideal J such that $RI \subset_e J$ by [3, Cor. 14.4]. Put $Ra = \bigcap_s J^g$, where $a = a^2$, then $RI \subset_e Ra$. Since Ra is G-invariant, (1-a)R is also G-invariant. If $a \neq 1$, then $(1-a)R \cap R^c \neq 0$ by Bergman-Isaak Theorem [1, Prop. 2.3]. Choose some $y \neq 0 \in (1-a)R \cap R^c$. We have ay=0 and so Iy=0. Then ymust be zero since $I \subset_e R^c$. This is a contradiction and the proof is complete.

Lemma 3. For any countably generated, essential, G-invariant left ideal I, there exists a countably generated, essential, left ideal A of R^G such that $A \subset I \cap R^G$.

Proof. Put M=I*G. Then M is a countably generated, essential left ideal of R*G. Let $M_1 \subset \cdots \subset M_n \subset \cdots$ be an increasing sequence of finitely generated left ideals such that $M = \bigcup M_n$. Put T = e(R*G)e, where $e = |G|^{-1}\sum_{g} g$. Each $M_n e$ is a direct summand of (R*G)e. Let ϕ_n be a projection from (R*G)eonto $M_n e$. We have $\phi_n(e) \in T$ for all n. We claim that $\sum_n T \phi_n(e)$ is an essential left ideal of T. Let Ta be any non-zero principal left ideal of T, where $a^2 = a$. Since $Me \subset_e (R*G)e$, we have a non-zero principal left ideal (R*G)y $\subset Me \cap (R*G)a$. Let ψ be a projection from (R*G)e onto (R*G)y. Then we have $\psi(e)a = \psi(e)$. Since $(R*G)y \subset M_n e$ for some n, we have $\psi(e) =$ $\phi_n(\psi(e)e) = \psi(e)\phi_n(e)$. Thus $Ta \cap \sum_n T\phi_n(e)$ contains a non-zero element $\psi(e)$. Next consider the well-known isomorphism $\theta: e(R*G)e \to R^c$ given by $\theta[e(\sum_g r_g g)e]$ $= \sum_g t(r_g)$, where $t(a) = |G|^{-1} \sum a^g$ ([6, Lemma 0.1]). Put $A = \theta(\sum_n T\phi_n(e))$, then A is a countably generated, essential left ideal of R^{G} . We claim that $A \subset I \cap R^{G}$. In fact each $\phi_{n}(e)$ is contained in eMe = e(I*G)e. Since I is G-invariant, we have $t(r) \in I$ for all $r \in I$ and thus $\theta(e(I*G)e) \subset I \cap R^{G}$. Consequently we have $A \subset I \cap R^{G}$.

Now we shall prove our main theorem.

Theorem 2. Let R be a left \aleph_0 -continuous regular ring, G a finite group of automorphisms of R and S the maximal left \aleph_0 -quotient ring of R. Assume |G| is invertible in R. Then R^G is a left \aleph_0 -continuous regular ring and S^G is the maximal left \aleph_0 -quotient ring of R^G .

Proof. All idempotents of S^{c} are contained in R^{c} by Lemma 1. Then the lattice of principal left ideals of R^{c} is isomorphic to that of S^{c} . Since S^{c} is left \aleph_{0} -continuous regular ring by the Corollary of § 1, R^{c} is a \aleph_{0} -continuous regular ring. Let *s* be any element in S^{c} . There exists a countably generated left ideal $J \subset_{e} R$ such that $Js \subset R$ by [3, Prop. 14.11]. Put $I = \bigcap_{g} J^{g}$, then *I* is again countably generated, essential left ideal of *R* by [3, Lemma 14.10] and is *G*-invariant. By Lemma 3, we find a countably generated, left ideal $A \subset_{e} R^{c}$ such that $A \subset I \cap R^{c}$. Therefore we have $As \subset (I \cap R^{c})s \subset R^{c}$. On the other hand, let *x* be any element in Q^{c} such that $Ix \subset R^{c}$ for some countably generated, essential left ideal *I* of R^{c} . By Lemma 2, *RI* is countably generated and $RI \subset_{e} R$. Since $RIx \subset R$, *x* is contained in S^{c} . We complete the proof.

References

- [1] G.M. Bergman and I.M. Isaak: Rings with fixed-point free group actions, Proc. London Math. Soc. 27 (1973), 69-87.
- [2] J.M. Goursaud, J. Osterburg, J.L. Pascaud and J. Valette: *Points fixes des anneax reguliers auto-injectifs a gauche*, Comm. Algebra 9 (1981), 1343–1394.
- [3] K.R. Goodearl: Von Neumann regular rings, Pitman, 1979.
- [4] D. Handelman: Finite Rickart C*-algebras and their properties, Advances in Math. 4 (1979), 171-196.
- [5] D. Handelman, J. Lawrence and W. Schelter: Skew group rings, Houston J. Math. 4 (1978), 175-190.
- [6] S. Montgomery: Prime ideals in fixed rings, Comm. Algebra 9 (1981), 423-449.
- [7] S. Montgomery: Fixed rings of finite automorphism groups of associative rings, Lecture Note in Math. 818. Springer-Verlag.
- [8] A. Page: Actions de groupes: Séminarie d'algèbre Paul Dubreil 1977-78, Lecture Note in Math. 740, Springer-Verlag.

Department of Mathematics Osaka City University Osaka 558, Japan

686