

Title	The fixed subrings of a finite group of automorphisms of \aleph_0 -continuous regular rings
Author(s)	Kado, Jiro
Citation	Osaka Journal of Mathematics. 1984, 21(3), p. 683-686
Version Type	VoR
URL	https://doi.org/10.18910/7699
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kado, J.
Osaka J. Math.
21 (1984), 683-686

THE FIXED SUBRINGS OF A FINITE GROUP OF AUTOMORPHISMS OF \aleph_0 -CONTINUOUS REGULAR RINGS

JIRO KADO

(Received June 13, 1983)

Let R be an associative ring, G a finite group of automorphisms of R , and let R^G be the fixed subring of G on R . A. Page has proved that if R is a left self-injective regular ring and the order $|G|$ of G is invertible in R , then R^G is also a left self-injective regular ring [8]. This theorem is very useful when we investigate some structure of a nonsingular ring and the fixed subring of a finite group of automorphisms.

Recently D. Handelman has discovered an \aleph_0 -continuous regular ring which coordinates the lattice of projections of a finite Rickart C^* -algebra as a subring of the maximal quotient ring of its C^* -algebra [4]. We shall prove in this note the following generalization of Page's theorem: if R is a left \aleph_0 -continuous, left \aleph_0 -injective regular ring and $|G|$ is invertible in R , then R^G is again a left \aleph_0 -continuous, \aleph_0 -injective regular ring. We shall show as a corollary that if R is a left \aleph_0 -continuous regular ring with $|G|^{-1} \in R$, R^G is a left \aleph_0 -continuous regular ring and S^G is the maximal left \aleph_0 -quotient ring of R^G , where S is the maximal left \aleph_0 -quotient ring of R .

1. Skew group rings

DEFINITION [7]. Let R be a ring with identity element 1 and G a finite group of automorphisms of R . The skew group ring, $R \ast G$, is defined to be a free left R -module with basis $\{g: g \in G\}$ and multiplication given as follows: if $r, s \in R$ and $g, h \in G$, then $(rg)(sh) = rs^{g^{-1}}gh$.

DEFINITION [3]. A regular ring R is left \aleph_0 -continuous if the lattice of principal left ideals of R is upper \aleph_0 -continuous. A ring T is left \aleph_0 -injective if every homomorphism from a countably generated left ideal of T into T is extendable to a T -module endomorphism of T . For modules A and B , $A \subset_e B$ implies that A is an essential submodule of B .

A regular ring R has a maximal left \aleph_0 -quotient ring S which is a quotient ring defined by the filter-like set \mathfrak{X} consisting of all countably generated, essen-

tial left ideals of R [3, § 14]. An element x in the maximal left quotient ring of R is contained in S if and only if there exists some $J \in \mathfrak{X}$ such that $Jx \subset R$. Let $g \in G$. Then J^g is also contained in \mathfrak{X} and we define $x^g: J^g \rightarrow R$ by setting $rx^g = (r^{g^{-1}}x)^g$ for any $r \in J^g$. Then x^g determines a left R -homomorphism from J^g to R and thus x^g is a uniquely determined element of S .

K.R. Goodearl has proved the following fundamental result.

Lemma 1 [3, Th. 14.12]. *Let R be a left \aleph_0 -continuous regular ring, and let S be the maximal left \aleph_0 -quotient ring of R . Then S is a left \aleph_0 -continuous, left \aleph_0 -injective, regular ring and R contains all the idempotents of S .*

It is well-known that if R is a left self-injective regular ring and $|G|$ is invertible in R , then $R*G$ is a left self-injective regular ring. We shall show an analogous result for left \aleph_0 -continuous, left \aleph_0 -injective regular rings. Of course, left \aleph_0 -continuous, left \aleph_0 -injective regular rings are not necessarily self-injective (See for example, [3, p. 174]).

Theorem 1. *Let S be a left \aleph_0 -continuous, left \aleph_0 -injective regular ring and G a finite group of automorphisms of S with $|G|^{-1} \in S$. Then the skew group ring $S*G$ is a left \aleph_0 -continuous, left \aleph_0 -injective regular ring.*

Proof. By [5, Th. 3.2], $S*G$ is already a regular ring. First we shall show the \aleph_0 -injectivity. Let I be any countably generated left ideal of $S*G$ and ϕ any homomorphism from I to $S*G$. I is countably generated as an S -module. Then there exists an S -endomorphism ψ of $S*G$ such that ψ is equal to ϕ on I by [3, Prop. 14.19]. Define $\bar{\psi}(x) = |G|^{-1} \sum_g g\psi(g^{-1}x)$ for any x in $S*G$. One easily checks that $\bar{\psi}$ is an $S*G$ -homomorphism and it is an extension of ϕ . Since S is left \aleph_0 -continuous and left \aleph_0 -injective, any matrix ring over S is also a left \aleph_0 -continuous, left \aleph_0 -injective regular ring by [3, Prop. 14.19]. Therefore the lattice consisting of all finitely generated S -submodules of $S*G$ is upper \aleph_0 -continuous. Now let J be any countably generated left ideal of $S*G$. Then we have finitely generated S -submodule A of $S*G$ such that $J \subset_e A$ as an S -module. Put $B = \bigcap_g gA$, then it is finitely generated as an S -module and a left ideal of $S*G$. As B is a direct summand as S -module, B is a direct summand of $S*G$ as $S*G$ -module by Maschke's Theorem (See for example, [7, Th. 0.1]). Since $J \subset_e B$ as an S -module, we have $J \subset_e B$ as an $S*G$ -module. Now our assertion follows by [3, Cor. 14.4].

Corollary. *Let G be a finite group of automorphisms of a left \aleph_0 -continuous, left \aleph_0 -injective regular ring S . Assume that $|G|$ is invertible in S . Then S^G is again a left \aleph_0 -continuous, left \aleph_0 -injective regular ring.*

Proof. As in [7], consider S as an $S*G$ - S^G -bimodule. As a left $S*G$ -

module, S is projective and isomorphic to the principal left ideal $(S*G)e$, where $e=|G|^{-1}\sum_g g$. Since $S*G$ is left \aleph_0 -continuous, left \aleph_0 -injective regular ring, $\text{End}_{S*G}(S)$ is a left \aleph_0 -continuous, left \aleph_0 -injective regular ring by [3, Prop. 14.19]. On the other hand we have $S^G \cong \text{End}_{S*G}(S)$ by [7, Prop. 0.3] and the proof is complete.

2. The fixed subring in an \aleph_0 -continuous regular ring

Let R be a left \aleph_0 -continuous regular ring, Q the maximal left quotient ring of R and S the maximal left \aleph_0 -quotient ring of R . A finite group G acting on R may be extended to automorphisms on Q and on S as well. We assume that $|G|^{-1} \in R$. Then Q^G is the maximal left quotient ring of R^G by [8, Th. 3.6]. Hence it is natural to ask whether S^G is the maximal left \aleph_0 -quotient ring of R^G . This is true. We need next two lemmas for its proof.

Lemma 2. *Let I be an essential, countably generated left ideal of R^G . Then RI is an essential, countably generated left ideal of R .*

Proof. Since RI is a countably generated left ideal of R , there exists a principal left ideal J such that $RI \subset_e J$ by [3, Cor. 14.4]. Put $Ra = \bigcap_g J^g$, where $a=a^2$, then $RI \subset_e Ra$. Since Ra is G -invariant, $(1-a)R$ is also G -invariant. If $a \neq 1$, then $(1-a)R \cap R^G \neq 0$ by Bergman-Isaak Theorem [1, Prop. 2.3]. Choose some $y \neq 0 \in (1-a)R \cap R^G$. We have $ay=0$ and so $Iy=0$. Then y must be zero since $I \subset_e R^G$. This is a contradiction and the proof is complete.

Lemma 3. *For any countably generated, essential, G -invariant left ideal I , there exists a countably generated, essential, left ideal A of R^G such that $A \subset I \cap R^G$.*

Proof. Put $M=I*G$. Then M is a countably generated, essential left ideal of $R*G$. Let $M_1 \subset \dots \subset M_n \subset \dots$ be an increasing sequence of finitely generated left ideals such that $M = \bigcup_n M_n$. Put $T = e(R*G)e$, where $e=|G|^{-1}\sum_g g$. Each $M_n e$ is a direct summand of $(R*G)e$. Let ϕ_n be a projection from $(R*G)e$ onto $M_n e$. We have $\phi_n(e) \in T$ for all n . We claim that $\sum_n T\phi_n(e)$ is an essential left ideal of T . Let Ta be any non-zero principal left ideal of T , where $a^2=a$. Since $Me \subset_e (R*G)e$, we have a non-zero principal left ideal $(R*G)y \subset Me \cap (R*G)a$. Let ψ be a projection from $(R*G)e$ onto $(R*G)y$. Then we have $\psi(e)a=\psi(e)$. Since $(R*G)y \subset M_n e$ for some n , we have $\psi(e)=\phi_n(\psi(e)e)=\psi(e)\phi_n(e)$. Thus $Ta \cap \sum_n T\phi_n(e)$ contains a non-zero element $\psi(e)$.

Next consider the well-known isomorphism $\theta: e(R*G)e \rightarrow R^G$ given by $\theta[e(\sum_g r_g g)e] = \sum_g t(r_g)$, where $t(a) = |G|^{-1} \sum_g a^g$ ([6, Lemma 0.1]). Put $A = \theta(\sum_n T\phi_n(e))$,

then A is a countably generated, essential left ideal of R^G . We claim that $A \subset I \cap R^G$. In fact each $\phi_n(e)$ is contained in $eMe = e(I \ast G)e$. Since I is G -invariant, we have $t(r) \in I$ for all $r \in I$ and thus $\theta(e(I \ast G)e) \subset I \cap R^G$. Consequently we have $A \subset I \cap R^G$.

Now we shall prove our main theorem.

Theorem 2. *Let R be a left \aleph_0 -continuous regular ring, G a finite group of automorphisms of R and S the maximal left \aleph_0 -quotient ring of R . Assume $|G|$ is invertible in R . Then R^G is a left \aleph_0 -continuous regular ring and S^G is the maximal left \aleph_0 -quotient ring of R^G .*

Proof. All idempotents of S^G are contained in R^G by Lemma 1. Then the lattice of principal left ideals of R^G is isomorphic to that of S^G . Since S^G is left \aleph_0 -continuous regular ring by the Corollary of § 1, R^G is a \aleph_0 -continuous regular ring. Let s be any element in S^G . There exists a countably generated left ideal $J \subset_e R$ such that $Js \subset R$ by [3, Prop. 14.11]. Put $I = \bigcap_g J^g$, then I is again countably generated, essential left ideal of R by [3, Lemma 14.10] and is G -invariant. By Lemma 3, we find a countably generated, left ideal $A \subset_e R^G$ such that $A \subset I \cap R^G$. Therefore we have $As \subset (I \cap R^G)s \subset R^G$. On the other hand, let x be any element in Q^G such that $Ix \subset R^G$ for some countably generated, essential left ideal I of R^G . By Lemma 2, RI is countably generated and $RI \subset_e R$. Since $RIx \subset R$, x is contained in S^G . We complete the proof.

References

- [1] G.M. Bergman and I.M. Isaak: *Rings with fixed-point free group actions*, Proc. London Math. Soc. **27** (1973), 69–87.
- [2] J.M. Goursaud, J. Osterburg, J.L. Pascaud and J. Valette: *Points fixes des anneaux réguliers auto-injectifs à gauche*, Comm. Algebra **9** (1981), 1343–1394.
- [3] K.R. Goodearl: *Von Neumann regular rings*, Pitman, 1979.
- [4] D. Handelman: *Finite Rickart C^* -algebras and their properties*, Advances in Math. **4** (1979), 171–196.
- [5] D. Handelman, J. Lawrence and W. Schelter: *Skew group rings*, Houston J. Math. **4** (1978), 175–190.
- [6] S. Montgomery: *Prime ideals in fixed rings*, Comm. Algebra **9** (1981), 423–449.
- [7] S. Montgomery: *Fixed rings of finite automorphism groups of associative rings*, Lecture Note in Math. 818. Springer-Verlag.
- [8] A. Page: *Actions de groupes*: Séminarie d'algèbre Paul Dubreil 1977–78, Lecture Note in Math. 740, Springer-Verlag.