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1. Introduction

Consider a mixed problem

4 . E_ﬁ_ﬁ _
D= (at= ox? 6y2)u(x’ ¥, t)=f(x,, 1)
in Qx(0, T)
Bu = <b (€ y)i%—b (% y)ﬁ)u(x y,t) = g(x, y, t)
(1.1) 0" ox 2\ ay r7 » )
on Sx(0, T)
u(%, ¥, 0) = u(x, y)
ou _
o %2 9> 0) = wi(x, y)

where S=0Q is a C* simple and compact curve in R* and b,(x, y) (=1, 2) are
real-valued C=-functions defined on S. We assume that (b,(x, ¥), b(x, y)) is
not tangential to S, i.e. b,n,+b,n,+=0 on S, where n(x, y)=(n,(x, v), n,(x, y)) is
the unit outer normal of S at (x, y)S. The boundary operator B is called
an oblique derivative when

(12) Bi(x, y)n(x, ) —bi(x, y)m(x, )40 on S.

In this paper we consider the mixed problem (1.1) under the condition (1.2).

In recent years mixed problems for hyperbolic equations have been studied
by many authors and the general theory developed (for example S. Agmon
[1], T. Balaban [2], H.O. Kreiss [9], R. Sakamoto [10]). Concerning second
order equations, the problems with the Dirichlet boundary condition and with
the Neumann boundary condition are studied satisfactorily. The author showed
the well-posedness in L*-sense of the problems with a fairly general first order
derivative boundary condition in [5]. But the problem (1.1) is not contained,
under the condition (1.2), in the results of [1], [2], [5], [7], [9] or [10]. Concerning
the problem (1.1), we showed its ill-posedness in L*-sense when a domain is
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R? in [6]. It seems that the ill-posedness is caused mainly by the following
two facts: (i) A=%+6%; with the boundary condition Bu=0 on S has no
selfadjoint realization in L*(Q). (ii) [] with the boundary operator B does not
satisfy the complementary condition posed by S. Agmon [1], which is called the
uniform Lopatinski condition."

Therefore to consider the problem (1.1) it is necessary to treat it in a weaker
topology than the ordinary L*-sense. J. Chazarain [3] proved the well-posedness
of (1.1) in the space of vector-valued ultra-distributions of ¢. On the other
hand A. Inoue [8] showed a precise estimate for the solution of (1.1) in the
case where the domain is a half-space and b, is constant, but it seems to me that
his method is not applicable to non half-space.

In this paper we will show the following:

Theorem 1. For data {ux, y), u,(x, y), f(x, v, t), g(x, v, t)} satisfying
the compatibility condition of order m~+N, the mixed problem (1.1) has a solution
u(x, y, t) in EYH™(Q)NEHH™(Q))N - NEPE(LH Q) (m=0, 1, 2, )
where N is an integer determined by B and S. Furthermore (1.1) represents a
propagation phenomenon with a finite velocity, which is majorated by

sup \/ T (byt,— b, (63 1-53) -

o, nNeESs

Now we give the definition of the compatibility condition of order m.

DeriniTION 1.1. Data {u,, u,, f, g} are said to satisfy the compatibility
condition of order m when u,x, y)e H™(Q), u,(x, y)€ H™(Q), f(x, y, H)E
H™(Qx(0, 1)), g(x, y, t)ye H™*(Sx (0, T)) and

Buy(x,y) = 28(x,5,0) onS
%, ¥) GtP(x,y’ ) o

for p=0, 1, 2, .., m, where u,(x, y) (p=2, 3, ---, m) are defined successively
by the formula

up(%, y) = Duy_ (%, y)+f">(x, v, 0).

We should like to remark that under the condition (1.2) the mixed problem
(1.1) has a velocity larger than that of the Cauchy problem for []; this fact is
shown in the appendix. The mixed problems treated in [5] and [7] have the
same velocity as the Cauchy problem, therefore we can say that the above fact
is one of the characteristics of the L? ill-posed problems.

1) The Neumann condition does not satisfy the uniform Lopatinski condition, but
the mixed problem with the Neumann boundary condition is well posed in L2-sense since 4
has a self-adjoint realization in L3(2).
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To prove Theorem 1 we consider at first the mixed problem for an equation
with variable coefficients in a domain of a half-space. We reduce this problem,
by a Laplace transformation in ¢, to a boundary value problem with a parameter
seC,={n+iE: 7>0, E€R}. In the treatment we make use of pseudo-differen-
tial operators with a parameter s€C,.

The author wishes to express his sincere gratitude to Professor H. Tanabe
and Professor H. Kumano-go for their many invaluable suggestions.

2. The case where the domain is a half-space

Let R% be a half-space {(x, y); x>0,y R}. Consider a hyperbolic operator
L, and a boundary operator B, such that

oy Ll

0? 0’
— (1—a.p) -

2
A YR
‘pa ot =% a0t

_<a11622‘2+2 125 5y 5 + 22 )—{-(ﬁrst order)

=L( o9
’ ox
)
" ox

2.2) B (y

)—}— (first order)

0
6 t
0
dy

i)
y’ 6a>
= auafix+(an+b)<@+ ¢%>+c

= Byytc

0
t

where all the coefficients are real-valued C~-functions of y and

(2.3) b(y)+0 for all yeR.
We consider in this section the following mixed problem
Lou(x, y, t) = f(x, y, t) in R%x(0, T

Bgu(%, y, )] z-0 = &(3, 1)
(2.4) u(x, 3, 0) = uy(x, y)

ou
—=(x, 9, 0) = u,(x, v) .
5y B 0) = u(x, )
When we derive energy estimates of the solution or show the existence of

solution, an essential role is played by an apriori estimate of the boundary value
problem with a parameter s=7-+i£<C,
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(2.5) Lo o2 % o, 3) = p(v3)  in RS
| B3 2o g2 o =4

2.1. Pseudo-differential operators with a parameter s&C,
We denote 9 by 9, and li by D,.
oy Y

Let P(y, o, §) be kx k matrix-valued C=(Rx RxC,) function. PESE,
means that

|8505P(y, @, §)| <Cgp(w || 21BN
holds for all (y, w,s)ERXRXC,. For P(y, w,s)eS¢, we define a pseudo-
differential operator P(y, D,, s) by
B3, Dy IV (3) = - | (3, 0, YV (w)do
for V(y)e S(R)», where
V@) = [ vi3dy.

Lemma 2.1.
(i) Let P(y, o, )82, and Q(y, o, $)ESE. then

P(y, Dy, $)Q(y, Dy, 5)
= > —(3“5’°D§7Q)(;V» 51 $)+ Rn(9» Dy, 8)

T ey ol

where Ry(y, o, s)ESpi™=N,
(i) For P(y, w, s)ESg, there exists Py, w, s)=S¢, such that

(P(y, Dy’ v, W)=V, g)#(y’ Dy’ HW)
holds for all V, W & S(R), and the following expansion

Py, 0, 5) = 3 la“Dm.cP*(y, , )+ Ry, @, )

|2|<N ¢
holds where P*(y, w, s) denotes the adjoint matrix of P(y, w, s) and Ry(y, o, s)
eSgN.

(i) When P(y, o, $)ES¢,, there exists a constant C>0 such that

1P(y, D,, s)V||<C||[V|| forall VES§.

2) S(R) is the set of all rapidly decreasing functions defined in R.
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(iv) When P(y, o, s)eSg}, there exists a constant C>0 such that
C
[1L(, D,, S)VH<WHVH

holds for all V € S(R) and s€C,.
(v) Let P(y, o, s)ES¢, and inf Re P(y, o, s)=>c(s) then there exists a
9, 9ER?

constant C>0 and it holds that for all s€ C.,
Re (L(y, Dy, )V, V)2V =ClIIV].

The proof of this lemma is not given here, because it can be proved without
much difficulties only by using the method of H. Kumano-go, ‘“An algera of
pseudo-differential operators”, J. Fac. Sci. Univ. Tokyo 17 (1970), 31-50.

2.2. Apriori estimate of a solution of (2.5)

In this paragraph, the subscript @ of L, and B, is dropped for the simplicity,
and we denote by ||-||; the norm of the space H#(R%) and by <-); that of Hi(R).
Hereafter we assume that all the coefficients depend on y in | y| <d and that

(2.6) a0)=38, (j=1,2)

We should like to treat the boundary value problem (2.5) in an equivalent
system by putting

v,(%, ¥, s):l

V“””zLuyo

i(D3+ £°)u(x, y)
0v
a_(x’ y)
X

} (s=n-+1£)

(i) 2V 3,9 = S, Dy IV 3, 4Pl 3)

(2.7)
(i) By, Dy, )V (%, 35 8) 20 = 9()
where
P[]
=] b9
My, @, 5) = My, @, $)+ (Y, o, )
0 i(o*+ £V
HMAy> @, 5) = {i(l—a2<p2)sz—}—a22co2—2ia22cpms ——Zia,chm——ZausJ
{(w*+£%)a,, a,
My, o, $)ES¢,
and

0,01 Bt
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= B - Z 0
— O(y’ w, S) W .

Remark that the eigenvalues of H(y, , 5) (Hy(y, o, s)) coinside with the roots
of the equation L(y, «, iw, $)=0 (Ly(y, , to, s)=0) in «.

Lemma 2.2. There exists a constant 1, such that if Re s>n,, the equation
n K
L(y, k,iw,s) =0
has a root k., with a positive real part and a root x_ with a negative real part.

Proof. Remark that for purely imaginary «, L(y, «, tw, 5) is never equal to
zero if Re s>7' for some constant »'>0. Indeed, there exists a constant ¢
such that |Re s(y, &, i0)| <c for any root s(y, «, iw) of L(y, «, iw,s)=0 for all

(y, l,/c, m)ER“, therefore the root x is never purely imaginary. On the
z

other hand
1 700,0, ne, n5) =0
7\'2
has a root with positive real part and a root with negative real part when A is
sufficiently large. These two facts prove Lemma. Q.E.D.
Let us denote by #.(y, o, §) (#_(y, o, s)) the root with positive real part
(negative real part) of Ly(y, «, iw, s)=0 for Re s>0, and we have
k(y, w, §) = lim %xi(y, Aw, \S)
A>+eo
(¥, Ao, AS) = AieL(y, @, $) for A>0.
We have the following lemma from the hyperbolicity of L.
Lemma 2.3. There exists a constant ¢ >0 such that

Re i, (y, w, s)=cRes
Re k_(y, o, s)<—cRes
for all Re s>7,.

Define i.(y, o, if) by lim &.(y, w, 7+i£) and set
N> +0

I'(y, o, §) = By, &_(y, o, ), to, $)»

3) Ly=0 has a root with positive real part and a root with negative real part if Re s30.
4) I'(y, o, s) is called Lopatinski determinant and the uniform Lopatinski condition
means that I'(y, o, s)=0 for all Re s>0.
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for Re s>0. Evidently
T'(y, Mo, As) = AT(y, o, §) for A>0.
Let us assume

AssumpTiON 1. a,a,,—a’,>0 for all y
(1—a,p*) >0 for all y
and

sup | p(y)| < inf Vau(y)/(au(y)ax(y)— @YY +5(5)) -

Lemma 2.4. Under Assumption I, T(y, o, s) vanishes only for purely
imaginary s.

Since I'(¥, o, §) can be written explicitly, Lemma is proved by an elementary
calculas.
Hereafter we assume that

b(y)>0 for all yeR.

Lemma 2.5. There exist two points (w,, &) on the sphere {(w, £); o+ &2
=1} such that T(0, w,, i&,)=0. And we have

k+(0, Wy, iEo):‘:;C‘(O) @y, iEO)
Im %= (0, w,, i£,)+0.
0w

Proof. Set k(y)=a,(y)ax(y)—a..(y)*+b(y)>. T(0, w,, i&,)=0 means that
V a§— &5 = ib(0)é,
where &,=w,+®(0)&, From this it follows that

~ 1
By = + ”\/ m’)'fo ’
and by taking account of the definition of «x_(y, w,, &) and 5(0)>0 we get

- 1
B, = N/ E(0) &
From the explicit form we have

#4(0, wq, 7E))—it_(0, oy, 1E,) = 12b&,+0
and

ok . & i
I %0, a, ig) = — B = % 40,
Mo (e i) =~ = it
QE.D.
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Since T'(0, , s) equals zero at only two points in {(w, 5); 0’4+ |s|?=1,
Re s>0} we have that for some positive constant 0<<d,<<d, and v; (i=1, 2)
IT(0, w, i8)| =2,
on {(o, £); o*+&=1and d,<|w—w,| + |E—&| <d,} and

Im glf:(oa , l‘f) =2,
0w

on {(, £); o+ E=1 and |o—aw, |+ |E—E&| <d.).

Let us suppose

AssumptioN II. It holds that
(2'8) |k+(y) , 3)—76_(3’, @, S)l Z%
(2.9) Im %=y, o, 5)[>,

0w

for all yeR, s=7-+if and o such that 0 <7 <7, and (0, £)E{(«w, £); |0—wo|+
|E—&,| <d, and w*+£*=1} and that
(2'10) IF(J’» @, S)I 271
for all yeR, s=7+if and o such that 0<% <% and (o, §)e{(o, £);
d,<|w—w,| +|E—&| <d, and o*+E*=1}, where 7, and v, are positive
constants.

Take d, as d,<<d,<d, and set

AP = {o'; |0 —o,| + &' —&| <d;} (=1, 2,3)

where (o, £')=(o, £)/(0*+&?)"% and take a real-valued C~-function Xy, &)
such that

X (o, E) = 1 wE AP
O0=10  oeap.
Operate X(D,, &) to (i) of (2.7) and we have
(2.11) aixov — MV +[Xo, HV+XP
x
= MXV+P,.

Put
’?:t(y’ w, s) = (Ez+w2)_"zlfi(y, w, s) s

then by changing the value of J(y, o, 5) in the outside of A’ we may assume
that
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(2.12) % (Y, @, $)—F_(¥, @, 8)| =71>0

for all (y, o) R* when £ is sufficiently large since for oA (2.12) follows
from (2.8).
Remark that SH(y, o, §) can be written as

0 i(or £
K (Y, 0, S)K_(Y, 0,

Then for a matrix

Ty, »,s) = [a(y’ io’ )E_(¥, o, 5) —l.a(y’.w’ s)jl
IC*‘(y? @, S) —1
we get
_ 'C+(y) , 5)
TUy> @, ) HM(y, @, 5) = [ 0 k_(y, o, s)}jl(y’ , )

where a(y, », §) is an arbtrary function and when a(y, w, ) is not zero JI(y, w, s)
is a non-singular matrix for large £ from (2.12). Denote the above diagonal
matrix by K(y, o, s). (i) of Lemma 2.1 shows

(2.13) Ty, Dy, s)M(y, Dy, 5)
= {JC(y, ¥ s)+(awm°Dym_anC°Dyjz)°fn—l(y’ » s)}fﬁ(y, » )
+R_.(3, D, 5)
= (K(y, Dy’ $)+4(y, Dya s))-fJZ(y, Dy) s)_*"iR-l(y» Dy’ s)

where I(y, w, s)€S¢, and R_(y, »,5)ES5;. Set I(y, o, )=[t; (¥, ©,9)); jo1.2
and choose a(y, o, $)ES¢, as t,(y, o, 5) is zero in A‘;’. The (1, 2) entry of
((0,710D , M —0,K°D,TN)o T *)(y, w, 5) equals

3,7
l(lc_T—_Tc—){(K+_M Y0,a—a-0,k,},

then we define a(y, o, 5) by
a9 = e[ (22 Yo

for 0€ A where wp=w,£/€, and we define suitably in the outside of A a
a(y, o, s)eS and |a(y, o, s)| =>¢,. Then we have

I(y, o, S)ES%+
and

(2.14) Ly, 0,8) =0  for 0EAL.
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Put «_(y, o, ) = «(y, o, $)+ic(y, w, ).

Let us assume
AssumpTioN III. There exists a real-valued C=-function yr(y, o, s)ES¢,
satisfying

(2.15) %—;S—Q‘T—Z—Z%‘% 0
(2.16) V(y, @, 5) = [E|  for 0eEAP,
(2.17) v (y, @, 9) =0 for o€ A
Set
BIEI* 0
Dy, ‘DJ” 5)= |: 0 —((y, D,, s)+a)* (¥ (y, D,, s)+a):l

where o is a positive constant such that ||(y+ a)w||>||w]|| for all we L (R%)
and 3 is a positive constant which will be determined later.
Operate JI(y, D,, s) to the both sides of (2.11) and we have from (2.13)

aﬂ TNV = KTIXV + TTXY +R_ XV +TIP, .
X

Set W(x, y, $)=JU(y, D,, s)X«(D,, E)V(x, y, s).
2 Re (D(y, D,, YW(x, , 5), —(R_XV+TIPy))
— 2Re (_@W, —ai W>+2 Re (DW, KW)+2 Re (W, W)
X

= I+I1I4-II1.
I=2Re Bl E | z<w1(x) Y S), '—ﬁ“wl(x) Yy, S))
ox
—2Re((¥+ (bt D) my(x, 3, 9), — 2w, 3, )

= BIE|Xw\(0, ¥, $)>"—<(¥(9, D,, s)+a)wy(0, , 5)>*
IT = B|&|*2 Re (wi(x, ¥, ), £:(y, D,, s)w,(x, , 5))
+2 Re((Y+ ) (Y + a)wy(x, 3, 5), (— e )y, Dy, S)wy(x, , 5))
= B|E|*2 Re (w(, y, ), £+(y, D,, s)wy(, ¥, s))
+2 Re ((Y+a)wy(x, ¥, 8), (—x_)Np, D,y s)( P+ a)wyx, , 5))
+2 Re (+a)wy(x, y, 9), [£_, ¥w =, y, 5))

by using (v) of Lemma 2.1 and Lemma 2.3

2= (en—CHBIE *|lwy(x, y, P+ (Y + )y, y, 9|7}
+2Re (v +a)wy(x, v, s), [x_s Ylwy(x, v, ).
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[T = BI&|*|(wy, tuwit+tw,) [+ [(W+ Q) (P+ Q)w,, taw,+1,w) |
< C(E1"lwnl " 11(W+e)e| )+ BIEL* [ (w1, 2y, Dy S)w,)| -

From (2.14), we have for any integer N

(9, Dy $)wl| <-CX |1,

Is|¥
Therefore we get
| TIT| SC{IE | *laos| P+ 11(W (35 Dys $)+ )wsl [+ (I XV |7 -
Now let us estimate 2 Re ((y+ @)w,, [«_, ]w,). Put

k_(y, @, 8) = (¥, 0, )Fir(y, 0, )+ (k_.—ik_)y, o, 5),

evidently x_—#_&Sg, and by an elementary calculas «,(y, , 5) can be re-
presented as

1 (y, 0, §) = (Y, @, 5), (Y, @, S)ES%+
in A‘;’.
Thus we have
I [x(3, Dy, $)+(x_—k Ny, Dy, 5), ¥ (9, Dy, 8)]w,l| <Cllw,|.
And
[y, D,, s), ¥(y, D,, s)]

_ (0500 _0k0%), p D
e LR MO ELYCA M

by taking account of (2.15)
= Ry, Dy! 5)
where Ry, w, s)eS¢,. Thus we get

|2 Re (y+a)w,, [, ir]w,)|
<Crll(v+a)w,|| [lw,l| .
On the other hand
|2 Re (DW, — R_ X, V+TIP,)|
SC(ENlznl] + 11(¥+ @)l XV I+ [ Pol]) -
We get
(en—CYBIE ||l |+ [|(¥+ a)w.| 7} — Cll(Y+ @)w,|| | |w,]]
—ClIXV "+ B1E|<wi(0, y, 5)"—<(¥+ a)wy(0, ¥, 5)>*
<SCEIH|PlI*.
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Remark that
%IIWHSHXOVIKCIIWH if s> s,|

since
1%Vl = [[(TT71eTNX V||
= ||91"Y(y, D,, 5)JU(y, D,, s)X,V+(order —1)X, V||

< CHW||+C|1TI

and the left-hand side is evident.
Thus it holds that, if we take « sufficiently large,

1%Vl

(2.18) en{BIE ¥ lw,| 41 |(v+ @)w,| %}
+BIEXwy(0, y, 5))*—<L(y+ a)w,(0, y, 5)>°
SCIEY|P|®
for n>75.

Next we estimate the boundary term. Operate X,(D,, &) to (ii) of (2.7)
and we have
B(y, Dy, )Xo(D,, E)V(0, 3, 5) = [B, X ]V(0, p, $)+Xog -
B(3, D,y ) = (BT1)(, D, )+ TN, D,y )+ Bi(3, D, 9)

where B_,(y, o, s)E€Sg:. Then

(2.19) b(y, D,, s)w,(0, y, )+b,(y, D,, s)w,(0, y, s)
= _@_,XOV(O, Y, s)+[—CB, Xo] V(O) Y S)+X0(Dy’ S)Q(y)

where b,(y, », 5)€Sg, (i=1, 2) and
by, @, §) = —i(0+E)T(, o, 5).

We have |T'(y, o, 5)| >c7 from Lemma 2.3, and from (2.10) [b(y, w, §)| =7,
when e AP

<EbLy, Dy, )wy(0, y, 5)>
= cendwy(0, 3, §)>—C<w(0, y, 5)>
(3, Dy, )b, D,, syw,0, y, 5)>
=<y, Dy, s)prwi(0, y, 5)>—C<wy0, y, 5)>
=7 (y, Dy’ s)w,(0, v, 5)>_C{|s | K¢(y, D, s)w(0, y, 5)>

+<w,(0, y, s)>} -
Then we get
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endw (0, y, >+ 7 fw (0, 3, 5)>—C<w,(0, y, 5)>
<C [y, D,, 5)wy(0, v, 5)>
<C|E&| <b1(y» Dy’ s)wl(O, ¥, SHO+C|E| {<qu>+<[-@: Xo]V>+<-6B_1xoV>}
<CE[<wy(0, y, P+C |EH{{KX>+<[B, X]VD+LB XD}

By choosing @ sufficiently large, it holds that

(2.20) BE1*<wy(0, 3, $)>*—<{(¥r+a)w,(0, y, 5)>*
= |E1%wy(0, y, s>+ (yr+a)wy(0, v, 5))*
—C [E|*{<X ™ +<[B, XV},

here we used the estimate <B_X,V> <%<xov> and <X,V><C<WS holds

when |s| > [s,].
Therefore by combining the estimates (2.18) and (2.20), we have

Proposition 2.6. Under Assumptions 1, 11 and 111, the estimate

(2.21) 2($(y, Dy, $)+a)X(D,, E)V(x, 3, 5)II*
+<(¥(», D,, 5)+a)X(D,, E)V(0, y, 5)>*
< C{lIsp(x, Y)I*+1Is[Xoy H]V(, 3, 9)II*
+<sq(9)>*+<s[ %o, BIV(0, y, )5}

holds for all s=n+i& such that n,<n<mn,|&|.
Next let us consider Assumptions.

Proposition 2.7. Assumptions 11 and 111 are satisfied when the variation of
the coefficients and d are sufficiently small.

Proof. It is evident that Assumption II is satisfied when the variation of
the coefficients is so small. Then let us consider Assumption III.
The equation (2.15) (as yr is unknown) in y and o is hyperbolic, and
Ok,

since a—:!:O there exists a unique global solution when (0, o, s) is given.
w

Take d,, d as d,<d,<d,<d, and define A{® and A{” as the other A{®. Let
Yoo, £) be a real-valued C~-function such that

(1B ecA®
ol D=1 wEAP

YA, AE) = Mo, &) for any A>0.

We take as yr(y, o, 5) the solution of (2.15) for the initial condition y-(0, , $)
=vr(w, £). Remarke that J(y, o, 5) is determined for all (y, v, s)eRXRXC,,
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and C*(RXRxC,). To show (2.16) and (2.17), we make use of the bic-
haracteristic curve of the equation (2.15). Consider a curve in (y, »)-space with
a parameter s defined by

dy(l) — Ok, —
A é;(y(l), o(l), 5) ¥(0)=0

doll) _ 0y, ofl),s)  a(0)=o
= —5m 009 w0
(—oo< <o),

Let o= A{” and suppose that o(l)eAf® for I€[—1, L], then (2.9) shows

that ‘%lez. Let ‘%gﬂwz then we have y(l)—y(I') =y, (I—1) for —L,<I'

<1<, On the other hand, (9,x,)(¥(I), o(l),s)=+0 only when |y(I)| <d.
Therefore we may assume that %’(l):O if l&e(l,, 1), where [, 1] is an interval

such that l,—ll<2—d. From this it follows that an estimate

72
lo(l)—o(l')| éy‘l’ sup |0,x,|
2

<c¥ g

2

holds for any [, I'e[—1, ;]. Therefore when d is so amall as
2d<% inf (d,—d,, d,—d),

o(0) &AL leads o(l) & AP for all I€ R and if w(0)€ AP we get () A for all
leR. Thus (2.16) and (2.17) follow immediately from the above fact with the
aid of

(2.22) F(y(D)s oD, ) = W(w(0), ) forall L

The relation (2.22) shows that (¥, w, s)=v(d, o, 5) for all y>d or (¥, o, s)
=+(—d, o, s) for all y<—d. Evidently y«(y, Ao, A)=A (¥, , §) for A >0.
Then by taking account of (2.16) and (2.17), ¥(¥, w, s)E S¢ is derived. Q.E.D.

Next consider a neighborhood of (w;, s;) such that o}+|s,[’=1 and
L0, &, o,, s)=0 has a purely imaginary double root, which occures when
(fo+o(0)s)’>=s>.  Assumption I leads that s,—7£,. Remark that

(2.23) - (0, w,, 5,) = tba, +0.

We construct 2X2 matrix-valued C>-function 9)(y, »’, s’), defined for
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(3, o'y ) ERX {(w, n+iE); o +E=1, 0<n<n, and |o—o, |+ |E—E, | <dj)
=Rx U where d, is some positive constant, with the following properties:

(1) 9Dy, &', s") is symmetric

(ii) 2Re D(y, o, s ) My, &, s')y=7"=Re s’

(i) B(y, o', s'YV=q implies that D(y, o', s"\V-V=|V|*—C|q|*

This method is completely due to Kreiss [9]. When 9)(y, o, s") with the
above properties is constructed we can prove the following

Proposition 2.8. There exist positive constants n, and C such that
(2.24) ||X(D,, EYV (%, v, 9)II*+<X(D,, E)V(0, y, 5))*
<C{lIplI 111X, SV +<[X BIVD%

holds for all s=n+1E such that 7, <n<m,|E|, where X (w, ) ts a C~-function
such that X,(Aw, NE)=X,(w, &) for A\>0 and
1 when |o'—o,|+ |8 —E,| <d—¢E
Xl(w» E) = , ’
0 when [w—wll_}—lg_gll}dﬁ

where £>0.

Proof. Take 9,(y, w, s)eSg, such that 9,(y, o, s)= D(y, «’, s’) when
(o', s")e U, and symmetric in R*xC,. Operate X,(D,, s) to the both sides of
(1) of (2.7) and we have

a%le — HXV +[Xey HV+X,P

= MUX,V+P,.
Put V (%, v, s)=%X,(D,, s)V(x, y, s), then
L y
2Re (9D,(y, D,, s)V,, —P))
— 2Re (ﬂ)l(y, D,, sV, —2 V1>+2 Re (D,V,, HV)
Ox
= I+1II.
I =2Re<9\(y, D,, 5)V,(0, 5, s), V0, y, 5)>

+2Re((D,(3, Dy )= ,(3 Dy, Y92, V')
Ox

> 2Re<9\(y, D,, s)V,(0, , 5), V0, 3, 5)>
—CWI(I7l+- 1R

sl

here we used 9,(y, w, 5)—Di(y, o, )ES¢; since D,(y, o, 5) is symmetric.
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11 = (D¥H+ MDYV, V)
from Lemma 2.2
= ((2Re D, M)y, D,, )V, V) +(R V1, V)
where R(y, o, s)SE,, then
= IV, IP=CIIVA]P.
Thus we get

(2.25) 2MVilI*+2 Re D3, Dy, V(0 3, 9), Vi(0, 3, 5)>
—C||V,|P—C|IP,*
< C(IVIP+IIPP) -

On the other hand BV ,=X,q+[B, X,]V, and from the property (iii) we have
2Re {D\(y, Dy, V0, 3, ), Vi(0, 3, 5)>
>0, 3, = T, 3, 9
—C{X B, X1V} .
Inserting this estimate into (2.25) we have (2.24). Q.E.D.
Now let us construct 9)(y, o, s') with the properties (i)~(iii). Put

Ky = ’C:h((), @y, lfl)

U, — |i2i/c.0—l—1 2:'
iK, 1

and
tj'l(ya , ) = UpH(y, o, s)Us" .
Then
L%o(o> @y 151) = CUOL%ZO(Oa (%) ifl)CUtTl == [go ! } .
Ky
Let
tim M5, 0, 9-i8) = (3, @, 8) = [hes(9, 0 Dlosone-

It is easily seen that

au(o)hm(oy @y, El) = (%)(0’ Ko, iwl’ lgl) .

Remark that the regularly hyperbolicity of L with respect to ¢ assures
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| Lo(y, &, to, §)| =c, Res
for all « purely imaginary. Then from
L0, &,y tew;, 7-+iE))
= L0, x, ioy, i51)+77%’(0, ey 0y, 1)+ 0(77)
it follows

Lo, 1, iwy, i) 0o,
Os

which shows
|h21(0, (%) E1)I =>2c.

Now we pose
AssuMPTION IV. |hyu(y, o, E)| =¢ for all yER, (0, £)E{(w, £); |lo—o,
+ |E—E&,| <d,, o*+E>=1} where ¢ and d, are positive constants.

(226) L%Zo(y’ w,) 7]’—|—if’) = L%:io(oy (&%) l£1)+ Lﬂ’:lo(y) (0,) 77,‘*‘1'5,)
— My, &y &)+ My, o i8)— M0, w,, iE,)

_ [o :]+n’ﬂ(y, o, E)H0(r)+iE, o, €)

where

&y, o, E) = %{j%(y, o', E)— (0, o, iE)} .

Notice that all the entries of £(y, s £') are real-valued and

2.27) 1E(y, o, E)| <C{|o/—aw, |+ | &' —E, | L variation of
coefficients of L,} .

Lemma 2.9. The matirx

(i s o) o) L2 2)-@rmcsa

is symmetric if all entries are real, 1+4-e,%0 and

Of course a:O(i]le;D when i:|e;|“’0-

Let us put
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7 ron 0 & a(y, o', 5') 0__-10 —f
g)(y,w,s)—[kl k}{ 0 0} m[f 0}

= Dt Ay, o, ) —if F

where a(y, o, 5’) is determined by Lemma 2.9 from £(y, ’, s') and k,(i=1, 2)
and f are constants which will be determined later.

2 Re D(y, o', &) Ho(y, @, 5)
= 7/{2 Re (FCo+ DoIH)+0(0'+ | E1)} .

Since

gc+@ﬂ [ k1h21 klhlz }
PN kbt kb, kbR f

we can make Re (FC,+ 9D H)>1 by choosing as kh,>2 (from Assumption
IV) and f sufficiently large. Then when |£] is not so large we get

2 Re @(y, w/, s,)ﬂo(y’ w,’ S’)>77/

for 0<%’ <7»,. |&| becomes small according to d; and the variation of coeffici-
ents. Put

Dy, o, 5) = Uy, o &)U,
then it satisfies (i) and (ii).
(2.28) (D(y, o, YW, V)= (Dy, o', )V, V)
>2 Re (k, D,, 5,)+ kD, 5)—0(|E|+7)| VI,
where V=(2,, ,)=U,V,

>—2kllzx|2+%|ﬁzlz.

By, o'y 8') = b(y, &, )0, +b,(y, &, 5)D,
then 4,(0, wf, s1)=T(0, w1, s1). From (2.23) when d, and the variation of the
coefficients are not so large |T'(y, ', s')| >, this implies that

lﬁxizgl"'bzﬁz—qlz
<C|2,*+ gl
Inserting this into (2.28) we have
(D(y, o )V, V)= | V|*—C |q|*
=C|V|P—Clql*

by choosing k, large. Thus (iii) is proved.
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Now, remark that Assumption IV is satisfied when the variation of the
coefficients and d, are sufficiently small.

The number of the points (w, &) considered in Proposition 2.6 are two
and the number of the points (w,, &) considered in Proposition 2.8 are four.
Let us denote by X(w, &) the sum of X,(w, ) and X,(w, &) of all the points
(wo &) and (w,, &). Then it is easy to get the estimate of the type of (2.24) for
X(D,, E)V(x, v, s)=(1—X(D,, £))V(x, ¥, 5). Indeed, we can use the method of
Proposition 2.6 by taking

Ny, @ 9) = | 2 ) _z}
Les(y, o, 8) —1
and

B 0
Dy, o, s) = 0 _1}.

Remark that it holds that
|51 33 L, X1V
2
<UD,y B)F XV I+ [s1* 2 11X 1111
and
151 23<[B, X1V
SCUPD, X+ Is]* XV YV
Then we have

Theorem 2.10. When the variation of the coefficients and d are sufficiently
small, there exist positive constants C, and 7, such that for any solution v(x, y) of
(2.5) in H¥(RY), the estimate
@29)  wlllo( D)t lse(s, 300, 9 H-su0, 3+ 200, )

<Cofllsp(x, )I1*+<sq(y)>
holds when Re s= n>7,.

Proof. (2.29) is derived for s such that 7,<% < ¢|&| by combining
Propositions 2.6 and 2.8 and the above remarks. On the other hand when
n>=¢,| |, (2.29) is already known in the general theory of boundary value
problems for elliptic equations. Q.E.D.

Corollary of Theorem 2.10.
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230) 3 le(w, )5 <allsps 2 o))
holds when Re s>=7,.

Proof. Recall an apriori estimate concerning an elliptic boundary value
problem

az(y’ ny Dy)u(xs y) = (auDazo"_2“12Dny+a22D12/)u(x) y)
—fx,y) iR
0 0
(a0 2 (@800 2 Y, 3)|emo = 89,
x ay
namely for some positive constant C
(2.31) (e, Y <C IS I1P+<g0t 1) -
Apply it for
ap = p—sa,v+s*v
0 0
(a2t (@tt) D)o = gtsplantbyo
X oy
and we have
lRlE<C I+ llsolli+ s[4 <o)+ g1} -
From (2.29) we have
7{|lso|[i+{sopi+[Is% |7} <C{lIspI*+ <%0},
insert this into the above, (2.30) follows. Q.E.D.

Let us denote by _L,(s) the operator from H*(R}) into L*(R%)x H'*R)
defined by

Lo(s)u = {Ly(s)u, By(s)tt] x—o} -

Theorem 2.11. _L,(s) is a bijective mapping when Res>7n, and
L) f(x, y, 5), g(y, 8)} is H(R%) valued homolorphic function when f and g are
vector valued holomorphic function in LYR%) and H'*(R) respectively.

Proof. L¥(s) the formal adjoint of L(s) has the principal part
Loy, =02 —0,, 3).
Then for a boundary operator B with the principal part
By(y, =0, —9,,3)

we have for all u, ve H*(R%)
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(Lo(s), 2)—(, LEG)e) = | (Blsyuo-+uB(s)o)dy .

Since the apriori estimate for L¥(s), B(s) of the type (2.30) holds for Re s>7¥,
we see that _[,(s) is a bijective mapping. The last part of Theorem is easily
proved with the aid of (2.30).

2.3. Energy estimate
Hereafter, in this section, we assume that the operators (2.1) and (2.2)
satisfy Assumptions I~IV posed in the previous paragraph.

Proposition 2.12. For a solution u(x, y, tye EYH*(R%))N EH(H*((RZ))N
EXH'(RL))NEYLX(RL)) of (2.4), the energy estimate holds:

@32 [ it Ol 1 IO, 3, 01
8u z ’ 2
+ 840, 5,0 <0, 3, 1)
<Cr{jlutw, 3, O+ l1w'(x, 3, O+ 1/, 3, OV
s i<y ) or e, 7]
where Cr depends on L,, B, and T and is independent of u.

Proof. At first assume that u(x, y, 0)=u'(x, y, 0)=0, f(x, y, 0)=0 and
g(y, 0)=0. Take a function X(t) C~(R) such that

1 t<T
X(t) = i
0 t>T+38 (6>0).
Then
(2.33) L X(t)u(x, y, t) = X(&)f(%, ¥, t)—[Ly, X]u
(2.34) BoX(tyu(x, y, t) = X(t)g(y, t)—[By, X]ue .

Put X(f)u(x, y, t)=v(x, y, t) and the right-hand side of (2.33) and (2.34) as f,
and g, respectively. Evidently v and f, are in L*(R., LR%)) and g, is in
L*R,, L¥(R)). Define fi(x, y, t) (i=1, 2) by

o t for t<t
f =1 o oSt
0 for t>t,

fz(x) Vs t) = g]})(x’ ) t)*fl(x» t y)’
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and g, (i=1, 2) by the same way. Laplace transformation with respect to ¢ gives

qu(y) axy ay’ s)f)(x, ya S) = fo(x’ y’ S)
B‘P(y’ 6x’ ay’ s)i)(x, B2 s)'x=u = go(y) S)

where #, f, and g, are the Laplace image of v, f, and g, respectively. Then for
all Res>7,

ﬂ(x’ ) s) = _['¢(s)_1(fo(x, ) S)’ gO(y’ s)) ’

and

Fol 3, 9) = (T 3, )7 3, 9)

&0 ) = L@, 9+ 2 ).
Put

~ 1 -1 ~
b;(x, 3, 8) = 's—-fw(s) (fx(x’ Y5 8), &, 5))
and they are holomorphic in Re s>7,, moreover
[0, 3, )| <Ce ke

holds since ||f,(x,, s)||<Ce %R and <g,(y, s)> <Ce %R, Therefore
v,(¥, ¥, t) the inverse image of 7,(x, y, s) has the support in [Z,, o), then
u(x, y, t)=v,(x, y, t) for t[0, ¢,). The Parseval’s equality shows

S:e'”'({lvl(x, ¥, i+ 1Ivix, 3, 1)|[)dt

e

" (10w, 3, 1) EHIsD(x, , 7-+i8)| e

<

[" e 5, v ni+<al, i)

CHle 3 |Q

S:Oe_z"'(ll(f '(x, 3, DII*+-<8'(y, 1))t

thus (2.32) holds by taking C;=Ce*7,

Next let us prove the general case. Take w(x, y, t) e EYH*(R3)N
EHHAR))NEHH(RL)) N EYLARY)) as

Ly = f(x, y, 0) in R%x(0, T)
w(x, ¥, 0) = u(x, y, 0) in R

0 , .
6thi)(x, ¥, 0) = u'(x, y, 0) in R%
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then o(x, v, t)=u(x, v, t)—w(x, y, t) satisfies the condition assumed in the first.
Applying the just obtained result we have

[, 3, )=, 3, )1+, 3, )—w'(x, 3, DI

<o (175 3, DI+ (3 11+ (Br) (0, 3, 9>
Remark that

lleo(x, v, )3’ (x, y, B)II°
<Cr(|lulx, v, O)13+11u'(x, v, O)I*41f(x, ¥, O)II*)

and
<Bw'(y, 1)><Cr{llu(x, y, O)lI§+11u'(x, y, O)IF+11f(x, v, O)II3},
which inserting into the above, (2.32) follows. Q.E.D.
Deﬁne ”Iu(x) Y, t)l“k,R'ﬂ, and <<g(y’ t)>>k,R (k:l, 17 2, "') by
2 k 0 H 2
i, 3, B, = 33 (3, 3
i=o |\ ot k-i,L%R2)
2 . k —g i 2

<&, )i = .;o <(6t> (2 t)>k—i,L2(R)

respectively.

Theorem 2.13. For a solution u(x, y, t)e EYH™(R2)) N E H(H™(RY))
N NETH((LA(RY)) the energy estimate

t
(2.35) [Nz, 3, 1)13de
<Cor (3, 3, Ot 10/, 3, Ot O)

t
(L7 2, 018+ <2 > )t}
for all te[0, T
holds for m=1, 2, 3, ---.

Proof. The (m—1)-times differentiation in ¢ the both sides of (2.4) gives

Ly(u™ (x, 3, 1)) = f™ (%, 3, t)
Bw(u(m_l)(xa Y t)) |2 =8"""(1, 1)

It follows from Proposition 2.12 that
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J 2, 3, )18
<Co{llm 2w, 3, O+ ™G, 3, OIS, 3, O)l
[ e, 0+, 094t}
With the aid of (2.31) we get an estimate
236)  lllu®, 3, OIESCullllu 20, 3, I 2, Dll3-s
+<g(y, )>a},

from Lyu=f, Bou|,-,=g. Then (2.35)is derived by inserting the above estimate
and by using

[, 3, O[3+ [u™(x, y, 0)II3
<C(llu(, y, O)|lsat 1l (%, 3, O)l[asrt-111f(x, 3, OIIZ) -
Q.E.D.

2.4. Existence and regularity of the solution

Theorem 2.14. For given data u,, u,, f and g, if they satisfy the compatibility
condition of order m+-2, there exists a solution u(x, y, t) of (2.3) uniquely in
H™*R3x(0, T)).

Proof. Consider at first the case of m=0. Assume that u(x, y)=u,(x, y)
=0, f(# », 0)=f" (x, y, 0)=0 and g(y, 0)=¢" (y, 0)=0. Put
~ 1 -1 24 P
w(x, y, s) = ;{"C«’ (S)(f (%, 9,9), §"(3,9) -

Then Corollary of Theorem 2.10 shows
(%, p, $)|13+llsii(x, p, s)||3+|Is@(x, y, $)I*
< 3, MGy ) -
Of couse #@(x, y, s) is holomorphic in Res>», The inverse Laplace image

u(x, y, t) of @(x, y, s) exists as L*(R})-valued distribution and from the above
estimate e ™ u(x, y, t)e H*(R% X R) and u(x, y, t)=0 for t<0. Evidently

Lu=f in R%Zx(0, )
Bou|,o=g(y,1)  in RX(0, ).

This means that u(x, y, ) H*(R%Xx (0, T)) is the desired solution of (2.4).
Next let us consider the case of non zero initial data. Take a function
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v(x, ¥, 1) = u(x, y)+tu, (x, y)“‘%uz(x’ )
then

(=L (® 3, 0) = 2(f—Leo)(x, 3, 0) = 0
(8=Bt)(3, 0) = 2 (g—Ly)(3, 0) = 0

follow from the compatibility condition of order 2. The just obtained result
shows the existence of w(x, y, t)e H*(R% x (0, T')) satisfying

Ly[w] = f—L,[7]
B,[w] = g—By[v]
w(x, v, 0)=w'(x,5,0)=0.
Then u(x, y, t)=w(x, y, t)+v(x, y, t) is the required solution.
Now we prove Theorem for m>1. Set

(%, 9, 1) =y )+ 0 Y ooty (3, 5)
(m—1)!
Ht—r)™! T
+So(7—1~)!w"’(x’y’ )d

where w,,(x, y, t)€ H*R3 X (0, T)) is the solution of

L[] = f(x, 3, 1)

B,[w,,] = g™(y, 1)

W,u(%, ¥, 0) = u,,(%, ¥)

W%, ¥, 0) = upa(, ¥),
whose existence is assured by the result for m=0 since u,,(x, ¥), 4,,+.(x, ¥),
f™(x, v, t) and g “(x, t) satisfy the compatibility condition of order 2. It is
easy to see that u(x, y, #) is a solution of (2.3) for u,, u,, fand g. Now we get
u(x, y, t)€ H™*(R%x (0, T)) from u™(x, y, t)=w,,(x, y, t) € H(R% x (0, T))
with the aid of (2.36). Q.E.D.

2.5. Finiteness of the propagation speed

Lemma 2.15. Let u(x, y, t)eCHYR3))NEHH(RE))NEHLYR?)) be a
solution of (2.4). If
fle,y,)=0  for x4+v,t<8, x, t=>0
gy, t)=20 for v, <8, t>0
uy(x, ) =u,(x, ) =0 for 0<x <3,
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then u(x, y, )=0 for x+v,t <38, where v, denotes the maximam propagation speed
of the Cauchy problem for the hyperbolic operator L,.

Proof. Let v(x, y, t) be the solution of the Cauchy problem L u=f for the
initial data {u,(x, y), u,(x, y)}, here u,(x, y) is extend to x<<0 by 0. The finiteness
of propagation speed shows that v(x, y, #)=0 when x+ov,t <85, t>0, therefore
v(x, v, t) satisfies (2.4) when v,£<8. By applying (2.32) for u(x, u, t)—v(x, y, t)
we have u(x, y, t)=v(x, y, t) for 0<<v ¢ <3, this proves Lemma. Q.E.D.

Lemma 2.16. Let u(x, y, 1) EYH*(RL))NEHH(RY))NEHLHR)) be a
solution of (2.4) and U be a neighborhood of t=y=0 in {(y, t): yER, t>0}. If

fx,9,)=0  for (x,5, )R, x U
gy =0 for (y, )eU
u(®, y) = u(x,¥) =0 for (%, y)ER, x{U N(t=0)},

then there exists a neighborhood U, of y=t=0 in {(y, t); yER, t>0} such that
u(x, y, t)=01in R, xX U,

Proof. Consider the Folmgren transformation in (y, #) space

t' = t+y*

y=y.
Define #@(x, y', t') by #@(x, y, t+y°)=u(x, y, t) for t'—y'*>>0 and equals zero for
t'—y"?<0. f and 7 are defined by the same way. From the condition posed
on u, u, we have #(x, y’, t') € EYHYRL)NEHH (RE)N EXL*(R%)) when
t’'<§, for some constant §,>0 and #(x, y’, 0)=#'(x, y’, 0)=0. Evidently
f(x, y', )=0 and g(y’, t')=0 when #'<§,. And it holds that

237 { La=f in R2x (0, 8,)

Bi|,..,=g in Rx(0,3,),

where

92 0? 0 ’ 0 0
iq,o = (1—‘122?’2)@_2a12¢w—2a22¢<é?+2y ayl) t

0
0

%))

— {a 0 +2a12(—8—€:—,+2y’£}7> 0 _|_a22(—6g——|— '6
B = a5t @bt )

" ox? ox ¢

5) Ly and é{po are not of the form (2.1) and (2.1), but Theorem 2.10 (therefore
Theorem 2.13) holds for any operators which are of the form (2.1) and (2.1) at y=0 and
whose variation of the coefficients and d are so small.
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By changing the values of coefficients of L, and B, in {y’; |y’| >8,} and by
taking 8, sufficiently small, we can assume L, and B, satisfy Assumptions
I~IV. And we see that L#=0 and B,i=0 for 0<t'<§, by taking account of
the fact u(x, y’, t')=0 when y*—#'>0. Apply the energy estimate (2.32) for
(2.37) and we get d(x, ¥', t')=0 for ¢'<3,. This shows that u(x, y, £)=0 when
¥ +1<3,. Q.E.D.

The above lemma derives that the propagation speed of the tangential
direction of (2.3) for =0 is majorated by

sup V{au(9)ax(y) — au(y)*+5(3)}an(y)

with the aid of the sweeping out method of F. John. Thus we get

Proposition 2.17. The propagation speed of (2.4) for =0 is majorated by

sup V' {a()a:(y)— @ (9)+b(5)}Hau()

in the tangential direction and

ilelg \/{au(y)azz(y)—a12(y)2}/a11(y)

in the normal direction.

3. Proof of main theorem

Let s,=(%,, y,) €S and the outer unit normal of S at s,be (—1,0). Consider

a transformation M
x = x—
(3.1) ’ ©()
Yy =Y—Yo-

where x= pu(y) represents an equation of S near s,. M maps a neigborhood of s,
in Q into R%. Then (1.1) is transformed by M into the equations

Lo =
B[] = g
3.2 Sy
(3:2) a(x', y', 0) = dy(x", ')
@'(x's 'y 0) = dy(x", "),
where

0° 0°
+
ox'dy’ 0y

L — %_((1_}_”/(:})/)2)61;5_2”/(}}/) >+(ﬁrst Ol'der)

B®= (1= p'0) )5
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Since p'(0)=0 by defining suitably the coefficients in {y’; |y'|>8} and by
choosing § sufficiently small we can assume that L® and B® satisfy Assump-
tions I~IV of the previous section. The finiteness of the propagation speed of
(2.4) derives the finiteness of the propagation speed of (1.1) in a neighborhood
of s, in QX R,. This fact holds for arbitrary s,&S. On the other hand the
finiteness of the propagation speed in the interior of QX R, is already known.
Thus the finiteness of the propagation speed of (1.1) is proved. And by taking
account of Proposition 2.17 we see that the propagation speed of (1.1) is

— 14 (b, —bn,)
majorated by v,,,, ilell[z)«/ + 2 pT

Put
C(xos Yoo £0) = {(%, ¥, £); |x—20] -+ | y—,] <vmax(t—t0)} .
then for u(x, y, t)eCUH (Q)NE(H(Q)NEHLY(Q)) a sloution of (1.1), if

flx,y,8)=0 in C(%g, Yo, o) N (2% (0, o))
&x,y,t)=0 in C(xg, Yo, 2) N (SX(0, 0))
u(%, y) = uy(x, ¥) =0 in C(x, ¥, £,) N (QX {t=0}),

then u(x, y, t)=0 in C(x,, ¥,, £,) N (X (0, 0)).

Remark that when the given data {u, u,, f, g} satisfy the compatibility
condition for (1.1) of order m, {#, #, f, 7} satisfy the compatibility condition
or order m for (2.4) by changing the values in {y’; |y'| >8}.

Let d be a positive constant such that any s,& S, if a solution #(x’, y’, t) satisfy
(3.2) in R3 X (0, T), u(x, y, t) satisfy (1.1) in (QN {(x, ¥); | (x, y)—s,| <d}) X (0, T').
Set Q= LEJS{(x, 9); (%, y)eQand |(x, y)—s,| <d}. Define u(x, y, ) for (x, y, )
such thatoC(x, ¥, )N {t=0}C Q, by u(x, y, t)=d(x’, y’, t), and for (x, y, t) such
that C(x, y, £)N(Sx (0, T))=¢ u(x, y, t) equals the solution of the Cauchy
problem Lu=f, u(x, y, 0)=uy(x, y) and u'(x, y, 0)=u,(», y). We see that, by
taking account of the above remarks, by this definition u(x, y, ) is well defined

and satisfies (1.1) for 0 <t <—%

= tO’
max

If the given data satisfy the compatibility condition of order m-}2, it follows
that u(x, y, ) e H”"*(Qx (0, t,)) from Theorem 2.14. Then we have

Proposition 3.1. When the data {u,, u,, f, g} satisfy the compatibility con-
dition of order m-+3, there exists a solution u(x, v, t) in EY(H™(Q)) N EHH™(Q))
N--NEPYLYQ)) of (1.1) for t]0, t,).

By applying this proposition step by step we see for any T, when the given
data satisfy the compatibility condition of order 3([%]—{—1)—|—m, there exists

0
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a solution of (1.1) in EY(H™(Q)) N EH™(Q)N -+ NETH(L*(Q)) for
te[0, T]. This proves our Theorem 1.
Appendix
Consider a mixed problem
[ Ou = f(x, y, 1) in R%x(0, 7

_(_08, 40 =
Bu — < E_);-§—l)ay>1,t(90, Yy ) zmo =8g(9, 2)

A.l
A u(x, y, 0) = uy(x, )

Ou
PR t2) )0: 1\ %y ’
Dy, 0)= )

where b is a positive constant.
Theorem A. (A.1) has a propagation speed /115>,

This theorem shows that when 6=+0, (A.1) has a propagation speed larger
than Cauchy problem since that of Cauchy problem is 1.

Let us denote by E™([], B) the set of data W=(u,, u,, f, g)€ H™**(R%) X
H"™ Y (RY)XH™ (R X (0, T))x H™(Rx (0, T)) satisfying the compatibility
condition of order m for [] and B, for which we equip the following norm

I\I"z,,.: [2eo(2x, y)”fwz,chRa)‘f‘ [oey(, y)”3n+1,L2(R2+)

+11f(x, 3, t)“vzn+1,L2(R'ﬁ_x(o,T))+”g(ya t)||v2n+1,LZ<R><(o,T>) .

Theorem 2.14 shows that the mapping from E™([], B) to H™(R2 x (0, T'))
defined by

W — u(x, y, t) the solution of (A.1)

is continuous. Therefore for any fixed point (x,, ¥, %,), the mapping from
E*[, B) to C defined by

v — u(xov Yos to)
also continuous, namely for any W=(u,, u,, f, g)€ E*([]J, B) it holds
(A2) lu(x0, o 1) | <CIL,

where C does not depend on (x,, ¥y, t,).
Assume that the maximam propagation speed of (A.1) is v,, and set

Co(xm Yos to) = {(x, Y t); Ix_xo|+ |y_yol <'vo(to—t)} .

Remark that u(x,, y,, ¢,) is invariant with any change of values of data in the
outside of Cy(x,, ¥y, t,)-
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Put

u,(%, 9, ) = exp {n(—bx++/T+5 t—y)}
%, ¥) = ua(, ¥, 0)h(ny)

(%, ¥) = un(%, ¥, 0)h(ny)

fulx, 3, £) = k(nt) D{ua(x, y, Hh(ny)}
gx(y 1) = Bu,(x, y, h(ny)k(nt)| z-

where h(y) is a C=-function such that A(y)=0 for y<0, h(y)=1 for y>1 and
k(t) is a C~-function such that k(t)=1 for ¢<1, k(#)=0 for £>2. Evidently

W= (thner Uty frr §)E [\E™(J, B) and
(A.3) 1v.].<constn'.

Let us denote by #,(x, y, #) the solution of (A.1) for the data ¥,, then by
taking account of the definition of v, we have

(A4)  u,(x, 9, t)=d,(x, v, 1) in {(x, y,t); x>0, y—'vot>% and t>0}.

since [Jua(x, y, )=0 in R% X [0, ), Bu,(0, y, {)=0 in RX [0, o) and u,,(x, y)
— (%, , 0), thm(®, Y)=tl(x, , 0), fu(, , 1)=0, ga(y, £)=0 hold if y>%.

Now we prove Theorem A. Assume that v,<< /1+ 42 Take a point
such (y,, t,) that £,>0, y,—v,t,>0 and y,—+/1+5?%,<0. From (A.4) we have

(A.5) #n(0, ¥o» 1) = exp {n(~/1+ b? to"’yo)}
for sufficiently large n. On the other hand from (A.2) and (A.3) it holds
(A.6) | (0, v, t,)| <constn*.

Then (A.5) and (A.6) shows that

exp {n(~/1+ b*t,—y.,)} <const n*

holds for any sufficiently large #, this is a contradiction since \/1+ 5% #,—y,>0.
Thus we have

V,>1/1+ b?

By combining the just obtained result and Proposition 2.17, Theorem A is
proved.
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