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1. Soit ¥ un espace fonctionel relativement 2 un espace X localement
compact et séparé, et 2 une mesure £ de Radon positive dans X. Deny [3] a
démontré que les deux énoncés suivants sont équivalents sous la condition (k).

(*) A tout compact K de X, on peut associer une constante A'(K) telle
qu’on ait, pour toute u de %,

SKIu(x)lzdf(x)SA’(K)Hullz.

(1.1) La contraction “module” opére dans X. (resp. Les contractions
normales opérent dans %.)

(1.2) Le principe de domination est satisfait dans X. (resp. Le principe
complet du maximum est satisfait dans %.)

Dans cet article, nous allons démontrer la méme équivalence sans la con-
dition (x).

2. Nous donnerons d’abord la définition de ’espace fonctionel d’accord avec

Deny [3].

DrriNiTION. Un espace fonctionel X=%(X; &) relativement 4 X et 4 £
est un espace hilbertien des fonctions réelles et localement sommables pour £,
verifiant la condition suivante:

(a) A tout compact K de X, on peut associer une constante positive 4(K)
telle qu’on ait, pour toute u de %,

[ | u@)] dE@ <Al

Deux fonctions égales presque partout pour £ représentent le méme élément
de X. La norme et le produit scalaire sont désignés respectivement par ||u|| et
(4, v). On désignera par M I'ensemble des fonctions réelles, mesurables pour &

*) Cet article a été fait sous un bourse de la Fondation de Yukawa.
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et bornées, a support compact dans X, et par M * 'ensemble des ¢léments non-
négatifs de M. Par la condition (a), 4 toute fonction f de M, on peut associer un
¢lément unique u, de % tel qu’on ait

(17 ) = | o(@x)az(®)

pour toute v de X. On désignera par P(X) I'ensemble {u,; fe M}, et par
P*(%) 'adhérence de {u,; f€M™*}. On appelle les éléments de P*(%) potentiels
purs de X. Alors, P(¥) est dense dans %, et nous obtenons que la convergence
forte dans % entraine la convergence presque partout pour £ sur X.

Le principe de domination: on dit que le principe de domination est satisfait
dans X si, quels que soient f et g de M ¥, I'inégalité u,(x) <u,(x) est satisfaite
presque partout pour £ sur X dés ge’elle 'est presque partout sur {x&X; f(x)>0}.

Le principe complet du maximum: on dit que le principe complet du
maximum est satisfait dans X si, quels que soient f et g de M™*, l'inégalité
us(x) <uy(x)41 est satisfaite presque partout sur X dés qu’elle I’est presque
partout sur {x& X; f(x)>0}.

La contraction “module”: on dit que la contraction “module” opére dans
% si, quelle que soit u de %, on a |u| €% et || [u| || <[]

Les contractions normales: on dit que les contractions normales opérent
dans % si, quelle que soit une contraction 7" de la droite réelleb, on a T-uc%
et ||T -ul| <||u|| pour toute u de %.

Théoréme 1. Soit X un espace fonctionel relativement ¢ X et a . Deux
énoncés sutvants sont équivalents.

(A,) La contraction “module” opére dans X.

(A,) Le principe de domination est satisfait dans X.

Théoréme 2. Soit X un espace fonctionel relativement ¢ X et a £. Deux
énoncés sutvants sont équivalents.

(B,) Les contractions normales opérent dans X.

(B,) Le principe complet du maximum est satisfait dans %.

Deny [3] a démontré les entrainements (A,)=>(A,) et (B,)=>(B,) sans la
condition ().

3. Démontrons I’entrainement (A,)=>(A,). Pendant cette section, nous
supposons que le principe de domination est satisfait dans X. Soit ¢ un nombre
positif, et posons

u = utf

1) On appelle une contraction normale de la droite réelle R une application 7" de R a
R satisfaissant aux T(0)=0 et | T(a,;) — T'(a,)| <|a; —a,| pour tout couple a; et a, de R.
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pour toute f de M. L’ensemble P(X°)={u{; f&M} est un espace pré-hilber-
tien par la norme

il = (§ @ @@y,

La complété X de P(X°) par la norme susdite ||+||, est un espace fonctionel
relativement a4 X et 4 £.

Lemme 1. A toute u de P*(X), on peut associer une fonction non-négative
unique f de L>=L*(§) telle qu’on on ait, pour toute v de X,

(1, ©). = | o(x)/(x)dE(x)

En effet, il existe une suite (f7) de M* telle que la suite (u{)) converge
fortement vers u dans %> avec n—>oco. L’inégalité

cllfa—frlliz<llug)—ul;
entraine I'existence d’une fonction non-négative f de L* telle qu’on ait
lim || f—fll2= 0.
Posons
fu) = sup (inf (f2(%), f (%)), fa-s()) -

Par l'inégalité |[u{||. <[||u)[|. et la convergence croissante de (f,) vers f, la suite
(u§)) converge fortement vers # dans X’ avec n—>co. Pour toute fonction non-
négative v de X, on a

(1 2). = lim (u52, o), = lim [ e(@)f(@)EE) = | o(@)f@aE),

parce que la suite (f,) converge en croissant vers f presque partout pour £.
Généralement, depuis que 'espace fonctionel X a un noyau positif?, d’aprés
le théoréme de Aronszajn-Smith (voir [1]), 4 toute v de ¥, on peut associer un
éléement ¥ de X telle qu’on ait

llolle<llell. et |v(x)| <B(x)
presque partout pour £ sur X. Par le résultat susdit, on a

[ o) (x)de ()< + .

Le théoréme de convergence de Lebesgue entraine

2) On P’appelle si tout potentiel pur d’un espace fonctionel est non-négatif.
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tim { o(x)f,(x)dE(®) = | o@naze),
c’est-a-dire que
(1, 9). = | o) (x)dEE).
De la méme maniére, on désigne par u$ cet élément u. Nous posons
LHE®) = (f L up € PHE))
Evidemment, on a LY(¥)=L*¥") pour tous c, ¢'>0.

Lemme 2. Le principe de domination est satisfait dans X pour tout ¢>0.
En effect, pour un couple de f et g de M+, supposons que

P () <P ()
presque partout pour £ sur {x€ X; f(x)>0}. Ilsuffit de le démontrer au cas ol
xeX; f(x)>0N{xeX; g(x)>0 =0,
parce que, en général, on peut considérer 'inégalité
UG+ () Suc_py-(%)

Depuis que le principe de domination est satisfait dans X et qu’on a u,(x) <u,(x)
presque partout pour & sur {x&X; f(x)> 0}, u,(x) <u,(x) presque partout pour
£ sur X, cest-a-dire,

1 (20) +ef (%) Sug (%) +-cg(x)
presque partout pour ¢ dans C{x€ X; f(x)>0}. En conséquence, on a
P () <u ()
presque partout pour £ sur X.

De plus, nous obtenons le lemme suivant.

Lemme 3. Pour un couple f, et f, de LX), Pinégalité uy(x)<uf)(x)
est satisfaite presque partout pour £ sur X dés qu'elle lest presque partout pour
E sur {x€X; f(x)>0}.

D’abord, nous allons démontrer au cas ou f,eM™*. Il existe une suite
(fi») de M*, qui converge en croissant vers f, presque partout pour £ sur X,
telle que la suite (uy?,) converge fortement vers uj? dans X avec n— oo.
Depuis qu’on a

) <u()

presque partout pour £ sur {x& X f, ,(x)> 0}, I'inégalité
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) (e)
ufl n(x) Sufz (x)

est satisfaite presque partout pour £ sur X par le lemme 2. Faissant n—co,
nous obtenons

ugy (%) <ug(x)
presque partout pour £ sur X. Au cas général, supposons que
E(freX; ui?(x) > ui(x)}) >0.
Alors, il existe une fonction g(=30) de M ™ telle que
S,C{xeX; uf?(x) > us)(x)} .
Soit E I'adhérence de 'ensemble
{ug; feM™, S,C{xeX; ufd(x) <uf(x)}} .

Alors, E est un cone convexe fermé dans X°. La projection de u§> vers E est
un potentiel pur dans X, que nous désignerons par ug’. Par ’énoncé susdit,
ona

ug’(x) = ug’(x)
presque partout pour & sur {x& X; u/?(x) <uf(x)}, et
ug (%) =>ul(x)
presque partout pour £ sur X. Alors, on a
(uf? —uf), u’ —ug),

S (u‘”(x)—u(gcz)(x))f,(x)df(x)—S (u$ (%) —uP (%)) f(x) dE(x)
| () - (£ EC) 0.

I

D’autre part, on a
(), uP—u),
- S(u}i’(x)—u;?(x»g(x)dax)—S (157 (3) 5 (008 (WE )
> | @@ —u e @ieE) >0,
ce qui est une contradiction. Donc, on a
) () <usy ()

presque partout pour £ sur X.
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Lemme 4. Le principe d’enveloppe inférieur est satisfait dans X, c’est-a-
dire, pour toutes f, et f, de L*(X®), il existe une fonction f, de L*(X*) telle qu’on ait
uf(x) = inf (uf2(®), w2(@)

En effet, posons, pour toute #§” de P*(X®),
1) = 1132 | inf (u5x), w5 (@S (3)E()
Alors, I(u$”) est bornée inférieure, parce qu’on a

I(w?) > |luyl13—2 S ug? (%) f(x)dE(x) = |luy” — w2l — w2 117> — w113 -
Posons
m = inf {I(u{®); u{® € P+(X)} .

Alors, il existe une suite (f,) de M * telle qu’on ait

lim I(u)) =m .

fi-yc0
La suite (u§) étant bornée dans X, nous pouvons supposer qu’il existe un
potentiel pur u;” de X tel que la suite (u5’) converge faiblement vers #{ dans

X avec n—oco. Ensuite, nous démontrerons I'égalité u;”=u;". Depuis qu’on
a, pour tout 7,

0 <inf ((®), usg (/) < w2 (¥)f,()
presque partout pour & sur X et
[z = @, u),
converge vers
(w5, ). = [ w0()f(x)dE () < + o0

avec n—> oo, nous obtenons que

tim [ inf (w593, w5 ()/0AE®) = | inf @), 126V (e .

>

Par suite, on a
lim I(uf?) > I(us®) ,
n-poo

c’est-a-dire, m=1I(u§). On a donc, pour toute g de LX),
(W, ug’)e 2 S inf (u57(x), uz; (%)) g (¥)dE(¥) (1)

et

lluzlle = j inf (u(x), uz)(x))f (*¥)dE(x) - (2)
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L’inégalité (1) entraine
ug®(x) > inf (u5)(x), us)(x))
presque partout pour £ sur X, et les inégalités (1) et (2) entrainent
u;P(x) = inf (u5(x), u5})(x))
presque partout pour £ sur {x&X; f(x) >0}. Par le lemme 3, nous obtenons

que les inégalités

uP () <u (),
et
4P (%) <usf ()

sont satisfaites presque partout pour £ sur X. En conséquence, nous obtenons
Pégalité uf®=uf?’ que nous avons désire.

Lemme 5. On a M CX“ pour tout ¢ > 0.
En effet, pour une fonction f de M, la transformation

Ay: 4= PE®) > | f(0)g(x)dE)

est linéaire et bornée dans P(X‘°). Par suite, on peut prolonger 4,4 X, et
Ay est un fonctionel linéaire et bornée. Il existe un élément unique u de X
tel qu’on ait, pour toute g de L*(X®),

(4, u). = | W2 ()aE),

C’est-a-dire, on 2 u=f., et f X,
De la méme maniére, nous obtenons LA(X)CX. Soit 4 un ensemble
mesurable pour £ dans X tel que £(4) >0, et posons

X = (ue¥x®; S,C 4.

Alors, X5’ =+0., et il est un espace fonctionel relativement a2 4 et 2 £ par la norme
déduite de X>. De la méme maniére que la démonstration du lemme 2, pour
toute f de M* avec S,CA,» nous obtenons que le potentiel u”, de X est

non-négative et égal 2 u{” —uf, ou f'C LA(X) avec S,sC CA.

Lemme 6. Soit ul” un élément dans X tel que f*, f~ € LX) et uy” >0.
Alors, on a f(x) <0 presque partout pour £ sur {x= X; uy”(x)=0}.
En effet, posons

A= {xeX; u(x) = 0, f(x) >0},

3) On désigne par Sy le support de f.
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et supposons que £(4)>0. Alors, selon X%’ =0, il existe une fonction g de M'*
avec S,C A telle que ug’4(x)=0, on a

)

(19, n) = (7, 1 —12). = — | uP (g (R)aE=0.

D’autre part, on a
(W, ufa), = § ua(%) (%) = SAuéf,h(@f(x)dE(x) >0.

C’est une contradiction, d’ou la démonstration est compléte.

Démonstration de ’entrainement (4,)=>(4,). Nous démontrons d’abord
que la contraction ‘“module” opére dans 'espace fonctionel X°. Par le lemme
4, pour toutes f, et f, de L(X¢®), il existe une fonction f, de L*(X) telle que

w) __ 3 ) )
us) = inf (w5, uf)) .

Depuis qu’on a
) = @) ()~ | )~ w2 (@)1)

la fonction |u§? —uy’| appartient 4 X°. On a

s = 1], = s -y — 205 |
= sy — a4 (g sy, w2 ),

< Mg —uille
Dans le calcul susdit, nous avons employé le lemme 6 et 1’égalité
E{xeX; u}j’(x)—u}f)’(x) >0, u}i’(x)—-u}f}’(x) >0})=0.

Ensuite, soit # un élément de X°.  Alors, il existe deux suites (f, ,) et (f,) de
L*(%) telles que la suite (uf, —us.) converge fortement vers u dans X avec
n—>oo, Par I’énoncé susdit, on a

(€] «©) (D)
[ug? —ug) | I=¥.4
et

gy, — s | e Il —ug, . -

Par suite, nous pouvons supposer qu’il existe un élément #” de ¥ tel que la
suite (|uf, —us) |) converge faiblement vers " dans X avec n—>oo. Depuis
que la suite (|ug?,—us |) converge vers |u| presque partout pour £ sur X, on
a u'(x)=|u(x)| presque partout pour £ sur X, d’ou la fonction |u| appartient a
X, De plus, on a

I ol Hle <Tim (] g, =i, | e <lim gy, —ugy lle = llull.
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et par suite, la contraction “module” opére dans X¢.
Secondement, nous démontrons que la contraction ‘“module” opére dans
Pespace fonctionel X¥. Soit f une fonction de M, et considérons la transfor-

mation de u, € P(%) en Sluf(x) |g(x)dE(x). Depuis qu’on a

1)1 2 @) = tim {1 )+ oftw)] g )|

€>0

= Um| (Jup ], ). | <Um ] fur] |l [lug”lle
c>0 p)o
< Lim ffugll - llug’lle = lugll - llugll

C>0
par le théoréme de Riesz, on a |u;| €% et || |u/] [|<|lu/|. De la méme manieére
que la démonstration susdite, pour toute u de X, nous avons |u|EX et
I lul [|<|lul]. Clest-a-dire que la contraction “module” opére dans X.

4. Démontrons I'entrainement (B,)=>(B,). De la méme manieére, il suffit
de démontrer que les contractions normales opérent dans X pour tout ¢>0.
Pour cela, il suffit de démontrer que la contraction unité T opére dans X%,
(Voir [4] et [5].) De la méme maniére que le lemme 4, nous pouvons démontrer
que, pour toutes f; et f, de L*(X), il existe une fonction f, de L*(X) telle que

(6) lnf (u(C) u(c)+1)
Alors,
T (u(c)_u(e) — lnf (u(c) u'(f;)’ ) — u(c) u};)
si uf?—ug)>0. De la méme maniére que 'entrainement (4,)=(4,), on a
17—l = llusy w2,

<y —ug)lle -
Par suite, pour toute # de X°, on a T -us %X et

T -ull, =

En conséquence, les contractions normales opérent dans X“°. Ainsi, la
démonstration est compléte.

ReEMARQUE. Ces deux résultats peuvent immédiatement étre prolongés
dans le cas d’un espace fonctionel généralisé. (Au sujet de I'espace fonctionel
généralisé, voir [6].)

UNIVERSITE DE NAGOYA

4) On appelle la projection de la droite réelle R 4 [0, 1] la contraction unité,
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