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有限温度・有限密度 2カラーQCDの相図と超流動性の解明

伊藤悦子

慶應義塾大学 自然科学研究センター／大阪大学核物理研究センター／高知大学 理工学部

1. はじめに 能である。

核力などの強い力が支配的な系のミクロな振る舞 これまでに、有効模型を用いた研究と、我々のグ

いを記述する量子色力学(QCD)は、第一原理計算で ループの研究を含む第一原理計算による研究から下

ある格子シミュレーションによる数値的研究によ 図 lの様な相図が描けるとわかってきた。

り、現実のハドロン質量の再現［文献 l]や、有限温

度相転移の定性的・定量的振る舞いの解明［文献 2]

において成功をおさめてきた。この格子理論の手法

は、知られている帷ーの非摂動論的かつゲージ不変

な定式化であり、理論的研究と実験結果の強い架け

橋ともなっている。

しかしながら、これらの成功は、物質が存在する

ことによる有限密度効果を無視できる場合に限られ

ている。有限密度下における QCDの振る舞いは、

中性子星や加速器実験における現実の物理系として

存在しているにも関わらず、理論的な理解はもとよ

り、現象論的にも未だよく分かっていない。その主

な理由は、上記の第一原理計算である格子シミュレ

ーションには、有限密度にすると「符号間題」とい

う本質的な困難があり、未だに完全な定式がないた

めである。

我々の研究の目標は、現実の QCDを記述する

SU(3)ゲージ理論のトイ模型である「SU(2)ゲージ理

論(2カラーQCD)の有限温度・有限密度系」を格子

シミュレーションで調べ、その相図の決定、さらに

は各相における系の性質を解明し、現実の有限温

度・有限密度QCDに対する知見を得る事である。

SU(2)ゲージ理論は、紫外領域では漸近的自由性が

あり、また（密度効果を無視した際の）低エネルギー

領域では閉じ込めやカイラル対称性の自発的破れと

いう非摂動論的性質を持つ。これは現実の QCDと

同じである。一方で、有限密度2カラーQCD理論は、

前述の「符号間題」がないため、格子計算が実現可
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図1:有限温度・密度2カラーQCDの相構造予想図

ここで、各相の性質は、

(1)クォーク・グルオン・プラズマ(QGP)相

閉じ込めなし、カイラル対称性が回復し、ダイク

ォーク凝縮もなし

(2)ハドロン相

閉じ込めあり、カイラル対称性の自発的破れ、ダ

イクォーク凝縮なし

(3)超流動相

ダイクォーク凝縮あり

(3-1)ボーズアインシュタイン凝縮(BEC)相

(3-2) BCS相（閉じ込め，フェルミ面の出現）

(3-3) BCS相（非閉じ込め，フェルミ面の出現）

で特徴づけられると考えられている。

しかしながら

● QCD型理論における「超流動相」の決定的な証拠

があるか？



●特に低温高密度下でのトポロジーなど非摂動論的 ミオンに対してこの項を取り入れた（ラショナル）

な性質はどうなっているか？ ハイプリッドモンテカルロ法のコードを構築した。

という点が未だに不明であり、第一原理計算である そして、昨年(2017)度までに、ダイクォーク源を導

格子計算の結果が待たれている状況である。 入した我々の計算手法が、実際に低温高密度領域ま

で実行可能であることを確認した。

これまでに、 SU(2)ゲージ理論に対する数値計算に

よる研究として、スタッガードフェルミオンを用い

た4フレーバーに関する研究［文献3]や、2フレーバ

ーに関して Wilsonフェルミオンを用いた研究［文献

4,5]、スタッガードフェルミオンを用いた研究［文献

6]も行われた。しかし、特に低温・高密度領域につ

いての研究は乏しく、文献によって「非閉じ込めの

BCS相」が存在するか否かで結論が分かれるなど、

定性的な理解すら未だ得られていない。

2. 符号問題とシミュレーションの不安定性問題

前述のように、ゼロ化学ポテンシャルでは QCD

(SU(3)ゲージ理論）と類似の非摂動論的性質を持

つ、 SU(2)ゲージ理論では基本表現が擬実になるため

に符号間頴がなく、第一原理計算が可能である。一

方で、符号間題のない SU(2)ゲージ理論においても、

低温高密度領域の第一原理計算は困難であることが

知られている［文献3,4]。その理由は、フェルミオン

の化学ポテンシャル(μ)が最も軽いハドロンの質量

(m_{PS})の半分を超えると、ダイナミカルにフェル

ミオン—反フェルミオンの対生成・対消滅が激しく起

こり、シミュレーションが不安定になる事にある。

また、超流動性を特徴付ける「ダイクォーク凝縮」

がダイナミカルに生成されることとも関連する。

3. 低温高密度領域でのシミュレーションの実行

可能性

今回の研究では、連続極限に近くなるように改良

された「岩崎ゲージ作用」と、「ウィルソン格子フェ

ルミオン」を用いた格子作用を用いてシミュレーシ

ョンを実行した。さらに、高密度領域のシミュレー

ションの不安定性を回避するため、作用に「ダイク

ォーク源」の項を導入した。これは［文献3,5]で提案

された方法であり、我々は独自にウィルソンフェル

4. 相図の決定とトポロジ一

今年度は、まず、くり込んだハドロン質量の比

(m_{PS}/m_{V})が一定となる格子上の質量パラメ

ータ(kappa)を様々なbetaに対して決定し、その上で

ゼロ化学ポテンシャルの時のカイラル相転移温度

(Tc)の決定、グラディエントフロー法による格子パ

ラメータ(beta)と格子間隔の関係式の決定を行った。

それを用いて、 T=0.43Tc(約 90MeV)の超低温にお

いて、有限密度領域でどのように相が変わって行く

かを調べた。

各相の決定には、

●閉じ込めの秩序変数である「ポリヤコフループ」

●超流動性の秩序変数である「ダイクォーク凝縮」

●フェルミ面の出現を測る「クォーク数密度」

の3つの物理量を主に測定した。

4. 1 相図の決定

T=0.43Tc(beta=0.8,kappa=0.1590,Ns=Nt=l6)におけ

る、ポリヤコフループとダイクォーク凝縮の結果を

図2に示す。
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図 2:T=0.43Tcにおけるポリヤコフループ（赤）とダイク

ォーク凝縮（青）の化学ポテンシャル依存性
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まず、ダイクォーク凝縮（青）に注目すると、計算

不安定性が現れる μ/m_{PS}-0.5付近からダイクォ

ーク凝縮の真空期待値がノンゼロとなり、超流動性

が現れることがわかった。この臨界点付近のスケー

/m_{PS}--0.5でクォーク数密度はノンゼロになり始

め、 μ/m_{PS}--0.73付近でツリーレベルの値と一致

し、 BCS的描像が良いことがわかる。以上をまとめ

ると T=0.43Tcでは、

リング則を調べたところ、カイラル摂動論のリーデ 0 <μ/m_{PS}<0.50でハドロン相

ィングオーダーの値(-0.5)と無矛盾であることもわ

かった。

次に、ポリヤコフループ（赤）は、非常に高密度

領域になるとその値がノンゼロとなり、一見「非閉

じ込め」となる事がわかった。この時のポリヤコフ

ループの感受率を調べると μ/m_{PS}=l.45付近で

ピークを持つ。しかしながら一方で、ダイクォーク

凝縮の値は、それより低密度領域であるμ

/m_{PS}=l.29付近でピークを持ち、より高密度領域

では値が小さくなる。このダイクォーク凝縮の振る

舞いは格子単位で記述した化学ポテンシャルが格子

間隔と同じくらいになる(aμ-1)と、クォークのプロ

パゲータの中で化学ポテンシャル項が支配的になり

クエンチ近似した場合と同じような状況になること

によるアーティファクトと考えられる。

この振る舞いは、これまでにスタッガードフェル

ミオンを用いた文献[3,6]には見られたが、我々と同

じウィルソンフェルミオンを用いた文献[5]には見

られなかった。我々の研究では、ダイクォーク凝縮

を測定する際に、「ダイクォーク凝縮源に関する再重

みづけ法」を新たに導入することで、相図を得るの

に必要なダイクォーク凝縮源パラメータの外挿を精

密にとることができ、この結果を得た。

次に、超流動相の中で、「平均的なクォーク間距離

が系の相関長より長い BEC相」と「フェルミ面が形

成されている BCS相」の 2種類があるかを調べた。

フェルミ面が形成されると、クォーク数密度(n_q)が

ほぼツリーレベルのプロパゲータから計算できる値

(n _qA{tree})に一致すると考えられる。ツリーレベル

の値で規格化したクォーク数密度演算子の期待値を

図3に示す。

密度を上げていくと、超流動性が現れるμ
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0.73 <μ/m_{PS}<l.29でBCS相（閉じ込め）

1.29 <μIm {PS} でアーティファクト相

が現れることがわかった。
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図 3:T=0.43Tcにおけるクォーク数密度の化学ポテンシ

ャル依存性と対応する相

4.2 トポロジーの温度・密度依存性

次に、この T=0.43Tcにおける各相のトポロジカル

感受率を調べた。図 2にも示したポリヤコフループ

の値とトポロジカル感受率の結果を図 4に示す。
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図4:T=0.43Tcでのポリヤコフループ（赤）とトポロジカ

ル感受率（青）の密度依存性



この図から、 トポロジカル感受率はハドロン・

BEC・BCSのいずれの相でも誤差の範囲でほぼ一定

であることがわかる。一方でこれまでの先行研究で

は、ポリヤコフループの値が大きくなる高密度領域

では、感受率が小さくなるという結果が得られてい

た。我々は、これは温度に依存するのではないかと

考え、 T=0.87Tc(beta=0.8,kappa=0.1590,Ns=32,Nt=8)

でも同じことを調べた。その結果が図 5である。-

れは先行研究の結果と定性的に一致する。
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図 5:T=0.87Tcでのポリヤコフループ（赤）とトポロジカ

ル感受率（青）の密度依存性

この T=0.87Tcで有限温度領域の相構造を調べる

と、超流動性の秩序変数であるダイクォーク凝縮が

どの密度領域でもゼロとなり、この温度の高密度領

域では、ハドロン相から QGP相へ転移していること

がわかった。

つまり、 トポロジカル感受率の密度依存性は、た

とえ Tcより低い温度であっても、その密度領域に現

れる相構造に強く依存しているという知見を得た。

5. まとめ

有限密度 QCDで最も困難とされる「高密度領域」

の定性的な理解を得るため、符号間題のない SU(2)2 

フレーバー理論に注目し、さらに高密度領域まで第

ー原理計算を可能とするために、ダイクォーク源を

導入する手法を用いて第一原理計算を行った。

特に 2018年度は、低温有限密度領域における相構

20 

造とトポロジーの振る舞いに注目し、「T=0.43Tcと

いう超低温領域では高密度領域には非閉じ込めの超

流動相が現れないこと」「低温高密度領域のトポロジ

カル感受率の振る舞いは Tcより低温でも、さらに温

度によって定性的な振る舞いが変わること」の大き

く2点の新しい知見を得た。

本研究は、高知大学飯田圭氏、石黒克也氏、李東

奎氏との共同研究に基づく。

2017年度に、若手・女性研究者支援萌芽枠に採用

していただき、 2018年度は、引き続きサイバーメデ

ィアセンター(CMC)の公募型利用制度ならびに学際

大規模情報基盤共同利用・共同研究拠点公募型共同

研究(JHPCN)にも採択され、研究を行った。また、

CMCの公募型支援枠だけではなく、 RCNPによる無

償サポートによって、 CMCの計算資源を利用した。

RCNPならびに核物理コミュニティのサポートにも

感謝します。

最後に、本研究を遂行するにあたって、グラディ

エントフローのコードは、 CMCのGPUチェレンジ

の制度を利用し、非常に高速化されたコードの提供

をいただいた。また、日頃からシステムの運営を支

えてくださっている方々（寺前さん、勝浦さん）に

は、いつも迅速かつきめ細かいサポートを頂いてお

り深く感謝致します。
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