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複合アニオンに起因した多軌道性と低次元性からうまれる

強相関電子物性の研究

越智正之

大阪大学大学院理学研究科物理学専攻

1. はじめに

酸化物はその豊かな物注から、物r生物理学におい

て中心的な研究対象であり続けている。たとえば強

相閑電子物性に閉しては、遷移金属酸化物の研究が

非常に活発に行なわれている。そこでは遷移金属元

素を変えることで物性が大きく変化することが知ら

れているが、近年、アニオン（酸素）自由度をコン

トロールすることが注目を集め始めている。具体的

には、酸素や窒素などのアニオンを複数有する化合

物、複合アニオン化合物に関する研究の進展が著し

しヽ[l]。

本研究では特に、遷移金属酸化物において酸素が

部分的に水素置換された、遷移金属酸水素化物に注

目する。水素置換による効果の一つはキャリアドー

プである。たとえば鉄系超伝導体において、酸素の

フッ素置換では実現できないような高濃度のキャリ

アドープが水素置換によって可能となり、新しい超

伝導相と反強磁性相の発見に繋がった[2,3]。また、

遷移金属元素の贔軌道と水素のs軌道は対称性が異

なるため、酸化物において存在していた結合が酸水

素化物では失われる[4-6]。このことに起因して、酸

水素化物の電子状態は低次元性が増強されている。

一般に強相関物性と次元性の関係は深く、その観点

からもこの特徴は興味深い。また、遷移金属元素の

置かれる環境が異方的になる、すなわちある方向に

は酸素元素が配位し、ある方向には水素原子が配位

している状況が実現する。その結果として、電子軌

道の伸びている方向次第で、その軌道エネルギーが

異なることになる。このような環境の変化も、モッ

ト絶縁化やそれに付随した磁気秩序などの要因とな

りうることが知られており、やはり強相閃物性とい

う観点から興味深い。

本研究の対象物質である Srn+l況02n+1Hnは、

Ruddlesden-Popper 相にある遷移金属酸化物

Srn+l況OJn+lにおいて一部の酸素が水素置換された

化合物であり、水素が秩序配列することが知られて

いる(4-6)。また、反強磁t生秩序の存在[4)や、圧力誘

起の金属絶縁体転移(6)も実験的に報告されており、

強相閑物「生の舞台としても興味深い。水素が秩序配

列しているため理論的に扱いやすい上、様々な強相

関手法を滴用されてきたバナジウム酸化物との比較

も可能であり、まだ性質のよくわかっていない強相

関複合アニオン化合物の電子状態を調べるためには

格好の対象であるといえる。しかし強相関物性を調

べるという観点からすると、その電子状態をよく記

述する「低エネルギー有効模型」が必要不可欠であ

る。本研究[7]は、その低エネルギー有効模型を第一

原理的に梱築し、さらにはそれを解析することを目

的とするものである。ここでは模型構築の部分に関

して、これまでに得られた成果を報告する。

2. 計算手法

まずQuantumESPRESSOパッケージ[8,9]を用いた

第一原理バンド計算を行なった。そのバンド構造か

ら出発したワニエ関数の構成、および constrained

RPA[10]によるハバード模型の有効相互作用の評価

には、 RESPACKコード[11-15]を用いた。本研究で

用いた計算＝ードはいずれも公開されているフリー

のソフトウェアである。最も計算負荷の大きい、

constrained RPAにおける分極関数の計算では、 :MPI

並列と OpenMP 並列が併用されている 。

Srn+l況02n+l比および Srn+l況03n+lについて、 n=1の

場合とn=ooの場合、 それぞれで以降の計算を行な

ったが、ここでは紙面の都合上、 n= ooの場合に限

定して紹介する。その計算には、 OCTOPUSにおけ

る数百 core並列の計算を複数回要した。
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3. 結果

3. 1 結贔構造

固lにSrVO虚よびSrV02Hの結晶構造を示した。

ここで示している結晶構造は全て周期的に配列して

固体を形成する。酸化物である SrV03においては、

バナジウム元素はどの方向も酸素原子に取り匪まれ

ていることがわかる。つまり、この物質ではx,y, z 

方向がいずれも等価である。一方、酸水素化物であ

るSrV伍Hにおいては、z方向の酸素だけが水素原子

で置換されている。このことによって、 z方向への

電子の移動積分が強く抑制される（低次元性が生じ

る）ほか、ふ軌道と d辺yz軌道が非等価なものとなる。

これらはいずれも酸水素化物特有の性質である。
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図1:(a) SrV~ と(b)SrVOzHの結晶構造。描画には

VESTA[16]を用いた。

バンド構造

次に、各物質の電子バンド構造を図2に示す。

ド分散）

こ

こで、黒い点線は第一原理計算によって得られるバ

ンド分散全体を表しており、赤い実線は、ここで注

目しているバナジウムの f2g軌道の形成するバンド

（より正確には、対応するワニエ関数の抽出によっ

て得られる tight-binding模型を用いて描かれるバン

を示している。詳繍は割愛するが、例えば

図2(b)において、r-z上で f2g軌道のバンド分散が殆

どない（平らに近い）ことがわかる。 これは、上で

みたように z方向に結合が分断されていることによ

る低次元性の表れである。また、低いエネルギーに

存在するバンドの塊は、酸素や水素といったアニオ

ンの作るバンドである。赤実線で描かれたバナジウ

ムの t2gバンドよりも少しエネルギーの高いバンド

はバナジウムの egバンドにあたる。酸化物において

は贔バンドと egバンドはエネルギー的に分離して

いるが、酸水素化物ではエネルギー的に接近し、バ

ンドが交わっていることがわかる。

3.3 

これは、水素の

方向に伸びている eg軌道がエネルギー的に安定化し

ていることに対応する。それによる帰結については

次の節で言及する。
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図2:(a) SrV(hと(b)SrVOzHのバンド構造。

有効相互作用

先に求めたバンド構造を用いて、 constrainedRPA 

によって有効相互作用を求めた。

用を求める際に重要な条件の一つとして、低エネル

ギー有効模型にどの自由度を含めるか、ということ

がある。例えば、 dp模型における有効相互作用を求

める際は、 V-d軌道と 0-p軌道以外の電子軌道は、

有効模型の自由度として露わに取り扱われることは

ないが、その代わりに有効相互作用の遮蔽（による

込まれることになる。

モデルパラメータの変更）という形で間接的に取り

一方、 V-d軌道と 0-p軌道同

士の多体効果については、有効模郡を解く際に取り

入れるべきものであり、モデルパラメータの変更（遮

蔽効果による相互作用の変調）

ることはない。

r ZR r
 

ここで有効相互作

という形で取り入れ

ここではまず、 dp(s)模型から出発する。この模型

は、 V-d軌道、 0-p軌道、そして酸水素化物ではH-s

軌道を加えた軌道が、模型の自由度として扱われる。

得られた値の詳細は割愛する（文献[7]を参照された

い）が、酸水素化物のほうがより強く遮蔽効果が生

じることが明らかになった。これは、おそらく水素

の安定化によってバンド同士の （特に V-d軌道とそ

れよりエネルギーの高い軌道の）交わりが強まった

ためであると考えられる。

次に、 d模型を考える。この系はV-d軌道のみが
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模型自由度として取り扱われるため、アニオンの原

子軌道が遮蔽効果に関わることになる。その結果、

相互作用の強弱が逆転することが明らかになった。

すなわち、酸水素化物において遮蔽効果がより弱い。

これは、図 2(b)のバンド図を見ると理解できる。実

際、エネルギーの深いアニオンバンドと V-dバンド‘

のエネルギー的な隔たりが、図 2(a)に示した酸化物

よりも大きくなっていることがわかる。これは水素

の存在によって酸素軌道がより強く安定化したため

であると考えられる。 そして、エネルギー的に隔た

りが大きいほど、電子間斥力の遮蔽効果は弱まる。

このような酸素バンドと dバンドの相対エネルギ

ーの変化を通した遮蔽効果の強号号は、酸化物におい

て理論的に指摘されている[17]。

最後に、 t2g模型について考える。この模型では、

V-t2g軌道のみが模型自由度として取り扱われる。ち

ょうど図 2において、赤実線で示しているバンドの

みが模型に含まれ、それ以外のバンド全てが相互作

用の遮蔽に関与する、ということになる。表lに得

られた相互作用パラメータを示した。 ここでt,(1 = x, 

y, z)は各方向への最隣接の移動積分、 △は異軌道間

の軌道エネルギー準位差を表している。例えば dxy

軌道はどの場合についてもx,y方向に結合が強い (t

の絶対値が大きい）が、 SrVらH では水素の配位し

ている z方向への移動積分は今軌道であっても小さ

い。これが先に述べた低次元性である。 少し脱線し

たが、相互作用パラメータについてはぴcrが遮蔽相

互作用、ぴareは遮蔽効果を考えない場合の裸のクー

ロン斥力を表す。ここでは前者にだけ注目すると、

酸水素化物においてびerが小さい、すなわち遮蔽効
果が強く効いていることがわかる。つまり、ここで

再び相互作用の （あるいは遮蔽効果の）強弱が逆転

したこ とになる。これは、前節において述べたよう

に V-t2gバンドが V-egバンドと強く交わっているこ

とから、 egバンドが強く遮蔽効果に関与したことを

表している。

このように、酸水素化物ではかなり特殊（でかつ

複雑）な遮蔽効果が起きていることが確かめられた。

一般に有効模型を解いて物質の霊子状態を解析する

際は、「どの有効模型を選択するか」がしばしば重要

になる。ここで見た非自明な遮蔽効果は、今後の解

析においてその点に注意する必要があることを示唆

している。なおこのようにバンドが強く交わってい

る(entangleしている、という）場合のconstrainedRP A 

は取り扱いがuniqueではないため、得られた結果に

はやや曖昧さが残ることには留意されたい。今匝用

いた手法はやや祖互作用を過剰に遮蔽する傾向があ

るといわれているため、その効果もあるだろうと思

われる。

tx 杓 tz △ u:r utare 
SrV03 dxy -0.26 -0.26 -0.03 - 3.42 15.78 
SrV02H dxy -0.25 -0.25 -0.04 - 3.00 16.04 

dyz 0.01 -0.42 0.10 -0.45 2.60 15.18 
SrCr03 dxy -0.24 -0.24 -0.02 - 2.97 16.18 

表1: いくつかの物質において、本研究で第一原理的に決

定されたモデルパラメータ。

4. おわりに

本研究ではバナジウム酸水素化物の有効模型を第

ー原理的に構築した。特に、水素置換に起因した電

子の移動積分の低次元性を明らかにしたほか、

constrained RPAに基づいた有効相互作圧の評価を行

なった。 その結果、水素の存在による、特異な霊子

間斥力の遮蔽効果が生じていることが明らかになっ

た。今後、この有効模型を用いて本物質の強相闊効

果の解析を進めていきたい。本研究は、新学術領域

研究 「複合アニオン化合物の創製と新機能」の公募

研究（課題番号： l 7H05481)による助成のもとで行

なわれた。
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