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共晶系Sr2Ru04―Ruの3-Kelvin相における
界面超伝導の磁場誘起カイラル転移

兼安洋乃

兵庫県立大学大学院物質理学研究科

1. はじめに

Sr2Ru04-Ru(SRO-Ru)は、超伝導体である

Sr2Ru04(SRO) (図 l右図）に、 μmサイズの Ru結晶

(Tc=0.5K)が析出した共晶系超伝導体（図 1) である

[1,2]。SRO-Ruは電気抵抗において Tonse1=3K付近よ

り不均ーな超伝導転移を示すことなどから、 Sr2Ru04

のバルク超伝導(Tc=l.5K)とは異なった Ru結晶界面

付近に局在した界面超伝導が生じている可能性が実

験から報告されている[1,3,4]。この 3-Kelvin(3K)相

と呼ばれる界面超伝導について、Ru金属結晶界面近

くに non-chiral界面状態が生じ、温度を下げると

chiral界面状態になる機構が、ゼロ磁場で SROのバ

ルク状態を chiral状態と仮定した場合の理論研究か

ら説明されている[5]。

本研究では、この界面超伝導相において、 Ru02

面に対する垂直磁場により引き起こされる

non-chiral界面状態からの chiral状態の安定化と、そ

れに伴う常磁性超伝導電流の生成のメカニズムを説

明する。又、これら垂直磁場中での振る舞いは、面

内磁場では起こらないことを示す。この磁場方向に

よる chiral転移の違いは、実験での 3K相でのトンネ

ル微分コンダクタンスにおけるゼロバイアス異常の

磁場ー温度依存性と定性的に整合することから、 3K

相が低温で漸近する SROバルク超伝導状態が chiral

状態である可能性を述べる。
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2. Sr2RuOcRuの3-Kelvin相

2. 1 Ru結晶近くに局在した界面超伝導

SROのバルク超伝導では、Kerr効果やμSRによる

内部磁場の測定により [6,7]、広以下で自発磁化が生

じることが報告されている。このことから、 SROの

超伝導状態について、時間反転対称性が破れた chiral

状態を仮定する。この chiralバルク状態に界面超伝

導が低温で漸近的につながると考えて、さらに Ru

金属界面付近で高くなる超伝導転移の距離依存性を

設定する。この 3K相モデルにおいては、 Tonse1=3K

近くで non-chiral界面状態が生じ、そこからさらに

温度が低くなると chiral界面状態に変化する[5]。
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図1:(右図）SnRu04の結晶構造 [2]と、（左図）SnRu04-Ru 
共晶体の光学顕微鏡写真 [1]

図2:Ru金属結晶付近に局在した界面超伝導の秩序変数

この温度低下による chiral転移を考えるのに、

chiralp波(Px+ ipり：d = z(1Jふ＋叫島）及びchiral

d 波 (dxz+ idyz): (fJ = 1J戎刃x柘＋叩k刃y朽＝

1Jz柘(JJx柘+i1Jy島）の状態を対象とする。羽面内の

nふ +i1]y均は chiral状態に特徴的で、 z軸方向の

chiral軸をもつ chiral状態を表している。3次元 chiral

d波の柘依存性は、 chiral安定性に対して定量的に寄

与するが、定性的には二次元 chiralp波と同じ議論と

なる。ここでは、二次元 chiralp波状態について以下

に述べていく。

図2のように、 Ru02面内に二次元的な chiralp波

状態[8,9,10]を仮定した場合の、 y方向に無限で平ら

なRu金属界面をもつ系について考える[5]。界面超

伝導の領域は、 Ru金属界面近傍でのみ存在してい

る。 1Jvおよびnけま、それぞれ界面に対して垂直およ
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び接線方向の成分に対応しており、この秩序変数

(JJぃ叫）を図 2に示している。

3K相のonsetである 3K付近から Ru金属界面に平

行な接線成分1Jtのみの一成分状態として non-chiral

界面状態が出始め、そこから温度が下がると垂直成

分1Jvが生じて時間反転対称性が破れ、 1Jt士i1Jvの二成

分が結合した chiral界面状態となる。この1Jvの温度

変化による生成は、 Sr2Ru04/Ruでの準粒子トンネル

スペクトロスコピーにおいて測定された、微分コン

ダクタンスのゼロバイアスピーク（ゼロバイアス異

常）が現れるゼロ磁場での温度 T'=2.3K[4]に対応し

ていると考えられる（図 3)[11]。なぜならば、対ポ

テンシャルによる電子の散乱条件としてゼロバイア

スピークは、秩序変数の Ru金属面に対する垂直成

分に符号反転がある場合に現れるからである。

2.2ゼロバイアス異常の磁場依存性

前節のゼロ磁場での温度低下による chiral転移に

対して、次は磁場中での chiral安定性を述べる。図 3

は、実験でのゼロバイアス異常げと臨界磁場Hc2の

磁場・温度依存性を示している[11]。温度の低下に

より chiral転移する温度Tは、磁場中でゼロバイア

ス異常が現れる磁場げに連続的につながっており、

げは磁場中での chiral転移に対応すると考える。こ

のげは磁場方向により、異なる磁場依存性を示す。

図 3で、 Ru02面に対して垂直な向き HIieと平行な

向き HI/abに加えた場合に、HI/abではげがHc2と離

れているのに対して、 HIieでは磁場が強くなるにつ

れげがHc2近づき、低温側でほぼ一致している。

HI/ab 

0o 1 2― ― 2.3K 3 

゜
2 3 4 

Temperature (K) Temperature (K) 

図3:臨界磁場Hc2とゼロバイアス異常H*[ll]。ゼロ磁場

では、 Hc2は3K相のonsetにあり、 chiral転移は T*=2.3K

で起こると考えられる。 HIieにおいては、げは、 Hc2に近
づくが、 Hllabでは近づかず分離したままである。 non-

chiral状態は1Jtだけの一成分状態に相当しており、 chiarl

状態はi1J註項tが結合した縮退した二成分状態である。
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このげの磁場HIie依存性は、ゼロ磁場の Tonse1=3K

で超伝導 onsetとして生じた1Jtの一成分状態で表さ

れる non-chiral状態が、 HIieを印加することで1Jvが

誘起されて、縮退した二成分状態1Jt士i1Jvのchiral状

態に変わることに対応していると考えられる。一方、

Ru02面に平行な HI/abでは、このような chiral転移

はおきず、磁場の印加においてげはHc2に近づかな

いで常に分離している。

本研究では、この仮説の、界面超伝導相における

磁場誘起 chiral転移を、 3K相モデルに対する

Ginzburg-Landau(GL)理論により調べ、その機構を磁

場による自由エネルギーのエネルギー利得に基づい

て説明する。秩序変数の磁場依存性から、磁場によ

る秩序変数の磁場変化により non-chiral界面状態か

らの磁場誘起 chiral転移を示し、これに伴い生じる

常磁性的な超伝導電流を示す。これらが、界面超伝

導状態と磁場効果が合わさることでもたらされる、

chiral状態の特徴の一つであることを説明する。

3. 3-Kelvin相モデルと Ginzburg-Landau理論

図2の3K相モデルに対して、 HIizとH!ly (其々

HIieとHI/abに対応）での自由エネルギー磁場寄与項

の効果を調べて、HIizにより 2成分秩序変数の chiral

状態安定化のためエネルギーが低下することを、 P

波状態に対する Ginzburg-Landau方程式[12]の計算

から示す。 3K相モデルの一つ目の特徴は、 Ru金属

界面付近で高い仄を持つことである。これは式

広(x)=Tc,sRo+Tiop/(cosh(xlw))による広の距離依存性

により表される[5]。 W はRuと金属の界面付近で臨

界温度が局所的に高い領域の幅を示す。もう一つの

3K相の特徴として、 Ru金属と SRO超伝導接合面で

の秩序変数の境界条件があげられる[13]。Ru金属界

面の効果によって1Jvが抑制されるため、ゼロ磁場で

は境界において秩序変数の接線成分1Jtの傾きはな

く、垂直成分1Jvのみ正の傾きを持つ。このような境

界条件は、 SRO超伝導の垂直成分1JvがRu金属に侵

入する長さ lに依存した境界面エネルギーFint= 

(1/l)加(RRu)ドにより与えられ[14]、ゼロ磁場での境

界における垂直成分の傾きは(l/l)JJv(RRu)、接線成



分の傾きはゼロに近い（「近い」と書いたのは、これ

らに更にゼロ磁場での自発磁化による小さな寄与の

項が加わっているためである。） [13]。この境界面工

ネルギーと GL自由エネルギーとの変分がゼロとな

る条件から、境界条件の式が得られる。

この境界条件と共にp波超伝導に対する GL方程

式をNewton-Euler法を用いて数値的に解き、自己無

撞着に秩序変数附(x),JJt(x)とベクトルポテンシャル

A(x)を得た。数値計算は、大阪大学サイバーメディ

アセンターのスーパーコンピュータ SX-ACEを使用

して約 7000ノード時間の計算を行った。
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垂直磁場H//zによる磁場誘起chiral転移

計算の結果として、図 4,5に、温度を固定して垂

直・面内磁場をゼロから強くした時の、秩序変数の

x依存性における最大値の磁場・温度依存性を示す。
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図4:HIはでのTJ(X)の最大値；Max.JJの温度・磁場依存性

Max.Tl, 

,', 
!,l 

25-0-0 

'i'/'>, 芦~~ 0゚0 2 22 24 2.6 28 

T 2a'"o' T '' 

図5:HllyでのTJ(X)の最大値；Max.riの磁場・温度依存性

+

＋

＋

＋
 

図4では、 3K近くの non-chiral界面超伝導状態か

らの垂直磁場 HIizによる磁場誘起 chiral転移が

Max.1Jvの磁場依存性において見られる。温度 2.3K~

3KにおいてH=Oでほぼゼロであったn砂＼磁場HIiz

の印加により誘起され、磁場の強くなると増加する。

これは磁場HIizによる1Jvの誘起による、 1Jtの一成分

状態から1Jt士i1Jvの二成分状態への変化、 つまり

non-chiralから chiral状態への転移に相当している。

さらに磁場が強くなると、 1Jv1ま1Jtと共に減少してゼ

これは磁場による対破壊による超伝導状ロになる。

態の消滅に対応している。 一方、磁場H!lyでは図 5

に示すように、 1Jvは磁場中で増加することはな<1Jt 

と共に常に減少し、磁場による chiral状態の安定化

は、

20 40 60 H so 100 120 

図6: H//zでの自由エネルギーの磁場依存性
1 4 

1 2 

.:-0.8 

""・0.6 
塁0.4

0.2 

°。 80 120 
H 

図7: H//zでの最大値；Max. Tlの磁場依存性

これらの磁場方向による chiral状態安定化の違い

自由エネルギーの磁場依存項の違いから説明さ

れる。係数Kjを含むエネルギー項FKj、更に vector

potential Aを含むFKj,Mに着目する。 HIizでは、磁場

依存項はK3,4を含むF応，4,M= 2 (YAy)K3,4{(a況t)叩—

を含んでいるが、この項はHllyでは現れ

このF応，4,Mは、 i17□:1Jtが結合した二成分状態
で表される chiral界面状態のために、 HIizの磁場増

(ax叩）叫

なし＼

加に伴い自由エネルギーを下げる寄与をする。

機構について、以下HIiz磁場中の T=2.5Kの場合を

挙げて説明する

゜

40 

T=2. 5 

160 200 

この

（図 6)。HIizでの自由エネルギーの

磁場依存項FK1,2+ f', 立2,M+ f', 応，4,Mの内、 F応，4,Mは磁

場の増加とともにゼロから負に絶対値を大きくす

る。 これは磁場HIizによる1Jv誘起に伴う chiral転移

（図 7)を導く自由エネルギー利得に対応している。

この chiral状態の安定化を導くF応，4,Mの磁場依存性

は、他のF応，2とF応，2,Mが磁場中で常に正の値をとり、

磁場による対破壊に対応した自由エネルギー増加と

は異なる （図 6)。ゼロ磁場からの磁場印加で chiral

状態の安定化を導いた後、 さらに磁場を強くすると

絶対値は小さくなり、超伝導の消失と共に磁場依存

項のエネルギーはゼロとなる （図 6)。

このような図 4,5での、 F応，4,Mからもたらされる

磁場方向による秩序変数の磁場依存性の違いは、 2.3

節での仮説のように、 Max.1Jvが消失する磁場がゼロ
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バイアス異常が現れる磁場げに応じ、 Max.1Jtが消失

する磁場が臨界磁場 Hc2に応じていると考えると、

実験でのげの磁場方向による磁場依存性の違いと

定性的に整合性をもつ。

次に、図 8に超伝導電流密度の距離依存性を示す。

F応，4,Mから導かれる電流]y,K34,Mは、chiral界面状態の

ためのエネルギー利得（図 6) に伴い生じる常磁性

的な chiral電流]y,K34,Mに対応している。この常磁性

電流は、 non-chiral界面状態では生じない（図 8)。

ここで HIiz中の超伝導電流は、 Ru金属界面に平行

なy軸の沿って流れており、全超伝導電流密度]y,K,M

は反磁性電流]y,K12,Mと常磁性的な chiral電流]y,K34,M

の和として得られる。この常磁性 chiral電流は、現

時点では実験で検出されていない。
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H,=50 J,.,_,_, 一
」,... 一
J, ... ,.,-
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図8:H //zでの超伝導電流密度の距離依存性

5. まとめ

ここでchiralp波 (px+ipy) について示された磁場

誘起chiral転移のメカニズムは、同様に1Jx柘+i17沐y

を含むchirald波 (dxz+idyz):<p = 1Jz化(JJx柘+i1Jy島）

においても定性的に同じ傾向をもっため、磁場中に

おける界面超伝導でのchiral超伝導の性質といえる。

この性質より導かれた chiral安定化の磁場方向によ

る違いは、実験での 3K相のげの磁場依存性の磁場

方向による違いと定性的に一致している。この理論

と実験の結果の一致は、 3K相が低温でchiralバルク

超伝導になるとした仮定から導かれていることか

ら、 SROのバルク超伝導の候補として chiral状態を

挙げることが出来ると考える。

本研究は、 ManfredSigrist氏、榎田裕也氏、野村

拓司氏、長谷川泰正氏、坂井徹氏らとの共同研究で

あり、大阪大学CMC公募型利用制度と、JSPS-EPSRC

による Coreto Core Programme "Oxide Superspin 
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(OSS)"により助成された成果です。一部は榎田裕也

氏の修士論文 [15]と論文[16]に含まれます。
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