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Ultimate Strength Analysis of Double Bottom Structure by
“Idealized Structural Unit Method” *

Yukio UEDA ¥, Sherif M. H. RASHED ** and Masataka KATAY AMA #%#

In a previous paperl), two of the authors have developed an effective method for the ultimate strength analysis of
large size structures. The method is named as “Idealized Structural Unit Method”. In the method, a large size element
with idealized nonlinear character was necessary and an example element, “‘Girder Element”’, was developed.

In this paper2 , this method is applied to double bottom structures. The state of two-dimensional stress in inner
bottom and the bottom shell plating is considered. Conditions for buckling of these plates are established and its
postbuckling stiffness is determined. The condition for their ultimate strength and stiffness at the ultimate strength state

are determined in connection with the-girder element.

An example structure is analysed and the results of the analysis are presented.

KEY WORDS: (Ultimate Strength) (Limiting Strength) (Double Bottom) (Idealized Structural Unit Method) (Nonlinear Analysis)

1. Introduction

Double bottom structures are mainly used in ships, as
‘well as marine and land structures. They are important
principal structures. When a double bottom structure is
subjected to external load, local buckling and/or local
yielding may take place in elements of the structure when
the external load reaches a certain magnitude. By these
local failures, the stiffness of these elements usually
decreases, but the structure may be able to stand further
increase of the load. Redistribution of the internal forces
may take place until the structure eventually collapses.

For ultimate strength analysis of such large compli-
cated structures exhibiting such elastoplastic-large def-
lection behavior, the finite element method or the finite
strip method may be applied. However, the structure
should be divided into a large number of elements. The
required computing time and storage size are impractical.
The autors, in a previous paper, have proposed a solution
to this problem!?, that is to divide the structure into the
largest possible structural units and idealize its elasto-
plastic-large deflection behavior, the resulting concise
characteristics of these units are used and the load is
applied in increments until the structure attains it ulti-
mate strength. This method is referred to as the “Idealiz-
ed Structural Unit Method”. The “Girder Element” was
developed in this way and it was shown that structures
having girders as their primary supporting system can be

analysed in extremely short time. In this paper the
method is extended. The buckling and plastic nonlinear
behaviors of rectangular flat plate unit subjected to plane
stress condition, which is found in such structures as inner
and outer bottom, are idealized. It is combined with the
already developed girder element and the ultimate stre-
ngth analysis of double bottom structures is performed.

2. The Girder Element

The details of the girder element are presented in a
previous paper'). In the following it is simply represented.
The element is composed of a web and two different
size flanges as shown in Fig. 1. Stiffeners are fitted to
both ends of the web normal to the axis of the element.
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Fig. 1 Girder element and nodal forces
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Nodal points are set up at the mid-depth of the web at
both ends 7 and j. Three components of nodal forces;
axial force NV, bending moment M and shearing force ¥ act
at each nodal point. The corresponding nodal displace-
ments are axial displacement u, rotation § and deflection
w. Denoting the nodal forces by { R} and the nodal
displacements by { U }, they may be written as,

T —
{R} - {Ni’ Mi’ Vi’ /V}., Al]-: ]7]} (1)

T —
{U} _{ uV 61’ wp u]" 0]: W]} (2)
Using a dot to indicate increments, the kinematic
behavior of the element may be expressed as

(R} = [kgl {U} 3)
where, [k.] ([K] is used in ref.1)) is the stiffness matrix
expressing the kinematic condition of the girder element.
The elements of [k] change according to the extent of
local failures. .

Buckling of the web is determined by the average
internal forces occuring along the span. Buckling interac-
tion relationship is expressed by Eq. (7) in ref. 1). When
the shearing force, V, is smaller than the pure shear
buckling force, V,,, the postbuckling stiffness matrix is
expressed by Eq. (23) in ref. 1), taking into account the
effectiveness of the web. When V is larger than V,,, the
web is assumed to be unable to support normal stresses
and the stiffness matrix is expressed by Eq. (24) in ref. 1).

The behavior of the element until it attains its limiting
strength (ultimate strength or fully plastic strength) may
be classified into three main categories:

i- The web buckles in the elastic range and the structure
continues to support more load until it reaches its
ultimate strength. This category may be sub-divided
into two cases. The first is when the shearing force, V,
is smaller than the pure shear buckling force, V,,.
The ultimate strength condition will be reached when
at least the web and a flange at one end of the element
yield. The interaction relationship in this case is ex-
pressed by Egs. (29) through (32) in ref. 1). The
second case is when V is greater than V.. A tension
field develops in the web and the ultimate strength
condition is attained by one of three different combi-
nations of plastic collapse of flange and yielding of the
web. The interaction relationship is expressed by Eq.
(38) in ref. 1).

ii- The web buckles in the elasitc-plastic range mainly due
to bending moment. Not much more load can be
supported after buckling and this is considered a condi-
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tion of ultimate strength. Interaction relationship is
similar to category (i). However, different constants
are given by Eq. (46) of ref. 1).

The web does not buckle and the element attains its
fully plastic strength at one or both nodal points. The
interaction relationship is expressed by Egs. (50)
through (66) in ref. 1).

After the element has attained its limiting strength in
any of the above mentioned categories, its stiffness matrix
is derived on the plastic flow theory. Each interaction
relationship is regarded as a plastic potential and resulting
load-deflection relationships at the limiting strength state
are given by Egs. (43), (45) and (67) in ref. 1).

-

3. Idealization of Double Bottom Structure

3.1 Double bottom structure model

The double bottom structure in an actual ship is a

“complicated structure with bilge sections, different stif-

feners, manholes etc. . However, in this analysis, it may
be simplified as follows. First, the loss of strength and
stiffness due to manholes existing in some members is
covered by furnishing stiffeners and then such members
may be replaced by equivalent flat plates. The round of
the bilge is neglected and a square bilge is assumed. The
double bottom structure, thus idealized, is composed, of
floors and longitudinal girders arranged in a grillage
structure covered with inner bottom and bottom shell
plating as shown in Fig. 2. It may also be considered to
be composed of parallelepipeds built up of four vertical

e
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A A A Bilge corner
7/ Inner bottom platfng Ve
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“~._ Bottom shell plating

Floor

Fig.2 Double bottom

walls (parts of two successive floors and parts of two
successive longitudinal girders) and two horizontal plates
(a part of bottom shell plating and a part of inner bottom
plating). In the following this substructure is considered.
The effect of two dimensional stress field acting in the
two horizontal plates is superimposed on the girder ele-
ment and the analysis is performed.
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3.2 Behavior and idealization of structural unit

Considering the prescribed structural unit which is
built up of 6 plates, inplane deformations are compatible
at the nodal points, and out-of-plane deflections take
place in each plate separately. The vertical edges of the
four vertical webs are assumed to be simply supported and
the horizontal edges fixed. All edges of the horizontal
plates are assumed to be simply supported.

The structural unit is shown in Fig. 3. Nodal points are
located at the four corners of each horizontal plate and at
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Fig. 3 Nodal forces and displacement of structural unit.

the mid-depth of both sides of each vertical web. Assum-
ing the displacement distribution at both sides of each
web to be linear, and utilizing the compatibility of dis-
placements, the nodal displacements at the four corners of
each horizontal plate may be expressed by those at the
mid-depth of the web and can be eliminated. Thus the
behavior of the structural unit may be described only in
terms of those nodal displacements. In the following, the
behavior of the structural unit will be dealt with the aid of
the relationship of forces and displacements occuring at
these nodal points. All external forces are replaced by
equivalent nodal forces. Nodal force components at each
nodal point are: axial forces Nx, Ny, bending moments
"Mx, My, and shearing force V. The corresponding nodal
displacement components are: axial displacement u, v,
rotation Ox, 8y and deflection w. Thus the nodal forces
{F} and the nodal displacements { U} of the structural
unit may be written as,

{F;}={N,; Ny, My, Myi' V;}, etc. €3]
{UIT={U, U, U, Ut },
{U; Y= 1{u; v 0,0, w; I, et 5)

117

(117)

The contribution of the two horizontal plates, which
are in a plane stress condition, is divided into two parts;
one as flanges of girders, and the other as the rest of the
contribution. The structural unit may then be considered
as an assembly of girder elements (composed of webs and
flanges) and the rest of the contribution of the two hori-
zontal plates. Denoting the stiffness matrices of the girder
elements by [K ] and that of the rest of the contribution
of the horizontal plates by [K,;] the incremental re-
lationship between the nodal forces and the nodal dis-
placements may be written as,

{F}= (IKz] + [Kp, 1) {U=IKI{U } ©)

As external forces increase, the girder elements exhibit
local failures. This is handled by changing [K G] of Eq.
(6) into that corresponding to the modes of these local
failures. On the other hand, horizontal plates may buckle
and/or show local plastification. This affects not only
[Kp; ] of Eq. (6) but also the effectiveness of these plates
as flanges included in the composition of [K G] .

3.2.1 Horizontal plate stiffness component

Regarding each horizontal plate as one element, four
temporary nodal points may be established at the corners
(Fig. 3).Nodal forces {f } and nodal displacements {u« }
are composed of inplane components,

fup, = {up up)

fupy "=y e Ust}>
{ugy " ={uyp typ. ... Usp} ()
{Fo 30 =11y f5}
YT ={fp Fop-- - Fop}
{153 T ={F1p Lo Fop} ®)

The stiffness matrix of this element, [kP L] , may be
derived by integrating over the plate and the resulting
matrix may be divided into two parts,

ep, 1 = [ (P17 [D) [P) a¥
- [ 173 i1 av+ [ P17 (D, [P av

= [k,1 + [%,] ©)
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where, [P] is displacement-strain matrix, and [D] is
stress-strain matrix. '

E 100
[D]=[D1]+[D2], [D]]=] 2 01 0|
— D
. ' 000
0v 0
E
1—-v v
00 2

[k 1] corresponds to normal stress components and can be
included in [k] by suitable choice of breadths of flanges
of the girder elements. On the other hand, [k,] is the
stiffness component due to the effect of Poisson’s ratio in
an inplane stress condition and due to inplane shear. This
component, after the following treatment, is reduced to
[Kp; ] of Eq. (6) which is added to the girder elements
stiffness matrix to compose the stiffness matrix of the
structure.

Denoting the stiffness matrices [k2] of the inner
bottom and bottom shell plating, which are evaluated by
Eq. (9), by [kZT] and [kZB]’ nodal displacements by
{up} and {ug}, and nodal force components for the
stiffness component by { fT} and { fB }, the stiffness
equations may be written in the incremental form as,

{Fp} =lkypl {ip}, {fp}=lkyp) {ip} (10)

Equations (10) may be assembled as,

L J,FT _ kyp 0 Up
{pr} Fy ]: 0 kZB} g

= [kp] { dpp} (1)

The nodal forces and nodal displacements at the nodal
points established at the four corners of the top and
bottom plates, are not independent of those at the nodal
points at the mid-depth of the webs. They may be related
to each other through the assumption that the edges of
the webs remain straight after deformation. If [Cy] is the
transformation matrix relating nodal forces and [C,] is
that relating nodal displacements, it may be written that

{F}y=1CA{ fpp} {UY= [C, ) {tpp } 12)

As the relation [C,] 7' = [C,] T is valid, F equals £
with shearing force terms, ¥, removed and U equals

U with deflection terms, W, removed,
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{(F}Y={F F F F},

{F,} ={Ny N, M, M}, ete. (13)
()= (T 0 0, 53,

{ﬁi} ={u4 6, éy’l.} , ete
From Egs. (11) and (12)
{F}=[C] [kp, 116,172 {U} (14)

= 16 T 1 [CAT{TY = [Kp 1{ T}

Rearranging the matrix [EPL], derived as before, to
suit the total nodal displacements of the structural unit
and enlarging it to a 20 x 20 matrix, the matrix [Kp; ] of
Eq. (6) may be obtained.

3.2.2 Condition of elastic buckling and post-buckling
stiffness matrix of horizontal plates.

Inner bottom and bottom shell plating of the double
bottom of a ship, are subjected to serveral kinds of loads.
Besides the local distributed lateral loads, inplane uniform
compressive load from bilge to bilge due to water pressure,
longitudinal unifrom compressive (or tensile) load mainly
due to vertical bending moment and inplane bending due
to horizontal bending moment act on these plates. The
resulting stress distribution is represented by the solid
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Fig. 4 Stress distributions along boundaries of model

line in Fig. 4. However, the slope of the stress distribu-
tion due to the above mentioned inplane bending is
usually small and may be approximated to the broken line
in the same figure.

On the other hand shearing stress in the horizontal
plates is small as long as torsional moment on the ship
structure is not excessively large, because the inplane
shear stiffness of the structure is high. This small shearing
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stress may be assumed to have no effect on buckling.
Thus, buckling of the horizontal plates may be analysed as
a problem under two dimensional inplane compression.
The buckling wave shape may be taken as the funda-
mental one. On this basis, a stress function may be
adopted, and buckling condition be obtained together
with post-buckling effective section coefficient. Post-
buckling stiffness may then be evaluated.

Now consider a rectangular plate (a x b x t) subjected
to inplane uniform compression along its boundaries in x
and y directions, Fig. 5. The average compressive stresses
o, and o, in the respective directions may be taken as

yTv
o T

S.S. t b S.S.

Fig. 5 Rectangular plate subjected to compression in
two directions -

parameters indicating the magnitudes of the external loads.
According to the finite displacement theory with a stress
function F and deflection w,

9*F 9*F . 'F B 2w )2 2w 92w
ax* ox2ay? oyt 9x0y ax?  ay?
@1s)
4 5% '34
I
ox ox*oy oy
t  3%F 32 9*F 92 9’F 92
= Tt 5r 2= (16)
D " oy* ax*  ox* oy dxdy 0xdy

Deflection, w, may be assumed as follows, satisfying
the boundary conditions,

X

. my
W = wy, sin—
a

sin—

. (17)

Solving Eqgs. (15), (16) and (17), the stress function '

|

119

(119)

and the deflection at the center of the rectangular plate
w,,, may be obtained as,

2 2
X Ew,,

— gy —+
AP I

v
2

b2

2ny
+——2-" cos
a

b

) (18)

16a*b?

Bn® (D) + (5]

% 9% Dn* 1
| 2 - (a_2

1 2
t—)1 19)
Buckling takes place when w,,, = 0. Denoting buckling

interaction function of a horizontal plate by ["‘B, the
buckling condition may be written as,

o, o D.7? 2
= ¥y 1 1
o — —— __+___ ==
=t ———Crt=ky =0 20)

Next, using Eq. (18) together with the stress-strain rela-
tionship and strain-deformation relationship, displace-
ments u and v for the post-buckling may be evaluated as,

a D 7.2
u = _—E’— [al Ox + a30y — 204 T(a—) ]’
v=——b[a Oy +a 2 D m* 21
7 @3 x t 20y—a4_t_(77‘)]
where,
3+ 1+ LS
CETEIE BT BT T
GRS L
4 T A b

The relationship between inplane compressive strains e
and average stresses 0 may be represented in the incre-
mental form as, .

a
a; . 4

ay 3 . + 2(.]
) B2
&= atE Y YTEXTE Y

(22)

The shear stiffness of the rectangular plate may de-
crease, more or less, after buckling. As its reduction is
expected to be small, in this analysis, the shear stiffness is
taken of the same value as before buckling. Thus, the
average stress-strain relationship of the horizontal plates
on this stage may be written as, '



E‘X é.X éx

b, {=1D°11 8 1=|dady O & (23)
Txy Txy 0°0 dq] (7

where
E'dz E‘al ‘E{l:;
dl - s d2 = 2 d3 = P
a,a; —as a,a, —ds aya, —as

d = E

Y 21 +v)

In similar to 3. 2. 1, [D®] may be divided into two
parts

[DB] = [DE] + [DE], (24)
where
d, 0 0] [0 d; 0
[D81=|0 4,0 , [D51=|d;0 O
000 0 0 d,

[Df] indicates the effectiveness of the horizontal plate as
a flange, that is d, and d, being the effective moduli - of
elasticity of the plate in the x and y directions, respecti-
vely.

The post-buckling stiffness matrix of the horizontal
plates [kB] may then be derived by substituting [DB] of
Eq. (23) for [D] in Eq. (9).

(&81 = [1P1T (D11P1av=[ (P17 (D] [P1av

+[ 11T D31 [Plav = (K31 + k5] (25)
The stiffness equation, Eq. (6), after buckling of the
horizontal plates becomes as follows,

{F}=[KP1{U}=(IKB] + K4 DU} (26)
where [Kg] is evaluated with the effective moduli of
elasticity d, and d,, of the flanges of the girders element
in the x and y directions respectively. [Klf3 L] is evaluated
by the procedure which was explained in 3. 2.1, intro-
ducing [kf] of Eq. (25) instead of [k,] in Egs. (9) to
(14).

3.3 Limiting strength interaction relationship of the
structural unit.

In this work, although the contribution of the hori-
zontal plates is rigorously taken into account in the
strength analysis of the structural units, the structure is
basically treated as a grillage composed of girder elements.
The limiting strength of a cross-section may be obtained
by performing necessary modification on the limiting
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strength interaction relationship of the girder element.
Local failures are decided according to nodal forces
acting at that cross-section whether or not they satisfy the
modified condition. "

When the acting vertical shearing force is smaller than
the pure shear buckling force of the web of girder element,
the limiting strength of the horizontal plates, acting as
flanges, may be attained by plastification, due to inplane
loads, or by reaching its ultimate strength (collapsing
strength) after buckling.

If the limiting strength interaction relationship of a
horizontal plate subjected to inplane biaxial compression
is obtained as in Fig. 6, the contribution of the horizontal
plates as the flanges to the girder elements may be divided

y
Limiting strength
curve
B (Py ,P)‘,)
P
Y
a
o ;
A(P;’(,Pfl) X
<x=Py/Px
0 Py

Fig. 6 Carrying capacity of plate at its strength limit

in the x and y directions in the following manner. Since
the behavior of structural unit is linearized for each load
increment, the ratio of increments of internal forces
@, Pr y) acting in the horizontal plate can be evaluated

(for example Py/Px = a). Then point B at which the
limiting strength curve is satisfied may be anticipated at

* the last increment of loads. The ordinates of this point,

P)IC and P1 , represent the components in the x and y
directions.” Usually each horizontal plate acts as the
flanges to two parallel girder elements in each direction.
Thus one half of the plate acts as the flange on one side of
the girder element in each direction.

On the other hand, when a web exhibits shear buckling,
a tension field develops in the web. In addition to the
biaxial inplane load acting on the flanges, a lateral
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distributed load comes into action. Limiting strength is
reached when three plastic hinges are formed in the
flange. When buckling does not take place in the
horizontal plates, the inplane forces affect directly the
formation of plastic hinges. The effect of the inplane
force in the same direction of bending stresses appears in
the form of interaction relationship of plastic hinges.
This relationship is determined by the yield stress of the
material which is influenced by the inplane force normal
to the bending stress. When the horizontal plate buckles,
it is supposed that the flanges have no more supporting
capacity to the tension field prevailed in the web.

Taking these points into consideration, the effect of
the horizontal plates on the limiting strength of girder
elements can be evaluated.

The above-mentioned limiting strength of the hori-
zontal plates may be obtained as follows. First, fully
plastic strength may be easily calculated since the hori-
zontal plates are subjected to uniformly distributed
biaxial stress. Tresca’s yield condition is adopted in this
work. On the other hand, for post-buckling ultimate
strength of the horizontal plates a series of analyses by
the finite element method was performed. Utilizing its
results, the following equation for the interaction relation-
ship was obtained, Fig. 7.

2

= . p2 2 _
I;—Px+Py+Px-Py —P =0

ult (27)

In this equation, P and Py are the forces acting in the
x and y directions, and P, ;. is the ultimate strength in
uniaxial inplane compression. In this work Karman’s
equation is adopted to calculate ;.. Denoting the buckl-
ing coefficient of a plate by k, the yield stress of the
material by 0y and the plate thicknesss by ¢, P, may be
expressed as,

P, =t \k-1Eoy/12(1 - 1?) (28)

In Fig. 7, some results of the elasitc-plastic large defle-
ction analysis for a square plate (500 x 500 x 4.5 mm)
and a rectangular plate (500 x 650 x 4.5 mm) with simply
supported boundaries are represented by O and A, respe-
ctively. In both cases Eq. (27) represents a very good ap-
proximation. ’

As examples, the limiting strength interaction relation-
ships of the square and rectangular plates derived above
are presented in Fig. 8. At points of intersection of the
plastic strength curve (the yield condition) and the buckl-
ing curve, plastic buckling takes place and the ultimate
strength curve should pass through these points. The
parts of the limiting strength curve between these points
and points of the ultimate strength in uniaxial compres-
sion are approximated into straight lines.
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3.4 Stiffness matrix of horizontal plate at limiting
strength state

When a horizontal plate reaches its limiting strength, its
average stress-strain relationship is evaluated by applying
the plastic flow theory. The limiting strength intera-
ction relationship expressed in terms of stresses is regard-
ed as a plastic potential, for example, I, for ultimate
strength. Denoting the average stress-strain matrix by
[DX], in similar to Bq. (23), [DF] is divided into two
parts. :

akdo| |ak 0o of |odko

[DE] =|dk aX of|=| 0 d5 o|+|a 0 o
0 0 d, 0o 0o of [0 04,
=[D4] + [DL) (29)
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As seen from the components of [DL1 1, the effective
moduli of elasticity of the plate as the flange to the
girder element decrease to d and d2 in the x and y
directions, respectively. With these moduli, the stiffness
of the girder element can be modified. The resulting new
stiffness matrix is denoted by [KL I.

In parallel with this, substltutlng [DL] for [D] in Eq.
(9), the stiffness matrix [kI;] of the horizontal plate may
be calculated as

(K1 = [T Dk 1P av

For the two horizontal plates, the stiffness matrix [l_cé ;]
can be calculated in the same way as shown in Egs. (10)
and (11). Applying the coordinate transformation to
[Ef,L]_, the stiffness matrix [Kf;L] will be obtained as
explained in 3.2. 1.

Consequently, the stiffness equation of the structural
unit becomes as follows,

(30)

{(FY=[KL1{U}=(KE1+ K5, DU} (GD)

4. Procedure of Analysis

Since the behavior of a structure is nonlinear, the incre-
mental method is applied. First, the equilibrium equation
of the structure may be established by the assembly of the
elastic stiffness matrices of the original elements, impos-
ing the loading and boundary conditions. The smallest

Transactions of JWRI

Vol. 9, No. 11980

load increment which just satisfies the condition of local
failure is applied. The stiffness matrix of the element

where the local failure has taken place is replaced by that
corresponding to the new kinematical condition. The

equilibrium equation of the structure is corrected and the
calculations for the next load increment are performed.
The analysis is continued by repeating this operation until
the limiting strength state of the structure is obtained.

5. Example of Analysis

A double bottom structure of 8.0 m in width, 10.0 m
in length and 1.0m in depth, is subject to uniformly
distributed loads acting on the bilges, at bulkheads and on
inner bottom. The floors and girders are spaced at 1.0 m
and the structure is considered fixed at the bulkheads
(Fig. 9). The results of the analysis are given in Fig. 10 in
which the load-deflection curve together with the se-
quence of local failures are shown. Local failures start
with buckling of the inner bottom plating at its central
part. While it is expanding in all directions, plastification
and buckling at the webs near the boundaries start to
occur. As the load continues to increase, plastification
proceeds at the webs near the boundaries until the final
collapse. The computations are performed on the Kyoto
University FACOM 230-75 and consumed 56.3 seconds
for cpu.

, : .X 2pl s2p) 2p) 2p
N e ek
o | O S A I A | R Zplf_zz_’sz
|, ! T 1 | l 2l 2P! zifzpl /zpl
N I Y SO S SN Y SRR N 2P 2P /29 s
5p ] : 'lr “If -: t P J//%i __1 5p
| I sHpl 7
I I S S U bl
i | | 1 2P Y
— I I | 1 | £
- e -—E TATAZAZ
(RN RE Tz
5P Inner bottom plating
op p op op 'g | Bilge strake
‘ Oy=30kg/mm?
1 T 1 1 <10 10 moo Ey=21ogo:2/mm?
k1 00 02 ‘A_—:% 1‘6 v =0.3
{
7&3;]7 l_-mz ' ) Bottom shell platinag
1000 —»

Fig. 9 Loading and supporting conditions of model
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Fig. 10 History to collapse of model

6. Conclusions

As a means of ultimate strength analysis of ship-like
large size structures, the authors have proposed the
“Idealized Structural Unit Method”, which utilizes large
size elements incorporating the elastic-plastic large defle-
ction nature of the structural components. The “Girder
Element” was developed as one of such large size ele-
ments. The scope of application of this element is not
limited to just girder structures, but it is possible to apply
to other structures. In this work a “flat plate element” is
developed and an ultimate strength analysis of the double
bottom structures is performed. As shown in the example
of analysis, the results exhibit the capability of the
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method to trace detail different phenomena of local
buckling and local plastification within a very short com-
puting time. The validity of the proposed method of
analysis is once more confirmed.
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