

Title	Uniform approximation by entire functions of several complex variables
Author(s)	Sakai, Akira
Citation	Osaka Journal of Mathematics. 1982, 19(3), p. 571-575
Version Type	VoR
URL	https://doi.org/10.18910/7721
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Sakai, A.
Osaka J. Math.
19 (1982), 571–575

UNIFORM APPROXIMATION BY ENTIRE FUNCTIONS OF SEVERAL COMPLEX VARIABLES

Dedicated to Professor Yukinari Toki on his 70th birthday

AKIRA SAKAI

(Received October 11, 1980)

Introduction. Let G be a holomorphically convex open subset of \mathbf{C}^n and T a closed subset of G . We say that T is *totally real*, if it is the zero set of a non-negative C^2 function ρ which is strictly plurisubharmonic on T . It is known that a real C^1 submanifold M is totally real if and only if it has no complex tangents (cf. [3]). The problem of uniform approximation on totally real submanifolds was studied to a great extent by many authors (cf. Wells [9], Hörmander and Wermer [4], Nirenberg and Wells [5], Harvey and Wells [2], [3] and Nune-macher [6]). The result of [6] states that if M is a totally real submanifold then there exists a holomorphically convex open neighborhood B such that every continuous function on M is uniformly approximated on M by functions holomorphic in B . In [8], the author extended this result to the case of totally real sets with C^∞ defining functions. (A totally real set is not necessarily a submanifold. The approximation theorem for totally real sets contains one for totally real analytic subvarieties which was conjectured by Wells [9].)

In this paper, we give a sufficient condition for T and G under which every continuous function on T is uniformly approximated on T by functions holomorphic in G . The theorem we prove contains the following result which is a straight generalization to higher dimensions of Carleman's theorem [1].

Every continuous function on \mathbf{R}^n , canonically imbedded in \mathbf{C}^n , is uniformly approximated on \mathbf{R}^n by entire functions on n complex variables.

We shall make use of the L^2 -method due to Hörmander and Wermer [4] and the swelling method similar to one used in [8].

1. Statements. Let S be a closed subset of an open set U of \mathbf{C}^n . We denote by $H(S)$ (or $H(S, U)$) the algebra of uniform limits of restrictions of functions holomorphic in a neighborhood of S (or in U , resp.).

We use an abbreviation $L[u; \xi]$ for the Levi form of a C^∞ function u :

$$L[u; \xi] = \sum_{j,k} \frac{\partial^2 u}{\partial z_j \partial \bar{z}_k} \xi_j \bar{\xi}_k, \quad \xi \in \mathbf{C}^n.$$

By an exhaustion function σ of G we mean a positive C^∞ strictly plurisubharmonic

function which maps properly G into \mathbf{R} . We define a form

$$\begin{aligned} A[\sigma; \xi] &= \frac{1}{2\sigma} L[\sigma^2; \xi] \\ &= L[\sigma; \xi] + \frac{1}{\sigma} \left| \sum_j \frac{\partial \sigma}{\partial z_j} \xi_j \right|^2, \quad \xi \in \mathbf{C}^n. \end{aligned}$$

Theorem. *Let G be a holomorphically convex open subset of \mathbf{C}^n and σ be an exhaustion function of G . If T is the zero set of a nonnegative C^∞ function ρ on G satisfying*

$$(1) \quad L[\rho; \xi] \geq c A[\sigma; \xi], \quad \xi \in \mathbf{C}^n,$$

for some constant $c > 0$, then $H(T, G) = C(T)$.

When G is \mathbf{C}^n , this is a uniform approximation theorem by entire functions. In this case, we can choose $\sigma(z) = |z|^2 + 1$ as an exhaustion function of \mathbf{C}^n and we have $|\xi|^2 \leq A[\sigma; \xi] \leq 2|\xi|^2$, $\xi \in \mathbf{C}^n$. Therefore, we obtain

Corollary 1. *If T is the zero set of a nonnegative C^∞ function ρ on \mathbf{C}^n satisfying*

$$(2) \quad L[\rho; \xi] \geq c |\xi|^2, \quad \xi \in \mathbf{C}^n,$$

with some constant $c > 0$, then $H(T, \mathbf{C}^n) = C(T)$.

If we write $\mathbf{R}^n = \{z; y_j = 0, j=1, \dots, n\}$, then $\rho(z) = \sum_j |y_j|^2$ is a defining function of \mathbf{R}^n satisfying (2). Thus we obtain the following corollary.

Corollary 2. $H(\mathbf{R}^n, \mathbf{C}^n) = C(\mathbf{R}^n)$.

The proof of Theorem is based on the following lemma essentially due to [4]. (For the proof, see Proposition 1 of [7].)

Lemma 1. *Let δ be a nonnegative function defined in an open set V in \mathbf{C}^n . Suppose K is a compact subset of V satisfying the following condition: There exists a constant $\eta > 0$ such that for every sufficiently small $\varepsilon > 0$, we can find a holomorphically convex open set V_ε satisfying*

$$\{z: \text{dist}(z, K) < \varepsilon\} \subset V_\varepsilon \subset \{z: \delta(z) < \varepsilon\eta\}.$$

If F is a C^∞ function on V satisfying

$$|\bar{\partial}F(z)| \leq c\delta(z)^{n+1}, \quad z \in V,$$

then $F|_K$ belongs to $H(K)$.

2. Construction of an exhaustion $\{K_m\}$ of G .

Let σ and ρ be func-

tions satsifying the assumption of the theorem. For every positive number r , the open set $G_r = \{z \in G : \sigma(z) < r\}$ is relatively compact in G .

Let λ be a C^∞ function: $\mathbf{R} \rightarrow [0, 1]$ such that $\lambda(t) = 1$ ($t < 0$) and $\lambda(t) = 0$ ($t > 2$). For every positive number m , we set

$$\lambda_m(z) = \lambda(\sigma(z)/m).$$

Then we have

$$\begin{aligned} L[\lambda_m; \xi] &= \frac{1}{m} \left\{ \lambda' L[\sigma; \xi] + \frac{\lambda''}{m} \left| \sum_j \frac{\partial \sigma}{\partial z_j} \xi_j \right|^2 \right\} \\ &\leq \frac{a}{m} A[\sigma; \xi], \quad \xi \in \mathbf{C}^n, \end{aligned}$$

with $a = \sup \{|\lambda'| + 2|\lambda''| + 1\}$, since $\lambda_m(z) = 0$ for $z \in G \setminus G_{2m}$.

We set $\rho_0 = \rho$ and $\rho_m = \rho - m\lambda_m$ for $m > 1$. Since we may assume that $L[\rho; \xi] \geq 2aA[\sigma; \xi]$, $\xi \in \mathbf{C}^n$, multiplying ρ by a constant if necessary, we have

$$L[\rho_m; \xi] \geq aA[\sigma; \xi], \quad \xi \in \mathbf{C}^n.$$

For each nonnegative integer m , we define the compact set $K_m = \{z \in \bar{G}_{2m+3} : \rho_m(z) \leq 0\}$. It is easy to show that $K_m \subset K_{m+1}$ and $\bigcup_m K_m = G$.

3. Approximation on K_m . In this section, we fix a nonnegative integer m . We shall prove the following lemma.

Lemma 2. *If f is a C^∞ function, then $f|_{K_0} \in H(K_0, G)$. If f is a C^∞ function which is holomorphic in an open neighborhood of \bar{G}_{2m} , $m > 0$, then $f|_{K_m} \in H(K_m, G)$.*

Proof. Since ρ_m is strictly plurisubharmonic in G and since $K_m = \{\rho_m \leq 0\} \cap \{\sigma \leq 2m+3\}$, K_m is \mathcal{O}_G -convex and therefore we have $H(K_m) = H(K_m, G)$. It suffices to prove that $f|_{K_m} \in H(K_m)$.

Let ψ be a C^∞ function satsfying $\psi = 1$ in an open neighborhood of \bar{G}_{2m} and $\psi = 0$ in $G \setminus \bar{G}_{2m+1}$. We consider the function

$$\delta_m = \psi \rho_m + (1 - \psi) \sum_v \left| \frac{\partial \rho}{\partial z_v} \right|^2.$$

If $z \in G_{2m}$, we have $L[\delta_m; \xi] = L[\rho_m; \xi]$, $\xi \neq 0$. If $z \in T \setminus G_{2m}$ then $\rho_m = \rho = 0$ and $d\rho = 0$. Hence we have

$$L[\delta_m; \xi] \geq \psi L[\rho; \xi] + (1 - \psi) L[\rho; \xi] |\xi|^{-2} > 0, \quad \xi \neq 0.$$

Therefore we can find an open neighborhood Ω_m of K_m so that δ_m is strictly plurisubharmonic in Ω_m . There exists a constant $\eta > 0$ such that $\delta_m(z) \leq \eta \operatorname{dist}(z, K_m)$ and $\sigma(z) \leq 2m+3 + \eta \operatorname{dist}(z, G_{2m+3})$. If we set $\delta(z) = \max \{0, \delta_m(z)\}$

and $V_\varepsilon = \{z \in \Omega_m : \delta_m(z) < \varepsilon\eta\} \cap G_{2m+3+\varepsilon}$, then, for sufficiently small $\varepsilon > 0$, V_ε is holomorphically convex and satisfies

$$\{z : \text{dist}(z, K_m) < \varepsilon\} \subset V_\varepsilon \subset \{z : \delta(z) < \varepsilon\eta\}.$$

We can now find a C^∞ extension F of $f|_T$ on G which satisfies

$$|\bar{\partial}F(z)| \leq c\delta(z)^{m+1}, \quad z \in V \setminus K_m$$

for an open neighborhood V of K_m and for some positive constant c . The way of construction of F is the same as one in Lemma 6 of [7]. We note that, if f is holomorphic in an open neighborhood U of \bar{G}_{2m} , then F is holomorphic in U . By Lemma 1, we have $f|_{K_m} = F|_{K_m} \in H(K_m)$, which proves the lemma.

4. Global approximation. Let f be an arbitrary function in $C^\infty(G)$ and let ε be any positive number. We shall construct a sequence $\{f_m\}$ of functions holomorphic in G and satisfying

$$|f_m - f_{m-1}| < 2^{-m-1}\varepsilon \quad \text{on } K_m$$

and

$$|f_m - f| < \sum_{v=1}^{m+1} 2^{-v}\varepsilon \quad \text{on } T \cap \bar{G}_{2m+3}.$$

We define the function $f_\varepsilon = \lim f_m$. A standard argument shows that f_ε is holomorphic in G and that $|f_\varepsilon - f| < \varepsilon$ on T .

The construction of $\{f_m\}$ is as follows. By Lemma 2, we can find a function f_0 holomorphic in G such that

$$|f_0 - f| < 2^{-1}\varepsilon \quad \text{on } K_0 = T \cap \bar{G}_3$$

Suppose f_j , $j=1, \dots, m-1$ are already defined. Let ψ be a C^∞ function: $G \rightarrow [0, 1]$ satisfying $\psi=1$ in an open neighborhood U of \bar{G}_{2m} and $\psi=0$ in $G \setminus G_{2m+1}$. Set $g = \psi f_{m-1} + (1-\psi)f$. Then g is holomorphic in U . By Lemma 2, we can find a function f_m holomorphic in G so that

$$|f_m - g| < 2^{-m-1}\varepsilon \quad \text{on } K_m.$$

Since $g = f_{m-1}$ in U and $K_m \subset U$, we have

$$|f_m - f_{m-1}| < 2^{-m-1}\varepsilon \quad \text{on } K_m.$$

Since $|g - f| = \psi |f_{m-1} - f| < \sum_{v=1}^m 2^{-v}\varepsilon$ on $T \cap \bar{G}_{2m+1}$ and since $g = f$ on $T \setminus G_{2m+1}$, we have

$$|f_m - f| < (2^{-m-1} + \sum_{v=1}^m 2^{-v})\varepsilon \quad \text{on } T \cap \bar{G}_{2m+3}.$$

This completes the proof of the theorem.

REMARK 1. The question arises whether the same conclusion as Theorem can be obtained under the condition that ρ is C^∞ strictly plurisubharmonic in G . (There is a simple example of T such that every defining function of T is not strictly plurisubharmonic in G and such that $H(T, G) \neq C(T)$.) When T is compact this condition is sufficient. This follows at once from Theorem 2 of [7] and the fact that T is then \mathcal{O}_G -convex. We do not know whether it is true even when T is not assumed to be compact.

REMARK 2. It is reasonable to conjecture that the theorem will be valid even when a defining function ρ of T is of class C^2 . In fact, when T is a submanifold, C^2 -differentiability of ρ is sufficient to derive the approximation by functions holomorphic in a neighborhood of T (c.f. Harvey-Wells [2] and Nunemacher [6]). The C^∞ differentiability assumption in this paper was necessary because of the L^2 -method we employed.

References

- [1] T. Carleman: *Sur un Théorème de Weierstrass*, Ark. Math. Ast. Fys. **20** (1927), 1–5.
- [2] F.R. Harvey, and R.O. Wells Jr.: *Holomorphic approximation and hyperfunction theory on a C^1 totally real submanifold of a complex manifold*, Math. Ann. **197** (1972), 287–318.
- [3] F.R. Harvey and R.O. Wells Jr.: *Zero sets of non-negative strictly plurisubharmonic functions*, Math. Ann. **201** (1973), 165–170.
- [4] L. Hörmander and J. Wermer: *Uniform approximation on compact sets in C^n* , Math. Scand. **23** (1968), 5–21.
- [5] R. Nirenberg and R.O. Wells Jr.: *Approximation theory on differentiable submanifolds of a complex manifold*, Trans. Amer. Math. Soc. **142** (1969), 15–35.
- [6] J. Nunemacher: *Approximation on totally real submanifolds*, Math. Ann. **224** (1976), 129–141.
- [7] A. Sakai: *Uniform approximation in several complex variables*, Osaka J. Math. **15** (1978), 589–611.
- [8] A. Sakai: *Uniform approximation on totally real sets*, Math. Ann. **253** (1980), 139–144.
- [9] R.O. Wells Jr.: *Real-analytic subvarieties and holomorphic approximation*, Math. Ann. **179** (1969), 130–141.

Department of Mathematics
 Himeji Institute of Technology
 Shosha 2167, Himeji,
 671–22, Japan

