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Introduction. Let G be a holomorphically convex open subset of C* and
T a closed subset of G. We say that T is totally real, if it is the zero set of a non-
negative C? function p which is strictly plurisubharmonic on 7. It is known
that a real C* submanifold M is totally real if and only if it has no complex tan-
gents (cf. [3]). The problem of uniform approximation on totally real sub-
manifols was studied to a great extent by many authors (cf. Wells [9], Hormander
and Wermer [4], Nirenberg and Wells [5], Harvey and Wells [2], [3] and Nune-
macher [6]). The result of [6] states that if M is a totally real submanifold
then there exists a holomorpbically convex open neighborhood B such that
every continuous function on M is uniformly approximated on M by functions
holomorphic in B. In [8], the author extended this result to the case of totally
real sets with C defining functions. (A totally real set is not necessarily a sub-
manifold. The approximation theorem for totally real sets contains one for
totally real analytic subvarieties which was conjectured by Wells [9].)

In this paper, we give a sufficient condition for 7" and G under which every
continuous function on T is uniformly approximated on T by functions holo-
morphic in G. The theorem we prove contains the following result which is
a straight generalization to higher dimensions of Carleman’s theorem [1].

Every continuous function on R", canonically imbedded in C", is umiformly
approximated on R" by entire functions on n complex variables.

We shall make use of the L>-method due to Hormander and Wermer [4]
and the swelling method similar to one used in [8].

1. Statements. Let .S be a closed subset of an open set U of C". We
denote by H(S) (or H(S, U)) the algebra of uniform limits of restrictions of
functions holomorphic in a neighborhood of S (or in U, resp.).

We use an abbreviation L[u; £] for the Levi form of a C* function u:

Lu; 5] =2-2% ¢k, eec.

ik 62‘,—62,@

By an exhaustion function o of G we mean a positive C* strictly plurisubharmonic
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function which maps properly G into B. We define a form

Alo; E] = zl—aL[az; £]

2

, EecC".

— Ll e+ 1m0,

j

Theorem. Let G be a holomorphically convex open subset of C" and o be an

exhaustion function of G. If T is the zero set of a nonnegative C* function p on
G satisfying

M Llp; £]=cA[s; £], E€C",
for some constant ¢ >0, then H(T, G)=C(T).

When G is C”, this is a uniform approximation theorem by entire func-
tions. In this case, we can choose o(2)=|2|?>+1 as an exhaustion function
of C" and we have |£|*’<A[o; £]<2|£|% E=C”. Therefore, we obtain

Corollary 1. If T is the zero set of a nonnegative C= function p on C* satisfy-
ing
2) Lip; E]=c|€|*, EeC”,
with some constant ¢>0, then H(T, C")=C(T).
If we write R"={z;y;=0, j=1, ---,n}, then p(2)=21|y,|? is a defining
function of R" satisfying (2). Thus we obtain the followi;lg corollary.
Corollary 2. H(R", C") = C(R").

The proof of Theorem is based on the following lemma essentially due to
[4]. (For the proof, see Proposition 1 of [7].)

Lemma 1. Let § be a nonnegative function defined in an open set V in C”.
Suppose K is a compact subset of V satisfying the following condition: There exists
a constant n>0 such that for every sufficiently small €>0, we can find a holomor-
phically convex open set V, satisfying

{z: dist (2, K)<&} CcV,C {z: 8()<&xn} .
If F is a a C* function on V satisfying
|[0F(2)| <cd(=)**, =€V,
then F | ¢ belongs to H(K).

2. Construction of an exhaustion {K,} of G. Let o and p be func-
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tions satsifying the assumption of the theorem. For every positive number 7,
the open set G,={z€G,: o(2)<r} is relatively compact in G.

Let A be a C~ function: R—[0, 1] such that A(#)=1 (¢#<0) and A(2)=0
(¢>2). For every positive number m, we set

An(2) = No(2)[m) .
Then we have

Ln,: &l = {x'L[a; E]l+ L"‘z} aggl_
m J azi

1 2
n }
< %Al 8, gect,
m
with a=sup {|A"|+2|\"| 41}, since A, (2)=0 for 2EG\G,,.
We set p,=p and p,,=p—mr, for m>1, Since we may assume that
L{p; E]>2aA[o; €], £=C”, multiplying p by a constant if necessary, we have

L[P,,,; E]ZQA[O'; E] ’ EEC” .

For each nonnegative integer m, we define the compact set K,, = {2E€ G,,13:
pn(2)<0}. It is easy to show that K, CK,., and |JK,=G.

3. Approximation on K,,. In this section, we fix a nonnegative integer
m. We shall prove the following lemma.

Lemma 2. Iffis a C* function, then | € H(K,, G). If fisa C* function
which is holomorphic in an open neighborhood of G,,, m>0, then f|x € H(K,, G).

Proof. Since p,, is strictly plurisubharmonic in G and since K,= {p,, <0}
N{e<2m+3}, K, is Oz-convex and therefore we have H(K,)=H(K,, G).
It suffices to prove that f |, € H(K,,).

Let 4 be a C= function satsfying 1»=1 in an open neighborhood of G,,, and
=0 in G\G,,4+;. We consider the function
2

50 = out(1—9) 33|22

If 2 G,,, we have L[8,; £]=L[pn: &], E£0. If z& T\G,, then p,=p=0
and dp=0. Hence we have

L[3,; E1=¥L[p; E1+(1—)L[p; E]1E]2>0, E=+0.

Therefore we can find an open neighborhood Q,, of K,, so that §, is strictly
plurisubharmonic in Q,. There exists a constant >0 such that §,(2) <
n dist(z, K,,) and o(2)<2m+3+7 dist(2, Gymis). If we set §(2)=max {0, §,,(2)}
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and V,={2€Q,,:5,(2)<En} N G,pis+s, then, for sufficiently small €>0, V,
is holomorphically convex and satisfies

{z: dist (2, K,,)<&} CV,C {z: §(2)<&€n} .
We can now find a C* extension F of f|; on G which satisfies
|F(2)| <c8(2)**t, =z€V\K,,

for an open neighborhood V of K,, and for some positive constant ¢. The
way of construction of F is the same as one in Lemma 6 of [7]. We note that,
if f is holomorphic in an open neighborhood U of G,,, then F is holomorphic
in U. By Lemma 1, we have f|x,=F|g,€H(K,), which proves the lemma.

4. Global approximation. Let f be an arbitrary function in C*(G) and
let & be any positive number. We shall construct a sequence {f,} of functions
holomorphic in G and satisfying

|fm_fm—1|<2_m_l€ on Km
and

lfm—fl < :th—ve on T n (—;2m+3 .

We define the function f,=1limf,,. A standard argument shows that f, is holo-
morphic in G and that |[f,—f|<<€on T.

The construction of {f,} isas follows. By Lemma 2, we can find a function
Jo holomorphic in G such that

lfo—f1<27¢ on K,=TNG,

Suppose fj, j=1,::,m—1 are already defined. Let 4» be a C~ function:
G—[0, 1] satisfying 4»=1 in an open neighborhood U of G,, and =0 in
G\Gypi1. Set g=+rf,_1+(1—)f. Then g is holomorphic in U. By Lemma
2, we can find a function f,, holomorphic in G so that

|fa—gl<27™' on K,.
Since g=f,,-, in U and K,,C U, we have
Ifm—fm—ll <2—m—l€ on Km .

Since |g—f|=Y|fu1—fI< Z_m] 27%¢ on T'N Gypyy and since g=f on T\Gypt1y
we have .

[faf1<@ ™14+ 33276  on TN G-

This completes the proof of the theorem.
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ReMARK 1. The question arises whether the same conclusion as Theorem
can be obtained under the condition that p is C* strictly plurisubharmonic in
G. (There is a simple example of T such that every defining function of T is not
strictly ‘plurisubharmonic in: G and such that H(T, G)#=C(T).) When T is
compact this condition is sufficient. This follows at once from Theorem 2 of
[7] and the fact that T is then Og-convex. We do not know whether it is true
even when T is not assumed to be compact.

ReMARK 2. It is reasonable to conjecture that the theorem will be valid
even when a defining function p of T is of class C% 1In fact, when T is a sub-
manifold, C*diffrentiability of p is sufficient to derive the approximation by
functions holomorphic in a neighborhood of T (c.f. Harvey-Wells [2] and Nune-
macher [6]). The C* differentiability assumption in this paper was necessary
because of the L?-method we employed.
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