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Abstract

We study homogeneous curves in generalized flag manifolds G/K with G,-type t-roots, which
are geodesics with respect to each G-invariant metric on G/K. These curves are called
equigeodesics. The tangent space of such flag manifolds splits into six isotropy summands,
which are in one-to-one correspondence with t-roots. Also, these spaces are a generalization of
the exceptional full flag manifold G,/T. We give a characterization for structural equigeodesics
for flag manifolds with G,-type t-roots, and we give for each such flag manifold, a list of sub-
spaces in which the vectors are structural equigeodesic vectors.

1. Introduction

Let (G/K, g) be a Riemannian homogeneous space. A geodesic y(¢) through the origin
o = eK is called a homogeneous geodesic if it is an orbit of a one-parameter subgroup of G,
i.e., y(t) = (exp tX)-o, where X is a non-zero vector in the Lie algebra g of G. If all geodesics
on G/K are homogeneous geodesics the homogeneous space is called a g.o. manifold (from
“geodesic ordit”). The terminology was introduced by O. Kowalski and L. Vanhecke in [10],
who initiated a systematic study of such spaces. Examples of such spaces are the symmetric
spaces, the weakly symmetric spaces and the naturally reductive spaces.

In [6] the authors studied homogeneous curves on generalized flag manifolds that are
geodesics with respect to each invariant metric on the flag manifold. These curves are called
equigeodesics. Since the infinitesimal generator of the one parameter subgroup is an element
of the Lie algebra of G, it is natural to characterize the equigeodesics in terms of their
infinitesimal generator. This allows us to use a Lie theoretical approach for the study of
homogeneous geodesics on flag manifolds. The infinitesimal generator of an equigeodesics
is called equigeodesic vector. An algebraic characterization of equigeodesic vectors on
generalized flag manifolds is given in [6].

Recall that a generalized flag manifold is a homogeneous space G/K where G is a com-
pact, semisimple Lie group and K is the centralizer of a torus in G. Actually a vector is
equigeodesic if and only if it is a solution of an algebraic system of equations whose vari-
ables are the components of the vector. However, there exist some subspaces of the tangent
space m = T,(G/K) of the flag manifold G/K, all of whose elements are equigeodesic
vectors. The existence of such subspaces depends on the geometric structure of the G/K.
These equigeodesic vectors are called structural equigeodesic. The authors in [8] have
provided a version of the previously formula for equigeodesic vectors on generalized flag
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manifolds with two isotropy summands. Later in [11] the authors gave a general formula
for finding equigeodesic vectors on generalized flag manifolds with second Betti num-
ber equal to one (that is flag manifolds which are determined by painting one black node
their Dynkin diagram). More precisely, they found families of subspaces in which all vec-
tors are structural equigeodesic vectors, on generalized flag manifolds associated to excep-
tional Lie groups Fu, E¢ and E; with three isotropy summands, that is F4 /(U(2) x SU(3)),
E¢ /(U(2) x SU3) x SU(3)) and E; /(U(3) x SU(H)).

In the present article we study equigeodesics on generalized flag manifolds with G,-type
t-roots. In particular, for such type of flag manifolds we describe the families of subspaces in
which all elements are structural equigeodesic vectors. We know from [5] that generalized
flag manifolds G/K with G,-type t-roots have six isotropy summands and correspond to
painted Dynkin diagrams with two black nodes with Dynkin marks 2 and 3. In particular,
these are the generalized flag manifolds Fs(as, a4), E¢(a3, @), E7(as, ag) and Eg(ay, ay).
Here with G(«;,, @;,) we denote the flag manifold M = G/K where we have painted two
black nodes on the Dynkin diagram of G.

In Theorems 3.5 and 3.6 of the present paper we provide a method to obtain structural
equigeodesic vectors (cf. Propositions 4.1 and 4.2). For F4(a3, a4) and E¢(a3, ag) we find all
subspaces in which the vectors are structural equigeodesics. These are described in Tables
3,4 and 5. For the flag manifold E;(as, @) we describe all the roots that satisfy Theorem
3.5 and therefore we can describe by simple calculation all root spaces whose vectors are
structural equigeodesics (we give some of them). Finally, for the flag manifold Eg(a;, @)
we give some of the roots that satisfy Theorem 3.6. In conclusion we have the following:

Theorem 1.1. The generalized flag manifolds F, /(U(3) x U(1)), E¢c /(U3) x U(3)),
E; /(U(6) x U(1)) and Eg /(E¢ x U(1) X U(1)) admit non trivial structural equigeodesic vec-
tors.

2. Generalized Flag Manifolds

2.1. Description of flag manifolds in terms of painted Dynkin diagrams. Let g and
f be the Lie algebras of G and K respectively and g©, f be their complexifications. We
choose a maximal torus 7" in G and let ) be the Lie algebra of 7. Then the complexification
H© is a Cartan subalgebra of a®. Let R c (§°)* be the root system of o relative to the
Cartan subalgebra h© and consider the root space decomposition g© = h° & 3,z 65, where
gS = {X € o¢ : ad(H)X = a(H)X, for all H € H*} denotes the root space associated to a
root @. Assume that g€ is semisimple, so the Killing form B of g® is non degenerate, and we
establish a natural isomorphism between §* and the dual space (h*)* as follows: for every
@ € (h%)* we define H, € H°© by the equation B(H, H,) = a(H), for all H € HC. We take a
Weyl basis E, € a5 (a € R) with B(E,, E_,) = —1 and [E,, E_,] = —H,. Then g% = CE,
and

Na/,,BEa+,B if a,,B,a/ +ﬁ €R

(1) [Ea,E,B]:{() if ,feR,a+¢R,

where the structure constants N,z € R are such that N,g = Oif ,8 € R, « + 8 ¢ R, and

Nop=~—Ngo, Nop=N_o_p €Rifa,p,a+p €R. Itisclear that Ny g # 0, if o, B, + B € R

and so relation (1) implies that [gg, gg] = g§+ﬁ. Choose a basis IT = {ay, ..., a;} (dimb° = ¢)
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of simple roots for R, and let R* be a choise of positive roots. Set A, = E, + E_, and
B, = V-1(E, — E_,), where @ € R*. Then the real subalgebra g is given by

@) 9=b® ) (RA, +RB,) =0 > U,

@€ER* a€eR*
Note that g, as a real form of g° is the fixed point set of the conjugation 7 : a© — g, which
without loss of generality can be assumed to be such that 7(E,) = E_,.

Since h° C ° c ¢, there is a closed subsystem R of R such that t = b & 3, 5.
In particular, we can always find a subset [1x c Il such that Ry = RN {Ilx) = {# € R :
B = Xgen, ki, ki € Z}, where (Ilg) is the space of roots generated by Ilx with integer
coefficients. The complex Lie algebra f© is a maximal reductive subalgebra of g© and thus it
admits the decomposition £ = 3(f°) @ 15, where 3(f) is the center of * and 5, = [t, %] is
its semisimple part. Note that tJ; is given by t5; = )’®Y ez, 05, where ) = e, CH, C h°
is a Cartan subalgebra of fﬁ.. In fact, Rk is the root system of the semisimple part f‘fs and Ig
is a corresponding basis. Thus we easily conclude that dimc b’ = card Ilg, where card Ik
denotes the cardinality of the set Ilg. Let K be the connected Lie subgroup of G generated
by f = f* N g. Then the homogeneous manifold M = G/K is a flag manifold, and any flag
manifold is defined in this way, i.e. by the choise of a triple (a, IT, ITg).

Set I, = II\Ilg, and Ry; = R\Rk, such that IT = [1x UII,;, and R = RxUR),, respectively.
Roots in Ry, are called complementary roots, and they play an important role in the geometry
of M = G/K. For example, let m the orthogonal complement of f in g with respect to B.
Then we have [f, m] C m where m = T,(G/K). We set R}, = R"\R}, where R} is the system
of positive roots of (R} C R"). Then

(3) m = Z (RA, + RB,).

+
a€R),

The complexification is given as m® = 2aery CEq, and the set {E, : a € Ry} is a basis of

C
m=.
Now if we assume that [Ty, = II\IIx = {a;,,...,@;}, where 1 < i} <--- < i, < { we set,
for some integers ji, ..., j, with (ji,...,j-) # (0,...,0)
I
) R"Gtser s j) = ijajem S mi, = ji,....m; = j, ¢ CR'.

j=1
Note that Ry, = R"\Rg = U;, __;, R"(j1,..., j,). Forany R"(ji,..., j,) # 0, we define an
Ad(K)-invariant subspace m(jy, ..., j.) of g by

(5) MGjt, )= ) {RAg+RB,).
@ER(ji .y jir)

Then we have a decomposition of m into mutually non equivalent irreducible Ad(K)-
modules m(ji,..., j,):

m = Z' MGty es )

jl ~~~~~ Jr

We conclude that all information contained in I1 = I1x UIIy, can be presented graphically
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by the painted Dynkin diagram of M = G/K.

DerintTion 2.1. Let I' = I'(IT) be the Dynkin diagram of the fundamental system I1. By
painting in black the nodes of I corresponding to I1,,, we obtain the painted Dynkin diagram
of the flag manifold G/K. In this diagram the subsystem Il is determined as the subdiagram
of white roots.

Conversely, given a painted Dynkin diagram, in order to obtain the corresponding flag
manifold M = G/K we are working as follows: We define G as the unique simply connected
Lie group corresponding to the underlying Dynkin diagram I" = I'(IT). The connected Lie
subgroup K C G is defined by using the additional information IT = I1x U I1,; encoded into
the painted Dynkin diagram. The semisimple part of K is obtained from the (not necessarily
connected) subdiagram of white roots, and each black root, i.e. each root in I1y,, gives rise
to one U(1)-summand. Thus the painted Dynkin diagram determines the isotropy subgroup
K and the space M = G/K completely. By using certain rules to determine whether different
painted Dynkin diagrams define isomorphic flag manifolds (see [1]), one can obtain all flag
manifolds G/K of a compact simple Lie group G.

From now on we denote the flag manifold M = G/K with G € {B;, Cy, D¢, F4, Eg, E7, Es},
by G(«;,) if we have painted one node of I'(II), that is [Ty, = [I\Ilx = {«a;,} and by G(«;,, @},)
if we have painted two nodes of I'(IT), that is ITy, = TI\ITg = {a;,, @;, }-

We close this subsection with the next lemma which gives us some information about the
Lie algebra structure of g.

Lemma 2.2. The Lie brackets among the elements of the basis {A,, By, \/—_lHﬁ Ta €
R* and B € I} of g are given as follows:
[As Agl = NogAaip + NoapAup, [V=1H,,Ag] = B(H,)Bg
[Bo, Bgl = ~NapAgip — No—pAa—p,  [N=1Ho, Bgl = —B(H,)Ag
[Aa, Bl = Nog Basp + Nop Bup,  [Aay Bl = 2V=1H,,
where a + 3, @ — 3 are roots.

Proof. We will prove three of the above relations and the others can be obtained by a
similar method. For the first we have:

[AQ,AIB] = [E,+E_,, E,B + E_ﬁ] = Na,ﬁEa+ﬁ + Na/,—,BEa—ﬁ + N—a/,,BE—a+,B + N—a,—ﬁE—a—,B
= Na,ﬁE(H,B + N—(x,ﬁEa—ﬁ + N—(I,ﬁE—(l/+[3 + Na/,ﬁE—((l+ﬁ)
= Na,,BAa+,B + N_aﬁAa_[g.
For the second we have:
[V-1H,,Agl = [V-1Hq, Eg+ E_g] = N=1[Hq, Egl + V=1[H,, E_g]
V=1B(Ho)Ep — V-1B(Ha)E_g
= PB(Ho)Bg.

Finally, we prove the last relation:
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[AgsBol = [Eq+E o0, V=1(Ey — E_)] = ~V=1[Eq, E_y) + V=1[E_g, E,]
V-1H, + V-1H, = 2V-1H,,.

O

2.2. t-roots and isotropy summands. We study the isotropy representation of a general-
ized flag manifold M = G/K of a compact simple Lie group G in terms of t-roots. In order to
realise the decomposition of m into irreducible Ad(K)-modules we use the center t of the real
Lie algebra t. For simplicity, we fix a system of simple roots Il = {ay,...,ar, ¢1,..., P}
of R, such that r + k = ¢ = rkg® and we assume that [Tx = {¢1,...,¢i} is a basis of
the root system Rgx of K so I, = II\llx = {ay,...,a,}. Let Aq,...,A, be the funda-
mental weights corresponding to the simple roots of I, i.e. the linear forms defined

2(((:;’)) = 6ij,(Aj,¢;) = 0, where (a,) denotes the inner product on (h°)* given by
(a,B) = (H,, Hp), for all a, 8 € (h)*. Then the {A; : 1 < i < r}is a basis of the dual space
t"of t,t* = '/, RA; and dimt* = dimt = r.

Consider now the linear restriction map « : h* — t* defined by «(a) = s, and set

Ri = k(R) = k(Ry).

DerintTioN 2.3. The elements of R; are called t-roots.

The set R; is not in general a root system. An element Y € t is called regular if any t-root
k(@) = & (@ € Ry) takes non zero value at Y, i.e. £(Y) # 0. A regular element defines an
ordering in t* and thus we obtain the splitting R; = R;’ U R;, where R;r ={£eR::&Y)>0)
and Ry = {¢ € Ry : &(Y) < 0}. The t-toots & € R (resp. & € R;) will be called positive (resp.
negative). Since Ry = k(Ry) it follows that R = k(R},), and since R}, = -R}, = {~a : a €
Ry}, itis Ry = k(R;)).

DEriniTION 2.4, A t-root is called simple if it is not a sum of two positive t-roots.

The set of all simple t-roots is denoted as Il; and is a basis of t*, in the sense that any
t-root can be written as a linear combination of its elements with integer coefficients of the
same sign. We will call the set I as a t-basis.

Proposition 2.5 ([3]). A t-basis I1; is obtained by restricting the roots of 11y, = II\Ilg to
t, that is Ty = {k(a;) = @; = a;lt : a; € Ty}.

As we saw the flag manifolds G/K are determined by pairs (g, I, [1g). The number of
ad(f)-submodules of m = T,(G/K) correspond to the Dynkin mark of the simple root we
paint black on the Dynkin diagram. We recall the following definition

Derinttion 2.6. The Dynkin mark of a simple root o; € IT1 (i = 1,...,{), is the positive
integer m; in the expression of the highest root @ = ZIi:l myay in terms of simple roots. We
will denote by Mrk the function Mrk : TT — Z* with Mrk(a;) = m;.

By using the Proposition 2.5 we give a useful method to find the positive t-root R of
Iy, = {a; € I1 : Mrk(a;) = m;}. The t-basis is Il; = {a;}, where «(o;) = @; = a4t and
t* = Ra;. We fix a positive root @ = Z§:1 kja; € R*, with k; < mjforall j = 1,...,¢.
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Then by the fact that x(Rx) = 0 we have that for all @ € Ry, «(a) = aly = ka; with
1 < ki < m;. Hence R = {ka; : 1 < k; < mj} = {@;,2@;,...,m;a;} and cardR] = m;. In
case where Ily, = {a;, a; : Mrk(a;) = m;, Mrk(a;) = m;} then II; = {a;,a; : i < j}, where
k(@) = @; = ajl, k(@j) = @; = ajl; and t* = span{@;,@;}. Then for @ € R}, we have
k() = a’t = kja; + kja; where 0 < k; < m;, 0 < k; < m; the coefficients k;, k; can not be
simultaneously zero, so it is obvious that cardR;" > 3. For generalized flag manifold G/K
with b,(G/K) > 3 there are more than five t-roots ([4]).
A fundamental result about t-root is the following:

Proposition 2.7 ([2]). There exists a one-to-one correspondence between t-roots & and
irreducible ad(f®)-submodules mgl of the isotropy representation of m©, which is given by

R3¢ o me= > CE,

a€R )y k(@)=E
Thus m© = EB cer, Me- Moreover, these submodules are non equivalent as ad(f*)-modules.

In order to obtain a decomposition of the real Ad(K)-module m in terms of t-roots, we
use the complex conjugation 7 of g© with respect to g (note that  interchanges g5 and g©,).
Moreover, for a complex subspace V of g© we denote by V7 the set of all fixed points of 7.
Then, we can write

(6) m = Pme @ me).
£€RY
Let us assume for simplicity that R:' = {é1,...,&}. In this case Proposition 2.7 and

relations (3), (6) imply that the real irreducible ad(f)-submodule m; = (g, @ m_g)" (1 <i <
s) which corresponds to a positive t-root &;, is necessarily of the form

(7) mi= > (RA,+RB,).
{aeR} :K(a)=£)

By summarizing, we have the following proposition

Proposition 2.8 ([4]). Let M = G/K be a generalized flag manifold defined by a subset
g C II such that 11y = INg = {a;,,...,@;} with1 < iy < --- <1, < {. Assume that
g = t®m is a B-orthogonal reductive decomposition. Then

(1) There exists a natural one-to-one correspondence between elements of the set
R"(j1,..., jr) and the set of positive t-roots Rf = {£1,...,&). Therefore, there
is a decomposition of m into s mutually non-equivalent irreducible Ad(K)-modules
M= eerr (Mg @ M_g)" = Yimg@mog)' =3 i mGi.... )

(2) The dimensions of the real Ad(K)-modules m; (i = 1,...,s) corresponding to the
t-root & € R are given by dimgm; = 2card{a € R}, : k(o) = &} = 2card
R"™ (j1, ... j,), for appropriate positive integers ji,... j,.

(3) Any G-invariant Riemannian metric g on G/K is given by

S

g = Z X§B|(m,geBm_§)T = Z xg,-B|(m§ie)m_fi)T = Z Xjlo j,B|m(j1 ..... Jjr)

£eRy i=1 JtseeesJir

I'We mean that [f°, mg] C mg for all ¢ € Ry.
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for positive real numbers x¢, xg, x;j, . j,. The G-invariant Riemannian metrics on
M = G/K are parametrized by s real positive parameters.

2.3. Generalized flag manifolds with G,-type t-roots. A system of positive roots of the
Lie group G, is given by {a, @z, @) + @2, 2a; + @2, 3a; + a3, 3a; + 2a,}, with heighest root
a = 3a; + 2a;. The corresponding painted Dynkin diagram of the full flag manifold G,/T
is

a; @

[ 2 —x]

From the paper [5] we have that flag manifolds with G;-type t-roots system satisfy IT \
Ilx = {a;, a; : Mrk(a;) = 3, Mrk(a;) = 2}, and are the following:

The highest root @ of Fy is given by @ = 2a +4a; + 33 + 24, and we have the following
painted Dynkin diagram

Fy(as, aq)
a1 @y a3 4

O——O0<—o—o
2 4 3 2

The highest root @ of Eg is given by & = a; + 2as + 3a3 + 2a4 + as + 2a6 and we have
the following painted Dynkin diagram

Ee(a3, ac)
a1 Q@ a3 @4 Qs

1 2 3 2 1

2

The highest root @ of E7 is given by @ = a; + 2a; + 3a3 + 4a4 + 3as + 2a6 + 27 and we
have the following painted Dynkin diagram

Es(as, ae)
@) ap a3 @4 @5 @

1 2 3 4 3 2
2 @7
The highest root @ of Eg is given by @ = 2a; + 3a, + 4a3 + Say + 6as + 4ag + 2a7 + 3ag
and we have the following painted Dynkin diagram

Eg(ai, @2)
Q) Qp a3 @4 a5 @ Q7

2 3 4 5 6/ 4 2
3ag

For IT'\ Ilx = {a;,a;} we put @; = k(a;) and a; = k(a;). We list the sets of all positive
t-roots R in Table 1, which we separate into Type I and Type II.

From Proposition 2.7 it is easy to see that the isotropy representation of the above ho-
mogeneous spaces is written as a direct sum of six non equivalent Ad(K)-invariant isotropy
summands. For flag manifolds of Type I we set
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Table 1. Positive t-roots R} for pairs (IT, ITx)

Type 1 ‘ Set of all positive t-roots R}

Fi(as, aq) | {as, as, a3 + @y, 2a3 + @4, 3a3 + @y, 3az + 2a4)
E¢(as, ag) | {az, ag, a3 + ag, 2a3 + ag, 3a3 + ag, 3a3 + 2}
}
}

E7(as, a6) | {as, as, as +as, 2as + s, 3as + a6, 3as + 206
Gz {51, 52, 51 +52, 25] +52, 361 +62, 3&1 + 252

Type II ‘
Eg(a1, ) |

Set of all positive t-roots R}
{

ay, a2, @) + o, @y + 2an, a; + 3an, 2a; + 362}

Table 2. Dimensions of irreducible summands with G,-type t-roots

Typel | m(1,0) [ m(0,1) | m(1,1) [ m2,1) | m3,1) | m(3,2)

Falanas) | 12 2 2 2 2 2
Eo(as,a5) | 18 2 18 18 2 2
Eq(as, ag) 30 2 30 30 2 2
Gy 2 2 2 2 2 2

Type Il | m(1,0) | m(0, 1) [ m(1,1) | m(1,2) [ m(1,3) | m(2,3)
Eg(a)| 2 | 54 | 54 | 54 | 2 | 2
m(l,0) = (mg, + m_g)", m(0, 1) = (mg, + m_g,)",
(8) m(l’ 1) = (mﬁ,+51 + m—ﬁi—ﬁj)‘r’ m(2’ 1) = (m25,+57 + 1“—25,—6,)1-9

m@3, 1) = (Magag, + Mosg—z,)>  M3,2) = (M3g.42z, + M-3z,-23,)"
and for Type II we set

m(L,0) = (mg, + m_g)", m(0, 1) = (mg, + m_g)",
(9) ]n(l’ 1) = (mﬁ,+51 + m—ﬁi—ﬁj)‘r’ m(l’ 2) = (m5,+257 + 1“—5,—26,)1-9
m(l,3) = (Mg43g, + Mg—3a,)"s  M(2,3) = (Mag43g, + Mo2g—3a;)"

By using tables of positive roots (eg. Table B in Appendix of [[7], pp. 528-531]), we obtain
the dimensions of these spaces as shown in Table 2.

We consider the generalized flag manifold M = G/K with G,-type t-roots. As we have
seen we have the decomposition of m = 7,(G/K) into six irreducible non equivalent Ad(K)-
modules as follows:

(10) Typel : m=m(1,0)em@O,H)edm(l,1)em2,1)edm@3,1)dm(3,2)
(11) Typell : m=m(1,0)®m(@,1)®ml,1)®m,2)®m(l,3)dm(_,3).

For Type I we set m; = m(1,0), my, = m(0, 1), m3 = m(1, 1), my = m(2, 1), ms = m(3, 1),
me = m(3,2), and for Type II we set n; = m(1,0), 1, = m(0, 1), n3 = m(1, 1), ng = m(1, 2),
ns = m(1, 3) and ng = m(2, 3).

We now compute the Lie brackets [m;, m;] and [n;, ;] among the real irreducible sub-
modules m; and n; of m. According to (7), each real submodule m; (or 1;) associated to the
positive t-root & can be expressed in terms of root vectors E., (a € R},), such that k(@) = &
So from (1) we can compute the brackets [m;, m;] (or [n;, n;]), for suitable root vectors E,.

Lemma 2.9. Let M = G/K be the flag manifold of Type I. Then we obtain that [m;, m;] C T
for1 <i<6,and
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[my, mp] € my [mo, mz] Cmy  [mz,my] Cmy@mg  [my, ms] €y

[y, mz] cmo@my [mo,my]ct [mz,ms]Ci [m4, me] C M3
(12) [my,my] Cmz®ms  [my, ms] Cmg [m3,mg] C iy [ms, mg] C My

[my, ms] C my [m2, me] C s

[my,mg] Ct.

Lemma 2.10. Let M = G/K be a flag manifold of Type Il. Then we obtain that [n;, ;] C T
for1 <i<6,and

[m,mlcny [m,m]cm@ng [, ] Cnpdns [y, ns] Cnp

[, cny [,y cnzdns [ng,ns] C [14, 6] C 113
(13) [(m,y]ct [p,ns]Cny [13, 6] C 1y [1s,m6] C 1y

[m,ms] c g [o,mg] C f

[, 1] C ns.

3. Equigeodesics

Let G/K be a generalized flag manifold equipped with a G-invariant metric g. It is known
that such metrics are in one-to-one correspondence with Ad(K)-invariant scalar products
(-,yonm = T,(G/K) ([9, Proposition 3.1]). These in turn correspond Ad(K)-equivariant,
positive definite, symmetric operators A : m — m determined by (-,-) = Q(A-,-), where
Q = —B, the negative of the Killing form on g. A curve of the form y(¢) = (exptX) - o is
called equigeodesic on G/K if it is a geodesic with respect to each invariant metric on G/K.
The vector X is called equigeodesic vector. The following proposition gives us an algebraic
characterization of equigeodesic vectors.

Proposition 3.1 ([6]). Let G/K be a reductive homogeneous space with reductive decom-
position g = 1 ® m and X € m be a non-zero vector. Then X is a equigeodesic vector if and

only if
(14) [X, AX]w = 0,
for each invariant metric A.

To solve equation (14) is equivalent to solve a non linear algebraic system of equations
whose variables are the coefficients of the vector X. We consider the decomposition m =
Z%RL m, and the basis {4,,B, : @ € R;{l}. Then, by analysing the Lie brackets [A,, Bgl,
[Aq, Agl, [Ba, Bl described in (1) it is clear that if the structural constants N, 3, N_o g, Ny, g
vanish (e.g. if @ + 8 is not a root), then these brackets also vanish and the system can be
simplified. In some cases (depending just on the m;-parts of X) the nonlinear system vanishes
completely (i.e. the system is identically zero). This motivates the following definition:

DerintTion 3.2. An equigeodesic vector X is said to be
(a) structural if the algebraic system associated to equation (14) vanishes completely.

(b) algebraic if the coordinates of the vector X come from a solution of a (not identically
zero) nonlinear algebraic system associated to equation (14).
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Remark 3.3. From the invariance of the metric A, we have that Al,,, = 4;Id,,, for some
A; > 0, for each irreducible component of the isotropy representation. Therefore, if X € m;
then equation (14) is satisfied trivially.

We call an equigeodesic vector X € m trivial if X € m; for some i, otherwise is said to
be non trivial. It is obvious that the trivial equigeodesic vectors are structural equigeodesic
vectors.

Lemma 3.4. Let G/K be a generalized flag manifold with Gy-type t-roots. A vector
X = Z?:l Xy, €Em = @?:1 m; (resp. X = Zf’zl X, en= @?:1 n;) is equigeodesic if and
only if
(15) [Xm,-’ Xm_,-] =0, (resp. [Xn,»a Xn_,-] =0)
where 1 <i< j<6.

Proof. If 7 : ¢ — m is the projection onto m, then 7([X, AX]) = [X, AX],,. Assume that
G/K is a flag manifold of Type I. Let X = Z?zl X, €Em = @?:1 m;. Then
6 6 6 6
[X, AXTye = 2([X, AXT) = ([ D Xy AQY . X)) = 7 D X D AiXin )
i=1 i=1 ' =1

i=1 i

6 6
= > (i = )Xoy X )+ D (i = )Xoy, X D + -+ + (A = A5 Ko, X )
i=2 i=3

= (/12 - /ll)[Xml 5 sz] + (/13 - /ll)[Xm] 5 Xﬂl}] + (/l4 - /ll)[Xm, 5 Xnu] + (/15 - /11)[Xml s Xm5]
+(/l3 - /12)[me Xm3] + (/15 - /12)[sz, Xm5] + (/l6 - AZ)[sz, Xn16] + (/14 - /13)[Xm3, Xm4]
+(/l6 - AS)[me Xn16] + (/15 - /14)[Xm4: Xm5] + (/16 - /14)[Xm4’ Xm(,] + (/16 - /15)[Xm5= me]-

From the bracket relations (12) we see that all the above brackets [ X, Xn,] belong to m. We
know that X is a equigeodesic vector if and only if [ X, AX],, = O for each invariant metric
A =A{d,....} (41 > 0,...,4¢ > 0). This occurs if and only if [X,, Xi,] = 0, where
1 <i< j<6. Similarly, if G/K is a flag manifold of Type II we use bracket relations (13)
and can show that the vector X = Z?:l X, €n = @?:1 1; is equigeodesic if and only if
[Xo, Xn;] =0 where 1 <i< j<6. ]

In the papers [8] and [11] the authors gave a family of structural equigeodesic vectors
for the generalized flag manifolds G/K with two and s isotropy summands respectively,
which depend only on the Lie algebra structure of g. The next theorem provides a family of
structural equigeodesic vectors on generalized flag manifolds with G,-type t-roots.

Theorem 3.5. Let G/K be a generalized flag manifold with G,-type t-roots and Il =
[M\{aj,, aj,} of Type I. Let the positive roots R"(1,0) = {B%, . ,,8,11 5, R™(0,1) = % . ,,8,%2},
R™(1,1) = ?,...,ﬂi}}, R"(2,1) = LB‘;,...,,B;}, R"(3,1) = { f, . ..,ﬁis}, R"(3,2) =

?,...,,8,?6}. Suppose that the set {Bil.’ﬂizz’ ...,,BZ 1 <0 £ky,...,1 < ig < kg} sat-
isfies

,Bf;iﬂ?q&Rfor ip#igand 1 <p<q<6.

Then all vectors in the subspace Ug & Up & - - ® Ugs are structural equigeodesic vectors.
1 ) 6
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Proof. Let X = 21-6:1 Xm,- = X(l’()) + X(O,l) + X(l,l) + X(Z,l) + X(g’l) + X(3,2), where

X0 = Z {RA, + RB,} = Z Uy, X = Z {RA, + RB,} = Z U,

aeR™(1,0) aeR™(1,0) aeR™(0,1) aeR™(0,1)
Xan= D, RA+RBJ= > o Xon= ), {RA+RB,J= > 1,

aeR™(1,1) aeR™(1,1) a€R™(2,1) a€R™(2,1)
Xon= Y (RA+RBjJ= > W  Xazn= ) (RA+RB}= > M,

a€R™(3,1) a€R™(3,1) a€R™(3,2) a€R™(3,2)

Since,BZ iBZ; isnotarootfori, # i;and 1 < p < g < 6, we have that Nﬁﬁ;ﬂ?q = N—ﬁ,’-’pﬁ? =
Ngr _g = 0. A direct computation using the relations of Lemma 2.2 shows that the system
of equations (15) vanishes and the vector X is a structural equigeodesic vector. m|

Similarly, we can proof the following:

Theorem 3.6. Let G/K be a generalized flag manifold with G,-type t-roots and I =
I\{aj,, aj,} of Type II. Let the positive roots R"(1,0) = {Bl,.. ,Bk R"(0,1) = .. ,Bkz}
R'(1,1) = {,83,...,323}, R"(1,2) = { ‘1‘,...,324}, R"(1,3) = { 1,...,ﬂk5}, R"(2 3) =

.,,826}. Suppose that the set {Bl.ll, 1.22, ...,ﬁ?ﬁ 1 <) <k, ., 1 < g < kg} sat-
isfies

Bl +B. &R for i, #ijand 1< p<q<6.

ip

Then all vectors in the subspace Ug & Up & - - ® Ugs are structural equigeodesic vectors.
1 ) 6

4. Structural Equigeodesic Vectors on Flag Manifolds with G,-type t-roots

In this section we give a family of structural equigeodesic vectors for generalized flag
manifolds with G,-type t-roots, namely for F4 /(U(3)xU(1)), E¢ /(U3) xU(3)), E7 /(U(6) X
U(1)) and Eg /(E¢ x U(1) x U(1)). We classify the positive roots that satisfy the hypothesis
of Theorems 3.5 and 3.6.

For the root system of exceptional Lie groups Fy4, Eg, E; and Eg we use the notation
of [1], where all positive roots are given as linear combinations of the simple roots I1 =
{ar, @, ..., a0 (€= 1kgO).

4.1. Structural Equigeodesic vectors on the flag manifold F, /(U(3) x U(1)). LetIl =
{a1, @z, a3, a4} be a system of simple roots for F, with highest root @ = 2@ +4a; +3a3+2a4.
The flag manifold F4 /(U(3) x U(1)) is determined by I1x = I1\{as,a4}. From Table 1 we
have that the the positive t-roots are given by Rf = {az, a4, az + aa, 2a3 + a4, 303 +
@y, 3a3+2a4}. According to Proposition 2.8 (1), we obtain the decomposition (10) where the
sumbodules m; are defined by (8). The sets R"(ji, j2) = {Z?:1 ciai € Ry, 1 c3 = ji, ¢4 = jo}
are given explicitly as follows:

R"(1,0) = f{es,ej —er,e3—es,e3+es,1/2(e; —ex+e3+eq),1/2(e; —er + €3 — es)}
Bl B

R"(0,1) = f{ex—e3}={B)
{

R™(1,1) =

er,e1 —e3,e3—eg,ext+ ey, 1/2(er +ex—e3+eq), 1/2(e) + e — e3 — e4)}
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= {Bl,....B)
R"(2,1) = Hlei,e; —es,e1 +es,en+e3,1/2(e1 +er+e3+eq),1/2(e) +ex+e3—es)}
= {Bl,....5

R"G,1) = {ei+es)=1{B)
R"3,2) = {ei+ex)=(BY).

It is easy to see that the roots which satisfy the hypothesis of Theorem 3.5 are the following:
B £ & R forevery (i, j) € {(1,3),(1,4),(2,5),(2,6),(3, 1), (3,6), (4, 1), (4,5),(5,2),
(5,4),(6,2),(6,3)}

B £ B} & R forevery (i, j) € {(1,2),(1,3),(2,5),(2,6),(3, 1), 3,5), (4, 1), (4,6),(5,2),
(5,4),(6,3),(6,4)}

B,-l iﬁ?eRforeveryi: 1,2,...,6
ﬁ%iﬁjeRforeveryjz 1,2,...,6

B iﬁj ¢ R for every (i, j) € {(1,2),(1,3),(2,5),(2,6),(3,1),(3,5), (4,1),(4,6),(5,2),
(5,4),(6,3),(6,4)}
B 1,8? ¢ Rforeveryi=1,2,...,6.

From the above roots we can find all the subspaces for which the vectors are structural
equigeodesic vectors. In particular we have the following:

Proposition 4.1. The root spaces for the generalized flag manifold F4 /(U(3) x U(1))
whose roots satisfy Theorem 3.5 are listed in Table 3. In particular, all vectors in these
subspaces are structural equigeodesic vectors.

Table 3. Structural equigeodesic vectors for F, /(U(3) x U(1))

uﬁg @ Hﬁ: @ Hﬁé
IIﬂ; @ uﬁ} @ Hﬁ;
uﬁg @ uﬁg @ uﬁj
uﬁ? @ uﬁi @ uﬁ;
uﬁé D uﬁ; &b uﬁ;
uﬁg @D 11,;7 (%) uﬁg
uﬁ; @ uﬁ? @ uﬁg
uﬁl @ uﬁ? @ uﬁg
uﬁ? @ uﬁg @ uﬁg

uﬁ? &) uﬁ; D uﬁi
uﬁi &) uﬁ}; @ uﬁz
uﬁg (&) uﬁé D uﬂ;
uﬁg @ uﬁ; @ uﬁ;
uﬁ; @ 11/3? @ uﬁg
uﬁé &) uﬁg @D uﬁé
HB; @ uﬁ? @ uﬁg
uﬁg D uﬁg D uﬁi
uﬁé D uﬁg D uﬁ;

uﬁg @ Hﬁz]t @ Hﬁ;&
llﬁg @ uﬁ% @ lIﬁJ‘
11,33 (&) uﬁ; &) uﬁé
uﬁ? D uﬁg 52} uﬁi
uﬁ} @ uﬁg @ uﬁi
uﬁé @ uﬁg @ Hﬁg
uﬁg @ uﬁg @ uﬁg
uﬁ; @ uﬁ; @ uﬁi
uﬁ(l] @ uﬁg @ uﬁ:

uﬁi @ uﬁ{ ) uﬁ;
uﬁg @ uﬁ{ 3} llﬁé
uﬁg (%) IIB;; D uﬁj
uﬁ; @ uﬁ; @ uﬁé
uﬁ} @D uﬁg 7] 1Iﬁ§
uﬁi @ uﬁg @ uﬁg
uﬂi @ uﬁ? @ uﬁg
uﬁ; ® lIﬁ; 7] uﬁj
uﬁ; @ uﬁg @ uﬁ?

11'3? ® uﬁ% ® 115;69 uﬁf &) uﬁ? ® uﬁgea
uﬁ; &) uﬂj ® uﬁg ® uﬁg uﬁz ® uﬁi &) uﬁa ® uﬁg

uﬂ? ® uﬁ? @ IIﬁZGB uﬁ; ® uﬁi ® 115; &) uﬁ})

4.2. Structural Equigeodesic vectors on the flag manifold E¢ /(U(3) x U(3)). LetIl =
{ay, as, a3, ay, as, ag) be a system of simple roots for Eg with highest @ = a; + 2a, + 3a3 +
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2a4 + a5 + 2a6. The flag manifold Eq /(U(3) X U(3)) is determined by I1x = IT\{as, ac}.
From Table 1 we have that the the positive t-roots are given by R;r = {as3, ap, @3 +ag, 203+
@6, 33 + ag, 3as + 2ag}. According to Proposition 2.8 (1), we obtain the decomposition
(10) where the sumbodules m; are defined by (8). The sets R"(j, j») = {Zf’zl ciaj € Ry, :
c3 = J1, c¢ = ja} are given explicitly as follows:

R"(1,0) = {e3s—e4,er—es,e3—e5,e1 — ey, €] —e5,€] — €5,€3 — €5,€) — €6, €3 — €6}

= {Bl,....B

R™0,1) = {eq+es+eg+e)={B)

R"(1,1) = {ej+esteste,er+es+eg+eeztestes+eez+es+eqte,
e1t+eqst+est+e,ept+es+eqgte,enpt+eqst+est+e,en+es+eg+e,
e3+es+eqtel= ?,...,Bg}

R"(2,1) = {ej+ey+es+e,ei+esteste,ej+es+es+eertez+este,
e t+ez3t+eqgte,ept+eryt+eqst+e,ept+ert+eqgte,ep+e3+es+e,
ez+eg+e5+e}:{,8‘11,...,ﬁ‘8‘}

R"(3,1) = f{ej+ex+e3+e}={B3)

R™3,2) = {ej+ex+es+eq+es+es+2e) =65

It is easy to see that all roots which satisfy Theorem 3.5 are the following:

ﬁll iﬁ; ¢ R for every (i, j) € {(1,3),(1,6),(1,8),(1,9),(2,2),(2,4),(2,6),(2,7),(3, 1),
(3,2),(3,3),(3,4),(4,1),(4,4),(4,5),(4,8),(5,2),(5,5), (5,6),(5,9), (6, 1), (6, 3), (6, 6),
(6,7),(7,1),(7,,(7,8),(7,9),(8,2),(8,3),(8,5),(8,8),(9,4),(9,5),(9, 7)., 9,9}

ﬁll iﬁj ¢ R for every (i, j) € {(1,1),(1,2),(1,4),(1,7),(2,3),(2,4),(2,6),(2,8),(3,6),
(3,7),(3,8),(3,9),(4,2),(4,5),(4,6),(4,9),(5,1),(5,4), (5,5), (5, 8), (6, 3), (6,4), (6, 7),
(6,9),(7,1),(7,2),(7,3),(7,9),(8,2),(8,5),(8,7),(8,8),(9,1),(9,3),(9,5), (9, 6)}

B}iﬁ?&Rforeveryi: 1,2,...,9
B%iﬂ?eéRforeveryj: 1,2,...,9

Bf iﬁj ¢ R for every (i, j) € {(1,1),(1,4),(1,5),(1,8),(1,9),(2,1),(2,2),(2,3),(2,8),
(2,9),3,1),(3,3),(3,5),(3,6),(3,7),(4,1),(4,2), (4,4),(4,6),(4,7),(5,3),(5,4), 5, 5),
(5,7),(5,9),(6,2),(6,4),(6,5),(6,6),(6,9),(7,2),(7,3),(7,5),(7,7),(7,8),(8,2),(8,3),
(8,4),(8,6),(8,8),(9,1),(9,6),(9,7),(9,8),(9,9}

ﬁ?iﬂ?&Rforeveryi: 1,2,...,9.

From the above roots we can find all the subspaces for which the vectors are structural
equigeodesic vectors. More precisely, from the roots ,81.1 + ,83 ¢ R, ,8} + ﬂj ¢ R, ﬁl.l + ﬁ? ¢ R,
,Bf + B‘]‘ ¢ R and ﬁf’ + ,8? ¢ R we obtain the subspaces in the following tables:
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Table 4. Structural equigeodesic vectors for Eg /(U(3) x U(3))

uﬁa@u @Hl@lll@uﬁl
1136911 ulﬂBHl@uﬂl
p‘ 691[/31 EBuﬁl EBHﬁI GBH
uﬁ3@1[ 11 1 @uﬁl @uﬁl

llﬁzlt@
uﬁgﬂa

llﬁj @

uﬁl &) uﬁ]
i s
uﬁ{ @ uﬂi (<] uﬁ% @ uﬁé l[
uﬁg @ Hﬂlz @ uﬁé @ uﬁ; @ uﬁ’; uﬁl e U 1 @ 1154 (&) uﬁ4
uﬁ} &) uﬁ% (&3] uﬁ; @ uﬁé uﬁi o U o @ lIﬁ4 &) 1Iﬁ4

olyol, Uy

uleauﬁét@u/,ﬂ 11/3;
Oy Oy Upt Uy DUy

<] Hﬁi @ Hﬁ% @ uﬁz
5] uﬁ? (<3] uﬁ%
uﬁ; ® Hﬁg ® uﬁ? ® l,tﬁg
1[ﬁ1 @ H 1 @ uﬁg @ uﬁi
Uy ! ® Uy @uﬁg @11/33
52] uﬁ; (<3] uﬁg

Hﬁge)ul@uﬁl@uﬁl@l[ﬂl uﬁzg@uﬁi@uﬂ;@uﬁé@uﬁé 11[8‘1‘@1 16311546911[34 uﬁ1®ul®uﬁ;®uﬁg
uﬁgGBul 112 111691[131 up}g@uﬁl@uﬂ%@uﬁi@uﬁé uﬁéealleauﬁ@eauﬁ
11@6911@@511,8(1,@1116911131 uﬁ;x@uﬁ{@uﬂ%@uﬁé@uﬁé uﬁ}®u1®uﬁ4®llﬂ4 112 us

uﬁ3 6911 ! @uﬁl eauﬁ% 6911 51 uﬁg @uﬁé 691113% @uﬁ; eauﬁé uﬂ} @u 1 @uﬁz 6911

36911 1691[@6911% uﬁg@

11/3; @ uﬁs @ uﬁ3
3 i H
uﬂi @ uﬁ? @ uﬁi ® 11 2 @ uﬂa

uﬁ% &) uﬁi (<]

113 26911/336911% uﬁ} @uﬁ?GBuﬁgGBuﬁj GBuﬁ;t l,[ﬁ;GBu 1
@ uﬂ% @ uﬁi [<3) uﬁg @ uﬁ% uﬁé @ uﬁg @ uﬂj (<] uﬁg @ uﬁg lIﬁé
u;@uﬂa ulil@uﬁa@uﬁéteauﬁza@uﬁa
ﬁl ®llﬁ4®uﬁ4 ealIB4 @uﬁa

Uy By Ay BUy @

u,
Uy

uﬂ% @ uﬂ% @ uﬁg @ uﬁg ® Ugs 5 Bl @ lIﬁ4 @ u[,,4 @ 1[54 @ uﬂ4 HB{

uﬁé @ uﬂ% @ lIﬁ; @ uﬁg @ uﬂ% 5! @ 1154 < uﬁ4 @ 1[54 @ U‘Bz; uﬁé

Upolpolyelz el U)ol el el ol U D, My

Uy @ Uy @ gz @ Uy @ U uﬁl ® Uy @ Uy @ Uy @ Uy Up B, Uy
Uy @ Uy DU O Us @ Uys Uy & Uy D Uy & gy @ Uy U B, Uy

ﬁl e U 1 EBuBA @HﬂA
Hﬁl ® 11 1 (%) 11/34 @ llﬁ4 uﬁ}‘
uﬁl R0 1®llﬁ4®uﬁ4
1Iﬂ| 691151 GBHBA @uﬁél i

l[}@ﬂéﬂauﬁgeauﬁé

Uy

5;691 1691154691154

U3®uz up{ @Hﬁéeauﬁ%
369112
@uﬁléBlséBuz uﬁ1®1I1€Bl[ﬂ1®u
8 4
69111691369113 u1®u|$u
By 5 Bs ) By
Gauﬁé@uﬁg@uﬁ; uﬁiGBuﬁééBugéBug
GBHB; EBlIﬁgéBuﬁg uﬁé EBlIﬁll)GBuﬁg GBuﬁg
eauﬁé eauﬁ? eauﬁg uﬁé euﬁéaauﬁg eeuﬁ;

U Ul

By B A
Hl@uﬁt@uﬁ uﬁéﬂallﬁ%@uﬁ;t@uﬁg llﬁ}‘
1%@1 1€9uﬁ4®uﬁ4 uﬁ} eauﬁéeauﬁieauﬂ?

upé @ uﬁé @ uﬁ; @ uﬁ%
S5} u/j,%
- 6
up{ @ uﬂl ® l[ u 5

u;

uﬁ% @ 1[1% &) HB; @ uﬁg
uﬁ% @ uﬁ% @ uﬁz]; (<3] uﬁg
uﬁ; ) u% @ IIB? ® llﬁg
llﬁé ® Uy 691154 EBIIBA;
H | @ uﬁ4 @ 1[/34

uﬁé@l 16911,84631154

Now from the roots ,8? + B‘]‘ ¢ R we have the following subspaces:

Table 5. Structural equigeodesic vectors for Eg /(U(3) x U(3))

uﬁ? ® uﬁ? &b uﬁg (&) uﬁg &b uﬁi &b uﬁg
113«21 @ uﬁ; @ uﬁi @ uﬁz (&) uﬁ; @ uﬁg
uﬁg ® uﬁ; ® uﬁg &) uﬁg ® uﬁg @b uﬁg
Hﬁi @ uﬁ? @ uﬁg @ uﬁg @ uﬁg @ uﬁi
Hﬁg @ uﬁ? @ uﬁg @ uﬁg @ uﬁi @ uﬁg
uﬁg ® uﬁg @b Hﬁ;‘ 5} uﬁg ® uﬁg @b uﬁg
1113471 &b uﬁg 53} uﬁg D uﬁg &b uﬁg 53} uﬁg
Hﬁg @ uﬁ? @ uﬁ; @ Hﬁg @ uﬁg @ uﬁg
uﬁg ® uﬁ? @b Hﬁg &) 11'32 ® uﬂg ® uﬁg
uﬂ3®uﬁ4®uﬁ4€9uﬁa®uﬁ4€9uﬁ4
uﬁ3®uﬁ4®uﬁ4®uﬂa®uﬁ4®uﬁ4
uﬁz®uﬁ4®llﬁ4®uﬁ4®uﬁ4®llﬁ4
uﬁ3®uﬁ4®uﬁ4®uﬁ4@uﬁ4®uﬁ4
uﬂ3®uﬁ4®llﬁ4®uﬂa®uﬁ4®llﬁ4
uﬁz®llﬁ4®uﬁ4®uﬁ4®llﬁ4®uﬁ4

uﬁgﬂauﬁi@uﬁg@uﬁ%@uﬁg@uﬂg
uﬁjﬁauﬁg@uﬁg@uﬁ?@uﬁg@uﬂg
uﬁ?GBHﬁg@uﬁ;@uﬁ%@uﬁi@uﬁg
uﬁgﬂauﬁg@uﬁé@uﬁg@uﬂg@uﬂi
uﬁ?ﬁauﬁg@uﬁg@uﬁ?@uﬁg@uﬂg
uﬁg@uﬁg@uﬁ;@uﬁg@uﬁg@uﬁg
uﬁTEBuﬁgEBuﬁg@uﬁg@uﬁg
uﬁg @uﬁz @uﬁg Gauﬁzg@l[ﬁ;x
uﬁ?@uﬁg @uﬁg @uﬁ?‘
uﬁ%®uﬁ4®llﬁ4®uﬁ4®uﬁ4€9uﬁg
uﬁ4®u'3469u[53 @uﬁs
uﬁz 691154®uﬁ469uﬁ469115469uﬁ4
uﬁ4®uﬁ4 eallﬁz @uﬁs
uﬁ3 ®1Iﬁ4®uﬁ4®uﬁ4®llﬁ4®uﬁ4
uﬁgaauﬁg@uﬁg@uﬁg

uﬁj @ Hﬁg @ uﬁi <] uﬁg
u/,4 @ uﬁ4 @ uﬁz @ uﬁ;
uﬁ4 @D uﬂ4 ® 1Iﬁ3 @b uﬁz
uﬁa @ 11,;4 @ uﬁs &3] uﬁs
uﬁg @ uﬁg @ uﬁg @ uﬁg
uﬁg @D uﬂg ® uﬁg @b uﬁg
uﬁ;t D uﬁg &b uﬁg 53} uﬁg
u/;;a @ uﬁi; @ uﬁg @ uﬁg
uﬁ? 5} uﬁg ® uﬁg (5%} uﬁg
uﬁa @ 11,;4 @ uﬁs <] uﬁs
uﬁ4 @ 1134 @ uﬁz @ uﬁs
1154 D uﬁ4 @ uﬁz ® uﬁz
11,;4 S} Hﬁ4 (%) uﬁw ® uﬁa
1Iﬁ4 D HB4 D uﬁ3 & 1153

Hence we obtain the following:

Proposition 4.2. The root spaces for the generalized flag manifold Eg¢(as, ag)

E¢ /(UQB) x U(3)), with all vectors are structural equigeodesic vectors are described in
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Tables 4 and 5.

4.3. Structural Equigeodesic vectors on the flag manifold E; /(U(6) x U(1)). Let Il =
{1, @2, @3, ay, as, g, @7} be a system of simple roots for E; with highesta = a1+2a,+3a3+
4ay+3as+2a6+2a7. The flag manifold E; /(U(6)xU(1)) is determined by I1x = [T\{as, a¢}.
From Table 1 we have that the the positive t-roots are given by R;r = {as, ag, @5+ ag, 25+
@6, 3as + ag, 3as + 2ag}. According to Proposition 2.8 (1), we obtain the decomposition
(10) where the sumbodules m; are defined by (8). The sets R"(j, j») = {Z, | cii € Ry,
cs = J1, c¢ = ja} are given explicitly as follows:

R™(1,0)

{ler —es,e0 —eg,e3 — €6, 64 — €6, 05 — €6, €4 + €5 + €7 + €g,€3 + €5 + €7 + €3,
ez t+eq+ey7t+eg,er+es5+er+eg,enp+er+eq+eg,en+ez+ ey +oeg,

e +es+e7+eg, e +eq4+e7+eg, e +e3+e7+eg,eq +€2+€7+€g}

= {:81’-- ﬁls

les — e7) = 1B})

lel1 —e7,e0—e7,e3 —e7,e4 —e7,e5 —e7,e4 + €5 + eg + e3,3 + 5 + €6 + eg,

R™(0, 1)
Rm(l , 1)

e3+éeé4+egt+eg,e)+e5+eqt+eg,er+eq+ e+ eg,en+e3+ eq+eg,
€1+e5+€6+€g,€1+€4+€6+68,€1+€3+66+eg,€1+62+e6+68}
= {:31’-- 515

R"‘(Z, 1) {63 +e4+e5+eg,ey+eq4+e5+eg,6)+e3+es5+eg,ep+e3+ ey +eg,

el +ey+es+eg, e +ezt+esteg, e +e3+eq+eg, e +ep+estoes,
e +eytesteg, el +ert+esteg, —(e —eg)—(ex—eg),—(e3 —eg),
—(es — eg), —(es — es)} = {B7, ..., Bls}

R"(3,1) = {—(es—es)} ={B}}

R"(3,2) = {~(e7—eg)} = {B5).

The roots which satisfy Theorem 3.5 are the following:

By £B,j=2,3,4,512,13,14,15, 8, . j = 1,3,4,5,9,10, 11, 15, By £ B3, j = 1,2,4,5,7, 8,11, 14;
Béiﬂ;,j = 1,2,4,5,7,8,11,14;5‘1‘i,B;,j = 1,2,3,5,6,8,10,13;;3;J_rﬁ;,j =1,2,3,4,6,7,9,12; B} +
Bl =457.8910,12,13; 8, = 53, j = 3,5,6,8,9, 11,12, 14; B £ 5}, j = 3,4,6,7,10,11,13, 14; By +
BlJ=2,56,710,11,12,15; 8] £, j = 2,4,6,8,9,11,13,15; B}, £3, j = 2,3,7,8,9, 10, 14,15; B}, +
B},j=1,56,7,9,13,14,15; B} £ B3, j = 1,4,5,6,8,10,12, 14, 15; B}, + 8%, j = 1,3,7,8,11,12,13, 15;
Bls+B),j=1,2,9,10,11,12,13, 14; B{+p%, j = 1,2,3,4,12,13,14,15; BB}, j = 1,5,6,7,11,13, 14, 15;
ﬁgiﬁ‘},j =2,5,8,9,11,12,14, 15;,811,3j,j =3,6,8,10,11,12,13, 15;ﬁ;iﬁ‘},j: 4,7,9,10,11,12,13, 14;
By £ Bj.j = 3,4,6,7,8,9,14,15; B} + B1, j = 2,4,5,7,8,10,13,15; By + B}, j = 2,3,5,6,9,10,13,14;
ﬂgiﬁ4 j=1,4,56,9,10,12,15; ,810_,84 j=13,57.8,10,12,4; B}, iﬁ4 j=1,2,6,7,8,9,12,13;
Bl =B =1,2,3,7,9,10, 11,15, B, £ B}, ] = 1,2,4,6,8,10,11,14,5,4_/3‘;,] =1,3,4,5,8,9,11,13;
Bis =B =2,3,4,56711,12;8] 1,/ = 1,2,3,4,12,13,14,15; B3 + B}, j = 1,5,6,7,11,13, 14, 15;
BixBl,j =2,5,8,9,11,12,14,15; B1+p%, j = 3,6,8,10,11,12,13,15; B3+, j = 4,7,9,10, 11,12, 13, 14;
Bgiﬁ“j:34678914 15,83 £ B4, j = 2,4,5,7,8,10,13,15; B = B, j = 2,3,5,6,9,10, 13, 14;
+B1,j = 1,4,5,6,9,10,12,15; B}, £ B3, j = 1,3,5,7,8,10,12,14; B}, £}, j = 1,2,6,7,8,9,12,13;
12_;341_123791011 15,813_ﬂ4j_124681011 14,8, =B, = 1,3,4,5,8,9,11,13;
12810 = 23,4567, 11,1281 £, j = 1,2,.. 15 B1 67, j = 1,2,.., 1581 £, j = 1,2, 15.
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By applying the conclusion of Theorem 3.5 we can find all subspaces on which the vectors
are structural equigeodesics. Some of them are the following:

U €B3:2 uﬁ? &1 Ug U @j’:l uﬁ‘} B Ut e 2, Uy
Ugs 2, U Ug &L, Ut @7 ) U Ug & Ut & Ut D% Upe
Hﬁ% @El uﬁ? uﬁ; (&) HB?Z &) uﬁ?z 11,,3? ® uﬁg (&) uﬂ% (&) uﬂ?s (&) uﬁg (%) Hﬁ?ﬂ (8%} uﬁfj
Upt & U & Ut & U & Wy Ugp &L Upt & Ut  Ugs & U
Ug1 & W & W & Wge & Wy & WUps Ug @5 Wt @ Wt & Ut & W @ Wy & Wt
uﬁ; @ uﬁg @ uﬁg @ uﬁg @ uﬁ% @ uﬁ«}l uﬁlj &3] uﬁﬁ @ uﬁg @ uﬁj (&) uﬁ; @ uﬁ?]
uﬁ; @ uﬁg @ uﬁg @ uﬁ;& <] uﬁg @ uﬁ?l @ 11/34]&4 uﬁg @ uﬂ; @ uﬁi] @ uﬁ%z @ uﬁg
u[g D uﬁ; D uﬁé ® Hﬁj @b uﬁ; uﬁg D uﬁ; D uﬁ; ® Hﬁ:4 @b uﬁg
uﬁg @D uﬁ; ® Hﬁ}‘ @b uﬁg &) uﬁ?s uﬁ; @D uﬁé ® lIﬁ}Z ® Hﬁ?o @b uﬁ?s
uﬁg ® uﬁl &) Hﬁ{l &) Hm &) uﬁg uﬁ% ® llﬁil ® uﬁiz [} uﬁ{4 @ uﬁj @ uﬁg &) Hﬁg
uﬁi ® uﬂ; (%) Hﬁi 691.2512 uﬂ? ® uﬁg @b uﬁg 691.1312 Hﬁ:} 1Iﬁ{2 @b 1Iﬁ? (&) uﬁg ® uﬂ75 (5} uﬁ? @b 1Iﬁ3 (&) uﬁ?s

4.4. Structural Equigeodesic vectors on the flag manifold Eg /(E¢ x U(1) x U(1)). Let
T = {a1,a,a3,a4, as, ag, @7,as} be a system of simple roots for Eg with highest @ =
2a1 + 3ap + 4as + Say + 6as + dag + 2a7 + 3as. The flag manifold Eg /(Eg x U(1) x U(1))
is determined by I1x = II\{a, a»}. From Table 1 we have that the positive t-roots are given
by R = {a1, @1, a1 + @, @) + 2a,, @) + 3@,, 2a; + 3@,}. According to Proposition 2.8
(1), we obtain the decomposition (10) where the sumbodules m; are defined by (8). The sets
R"(j1, j2) = {218:1 ci; € Ry, ¢y = j1, ¢ = jo} are given explicitly as follows:

R'(1,0) = fe1-e-2)={B])

R'0,1) = {e;—e;,i=23,4,5,6,7,8,es+e3+e;,i=4,56,7,8 es+es+e;,
1=5,6,7,8,es+e5+e¢,i=6,7,8, ex+eg+e,i=7,8, e, +e7+eg,
—(e1 +e; +e9),i =3,4,5,6,7,8) = {B7, ..., )

R'(1,1) = {e;—e;,i=3,4,56,7,8, e +e3+e,i=4,56,7,8, e +e4+e,
i=5,6,7,8,e1 +es+e,i=6,7,8, e +es+e,i=17,8,¢e +e7+es,

—(e2 +e; +e9),i =3,4,56,7,8) = {B],.... 53]

R"'(1,2) = {ei—e9, €1 +er+e;,i=3,4,506,7,8, —(e3+e;+e9),i=4,506,7,8,
—(eg+e;+e9),i=5,6,7,8, —(es+e; +ey),i=6,7,8, —(es + e + e9),
i=7,8—(e;+es+eo)=1{B1,....5)

R'(1,3) = {e2—eo}={B])

R'(2,3) = {e1—eo) = (B))

Below we list some roots which satisfy Theorem 3.6:

ﬂ} i—ﬁ“.,ﬁ? i—ﬁ?,ﬁ? iﬁ;,j = 1,2...,27;,8% i—ﬁ?,j = 2,3,4,5,6,12,...,22;ﬁ§ iﬁ;,j =1,3,4,5,6,8,9, 10,
11,16,17,18,19,20,21,23; 3+%, j = 1,2,4,5,..., 11,13,14,15,19,20,21,24; 8346, j = 1,2,3,5,6,7,8, 10,

11,12,14,15,17,18,21,25: B2 £ 8%, j = 1,....9,11,12,13,15,16,18,20,26; 52 + 8%, j = 1,2,3,4,5,7,8,9,10,
12,13,14,16,17,19,27; 3 + 3. j = 3,4,5,6,8,9,10,11, 12,13,14,15,22...,27, - -~

BB = 23,4567 18,....27: B3 £ B1.j = 1,3,4,5,6,8, 14,15,16,17,22....27; B2 + &%, j =
1,2,4,5,6,13,...,17,19,20, 21,25, 26, 27;ﬁ§ iﬂj,jz 1,2,3,5,6,10,13,14, 16,17, 18, 20,21,23,24,27;,8§i
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B j=1.2.3,4,6,11,13,14,15,17, 18,19,21,22,24,26; £ + %, j = 1,2,3,4,5,12,13,14,15,16,18, 18,20,
22,2325, 2 £ %, j=3.4,5,6,9,11,12,...,18, -

Bl £BLj = 2.3,4.567,18,19,20,....27: B} £ A1, j = 1,3,4,5.6,8,14,15,16,17,22,..., 2T: B} = ', j =
1,2,4,5,6,9,13,15,16,17,19, 20,21, 25,26, 27;ﬁi i,B‘j’f,j =1,2,3,5,6,10, 13,14,16,17, 18,20, 21, 23, 24, 27,
ﬁgrﬂ?,j: 1,2,3,4,6,11,13,14,15,17,18,19,21,22, 24,27;ﬁ24_rﬁf;,j= 1,2,3,4,5,13,14, 15,16, 18, 19,20, 22,
23,25,27; 83 i,Bf;,j =3,4,5,6,9,10,11,12,14,...,21, - --

From these roots we can find some subspaces for which the vectors are structural
equigeodesics. In particular we have:

Uy @) Uy, Uy &7, U U @77, U
Wy @ U &) 5 Wgs 77, U W © U & 5 U 77, Ups
Up @ gy @ Wyt &), g @17 W ;Ly5 Ugs Uge @ Uy @5 U &1, U 2 g Ut
uﬁg ® uﬁg @f:3 uﬁ? @}213 uﬁ}t & uﬁ?s uﬁf 69?:2 uﬁl} @5212 uﬁ?
Ug © gz &, Wge &L U Ug © g & gz &, Ugs &5 U
W ®F_, Wps &7 W W @ W & 5 e 77, W
HB% & uﬁg & uﬁg 69?:4 U'B? 693125 uﬁ? uﬂ? 6917=2 u,,)? @5118 uﬁ?
W & Uy &3 Wys &7, W Wy @ Uy & Wy &7, W &7, W
uﬁ? ® uﬁg o6, ® uﬁ; 69?:5 IIB? 693123 uﬁj ® 1[54217 uﬁ? @ uﬁ% ® By 69?:4 uﬁ? GB?ZZS uﬁ‘?
W © U & U &, W @23 Ut DUy & Wt &Vt U & W & &), U D23 Wy © W
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