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Abstract
We study homogeneous curves in generalized flag manifolds G/K with G2-type t-roots, which

are geodesics with respect to each G-invariant metric on G/K. These curves are called
equigeodesics. The tangent space of such flag manifolds splits into six isotropy summands,
which are in one-to-one correspondence with t-roots. Also, these spaces are a generalization of
the exceptional full flag manifold G2/T . We give a characterization for structural equigeodesics
for flag manifolds with G2-type t-roots, and we give for each such flag manifold, a list of sub-
spaces in which the vectors are structural equigeodesic vectors.

1. Introduction

1. Introduction
Let (G/K, g) be a Riemannian homogeneous space. A geodesic γ(t) through the origin

o = eK is called a homogeneous geodesic if it is an orbit of a one-parameter subgroup of G,
i.e., γ(t) = (exp tX)·o,where X is a non-zero vector in the Lie algebra g of G. If all geodesics
on G/K are homogeneous geodesics the homogeneous space is called a g.o. manifold (from
“geodesic ordit”). The terminology was introduced by O. Kowalski and L. Vanhecke in [10],
who initiated a systematic study of such spaces. Examples of such spaces are the symmetric
spaces, the weakly symmetric spaces and the naturally reductive spaces.

In [6] the authors studied homogeneous curves on generalized flag manifolds that are
geodesics with respect to each invariant metric on the flag manifold. These curves are called
equigeodesics. Since the infinitesimal generator of the one parameter subgroup is an element
of the Lie algebra of G, it is natural to characterize the equigeodesics in terms of their
infinitesimal generator. This allows us to use a Lie theoretical approach for the study of
homogeneous geodesics on flag manifolds. The infinitesimal generator of an equigeodesics
is called equigeodesic vector. An algebraic characterization of equigeodesic vectors on
generalized flag manifolds is given in [6].

Recall that a generalized flag manifold is a homogeneous space G/K where G is a com-
pact, semisimple Lie group and K is the centralizer of a torus in G. Actually a vector is
equigeodesic if and only if it is a solution of an algebraic system of equations whose vari-
ables are the components of the vector. However, there exist some subspaces of the tangent
space m � To(G/K) of the flag manifold G/K, all of whose elements are equigeodesic
vectors. The existence of such subspaces depends on the geometric structure of the G/K.
These equigeodesic vectors are called structural equigeodesic. The authors in [8] have
provided a version of the previously formula for equigeodesic vectors on generalized flag
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manifolds with two isotropy summands. Later in [11] the authors gave a general formula
for finding equigeodesic vectors on generalized flag manifolds with second Betti num-
ber equal to one (that is flag manifolds which are determined by painting one black node
their Dynkin diagram). More precisely, they found families of subspaces in which all vec-
tors are structural equigeodesic vectors, on generalized flag manifolds associated to excep-
tional Lie groups F4,E6 and E7 with three isotropy summands, that is F4 /(U(2) × SU(3)),
E6 /(U(2) × SU(3) × SU(3)) and E7 /(U(3) × SU(5)).

In the present article we study equigeodesics on generalized flag manifolds with G2-type
t-roots. In particular, for such type of flag manifolds we describe the families of subspaces in
which all elements are structural equigeodesic vectors. We know from [5] that generalized
flag manifolds G/K with G2-type t-roots have six isotropy summands and correspond to
painted Dynkin diagrams with two black nodes with Dynkin marks 2 and 3. In particular,
these are the generalized flag manifolds F4(α3, α4),E6(α3, α6), E7(α5, α6) and E8(α1, α2).
Here with G(αi0 , α j0 ) we denote the flag manifold M = G/K where we have painted two
black nodes on the Dynkin diagram of G.

In Theorems 3.5 and 3.6 of the present paper we provide a method to obtain structural
equigeodesic vectors (cf. Propositions 4.1 and 4.2). For F4(α3, α4) and E6(α3, α6) we find all
subspaces in which the vectors are structural equigeodesics. These are described in Tables
3,4 and 5. For the flag manifold E7(α5, α6) we describe all the roots that satisfy Theorem
3.5 and therefore we can describe by simple calculation all root spaces whose vectors are
structural equigeodesics (we give some of them). Finally, for the flag manifold E8(α1, α2)
we give some of the roots that satisfy Theorem 3.6. In conclusion we have the following:

Theorem 1.1. The generalized flag manifolds F4 /(U(3) × U(1)), E6 /(U(3) × U(3)),
E7 /(U(6)×U(1)) and E8 /(E6 ×U(1)×U(1)) admit non trivial structural equigeodesic vec-
tors.

2. Generalized Flag Manifolds

2. Generalized Flag Manifolds2.1. Description of flag manifolds in terms of painted Dynkin diagrams.
2.1. Description of flag manifolds in terms of painted Dynkin diagrams. Let g and

k be the Lie algebras of G and K respectively and gC, kC be their complexifications. We
choose a maximal torus T in G and let h be the Lie algebra of T . Then the complexification
hC is a Cartan subalgebra of gC. Let R ⊂ (hC)∗ be the root system of gC relative to the
Cartan subalgebra hC and consider the root space decomposition gC = hC ⊕∑α∈R gCα , where
gCα = {X ∈ gC : ad(H)X = α(H)X, for all H ∈ hC} denotes the root space associated to a
root α. Assume that gC is semisimple, so the Killing form B of gC is non degenerate, and we
establish a natural isomorphism between hC and the dual space (hC)∗ as follows: for every
α ∈ (hC)∗ we define Hα ∈ hC by the equation B(H,Hα) = α(H), for all H ∈ hC. We take a
Weyl basis Eα ∈ gCα (α ∈ R) with B(Eα, E−α) = −1 and [Eα, E−α] = −Hα. Then gCα = CEα
and

(1) [Eα, Eβ] =
{

Nα,βEα+β if α, β, α + β ∈ R
0 if α, β ∈ R, α + β � R,

where the structure constants Nα,β ∈ R are such that Nα,β = 0 if α, β ∈ R, α + β � R, and
Nα,β = −Nβ,α, Nα,β = N−α,−β ∈ R if α, β, α + β ∈ R. It is clear that Nα,β � 0, if α, β, α + β ∈ R
and so relation (1) implies that [gCα, g

C

β ] = gCα+β. Choose a basisΠ = {α1, . . . , α�} (dim hC = �)
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of simple roots for R, and let R+ be a choise of positive roots. Set Aα = Eα + E−α and
Bα =

√−1(Eα − E−α), where α ∈ R+. Then the real subalgebra g is given by

(2) g = h ⊕
∑
α∈R+

(RAα + RBα) = h ⊕
∑
α∈R+
Uα.

Note that g, as a real form of gC is the fixed point set of the conjugation τ : gC → gC, which
without loss of generality can be assumed to be such that τ(Eα) = E−α.

Since hC ⊂ kC ⊂ gC, there is a closed subsystem RK of R such that kC = hC ⊕ ∑α∈RK
gCα .

In particular, we can always find a subset ΠK ⊂ Π such that RK = R ∩ 〈ΠK〉 = {β ∈ R :
β =

∑
αi∈ΠK

kiαi, ki ∈ Z}, where 〈ΠK〉 is the space of roots generated by ΠK with integer
coefficients. The complex Lie algebra kC is a maximal reductive subalgebra of gC and thus it
admits the decomposition kC = z(kC) ⊕ kCss, where z(kC) is the center of kC and kCss = [kC, kC] is
its semisimple part. Note that kCss is given by kCss = h

′⊕∑α∈RK
gCα,where h′ =

∑
α∈ΠK
CHα ⊂ hC

is a Cartan subalgebra of kCss. In fact, RK is the root system of the semisimple part kCss and ΠK

is a corresponding basis. Thus we easily conclude that dimC h′ = cardΠK , where cardΠK

denotes the cardinality of the set ΠK . Let K be the connected Lie subgroup of G generated
by k = kC ∩ g. Then the homogeneous manifold M = G/K is a flag manifold, and any flag
manifold is defined in this way, i.e. by the choise of a triple (gC,Π,ΠK).

SetΠM = Π\ΠK , and RM = R\RK , such thatΠ = ΠK∪ΠM, and R = RK∪RM, respectively.
Roots in RM are called complementary roots, and they play an important role in the geometry
of M = G/K. For example, let m the orthogonal complement of k in g with respect to B.
Then we have [k,m] ⊂ m where m � To(G/K). We set R+M = R+\R+K where R+K is the system
of positive roots of kC (R+K ⊂ R+). Then

(3) m =
∑
α∈R+M

(RAα + RBα).

The complexification is given as mC =
∑
α∈RM
CEα, and the set {Eα : α ∈ RM} is a basis of

mC.
Now if we assume that ΠM = Π\ΠK = {αi1 , . . . , αir }, where 1 ≤ i1 < · · · < ir ≤ � we set,

for some integers j1, . . . , jr with ( j1, . . . , jr) � (0, . . . , 0)

(4) Rm( j1, . . . , jr) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l∑

j=1

mjα j ∈ R+ : mi1 = j1, . . . ,mir = jr

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⊂ R+.

Note that R+M = R+\R+K =
⋃

j1,..., jr Rm( j1, . . . , jr). For any Rm( j1, . . . , jr) � ∅, we define an
Ad(K)-invariant subspace m( j1, . . . , jr) of g by

(5) m( j1, . . . , jr) =
∑

α∈Rm( j1,..., jr)

{RAα + RBα} .

Then we have a decomposition of m into mutually non equivalent irreducible Ad(K)-
modules m( j1, . . . , jr):

m =
∑

j1,..., jr

m( j1, . . . , jr).

We conclude that all information contained in Π = ΠK ∪ΠM can be presented graphically
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by the painted Dynkin diagram of M = G/K.

Definition 2.1. Let Γ = Γ(Π) be the Dynkin diagram of the fundamental system Π. By
painting in black the nodes of Γ corresponding toΠM, we obtain the painted Dynkin diagram
of the flag manifold G/K. In this diagram the subsystemΠK is determined as the subdiagram
of white roots.

Conversely, given a painted Dynkin diagram, in order to obtain the corresponding flag
manifold M = G/K we are working as follows: We define G as the unique simply connected
Lie group corresponding to the underlying Dynkin diagram Γ = Γ(Π). The connected Lie
subgroup K ⊂ G is defined by using the additional information Π = ΠK ∪ ΠM encoded into
the painted Dynkin diagram. The semisimple part of K is obtained from the (not necessarily
connected) subdiagram of white roots, and each black root, i.e. each root in ΠM, gives rise
to one U(1)-summand. Thus the painted Dynkin diagram determines the isotropy subgroup
K and the space M = G/K completely. By using certain rules to determine whether different
painted Dynkin diagrams define isomorphic flag manifolds (see [1]), one can obtain all flag
manifolds G/K of a compact simple Lie group G.

From now on we denote the flag manifold M = G/K with G ∈ {B�,C�,D�, F4,E6,E7,E8},
by G(αi0 ) if we have painted one node of Γ(Π), that isΠM = Π\ΠK = {αi0} and by G(αi0 , α j0 )
if we have painted two nodes of Γ(Π), that is ΠM = Π\ΠK = {αi0 , α j0}.

We close this subsection with the next lemma which gives us some information about the
Lie algebra structure of g.

Lemma 2.2. The Lie brackets among the elements of the basis {Aα, Bα,
√−1Hβ : α ∈

R+ and β ∈ Π} of g are given as follows:

[Aα, Aβ] = Nα,β Aα+β + N−α,β Aα−β, [
√−1Hα, Aβ] = β(Hα)Bβ

[Bα, Bβ] = −Nα,β Aα+β − Nα,−β Aα−β, [
√−1Hα, Bβ] = −β(Hα)Aβ

[Aα, Bβ] = Nα,β Bα+β + Nα,−β Bα−β, [Aα, Bα] = 2
√−1Hα,

where α + β, α − β are roots.

Proof. We will prove three of the above relations and the others can be obtained by a
similar method. For the first we have:

[Aα, Aβ] = [Eα + E−α, Eβ + E−β] = Nα,βEα+β + Nα,−βEα−β + N−α,βE−α+β + N−α,−βE−α−β
= Nα,βEα+β + N−α,βEα−β + N−α,βE−α+β + Nα,βE−(α+β)

= Nα,βAα+β + N−α,βAα−β.

For the second we have:

[
√−1Hα, Aβ] = [

√−1Hα, Eβ + E−β] =
√−1[Hα, Eβ] +

√−1[Hα, E−β]

=
√−1β(Hα)Eβ −

√−1β(Hα)E−β
= β(Hα)Bβ.

Finally, we prove the last relation:
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[Aα, Bα] = [Eα + E−α,

√−1(Eα − E−α)] = −
√−1[Eα, E−α] +

√−1[E−α, Eα]

=
√−1Hα +

√−1Hα = 2
√−1Hα.

�

2.2. t-roots and isotropy summands.
2.2. t-roots and isotropy summands. We study the isotropy representation of a general-

ized flag manifold M = G/K of a compact simple Lie group G in terms of t-roots. In order to
realise the decomposition ofm into irreducible Ad(K)-modules we use the center t of the real
Lie algebra k. For simplicity, we fix a system of simple roots Π = {α1, . . . , αr, φ1, . . . , φk}
of R, such that r + k = � = rk gC and we assume that ΠK = {φ1, . . . , φk} is a basis of
the root system RK of K so ΠM = Π\ΠK = {α1, . . . , αr}. Let Λ1, . . . ,Λr be the funda-
mental weights corresponding to the simple roots of ΠM, i.e. the linear forms defined
by 2(Λi,α j)

(α j,α j)
= δi j, (Λ j, φi) = 0, where (α, β) denotes the inner product on (hC)∗ given by

(α, β) = (Hα,Hβ), for all α, β ∈ (hC)∗. Then the {Λi : 1 ≤ i ≤ r} is a basis of the dual space
t∗ of t, t∗ =

∑r
i=1 RΛi and dim t∗ = dim t = r.

Consider now the linear restriction map κ : h∗ → t∗ defined by κ(α) = α|t, and set
Rt = κ(R) = κ(RM).

Definition 2.3. The elements of Rt are called t-roots.

The set Rt is not in general a root system. An element Y ∈ t is called regular if any t-root
κ(α) = ξ (α ∈ RM) takes non zero value at Y , i.e. ξ(Y) � 0. A regular element defines an
ordering in t∗ and thus we obtain the splitting Rt = R+t ∪ R−t , where R+t = {ξ ∈ Rt : ξ(Y) > 0}
and R−t = {ξ ∈ Rt : ξ(Y) < 0}. The t-toots ξ ∈ R+t (resp. ξ ∈ R−t ) will be called positive (resp.
negative). Since Rt = κ(RM) it follows that R+t = κ(R

+
M), and since R−M = −R+M = {−α : α ∈

R+M}, it is R−t = κ(R
−
M).

Definition 2.4. A t-root is called simple if it is not a sum of two positive t-roots.

The set of all simple t-roots is denoted as Πt and is a basis of t∗, in the sense that any
t-root can be written as a linear combination of its elements with integer coefficients of the
same sign. We will call the set Πt as a t-basis.

Proposition 2.5 ([3]). A t-basis Πt is obtained by restricting the roots of ΠM = Π\ΠK to
t, that is Πt = {κ(αi) = αi = αi|t : αi ∈ ΠM}.

As we saw the flag manifolds G/K are determined by pairs (g,Π,ΠK). The number of
ad(k)-submodules of m � To(G/K) correspond to the Dynkin mark of the simple root we
paint black on the Dynkin diagram. We recall the following definition

Definition 2.6. The Dynkin mark of a simple root αi ∈ Π (i = 1, . . . , �), is the positive
integer mi in the expression of the highest root α̃ =

∑�
k=1 mkαk in terms of simple roots. We

will denote by Mrk the function Mrk : Π→ Z+ with Mrk(αi) = mi.

By using the Proposition 2.5 we give a useful method to find the positive t-root R+t of
ΠM = {αi ∈ Π : Mrk(αi) = mi}. The t-basis is Πt = {αi}, where κ(αi) = αi = αi|t and
t∗ = Rαi. We fix a positive root α =

∑�
j=1 k jα j ∈ R+, with k j ≤ mj for all j = 1, . . . , �.
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Then by the fact that κ(RK) = 0 we have that for all α ∈ RM, κ(α) = α|t = kiαi with
1 ≤ ki ≤ mi. Hence R+t = {kiαi : 1 ≤ ki ≤ mi} = {αi, 2αi, . . . ,miαi} and cardR+t = mi. In
case where ΠM = {αi, α j : Mrk(αi) = mi,Mrk(α j) = mj} then Πt = {αi, α j : i < j}, where
κ(αi) = αi = αi|t, κ(α j) = α j = α j|t and t∗ = span{αi, α j}. Then for α ∈ R+M we have
κ(α) = α

∣∣∣
t
= kiαi + k jα j where 0 ≤ ki ≤ mi, 0 ≤ k j ≤ mj the coefficients ki, k j can not be

simultaneously zero, so it is obvious that cardR+t ≥ 3. For generalized flag manifold G/K
with b2(G/K) ≥ 3 there are more than five t-roots ([4]).

A fundamental result about t-root is the following:

Proposition 2.7 ([2]). There exists a one-to-one correspondence between t-roots ξ and
irreducible ad(kC)-submodules mξ1 of the isotropy representation of mC, which is given by

Rt � ξ ↔ mξ =
∑

α∈RM :κ(α)=ξ

CEα.

Thus mC =
⊕
ξ∈Rt mξ. Moreover, these submodules are non equivalent as ad(kC)-modules.

In order to obtain a decomposition of the real Ad(K)-module m in terms of t-roots, we
use the complex conjugation τ of gC with respect to g (note that τ interchanges gCα and gC−α).
Moreover, for a complex subspace V of gC we denote by Vτ the set of all fixed points of τ.
Then, we can write

(6) m =
⊕
ξ∈R+

t

(mξ ⊕m−ξ)τ.

Let us assume for simplicity that R+t = {ξ1, . . . , ξs}. In this case Proposition 2.7 and
relations (3), (6) imply that the real irreducible ad(k)-submodule mi = (mξi ⊕m−ξi)τ (1 ≤ i ≤
s) which corresponds to a positive t-root ξi, is necessarily of the form

(7) mi =
∑

{α∈R+M :κ(α)=ξi}
{RAα + RBα}.

By summarizing, we have the following proposition

Proposition 2.8 ([4]). Let M = G/K be a generalized flag manifold defined by a subset
ΠK ⊂ Π such that ΠM = Π\ΠK = {αi1 , . . . , αir } with 1 ≤ i1 < · · · < ir ≤ �. Assume that
g = k ⊕m is a B-orthogonal reductive decomposition. Then

(1) There exists a natural one-to-one correspondence between elements of the set
Rm( j1, . . . , jr) and the set of positive t-roots R+t = {ξ1, . . . , ξs}. Therefore, there
is a decomposition of m into s mutually non-equivalent irreducible Ad(K)-modules
m =
∑
ξ∈R+

t
(mξ ⊕m−ξ)τ = ∑s

i=1(mξi ⊕m−ξi)τ =
∑

j1,..., jr m( j1, . . . , jr)
(2) The dimensions of the real Ad(K)-modules mi (i = 1, . . . , s) corresponding to the
t-root ξi ∈ R+t are given by dimRmi = 2 card {α ∈ R+M : κ(α) = ξi} = 2 card
Rm ( j1, . . . jr), for appropriate positive integers j1, . . . jr.

(3) Any G-invariant Riemannian metric g on G/K is given by

g =
∑
ξ∈R+

t

xξB|(mξ⊕m−ξ)τ =
s∑

i=1

xξi B|(mξi⊕m−ξi )τ =
∑

j1,..., jr

x j1,..., jr B|m( j1,..., jr)

1We mean that [kC,mξ] ⊂ mξ for all ξ ∈ Rt.
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for positive real numbers xξ, xξi , x j1,..., jr . The G-invariant Riemannian metrics on
M = G/K are parametrized by s real positive parameters.

2.3. Generalized flag manifolds with G2-type t-roots.
2.3. Generalized flag manifolds with G2-type t-roots. A system of positive roots of the

Lie group G2 is given by {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}, with heighest root
α̃ = 3α1 + 2α2. The corresponding painted Dynkin diagram of the full flag manifold G2/T
is

From the paper [5] we have that flag manifolds with G2-type t-roots system satisfy Π \
ΠK = {αi, α j : Mrk(αi) = 3, Mrk(α j) = 2}, and are the following:

The highest root α̃ of F4 is given by α̃ = 2α1+4α2+3α3+2α4, and we have the following
painted Dynkin diagram

The highest root α̃ of E6 is given by α̃ = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6 and we have
the following painted Dynkin diagram

E6(α3, α6)

�

α1

1
�

α2

2
�

α3

3
�

α4

2
�

α5

1
�

α62

The highest root α̃ of E7 is given by α̃ = α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + 2α7 and we
have the following painted Dynkin diagram

E7(α5, α6)

�

α1

1
�

α2

2
�

α3

3
�

α4

4
�

α5

3
�

α6

2
�

α72

The highest root α̃ of E8 is given by α̃ = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8

and we have the following painted Dynkin diagram

E8(α1, α2)

�

α1

2
�

α2

3
�

α3

4
�

α4

5
�

α5

6
�

α6

4
�

α7

2
�

α83

For Π \ ΠK = {αi, α j} we put αi = κ(αi) and α j = κ(α j). We list the sets of all positive
t-roots R+t in Table 1, which we separate into Type I and Type II.

From Proposition 2.7 it is easy to see that the isotropy representation of the above ho-
mogeneous spaces is written as a direct sum of six non equivalent Ad(K)-invariant isotropy
summands. For flag manifolds of Type I we set
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Table 1. Positive t-roots R+t for pairs (Π,ΠK)

Type I Set of all positive t-roots R+t
F4(α3, α4) {α3, α4, α3 + α4, 2α3 + α4, 3α3 + α4, 3α3 + 2α4}
E6(α3, α6) {α3, α6, α3 + α6, 2α3 + α6, 3α3 + α6, 3α3 + 2α6}
E7(α5, α6) {α5, α6, α5 + α6, 2α5 + α6, 3α5 + α6, 3α5 + 2α6}

G2 {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}
Type II Set of all positive t-roots R+t

E8(α1, α2) {α1, α2, α1 + α2, α1 + 2α2, α1 + 3α2, 2α1 + 3α2}

Table 2. Dimensions of irreducible summands with G2-type t-roots

Type I m(1, 0) m(0, 1) m(1, 1) m(2, 1) m(3, 1) m(3, 2)
F4(α3, α4) 12 2 12 12 2 2
E6(α3, α6) 18 2 18 18 2 2
E7(α5, α6) 30 2 30 30 2 2

G2 2 2 2 2 2 2
Type II m(1, 0) m(0, 1) m(1, 1) m(1, 2) m(1, 3) m(2, 3)

E8(α1, α2) 2 54 54 54 2 2

(8)
m(1, 0) = (mαi +m−αi)

τ, m(0, 1) = (mα j +m−α j)
τ,

m(1, 1) = (mαi+α j +m−αi−α j)
τ, m(2, 1) = (m2αi+α j +m−2αi−α j)

τ,

m(3, 1) = (m3αi+α j +m−3αi−α j)
τ, m(3, 2) = (m3αi+2α j +m−3αi−2α j)

τ,

and for Type II we set

(9)
m(1, 0) = (mαi +m−αi)

τ, m(0, 1) = (mα j +m−α j)
τ,

m(1, 1) = (mαi+α j +m−αi−α j)
τ, m(1, 2) = (mαi+2α j +m−αi−2α j)

τ,

m(1, 3) = (mαi+3α j +m−αi−3α j)
τ, m(2, 3) = (m2αi+3α j +m−2αi−3α j)

τ.

By using tables of positive roots (eg. Table B in Appendix of [[7], pp. 528–531]), we obtain
the dimensions of these spaces as shown in Table 2.

We consider the generalized flag manifold M = G/K with G2-type t-roots. As we have
seen we have the decomposition ofm � To(G/K) into six irreducible non equivalent Ad(K)-
modules as follows:

Type I : m = m(1, 0) ⊕m(0, 1) ⊕m(1, 1) ⊕m(2, 1) ⊕m(3, 1) ⊕m(3, 2)(10)

Type II : m = m(1, 0) ⊕m(0, 1) ⊕m(1, 1) ⊕m(1, 2) ⊕m(1, 3) ⊕m(2, 3).(11)

For Type I we set m1 = m(1, 0),m2 = m(0, 1), m3 = m(1, 1), m4 = m(2, 1), m5 = m(3, 1),
m6 = m(3, 2), and for Type II we set n1 = m(1, 0), n2 = m(0, 1), n3 = m(1, 1), n4 = m(1, 2),
n5 = m(1, 3) and n6 = m(2, 3).

We now compute the Lie brackets [mi,m j] and [ni, n j] among the real irreducible sub-
modules mi and ni of m. According to (7), each real submodule mi (or ni) associated to the
positive t-root ξi can be expressed in terms of root vectors E±α (α ∈ R+M), such that κ(α) = ξi.
So from (1) we can compute the brackets [mi,m j] (or [ni, n j]), for suitable root vectors Eα.

Lemma 2.9. Let M = G/K be the flag manifold of Type I. Then we obtain that [mi,mi] ⊂ k
for 1 ≤ i ≤ 6, and
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(12)

[m1,m2] ⊂ m3 [m2,m3] ⊂ m1 [m3,m4] ⊂ m1 ⊕m6 [m4,m5] ⊂ m1

[m1,m3] ⊂ m2 ⊕m4 [m2,m4] ⊂ k [m3,m5] ⊂ k [m4,m6] ⊂ m3

[m1,m4] ⊂ m3 ⊕m5 [m2,m5] ⊂ m6 [m3,m6] ⊂ m4 [m5,m6] ⊂ m2

[m1,m5] ⊂ m4 [m2,m6] ⊂ m5

[m1,m6] ⊂ k.
Lemma 2.10. Let M = G/K be a flag manifold of Type II. Then we obtain that [ni, ni] ⊂ k

for 1 ≤ i ≤ 6, and

(13)

[n1, n2] ⊂ n3 [n2, n3] ⊂ n1 ⊕ n4 [n3, n4] ⊂ n2 ⊕ n6 [n4, n5] ⊂ n2

[n1, n3] ⊂ n2 [n2, n4] ⊂ n3 ⊕ n5 [n3, n5] ⊂ k [n4, n6] ⊂ n3

[n1, n4] ⊂ k [n2, n5] ⊂ n4 [n3, n6] ⊂ n4 [n5, n6] ⊂ n1

[n1, n5] ⊂ n6 [n2, n6] ⊂ k
[n1, n6] ⊂ n5.

3. Equigeodesics

3. Equigeodesics
Let G/K be a generalized flag manifold equipped with a G-invariant metric g. It is known

that such metrics are in one-to-one correspondence with Ad(K)-invariant scalar products
〈·, ·〉 on m � To(G/K) ([9, Proposition 3.1]). These in turn correspond Ad(K)-equivariant,
positive definite, symmetric operators Λ : m → m determined by 〈·, ·〉 = Q(Λ·, ·), where
Q = −B, the negative of the Killing form on g. A curve of the form γ(t) = (exp tX) · o is
called equigeodesic on G/K if it is a geodesic with respect to each invariant metric on G/K.
The vector X is called equigeodesic vector. The following proposition gives us an algebraic
characterization of equigeodesic vectors.

Proposition 3.1 ([6]). Let G/K be a reductive homogeneous space with reductive decom-
position g = k ⊕ m and X ∈ m be a non-zero vector. Then X is a equigeodesic vector if and
only if

(14) [X,ΛX]m = 0,

for each invariant metric Λ.

To solve equation (14) is equivalent to solve a non linear algebraic system of equations
whose variables are the coefficients of the vector X. We consider the decomposition m =∑
α∈R+M mα and the basis {Aα, Bα : α ∈ R+M}. Then, by analysing the Lie brackets [Aα, Bβ],

[Aα, Aβ], [Bα, Bβ] described in (1) it is clear that if the structural constants Nα,β,N−α,β, Nα,−β
vanish (e.g. if α ± β is not a root), then these brackets also vanish and the system can be
simplified. In some cases (depending just on themi-parts of X) the nonlinear system vanishes
completely (i.e. the system is identically zero). This motivates the following definition:

Definition 3.2. An equigeodesic vector X is said to be
(a) structural if the algebraic system associated to equation (14) vanishes completely.
(b) algebraic if the coordinates of the vector X come from a solution of a (not identically

zero) nonlinear algebraic system associated to equation (14).
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Remark 3.3. From the invariance of the metric Λ, we have that Λ|mi = λiIdmi , for some
λi > 0, for each irreducible component of the isotropy representation. Therefore, if X ∈ mi

then equation (14) is satisfied trivially.

We call an equigeodesic vector X ∈ m trivial if X ∈ mi for some i, otherwise is said to
be non trivial. It is obvious that the trivial equigeodesic vectors are structural equigeodesic
vectors.

Lemma 3.4. Let G/K be a generalized flag manifold with G2-type t-roots. A vector
X =

∑6
i=1 Xmi ∈ m =

⊕6
i=1mi (resp. X =

∑6
i=1 Xni ∈ n =

⊕6
i=1 ni) is equigeodesic if and

only if

(15) [Xmi , Xm j] = 0, (resp. [Xni , Xn j] = 0)

where 1 ≤ i < j ≤ 6.

Proof. If π : g → m is the projection onto m, then π([X,ΛX]) = [X,ΛX]m. Assume that
G/K is a flag manifold of Type I. Let X =

∑6
i=1 Xmi ∈ m =

⊕6
i=1mi. Then

[X,ΛX]m = π([X,ΛX]) = π(
[ 6∑

i=1

Xmi ,Λ(
6∑

i=1

Xmi)
]
) = π(

[ 6∑
i=1

Xmi ,

6∑
i=1

λiXmi

]
)

=

6∑
i=2

(λi − λ1)π([Xm1 , Xmi]) +
6∑

i=3

(λi − λ2)π([Xm2 , Xmi]) + · · · + (λ6 − λ5)π([Xm5 , Xm6 ])

= (λ2 − λ1)[Xm1 , Xm2 ]+ (λ3 − λ1)[Xm1 , Xm3 ]+ (λ4 − λ1)[Xm1 , Xm4 ]+ (λ5 − λ1)[Xm1 , Xm5 ]

+(λ3 − λ2)[Xm2 , Xm3 ] + (λ5 − λ2)[Xm2 , Xm5 ] + (λ6 − λ2)[Xm2 , Xm6 ] + (λ4 − λ3)[Xm3 , Xm4 ]

+(λ6 − λ3)[Xm3 , Xm6 ]+ (λ5 − λ4)[Xm4 , Xm5 ]+ (λ6 − λ4)[Xm4 , Xm6 ]+ (λ6 − λ5)[Xm5 , Xm6 ].

From the bracket relations (12) we see that all the above brackets [Xmi , Xm j] belong tom. We
know that X is a equigeodesic vector if and only if [X,ΛX]m = 0 for each invariant metric
Λ = {λ1, . . . , λ6} (λ1 > 0, . . . , λ6 > 0). This occurs if and only if [Xmi , Xm j] = 0, where
1 ≤ i < j ≤ 6. Similarly, if G/K is a flag manifold of Type II we use bracket relations (13)
and can show that the vector X =

∑6
i=1 Xni ∈ n =

⊕6
i=1 ni is equigeodesic if and only if

[Xni , Xn j] = 0 where 1 ≤ i < j ≤ 6. �

In the papers [8] and [11] the authors gave a family of structural equigeodesic vectors
for the generalized flag manifolds G/K with two and s isotropy summands respectively,
which depend only on the Lie algebra structure of g. The next theorem provides a family of
structural equigeodesic vectors on generalized flag manifolds with G2-type t-roots.

Theorem 3.5. Let G/K be a generalized flag manifold with G2-type t-roots and ΠK =

Π\{αi0 , α j0} of Type I. Let the positive roots Rm(1, 0) = {β1
1, . . . , β

1
k1
}, Rm(0, 1) = {β2

1, . . . , β
2
k2
},

Rm(1, 1) = {β3
1, . . . , β

3
k3
}, Rm(2, 1) = {β4

1, . . . , β
4
k4
}, Rm(3, 1) = {β5

1, . . . , β
5
k5
}, Rm(3, 2) =

{β6
1, . . . , β

6
k6
}. Suppose that the set {β1

i1
, β2

i2
, . . . ,β6

i6
: 1 ≤ i1 ≤ k1, . . . , 1 ≤ i6 ≤ k6} sat-

isfies

β
p
ip
± βq

iq
� R for ip � iq and 1 ≤ p < q ≤ 6.

Then all vectors in the subspace Uβ1
i1
⊕ Uβ2

i2
⊕ · · · ⊕ Uβ6

i6
are structural equigeodesic vectors.
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Proof. Let X =
∑6

i=1 Xmi = X(1,0) + X(0,1) + X(1,1) + X(2,1) + X(3,1) + X(3,2), where

X(1,0) =
∑

α∈Rm(1,0)

{RAα + RBα} =
∑

α∈Rm(1,0)

Uα, X(0,1) =
∑

α∈Rm(0,1)

{RAα + RBα} =
∑

α∈Rm(0,1)

Uα

X(1,1) =
∑

α∈Rm(1,1)

{RAα + RBα} =
∑

α∈Rm(1,1)

Uα, X(2,1) =
∑

α∈Rm(2,1)

{RAα + RBα} =
∑

α∈Rm(2,1)

Uα

X(3,1) =
∑

α∈Rm(3,1)

{RAα + RBα} =
∑

α∈Rm(3,1)

Uα, X(3,2) =
∑

α∈Rm(3,2)

{RAα + RBα} =
∑

α∈Rm(3,2)

Uα.

Since βp
ip
±βq

iq
is not a root for ip � iq and 1 ≤ p < q ≤ 6, we have that Nβp

ip
,β

q
iq
= N−βp

ip
,β

q
iq
=

Nβp
ip
,−βq

iq
= 0. A direct computation using the relations of Lemma 2.2 shows that the system

of equations (15) vanishes and the vector X is a structural equigeodesic vector. �

Similarly, we can proof the following:

Theorem 3.6. Let G/K be a generalized flag manifold with G2-type t-roots and ΠK =

Π\{αi0 , α j0} of Type II. Let the positive roots Rn(1, 0) = {β1
1, . . . , β

1
k1
}, Rn(0, 1) = {β2

1, . . . , β
2
k2
},

Rn(1, 1) = {β3
1, . . . , β

3
k3
}, Rn(1, 2) = {β4

1, . . . , β
4
k4
}, Rn(1, 3) = {β5

1, . . . , β
5
k5
}, Rn(2, 3) =

{β6
1, . . . , β

6
k6
}. Suppose that the set {β1

i1
, β2

i2
, . . . ,β6

i6
: 1 ≤ i1 ≤ k1, . . . , 1 ≤ i6 ≤ k6} sat-

isfies

β
p
ip
± βq

iq
� R for ip � iq and 1 ≤ p < q ≤ 6.

Then all vectors in the subspace Uβ1
i1
⊕ Uβ2

i2
⊕ · · · ⊕ Uβ6

i6
are structural equigeodesic vectors.

4. Structural Equigeodesic Vectors on Flag Manifolds with G2-type t-roots

4. Structural Equigeodesic Vectors on Flag Manifolds with G2-type t-roots
In this section we give a family of structural equigeodesic vectors for generalized flag

manifolds with G2-type t-roots, namely for F4 /(U(3)×U(1)), E6 /(U(3)×U(3)), E7 /(U(6)×
U(1)) and E8 /(E6 ×U(1) × U(1)). We classify the positive roots that satisfy the hypothesis
of Theorems 3.5 and 3.6.

For the root system of exceptional Lie groups F4,E6,E7 and E8 we use the notation
of [1], where all positive roots are given as linear combinations of the simple roots Π =
{α1, α2, . . . , α�} (� = rkgC).

4.1. Structural Equigeodesic vectors on the flag manifold F4 /(U(3) × U(1)).
4.1. Structural Equigeodesic vectors on the flag manifold F4 /(U(3) × U(1)). Let Π =

{α1, α2, α3, α4} be a system of simple roots for F4 with highest root α̃ = 2α1+4α2+3α3+2α4.
The flag manifold F4 /(U(3) × U(1)) is determined by ΠK = Π\{α3, α4}. From Table 1 we
have that the the positive t-roots are given by R+t = {α3, α4, α3 + α4, 2α3 + α4, 3α3 +

α4, 3α3+2α4}. According to Proposition 2.8 (1), we obtain the decomposition (10) where the
sumbodules mi are defined by (8). The sets Rm( j1, j2) = {∑4

i=1 ciαi ∈ R+M : c3 = j1, c4 = j2}
are given explicitly as follows:

Rm(1, 0) = {e3, e1 − e2, e3 − e4, e3 + e4, 1/2(e1 − e2 + e3 + e4), 1/2(e1 − e2 + e3 − e4)}
= {β1

1, . . . , β
1
6}

Rm(0, 1) = {e2 − e3} = {β2
1}

Rm(1, 1) = {e2, e1 − e3, e2 − e4, e2 + e4, 1/2(e1 + e2 − e3 + e4), 1/2(e1 + e2 − e3 − e4)}
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= {β3
1, . . . , β

3
6}

Rm(2, 1) = {e1, e1 − e4, e1 + e4, e2 + e3, 1/2(e1 + e2 + e3 + e4), 1/2(e1 + e2 + e3 − e4)}
= {β4

1, . . . , β
4
6}

Rm(3, 1) = {e1 + e3} = {β5
1}

Rm(3, 2) = {e1 + e2} = {β6
1}.

It is easy to see that the roots which satisfy the hypothesis of Theorem 3.5 are the following:

β1
i ± β3

j � R for every (i, j) ∈ {(1, 3), (1, 4), (2, 5), (2, 6), (3, 1), (3, 6), (4, 1), (4, 5), (5, 2),
(5, 4), (6, 2), (6, 3)}

β1
i ± β4

j � R for every (i, j) ∈ {(1, 2), (1, 3), (2, 5), (2, 6), (3, 1), (3, 5), (4, 1), (4, 6), (5, 2),
(5, 4), (6, 3), (6, 4)}

β1
i ± β6

1 � R for every i = 1, 2, . . . , 6

β2
1 ± β4

j � R for every j = 1, 2, . . . , 6

β3
i ± β4

j � R for every (i, j) ∈ {(1, 2), (1, 3), (2, 5), (2, 6), (3, 1), (3, 5), (4, 1), (4, 6), (5, 2),
(5, 4), (6, 3), (6, 4)}

β3
i ± β5

1 � R for every i = 1, 2, . . . , 6.

From the above roots we can find all the subspaces for which the vectors are structural
equigeodesic vectors. In particular we have the following:

Proposition 4.1. The root spaces for the generalized flag manifold F4 /(U(3) × U(1))
whose roots satisfy Theorem 3.5 are listed in Table 3. In particular, all vectors in these
subspaces are structural equigeodesic vectors.

Table 3. Structural equigeodesic vectors for F4 /(U(3) × U(1))

Uβ3
3
⊕ Uβ1

1
⊕ Uβ1

6
Uβ4

1
⊕ Uβ1

3
⊕ Uβ1

4
Uβ3

3
⊕ Uβ4

1
⊕ Uβ4

5
Uβ3

4
⊕ Uβ1

1
⊕ Uβ1

5

Uβ4
2
⊕ Uβ1

1
⊕ Uβ1

5
Uβ3

4
⊕ Uβ4

1
⊕ Uβ4

6
Uβ3

5
⊕ Uβ1

2
⊕ Uβ1

4
Uβ4

3
⊕ Uβ1

1
⊕ Uβ1

6

Uβ3
5
⊕ Uβ4

2
⊕ Uβ4

4
Uβ3

6
⊕ Uβ1

2
⊕ Uβ1

3
Uβ4

4
⊕ Uβ1

5
⊕ Uβ1

6
Uβ3

6
⊕ Uβ4

3
⊕ Uβ4

4

Uβ3
1
⊕ Uβ1

4
⊕ Uβ1

3
Uβ4

5
⊕ Uβ1

2
⊕ Uβ1

3
Uβ4

1
⊕ Uβ3

3
⊕ Uβ3

4
Uβ3

2
⊕ Uβ1

5
⊕ Uβ1

6

Uβ4
6
⊕ Uβ1

2
⊕ Uβ1

4
Uβ4

2
⊕ Uβ3

1
⊕ Uβ3

5
Uβ1

1
⊕ Uβ3

3
⊕ Uβ3

4
Uβ1

1
⊕ Uβ4

2
⊕ Uβ4

3

Uβ4
3
⊕ Uβ3

1
⊕ Uβ3

6
Uβ1

2
⊕ Uβ3

5
⊕ Uβ3

6
Uβ1

2
⊕ Uβ4

5
⊕ Uβ4

6
Uβ4

4
⊕ Uβ3

5
⊕ Uβ3

6

Uβ1
3
⊕ Uβ3

1
⊕ Uβ3

6
Uβ1

3
⊕ Uβ4

1
⊕ Uβ4

5
Uβ4

5
⊕ Uβ3

2
⊕ Uβ3

3
Uβ1

4
⊕ Uβ3

1
⊕ Uβ3

5

Uβ1
4
⊕ Uβ4

1
⊕ Uβ4

6
Uβ4

6
⊕ Uβ3

2
⊕ Uβ3

4
Uβ1

5
⊕ Uβ3

2
⊕ Uβ3

4
Uβ1

5
⊕ Uβ4

2
⊕ Uβ4

4

Uβ3
1
⊕ Uβ4

2
⊕ Uβ4

3
Uβ1

6
⊕ Uβ3

2
⊕ Uβ3

3
Uβ1

6
⊕ Uβ4

3
⊕ Uβ4

4
Uβ3

2
⊕ Uβ4

5
⊕ Uβ4

6

Uβ6
1
⊕ Uβ1

1
⊕ Uβ1

2
⊕ Uβ2

1
⊕ Uβ4

1
⊕ Uβ4

2
⊕ Uβ5

1
⊕ Uβ3

1
⊕ Uβ3

2
⊕ Uβ1

3
⊕ Uβ1

4
⊕ Uβ1

5
⊕ Uβ1

6

Uβ4
3
⊕ Uβ4

4
⊕ Uβ4

5
⊕ Uβ4

6
Uβ3

3
⊕ Uβ3

4
⊕ Uβ3

5
⊕ Uβ3

6

4.2. Structural Equigeodesic vectors on the flag manifold E6 /(U(3) × U(3)).
4.2. Structural Equigeodesic vectors on the flag manifold E6 /(U(3) × U(3)). Let Π =

{α1, α2, α3, α4, α5, α6} be a system of simple roots for E6 with highest α̃ = α1 + 2α2 + 3α3 +



Equigeodesics on Generalized FlagManifolds with G2-type t-roots 883

2α4 + α5 + 2α6. The flag manifold E6 /(U(3) × U(3)) is determined by ΠK = Π\{α3, α6}.
From Table 1 we have that the the positive t-roots are given by R+t = {α3, α6, α3+α6, 2α3+

α6, 3α3 + α6, 3α3 + 2α6}. According to Proposition 2.8 (1), we obtain the decomposition
(10) where the sumbodules mi are defined by (8). The sets Rm( j1, j2) = {∑6

i=1 ciαi ∈ R+M :
c3 = j1, c6 = j2} are given explicitly as follows:

Rm(1, 0) = {e3 − e4, e2 − e4, e3 − e5, e1 − e4, e1 − e5, e1 − e6, e2 − e5, e2 − e6, e3 − e6}
= {β1

1, . . . , β
1
9}

Rm(0, 1) = {e4 + e5 + e6 + e} = {β2
1}

Rm(1, 1) = {e1 + e4 + e6 + e, e2 + e4 + e6 + e, e3 + e4 + e5 + e, e3 + e5 + e6 + e,

e1 + e4 + e5 + e, e1 + e5 + e6 + e, e2 + e4 + e5 + e, e2 + e5 + e6 + e,

e3 + e4 + e6 + e} = {β3
1, . . . , β

3
8}

Rm(2, 1) = {e1 + e2 + e5 + e, e1 + e3 + e4 + e, e1 + e3 + e6 + e, e2 + e3 + e4 + e,

e2 + e3 + e6 + e, e1 + e2 + e4 + e, e1 + e2 + e6 + e, e1 + e3 + e5 + e,

e2 + e3 + e5 + e} = {β4
1, . . . , β

4
8}

Rm(3, 1) = {e1 + e2 + e3 + e} = {β5
1}

Rm(3, 2) = {e1 + e2 + e3 + e4 + e5 + e6 + 2e} = {β6
1}.

It is easy to see that all roots which satisfy Theorem 3.5 are the following:

β1
i ± β3

j � R for every (i, j) ∈ {(1, 3), (1, 6), (1, 8), (1, 9), (2, 2), (2, 4), (2, 6), (2, 7), (3, 1),
(3, 2), (3, 3), (3, 4), (4, 1), (4, 4), (4, 5), (4, 8), (5, 2), (5, 5), (5, 6), (5, 9), (6, 1), (6, 3), (6, 6),
(6, 7), (7, 1), (7, 7), (7, 8), (7, 9), (8, 2), (8, 3), (8, 5), (8, 8), (9, 4), (9, 5), (9, 7), (9, 9)}

β1
i ± β4

j � R for every (i, j) ∈ {(1, 1), (1, 2), (1, 4), (1, 7), (2, 3), (2, 4), (2, 6), (2, 8), (3, 6),
(3, 7), (3, 8), (3, 9), (4, 2), (4, 5), (4, 6), (4, 9), (5, 1), (5, 4), (5, 5), (5, 8), (6, 3), (6, 4), (6, 7),
(6, 9), (7, 1), (7, 2), (7, 3), (7, 9), (8, 2), (8, 5), (8, 7), (8, 8), (9, 1), (9, 3), (9, 5), (9, 6)}

β1
i ± β6

1 � R for every i = 1, 2, . . . , 9

β2
1 ± β4

j � R for every j = 1, 2, . . . , 9

β3
i ± β4

j � R for every (i, j) ∈ {(1, 1), (1, 4), (1, 5), (1, 8), (1, 9), (2, 1), (2, 2), (2, 3), (2, 8),
(2, 9), (3, 1), (3, 3), (3, 5), (3, 6), (3, 7), (4, 1), (4, 2), (4, 4), (4, 6), (4, 7), (5, 3), (5, 4), (5, 5),
(5, 7), (5, 9), (6, 2), (6, 4), (6, 5), (6, 6), (6, 9), (7, 2), (7, 3), (7, 5), (7, 7), (7, 8), (8, 2), (8, 3),
(8, 4), (8, 6), (8, 8), (9, 1), (9, 6), (9, 7), (9, 8), (9, 9)}

β3
i ± β5

1 � R for every i = 1, 2, . . . , 9.

From the above roots we can find all the subspaces for which the vectors are structural
equigeodesic vectors. More precisely, from the roots β1

i ± β3
j � R, β1

i ± β4
j � R, β1

i ± β6
1 � R,

β2
1 ± β4

j � R and β3
i ± β5

1 � R we obtain the subspaces in the following tables:
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Table 4. Structural equigeodesic vectors for E6 /(U(3) × U(3))

Uβ31
⊕ Uβ13 ⊕ Uβ14 ⊕ Uβ16 ⊕ Uβ17 Uβ41

⊕ Uβ11 ⊕ Uβ15 ⊕ Uβ17 ⊕ Uβ19 Uβ11
⊕ Uβ17 ⊕ Uβ41 ⊕ Uβ42 Uβ13

⊕ Uβ14 ⊕ Uβ31 ⊕ Uβ34
Uβ32
⊕ Uβ12 ⊕ Uβ13 ⊕ Uβ15 ⊕ Uβ18 Uβ42

⊕ Uβ11 ⊕ Uβ14 ⊕ Uβ17 ⊕ Uβ18 Uβ11
⊕ Uβ16 ⊕ Uβ44 ⊕ Uβ47 Uβ16

⊕ Uβ17 ⊕ Uβ31 ⊕ Uβ37
Uβ33
⊕ Uβ11 ⊕ Uβ13 ⊕ Uβ16 ⊕ Uβ18 Uβ43

⊕ Uβ12 ⊕ Uβ16 ⊕ Uβ17 ⊕ Uβ19 Uβ13
⊕ Uβ18 ⊕ Uβ47 ⊕ Uβ48 Uβ14

⊕ Uβ17 ⊕ Uβ31 ⊕ Uβ38
Uβ34
⊕ Uβ12 ⊕ Uβ13 ⊕ Uβ14 ⊕ Uβ19 Uβ44

⊕ Uβ11 ⊕ Uβ12 ⊕ Uβ15 ⊕ Uβ16 Uβ14
⊕ Uβ18 ⊕ Uβ42 ⊕ Uβ45 Uβ12

⊕ Uβ13 ⊕ Uβ32 ⊕ Uβ34
Uβ35
⊕ Uβ14 ⊕ Uβ15 ⊕ Uβ18 ⊕ Uβ19 Uβ45

⊕ Uβ14 ⊕ Uβ15 ⊕ Uβ18 ⊕ Uβ19 Uβ14
⊕ Uβ19 ⊕ Uβ45 ⊕ Uβ46 Uβ15

⊕ Uβ18 ⊕ Uβ32 ⊕ Uβ35
Uβ36
⊕ Uβ11 ⊕ Uβ12 ⊕ Uβ15 ⊕ Uβ16 Uβ46

⊕ Uβ12 ⊕ Uβ13 ⊕ Uβ14 ⊕ Uβ19 Uβ12
⊕ Uβ16 ⊕ Uβ43 ⊕ Uβ44 Uβ11

⊕ Uβ17 ⊕ Uβ38 ⊕ Uβ39
Uβ37
⊕ Uβ12 ⊕ Uβ16 ⊕ Uβ17 ⊕ Uβ19 Uβ47

⊕ Uβ11 ⊕ Uβ13 ⊕ Uβ16 ⊕ Uβ18 Uβ11
⊕ Uβ15 ⊕ Uβ41 ⊕ Uβ44 Uβ12

⊕ Uβ15 ⊕ Uβ32 ⊕ Uβ36
Uβ38
⊕ Uβ11 ⊕ Uβ14 ⊕ Uβ17 ⊕ Uβ18 Uβ48

⊕ Uβ12 ⊕ Uβ13 ⊕ Uβ15 ⊕ Uβ18 Uβ11
⊕ Uβ16 ⊕ Uβ33 ⊕ Uβ36 Uβ12

⊕ Uβ16 ⊕ Uβ32 ⊕ Uβ37
Uβ39
⊕ Uβ11 ⊕ Uβ15 ⊕ Uβ17 ⊕ Uβ19 Uβ49

⊕ Uβ13 ⊕ Uβ14 ⊕ Uβ16 ⊕ Uβ17 Uβ11
⊕ Uβ17 ⊕ Uβ38 ⊕ Uβ39 Uβ11

⊕ Uβ16 ⊕ Uβ33 ⊕ Uβ36
Uβ11
⊕ Uβ33 ⊕ Uβ36 ⊕ Uβ38 ⊕ Uβ39 Uβ11

⊕ Uβ41 ⊕ Uβ42 ⊕ Uβ44 ⊕ Uβ47 Uβ12
⊕ Uβ16 ⊕ Uβ36 ⊕ Uβ37 Uβ11

⊕ Uβ18 ⊕ Uβ33 ⊕ Uβ38
Uβ12
⊕ Uβ32 ⊕ Uβ34 ⊕ Uβ36 ⊕ Uβ37 Uβ12

⊕ Uβ43 ⊕ Uβ44 ⊕ Uβ46 ⊕ Uβ48 Uβ13
⊕ Uβ18 ⊕ Uβ32 ⊕ Uβ33 Uβ14

⊕ Uβ19 ⊕ Uβ34 ⊕ Uβ35
Uβ13
⊕ Uβ31 ⊕ Uβ32 ⊕ Uβ33 ⊕ Uβ34 Uβ13

⊕ Uβ46 ⊕ Uβ47 ⊕ Uβ48 ⊕ Uβ49 Uβ14
⊕ Uβ19 ⊕ Uβ34 ⊕ Uβ35 Uβ12

⊕ Uβ19 ⊕ Uβ34 ⊕ Uβ37
Uβ14
⊕ Uβ31 ⊕ Uβ34 ⊕ Uβ35 ⊕ Uβ38 Uβ14

⊕ Uβ42 ⊕ Uβ45 ⊕ Uβ46 ⊕ Uβ49 Uβ14
⊕ Uβ18 ⊕ Uβ35 ⊕ Uβ38 Uβ14

⊕ Uβ18 ⊕ Uβ35 ⊕ Uβ38
Uβ15
⊕ Uβ32 ⊕ Uβ35 ⊕ Uβ36 ⊕ Uβ39 Uβ15

⊕ Uβ41 ⊕ Uβ44 ⊕ Uβ45 ⊕ Uβ48 Uβ11
⊕ Uβ15 ⊕ Uβ36 ⊕ Uβ39 Uβ15

⊕ Uβ19 ⊕ Uβ35 ⊕ Uβ39
Uβ16
⊕ Uβ31 ⊕ Uβ33 ⊕ Uβ36 ⊕ Uβ37 Uβ16

⊕ Uβ43 ⊕ Uβ44 ⊕ Uβ47 ⊕ Uβ49 Uβ13
⊕ Uβ16 ⊕ Uβ31 ⊕ Uβ33 Uβ12

⊕ Uβ16 ⊕ Uβ36 ⊕ Uβ37
Uβ17
⊕ Uβ31 ⊕ Uβ37 ⊕ Uβ38 ⊕ Uβ39 Uβ17

⊕ Uβ41 ⊕ Uβ42 ⊕ Uβ43 ⊕ Uβ49 Uβ61

⊕9
i=1 Uβ1i

Uβ17
⊕ Uβ19 ⊕ Uβ37 ⊕ Uβ39

Uβ18
⊕ Uβ32 ⊕ Uβ33 ⊕ Uβ35 ⊕ Uβ38 Uβ18

⊕ Uβ42 ⊕ Uβ45 ⊕ Uβ47 ⊕ Uβ48 Uβ21

⊕9
i=1 Uβ4i

Uβ11
⊕ Uβ17 ⊕ Uβ41 ⊕ Uβ42

Uβ19
⊕ Uβ34 ⊕ Uβ35 ⊕ Uβ37 ⊕ Uβ39 Uβ19

⊕ Uβ41 ⊕ Uβ43 ⊕ Uβ45 ⊕ Uβ46 Uβ51

⊕9
i=1 Uβ3i

Uβ17
⊕ Uβ19 ⊕ Uβ41 ⊕ Uβ43

Uβ11
⊕ Uβ15 ⊕ Uβ41 ⊕ Uβ44 Uβ11

⊕ Uβ18 ⊕ Uβ42 ⊕ Uβ47 Uβ12
⊕ Uβ19 ⊕ Uβ43 ⊕ Uβ46 Uβ12

⊕ Uβ15 ⊕ Uβ44 ⊕ Uβ48
Uβ15
⊕ Uβ19 ⊕ Uβ41 ⊕ Uβ45 Uβ14

⊕ Uβ17 ⊕ Uβ42 ⊕ Uβ49 Uβ16
⊕ Uβ17 ⊕ Uβ43 ⊕ Uβ49 Uβ14

⊕ Uβ19 ⊕ Uβ45 ⊕ Uβ46
Uβ14
⊕ Uβ18 ⊕ Uβ42 ⊕ Uβ45 Uβ12

⊕ Uβ16 ⊕ Uβ43 ⊕ Uβ44 Uβ11
⊕ Uβ16 ⊕ Uβ44 ⊕ Uβ47 Uβ12

⊕ Uβ13 ⊕ Uβ46 ⊕ Uβ48
Uβ13
⊕ Uβ18 ⊕ Uβ47 ⊕ Uβ48 Uβ13

⊕ Uβ16 ⊕ Uβ47 ⊕ Uβ49

Now from the roots β3
i ± β4

j � R we have the following subspaces:

Table 5. Structural equigeodesic vectors for E6 /(U(3) × U(3))

Uβ4
1
⊕ Uβ3

1
⊕ Uβ3

2
⊕ Uβ3

3
⊕ Uβ3

4
⊕ Uβ3

9
Uβ4

2
⊕ Uβ4

3
⊕ Uβ4

8
⊕ Uβ3

2
⊕ Uβ3

7
⊕ Uβ3

8
Uβ4

4
⊕ Uβ4

7
⊕ Uβ3

4
⊕ Uβ3

5

Uβ4
2
⊕ Uβ3

2
⊕ Uβ3

4
⊕ Uβ3

6
⊕ Uβ3

7
⊕ Uβ3

8
Uβ4

4
⊕ Uβ4

5
⊕ Uβ4

9
⊕ Uβ3

1
⊕ Uβ3

5
⊕ Uβ3

6
Uβ4

4
⊕ Uβ4

8
⊕ Uβ3

1
⊕ Uβ3

8

Uβ4
3
⊕ Uβ3

2
⊕ Uβ3

3
⊕ Uβ3

5
⊕ Uβ3

7
⊕ Uβ3

8
Uβ4

1
⊕ Uβ4

6
⊕ Uβ4

7
⊕ Uβ3

3
⊕ Uβ3

4
⊕ Uβ3

9
Uβ4

5
⊕ Uβ4

6
⊕ Uβ3

3
⊕ Uβ3

6

Uβ4
4
⊕ Uβ3

1
⊕ Uβ3

5
⊕ Uβ3

6
⊕ Uβ3

8
⊕ Uβ3

4
Uβ4

2
⊕ Uβ4

4
⊕ Uβ4

6
⊕ Uβ3

6
⊕ Uβ3

8
⊕ Uβ3

4
Uβ4

5
⊕ Uβ4

8
⊕ Uβ3

1
⊕ Uβ3

7

Uβ4
5
⊕ Uβ3

1
⊕ Uβ3

3
⊕ Uβ3

5
⊕ Uβ3

6
⊕ Uβ3

7
Uβ4

1
⊕ Uβ4

8
⊕ Uβ4

9
⊕ Uβ3

1
⊕ Uβ3

2
⊕ Uβ3

9
Uβ4

6
⊕ Uβ4

8
⊕ Uβ3

8
⊕ Uβ3

9

Uβ4
6
⊕ Uβ3

3
⊕ Uβ3

4
⊕ Uβ3

6
⊕ Uβ3

8
⊕ Uβ3

9
Uβ4

3
⊕ Uβ4

5
⊕ Uβ4

7
⊕ Uβ3

3
⊕ Uβ3

5
⊕ Uβ3

7
Uβ4

6
⊕ Uβ4

9
⊕ Uβ3

6
⊕ Uβ3

9

Uβ4
7
⊕ Uβ3

3
⊕ Uβ3

4
⊕ Uβ3

5
⊕ Uβ3

7
⊕ Uβ3

9
Uβ3

1
⊕ Uβ3

5
⊕ Uβ3

6
⊕ Uβ4

5
⊕ Uβ4

9
Uβ4

7
⊕ Uβ4

8
⊕ Uβ3

7
⊕ Uβ3

9

Uβ4
8
⊕ Uβ3

1
⊕ Uβ3

2
⊕ Uβ3

7
⊕ Uβ3

8
⊕ Uβ3

9
Uβ3

3
⊕ Uβ3

4
⊕ Uβ3

9
⊕ Uβ4

6
⊕ Uβ4

7
Uβ4

7
⊕ Uβ4

9
⊕ Uβ3

5
⊕ Uβ3

9

Uβ4
9
⊕ Uβ3

1
⊕ Uβ3

2
⊕ Uβ3

5
⊕ Uβ3

6
⊕ Uβ3

9
Uβ4

1
⊕ Uβ4

2
⊕ Uβ3

2
⊕ Uβ3

4
Uβ4

1
⊕ Uβ4

3
⊕ Uβ3

2
⊕ Uβ3

3

Uβ3
1
⊕ Uβ4

1
⊕ Uβ4

4
⊕ Uβ4

5
⊕ Uβ4

8
⊕ Uβ4

9
Uβ3

2
⊕ Uβ4

1
⊕ Uβ4

2
⊕ Uβ4

3
⊕ Uβ4

8
⊕ Uβ4

9
Uβ4

1
⊕ Uβ4

4
⊕ Uβ3

1
⊕ Uβ3

4

Uβ3
3
⊕ Uβ4

1
⊕ Uβ4

3
⊕ Uβ4

5
⊕ Uβ4

6
⊕ Uβ4

7
Uβ4

1
⊕ Uβ4

5
⊕ Uβ3

1
⊕ Uβ3

3
Uβ4

2
⊕ Uβ4

5
⊕ Uβ3

6
⊕ Uβ3

7

Uβ3
4
⊕ Uβ4

1
⊕ Uβ4

2
⊕ Uβ4

4
⊕ Uβ4

6
⊕ Uβ4

7
Uβ3

5
⊕ Uβ4

3
⊕ Uβ4

4
⊕ Uβ4

5
⊕ Uβ4

7
⊕ Uβ4

9
Uβ4

2
⊕ Uβ4

7
⊕ Uβ3

4
⊕ Uβ3

9

Uβ3
6
⊕ Uβ4

2
⊕ Uβ4

4
⊕ Uβ4

5
⊕ Uβ4

6
⊕ Uβ4

9
Uβ4

2
⊕ Uβ4

9
⊕ Uβ3

2
⊕ Uβ3

6
Uβ4

3
⊕ Uβ4

4
⊕ Uβ3

5
⊕ Uβ3

8

Uβ3
7
⊕ Uβ4

2
⊕ Uβ4

3
⊕ Uβ4

5
⊕ Uβ4

7
⊕ Uβ4

8
Uβ3

8
⊕ Uβ4

2
⊕ Uβ4

3
⊕ Uβ4

4
⊕ Uβ4

6
⊕ Uβ4

8
Uβ4

3
⊕ Uβ4

6
⊕ Uβ3

3
⊕ Uβ3

8

Uβ3
9
⊕ Uβ4

1
⊕ Uβ4

6
⊕ Uβ4

7
⊕ Uβ4

8
⊕ Uβ4

9
Uβ4

3
⊕ Uβ4

9
⊕ Uβ3

2
⊕ Uβ3

5

Hence we obtain the following:

Proposition 4.2. The root spaces for the generalized flag manifold E6(α3, α6) =
E6 /(U(3) × U(3)), with all vectors are structural equigeodesic vectors are described in
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Tables 4 and 5.

4.3. Structural Equigeodesic vectors on the flag manifold E7 /(U(6) × U(1)).
4.3. Structural Equigeodesic vectors on the flag manifold E7 /(U(6) × U(1)). Let Π =

{α1, α2, α3, α4, α5, α6, α7} be a system of simple roots for E7 with highest α̃ = α1+2α2+3α3+

4α4+3α5+2α6+2α7. The flag manifold E7 /(U(6)×U(1)) is determined byΠK = Π\{α5, α6}.
From Table 1 we have that the the positive t-roots are given by R+t = {α5, α6, α5+α6, 2α5+

α6, 3α5 + α6, 3α5 + 2α6}. According to Proposition 2.8 (1), we obtain the decomposition
(10) where the sumbodules mi are defined by (8). The sets Rm( j1, j2) = {∑7

i=1 ciαi ∈ R+M :
c5 = j1, c6 = j2} are given explicitly as follows:

Rm(1, 0) = {e1 − e6, e2 − e6, e3 − e6, e4 − e6, e5 − e6, e4 + e5 + e7 + e8, e3 + e5 + e7 + e8,

e3 + e4 + e7 + e8, e2 + e5 + e7 + e8, e2 + e2 + e7 + e8, e2 + e3 + e7 + e8,

e1 + e5 + e7 + e8, e1 + e4 + e7 + e8, e1 + e3 + e7 + e8, e1 + e2 + e7 + e8}
= {β1

1, . . . , β
1
15}

Rm(0, 1) = {e6 − e7} = {β2
1}

Rm(1, 1) = {e1 − e7, e2 − e7, e3 − e7, e4 − e7, e5 − e7, e4 + e5 + e6 + e8, e3 + e5 + e6 + e8,

e3 + e4 + e6 + e8, e2 + e5 + e6 + e8, e2 + e4 + e6 + e8, e2 + e3 + e6 + e8,

e1 + e5 + e6 + e8, e1 + e4 + e6 + e8, e1 + e3 + e6 + e8, e1 + e2 + e6 + e8}
= {β3

1, . . . , β
3
15}

Rm(2, 1) = {e3 + e4 + e5 + e8, e2 + e4 + e5 + e8, e2 + e3 + e5 + e8, e2 + e3 + e4 + e8,

e1 + e4 + e5 + e8, e1 + e3 + e5 + e8, e1 + e3 + e4 + e8, e1 + e2 + e5 + e8,

e1 + e2 + e4 + e8, e1 + e2 + e3 + e8,−(e1 − e8),−(e2 − e8),−(e3 − e8),

−(e4 − e8),−(e5 − e8)} = {β4
1, . . . , β

4
15}

Rm(3, 1) = {−(e6 − e8)} = {β5
1}

Rm(3, 2) = {−(e7 − e8)} = {β6
1}.

The roots which satisfy Theorem 3.5 are the following:
β1

1 ± β3
j , j = 2, 3, 4, 5, 12, 13, 14, 15; β1

2 ± β3
j , j = 1, 3, 4, 5, 9, 10, 11, 15; β1

3 ± β3
j , j = 1, 2, 4, 5, 7, 8, 11, 14;

β1
3 ± β3

j , j = 1, 2, 4, 5, 7, 8, 11, 14; β4
1 ± β3

j , j = 1, 2, 3, 5, 6, 8, 10, 13; β1
5 ± β3

j , j = 1, 2, 3, 4, 6, 7, 9, 12; β1
6 ±

β3
j , j = 4, 5, 7, 8, 9, 10, 12, 13; β1

7 ± β3
j , j = 3, 5, 6, 8, 9, 11, 12, 14; β1

8 ± β3
j , j = 3, 4, 6, 7, 10, 11, 13, 14; β1

9 ±
β3

j , j = 2, 5, 6, 7, 10, 11, 12, 15; β1
10±β3

j , j = 2, 4, 6, 8, 9, 11, 13, 15; β1
11±β3

j , j = 2, 3, 7, 8, 9, 10, 14, 15; β1
12±

β3
j , j = 1, 5, 6, 7, 9, 13, 14, 15; β1

13 ± β3
j , j = 1, 4, 5, 6, 8, 10, 12, 14, 15; β1

14 ± β3
j , j = 1, 3, 7, 8, 11, 12, 13, 15;

β1
15±β3

j , j = 1, 2, 9, 10, 11, 12, 13, 14; β1
1±β4

j , j = 1, 2, 3, 4, 12, 13, 14, 15; β1
2±β4

j , j = 1, 5, 6, 7, 11, 13, 14, 15;
β1

3±β4
j , j = 2, 5, 8, 9, 11, 12, 14, 15; β1

4±β4
j , j = 3, 6, 8, 10, 11, 12, 13, 15; β1

5±β4
j , j = 4, 7, 9, 10, 11, 12, 13, 14;

β1
6 ± β4

j , j = 3, 4, 6, 7, 8, 9, 14, 15; β1
7 ± β4

j , j = 2, 4, 5, 7, 8, 10, 13, 15; β1
8 ± β4

j , j = 2, 3, 5, 6, 9, 10, 13, 14;
β1

9 ± β4
j , j = 1, 4, 5, 6, 9, 10, 12, 15; β1

10 ± β4
j , j = 1, 3, 5, 7, 8, 10, 12, 4; β1

11 ± β4
j , j = 1, 2, 6, 7, 8, 9, 12, 13;

β1
12 ± β4

j , j = 1, 2, 3, 7, 9, 10, 11, 15; β1
13 ± β4

j , j = 1, 2, 4, 6, 8, 10, 11, 14; β1
14 ± β4

j , j = 1, 3, 4, 5, 8, 9, 11, 13;
β1

15 ± β4
j , j = 2, 3, 4, 5, 6, 7, 11, 12; β3

1 ± β4
j , j = 1, 2, 3, 4, 12, 13, 14, 15; β3

2 ± β4
j , j = 1, 5, 6, 7, 11, 13, 14, 15;

β3
3±β4

j , j = 2, 5, 8, 9, 11, 12, 14, 15; β3
4±β4

j , j = 3, 6, 8, 10, 11, 12, 13, 15; β3
5±β4

j , j = 4, 7, 9, 10, 11, 12, 13, 14;
β3

6 ± β4
j , j = 3, 4, 6, 7, 8, 9, 14, 15; β3

7 ± β4
j , j = 2, 4, 5, 7, 8, 10, 13, 15; β3

8 ± β4
j , j = 2, 3, 5, 6, 9, 10, 13, 14;

β3
9 ± β4

j , j = 1, 4, 5, 6, 9, 10, 12, 15; β3
10 ± β4

j , j = 1, 3, 5, 7, 8, 10, 12, 14; β3
11 ± β4

j , j = 1, 2, 6, 7, 8, 9, 12, 13;
β3

12 ± β4
j , j = 1, 2, 3, 7, 9, 10, 11, 15; β3

13 ± β4
j , j = 1, 2, 4, 6, 8, 10, 11, 14; β3

14 ± β4
j , j = 1, 3, 4, 5, 8, 9, 11, 13;

β3
15±β4

j , j = 2, 3, 4, 5, 6, 7, 11, 12; β1
i ±β6

1, j = 1, 2, . . . , 15; β2
1±β4

i , j = 1, 2, . . . , 15; β3
i ±β5

1, j = 1, 2, . . . , 15.
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By applying the conclusion of Theorem 3.5 we can find all subspaces on which the vectors
are structural equigeodesics. Some of them are the following:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Uβ1

1
⊕5

j=2 Uβ3
j
⊕15

k=12 Uβ3
k
Uβ1

1
⊕4

j=1 Uβ4
j
⊕15

k=12 Uβ4
k

Uβ6
1
⊕15

i=1 Uβ1
i

Uβ5
1
⊕15

i=1 Uβ3
i

Uβ3
1
⊕4

i=1 Uβ4
i
⊕15

k=12 Uβ4
k

Uβ3
5
⊕ Uβ4

4
⊕ Uβ4

7
⊕14

i=9 Uβ4
i

Uβ2
1
⊕15

i=1 Uβ4
i

Uβ1
5
⊕ Uβ3

12
⊕ Uβ4

12
Uβ9

1
⊕ Uβ3

5
⊕ Uβ3

10
⊕ Uβ3

15
⊕ Uβ4

5
⊕ Uβ4

10
⊕ Uβ4

15

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
· · · · · · ·⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uβ1
11
⊕ Uβ3

14
⊕ Uβ4

3
⊕ Uβ4

8
⊕ Uβ4

9
Uβ3

14
⊕7

i=3 Uβ4
i
⊕ Uβ4

1
⊕ Uβ4

11
⊕ Uβ4

13

Uβ1
3
⊕ Uβ3

4
⊕ Uβ4

8
⊕ Uβ4

11
⊕ Uβ4

12
⊕ Uβ4

15
Uβ1

14
⊕5

i=3 Uβ4
i
⊕ Uβ4

1
⊕ Uβ4

11
⊕ Uβ4

8
⊕ Uβ4

9
⊕ Uβ4

13

Uβ1
7
⊕ Uβ3

8
⊕ Uβ4

2
⊕ Uβ4

5
⊕ Uβ4

10
⊕ Uβ4

11
Uβ1

15
⊕ Uβ3

14
⊕ Uβ4

3
⊕ Uβ4

4
⊕ Uβ4

5
⊕ Uβ4

11

Uβ1
3
⊕ Uβ3

3
⊕ Uβ4

2
⊕ Uβ4

5
⊕ Uβ4

8
⊕ Uβ4

11
⊕ Uβ4

14
Uβ3

7
⊕ Uβ1

3
⊕ Uβ1

11
⊕ Uβ1

12
⊕ Uβ4

2

Uβ3
7
⊕ Uβ1

5
⊕ Uβ1

6
⊕ Uβ4

4
⊕ Uβ4

7
Uβ3

7
⊕ Uβ1

3
⊕ Uβ1

8
⊕ Uβ1

14
⊕ Uβ4

5

Uβ3
7
⊕ Uβ1

3
⊕ Uβ1

6
⊕ Uβ4

8
⊕ Uβ4

15
Uβ3

7
⊕ Uβ1

8
⊕ Uβ1

12
⊕ Uβ4

10
⊕ Uβ4

15

Uβ3
7
⊕ Uβ1

6
⊕ Uβ1

11
⊕ Uβ4

7
⊕ Uβ4

8
Uβ3

7
⊕ Uβ1

11
⊕ Uβ1

12
⊕ Uβ1

14
⊕ Uβ4

4
⊕ Uβ4

8
⊕ Uβ4

8

Uβ1
1
⊕ Uβ3

3
⊕ Uβ3

4
⊕15

i=12 Uβ3
i
⊕ Uβ4

2
⊕ Uβ4

3
⊕15

i=12 Uβ4
i
Uβ1

12
⊕ Uβ3

1
⊕ Uβ3

9
⊕ Uβ3

15
⊕ Uβ4

1
⊕ Uβ4

9
⊕ Uβ4
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4.4. Structural Equigeodesic vectors on the flag manifold E8 /(E6 ×U(1) ×U(1)). Let

Π = {α1, α2, α3, α4, α5, α6, α7, α8} be a system of simple roots for E8 with highest α̃ =
2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8. The flag manifold E8 /(E6 ×U(1) × U(1))
is determined by ΠK = Π\{α1, α2}. From Table 1 we have that the positive t-roots are given
by R+t = {α1, α1, α1 + α2, α1 + 2α2, α1 + 3α2, 2α1 + 3α2}. According to Proposition 2.8
(1), we obtain the decomposition (10) where the sumbodules mi are defined by (8). The sets
Rn( j1, j2) = {∑8

i=1 ciαi ∈ R+M : c1 = j1, c2 = j2} are given explicitly as follows:

Rn(1, 0) = {e1 − e − 2} = {β1
1}

Rn(0, 1) = {e2 − ei, i = 3, 4, 5, 6, 7, 8, e2 + e3 + ei, i = 4, 5, 6, 7, 8, e2 + e4 + ei,

i = 5, 6, 7, 8, e2 + e5 + ei, i = 6, 7, 8, e2 + e6 + ei, i = 7, 8, e2 + e7 + e8,

−(e1 + ei + e9), i = 3, 4, 5, 6, 7, 8} = {β2
1, . . . , β

2
27}

Rn(1, 1) = {e1 − ei, i = 3, 4, 5, 6, 7, 8, e1 + e3 + ei, i = 4, 5, 6, 7, 8, e1 + e4 + ei,

i = 5, 6, 7, 8, e1 + e5 + ei, i = 6, 7, 8, e1 + e6 + ei, i = 7, 8, e1 + e7 + e8,

−(e2 + ei + e9), i = 3, 4, 5, 6, 7, 8} = {β3
1, . . . , β

3
27}

Rn(1, 2) = {ei − e9, e1 + e2 + ei, i = 3, 4, 5, 6, 7, 8, −(e3 + ei + e9), i = 4, 5, 6, 7, 8,

−(e4 + ei + e9), i = 5, 6, 7, 8, −(e5 + ei + e9), i = 6, 7, 8, −(e6 + ei + e9),

i = 7, 8,−(e7 + e8 + e9)} = {β4
1, . . . , β

4
27}

Rn(1, 3) = {e2 − e9} = {β5
1}

Rn(2, 3) = {e1 − e9} = {β6
1}

Below we list some roots which satisfy Theorem 3.6:
β1

1 ± β4
j , β

6
1 ± β2

j , β
5
1 ± β3

j , j = 1, 2 . . . , 27; β2
1 ± β3

j , j = 2, 3, 4, 5, 6, 12, . . . , 22; β2
2 ± β3

j , j = 1, 3, 4, 5, 6, 8, 9, 10,

11, 16, 17, 18, 19, 20, 21, 23; β2
3±β3

j , j = 1, 2, 4, 5, . . . , 11, 13, 14, 15, 19, 20, 21, 24; β2
4±β3

j , j = 1, 2, 3, 5, 6, 7, 8, 10,

11, 12, 14, 15, 17, 18, 21, 25; β2
5 ± β3

j , j = 1, . . . , 9, 11, 12, 13, 15, 16, 18, 20, 26; β2
6 ± β3

j , j = 1, 2, 3, 4, 5, 7, 8, 9, 10,

12, 13, 14, 16, 17, 19, 27; β2
7 ± β3

j , j = 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 22 . . . , 27, · · ·
β2

1 ± β4
j , j = 2, 3, 4, 5, 6, 7, 18, . . . , 27; β2

2 ± β4
j , j = 1, 3, 4, 5, 6, 8, 14, 15, 16, 17, 22 . . . , 27; β2

3 ± β4
j , j =

1, 2, 4, 5, 6, 13, . . . , 17, 19, 20, 21, 25, 26, 27; β2
4 ± β4

j , j = 1, 2, 3, 5, 6, 10, 13, 14, 16, 17, 18, 20, 21, 23, 24, 27; β2
5 ±
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β4
j , j = 1, 2, 3, 4, 6, 11, 13, 14, 15, 17, 18, 19, 21, 22, 24, 26; β2

6 ± β4
j , j = 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 18, 18, 20,

22, 23, 25; β2
7 ± β4

j , j = 3, 4, 5, 6, 9, 11, 12, . . . , 18, · · ·
β3

1 ± β4
j , j = 2, 3, 4, 5, 6, 7, 18, 19, 20, . . . , 27; β3

2 ± β4
j , j = 1, 3, 4, 5, 6, 8, 14, 15, 16, 17, 22, . . . , 27; β3

3 ± β4
j , j =

1, 2, 4, 5, 6, 9, 13, 15, 16, 17, 19, 20, 21, 25, 26, 27; β3
4 ± β4

j , j = 1, 2, 3, 5, 6, 10, 13, 14, 16, 17, 18, 20, 21, 23, 24, 27;

β3
5±β4

j , j = 1, 2, 3, 4, 6, 11, 13, 14, 15, 17, 18, 19, 21, 22, 24, 27; β3
6±β4

j , j = 1, 2, 3, 4, 5, 13, 14, 15, 16, 18, 19, 20, 22,

23, 25, 27; β3
7 ± β4

j , j = 3, 4, 5, 6, 9, 10, 11, 12, 14, . . . , 21, · · ·
From these roots we can find some subspaces for which the vectors are structural

equigeodesics. In particular we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uβ1
1
⊕27

i=1 Uβ4
i
, Uβ6

1
⊕27

i=1 Uβ2
i

Uβ5
1
⊕27

i=1 Uβ3
i

Uβ2
1
⊕ Uβ3

2
⊕6

i=3 Uβ4
i
⊕27

j=22 Uβ4
j

Uβ2
2
⊕ Uβ3

1
⊕6

i=3 Uβ4
i
⊕27

j=22 Uβ4
j

Uβ2
2
⊕ Uβ3

3
⊕ Uβ4

1
⊕6

i=4 Uβ4
i
⊕17

j=15 Uβ4
j
⊕27

k=25 Uβ4
k

Uβ6
2
⊕ Uβ3

7
⊕5

i=3 Uβ4
i
⊕16

j=14 Uβ4
j
⊕20

k=18 Uβ4
k

Uβ2
7
⊕ Uβ3

6
⊕5

i=3 Uβ4
i
⊕16

j=13 Uβ4
j
⊕ Uβ4

18
Uβ2

1
⊕6

i=2 Uβ3
i
⊕22

j=12 Uβ3
j

Uβ2
1
⊕ Uβ2

2
⊕6

i=3 Uβ3
i
⊕21

j=16 Uβ3
j

Uβ2
1
⊕ Uβ2

2
⊕ Uβ2

3
⊕6

i=4 Uβ3
i
⊕21

j=19 Uβ3
j

Uβ2
1
⊕7

i=2 Uβ4
i
⊕27

j=18 Uβ4
j

Uβ2
1
⊕ Uβ2

2
⊕6

i=3 Uβ4
i
⊕27

j=22 Uβ4
j

Uβ2
1
⊕ Uβ2

2
⊕ Uβ2

3
⊕6

i=4 Uβ4
i
⊕27

j=25 Uβ4
j

Uβ3
1
⊕7

i=2 Uβ4
i
⊕27

j=18 Uβ4
j

Uβ3
1
⊕ Uβ3

2
⊕6

i=3 Uβ4
i
⊕27

j=22 Uβ4
j

Uβ3
1
⊕ Uβ3

2
⊕ Uβ3

3
⊕6

i=4 Uβ4
i
⊕27

j=25 Uβ4
j

Uβ2
1
⊕ Uβ2

2
⊕ β�� ⊕ Uβ4

3
⊕6

i=5 Uβ4
i
⊕24

j=23 Uβ4
j
⊕ Uβ4

27
Uβ3

1
⊕ Uβ3

2
⊕ β�� ⊕6

i=4 Uβ4
i
⊕27

j=25 Uβ4
j

Uβ2
3
⊕ Uβ2

4
⊕ Uβ3

5
⊕2

i=1 Uβ4
i
⊕14

j=13 Uβ4
j
⊕ Uβ4

6
⊕ Uβ4

17
⊕ Uβ4

21
Uβ3

4
⊕ Uβ3

5
⊕ β2

6 ⊕3
i=1 Uβ4

i
⊕14

j=13 Uβ4
j
⊕ Uβ4

18
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