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Abstract
Let S = K[x1, x2, . . . , xn] be the polynomial ring in n variables over a field K. We fix integers

d and t. A monomial xi1 xi2 · · · xid with i1 ≤ i2 ≤ · · · ≤ id is t-spread if i j − i j−1 ≥ t, for any
2 ≤ j ≤ n. Let In,d,t be the ideal generated by all t-spread monomials of degree d and let
K[In,d,t] be the toric algebra generated by the monomials v with v ∈ G(In,d,t). This generalizes
the classical (squarefree)Veronese algebras. The aim of this paper is to characterize the algebras
K[In,d,t] which are Gorenstein.

Introduction

Let K be a field and let S = K[x1, x2, . . . , xn] be the polynomial ring in n indeterminates
over K. In the paper [7], Ene, Herzog and Qureshi introduced the concept of t-spread mono-
mials. We fix integers d and t. A monomial xi1 xi2 · · · xid with i1 ≤ i2 ≤ · · · ≤ id is t-spread if
i j − i j−1 ≥ t, for any 2 ≤ j ≤ n. Thus any monomial is 0-spread and a squarefree monomial
is 1-spread. A monomial ideal in S is called a t-spread monomial ideal if it is generated
by t-spread monomials. For example, I = (x1x3x7, x1x4x7, x1x5x8) ⊂ K[x1, x2, . . . , x8] is a
2-spread monomial ideal.
Let d ≥ 1 be an integer. A monomial ideal in S is called a t-spread Veronese ideal of degree
d if it is generated by all t-spread monomials of degree d. We denote it by In,d,t. Note that
In,d,t � 0 if and only if n > t(d − 1). For example, if n = 5, d = 2 and t = 2, then

I5,2,2 = (x1x3, x1x4, x1x5, x2x4, x2x5, x3x5) ⊂ K[x1, x2, . . . , x5].

We consider the toric algebra generated by the monomials v with v ∈ G(In,d,t), here, for a
monomial ideal I, G(I) denotes the minimal system of monomial generators of I. This is
called a t-spread Veronese algebra and we denote it by K[In,d,t]. It generalizes the classical
(squarefree)Veronese algebras. By [7, Corollary 3.4], the t-spread Veronese algebra is a
Cohen-Macaulay domain.
We fix an integer d and a sequence a = (a1, . . . , an) of integers with 1 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤
d and d =

∑n
i=1 ai. The K-subalgebra of S = K[x1, x2, . . . , xn] generated by all monomials

of the form tc1
1 tc2

2 · · · tcn
n with

∑n
i=1 ci = d and ci ≤ ai for each 1 ≤ i ≤ n is called an algebra

of Veronese type and it is denoted by A(a, d). If each ai = 1, then A(1, d) is generated by all
the squarefree monomials of degree d in S .

De Negri and Hibi proved in [8, Theorem 2.4] that, in the squarefree case, the algebra of
Veronese type A(1, d) is Gorenstein if and only if

(i) d = n, or
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(ii) d = n − 1, or
(iii) d < n − 1 and n = 2d.

The aim of this paper is to characterize the toric algebras K[In,d,t] which have the Gorenstein
property. Our approach is rather geometric. We identify the t-spread Veronese algebra,
K[In,d,t], with the Ehrhart ring () associated to a suitable polytope  , and next we employ
Hibi’s results in [12] which caracterize the Gorenstein property of ().

The main result of this paper, Theorem 3.4, classifies the t-spread Veronese algebras
which are Gorenstein. Namely, we show that, for d, t ≥ 2, K[In,d,t] is Gorenstein if and only
if n ∈ {(d − 1)t + 1, (d − 1)t + 2, dt, dt + 1, dt + d}. We illustrate all our results with suitable
examples. We also see that, in this cases, the h∗-vector of the t-spread Veronese algebra
K[In,d,t] is unimodal.

1. The Ehrhart ring of a rational convex polytope

1. The Ehrhart ring of a rational convex polytope
Let  ⊂ RN be a convex polytope of dimension d and let ∂ be the boundary of  . Then

 is called of standard type if d = N and the origin of RN is contained in the interior of  .
We call a polytope  rational if every vertex of  has rational coordinates and integral if
every vertex of  has integral coordinates. The Ehrhart ring of  is () =

⊕
n≥0 ()n,

where ()n is the K-vector space generated by the monomials {xayn : a ∈ n ∩ Zn}. Here
n denotes the dilated polytope {(na1, na2, . . . , nad) : (a1, a2, . . . , ad) ∈ }. It is known that
() is a finitely generated K-algebra and a normal domain ([16, Theorem 9.3.6]). The
reader can find more about Ehrhart rings of rational convex polytopes in [2] and [16].

Let  ⊂ Rd be a d-dimensional convex polytope of standard type. Then the dual polytope
of  is

∗ = {(α1, . . . , αd) ∈ Rd :
∑d

i=1 αiβi ≤ 1, for all (β1, . . . , βd) ∈ }.
One can check that ∗ is a convex polytope of standard type and (∗)∗ =  ;(see [4, Exercise
1.14] or [17, Chapter 2]). It is known the fact that if (α1, . . . , αd) ∈ Rd and if H ⊂ Rd is
the hyperplane defined by the equation

∑d
i=1 αixi = 1, then (α1, . . . , αd) is a vertex of ∗

if and only if H ∩  is a facet of  , see [17, Chapter 2]. Therefore, the dual polytope of
a rational convex polytope is rational. In order to classify the t-spread Veronese algebras
which are Gorenstein, we will show that any t-spread Veronese algebra coincides with the
Ehrhart ring of an integral convex polytope, so we need a criterion for the Ehrhart ring ()
to be Gorenstein.
Let  be an integral polytope in Rd

+ of dim = d. We consider the toric ring K[] which
is generated by all the monomials xa1

1 . . . x
an
n sq with a = (a1, a2, . . . , an) ∈  ∩ Zn and q =

a1 + a2 + · · · + an. It is known that if K[] is a normal ring, then K[] is Cohen-Macaulay
([3, Theorem 6.3.5]).

Theorem 1.1 (Stanley, Danilov [14], [6]). Let  ⊂ Rd
+ be an integral convex polytope and

suppose that its toric ring K[] is normal, thus K[] = (). Then the canonical module
Ω(K[]) of K[] coincides with the ideal of K[] which is generated by those monomials
xasq with a ∈ q( − ∂) ∩ Zd.

By [9, Proposition A.6.6], the Cohen-Macaulay type of a Cohen-Macaulay graded S -
module M of dimension d coincides with βS

n−d(M). In particular, a Cohen-Macaulay ring
R = S/I is Gorenstein if and only if βS

n−d(R) = 1. Let  be a polytope as in Theorem 1.1 and
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δ ≥ 1 be the smallest integer such that δ( − ∂) ∩ Zd � ∅. Then, by [13], the a-invariant is
a(K[]) = −min (ωK[]) � 0 = −δ.

Remark 1. By [9, Corollary A.6.7], K[] is Gorenstein if and only if Ω(K[]) is a prin-
cipal ideal. In particular, if K[] is Gorenstein, then δ(−∂) must posses a unique interior
vector.

Theorem 1.2 (Hibi,[12]). Let  be a integral convex polytope of dimension d and let
δ ≥ 1 be the smallest integer for which δ( − ∂) ∩ Zd � ∅. Fix α ∈ δ( − ∂) ∩ Zd � ∅
and denote by  the rational convex polytope of standard type  = δ − α ⊂ Rd. Then the
Ehrhart ring of  is Gorenstein if and only if the dual polytope ∗ of  is integral.

A sketch of a proof of the Theorem 1.2 can be found in [9, Section 12.5] and an algebraic
proof of the same theorem can be found in [13].

2. t-spread Veronese algebras

2. t-spread Veronese algebras
Let n,d,t be the set of t-spread monomials of degree d in n variables.
To begin with, we study when the t-spread Veronese algebra, K[In,d,t], is a polynomial

ring. If t = 1, then the t-spread Veronese algebra coincides with the classical squarefree
Veronese algebra and those which are Gorestein are studied by De Negri and Hibi in [8].
Assume t ≥ 2. If n = (d − 1)t + 1, then K[In,d,t] has only one generator, thus it is Gorenstein.
Therefore, in what follows, we always consider t ≥ 2 and n ≥ (d − 1)t + 2.

In order to study when the t-spread Veronese algebra K[In,d,t] is a polynomial ring, we
need to study sorted sets of monomials, a concept introduced by Sturmfels ([15]). Let S d

be the K-vector space generated by the monomials of degree d in S and let u, v ∈ S d be two
monomials. We write uv = xi1 xi2 . . . xi2d with 1 ≤ i1 ≤ i2 ≤ · · · ≤ i2d ≤ n and we define

u′ = xi1 xi3 . . . xi2d−1 , v
′ = xi2 xi4 . . . xi2d .

The pair (u′, v′) is called the sorting of (u, v) and the map
sort : S d × S d → S d × S d, (u, v) �→ (u′, v′)

is called the sorting operator. A pair (u, v) is sorted if sort(u, v) = (u, v). For example,
(x2

1x2x3, x1x2x2
3) is a sorted pair. Notice that if (u, v) is sorted, then u >lex v and sort(u, v) =

sort(v, u). If u1 = xi1 . . . xid , u2 = x j1 . . . x jd , . . . , ur = xl1 . . . xld , then the r-tuple (u1, . . . , ur) is
sorted if and only if

i1 ≤ j1 ≤ · · · ≤ l1 ≤ i2 ≤ j2 ≤ · · · ≤ l2 ≤ · · · ≤ id ≤ jd ≤ · · · ≤ ld,

which is equivalent to (ui, u j) being sorted, for all i > j.

Proposition 2.1. Let u1, . . . , uq be the generators of K[In,d,t]. If n = (d − 1)t + 2, then any
r−tuple (u1, . . . , ur) with u1 ≥lex u2 ≥lex · · · ≥lex ur is sorted.

Proof. It suffices to show that any pair (ui, u j) with ui >lex u j is sorted. Let ui =

xi1 xi2 · · · xid with ik − ik−1 ≥ t, for any k ∈ {2, . . . , d} and v j = x j1 x j2 · · · x jd with jk − jk−1 ≥ t,
for any k ∈ {2, . . . , d}. Since n = (d − 1)t + 2, the smallest monomial is x2xt+2 · · · x(d−1)t+2

and the largest monomial is x1xt+1 · · · x(d−1)t+1, with respect to lexicographic order. Then
1 + jt ≤ i j+1 ≤ 2 + jt, for any j ∈ {0, 1, . . . , d − 1}. Since ui >lex u j, we have

ui = x1 . . . x1+(k−1)t x2+kt . . . x2+(d−1)t and
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u j = x1 . . . x1+(l−1)t x2+lt . . . x2+(d−1)t, for some k > l.

Then one easily sees that (ui, u j) is always sorted. �

Corollary 2.2. Let n ≥ (d−1)t+2. The t-spread Veronese algebra K[In,d,t] is a polynomial
ring if and only if n = (d − 1)t + 2. In particular, K[In,d,t] is Gorestein if n = (d − 1)t + 2.

Proof. Let u1, . . . , uq be the generators of K[In,d,t]. We want to show that these elements
are algebraically independent over the field K. Let f =

∑
α aαy

α1
1 y
α2
2 · · · yαq

q be a polynomial
such that f (u1, . . . , uq) = 0. By Proposition 2.1, any r-tuple (u1, . . . , ur) of generators with
u1 ≥lex · · · ≥lex ur is sorted, which implies that the monomials uα1

1 . . . u
αq
q are all pairwise

distinct. Then the coefficients aα are all zero, which implies that u1, . . . , uq are algebraically
independent over K.
For the converse part, assume that there exists n ≥ (d − 1)t + 3 such that K[In,d,t] is a poly-
nomial ring. Then it is clear that if u = x1xt+1 · · · x(d−2)t+1xn and v = x2xt+2 · · · x(d−2)t+2xn−1,
then (u, v) is unsorted and the pair (u′, v′), where u′ = x1xt+1 · · · x(d−2)t+1xn−1 and v′ =
x2xt+2 · · · x(d−2)t+2xn is the sorting pair of (u, v) and the equality uv − u′v′ gives a non-zero
polynomial in the defining ideal of K[In,d,t], contradicting the fact that K[In,d,t] is a polyno-
mial ring. �

Moreover, we can make a stronger reduction. Let n < dt. Then the smallest t-spread
monomial of degree d is xn−(d−1)t xn−(d−2)t . . . xn. As n − (d − 1)t < t, the generators of In,d,t

can be viewed in a polynomial ring in the variables {x1, . . . , xn} \ ∪d−1
l=1 {xn−dt+lt+1, . . . , xlt}.

Thus K[In,d,t] ⊂ S ′, where

S ′ = K[{x1, . . . , xn} \ ∪d−1
l=1 {xn−dt+lt+1, . . . , xlt}],

which is a polynomial ring in n′ = n − (d − 1)(dt − n) = d(n − (d − 1)t) variables. Note that,
in S ′, In,d,t is a t′-spread ideal, where t′ = n− (d− 1)t. Thus, n′ = dt′. This discussion shows
that, in what follows, we may consider n ≥ dt.

Theorem 2.3. (i) If n ≥ dt + 1, then dim K[In,d,t] = n.
(ii) If n = dt, then dim K[In,d,t] = n − d + 1.

Proof. (i). We denote by yi the d-th power of the variable xi, for any 1 ≤ i ≤ n. Let
A = K[In,d,t]. We prove that y1, y2, . . . , yn belong to the quotient field of A, denoted by Q(A).
We first show by induction on 0 ≤ k ≤ d − 1 that ykt+ j ∈ Q(A), for any 1 ≤ j ≤ t.

We check for k = 0: it is clear that

y1 = xd
1 =

∏d
j=1 x1 xt+1...x̂ jt+1...xtd+1

(xt+1...xdt+1)d−1 ∈ Q(A).

Here, by x̂ jt+1, we mean that the variable x jt+1 is missing.
Since y1yt+ j . . . y(d−1)t+ j ∈ Q(A), for 1 ≤ j ≤ t, we get yt+ j . . . y(d−1)t+ j ∈ Q(A), for 1 ≤ j ≤ t.
But also y jyt+ j . . . y(d−1)t+ j ∈ Q(A), so we obtain y j ∈ Q(A), for any 1 ≤ j ≤ t. Therefore, it
follows that y1, . . . , yt belong to Q(A).

Assume that y1, y2, . . . , yt, . . . , ykt+1, . . . , y(k+1)t ∈ Q(A). We want to prove that
y(k+1)t+1, . . . , y(k+2)t are also in Q(A). Firstly, let us check if y(k+1)t+1 belongs to Q(A). Notice
that, since yt+1y2t+1 . . . ykt+1y(k+1)t+1 . . . ydt+1 and yt+1, y2t+1, . . . , ykt+1 ∈ Q(A) by our assump-
tion, it follows that y(k+1)t+1 . . . ydt+1 ∈ Q(A).
Also, since y1y2t+1 . . . ykt+1y(k+2)t+1 . . . ydt+1 ∈ Q(A), using our assumption, we get
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y(k+2)t+1 . . . ydt+1 ∈ Q(A). But since y(k+1)t+1 . . . ydt+1 is in Q(A), it follows that y(k+1)t+1 ∈
Q(A).

Now we check that y(k+1)t+s ∈ Q(A), for any 2 ≤ s ≤ t. Using the monomials ys . . .

ykt+sy(k+1)t+s . . . y(d−1)t+s ∈ Q(A) and ys, . . . , ykt+s ∈ Q(A) by our assumption, we get

y(k+1)t+s . . . y(d−1)t+s ∈ Q(A).

Moreover, y1 . . . ykt+1y(k+1)t+1y(k+2)t+s . . . y(d−1)t+s is in Q(A), so by our assumption and by the
fact that y(k+1)t+1 ∈ Q(A), we obtain

y(k+2)t+sy(k+3)t+s . . . y(d−1)t+s ∈ Q(A).

Therefore, using y(k+1)t+s . . . y(d−1)t+s and y(k+2)t+s . . . y(d−1)t+s in Q(A), we get

y(k+1)t+s ∈ Q(A),

for any 2 ≤ s ≤ t. So far, we have seen that ykt+ j ∈ Q(A), also for any 0 ≤ k ≤
d − 1 and 1 ≤ j ≤ t. Let now dt + 1 ≤ m ≤ n. Then y1yt+1 . . . y(d−1)t+1ym ∈ Q(A).
Since y1, yt+1, . . . , y(d−1)t+1 ∈ Q(A), it follows that ym ∈ Q(A) as well. Therefore, Q(A) ⊃
{xd

1, . . . , x
d
n}. It follows that dim A = trdeg Q(A) ≥ n, since xd

1, . . . , x
d
n are obviously algebraic

independent over K. But since A is a subalgebra of K[x1, . . . , xn], by [10, Proposition 3.1],
dim A ≤ n. Therefore, dim A = n.
(ii). It follows from [1, Corollary 3.2]. �

Remark 2. The result from part (i) of Theorem 2.3 also follows from [1, Corollary 3.2],
but we preferred to give a completely different proof here.

Let  ⊂ Rn denote the rational convex polytope
 = {(a1, . . . , an) ∈ Rn :

∑n
i=1 ai = d, ai ≥ 0, for 1 ≤ i ≤ n, and ai + · · · + ai+t−1 ≤ 1, for

1 ≤ i ≤ n − t + 1}.
Clearly, K[In,d,t] = K[], since K[In,d,t] is generated by the monomials of G(In,d,t), that

is, by monomials xa1
1 . . . x

an
n with

∑n
i=1 ai = d,ai ≥ 0, for 1 ≤ i ≤ n and ai + · · · + ai+t−1 ≤ 1,

for 1 ≤ i ≤ n − t + 1.
Since K[In,d,t] is a normal ring, by [10, Lemma 4.22], we get the following

Theorem 2.4. The t-spread Veronese algebra K[In,d,t] is the Ehrhart ring ().

3. Gorenstein t-spread Veronese algebras

3. Gorenstein t-spread Veronese algebras
In this section we classify the Gorenstein t-spread Veronese algebras. We split the classi-

fication in several theorems.

Theorem 3.1. If n = dt + k, 2 ≤ k ≤ d − 1, then in (t + d)P there exist d interior lattice
points. Therefore, K[In,d,t] is not Gorenstein.

Proof. By Theorem 2.3, dim K[In,d,t] = n, thus dim() = n − 1. Let H be the hyperplane
in Rn defined by the equation a1 + · · · + an = d and let φ : Rn−1 → H denote the affine map
defined by

φ(a1, . . . , an−1) = (a1, . . . , an−1, d − (a1 + · · · + an−1)),
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for (a1, . . . , an−1) ∈ Rn−1. Then φ is an affine isomorphism and φ(Zn−1) = H∩Zn. Therefore,
φ−1() is an integral convex polytope in Rn−1 of dim φ−1() = dim = n − 1. The Ehrhart
ring (φ−1()) is isomorphic with () as graded algebras over K. Thus, we want to see
if (φ−1()) is Gorenstein, and, by abuse of notation, we write  instead of φ−1(). Thus,
 = {(a1, . . . , an−1) ∈ Rn−1 : ai ≥ 0, for 1 ≤ i ≤ n − 1, and ai + ai+1 + · · · + ai+t−1 ≤ 1, for

1 ≤ i ≤ n − t, a1 + a2 + · · · + an−t ≥ d − 1}.
In our hypothesis on n, we show that there are no interior lattice points at lower levels

than t + d. It is enough to see that there are no interior lattice points at level t + d − 1. Let
(x1, . . . , xn−1) ∈ (t + d − 1)( − ∂). We have
(t + d − 1)( − ∂) = {(a1, . . . , an−1) ∈ Rn−1 : ai > 0, 1 ≤ i ≤ n − 1, ai + ai+1 + · · · + ai+t−1 <

(t + d − 1), 1 ≤ i ≤ n − t, a1 + a2 + · · · + an−t > (d − 1)(t + d − 1)}.
Since x1 + · · · + x(d−1)t+k ≥ (d − 1)(t + d − 1), we have x1 + · · · + x(d−1)t+k−1 ≥ (d − 1)(t + d −
1) − x(d−1)t+k, thus

(d − 1)(t + d − 2) +
k−1∑
i=1

x(d−1)t+i ≥
(d−1)t+k−1∑

i=1

xi ≥ (d − 1)(t + d − 1) − x(d−1)t+k.

It follows that
∑k−1

i=1 x(d−1)t+i ≥ d − 1 − x(d−1)t+k and, since x(d−1)t+k < 1, we obtain

k − 1 >
k−1∑
i=1

x(d−1)t+i ≥ d − 1,

which implies that k ≥ d + 1, a contradiction. Thus, there are no interior lattice points in the
dilated polytope at lower levels than t + d.

Let δ ≥ 1 be the smallest integer such that δ( − ∂) � ∅. We show that δ = t + d.
Indeed, in the dilated polytope (t + d)( − ∂) there are d interior lattice points of the form
αr = (x(r)

1 , . . . , x
(r)
n−1), 1 ≤ r ≤ d, where

x(r)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d, if j = it + 1,

1, if j = it + l with 0 ≤ i ≤ d − 1, 1 < l ≤ t

or j = dt + l with 1 ≤ l ≤ dt + k − 2,

r, if j = dt + k − 1.
It is clear that, for any 1 ≤ j ≤ n − 1, x(r)

j > 0. For any 1 ≤ i ≤ (d − 1)t + 1, x(r)
i +

x(r)
i+1 + · · · + x(r)

i+t−1 = d + t − 1 < (t + d)(d − 1). If k < t, then x(r)
(d−1)t+t−k + · · · + x(r)

dt+k−1 =

(t−k)+ (k−1)+r = t−1+r < t+d and, if k ≥ t, then x(r)
dt+k−t+ · · ·+ x(r)

dt+k−1 = t−1+r < t+d.
Also, x(r)

1 + · · ·+ xr
n−t = (d+ t−1)(d−1)+d+ k−1 = (d+ t)(d−1)+ k > (d−1)(t+d), since

k ≥ 2. Therefore, these are interior lattice points in (t + d) . Thus, in this case, the t-spread
Veronese algebra K[In,d,t] is not Gorenstein, by Remark 1. �

Example 1. Let n = 8, d = 3 and t = 2. The smallest level where there are interior
lattice points in the dilated polytope is δ = 5. In 5( − ∂) there are 3 interior lattice points:
(3, 1, 3, 1, 3, 1, 1), (3, 1, 3, 1, 3, 1, 2) and (3, 1, 3, 1, 3, 1, 3).
Thus, the 2-spread Veronese algebra K[I8,3,2] is not Gorenstein.

Theorem 3.2. If n ≥ (t + 1)d + 1, then K[In,d,t] is not Gorenstein.
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Proof. Let n = kd + q with k ≥ t + 1 and q ≥ 1. By Theorem 2.3, dim K[In,d,t] = n, thus
dim() = n − 1. Using similar arguments as in Theorem 3.1,

 = {(a1, . . . , an−1) ∈ Rn−1 : ai ≥ 0, 1 ≤ i ≤ n − 1, ai + ai+1 + · · · + ai+t−1 ≤ 1, 1 ≤ i ≤
n − t, a1 + a2 + · · · + an−t ≥ d − 1}.

We show that the smallest integer δ ≥ 1 such that δ( − ∂) contains lattice points is
t + 1. Assume that there are interior lattice points at lower levels than t + 1. It is enough
to show that there are no interior lattice points at level t. In this case, for each lattice point
(a1, . . . , an−1) ∈ t( − ∂), we have ai + ai+1 + · · · + ai+t−1 < t, for any 1 ≤ i ≤ n − t. Since
each ai ≥ 1, for any 1 ≤ i ≤ n − 1, we have

ai + ai+1 + · · · + ai+t−1 ≥ t,

which is a contradiction.
We show that (t+1)( −∂) contains only one lattice point which has all the coordinates

equal to 1. The interior of the (t + 1)-dilated polytope is
(t + 1)( − ∂) = {(a1, . . . , an−1) ∈ Rn−1 : ai > 0, 1 ≤ i ≤ n − 1, ai + ai+1 + · · · + ai+t−1 <

t + 1, 1 ≤ 1 ≤ n − t, a1 + a2 + · · · + an−t > (d − 1)(t + 1)}.
We know that, for each lattice point (a1, . . . , an−1) ∈ (t + 1)( − ∂), we have ai + · · · +
ai+t−1 ≤ t, for any 1 ≤ i ≤ n − t and, since a j ≥ 1, for any i ≤ j ≤ i + t − 1, we obtain
ai + · · · + ai+t−1 ≥ t, thus we have equality which implies that a j = 1, for any 1 ≤ j ≤ n − 1.
Hence, (1, 1, . . . , 1) ∈ Zn−1 is the unique interior lattice point in the dilated polytope (t+1) .
Let us consider  = (t + 1) − (1, 1, . . . , 1). We will show that K[] is not Gorenstein by
using Theorem 1.2. In fact, we show that the dual ∗ of

 = {(y1, . . . , yn−1) ∈ Rn−1 : yi ≥ 0, 1 ≤ i ≤ n − 1, yi + yi+1 + · · · + yi+t−1 ≤ 0, 1 ≤ i ≤
n − t, y1 + · · · + yn−t ≥ (d − 1)(t + 1) − (n − t)}.

is not an integral polytope. The vertices of ∗ are of the form (a1, a2, . . . , an−1) ∈ Rn−1

such that the hyperplane H of equation
∑n−1

i=1 aiyi = 1 has the property that H ∩  is a facet
of . In other words, H is a supporting hyperplane of . As the hyperplane

∑n−t
i=1 yi =

(d − 1)(t + 1) − (n − t), that is,
n−t∑
i=1

1
(d − 1)(t + 1) − (n − t)

yi = 1

does not have integral coefficients, it follows that  is not an integral polytope. Thus, by
Theorem 1.2, we conclude that K[In,d,t] is not Gorenstein. �

Example 2. Let n = 10, d = 3 and t = 2. Then

 = {(a1, . . . , a9) ∈ R9 : ai ≥ 0, 1 ≤ i ≤ 9, ai + ai+1 ≤ 1, 1 ≤ i ≤ 8, a1 + · · · + a8 ≥ 2}.
For δ = 3, in 3 , there exists a unique interior lattice point, namely (1, 1, 1, 1, 1, 1, 1, 1). Let
us compute  = 3 − (1, 1, 1, 1, 1, 1, 1, 1, 1). We have

 = {(y1, . . . , y9) ∈ R9 : yi ≥ −1, 1 ≤ i ≤ 9, yi + yi+1 ≤ −1, 1 ≤ i ≤ 8, y1 + · · · + y8 ≥ −6},
thus, the dual polytope ∗ is not integral. Therefore, the 2-spread Veronese algebra K[I10,3,2]
is not Gorenstein.



942 R. Dinu

Theorem 3.3. If n = dt, then K[In,d,t] is Gorenstein.

Proof. In our hypothesis, by Theorem 2.3, dim K[In,d,t] = n − d + 1 = d(t − 1) + 1, thus
dim = d(t − 1). Using similar arguments as in Theorem 3.1,

 = {(a1, a2, . . . , an−1) ∈ Rn−1 : ai ≥ 0, ai + ai+1 + · · · + ai+t−1 ≤ 1, 1 ≤ i ≤
n − t, a1 + a2 + · · · + an−t ≥ d − 1}.

We show that the smallest integer δ ≥ 1 such that δ(−∂) contains lattice points is t+d−1.
Assume that there are interior lattice points at lower levels than t + d − 1. It is enough to
show that there are no interior lattice points at level t + d − 2. In this case, for each lattice
point (a1, . . . , an−1) ∈ (t + d − 2)( − ∂), we have a1 + a2 + · · · + an−t > (d − 1)(t + d − 2).
Since ai + ai+1 + · · ·+ ai+t−1 < t+ d− 2, for any 1 ≤ i ≤ n− t, we obtain a1 + a2 + · · ·+ an−t <

(d − 1)(t + d − 2), which leads to contradiction. Thus δ ≥ t + d − 1.
We show that (t + d − 1) contains a unique interior lattice point. For each lattice point

(a1, a2, . . . , an−1) ∈ (t+d−1) , we have a1+a2+· · ·+an−t ≥ (d−1)(t+d−1). Since ai+ai+1+

· · ·+ai+t−1 ≤ t+d−1, for any 1 ≤ i ≤ n− t, we obtain a1+a2+ · · ·+an−t ≤ (d−1)(t+d−1),
thus a1 + a2 + · · · + an−t = d + t − 1. Hence we obtain akt+1 + akt+2 + · · · + akt+t = t + d − 1,
for any 0 ≤ k ≤ d − 2. So, ai + ai+1 + · · · + ai+t−1 = t + d − 1, for any 1 ≤ i ≤ t(d − 1), with
i ≡ 1(mod t). Since akt+1 + akt+2 + · · · + akt+t = t + d − 1, for any 0 ≤ k ≤ d − 2, we have

akt+2 = t + d − 1 −∑ j�kt+2 a j, for any 0 ≤ k ≤ d − 2.
Since akt+2 + akt+3 + · · · + akt+t+1 ≤ t + d − 1, for any 0 ≤ k ≤ d − 2, we obtain

(t + d − 1) −
∑

j�kt+2

a j + akt+3 + · · · + a(k+1)t+1 ≤ (t + d − 1).

Hence, a(k+1)t+1 −akt+1 ≤ 0, for any 0 ≤ k ≤ d−2, thus akt+t+1 ≤ akt+1, for any 0 ≤ k ≤ d−2.
Therefore, for each lattice point (x1, x2, . . . , xd(t−1)) ∈ (t + d − 1)( − ∂), we obtain

0 < x(d−1)+1 < · · · < xt+1 < x1 < t + d − 1

and, since there are d consecutive terms in this chain, we have x1 ≥ d. If x1 > d, and since
each xi > 1, for any 1 ≤ i ≤ n−1, then x1 + x2 + · · ·+ xt > d+ t−1, which is a contradiction.
Thus, x1 = d. Since x1 + x2 + · · · + xt = d + t − 1, x1 = d and xi ≥ 1, for any 1 ≤ i ≤ t, we
obtain x2 = · · · = xt = 1.

Now, since 0 < x(d−1)t+1 < · · · < xt+1 < x1 = d and xi + xi+1 + · · · + xi+t−1 < t + d − 1,
we obtain xkt+1 = d − k, for any 0 ≤ k ≤ d − 2 and xkt+ j = 1, for any 0 ≤ k ≤ d − 2 and
0 ≤ j ≤ t, j � 1, j � 2. Therefore, α = (x1, x2, . . . , xd(t−1)), where

x j =

⎧⎪⎪⎨⎪⎪⎩d − k, if j = kt + 1,with 0 ≤ k ≤ d − 2,

1, if j = kt + l,with 0 ≤ k ≤ d − 2, 0 ≤ l ≤ t − 1, l � 1, l � 2
is the unique interior lattice point in (t + d − 1) . But, for any 0 ≤ k ≤ d − 2 and kt + 1 ≤
j ≤ kt + t,

xkt+2 = t + d − 1 −
∑

j�kt+2

x j

= t + d − 1 − (d − k + t − 2) = k + 1.

So, the unique interior lattice point α in (t + d − 1) is (x1, . . . , xn−1), where
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x j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d − k, j = kt + 1, 0 ≤ k ≤ d − 2,
k + 1, j = kt + 2, 0 ≤ k ≤ d − 2,
1, j = kt + l, 0 ≤ k ≤ d − 2, 0 ≤ l ≤ t − 1, l � 1, l � 2.

Using Theorem 1.2, we show that K[In,d,t] is Gorenstein. Let us compute  = (t+d−1)−α.
We have

 = {(y1, . . . , yn−1) ∈ Rn−1 : yi = ai − xi, 1 ≤ i ≤ n − 1, where
(a1, a2, . . . , an−1) ∈ (t + d − 1)}.

Thus, we obtain
 = {(y1, . . . , yn−1) ∈ Rn−1 : yi ≥ −xi, 1 ≤ i ≤ n− 1; yi + yi+1 + · · ·+ yi+t−1 ≤ t + d − 1− (xi +

xi+1+ · · ·+ xi+t−1), 1 ≤ i ≤ n− t; y1+ · · ·+yn−t = 0; ykt+1+ykt+2+ · · ·+ykt+t = 0, 0 ≤ k ≤ d−2}.
For 1 ≤ i ≤ n−t, we have yi+yi+1+· · ·+yi+t−1 ≤ t+d−1−(xi+xi+1+· · ·+xi+t−1), suppose i =
kt+r, where 1 ≤ r ≤ t. Then ykt+r+ykt+r+1+· · ·+y(k+1)t+r−1 ≤ t+d−1−(xkt+r+· · ·+x(k+1)t+r−1),
for any 0 ≤ k ≤ d − 2, 1 ≤ r ≤ t. If r = 1, we already have ykt+1 + · · · + ykt+t = 0. If r = 2,
then

ykt+2 + ykt+3 + · · · + y(k+1)t+1 ≤ (t + d − 1) − (k + 1 + (t − 2) + d − (k + 1)) = 1.

But ykt+2 = −ykt+1 − · · · − ykt+t, thus

y(k+1)t+1 − ykt+1 ≤ 1.

If r ≥ 3, then

ykt+r + ykt+r+1 + · · · + y(k+1)t+r−1 ≤ (t + d − 1) − (t − 2 + d − (k + 1) + k + 2) = 0.

But ykt+r = −ykt+1 − . . . ykt+r−1 − ykt+r+1 − · · · − ykt+t, thus

y(k+1)t+1 + · · · + y(k+1)t+r−1 − ykt+1 − ykt+2 − · · · − ykt+r−1 ≤ 0.

Therefore,
 = {(y1, . . . , yn−1) ∈ Rn−1 : y(k+1)t+1 + · · · + y(k+1)t+r−1 − ykt+1 − · · · − ykt+r−1 ≤ 0, 3 ≤ r ≤

t, y(k+1)t+1 − ykt+1 ≤ 1, ykt+2 = −ykt+1 − ykt+3 − · · · − ykt+t, 0 ≤ k ≤ d − 2}.
Thus, since the supporting hyperplanes of the polytope  have integral coefficients, we
conclude that  is an integral polytope. Hence, by Theorem 1.2, K[In,d,t] is Gorenstein. �

Example 3. Let n = 10, d = 5 and t = 2. In this case, δ = 6 and in the dilated polytope
6 there is a unique interior lattice point, namely (5, 1, 4, 2, 3, 3, 2, 4, 1). The dual polytope
of  = 6 − (5, 1, 4, 2, 3, 3, 2, 4, 1) is an integral polytope, thus K[I10,5,2] is Gorenstein.

We state and prove the main theorem of this paper.

Theorem 3.4. The t-spread Veronese algebra, K[In,d,t], is Gorenstein if and only if n ∈
{(d − 1)t + 1, (d − 1)t + 2, dt, dt + 1, dt + d}.

Proof. If n = dt + k with 2 ≤ k ≤ d − 1 and n ≥ (t + 1)d + 1, then, by Theorem
3.1 and Theorem 3.2, K[In,d,t] is not Gorenstein. Hence, it remains to study the cases when
n ∈ {(d − 1)t + 1, (d − 1)t + 2, dt, dt + 1, dt + d}.

If n = (d−1)t+1, then K[In,d,t] is a polynomial ring, thus it is Gorenstein. If n = (d−1)t+2,
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by Theorem 2.2, K[In,d,t] is Gorenstein. If n = dt, by Theorem 3.3, we obtain the same
conclusion.

Let n = dt + 1. In our hypothesis, by Theorem 2.3, dim K[In,d,t] = dt+1, thus dim = dt.
Using similar arguments as in Theorem 3.1,
 = {(a1, a2, . . . , an−1) ∈ Rn−1 : ai ≥ 0, 1 ≤ i ≤ n − 1, ai + ai+1 + · · · + ai+t−1 ≤ 1, 1 ≤ i ≤

n − t, a1 + a2 + · · · + an−t ≥ d − 1}.
We show that the smallest integer δ ≥ 1 such that δ( − ∂) contains lattice points is t + d.
Assume that there are interior lattice points at lower levels than t+ d. It is enough to see that
there are no interior lattice points at level t + d − 1. The interior of the dilated polytope is
(t+d−1)( −∂) = {(a1, a2, . . . , an−1) ∈ Rn−1 : ai > 0, 1 ≤ i ≤ n−1, ai+ai+1+ · · ·+ai+t−1 <

t + d − 1, 1 ≤ i ≤ n − t, a1 + a2 + · · · + an−t > (d − 1)(t + d − 1)}.
In this case, for each lattice point (a1, a2, . . . , an−1) ∈ (t+ d− 1)( −∂), we have ai + ai+1 +

· · · + ai+t−1 ≤ t + d − 2, for any 1 ≤ i ≤ n − t, thus a1 + a2 + · · · + a(d−1)t ≤ (t + d − 2)(d − 1).
But a1 + a2 + · · · + an−t ≥ (d − 1)(t + d) + 1, thus we obtain

(d − 1)(t + d − 1) + 1 ≤ ∑n−t
i=1 ai ≤ (t + d − 2)(d − 1) + a(d−1)t+1,

hence, a(d−1)t+1 ≥ d. But, since a(d−2)t+2 + a(d−2)t+3 + · · · + a(d−1)t+1 ≤ t + d − 2, we obtain
a(d−2)t+2 + · · ·+ a(d−1)t ≤ t − 2, which is the sum of t − 1 terms and each a(d−2)t+ j > 1, for any
2 ≤ j ≤ t. We show that (t + d)( − ∂) contains only one lattice point. The interior of the
dilated polytope is
(t + d)( − ∂) = {(a1, a2, . . . , an−1) ∈ Rn−1 : ai > 0, 1 ≤ i ≤ n − 1, ai + ai+1 + · · · + ai+t−1 <

t + d, 1 ≤ i ≤ n − t, a1 + a2 + · · · + an−t > (d − 1)(t + d)}.
Let (x1, x2, . . . , xn−1) ∈ (t+d)(−∂)∩Zn−1. Thus x1+ x2+ · · ·+ x(d−1)t+1 ≥ (d−1)(t+d)+1.

Claim: xkt+1 ≥ d, for any 0 ≤ k ≤ d − 1.
Since xi + xi+1 + · · · + xi+t−1 ≤ t + d − 1, for any 1 ≤ i ≤ k − 1 and for any k ≤ i ≤ d − 2, we
obtain

x1 + x2 + · · · + xkt + xkt+2 + · · · + x(d−1)t+1 ≤ (t + d − 1)(d − 1).

Hence,

(d − 1)(t + d) + 1 ≤
n−t∑
i=1

xi ≤ (d − 1)(t + d − 1) + xkt+1,

thus xkt+1 ≥ d, for any 0 ≤ k ≤ d − 1, as we claimed.
But, xkt+1 + xkt+2 + · · · + x(k+1)t ≤ d + t − 1 and xkt+1 ≥ d, xkt+ j ≥ 1, for any 2 ≤ j ≤ t, thus

xkt+1+ xkt+2+ · · ·+ x(k+1)t = d+ t−1. The equality holds if and only if, for any 0 ≤ k ≤ d−1,
xkt+1 = d and xkt+ j = 1, for any 2 ≤ j ≤ t. Therefore, α = (x1, x2, . . . , xn−1), where

x j =

{
d, j = kt + 1, 0 ≤ k ≤ d − 1
1 j = kt + l, 0 ≤ k ≤ d − 1, 0 ≤ l ≤ t − 1, l � 1.

is the unique interior lattice point in (t + d) . Using Theorem 1.2, we show that K[In,d,t] is
Gorenstein. Let us compute  = (t + d) − α.
 = {(y1, . . . , yn−1) ∈ Rn−1 : yi ≥ −d, i = kt + 1, 0 ≤ k ≤ d − 1, yi ≥ −1, i = kt + l, 0 ≤ k ≤
d − 1, 0 ≤ l ≤ t − 1, l � 1, yi + yi+1 + · · · + yi+t−1 ≤ 1, 1 ≤ i ≤ n − t, y1 + · · · + yn−t ≥ −1}.
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In fact, we show that the dual ∗ of  is an integral polytope, by showing that the indepen-
dent hyperplanes which determine the facets of  are

yi = −1, i = kt + l, 0 ≤ k ≤ d − 1, 0 ≤ l ≤ t − 1, l � 1,

yi + yi+1 + · · · + yi+t−1 = 1, 1 ≤ i ≤ n − t,

y1 + · · · + yn−t = −1.

Thus, we need to show that all the hyperplanes yi = −d, i = kt + 1, 0 ≤ k ≤ d − 1 are
redundant. Let 0 ≤ k ≤ d − 1. Since yi + yi+1 + · · · + yi+t−1 ≤ 1, for any 1 ≤ i ≤ k − 1 and
yit+2 + · · · + y(i+1)t+1 ≤ 1, for any k ≤ i ≤ d − 2, we obtain
y1 + y2 + · · · + y(k−1)t+1 + · · · + ykt + ykt+2 + · · · + yn−t ≤ k − 1 + [d − 1 − (l − 1)] = d − 1,

and, since y1 + y2 + · · ·+ y(d−1)t+1 ≥ −1, we obtain yi ≥ −d, i = kt + 1, for any 0 ≤ k ≤ d − 1.
Thus, since the supporting hyperplanes of the polytope  have integral coefficients, we
conclude that  is an integral polytope. Hence, by Theorem 1.2, K[In,d,t] is Gorenstein.

Let n = dt + d. In our hypothesis, by Theorem 2.3, dim K[In,d,t] = dt + d, thus dim =

dt + d − 1. We have,
 = {(a1, a2, . . . , an−1) ∈ Rn−1 : ai ≥ 0, 1 ≤ i ≤ n − 1, ai + ai+1 + · · · + ai+t−1 ≤ 1, 1 ≤ i ≤

n − t, a1 + a2 + · · · + an−t ≥ d − 1}.
We show that there are no interior lattice points at lower levels than t+ 1. It is enough to see
that there are no interior lattice points at level t. Let (a1, a2, . . . , an−1) ∈ t( − ∂) ∩ Zn−1.
We have
t( − ∂) = {(a1, a2, . . . , an−1) ∈ Rn−1 : ai > 0, 1 ≤ i ≤ n − 1, ai + ai+1 + · · · + ai+t−1 < t, 1 ≤

i ≤ n − t, a1 + a2 + · · · + an−t > (d − 1)t}.
Since each ai > 0, for any 1 ≤ i ≤ n − 1, we obtain t > ai + ai+1 + · · · + ai+t−1 ≥ t, which
is a contradiction. Thus, there are no interior lattice points in the dilated polytope at lower
levels than t+ 1. We show that (t+ 1)( − ∂) contains only one interior lattice point which
has all the coordinates equal to 1. The interior of the dilated polytope is
(t + 1)( − ∂) = {(a1, a2, . . . , an−1) ∈ Rn−1 : ai > 0, 1 ≤ i ≤ n − 1, ai + ai+1 + · · · + ai+t−1 <

t + 1, 1 ≤ i ≤ n − t, a1 + a2 + · · · + an−t > (d − 1)(t + 1)}.
We know that, for each lattice point (a1, . . . , an−1) ∈ (t + 1)( − ∂), we have ai + · · · +
ai+t−1 ≤ t, for any 1 ≤ i ≤ n − t and, since a j ≥ 1, for any i ≤ j ≤ i + t − 1, we obtain
ai + · · · + ai+t−1 ≥ t, thus we have equality which implies that a j = 1, for any 1 ≤ j ≤ n − 1.
Hence, (1, 1, . . . , 1) ∈ Zn−1 is the unique interior lattice point in the dilated polytope (t+1) .

Let us consider  = (t + 1) − (1, 1, . . . , 1). We will show that K[] is Gorenstein by
using Theorem 1.2. In fact, we show that the dual ∗ of

 = {(y1, . . . , yn−1) ∈ Rn−1 : yi ≥ 0, 1 ≤ i ≤ n − 1, yi + yi+1 + · · · + yi+t−1 ≤ 0, 1 ≤ i ≤
n − t, y1 + · · · + yn−t ≥ −1}.

is an integral polytope. As the hyperplanes
∑i+t−1

j=i y j = 0, for any 1 ≤ i ≤ n − t, and∑n−t
i=1 yi = −1, have integral coefficients, it follows that  is an integral polytope. Thus, by

Theorem 1.2, we conclude that K[In,d,t] is Gorenstein. �
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Example 4. Let n = 11, d = 3 and t = 4. In this case, δ = 5 and in the dilated polytope
5( − ∂) = {(a1, . . . , a10) ∈ R10 : ai > 0, 1 ≤ i ≤ 10, i � 4, 8, a9 < a5 < a1, a9 + a10 <

a5 + a6 < a1 + a2 < 5, a4 = a8 = 0}
there is a unique interior lattice point, namely (3, 1, 1, 0, 2, 1, 2, 0, 1, 1). Let us compute the
polytope  = 5 − (3, 1, 1, 0, 2, 1, 2, 0, 1, 1). Then

 = {(y1, y2, . . . , y10) ∈ R10 : yi > −1, 1 ≤ i ≤ 10, i � 4, 8, y9 − y5 < 1, y5 − y1 <

1, y9 + y10 − y5 − y6 < 1, y5 + y6 − y1 − y2 < 1, y1 + y2 < 1}.
Thus, the dual polytope of  is integral. Therefore, K[I11,3,4] is Gorenstein.

Example 5. Let n = 10, d = 3 and t = 3. In this case, δ = 6 and in the dilated polytope
6( −∂) = {(a1, . . . , a9) ∈ R9 : ai > 0, 1 ≤ i ≤ 9, a1+a2+a3 < 6, a2+a3+a4 < 6, a3+a4+

a5 < 6, a4+a5+a6 < 6, a5+a6+a7 < 6, a6+a7+a8 < 6, a7+a8+a9 < 6, a1+a2+· · ·+a7 > 12}
there is a unique interior lattice point, namely (3, 1, 1, 3, 1, 1, 3, 1, 1). Let us compute the
polytope  = 6 − (3, 1, 1, 3, 1, 1, 3, 1, 1). Then

 = {(y1, y2, . . . , y9) ∈ R9 : y2 ≥ −1, y3 ≥ −1, y5 ≥ −1, y6 ≥ −1, y8 ≥ −1, y9 ≥
−1, y1 + y2 + y3 ≤ 1, y2 + y3 + y4 ≤ 1, y3 + y4 + y5 ≤ 1, y4 + y5 + y6 ≤ 1, y5 + y6 + y7 ≤

1, y6 + y7 + y8 ≤ 1, y7 + y8 + y9 ≤ 1, y1 + y2 + · · · + y7 ≥ −1}.
Thus, the dual polytope of  is integral. Therefore, K[I10,3,3] is Gorenstein.

Example 6. Let n = 8, d = 2 and t = 3. In this case, δ = 4 and in the dilated polytope
4( − ∂) = {(a1, . . . , a7) ∈ R7 : ai > 0, 1 ≤ i ≤ 7, a1 + a2 + a3 < 4, a2 + a3 + a4 <

4, a3 + a4 + a5 < 4, a4 + a5 + a6 < 4, a5 + a6 + a7 < 4, a1 + a2 + a3 + a4 + a5 > 4}
there is a unique interior lattice point, (1, 1, . . . , 1). Let us compute the polytope  = 4 −
(1, 1, . . . , 1). Then

 = {(y1, y2, . . . , y7) ∈ R7 : yi > −1, 1 ≤ i ≤ 7, y1 + y2 + y3 < 1, y3 + y4 + y5 <

1, y4 + y5 + y6 < 1, y5 + y6 + y7 < 1, y1 + y2 + y3 + y4 + y5 > −1}.
Thus, the dual polytope ∗ is integral. Therefore, K[I8,2,3] is Gorenstein.

Let R be the polynomial ring K[tv : v ∈ G(In,d,t)] and ϕ : R → K[In,d,t] be the K-algebra
morphism which maps tv to v, for all v ∈ G(In,d,t).

Proposition 3.5 ([7, Theorem 3.2]). The set of binomials  = {tutv− tu′ tv′ : (u, v) unsorted,
(u′, v′) = sort(u, v)} is a Gröbner basis of the toric ideal Kerϕ.

As a consequence of it, we have the following result:

Corollary 3.6. The polytope  possesses a regular unimodular triangulation.

Proposition 3.7 ([5]). Let  ∈ Rd be a d-dimensional polytope of standard type such that
its dual is a lattice polytope. If  admits a regular unimodular triangulation, then h∗( , x)
is unimodal.

Proposition 3.8. If n ∈ {(d − 1)t + 1, (d − 1)t + 2, dt, dt + 1, dt + d}, then the h∗-vector of
the t-spread Veronese algebra K[In,d,t] is unimodal.

Proof. By Theorem 3.4, K[In,d,t] is Gorenstein. Thus by Proposition 3.7 and Corollary
3.6 the desired result follows. �
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