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Abstract
Let S = K[xy, x2, ..., x,] be the polynomial ring in n variables over a field K. We fix integers
d and t. A monomial x; x;, --- x;, with i} < i) < --- < iy is t-spread if i; —i;_ > ¢, for any

2 < j < n. Let I,4, be the ideal generated by all ¢-spread monomials of degree d and let
K1, 4,] be the toric algebra generated by the monomials v with v € G(I,,4,). This generalizes
the classical (squarefree) Veronese algebras. The aim of this paper is to characterize the algebras
K[, 4,] which are Gorenstein.

Introduction

Let K be a field and let S = K[xy, x2, ..., x,] be the polynomial ring in n indeterminates
over K. In the paper [7], Ene, Herzog and Qureshi introduced the concept of #-spread mono-
mials. We fix integers d and . A monomial x;, x;, - - - x;, with i; < ip < --- < iy is t-spread if
ij—ij1 >t forany 2 < j < n. Thus any monomial is O-spread and a squarefree monomial
is 1-spread. A monomial ideal in S is called a 7-spread monomial ideal if it is generated
by f-spread monomials. For example, I = (x;x3x7, X1 X4X7, X1 X5X3) C K[x1,X2,...,xg] is a
2-spread monomial ideal.

Letd > 1 be an integer. A monomial ideal in S is called a z-spread Veronese ideal of degree
d if it is generated by all #-spread monomials of degree d. We denote it by I, 4,. Note that
Iq; # 0if and only if n > #(d — 1). For example, if n = 5,d = 2 and ¢ = 2, then

Isp = (X1X3, X1 X4, X1 X5, X2X4, X2X5, X3X5) C K[x1,Xx2,...,x5].

We consider the toric algebra generated by the monomials v with v € G(I,, 4;), here, for a
monomial ideal /, G(I) denotes the minimal system of monomial generators of /. This is
called a t-spread Veronese algebra and we denote it by K[/, 4,]. It generalizes the classical
(squarefree) Veronese algebras. By [7, Corollary 3.4], the ¢-spread Veronese algebra is a
Cohen-Macaulay domain.
We fix an integer d and a sequence a = (ay,...,a,) of integers with 1 <a; <a, <---<a, <
dand d = });_, a;. The K-subalgebra of S = K[x;,x,,...,x,] generated by all monomials
of the form #]'z}” - - - 1" with Y7, ¢; = d and ¢; < g; for each 1 < i < n is called an algebra
of Veronese type and it is denoted by A(a, d). If each a; = 1, then A(1, d) is generated by all
the squarefree monomials of degree d in S'.

De Negri and Hibi proved in [8, Theorem 2.4] that, in the squarefree case, the algebra of
Veronese type A(1, d) is Gorenstein if and only if

(1) d = n, or
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(i) d=n-1,0r

(iii) d <n—1andn = 2d.

The aim of this paper is to characterize the toric algebras K1, 4,] which have the Gorenstein
property. Our approach is rather geometric. We identify the ¢-spread Veronese algebra,
K[1,4.], with the Ehrhart ring A(P) associated to a suitable polytope P, and next we employ
Hibi’s results in [12] which caracterize the Gorenstein property of A(P).

The main result of this paper, Theorem 3.4, classifies the 7-spread Veronese algebras
which are Gorenstein. Namely, we show that, for d, > 2, K[/, 4,] is Gorenstein if and only
ifne{ld-Dt+1,(d-1t+2,dt,dt + 1,dt + d}. We illustrate all our results with suitable
examples. We also see that, in this cases, the i*-vector of the ¢-spread Veronese algebra
K[1I,4,] is unimodal.

1. The Ehrhart ring of a rational convex polytope

Let 7 c R" be a convex polytope of dimension d and let AP be the boundary of 7. Then
P is called of standard type if d = N and the origin of R is contained in the interior of P.
We call a polytope P rational if every vertex of P has rational coordinates and integral if
every vertex of P has integral coordinates. The Ehrhart ring of P is A(P) = @nzo AP),,
where A(P), is the K-vector space generated by the monomials {x‘y" : a € nP N Z"}. Here
nP denotes the dilated polytope {(nay, na,,...,nay) : (a,as,...,aq) € P}. It is known that
A(P) is a finitely generated K-algebra and a normal domain ([16, Theorem 9.3.6]). The
reader can find more about Ehrhart rings of rational convex polytopes in [2] and [16].

Let P ¢ R? be a d-dimensional convex polytope of standard type. Then the dual polytope
of P is

P ={(a,....,aq) R 3L B < 1, forall (Bi,...,B) € P}.

One can check that P* is a convex polytope of standard type and (P*)* = P;(see [4, Exercise
1.14] or [17, Chapter 2]). It is known the fact that if (ay,...,a,) € R? and if H c R? is
the hyperplane defined by the equation Zflzl a;x; = 1, then (ay,...,a,) is a vertex of P~
if and only if H N P is a facet of P, see [17, Chapter 2]. Therefore, the dual polytope of
a rational convex polytope is rational. In order to classify the #-spread Veronese algebras
which are Gorenstein, we will show that any #-spread Veronese algebra coincides with the
Ehrhart ring of an integral convex polytope, so we need a criterion for the Ehrhart ring .A(P)
to be Gorenstein.
Let P be an integral polytope in RY of dim P = d. We consider the toric ring K[P] which
is generated by all the monomials x{' ... x;"s? with a = (a1,a2,...,a,) € PNZ" and g =
a +ay + --- + a,. It is known that if K[P] is a normal ring, then K[P] is Cohen-Macaulay
([3, Theorem 6.3.5]).

Theorem 1.1 (Stanley, Danilov [14], [6]). Let P C R‘i be an integral convex polytope and
suppose that its toric ring K[P] is normal, thus K|P] = A(P). Then the canonical module
Q(K[P]) of K[P] coincides with the ideal of K|P] which is generated by those monomials
x5 with a € g(P — 0P) N Z¢.

By [9, Proposition A.6.6], the Cohen-Macaulay type of a Cohen-Macaulay graded S -
module M of dimension d coincides with ,85_ 4M). In particular, a Cohen-Macaulay ring
R = §/I is Gorenstein if and only if 'sz— 4(R) = 1. Let P be a polytope as in Theorem 1.1 and
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6 > 1 be the smallest integer such that 6(P — dP) N Z # 0. Then, by [13], the a-invariant is
a(K[P]) = —min (wkpy) # 0 = =0.

Remark 1. By [9, Corollary A.6.7], K[P] is Gorenstein if and only if Q(K[P]) is a prin-
cipal ideal. In particular, if K[P] is Gorenstein, then 6(7? —dP) must posses a unique interior
vector.

Theorem 1.2 (Hibi,[12]). Let P be a integral convex polytope of dimension d and let
8 > 1 be the smallest integer for which (P — dP)NZ¢ # 0. Fix @ € (P —0P)NZ # 0
and denote by Q the rational convex polytope of standard type Q = 6P — a C R%. Then the
Ehrhart ring of P is Gorenstein if and only if the dual polytope Q* of Q is integral.

A sketch of a proof of the Theorem 1.2 can be found in [9, Section 12.5] and an algebraic
proof of the same theorem can be found in [13].

2. t-spread Veronese algebras

Let M, 4, be the set of f-spread monomials of degree d in n variables.

To begin with, we study when the ¢-spread Veronese algebra, K[/, 4,], is a polynomial
ring. If + = 1, then the #-spread Veronese algebra coincides with the classical squarefree
Veronese algebra and those which are Gorestein are studied by De Negri and Hibi in [8].
Assume t > 2. If n = (d — 1)t + 1, then K[, 4,] has only one generator, thus it is Gorenstein.
Therefore, in what follows, we always consider r > 2 and n > (d — 1)f + 2.

In order to study when the ¢-spread Veronese algebra K|[I, 4] is a polynomial ring, we
need to study sorted sets of monomials, a concept introduced by Sturmfels ([15]). Let S,
be the K-vector space generated by the monomials of degree d in S and let u,v € S ; be two
monomials. We write uv = x; x;, ... x;,, with 1 <ij <ip <--- < iy < nand we define

U = Xi Xiy . Xiyy U = Xy Xiy .. Xiye
The pair (u’, v") is called the sorting of (u,v) and the map
sort : Sy XSy — SaxSa W) W,0)
is called the sorting operator. A pair (u,v) is sorted if sort(u,v) = (u,v). For example,
(.X%Xz)@, x1x2x§) is a sorted pair. Notice that if (u, v) is sorted, then u >, v and sort(u, v) =
sort(v, u). If uy = x; ... X, u2 = Xj, ... Xjy, ..., Uy = X, ... Xy, then the r-tuple (uy,...,u,)is
sorted if and only if
HEj £ Sh<h<jp< - <Sh< - <ig<jag<-- <y,

which is equivalent to (u;, u;) being sorted, for all i > ;.

Proposition 2.1. Let uy, ..., u, be the generators of K[I, 4,]. If n = (d — 1)t + 2, then any
r—tuple (Uy, ..., u) With Uy Zjex Up Zjex -+ Zjex Uy 1S SOTTEd.

Proof. It suffices to show that any pair (u;,u;) with u; >, u; is sorted. Let u; =

Xj Xy oo+ xi, With iy — iy > t, forany k € {2,...,d} and v; = x;, xj, - - - xj, with ji — jirog > 1,
forany k € {2,...,d}. Since n = (d — 1)t + 2, the smallest monomial iS XpX;12 - - * X(g—1y1+2
and the largest monomial iS xjX.1 - - - X(g—1y+1, With respect to lexicographic order. Then
1+ jt<ijy <2+ jtforany je{0,1,...,d— 1}. Since u; >, uj, we have

Ui = X1 oo X1a(k=1)1X24kt - - - X24(d—1) and
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Uj = X1 oo o X141t X241t + - X24(d=1)15 for some k > [.

Then one easily sees that (u;, u;) is always sorted. ]

Corollary 2.2. Letn > (d—1)t+2. The t-spread Veronese algebra K[I,, 4,] is a polynomial
ring if and only if n = (d — 1)t + 2. In particular, K[1, 4,] is Gorestein if n = (d — 1)t + 2.

Proof. Let uy, ..., u, be the generators of K[/, 4,]. We want to show that these elements
are algebraically independent over the field K. Let f = Y, aoy'yy> - - yg" be a polynomial
such that f(uy,...,uy) = 0. By Proposition 2.1, any r-tuple (uy,...,u,) of generators with
Ul Zpex *+° Zex Uy 18 sorted, which implies that the monomials u(l" ...qu are all pairwise
distinct. Then the coefficients a, are all zero, which implies that u,, ..., u, are algebraically
independent over K.

For the converse part, assume that there exists n > (d — 1)t + 3 such that K[/, 4,] is a poly-
nomial ring. Then it is clear that if u = x1X;41 - - - X(g-2)r+1X, and U = X2Xp42 * * * X(g-2)142Xn—1,
then (u,v) is unsorted and the pair (u',v"), where u’ = XxiXu1 - X(g—2)+1%—1 and v' =
X2Xp42 * - X(d-2)r+2X, 18 the sorting pair of (u,v) and the equality uv — u'v’ gives a non-zero
polynomial in the defining ideal of K[/, 4], contradicting the fact that K[/, 4,] is a polyno-
mial ring. m|

Moreover, we can make a stronger reduction. Let n < dt. Then the smallest 7-spread
monomial of degree d iS X,—(4—1)Xn—(d—2) - - - Xn. Asn —(d — 1)t < t, the generators of 1, 4,
can be viewed in a polynomial ring in the variables {xj,...,x,} \ U?;ll{xn_d[+lt+1, e X
Thus K[1,4,] € S’, where

S’ = K[xt, -« X b \ U X drstints - - - Xud],

which is a polynomial ring in n’ = n — (d — 1)(dt — n) = d(n — (d — 1)t) variables. Note that,
inS’, I, 4,18 at’-spread ideal, where " = n— (d — 1)t. Thus, n’ = dt’. This discussion shows
that, in what follows, we may consider n > dr.

Theorem 2.3. (1) Ifn>=dt+1, thendimK[I,4,] = n.
(ii) Ifn =dt, then dim K[l 4,] =n—d + 1.

A = K[I,4,]. We prove that y;, y», . .., y, belong to the quotient field of A, denoted by Q(A).
We first show by induction on 0 < k < d — 1 that y;,; € Q(A), forany 1 < j <.
We check for k = 0: it is clear that

d —
d _ Hj:]-xl-xr+l----le+l---xrtl+l

yi=x= (e 1o X 1) € Q).
Here, by m , we mean that the variable x| is missing.
Since Y1Yirj .- Ya-1y+j € QA), for 1 < j <t, we gety, ... Yu—-1y+j € Q(A), for1 < j <.
But also y Y+ . . . Ya-1y+j € Q(A), so we obtain y; € Q(A), for any 1 < j < t. Therefore, it
follows that yy, ..., y, belong to Q(A).

Assume that yi,y2, ..., Y- s Ykerls- - Yk € Q(A). We want to prove that
Y(et 1i+15 - - - » Yk+2)e are also in Q(A). Firstly, let us check if y(1)+1 belongs to O(A). Notice
that, since Y, 14241 - - - Yrrr 1Yk 1)i+1 - - - Yadr+1 A0 Yy, Yorsts - - -, Yrr1 € Q(A) by our assump-
tion, it follows that YD+l -+ - Ydrr1 € 0A).

Also, since yiYossi - .- Y1 Ys)r+1 - - - Yare1 €  Q(A), using our assumption, we get

Proof. (i). We denote by y; the d-th power of the variable x;, for any 1 < i < n. Let
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Yk+2)i+1 - - - Yare1 € Q(A). But since yYes1yr+1 - - - Yare1 18 in Q(A), it follows that yyy1ys1 €
0(A).

Now we check that yy41ys € Q(A), for any 2 < s < ¢. Using the monomials y;. ..
Yki+sY(k+Dyi+s - - Yd—1y+s € Q(A) and ys, . . ., Yr+s € Q(A) by our assumption, we get

Yk Dyits - - - Yd-1yr+s € Q(A).

Moreover, yi . .. Ykre1 Ykt 1)+ 1Y (k+2)t+s - - - Y(d—1)e+s 15 i Q(A), so by our assumption and by the
fact that y+1y+1 € Q(A), we obtain

Yt )t+sY (ke 3)rs - - - Yd-rvs € Q(A).
Therefore, using Y+ iyres - - - Yid—1yr+s AN Yk2yr4s - - - Ya—1y+s in Q(A), we get

Y+ Dt+s € Q(A)7

for any 2 < s t. So far, we have seen that y.; € Q(A), also for any 0 < k <
d-—1land 1l < j <t Letnowdt+1 < m < n. Then yiy;1...Yu-15+1Ym € O(A).
Since Y1, Yiris - - > Yad-1y+1 € O(A), it follows that y,, € Q(A) as well. Therefore, Q(A) D
{x4,..., x4}. Tt follows that dim A = trdeg Q(A) > n, since x, ..., x¢ are obviously algebraic

1° sV

<
J

independent over K. But since A is a subalgebra of K[xy,..., x,], by [10, Proposition 3.1],
dim A < n. Therefore, dim A = n.
(ii). It follows from [1, Corollary 3.2]. O

REMARK 2. The result from part (i) of Theorem 2.3 also follows from [1, Corollary 3.2],
but we preferred to give a completely different proof here.

Let P c R" denote the rational convex polytope

P=A{(ai,...,a,) €R": 3" a;=d,a; >0,for]l <i<n,anda; +---+ a1 <1, for

1<i<n-t+1}

Clearly, K[1,4:] = K[P], since K[l 4,] is generated by the monomials of G(I, 4,), that
is, by monomials x{'...x;" with 37 a; = d,a; > 0,for 1 <i<nanda; + -+ ap,- <1,
forl <i<n-t+1.

Since K[, 4,] is a normal ring, by [10, Lemma 4.22], we get the following

Theorem 2.4. The t-spread Veronese algebra K|1, 4,] is the Ehrhart ring A(P).

3. Gorenstein t-spread Veronese algebras

In this section we classify the Gorenstein #-spread Veronese algebras. We split the classi-
fication in several theorems.

Theorem 3.1. [fn =dt+k, 2 <k <d -1, then in (t + d)P there exist d interior lattice
points. Therefore, K[, 4,] is not Gorenstein.

Proof. By Theorem 2.3, dim K[I,, 4] = n, thus dim(P) = n — 1. Let H be the hyperplane
in R” defined by the equation a; + --- + a, = d and let ¢ : R"~! — H denote the affine map
defined by

dai,...,an1) =(ay,...,ap-1,d — (@ + -+ + a,-1)),
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for (ai,...,an,-1) € R""'. Then ¢ is an affine isomorphism and #(Z"")y = HNZ". Therefore,
¢~ (P) is an integral convex polytope in R"~! of dim ¢~!(P) = dim P = n — 1. The Ehrhart
ring A(¢~'(P)) is isomorphic with A(P) as graded algebras over K. Thus, we want to see
if A(¢‘1(P)) is Gorenstein, and, by abuse of notation, we write P instead of ¢‘1(P). Thus,
P={a....an-1) €R" 1 1gq; >0, for1 <i<n-1,and a; + ajs; + -+ + ajs—1 < 1, for
1<i<n—-tai+a+---+a,_,>d-1}.

In our hypothesis on n, we show that there are no interior lattice points at lower levels
than 7 + d. It is enough to see that there are no interior lattice points at level r + d — 1. Let
(X1,...,x21) €t +d — 1)(P — 0P). We have
t+d—-DP-0P)={(ay,...,ap-1) €R" a;>0,1 <i<n—1,a;+ a1+ + Qs <

t+d-1),1<i<n—-taj+ar+---+a,;>d-D(t+d- 1)}
Since x; + - + X(d=1yt+k = (d-1)(t+d-1),wehave x; +--- + Xd-Dt+k—1 2 d-1D(+d-
1) = X(a-1)r+#, thus
k=1 (d=D)t+k-1
@=-D+d=D+ Y X 2 Y. % 2(d=D+d=1) = Xanu
i=1 i=1
It follows that Zf:ll Xd—1y+i = d — 1 = X(g—1y+x and, since x¢z—1y+k < 1, we obtain
k=1
k=1> Zx(d—l)m >d-1,
i=1
which implies that k > d + 1, a contradiction. Thus, there are no interior lattice points in the
dilated polytope at lower levels than ¢ + d.

Let 6 > 1 be the smallest integer such that 6(P — dP) # (. We show that § = r + d.

Indeed, in the dilated polytope (t + d)(P — dP) there are d interior lattice points of the form

a, = (x(lr), .. ,xy_)l), 1 < r<d, where
d,if j=ir+1,
o |Lifj=it+iwith0<i<d-1,1<i<t
T orj=di+iwithl <l<di+k-2,

rifj=dt+k—1.
It is clear that, forany 1 < j < n -1, xg.r) >0.Forany 1 <i < (d-1r+1, xﬁr) +

(r) (n  _ (r) (r —
X+t x, ,=d+i-1<(@+d)(d-1). If k <1, then Xg-tysrk T F Xgpgoy =
(t—-k)+(k=D+r=1-1+r<t+dand,ifk > t,thenx, +---+x\  =t—l+r<t+d.

Also, 3"+ -+ x_ = (d+1-1)d=- D +d+k—1=(d+0)(d—1)+k > (d— 1)t +d), since
k > 2. Therefore, these are interior lattice points in (¢ + d)P. Thus, in this case, the 7-spread

Veronese algebra K[/, 4,] is not Gorenstein, by Remark 1. m]

ExampLE 1. Let n = 8, d = 3 and r = 2. The smallest level where there are interior
lattice points in the dilated polytope is 6 = 5. In 5( — dP) there are 3 interior lattice points:
3,1,3,1,3,1,1),(3,1,3,1,3,1,2)and 3,1,3, 1,3, 1, 3).

Thus, the 2-spread Veronese algebra K[/g 3] is not Gorenstein.

Theorem 3.2. Ifn > (t + 1)d + 1, then K[1,, 4,] is not Gorenstein.
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Proof. Letn = kd + g with k > t+ 1 and g > 1. By Theorem 2.3, dim K[/, 4] = n, thus
dim(P) = n — 1. Using similar arguments as in Theorem 3.1,

P=A{ai,...,an-) ER" 1aq; >0, 1 <i<n-lai+ap ++ap-1 <1,1 <i <

n—ta+a+---+a,-; >d-1}.

We show that the smallest integer 6 > 1 such that 6(7 — dP) contains lattice points is
t + 1. Assume that there are interior lattice points at lower levels than ¢ + 1. It is enough
to show that there are no interior lattice points at level 7. In this case, for each lattice point
(ai,...,ap-1) € (P — 0P), we have a; + a;11 + -+ + a;1—) < t,forany 1 <i <n—t. Since
eacha; > 1,forany 1 <i <n-—1, we have

aitaip +- a1 28,

which is a contradiction.

We show that (¢ + 1)(P — dP) contains only one lattice point which has all the coordinates
equal to 1. The interior of the (¢ + 1)-dilated polytope is

t+DP-0P)={(ar,....ap-) ER" 1 q; >0, 1 <i<n—1,a;+aj + -+ <

t+1,1<1<n—-tai+ay+---+a,_,>(d-1D(t+1))}.
We know that, for each lattice point (ay,...,a,-1) € (t + 1)(P — dP), we have a; + --- +
aiy-1 < t,forany 1 <i < n-tand, sincea; > 1, forany i < j <i+1t— 1, we obtain
a; + -+ + a1 2 t, thus we have equality which implies thata; = 1, forany 1 < j <n - 1.
Hence, (1,1,..., 1) € Z" ! is the unique interior lattice point in the dilated polytope (¢+ 1)P.
Let us consider Q@ = (t+ 1)P — (1,1,...,1). We will show that K[P] is not Gorenstein by
using Theorem 1.2. In fact, we show that the dual Q" of
Q=AW st ER 1y 20,1 <i<n—Lyi+yi + -+ Y1 <0, 1 <i <
n—tyr+- - +y>2d-1D)t+1)-(n-1)}.

is not an integral polytope. The vertices of Q* are of the form (aj,as,...,a,_;) € R*!
such that the hyperplane H of equation Z;’:_ll a;y; = 1 has the property that H N Q is a facet
of Q. In other words, H is a supporting hyperplane of Q. As the hyperplane Y/~ y; =
(d-1)t+1)—(n—1),that is,

n—t 1
;(d—l)(z+1)—(n—r)y":1

does not have integral coefficients, it follows that Q is not an integral polytope. Thus, by
Theorem 1.2, we conclude that K[/, 4,] is not Gorenstein. O

ExampLE 2. Letn = 10,d =3 and ¢t = 2. Then

P={a,....,a0) €R’:4; 20,1 <i<9a;+a <1,1<i<8a +-+ag>2}.

For ¢ = 3, in 3P, there exists a unique interior lattice point, namely (1,1,1,1,1,1,1,1). Let
us compute @ =3P - (1,1,1,1,1,1,1,1,1). We have

Q={(1,....y0) €R’ 1y > 1,1 <i<9yi+yiy <—1,1<i<8,yj +---+ys>—6},

thus, the dual polytope Q™ is not integral. Therefore, the 2-spread Veronese algebra K[/103 2]
is not Gorenstein.
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Theorem 3.3. Ifn = dt, then K[, 4,] is Gorenstein.

Proof. In our hypothesis, by Theorem 2.3, dim K[/, 4;] =n—-d+ 1 =d(t - 1) + 1, thus

dim P = d(t — 1). Using similar arguments as in Theorem 3.1,
P={(a,az....,an-1) ER"™ 1 q; >0,a; + a1+ +ai1 < 1,1 <i <
n—ta+a+---+a,,>d-1}

We show that the smallest integer § > 1 such that 6(P —dP) contains lattice points is t+d — 1.
Assume that there are interior lattice points at lower levels than t + d — 1. It is enough to
show that there are no interior lattice points at level 7 + d — 2. In this case, for each lattice
point (ay,...,a,-1) € t+d —-2)(P —0P),wehavea; +ay +---+a,—, > (d— 1)t +d - 2).
Since a;+ ajy1 +- -+ aip-) <t+d—2,forany 1 <i<n—t,weobtaina, +ar+---+a,; <
(d — 1)(t + d — 2), which leads to contradiction. Thus 6 > ¢+ d — 1.

We show that (¢ + d — 1)P contains a unique interior lattice point. For each lattice point
(ar,az,...,a,-1) € (t+d—1)P, wehave ay+ar+---+a,_, > (d—1)(t+d—1). Since a;+a; ;1 +
st a1 St+d-1,forany 1 <i<n-t,weobtaina; +ay+---+a,-, < (d-1)(t+d-1),
thusa; +ar, +---+a,_, =d+1t—1. Hence we obtain a1 + dgpqn + -+ Qe =t +d — 1,
forany0 <k<d-2.So,a;+ajs1+ - +ap—1 =t+d—1,forany 1 <i < #d - 1), with
i = 1(mod?). Since a1 + Ay + -+ + Ay =t +d — 1, forany 0 < k < d — 2, we have

Ao =t+d—1-3 0 aj, forany 0 <k <d-2.
Since agp4p + Agpe3 + -+ el <t +d—1,forany 0 < k < d — 2, we obtain

(t+d=1)= > aj+aus+ - +agym < (+d-1).
Jj#ki+2
Hence, ag1yr+1 — air1 < 0,forany O < k < d -2, thus agrir1 < ageer, forany 0 < k < d —2.
Therefore, for each lattice point (xi, x2, ..., X4¢-1)) € (t +d — 1)(P — 0P), we obtain

O<x(d_1)+1<---<x,+1 <xy<t+d-1

and, since there are d consecutive terms in this chain, we have x; > d. If x; > d, and since
each x; > 1,forany 1 <i<n-1,then x; +x, +---+x;, > d+1t—1, which is a contradiction.
Thus, x; =d. Since x; +x +---+x, =d+t—1,x =dand x; > 1, forany 1 <i <t we
obtain x, = --- = x; = 1.

Now, since 0 < X(g-1y1 < - < Xppp < xp =dand x; + X + - + Xjypo) < t+d -1,
we obtain xy1 = d — k, forany 0 < k < d -2 and x4; = 1, forany 0 < k < d -2 and
0<j<tj#1,j# 2. Therefore, a = (x1, X2, ..., Xqq-1)), Where

d—k, ifj=ke+1,with0<k<d-2,
X; =
T, if j=kt+Lwith0<k<d—20<I<t—1,1#1,1%2

is the unique interior lattice pointin (f + d — 1)P. But, forany 0 < k <d-2and kt + 1 <
Jj < kt+t,

Xpp2 =t+d—1-— Z Xj

jEk+2

=t+d-1-(d-k+t-2)=k+1.

So, the unique interior lattice point @ in (t + d — 1)P is (xy, ..., x,—1), Where
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d—k, j=kt+1,0<k<d-2,
xj=3 k+1, j=kt+2,0<k<d-2,

L, J=kt+1,0<k<d-2,0<I<t-1,1#1,1+2.
Using Theorem 1.2, we show that K[/, 4,] is Gorenstein. Let us compute Q = (t+d—1)P—a.
We have

Q={Wi1,....yp-1) ER" 1 y;=a; - x;,1 <i<n-1, where
(ay,az,...,a,-1) € (t+d—-1)P}.

Thus, we obtain
Q={Wn, .y ) ER iy 2 —xp L Si<n—Liyi+ym +- -+ Y St+d—1-(x; +
Xigr+e o+ X)), L Si<n—tiy1+-+ Yt = 00 Yirs1 +Yrre2+ -+ Y = 0,0 <k < d -2}
For 1 <i<n-t,wehave y;+yis1+ +Yis-1 < t+d—1=(x;+ X1+ - -+ Xi-1), SUPPOSE | =
ki+r,where 1 < r < t. Then yir+Ykrsre1+ FYr Dyprr—1 < 1Hd—=1 =X+ Xt Dr4r-1)s
forany0 <k <d-2,1<r <t Ifr=1, wealready have yy11 + - + ypper = 0. If r = 2,
then

Yis2 F Y3+ A Yoty S +d-1D) —(k+1+(@-2)+d—-(k+1)) = 1.
But yi42 = —Ypr1 — - — Yiarss» thus

Yk yi+1 — Yrar1 < 1.
If r > 3, then

Ykrr + Ykrsrst o H Yoyt SE+d=1) - =2+d - (k+1)+k+2)=0.

But Yrsr = —Yrret = - Ykier—1 = Ykrers1 = *** = Yrass> thus
Yt e+l + 7 F YlerDtrr—1 = Ykeal — Yker2 — = = Yiear—1 < 0.
Therefore,
Q={W1>-Un-1) E R yustys1 + Y Dyrr—t = Yrre1 = = Yrar—1 < 0,3 <7 <
LYl = Yl < LYkee2 = —Ykee! = Ykee3 = — Yrrn 0 <k < d = 2},

Thus, since the supporting hyperplanes of the polytope Q have integral coefficients, we
conclude that Q is an integral polytope. Hence, by Theorem 1.2, K[/, 4,] is Gorenstein. O

ExampiE 3. Letn = 10, d = 5 and ¢t = 2. In this case, § = 6 and in the dilated polytope
6P there is a unique interior lattice point, namely (5, 1,4,2,3,3,2,4, 1). The dual polytope
of @ =6P—-(5,1,4,2,3,3,2,4,1) is an integral polytope, thus K[/195>] is Gorenstein.

We state and prove the main theorem of this paper.

Theorem 3.4. The t-spread Veronese algebra, K1, 4], is Gorenstein if and only if n €
{d=Dt+1,(d- Dt +2,dt,dt+ 1,dr + d}.

3.1 and Theorem 3.2, K[, 4,] is not Gorenstein. Hence, it remains to study the cases when
ne{d-Dt+1,(d— Dt+2,dt,dt+ 1,dt + d}.
If n = (d-1)t+1, then K[, 4,] is a polynomial ring, thus it is Gorenstein. If n = (d—1)1+2,

Proof. Ifn=dt+kwith2 <k <d-1andn > (t + 1)d + 1, then, by Theorem
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by Theorem 2.2, K[, 4,] is Gorenstein. If n = dt, by Theorem 3.3, we obtain the same
conclusion.

Letn = dt + 1. In our hypothesis, by Theorem 2.3, dim K[/, 4,] = dt+1, thus dim P = dt.
Using similar arguments as in Theorem 3.1,

P={(a,az,....ap-1) ER"™ 1q; >0, 1<i<n-1l,a;+ai1 + - +am1 <1,1<i<

n—ta+ay+---+da,_,>d-1}.
We show that the smallest integer 6 > 1 such that 6(P — dP) contains lattice points is ¢ + d.
Assume that there are interior lattice points at lower levels than ¢ +d. It is enough to see that
there are no interior lattice points at level r + d — 1. The interior of the dilated polytope is
(t+d—-1D)(P-0P) ={(a1,a2,...,an-1) ER™ 1 a; >0,1<i<n—-1,a;+a1+ +ais-1 <
t+d-1,1<i<n—-tay+ay+---+a,,>d-1)t+d- 1)}
In this case, for each lattice point (a, az, ..., a,-1) € (t+d —1)(P —9P), we have a; + a;,1 +
ot ap) St+d-2,forany 1 <i<n-t thusa; +ay+---+ag-1y < (t+d-2)d-1).
Buta; +a; +---+a,_, > (d—-1)t+d)+ 1, thus we obtain
d-D+d-D+1<Y"a; <@t +d=-2)(d - 1)+ aqu-1y+1,
hence, a-1y+1 > d. But, since ag-oy+2 + d@-2y3 + -+ + a@—1yp+1 < t+d — 2, we obtain
A(d-2y+2 + +* * + Ag-1): < t =2, which is the sum of 7 — 1 terms and each a(;_2).+; > 1, for any
2 < j < t. We show that (¢ + d)(P — 0P) contains only one lattice point. The interior of the
dilated polytope is
t+d)(P -0P)={(aj,az,....ap-) ER" 1a; >0,1 <i<n—1l,a;+ai1 ++airr) <
t+d,1<i<n—-tai+ay+---+a,,>d-1)t+d)}
Let (x1, X2, ...,%—1) € (t+d)(P-0P)NZ"'. Thus x; +xp+- - A+ X1yl = (d=1)(t+d)+ 1.
Claim: xj41 = d, forany 0 <k <d - 1.

Since x; + X1 + -+ X1 <t+d—1,forany ] <i<k—1landforanyk<i<d-2,we
obtain

Xp+ Xy + ot X+ X+ Xy S +d - 1)(d - 1).

Hence,
n—t
d-D+d)+1< Zx,- Sd-D+d-1)+ xp441,
i=1
thus xy;41 > d, forany 0 < k < d — 1, as we claimed.
But, X1 + Xga2 + 0o+ Xy Sd +t—1and x4 > d, X341 > 1, forany 2 < j < t, thus
Xir+1 + Xkea2 + - - -+ X1y = d +t— 1. The equality holds if and only if, forany 0 < k <d -1,
X+1 = d and xpy; = 1, for any 2 < j < . Therefore, @ = (x1, x2, ..., x,-1), where

L_d j=kr10<k<d-1
Pl jEkt+L0<k<d-1,0<1<t—1,01#1.

is the unique interior lattice point in (¢ + d)P. Using Theorem 1.2, we show that K[/, 4] is
Gorenstein. Let us compute Q = (¢t + d)P — a.

O={Wis s tp) ER™ i yi>—di=kt +1,0<k<d—1,y;>-1,i=kt+1,0<k <

d-1,0<I<t-1L1#Lyi+yim+ -ty <L, 1<i<n—ty1+- +y, > -1}
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In fact, we show that the dual Q* of Q is an integral polytope, by showing that the indepen-
dent hyperplanes which determine the facets of Q are
yi=-1,i=kt+1,0<k<d-1,0<I<t-1,1#1,
Yty + +yip1 =1, 1<i<n-—1,
yr+- -+ yp = —1.
Thus, we need to show that all the hyperplanes y; = —d,i = kt + 1,0 < k < d -1 are
redundant. Let0 < k <d—-1. Since y; + yjs1 + -+ Yisy1 < 1, forany 1 <i < k-1 and
Yirs2 + - + Yir1y+1 < 1, forany k <i < d -2, we obtain
Yitypt+ Y- o Yt Y2 Tt Y Sk—14[d-1-(-D]=d-1,
and, since y; +y2 + -+ Yu-n+1 = —1, weobtainy; > —d,i = kt+1,forany 0 <k <d-1.

Thus, since the supporting hyperplanes of the polytope Q have integral coefficients, we
conclude that Q is an integral polytope. Hence, by Theorem 1.2, K[/, 4,] is Gorenstein.

Let n = dt + d. In our hypothesis, by Theorem 2.3, dim K[/, 4;] = dt + d, thus dim P =
dt +d — 1. We have,
P={(aaz....an-1) ER" 1g; >0, 1<i<n-1l,a+ai + +a41 <1,1<i<
n—t,ay+a+---+a,;>d-1}.

We show that there are no interior lattice points at lower levels than 7 + 1. It is enough to see

that there are no interior lattice points at level 7. Let (a;,as,...,a,-1) € (P —0P) N 71
We have
(P —-0P)={(ar,as,...,a,-1) ER" 1aq; >0, 1 <i<n-1,a;+am + +ap <t,1<

i<n—-tai+ay+---+a,,> (-1t}
Since each @; > 0, forany 1 <i<n-1,weobtaint > a; + aj4; + -+ + a;14—1 > t, which
is a contradiction. Thus, there are no interior lattice points in the dilated polytope at lower
levels than # + 1. We show that (¢ + 1)(7° — dP) contains only one interior lattice point which
has all the coordinates equal to 1. The interior of the dilated polytope is
t+ (P -0P)={(aj,az,...,a,-1) €R" a;>0,1 <i<n—l,a;+am ++ a1 <
t+1L,1<i<n-t,ay+ay+---+a,,>d-1)t+ 1)}

We know that, for each lattice point (ay,...,a,-1) € (t + 1)(P — dP), we have a; + --- +
ais-1 < t,forany 1 <i < n-tand, sincea; > 1, foranyi < j <i+1t— 1, we obtain
a; + -+ +ajy—1 2 t, thus we have equality which implies thata; = 1, forany 1 < j <n - 1.
Hence, (1,1,..., 1) € Z" ! is the unique interior lattice point in the dilated polytope (¢+ 1)P.

Let us consider Q@ = (t+ )P — (1, 1,...,1). We will show that K[P] is Gorenstein by
using Theorem 1.2. In fact, we show that the dual Q" of

Q=AW1,- YD) ER" 1y 201 <i<n—Lyj+yii+ +y1 0,1 <0 <
Rty g 2 1),

is an integral polytope. As the hyperplanes Z;’i_l y; = 0,forany 1 < i < n-t and

"{y: = —1, have integral coefficients, it follows that Q is an integral polytope. Thus, by
Theorem 1.2, we conclude that K[/, 4,] is Gorenstein. m]
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ExampLE 4. Letn = 11,d = 3 and ¢ = 4. In this case, 6 = 5 and in the dilated polytope
5(P-0P) ={(ai,...,a10) €R :a;>0,1 <i<10,i #4,8,a9 < as <aj,ayg +ay <
as+ag <ay+ax <5,a4 = ag = 0}
there is a unique interior lattice point, namely (3,1,1,0,2,1,2,0,1,1). Let us compute the

polytope Q = 5P - (3,1,1,0,2,1,2,0, 1, 1). Then
Q={yi,y,....y10) ERC 1 yy; > -1,1<i<10,i #4,8,y0—ys < 1l,ys —y; <
Lyo+y10—ys—ys < L,ys+ys—y1 —yo < l,y; +y» < 1}.
Thus, the dual polytope of Q is integral. Therefore, K[/}, 34] is Gorenstein.

Exampie 5. Letn = 10, d = 3 and ¢ = 3. In this case, 6 = 6 and in the dilated polytope
6(P—-0P) ={(ar,...,a0) €R’ 1a;>0,1<i<9,a,+ar+a3 <6,ar+az+a, < 6,a3+as+
as < 6,as+as+ag < 6,a5+ag+a; < 6,a¢+a7+ag < 6,a7;+ag+ag < 6,a1+ar+---+ay; > 12}
there is a unique interior lattice point, namely (3,1,1,3,1,1,3,1,1). Let us compute the
polytope Q = 6P —(3,1,1,3,1,1,3,1,1). Then

Q={Wi v y) ER? 1y 2 —Lys 2 —l,ys 2 —Lys = —l,yg =2 —1,yo >

“Lyi+tprys<lLp+yp+rya<lys+ys+ys<lLys+ys+ys<lys+ys+ys <

Lys+yr+ys<Lyr+ys+yo < Ly1+ya+---+y; > -1}
Thus, the dual polytope of Q is integral. Therefore, K[/1033] is Gorenstein.

ExampLE 6. Letn = 8,d = 2 and ¢ = 3. In this case, 6 = 4 and in the dilated polytope
4P -0P)={(as,...,a7) €R" :aq;>0,1<i<T,a1+ar+a3 <4,ar+az +as <
dias+as+as <4,as+as+ag <4,a5s+ag+a; <4,a; +ax+az+as+as >4}

there is a unique interior lattice point, (1, 1,...,1). Let us compute the polytope Q = 4P —
(1,1,...,1). Then
Q={Wi 2y ER 1y > -1 <i<T,y1+y2+ys < Lys +ya +ys <
Lys+ys+ys <Lys+ys+yr < Lyt +y2+ys +ya +ys > —1}.
Thus, the dual polytope Q* is integral. Therefore, K[Ig 3] is Gorenstein.

Let R be the polynomial ring K[t, : v € G(I,,4,)] and ¢ : R — K[I, 4,] be the K-algebra
morphism which maps 7, to v, for all v € G(I,, 4,).

Proposition 3.5 ([7, Theorem 3.2]). The set of binomials G = {t,t,—t,t, : (u,v) unsorted,
(', v") = sort(u, v)} is a Grobner basis of the toric ideal Kerg.

As a consequence of it, we have the following result:
Corollary 3.6. The polytope P possesses a regular unimodular triangulation.

Proposition 3.7 ([5]). Let P € R? be a d-dimensional polytope of standard type such that
its dual is a lattice polytope. If P admits a regular unimodular triangulation, then h*(P, x)
is unimodal.

Proposition 3.8. Ifn e {(d— Dt+1,(d— 1)t +2,dt,dt + 1,dt + d}, then the h*-vector of
the t-spread Veronese algebra K[, 4] is unimodal.

Proof. By Theorem 3.4, K[, 4,] is Gorenstein. Thus by Proposition 3.7 and Corollary
3.6 the desired result follows. ]
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