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Abstract
For a prime number p ≡ 3 mod 4, we write p = 2n� f + 1 for some power � f of an odd prime

number � and an odd integer n with � � n. For 0 ≤ t ≤ f , let Kt be the imaginary subfield of
Q(ζp) of degree 2�t and let h−t be the relative class number of Kt. We show that for n = 1 (resp.
n ≥ 3), a prime number r does not divide the ratio h−t /h−t−1 when r is a primitive root modulo �2

and r ≥ � f−t − 1 (resp. r ≥ (n − 2)� f−t + 1). In particular, for n = 1 or 3, the ratio h−f /h
−
f−1 at

the top is not divisible by r whenever r is a primitive root modulo �2. Further, we show that the
�-part of h−t /h−t−1 stabilizes for “large” t under some assumption.

1. Introduction

1. Introduction
Let p ≥ 7 be a prime number with p ≡ 3 mod 4. Then we can write p = 2n� f + 1 for

some power � f of an odd prime number � and an odd integer n with � � n. (Of course, this
expression or the pair (n, � f ) is not uniquely determined for a given p.) As p ≡ 3 mod 4,
the imaginary quadratic field K0 = Q(

√−p) is a subfield of the pth cyclotomic field Q(ζp).
Here, for an integer m, ζm denotes a primitive mth root of unity. For each 1 ≤ t ≤ f , let
Kt/K0 be the cyclic extension of degree �t contained in Q(ζp). Let h−t denote the relative
class number of Kt. It is known and easy to see that h−t−1 divides h−t (see Hasse [8, Satz 32]).
When f = 1 and n = 1 (resp. n > 1), it is shown in Metsänkylä [18, Theorem 1] (resp. [11,
Theorem 2]) that h−1 /h

−
0 is not divisible by a prime number r if r is a primitive root modulo

� and r ≥ n − 1. Further, when f ≥ 2 and n = 1, we have shown in [5, Theorem] that the
ratio h−f /h

−
f−1 at the top is not divisible by a prime number r whenever r is a primitive root

modulo �2. We generalize these results as follows.

Theorem 1. Under the above setting, let p = 2n� f + 1 be a prime number where � is
an odd prime number, f ≥ 1 and n is an odd integer with � � n. Let t be an integer with
1 ≤ t ≤ f . Then a prime number r does not divide the ratio h−t /h−t−1 under the following two
conditions on r.

(i) r is a primitive root modulo �2.
(ii) r satisfies the inequality

r ≥
{
� f−t − 1, if n = 1,
(n − 2)� f−t + 1, if n ≥ 3.

The following theorem for the case t = f is an immediate consequence of Theorem 1.
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Theorem 2. Under the above setting, the following assertions hold on the ratio h−f /h
−
f−1

at the top .
(I) A prime number r does not divide h−f /h

−
f−1 when it satisfies the condition (i) in Theorem

1 and r ≥ n − 1.
(II) For n = 1 or 3, a prime number r does not divide h−f /h

−
f−1 when it satisfies the

condition (i) in Theorem 1.

Let p be a prime number of the special form p = 2 ·3 f +1 with f ≥ 2. When 2 ≤ f ≤ 325,
it is known that p = 2·3 f +1 is a prime number for f = 2, 4, 5, 6, 9, 16, 17, 30, 54, 57, 60, 65,
132, 180, 320 by Williams and Zarnke [26]. Further, it is a prime number for f = 1175232
by Grau, Oller-Marcén and Sadornil [7, page 511]. For such a prime number, the following
assertion is also an immediate consequence of Theorem 1.

Proposition 1. Let p = 2 · 3 f + 1 with f ≥ 2. Then, a prime number r does not divide the
ratio h−f /h

−
f−2 when r ≡ 2, 5 mod 9.

As for the �-part of the class numbers h−t , we observe that there are several cases where
they enjoy Iwasawa type class number “formula” in Example of Lehmer [16, page 607] and
in Schoof [21, Appendix]. Such examples are found also in an unpublished table of Ken
Yamamura on relative class numbers of imaginary abelian fields of prime power conductors
< 104. For instance, let (p, �, f ) = (379, 3, 3) or (751, 5, 3), where a triple (p, �, f ) means a
prime number p = 2n� f + 1 with n = (p − 1)/2� f and � � n. Then, accordingly, we have
3t+1‖h−t or 5t+1‖h−t for 0 ≤ t ≤ 3. We define an integer et by �et‖h−t for each 0 ≤ t ≤ f . As
h−t−1 divides h−t , we have et ≥ et−1. On the integers et, the following assertion holds.

Theorem 3. Under the above setting, let f ≥ 2 and assume that es − es−1 < φ(�s) for
some 1 ≤ s ≤ f − 1, where φ(∗) is the Euler function. Then et − et−1 = es − es−1 for every t
with s ≤ t ≤ f .

Under the assumption that the �-part of the ideal class group of K0 is cyclic, Theorem 3
for the case s = 1 is an immediate consequence of [21, Proposition 2.4]. The above two
examples satisfy the assumption of Theorem 3 for s = 1. Further examples are given at the
end of §3 after showing Theorem 3.

Remark 1. (I) The assumption (i) in Theorem 1 is necessary only to assure that the prime
number r remains prime in Q(ζ�t ). Therefore, when t = 1, we can replace the assumption (i)
with the weaker one that

(i’) r is a primitive root modulo �.
See Proof of Theorem 1; the case t = 1 in §3.

(II) Let n = 1, and let us fix an odd prime number � such that 2 is a primitive root modulo
�2. Then, for a prime number p of the form p = 2� f + 1 with f ≥ 2, we showed in [12,
Propositions 2, 3] that h−f−1/h

−
f−2 is odd if p is larger than (2�(� − 1))�(�−1), and that it is

always odd when � = 3 using some computational data obtained in [5]. In [12], we showed
this fact for � = 3 (namely, Proposition 1 for the case r = 2) with a method completely
different from the one in this paper.

(III) When f = 1, several other results are known on indivisibility of the class number of
K1 or the maximal real subfield K+1 such as [3, 4, 6, 13, 15, 19, 22].
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Remark 2. Let � be an odd prime number with � ≡ 3 mod 4. Let Ω∞ be the cyclotomic
Z�-extension over the imaginary quadratic field Ω0 = Q(

√−�). We denote by h∗n the relative
class number of the nth layer Ωn of Ω∞/Ω0. It is a well known theorem of Washington
[24] that a prime number r � � does not divide the ratio h∗n/h∗n−1 for sufficiently large n.
Explicit versions of the theorem are given in Horie [9, Theorem 2] and [10, Proposition 2],
[14, Proposition 1]. For instance, a prime number r does not divide h∗n for all n ≥ 0 when r
is a primitive root modulo �2 and r ≥ (� − 1)/2− 2d� where d� is the maximal proper divisor
of (� − 1)/2 ([10, Proposition 2]). Our Theorem 1 for the finite tower Kf /K0 is, in a sense,
analogous to these results for the Z�-tower Ω∞/Ω0.

For the class numbers in Ω∞/Ω0, it is shown in [14, Proposition 2] with the help of
computer that r does not divide h∗n/h∗n−1 for all � < 10000 and all 1 ≤ n ≤ 100 whenever r
is a primitive root modulo �2. At present, we have no example of a triple (�, n, r) for which
r divides h∗n/h∗n−1 and r is a primitive root modulo �2. However, in our setting inside the
pth cyclotomic field, there do exist some exceptional cases where r divides h−1 /h

−
0 and r is

a primitive root modulo �2. As an example, when p = 163 = 2 · 34 + 1 and r = 2, the ratio
h−1 /h

−
0 is even and h−t /h−t−1 is odd for 2 ≤ t ≤ 4 by a table in [21, Appendix]. As another

example, let p = 2 · 330 + 1, which is known to be a prime number (see [26]). We have
shown in [5, §4] with the help of computer that h−1 /h

−
0 is even but h−t /h−t−1 is odd for every

2 ≤ t ≤ 30. Even in such exceptional cases, Theorem 2 says that r never divides the ratio at
the top when r is a primitive root modulo �2 (and r ≥ n − 1).

2. Bernoulli numbers

2. Bernoulli numbers
For an odd Dirichlet character χ of conductor d, we denote by

βχ =
1
2

B1,χ =
1

2d

d−1∑
a=1

aχ(a)

the half of the generalized Bernoulli number. We let p = 2n� f +1 be as in §1, and we use the
same notation as in §1. We denote by δ the quadratic character associated to the imaginary
quadratic field K0 = Q(

√−p). For each 1 ≤ t ≤ f , we have

(1) h−t /h
−
t−1 = pα

∏
ϕt

(−βδϕt )

by the analytic class number formula (Washington [25, Theorem 4.17]) where ϕt runs over
the even Dirichlet characters of conductor p and order �t and α = 1 or 0 according as
(n, t) = (1, f ) or not. Here, we have used the fact that the unit index of an imaginary abelian
field of conductor p is 1 ([8, Satz 23]). The proofs of our assertions are based on the class
number formula (1).

We fix a primitive root gmodulo p. We easily see that the set ±g2(� fw+nv) with 0 ≤ w ≤ n−1
and 0 ≤ v ≤ � f − 1 is a complete set of representatives of the multiplicative group (Z/pZ)×.
For an integer x ∈ Z, let sp(x) denote the unique integer such that sp(x) ≡ x mod p and
0 ≤ sp(x) ≤ p − 1. We see that

(2) sp(−x) = p − sp(x)
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for x with p � x. In all what follows, we put

(3) ζ�t = ϕt(g2n),

which is a primitive �tth root of unity. Then, noting that the quadratic character δ is odd and
using (2), we observe that

βδϕt =
1

2p

n−1∑
w=0

� f−1∑
v=0

(
sp(g2(� fw+nv)) − sp(−g2(� fw+nv))

)
ζv�t

=
1

2p

n−1∑
w=0

� f−1∑
v=0

(
2sp(g2(� fw+nv)) − p

)
ζv�t

=
1
p

� f−1∑
v=0

n−1∑
w=0

sp(g2(� fw+nv))ζv�t −
n
2

� f−1∑
v=0

ζv�t .

We see that the last sum vanishes as t ≥ 1, and hence we obtain

(4) βδϕt =
1
p

� f−1∑
v=0

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑
w=0

sp(g2� fw+2nv)

⎞⎟⎟⎟⎟⎟⎟⎠ ζv�t .

3. Proofs of Theorems 1 and 3

3. Proofs of Theorems 1 and 3
In this section, we first prove Theorem 1 after showing some preliminary lemmas, and

give a related proposition. The proof of Theorem 3 is given at the end of the section.
Let p = 2n� f + 1 be as in §1, and we use the same notation as in the previous sections.

To prove Theorem 1, we may as well assume that f ≥ 2 because, as we mentioned in §1,
Theorem 1 for the case f = 1 is already settled in [11, 18]. Further, we may as well assume
that n > 1 or f − t ≥ 1, or equivalently that

(5) n� f−t > 1

because Theorem 1 for the case n = 1 and t = f (≥ 2) is already shown in [5, Theorem]. For
1 ≤ t ≤ f , let Et = Q(ζ�t ) so that βδϕt ∈ Et. The condition n� f−t > 1 implies that the order of
the character δϕt does not equal p − 1 = 2n� f . Hence, βδϕt is an algebraic integer of Et by
[8, Satz 32]. Let ζ�t = ϕt(g2n) be as in (3). Let t be the ring of algebraic integers of Et.

First, we show Theorem 1 for the case t ≥ 2. Since βδϕt ∈ t and the set ζ j
�t

with
0 ≤ j ≤ �t−1 − 1 constitutes a free basis of t over 1, we can uniquely write

(6) βδϕt =

�t−1−1∑
j=0

a jζ
j
�t

for some a j ∈ 1. For u and j0 with 0 ≤ u ≤ � − 1 and 0 ≤ j0 ≤ �t−1 − 1, we put

(7) x( j0)
u =

1
p

� f−t−1∑
v=0

n−1∑
w=0

sp

(
g2� fw+2n(�tv+�t−1u+ j0)

)
,

and
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y
( j0)
u =

⎧⎪⎨⎪⎩ x( j0)
u − 1, if n = 1,

x( j0)
u − � f−t, if n ≥ 3.

Lemma 1. The rational y( j0)
u is an integer and satisfies the inequality:

0 ≤ y( j0)
u ≤

{
� f−t − 2, if n = 1,
(n − 2)� f−t, if n ≥ 3.

Proof. We see that x( j0)
u ∈ Z because n� f−t > 1 by the assumption (5) and the elements

g2� fw+2n�tv mod p in the sum (7) are all the n� f−tth roots of unity in the multiplicative group
(Z/pZ)×. It follows that

1 ≤ x( j0)
u ≤ n� f−t − 1

and hence, in particular, the assertion for the case n = 1 is settled. Let us deal with the case
n ≥ 3. In this case, we observe from (7) that

x( j0)
u =

� f−t−1∑
v=0

xu, j0,v with xu, j0,v =
1
p

n−1∑
w=0

sp

(
g2� fw+2n(�tv+�t−1u+ j0)

)
.

In the last sum, since the elements g2� fw mod p with 0 ≤ w ≤ n − 1 run over the nth roots of
unity in (Z/pZ)×, we see that xu, j0,v ∈ Z. It follows that

1 ≤ xu, j0,v ≤ n − 1 and hence � f−t ≤ x( j0)
u ≤ (n − 1)� f−t.

From this, we obtain the assertion for the case n ≥ 3. �

For integers t and j0 with 2 ≤ t ≤ f and 0 ≤ j0 ≤ �t−1 − 1, we define polynomials Gt, j0
and Ft, j0 in Z[T ] by

Gt, j0 = Gt, j0 (T ) =
�−1∑
u=0

x( j0)
u T u and Ft, j0 = Ft, j0 (T ) =

�−1∑
u=0

y
( j0)
u T u,

respectively. We put ζ� = ζ�
t−1

�t
= ϕt(g2n�t−1

).

Lemma 2. Under the above setting and notation, we have

a j0 = Gt, j0 (ζ�) = Ft, j0 (ζ�).

Proof. Let j0 be an integer with 0 ≤ j0 ≤ �t−1 − 1. We see from (4) and (6) that

(8) ζ
− j0
�t
βδϕt =

�t−1−1∑
j=0

a jζ
j− j0
�t
=

1
p

� f−1∑
v=0

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑
w=0

sp

(
g2� fw+2nv

)⎞⎟⎟⎟⎟⎟⎟⎠ ζv− j0
�t
.

For an �tth root ζ of unity, we have TrEt/E1 (ζ) = �
t−1ζ or 0 according as ζ� = 1 or not, where

Tr denotes the trace map. Hence, it follows from the first equality of (8) that

(9) �t−1a j0 = TrEt/E1

(
ζ
− j0
�t
βδϕt

)

because −(�t−1 − 1) ≤ j− j0 ≤ �t−1 − 1. In the third term of (8), ζv− j0
�t

is an �th root of unity if
and only if v − j0 is a multiple of �t−1. Hence, writing v − j0 = �t−1μ with 0 ≤ μ ≤ � f−t+1 − 1
for such v, we observe that
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TrEt/E1 (ζ
− j0
�t
βδϕt ) =

�t−1

p

� f−t+1−1∑
μ=0

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑
w=0

sp

(
g2� fw+2n(�t−1μ+ j0)

)⎞⎟⎟⎟⎟⎟⎟⎠ ζμ� .
Finally, writing μ = �v + u with 0 ≤ v ≤ � f−t − 1 and 0 ≤ u ≤ � − 1, we obtain

TrEt/E1 (ζ
− j0
�t
βδϕt ) =

�t−1

p

�−1∑
u=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
� f−t−1∑
v=0

n−1∑
w=0

sp

(
g2� fw+2n(�tv+�t−1u+ j0)

)⎞⎟⎟⎟⎟⎟⎟⎟⎠ ζu
�(10)

= �t−1Gt, j0 (ζ�) = �
t−1Ft, j0 (ζ�).

The assertion follows from (9) and (10). �

We denote by Φ� = Φ�(T ) the �th cyclotomic polynomial. For a prime number r and a
polynomial G(T ) ∈ Z[T ], let G̃(T ) = G(T ) mod r ∈ Fr[T ] where Fr is the finite field with r
elements.

Lemma 3. Under the above setting, let r be a prime number satisfying the condition (ii)
in Theorem 1. Then, there exists some j0 such that F̃t, j0 (T ) is not a multiple of Φ̃�(T ) in
Fr[T ].

Proof. It is well known that βδϕt � 0 (see [25, page 38]). This implies that in the formula
(6), a j0 � 0 for some j0. For this j0, we see from Lemma 2 that y( j0)

0 � y( j0)
u for some

1 ≤ u ≤ � − 1. For this pair ( j0, u), it follows from Lemma 1 that

1 ≤ |y( j0)
0 − y( j0)

u | ≤
{
� f−t − 2, if n = 1,
(n − 2)� f−t, if n ≥ 3.

If Ft, j0 ≡ cΦ� mod r for some constant c, then y( j0)
0 −y( j0)

u is a multiple of r. Hence, it follows
from the above inequality that r ≤ � f−t − 2 or r ≤ (n − 2)� f−t according as n = 1 or n ≥ 3.
Thus we obtain the assertion. �

Proof of Theorem 1; the case t ≥ 2. Let r be a prime number satisfying the conditions (i)
and (ii) of Theorem 1. Assume that r divides h−t /h−t−1. Then it follows from (1) that

βδϕt ≡ 0 mod rt

because r remains prime in Et by the condition (i). Hence, by (6), we have a j0 ≡ 0 mod r1

for all j0. On the other hand, Φ̃�(T ) is irreducible over Fr as r is a primitive root modulo �.
Therefore, we observe from Lemma 2 that F̃t, j0 (T ) is a multiple of Φ̃�(T ) for all j0, which
contradicts Lemma 3. �

Next, let us show Theorem 1 for the case t = 1. In (4), rewriting v with �v + u with
0 ≤ v ≤ � f−1 − 1 and 0 ≤ u ≤ � − 1, we see that

(11) βδϕ1 =
1
p

�−1∑
u=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
� f−1−1∑
v=0

n−1∑
w=0

sp

(
g2� fw+2n�v+2nu

)⎞⎟⎟⎟⎟⎟⎟⎟⎠ ζu
� ∈ E1.

For each 0 ≤ u ≤ � − 1, we put
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(12) xu =
1
p

� f−1−1∑
v=0

n−1∑
w=0

sp

(
g2� fw+2n�v+2nu

)

and

yu =

{
xu − 1, if n = 1,
xu − � f−1, if n ≥ 3.

Similarly to Lemma 1, we can show the following assertion using the assumption (5) with
t = 1.

Lemma 4. Under the above setting, the rational yu is an integer and satisfies

0 ≤ yu ≤
{
� f−1 − 2, if n = 1,
(n − 2)� f−1, if n ≥ 3.

We define polynomials G1 and F1 in Z[T ] by

G1 = G1(T ) =
�−1∑
u=0

xuT u and F1 = F1(T ) =
�−1∑
u=0

yuT u,

respectively. Then, by (11) and (12), we have

(13) βδϕ1 = G1(ζ�) = F1(ζ�).

Similarly to Lemma 3, we can show the following assertion using Lemma 4 and the fact
βδϕ1 � 0.

Lemma 5. Under the above setting, let r be a prime number satisfying the condition (ii)
in Theorem 1 with t = 1. Then, F̃1(T ) is not a multiple of Φ̃�(T ) in Fr[T ].

Proof of Theorem 1; the case t = 1. Let r be a prime number satisfying the condition (i’)
in Remark 1(I) and the condition (ii) in Theorem 1 with t = 1. Assume that r divides h−1 /h

−
0 .

Then, it follows from (1) that βδϕ1 ≡ 0 mod r1 because r remains prime in E1 by (i’). By
(13), this implies that F̃1(T ) is a multiple of Φ̃�(T ) because Φ̃� is irreducible over Fr by (i’).
Thus we obtain the assertion from Lemma 5. �

Denote by h+t the class number of the maximal real subfield K+t of Kt in the usual sense.
Similarly to the relative class numbers, we see that h+t−1 divides h+t . It is known that h+t /h

+
t−1 is

odd if h−t /h−t−1 is odd ([12, Lemma 1]). Hence, for n = 1 or 3, it follows from Theorem 2 that
h+f /h

+
f−1 is odd when 2 is a primitive root modulo �2. We can slightly relax the assumption

of this assertion as follows.

Proposition 2. Let n = 1 or 3. Let � be an odd prime number with � ≡ 3 mod 4,
and assume that the order of the class 2 modulo �2 in the multiplicative group (Z/�2Z)× is
(� − 1)�/2. Then h+f /h

+
f−1 is odd.

Proof. When n = 1, we already showed the assertion in [12, Proposition 1] effectively
using the fact that G̃ f , j0 is not a multiple of Φ̃� in F2[T ] for some j0 ([12, Lemma 3]) and
a theorem of Cornacchia [2, Theorem 1] on class number parity of the cyclotomic fields of
prime conductor. When n = 3, we can show the assertion exactly in the same way using
Lemma 3. �
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Proof of Theorem 3. In view of (4), we put

g(T ) =
� f−1∑
v=0

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑
w=0

sp(g2� fw+2nv)

⎞⎟⎟⎟⎟⎟⎟⎠ (1 + T )v(14)

= c0 + c1T + · · · + c� f−1T �
f−1 ∈ Z[T ].

By (4), we have

(15) βδϕt =
1
2

B1,δϕt =
1
p
g(ζ�t − 1) with ζ�t = ϕt(g2n).

If c0 is not divisible by �, we see from (1), (14) and (15) that � � h−t /h−t−1 for every t, and
we have nothing to do. Therefore, we let �|c0. We put mt = et − et−1 for brevity, so that we
have �mt‖h−t /h−t−1. Assume that ms < φ(�s) for some 1 ≤ s ≤ f − 1. If ci were divisible by �
for all 0 ≤ i ≤ φ(�s) − 1, then it would follow that βδϕs ≡ 0 mod � from (14) and (15), and
hence ms ≥ φ(�s) by (1). Therefore, we see that there exists some 1 ≤ k ≤ φ(�s) − 1 for
which �|ci for all 0 ≤ i ≤ k− 1 and � � ck. Then we observe from (14) and (15) that for every
t with s ≤ t ≤ f , β1,ϕt = (ζ�t − 1)k × xt with some �-adic unit xt. By (1), this implies that
mt = k for s ≤ t ≤ f . �

Example 1. When (p, �, f ) = (81163, 3, 5), we find that h−0 = 39 in the table of Wada and
Saito [23] on the class number of imaginary quadratic fields Q(

√−m) for m < 105. As h−0 is
divisible by 3, so is h−1 /h

−
0 by [16, Theorem 5]. Shoich Fujima kindly computed the values xu

defined in (12) at the request of the author. The values are 6571, 6740 and 6780 for u = 0, 1
and 2, respectively, with a primitive root g = 2. It follows from (11) that βδϕ1 ≡ 1−ζ3 mod 3.
Hence, 3‖h−1 /h−0 by (1). Therefore, we see from Theorem 3 with s = 1 that 3‖h−t /h−t−1 for all
1 ≤ t ≤ 5.

The referee kindly supplied us with the following examples. When (p, �, f ) = (131707, 3,
5), (e0, e1, e2, e3, e4, e5) equals (1, 3, 8, 13, 18, 23) and the assumption of Theorem 3 is satis-
fied with s = 2. Further, for (p, �, f ) = (1051639, 7, 4), (365251, 5, 3) and (7860079, 3, 8),
ei’s are equal to

(1, 4, 7, 10, 13), (1, 5, 9, 13), and (3, 7, 17, 25, 33, 41, 49, 57, 65)

and the assumption is satisfied with s = 1, s = 2 and s = 3, respectively. These examples
are obtained by using PARI/GP [27].

4. Several related results

4. Several related results
In this section, we give some other results on the ratio h−t /h−t−1 using the following asser-

tion of Ramaré [20, Corollary 1] on Bernoulli numbers. We put


p =
log p + κ

4π
√

p with κ = 5 − 2 log 6 = 1.416481 · · ·
for each odd prime number p.

Lemma 6 (Ramaré). The inequality |βχ| ≤ 
p holds for an odd prime number p and
every odd Dirichlet character χ of conductor p.
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A result quite similar to Lemma 6 is also given in Louboutin [17, Theorem 1].

Let p = 2n� f + 1 be as in §1, and we use the same notation as in the previous sections.
The following assertion is sharper (resp. weaker) than Theorem 1, roughly speaking when
t < f /2 (resp. t > f /2).

Proposition 3. Under the above setting, a prime number r does not divide the ratio
h−t /h−t−1 for all t with 1 ≤ t ≤ f when r satisfies the condition (i) in Theorem 1 and the
inequality r > 
p.

Proof of Proposition 3. Assume that r divides h−t /h−t−1 for some t with 1 ≤ t ≤ f . Then,
since r remains prime in Et = Q(ζ�t ), we observe from (1) that rφ(�

t) divides h−t /h−t−1, where
φ(∗) denotes the Euler function. On the other hand, we see from Lemma 6 and (1) that the
r-part of h−t /h−t−1 is smaller than or equals to 
φ(�

t)
p . Therefore, we obtain the assertion. �

The following assertion is an immediate consequence of Lemma 6 and the class number
formula for the imaginary quadratic field K0 = Q(

√−p) ([25, Theorem 4.17]).

Lemma 7. Under the above setting, a prime number r does not divide h−0 when r > 2
p.

When n > 1, Proposition 3 is an assertion on the relative class number of a proper subfield
of Q(ζp). However, in a special setting where n = re is a power of an odd prime number r,
we can derive assertions on h−p as follows.

Proposition 4. Let p = 2re� f + 1 be a prime number where r and � are different odd
prime numbers and e, f ≥ 1. Then r does not divide h−p when r satisfies the condition (i) in
Theorem 1 and the inequality r > 2
p.

Proposition 5. Let p = 2r� + 1 be a prime number where r and � are different odd prime
numbers, and assume that r is a primitive root modulo � (the condition (i’) in Remark 1(I)).
Then r divides h−p if and only if it divides h−0 .

Proof of Proposition 4. We see from Proposition 3 and Lemma 7 that r does not divide
the relative class number h−f of Kf . As [Q(ζp) : Kf ] = re, the condition r � h−f is equivalent
to r � h−p by [16, Theorem 5]. Hence, we obtain the assertion. �

Proof of Proposition 5. We see that r does not divide h−1 /h
−
0 from Theorem 2 (I) noting

that r ≥ r − 1 = n − 1 under the notation in Theorem 2. Thus, the relative class number h−1
is divisible by r if and only if so is h−0 . As [Q(ζp) : K1] = r, we obtain the assertion by [16,
Theorem 5]. �

In [1, Proposition 3.2], Agoh showed that r � h−p for any prime number p of the form
p = 4r + 1 where r is a prime number with r ≡ 3 mod 4. We can give similar type of
assertions using Lemma 7 and Proposition 5 as follows.

Example 2. (I) Let p = 6r + 1; the case � = 3 in Proposition 5. Let r be an odd prime
number such that r ≡ 2 mod 3 and p = 6r + 1 is a prime number; r = 5, 11, 17, 23, 47, · · · .
By Lemma 7, we have r � h−0 when

(16) r =
p − 1

6
> 2
p =

log p + κ
2π

√
p.
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Then it follows from Proposition 5 that r � h−p . We can show that (16) is satisfied when
p = 6r + 1 > 25 in an elementary way. The minimal case where r = 5 and p = 31 satisfies
the last inequality. Hence, we see that r � h−p for p = 6r + 1 whenever r ≡ 2 mod 3.

(II) Let p = 10r + 1; the case � = 5 in Proposition 5. The prime numbers r with r ≡
2, 3 mod 5 for which p = 10r + 1 is a prime number are r = 3, 7, 13, 43, 97, · · · . Using
Lemma 7 and Proposition 5 for this type of p, we see that among such r, r � h−0 and hence
r � h−p for r ≥ 13 in a way similar to (I). For r = 3 or 7, we have h−0 = r (and h−1 /h

−
0 = 1)

from the table [21, Appendix].
(III) Let p = 14r + 1; the case � = 7 in Proposition 5. The prime numbers r with

r ≡ 3, 5 mod 7 for which p = 14r + 1 is a prime number are 3, 5, 17, 47, 59, · · · . Again
using Lemma 7 and Proposition 5, we see that among such r, r � h−0 and hence r � h−p for
r ≥ 47. For r = 3, 5 or 17, we see that r � h−0 from [21, Appendix], and hence that r � h−p by
Proposition 5. Therefore, r � h−p for p = 14r + 1 when r satisfies r ≡ 3, 5 mod 7.

Acknowledgements. The author is grateful to S. Fujima for computing the values of xu

in Example 1. In the first version of the paper, Theorem 3 is given only for the case s = 1.
The author thanks to the anonymous referee for suggesting him to include the case s > 1 in
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