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Abstract

For a prime number p = 3 mod 4, we write p = 2n¢/ + 1 for some power ¢/ of an odd prime
number ¢ and an odd integer n with £ 4 n. For 0 < ¢ < f, let K, be the imaginary subfield of
Q(¢,) of degree 2¢' and let h; be the relative class number of K;. We show that for n = 1 (resp.
n 2 3), a prime number r does not divide the ratio i, /h,_, when r is a primitive root modulo 2
and r > ¢/7' — 1 (resp. r > (n — 2)¢/~" + 1). In particular, for n = 1 or 3, the ratio he /i at
the top is not divisible by r whenever r is a primitive root modulo £2. Further, we show that the
C-part of i /h_, stabilizes for “large” t under some assumption.

1. Introduction

Let p > 7 be a prime number with p = 3 mod 4. Then we can write p = 2nf/ + 1 for
some power £/ of an odd prime number ¢ and an odd integer n with £ 4 n. (Of course, this
expression or the pair (n, £/) is not uniquely determined for a given p.) As p = 3 mod 4,
the imaginary quadratic field Ky = Q(1/—p) is a subfield of the pth cyclotomic field Q(Z),).
Here, for an integer m, {, denotes a primitive mth root of unity. For each 1 < ¢ < f, let
K;/ Ky be the cyclic extension of degree ¢’ contained in Q({,). Let h; denote the relative
class number of K;. It is known and easy to see that /_, divides i, (see Hasse [8, Satz 32]).
When f =1andn =1 (resp. n > 1), it is shown in Metsdnkyld [18, Theorem 1] (resp. [11,
Theorem 2]) that /7 /h; is not divisible by a prime number r if r is a primitive root modulo
¢ and r > n — 1. Further, when f > 2 and n = 1, we have shown in [5, Theorem] that the
ratio h;/ hj:_l at the top is not divisible by a prime number » whenever r is a primitive root
modulo £2. We generalize these results as follows.

Theorem 1. Under the above setting, let p = 2nt’ + 1 be a prime number where € is
an odd prime number, f > 1 and n is an odd integer with £ ¥ n. Let t be an integer with
1 <t < f. Then a prime number r does not divide the ratio h; [h,_, under the following two
conditions on r.

(i) r is a primitive root modulo >.

(i1) r satisfies the inequality

. o -1, ifn=1,
"Flm-¢ w1, ifn=3

The following theorem for the case ¢ = f is an immediate consequence of Theorem 1.
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Theorem 2. Under the above setting, the following assertions hold on the ratio h}/ h;_ 1
at the top .

(D) A prime number r does not divide hjj / hj:_l when it satisfies the condition (i) in Theorem
landr>n—-1.

(I) For n = 1 or 3, a prime number r does not divide h} /h}_1 when it satisfies the
condition (1) in Theorem 1.

Let p be a prime number of the special form p = 2-3/ +1 with f > 2. When 2 < f < 325,
itis known that p = 23 +1isa prime number for f = 2,4,5,6,9, 16, 17, 30, 54, 57, 60, 65,
132, 180, 320 by Williams and Zarnke [26]. Further, it is a prime number for f = 1175232
by Grau, Oller-Marcén and Sadornil [7, page 511]. For such a prime number, the following
assertion is also an immediate consequence of Theorem 1.

Proposition 1. Let p = 2-3/ + 1 with f > 2. Then, a prime number r does not divide the
ratio h}/h;_z when r =2, 5 mod 9.

As for the ¢-part of the class numbers /;, we observe that there are several cases where
they enjoy Iwasawa type class number “formula” in Example of Lehmer [16, page 607] and
in Schoof [21, Appendix]. Such examples are found also in an unpublished table of Ken
Yamamura on relative class numbers of imaginary abelian fields of prime power conductors
< 10*. For instance, let (p, ¢, f) = (379,3,3) or (751, 5, 3), where a triple (p, £, f) means a
prime number p = 2nt/ + 1 with n = (p — 1)/2¢/ and ¢ { n. Then, accordingly, we have
3|k or 5|k for 0 < ¢t < 3. We define an integer e, by ¢“||h; foreach 0 <t < f. As
h._, divides h; , we have e, > ¢;_1. On the integers e;, the following assertion holds.

Theorem 3. Under the above setting, let f > 2 and assume that e; — e;_y < $(L°) for
some 1 < s < f — 1, where ¢(x) is the Euler function. Then e, — e,_1 = e; — es_1 for every t
with s <t < f.

Under the assumption that the ¢-part of the ideal class group of Kj is cyclic, Theorem 3
for the case s = 1 is an immediate consequence of [21, Proposition 2.4]. The above two
examples satisfy the assumption of Theorem 3 for s = 1. Further examples are given at the
end of §3 after showing Theorem 3.

RemMark 1. (I) The assumption (i) in Theorem 1 is necessary only to assure that the prime
number r remains prime in Q({x). Therefore, when ¢ = 1, we can replace the assumption (i)
with the weaker one that

(1’) r is a primitive root modulo ¢.

See Proof of Theorem 1; the case t = 1 in §3.

(II) Let n = 1, and let us fix an odd prime number ¢ such that 2 is a primitive root modulo
%, Then, for a prime number p of the form p = 2¢/ + 1 with f > 2, we showed in [12,
Propositions 2, 3] that h}_l/h}_2 is odd if p is larger than (24(€ — 1))D  and that it is
always odd when ¢ = 3 using some computational data obtained in [5]. In [12], we showed
this fact for £ = 3 (namely, Proposition 1 for the case r = 2) with a method completely
different from the one in this paper.

(IIT) When f = 1, several other results are known on indivisibility of the class number of
K or the maximal real subfield K| such as [3, 4, 6, 13, 15, 19, 22].
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Remark 2. Let £ be an odd prime number with £ = 3 mod 4. Let Q, be the cyclotomic
Z-extension over the imaginary quadratic field Qo = Q(V—£). We denote by h;, the relative
class number of the nth layer Q, of Q. /€. It is a well known theorem of Washington
[24] that a prime number r # ¢ does not divide the ratio h,/h;_, for sufficiently large n.
Explicit versions of the theorem are given in Horie [9, Theorem 2] and [10, Proposition 2],
[14, Proposition 1]. For instance, a prime number r does not divide 4, for all n > 0 when r
is a primitive root modulo £? and r > (€ - 1)/2 — 2d,; where d; is the maximal proper divisor
of (£ —1)/2 ([10, Proposition 2]). Our Theorem 1 for the finite tower Ky/Kj is, in a sense,
analogous to these results for the Z,-tower Q. /€.

For the class numbers in Q. /Qy, it is shown in [14, Proposition 2] with the help of
computer that r does not divide h, /h;_, for all £ < 10000 and all 1 < n < 100 whenever r
is a primitive root modulo £>. At present, we have no example of a triple (£, n, r) for which
r divides hy, /h; | and r is a primitive root modulo £*>. However, in our setting inside the
pth cyclotomic field, there do exist some exceptional cases where r divides iy /h; and r is
a primitive root modulo £2. As an example, when p = 163 = 2- 3% + 1 and r = 2, the ratio
hi [hy is even and h; /h_, is odd for 2 < ¢t < 4 by a table in [21, Appendix]. As another
example, let p = 2 - 3% 4+ 1, which is known to be a prime number (see [26]). We have
shown in [5, §4] with the help of computer that h; /h is even but &, /h,_, is odd for every
2 <t < 30. Even in such exceptional cases, Theorem 2 says that » never divides the ratio at
the top when r is a primitive root modulo £* (and r > n — 1).

2. Bernoulli numbers

For an odd Dirichlet character y of conductor d, we denote by

1 1 d-1
5B =55 Z] ax(a)

the half of the generalized Bernoulli number. We let p = 2nf/ +1 be as in §1, and we use the
same notation as in §1. We denote by ¢ the quadratic character associated to the imaginary
quadratic field Ky = Q(y/=p). Foreach 1 <t < f, we have

(1) hefhsy = p* | | (Bog)

Pt

ﬁ)(:

by the analytic class number formula (Washington [25, Theorem 4.17]) where ¢, runs over
the even Dirichlet characters of conductor p and order ¢/ and @ = 1 or 0 according as
(n,t) = (1, ) or not. Here, we have used the fact that the unit index of an imaginary abelian
field of conductor p is 1 ([8, Satz 23]). The proofs of our assertions are based on the class
number formula (1).

We fix a primitive root g modulo p. We easily see that the set igz([‘fw”‘”) with0 < w < n-1
and 0 < v < ¢/ — 1 is a complete set of representatives of the multiplicative group (Z/pZ)*.
For an integer x € Z, let 5,(x) denote the unique integer such that s,(x) = x mod p and
0 < 5,(x) < p— 1. We see that

) sp(_x) =p- sp(x)
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for x with p 1 x. In all what follows, we put

3) Lo = @g™),

which is a primitive ¢'th root of unity. Then, noting that the quadratic character ¢ is odd and
using (2), we observe that

1 S Fw+nv Tw+nv v
IB&p, = 5 Z(sp(gz([ " ))_sp(_g2(€ " )))Qx

2P w=0 v=0
1 n-1¢/-1

- (2S (g2(€fw+nv)) p) ézvt
2p w=0 v=0
1 -1 n-1 n -1

- s ( 2(g.fw+nv))é«zt _ 5 Z {U’
p v=0 w=0 v=0

We see that the last sum vanishes as ¢ > 1, and hence we obtain

lff—l n-1
4) ,85% = ; Z (Z sp(g%’fu;+2nv)) é«z[

v=0 \w=0

3. Proofs of Theorems 1 and 3

In this section, we first prove Theorem 1 after showing some preliminary lemmas, and
give a related proposition. The proof of Theorem 3 is given at the end of the section.

Let p = 2n¢’ + 1 be as in §1, and we use the same notation as in the previous sections.
To prove Theorem 1, we may as well assume that f > 2 because, as we mentioned in §1,
Theorem 1 for the case f = 1 is already settled in [11, 18]. Further, we may as well assume
thatn > 1 or f —¢ > 1, or equivalently that

(3) nt!" > 1

because Theorem 1 for the case n = 1 and ¢ = f (> 2) is already shown in [5, Theorem]. For
1 <t< f,let E; = Q({x) so that 85, € E;. The condition ntf~>1 implies that the order of
the character 6¢, does not equal p — 1 = 2nf/. Hence, Bs,, is an algebraic integer of E; by
[8, Satz 32]. Let £ = ¢,(g*") be as in (3). Let O, be the ring of algebraic integers of E,.

First, we show Theorem 1 for the case + > 2. Since Bs,, € O; and the set {Z;, with
0 < j < ¢! — 1 constitutes a free basis of (9, over 9, we can uniquely write

o1
(©) Bo = ), aidi
=0
for some a; € O;. For u and jo withO <u <{-1and 0 < jj < ¢! — 1, we put

o71—1 n—1

7 x(ujo) _ 5y (gzgfw+2n(€tu+fr71 u+jo))

B

and
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(o) _ X,(le)—l, ifn=1,
Yu" = x,(f(’) — o if n > 3.
Lemma 1. The rational yE,jO) is an integer and satisfies the inequality:
0 <y < o -2, ifn=1,
ST =20, ifn>3.
Proof. We see that xff") € Z because nt/~" > 1 by the assumption (5) and the elements
g?'w+2nf mod p in the sum (7) are all the n¢/~'th roots of unity in the multiplicative group

(Z/pzZ)*. Tt follows that
1<% <nef~ -1

and hence, in particular, the assertion for the case n = 1 is settled. Let us deal with the case
n > 3. In this case, we observe from (7) that

-1 1=

(o) _ : _ 205 w+2n(Lo+0 ut

X" = Xujoo With x5, =— splg ( oY,
v=0 p w=0

In the last sum, since the elements ngfw mod p with O < w < n — 1 run over the nth roots of

unity in (Z/pZ)*, we see that x, j, , € Z. It follows that

1 <xj,0 <n—1 andhence O < X0 < (g — 1)e

From this, we obtain the assertion for the case n > 3. O

For integers ¢ and jo with2 <t < fand 0 < jo < ¢! — 1, we define polynomials G, ;,
and F, ;, in Z[T] by

(-1 -1
Gf,jo = Gy,jO(T) = Z xflJo)Tu and Fl,jo = Ft,jo(T) - Z yf,’O)T”,
u=0 u=0

respectively. We put ; = é’t{f:“ = o gzw-l)_

Lemma 2. Under the above setting and notation, we have
aj, = Gi,j()(gf) = Ft,j()({f)-
Proof. Let jj be an integer with 0 < j, < £'~! — 1. We see from (4) and (6) that
_ -1 o 1 -1 (n-1 , '
®) " Bog, = Z a;ig; " = . Z [Z sp (g% w+2"”)] .
j=0 v=0 \w=0

For an {'th root ¢ of unity, we have Trg, /g, () = £'~' or 0 according as £ = 1 or not, where
Tr denotes the trace map. Hence, it follows from the first equality of (8) that

9 gt_laj() = TrEl/El (gg_tjolg&p,)

because —(£! = 1) < j— jo < €' = 1. In the third term of (8), £ is an (th root of unity if
and only if v — jj is a multiple of £/~!. Hence, writing v — jo = £ ' with 0 < u < £/=*1 -1
for such v, we observe that



954 H. IcHiMurA

=11 (-1
» o1t s 2l
TrE,/E] (4{110ﬂ5¢1) — 7 Z Z Sp (92[ w+2n(L ,U+,]0)) {/;

n=0 w=0

Finally, writing 4 = v+ u with0 <v < ¢/~ =1 and 0 < u < € - 1, we obtain

B 71 (=1 (¢/7'=1 n-1 o
(10) TrE,/El (ggr]()ﬁ5wr) - Z Z sp (g2€fw+2n([’ v+ 1u+j())) é’éf
p u=0\ v=0 w=0
= (7'G (&) = 671 F (L)
The assertion follows from (9) and (10). m]

We denote by ®; = ®,(T) the {th cyclotomic polynomial. For a prime number r and a
polynomial G(T') € Z[T], let G(T) = G(T) mod r € F,[T] where F, is the finite field with r
elements.

Lemma 3. Under the above setting, let r be a prime number satisfying the condition (ii)
in Theorem 1. Then, there exists some jo such that F 1jo(T) is not a multiple of OuT) in
E,.[T].

Proof. It is well known that Bs,, # 0 (see [25, page 38]). This implies that in the formula
(6), aj, # 0 for some jo. For this jy, we see from Lemma 2 that y(()]") * yﬁf‘))

1 <u < ¢— 1. For this pair (o, ), it follows from Lemma 1 that

o= 2, ifn=1,
(n-2)~", ifn>3.

for some

1< Iyéjo) _ y;]o)l < {

If F; j, = c®¢ mod r for some constant ¢, then ygj(’) - yaj‘)) is a multiple of . Hence, it follows
from the above inequality that r < &/~ — 2 or r < (n — 2)¢/~" according as n = 1 or n > 3.

Thus we obtain the assertion. O

Proof of Theorem 1; the case t > 2. Let r be a prime number satisfying the conditions (i)
and (ii) of Theorem 1. Assume that r divides /; /h;_,. Then it follows from (1) that

Bse, = 0 mod rO,

because r remains prime in E; by the condition (i). Hence, by (6), we have a, = 0 mod rO,
for all jo. On the other hand, ®(T) is irreducible over F, as r is a primitive root modulo .
Therefore, we observe from Lemma 2 that F' 1.jo(T) is a multiple of @(T) for all Jo, which
contradicts Lemma 3. |

Next, let us show Theorem 1 for the case t = 1. In (4), rewriting v with fv + u with
O0<v<¢~'—1land0<u<{-1,we see that

=1 (¢/7'-1 n-1

(11) Bsp, = 11_72 Z Z Sp (ngfw+2n€u+2nu) ;' € E).

u=0\ v=0 w=0

ForeachO <u < ¢ -1, we put
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ff -1 n-1
(12) Z Z sy (g 2€/w+2n€v+2nu)
w=0
and
x4 ifn=1,
=\ x -, ifn>3.

Similarly to Lemma 1, we can show the following assertion using the assumption (5) with
r=1.

Lemma 4. Under the above setting, the rational y, is an integer and satisfies

f=1 ifn =
0<y, < 4 2,_] zfn 1,
(n—2)e/71, ifn > 3.
We define polynomials G| and F; in Z[T] by
(-1 -1
=G(T) = me and  Fy=F(T)= ) yT",
u=0 u=0

respectively. Then, by (11) and (12), we have
(13) Bser = G1(&e) = F1(&p).

Similarly to Lemma 3, we can show the following assertion using Lemma 4 and the fact
,354;1 + 0.

Lemma 5. Under the above setting, let r be a prime number satisfying the condition (ii)
in Theorem 1 with t = 1. Then, F\(T) is not a multiple Ofd)((T) inF.[T].

Proof of Theorem 1; the case t = 1. Let r be a prime number satisfying the condition (i’)
in Remark 1(I) and the condition (ii) in Theorem 1 with # = 1. Assume that r divides A /hy.
Then, it follows from (1) that Bs,, = 0 mod rO; because r remains prime in £ by (i’). By
(13), this implies that F(T) is a multiple of ®/(T) because D, is irreducible over F, by (i°).
Thus we obtain the assertion from Lemma 5. |

Denote by &} the class number of the maximal real subfield K" of K, in the usual sense.
Similarly to the relative class numbers, we see that &, | divides 4;. Itis known that 2 /" | is
oddif iy /h_, 1s odd ([12, Lemma 1]). Hence, for n = 1 or 3, it follows from Theorem 2 that
h}ﬁ/h}:_l is odd when 2 is a primitive root modulo £>. We can slightly relax the assumption
of this assertion as follows.

Proposition 2. Let n = 1 or 3. Let { be an odd prime number with £ = 3 mod 4,

and assume that the order of the class 2 modulo €* in the multiplicative group (Z/*Z)* is
(€ - 1)t/2. Then h}“. /h;;_1 is odd.

Proof. When n = 1, we already showed the assertion in [12, Proposition 1] effectively
using the fact that G.f, J» 18 not a multiple of @, in F,[T] for some Jo ([12, Lemma 3]) and
a theorem of Cornacchia [2, Theorem 1] on class number parity of the cyclotomic fields of
prime conductor. When n = 3, we can show the assertion exactly in the same way using
Lemma 3. m|
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Proof of Theorem 3. In view of (4), we put

-1 (n-1
(14) g(T) = Z[Z 5 g2[fw+2rw)] (1+TY
v=0 \w=0

cot+arT+ - +cy  TU €Z[T).

By (4), we have
1 1 , .
(15) Poo, = 5 B0, = 5 g(lr —1) with ¢p = ¢,(g™").

If ¢ is not divisible by £, we see from (1), (14) and (15) that £ t h; /h,_, for every ¢, and
we have nothing to do. Therefore, we let £|co. We put m, = e, — ;1 for brevity, so that we
have ™||h; /h;_,. Assume that m; < ¢(£°) for some 1 < s < f — 1. If ¢; were divisible by £
for all 0 < i < ¢(£*) — 1, then it would follow that 85, = 0 mod ¢ from (14) and (15), and
hence m; > ¢(€°) by (1). Therefore, we see that there exists some 1 < k < ¢(£°) — 1 for
which {|c; forall 0 < i < k—1 and ¢ { ¢;. Then we observe from (14) and (15) that for every
twiths <t < f, Biy, = (o — ¥ x x, with some £-adic unit x,. By (1), this implies that
m,=kfors<tr<f. O

ExampLe 1. When (p, ¢, ) = (81163, 3,5), we find that 4; = 39 in the table of Wada and
Saito [23] on the class number of imaginary quadratic fields Q(v/—m) for m < 10°. As hg is
divisible by 3, sois i /hy by [16, Theorem 5]. Shoich Fujima kindly computed the values x,
defined in (12) at the request of the author. The values are 6571, 6740 and 6780 for u = 0, 1
and 2, respectively, with a primitive root g = 2. It follows from (11) that Bs,, = 1-{3 mod 3.
Hence, 3||h; /hy by (1). Therefore, we see from Theorem 3 with s = 1 that 3|k, /h;_, for all
1<t<5s.

The referee kindly supplied us with the following examples. When (p, ¢, f) = (131707, 3,
5), (eo, €1, €2, €3, €4, 65) equals (1,3,8,13,18,23) and the assumption of Theorem 3 is satis-
fied with s = 2. Further, for (p, ¢, f) = (1051639,7,4), (365251, 5, 3) and (7860079, 3, 8),
e;’s are equal to

1,4,7,10,13), (1,5,9,13), and (3,7,17,25,33,41,49,57,65)

and the assumption is satisfied with s = 1, s = 2 and s = 3, respectively. These examples
are obtained by using PARI/GP [27].

4. Several related results
In this section, we give some other results on the ratio 4; /A, using the following asser-
tion of Ramaré [20, Corollary 1] on Bernoulli numbers. We put

I
@, = °g+ﬂ+“\/ﬁ with k=5-2log6 = 1.416481 -

for each odd prime number p.

Lemma 6 (Ramaré). The inequality |5,| < @, holds for an odd prime number p and
every odd Dirichlet character y of conductor p.
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A result quite similar to Lemma 6 is also given in Louboutin [17, Theorem 1].

Let p = 2nt/ + 1 be as in §1, and we use the same notation as in the previous sections.
The following assertion is sharper (resp. weaker) than Theorem 1, roughly speaking when

t< f/2 (resp. t > f/2).

Proposition 3. Under the above setting, a prime number r does not divide the ratio
hy [hi_, for all t with 1 < t < f when r satisfies the condition (i) in Theorem 1 and the
inequality r > @,,.

Proof of Proposition 3. Assume that r divides i, /h_, for some 7 with 1 < ¢ < f. Then,
since r remains prime in E; = Q({x), we observe from (1) that ) divides hy [h_,,
¢(x) denotes the Euler function. On the other hand, we see from Lemma 6 and (1) that the
r-part of i; /h,_, is smaller than or equals to wﬁ(m. Therefore, we obtain the assertion. 0O

where

The following assertion is an immediate consequence of Lemma 6 and the class number
formula for the imaginary quadratic field Ky = Q(v/—p) ([25, Theorem 4.17]).

Lemma 7. Under the above setting, a prime number r does not divide h; when r > 2w ,.

When n > 1, Proposition 3 is an assertion on the relative class number of a proper subfield
of Q({,). However, in a special setting where n = r¢ is a power of an odd prime number 7,
we can derive assertions on &), as follows.

Proposition 4. Let p = 2r°t/ + 1 be a prime number where r and € are different odd
prime numbers and e, f > 1. Then r does not divide h,, when r satisfies the condition (1) in
Theorem 1 and the inequality r > 2w .

Proposition 5. Let p = 2rf + 1 be a prime number where r and € are different odd prime
numbers, and assume that r is a primitive root modulo € (the condition (i’) in Remark 1(I)).
Then r divides h, if and only if it divides hy.

Proof of Proposition 4. We see from Proposition 3 and Lemma 7 that r does not divide
the relative class number hJZ of Kr. As [Q(Zp) : Ky] = r¢, the condition r ¢ hJI is equivalent
to r 1 h, by [16, Theorem 5]. Hence, we obtain the assertion. |

Proof of Proposition 5. We see that r does not divide 4} /h, from Theorem 2 (I) noting
that » > r — 1 = n — 1 under the notation in Theorem 2. Thus, the relative class number £}
is divisible by r if and only if so is i;. As [Q({,) : Ki] = r, we obtain the assertion by [16,
Theorem 5]. ]

In [, Proposition 3.2], Agoh showed that r 1 A, for any prime number p of the form
p = 4r + 1 where r is a prime number with r = 3 mod 4. We can give similar type of
assertions using Lemma 7 and Proposition 5 as follows.

ExampLE 2. (I) Let p = 6r + 1; the case ¢ = 3 in Proposition 5. Let r be an odd prime
number such that » = 2 mod 3 and p = 6r + 1 is a prime number; r = 5, 11, 17, 23,47, - - -.
By Lemma 7, we have r { h; when

p—1

1 +
(16) r=T>2w,,=M

21 VP
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Then it follows from Proposition 5 that r ¢ h;. We can show that (16) is satisfied when
p = 6r+1 > 25 in an elementary way. The minimal case where r = 5 and p = 31 satisfies
the last inequality. Hence, we see that r t &, for p = 6r + 1 whenever r = 2 mod 3.

(II) Let p = 10r + 1; the case £ = 5 in Proposition 5. The prime numbers r with r =
2, 3 mod 5 for which p = 10r + 1 is a prime number are r = 3, 7, 13, 43, 97, ---. Using
Lemma 7 and Proposition 5 for this type of p, we see that among such r, r 1 hy and hence
rt h; for r > 13 in a way similar to (I). For r = 3 or 7, we have h; = r (and hj/h; = 1)
from the table [21, Appendix].

(II) Let p = 14r + 1; the case £ = 7 in Proposition 5. The prime numbers r with
r = 3,5 mod 7 for which p = 14r + 1 is a prime number are 3, 5, 17, 47, 59, ---. Again
using Lemma 7 and Proposition 5, we see that among such r, r { hy and hence r t h, for
r>47. Forr =3,5or 17, we see that r { h; from [21, Appendix], and hence that r { hl‘, by
Proposition 5. Therefore, r { h1_7 for p = 14r + 1 when r satisfies r = 3, 5 mod 7.

AckNOWLEDGEMENTS. The author is grateful to S. Fujima for computing the values of x,
in Example 1. In the first version of the paper, Theorem 3 is given only for the case s = 1.
The author thanks to the anonymous referee for suggesting him to include the case s > 1 in
Theorem 3 and for supplying him with several impressive examples for Theorem 3.

References

[1]1 T. Agoh: On the relative class number of special cyclotomic fields, Math. Appl. 1 (2012), 1-12.
[2] P. Cornacchia: The parity of the class number of the cyclotomic fields of prime conductor, Proc. Amer.
Math. Soc. 125 (1997), 3163-3168.
[3] D. Davis: Computing the number of totally positive circular units which are squares, J. Number Theory 10
(1978), 1-9.
[4] D.R. Estes: On the parity of the class number of the field of qth roots of unity, Rocky Mountain J. Math. 19
(1989), 675-682.
[5] S.Fujima and H. Ichimura: Note on the class number of the pth cyclotomic field, Funct. Approx. Comment.
Math. 52 (2015), 299-309.
[6] S. Fujima and H. Ichimura: Note on the class number of the pth cyclotomic field, II, Exp. Math. 27 (2018),
111-118.
[7] J.M. Grau, A.M. Oller-Marcén and D. Sadornil: A primarity test for Kp" + 1 numbers, Math. Comp. 84
(2015), 505-512.
[8] H. Hasse: Uber die Klassenzahl abelscher Zahlkorper, Akademia Verlag, Berlin, 1952. Reprinted with an
introduction by J. Martine, Springer, Berlin, 1985.
[9] K. Horie: The ideal class group of the basic Z,-extension over an imaginary quadratic field, Tohoku Math.
J. 57 (2005), 375-394.
[10] H.Ichimura: A note on the relative class number of the cyclotomic Z,-extension of Q(v/=p), II, Proc. Japan
Acad. Ser. A 89 (2013), 21-23.
[11] H. Ichimura: Note on Bernoulli numbers associated to some Dirichlet character of prime conductor, Arch.
Math. (Basel) 107 (2016), 595-601.
[12] H. Ichimura: Note on the class number of the pth cyclotomic field, 111, Funct. Approx. Comment. Math. 57
(2017), 93-103.
[13] H. Ichimura: Triviality of Iwasawa module associated to some abelian fields of prime conductors, Abh.
Math. Semin. Univ. Hambg. 88 (2018), 51-66.
[14] H. Ichimura and S. Nakajima: A note on the relative class number of the cyclotomic Z,-extension of
Q(+/=p), Proc. Japan Acad. Ser. A 88 (2012), 16-20.



REeLATIVE CLASS NUMBER 959

[15] S.Jakubec, M. Pasteka and A. Schinzel: Class number of real Abelian fields, J. Number Theory 148 (2015),
365-371.

[16] D.H. Lehmer: Prime factors of cyclotomic class numbers, Math. Comp. 31 (1977), 599-607.

[17] S.R. Louboutin: Lower bounds for relative class numbers of imaginary abelian number fields and CM
fields, Acta Arith. 121 (2006), 199-220.

[18] T. Metsénkyld: Some divisibility results for the cyclotomic class number, Tatra Mt. Math. Publ. 11 (1997),
59-68.

[19] T. Metsidnkyla: An application of the p-adic class number formula, Manuscripta Math. 93 (1997), 481-498.

[20] O. Ramaré: Approximate formulae for L(1, ), Acta Arith. 100 (2001), 245-266.

[21] R. Schoof: Minus class groups of the fields of the {th roots of unity, Math. Comp. 67 (1998), 1225-1245.

[22] P. Stevenhagen: Class number parity for the pth cyclotomic field, Math. Comp. 63 (1994), 773-784.

[23] H. Wada and M. Saito: A Table of Ideal Class Groups of Imaginary Quadratic Fields, Sophia Kokyuroku
in Mathematics 28, Sophia Univ., Tokyo, 1988.

[24] L.C. Washington: The non-p-part of the class number in a cyclotomic Z,-extension, Invent. Math. 49
(1978), 87-97.

[25] L.C. Washington: Introduction to Cyclotomic Fields, second edition, Springer, New York, 1997.

[26] H.C. Williams and C.R. Zarnke: Some prime numbers of the forms 2A3" + 1 and 2A3" — 1, Math. Comp.
26 (1972), 995-998.

[27] The PARI Group, PARI/GP version 2.12.0, Bordeaux, 2019, http://pari.math-u.bordeaux.fr/.

Faculty of Science

Ibaraki University

Bunkyo 2-1-1, Mito, 310-8512

Japan

e-mail: humio.ichimura.sci@vc.ibaraki.ac.jp




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.53333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 150
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


