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Abstract

For a prime number p = 3 mod 4, we write p = 2n¢/ + 1 for some power ¢/ of an odd prime
number ¢ and an odd integer n with £ 4 n. For 0 < ¢ < f, let K, be the imaginary subfield of
Q(¢,) of degree 2¢' and let h; be the relative class number of K;. We show that for n = 1 (resp.
n 2 3), a prime number r does not divide the ratio i, /h,_, when r is a primitive root modulo 2
and r > ¢/7' — 1 (resp. r > (n — 2)¢/~" + 1). In particular, for n = 1 or 3, the ratio he /i at
the top is not divisible by r whenever r is a primitive root modulo £2. Further, we show that the
C-part of i /h_, stabilizes for “large” t under some assumption.

1. Introduction

Let p > 7 be a prime number with p = 3 mod 4. Then we can write p = 2nf/ + 1 for
some power £/ of an odd prime number ¢ and an odd integer n with £ 4 n. (Of course, this
expression or the pair (n, £/) is not uniquely determined for a given p.) As p = 3 mod 4,
the imaginary quadratic field Ky = Q(1/—p) is a subfield of the pth cyclotomic field Q(Z),).
Here, for an integer m, {, denotes a primitive mth root of unity. For each 1 < ¢ < f, let
K;/ Ky be the cyclic extension of degree ¢’ contained in Q({,). Let h; denote the relative
class number of K;. It is known and easy to see that /_, divides i, (see Hasse [8, Satz 32]).
When f =1andn =1 (resp. n > 1), it is shown in Metsdnkyld [18, Theorem 1] (resp. [11,
Theorem 2]) that /7 /h; is not divisible by a prime number r if r is a primitive root modulo
¢ and r > n — 1. Further, when f > 2 and n = 1, we have shown in [5, Theorem] that the
ratio h;/ hj:_l at the top is not divisible by a prime number » whenever r is a primitive root
modulo £2. We generalize these results as follows.

Theorem 1. Under the above setting, let p = 2nt’ + 1 be a prime number where € is
an odd prime number, f > 1 and n is an odd integer with £ ¥ n. Let t be an integer with
1 <t < f. Then a prime number r does not divide the ratio h; [h,_, under the following two
conditions on r.

(i) r is a primitive root modulo >.

(i1) r satisfies the inequality

. o -1, ifn=1,
"Flm-¢ w1, ifn=3

The following theorem for the case ¢ = f is an immediate consequence of Theorem 1.
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Theorem 2. Under the above setting, the following assertions hold on the ratio h}/ h;_ 1
at the top .

(D) A prime number r does not divide hjj / hj:_l when it satisfies the condition (i) in Theorem
landr>n—-1.

(I) For n = 1 or 3, a prime number r does not divide h} /h}_1 when it satisfies the
condition (1) in Theorem 1.

Let p be a prime number of the special form p = 2-3/ +1 with f > 2. When 2 < f < 325,
itis known that p = 23 +1isa prime number for f = 2,4,5,6,9, 16, 17, 30, 54, 57, 60, 65,
132, 180, 320 by Williams and Zarnke [26]. Further, it is a prime number for f = 1175232
by Grau, Oller-Marcén and Sadornil [7, page 511]. For such a prime number, the following
assertion is also an immediate consequence of Theorem 1.

Proposition 1. Let p = 2-3/ + 1 with f > 2. Then, a prime number r does not divide the
ratio h}/h;_z when r =2, 5 mod 9.

As for the ¢-part of the class numbers /;, we observe that there are several cases where
they enjoy Iwasawa type class number “formula” in Example of Lehmer [16, page 607] and
in Schoof [21, Appendix]. Such examples are found also in an unpublished table of Ken
Yamamura on relative class numbers of imaginary abelian fields of prime power conductors
< 10*. For instance, let (p, ¢, f) = (379,3,3) or (751, 5, 3), where a triple (p, £, f) means a
prime number p = 2nt/ + 1 with n = (p — 1)/2¢/ and ¢ { n. Then, accordingly, we have
3|k or 5|k for 0 < ¢t < 3. We define an integer e, by ¢“||h; foreach 0 <t < f. As
h._, divides h; , we have e, > ¢;_1. On the integers e;, the following assertion holds.

Theorem 3. Under the above setting, let f > 2 and assume that e; — e;_y < $(L°) for
some 1 < s < f — 1, where ¢(x) is the Euler function. Then e, — e,_1 = e; — es_1 for every t
with s <t < f.

Under the assumption that the ¢-part of the ideal class group of Kj is cyclic, Theorem 3
for the case s = 1 is an immediate consequence of [21, Proposition 2.4]. The above two
examples satisfy the assumption of Theorem 3 for s = 1. Further examples are given at the
end of §3 after showing Theorem 3.

RemMark 1. (I) The assumption (i) in Theorem 1 is necessary only to assure that the prime
number r remains prime in Q({x). Therefore, when ¢ = 1, we can replace the assumption (i)
with the weaker one that

(1’) r is a primitive root modulo ¢.

See Proof of Theorem 1; the case t = 1 in §3.

(II) Let n = 1, and let us fix an odd prime number ¢ such that 2 is a primitive root modulo
%, Then, for a prime number p of the form p = 2¢/ + 1 with f > 2, we showed in [12,
Propositions 2, 3] that h}_l/h}_2 is odd if p is larger than (24(€ — 1))D  and that it is
always odd when ¢ = 3 using some computational data obtained in [5]. In [12], we showed
this fact for £ = 3 (namely, Proposition 1 for the case r = 2) with a method completely
different from the one in this paper.

(IIT) When f = 1, several other results are known on indivisibility of the class number of
K or the maximal real subfield K| such as [3, 4, 6, 13, 15, 19, 22].
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Remark 2. Let £ be an odd prime number with £ = 3 mod 4. Let Q, be the cyclotomic
Z-extension over the imaginary quadratic field Qo = Q(V—£). We denote by h;, the relative
class number of the nth layer Q, of Q. /€. It is a well known theorem of Washington
[24] that a prime number r # ¢ does not divide the ratio h,/h;_, for sufficiently large n.
Explicit versions of the theorem are given in Horie [9, Theorem 2] and [10, Proposition 2],
[14, Proposition 1]. For instance, a prime number r does not divide 4, for all n > 0 when r
is a primitive root modulo £? and r > (€ - 1)/2 — 2d,; where d; is the maximal proper divisor
of (£ —1)/2 ([10, Proposition 2]). Our Theorem 1 for the finite tower Ky/Kj is, in a sense,
analogous to these results for the Z,-tower Q. /€.

For the class numbers in Q. /Qy, it is shown in [14, Proposition 2] with the help of
computer that r does not divide h, /h;_, for all £ < 10000 and all 1 < n < 100 whenever r
is a primitive root modulo £>. At present, we have no example of a triple (£, n, r) for which
r divides hy, /h; | and r is a primitive root modulo £*>. However, in our setting inside the
pth cyclotomic field, there do exist some exceptional cases where r divides iy /h; and r is
a primitive root modulo £2. As an example, when p = 163 = 2- 3% + 1 and r = 2, the ratio
hi [hy is even and h; /h_, is odd for 2 < ¢t < 4 by a table in [21, Appendix]. As another
example, let p = 2 - 3% 4+ 1, which is known to be a prime number (see [26]). We have
shown in [5, §4] with the help of computer that h; /h is even but &, /h,_, is odd for every
2 <t < 30. Even in such exceptional cases, Theorem 2 says that » never divides the ratio at
the top when r is a primitive root modulo £* (and r > n — 1).

2. Bernoulli numbers

For an odd Dirichlet character y of conductor d, we denote by

1 1 d-1
5B =55 Z] ax(a)

the half of the generalized Bernoulli number. We let p = 2nf/ +1 be as in §1, and we use the
same notation as in §1. We denote by ¢ the quadratic character associated to the imaginary
quadratic field Ky = Q(y/=p). Foreach 1 <t < f, we have

(1) hefhsy = p* | | (Bog)

Pt

ﬁ)(:

by the analytic class number formula (Washington [25, Theorem 4.17]) where ¢, runs over
the even Dirichlet characters of conductor p and order ¢/ and @ = 1 or 0 according as
(n,t) = (1, ) or not. Here, we have used the fact that the unit index of an imaginary abelian
field of conductor p is 1 ([8, Satz 23]). The proofs of our assertions are based on the class
number formula (1).

We fix a primitive root g modulo p. We easily see that the set igz([‘fw”‘”) with0 < w < n-1
and 0 < v < ¢/ — 1 is a complete set of representatives of the multiplicative group (Z/pZ)*.
For an integer x € Z, let 5,(x) denote the unique integer such that s,(x) = x mod p and
0 < 5,(x) < p— 1. We see that

) sp(_x) =p- sp(x)
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for x with p 1 x. In all what follows, we put

3) Lo = @g™),

which is a primitive ¢'th root of unity. Then, noting that the quadratic character ¢ is odd and
using (2), we observe that

1 S Fw+nv Tw+nv v
IB&p, = 5 Z(sp(gz([ " ))_sp(_g2(€ " )))Qx

2P w=0 v=0
1 n-1¢/-1

- (2S (g2(€fw+nv)) p) ézvt
2p w=0 v=0
1 -1 n-1 n -1

- s ( 2(g.fw+nv))é«zt _ 5 Z {U’
p v=0 w=0 v=0

We see that the last sum vanishes as ¢ > 1, and hence we obtain

lff—l n-1
4) ,85% = ; Z (Z sp(g%’fu;+2nv)) é«z[

v=0 \w=0

3. Proofs of Theorems 1 and 3

In this section, we first prove Theorem 1 after showing some preliminary lemmas, and
give a related proposition. The proof of Theorem 3 is given at the end of the section.

Let p = 2n¢’ + 1 be as in §1, and we use the same notation as in the previous sections.
To prove Theorem 1, we may as well assume that f > 2 because, as we mentioned in §1,
Theorem 1 for the case f = 1 is already settled in [11, 18]. Further, we may as well assume
thatn > 1 or f —¢ > 1, or equivalently that

(3) nt!" > 1

because Theorem 1 for the case n = 1 and ¢ = f (> 2) is already shown in [5, Theorem]. For
1 <t< f,let E; = Q({x) so that 85, € E;. The condition ntf~>1 implies that the order of
the character 6¢, does not equal p — 1 = 2nf/. Hence, Bs,, is an algebraic integer of E; by
[8, Satz 32]. Let £ = ¢,(g*") be as in (3). Let O, be the ring of algebraic integers of E,.

First, we show Theorem 1 for the case + > 2. Since Bs,, € O; and the set {Z;, with
0 < j < ¢! — 1 constitutes a free basis of (9, over 9, we can uniquely write

o1
(©) Bo = ), aidi
=0
for some a; € O;. For u and jo withO <u <{-1and 0 < jj < ¢! — 1, we put

o71—1 n—1

7 x(ujo) _ 5y (gzgfw+2n(€tu+fr71 u+jo))

B

and
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(o) _ X,(le)—l, ifn=1,
Yu" = x,(f(’) — o if n > 3.
Lemma 1. The rational yE,jO) is an integer and satisfies the inequality:
0 <y < o -2, ifn=1,
ST =20, ifn>3.
Proof. We see that xff") € Z because nt/~" > 1 by the assumption (5) and the elements
g?'w+2nf mod p in the sum (7) are all the n¢/~'th roots of unity in the multiplicative group

(Z/pzZ)*. Tt follows that
1<% <nef~ -1

and hence, in particular, the assertion for the case n = 1 is settled. Let us deal with the case
n > 3. In this case, we observe from (7) that

-1 1=

(o) _ : _ 205 w+2n(Lo+0 ut

X" = Xujoo With x5, =— splg ( oY,
v=0 p w=0

In the last sum, since the elements ngfw mod p with O < w < n — 1 run over the nth roots of

unity in (Z/pZ)*, we see that x, j, , € Z. It follows that

1 <xj,0 <n—1 andhence O < X0 < (g — 1)e

From this, we obtain the assertion for the case n > 3. O

For integers ¢ and jo with2 <t < fand 0 < jo < ¢! — 1, we define polynomials G, ;,
and F, ;, in Z[T] by

(-1 -1
Gf,jo = Gy,jO(T) = Z xflJo)Tu and Fl,jo = Ft,jo(T) - Z yf,’O)T”,
u=0 u=0

respectively. We put ; = é’t{f:“ = o gzw-l)_

Lemma 2. Under the above setting and notation, we have
aj, = Gi,j()(gf) = Ft,j()({f)-
Proof. Let jj be an integer with 0 < j, < £'~! — 1. We see from (4) and (6) that
_ -1 o 1 -1 (n-1 , '
®) " Bog, = Z a;ig; " = . Z [Z sp (g% w+2"”)] .
j=0 v=0 \w=0

For an {'th root ¢ of unity, we have Trg, /g, () = £'~' or 0 according as £ = 1 or not, where
Tr denotes the trace map. Hence, it follows from the first equality of (8) that

9 gt_laj() = TrEl/El (gg_tjolg&p,)

because —(£! = 1) < j— jo < €' = 1. In the third term of (8), £ is an (th root of unity if
and only if v — jj is a multiple of £/~!. Hence, writing v — jo = £ ' with 0 < u < £/=*1 -1
for such v, we observe that
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=11 (-1
» o1t s 2l
TrE,/E] (4{110ﬂ5¢1) — 7 Z Z Sp (92[ w+2n(L ,U+,]0)) {/;

n=0 w=0

Finally, writing 4 = v+ u with0 <v < ¢/~ =1 and 0 < u < € - 1, we obtain

B 71 (=1 (¢/7'=1 n-1 o
(10) TrE,/El (ggr]()ﬁ5wr) - Z Z sp (g2€fw+2n([’ v+ 1u+j())) é’éf
p u=0\ v=0 w=0
= (7'G (&) = 671 F (L)
The assertion follows from (9) and (10). m]

We denote by ®; = ®,(T) the {th cyclotomic polynomial. For a prime number r and a
polynomial G(T') € Z[T], let G(T) = G(T) mod r € F,[T] where F, is the finite field with r
elements.

Lemma 3. Under the above setting, let r be a prime number satisfying the condition (ii)
in Theorem 1. Then, there exists some jo such that F 1jo(T) is not a multiple of OuT) in
E,.[T].

Proof. It is well known that Bs,, # 0 (see [25, page 38]). This implies that in the formula
(6), aj, # 0 for some jo. For this jy, we see from Lemma 2 that y(()]") * yﬁf‘))

1 <u < ¢— 1. For this pair (o, ), it follows from Lemma 1 that

o= 2, ifn=1,
(n-2)~", ifn>3.

for some

1< Iyéjo) _ y;]o)l < {

If F; j, = c®¢ mod r for some constant ¢, then ygj(’) - yaj‘)) is a multiple of . Hence, it follows
from the above inequality that r < &/~ — 2 or r < (n — 2)¢/~" according as n = 1 or n > 3.

Thus we obtain the assertion. O

Proof of Theorem 1; the case t > 2. Let r be a prime number satisfying the conditions (i)
and (ii) of Theorem 1. Assume that r divides /; /h;_,. Then it follows from (1) that

Bse, = 0 mod rO,

because r remains prime in E; by the condition (i). Hence, by (6), we have a, = 0 mod rO,
for all jo. On the other hand, ®(T) is irreducible over F, as r is a primitive root modulo .
Therefore, we observe from Lemma 2 that F' 1.jo(T) is a multiple of @(T) for all Jo, which
contradicts Lemma 3. |

Next, let us show Theorem 1 for the case t = 1. In (4), rewriting v with fv + u with
O0<v<¢~'—1land0<u<{-1,we see that

=1 (¢/7'-1 n-1

(11) Bsp, = 11_72 Z Z Sp (ngfw+2n€u+2nu) ;' € E).

u=0\ v=0 w=0

ForeachO <u < ¢ -1, we put
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ff -1 n-1
(12) Z Z sy (g 2€/w+2n€v+2nu)
w=0
and
x4 ifn=1,
=\ x -, ifn>3.

Similarly to Lemma 1, we can show the following assertion using the assumption (5) with
r=1.

Lemma 4. Under the above setting, the rational y, is an integer and satisfies

f=1 ifn =
0<y, < 4 2,_] zfn 1,
(n—2)e/71, ifn > 3.
We define polynomials G| and F; in Z[T] by
(-1 -1
=G(T) = me and  Fy=F(T)= ) yT",
u=0 u=0

respectively. Then, by (11) and (12), we have
(13) Bser = G1(&e) = F1(&p).

Similarly to Lemma 3, we can show the following assertion using Lemma 4 and the fact
,354;1 + 0.

Lemma 5. Under the above setting, let r be a prime number satisfying the condition (ii)
in Theorem 1 with t = 1. Then, F\(T) is not a multiple Ofd)((T) inF.[T].

Proof of Theorem 1; the case t = 1. Let r be a prime number satisfying the condition (i’)
in Remark 1(I) and the condition (ii) in Theorem 1 with # = 1. Assume that r divides A /hy.
Then, it follows from (1) that Bs,, = 0 mod rO; because r remains prime in £ by (i’). By
(13), this implies that F(T) is a multiple of ®/(T) because D, is irreducible over F, by (i°).
Thus we obtain the assertion from Lemma 5. |

Denote by &} the class number of the maximal real subfield K" of K, in the usual sense.
Similarly to the relative class numbers, we see that &, | divides 4;. Itis known that 2 /" | is
oddif iy /h_, 1s odd ([12, Lemma 1]). Hence, for n = 1 or 3, it follows from Theorem 2 that
h}ﬁ/h}:_l is odd when 2 is a primitive root modulo £>. We can slightly relax the assumption
of this assertion as follows.

Proposition 2. Let n = 1 or 3. Let { be an odd prime number with £ = 3 mod 4,

and assume that the order of the class 2 modulo €* in the multiplicative group (Z/*Z)* is
(€ - 1)t/2. Then h}“. /h;;_1 is odd.

Proof. When n = 1, we already showed the assertion in [12, Proposition 1] effectively
using the fact that G.f, J» 18 not a multiple of @, in F,[T] for some Jo ([12, Lemma 3]) and
a theorem of Cornacchia [2, Theorem 1] on class number parity of the cyclotomic fields of
prime conductor. When n = 3, we can show the assertion exactly in the same way using
Lemma 3. m|
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Proof of Theorem 3. In view of (4), we put

-1 (n-1
(14) g(T) = Z[Z 5 g2[fw+2rw)] (1+TY
v=0 \w=0

cot+arT+ - +cy  TU €Z[T).

By (4), we have
1 1 , .
(15) Poo, = 5 B0, = 5 g(lr —1) with ¢p = ¢,(g™").

If ¢ is not divisible by £, we see from (1), (14) and (15) that £ t h; /h,_, for every ¢, and
we have nothing to do. Therefore, we let £|co. We put m, = e, — ;1 for brevity, so that we
have ™||h; /h;_,. Assume that m; < ¢(£°) for some 1 < s < f — 1. If ¢; were divisible by £
for all 0 < i < ¢(£*) — 1, then it would follow that 85, = 0 mod ¢ from (14) and (15), and
hence m; > ¢(€°) by (1). Therefore, we see that there exists some 1 < k < ¢(£°) — 1 for
which {|c; forall 0 < i < k—1 and ¢ { ¢;. Then we observe from (14) and (15) that for every
twiths <t < f, Biy, = (o — ¥ x x, with some £-adic unit x,. By (1), this implies that
m,=kfors<tr<f. O

ExampLe 1. When (p, ¢, ) = (81163, 3,5), we find that 4; = 39 in the table of Wada and
Saito [23] on the class number of imaginary quadratic fields Q(v/—m) for m < 10°. As hg is
divisible by 3, sois i /hy by [16, Theorem 5]. Shoich Fujima kindly computed the values x,
defined in (12) at the request of the author. The values are 6571, 6740 and 6780 for u = 0, 1
and 2, respectively, with a primitive root g = 2. It follows from (11) that Bs,, = 1-{3 mod 3.
Hence, 3||h; /hy by (1). Therefore, we see from Theorem 3 with s = 1 that 3|k, /h;_, for all
1<t<5s.

The referee kindly supplied us with the following examples. When (p, ¢, f) = (131707, 3,
5), (eo, €1, €2, €3, €4, 65) equals (1,3,8,13,18,23) and the assumption of Theorem 3 is satis-
fied with s = 2. Further, for (p, ¢, f) = (1051639,7,4), (365251, 5, 3) and (7860079, 3, 8),
e;’s are equal to

1,4,7,10,13), (1,5,9,13), and (3,7,17,25,33,41,49,57,65)

and the assumption is satisfied with s = 1, s = 2 and s = 3, respectively. These examples
are obtained by using PARI/GP [27].

4. Several related results
In this section, we give some other results on the ratio 4; /A, using the following asser-
tion of Ramaré [20, Corollary 1] on Bernoulli numbers. We put

I
@, = °g+ﬂ+“\/ﬁ with k=5-2log6 = 1.416481 -

for each odd prime number p.

Lemma 6 (Ramaré). The inequality |5,| < @, holds for an odd prime number p and
every odd Dirichlet character y of conductor p.
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A result quite similar to Lemma 6 is also given in Louboutin [17, Theorem 1].

Let p = 2nt/ + 1 be as in §1, and we use the same notation as in the previous sections.
The following assertion is sharper (resp. weaker) than Theorem 1, roughly speaking when

t< f/2 (resp. t > f/2).

Proposition 3. Under the above setting, a prime number r does not divide the ratio
hy [hi_, for all t with 1 < t < f when r satisfies the condition (i) in Theorem 1 and the
inequality r > @,,.

Proof of Proposition 3. Assume that r divides i, /h_, for some 7 with 1 < ¢ < f. Then,
since r remains prime in E; = Q({x), we observe from (1) that ) divides hy [h_,,
¢(x) denotes the Euler function. On the other hand, we see from Lemma 6 and (1) that the
r-part of i; /h,_, is smaller than or equals to wﬁ(m. Therefore, we obtain the assertion. 0O

where

The following assertion is an immediate consequence of Lemma 6 and the class number
formula for the imaginary quadratic field Ky = Q(v/—p) ([25, Theorem 4.17]).

Lemma 7. Under the above setting, a prime number r does not divide h; when r > 2w ,.

When n > 1, Proposition 3 is an assertion on the relative class number of a proper subfield
of Q({,). However, in a special setting where n = r¢ is a power of an odd prime number 7,
we can derive assertions on &), as follows.

Proposition 4. Let p = 2r°t/ + 1 be a prime number where r and € are different odd
prime numbers and e, f > 1. Then r does not divide h,, when r satisfies the condition (1) in
Theorem 1 and the inequality r > 2w .

Proposition 5. Let p = 2rf + 1 be a prime number where r and € are different odd prime
numbers, and assume that r is a primitive root modulo € (the condition (i’) in Remark 1(I)).
Then r divides h, if and only if it divides hy.

Proof of Proposition 4. We see from Proposition 3 and Lemma 7 that r does not divide
the relative class number hJZ of Kr. As [Q(Zp) : Ky] = r¢, the condition r ¢ hJI is equivalent
to r 1 h, by [16, Theorem 5]. Hence, we obtain the assertion. |

Proof of Proposition 5. We see that r does not divide 4} /h, from Theorem 2 (I) noting
that » > r — 1 = n — 1 under the notation in Theorem 2. Thus, the relative class number £}
is divisible by r if and only if so is i;. As [Q({,) : Ki] = r, we obtain the assertion by [16,
Theorem 5]. ]

In [, Proposition 3.2], Agoh showed that r 1 A, for any prime number p of the form
p = 4r + 1 where r is a prime number with r = 3 mod 4. We can give similar type of
assertions using Lemma 7 and Proposition 5 as follows.

ExampLE 2. (I) Let p = 6r + 1; the case ¢ = 3 in Proposition 5. Let r be an odd prime
number such that » = 2 mod 3 and p = 6r + 1 is a prime number; r = 5, 11, 17, 23,47, - - -.
By Lemma 7, we have r { h; when

p—1

1 +
(16) r=T>2w,,=M

21 VP
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Then it follows from Proposition 5 that r ¢ h;. We can show that (16) is satisfied when
p = 6r+1 > 25 in an elementary way. The minimal case where r = 5 and p = 31 satisfies
the last inequality. Hence, we see that r t &, for p = 6r + 1 whenever r = 2 mod 3.

(II) Let p = 10r + 1; the case £ = 5 in Proposition 5. The prime numbers r with r =
2, 3 mod 5 for which p = 10r + 1 is a prime number are r = 3, 7, 13, 43, 97, ---. Using
Lemma 7 and Proposition 5 for this type of p, we see that among such r, r 1 hy and hence
rt h; for r > 13 in a way similar to (I). For r = 3 or 7, we have h; = r (and hj/h; = 1)
from the table [21, Appendix].

(II) Let p = 14r + 1; the case £ = 7 in Proposition 5. The prime numbers r with
r = 3,5 mod 7 for which p = 14r + 1 is a prime number are 3, 5, 17, 47, 59, ---. Again
using Lemma 7 and Proposition 5, we see that among such r, r { hy and hence r t h, for
r>47. Forr =3,5or 17, we see that r { h; from [21, Appendix], and hence that r { hl‘, by
Proposition 5. Therefore, r { h1_7 for p = 14r + 1 when r satisfies r = 3, 5 mod 7.

AckNOWLEDGEMENTS. The author is grateful to S. Fujima for computing the values of x,
in Example 1. In the first version of the paper, Theorem 3 is given only for the case s = 1.
The author thanks to the anonymous referee for suggesting him to include the case s > 1 in
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