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Abstract
We investigate the local differential geometric invariants of cuspidal edge and swallowtail
from the view point of singularity theory. We introduce finite type invariants of such singular-
ities (see Remark 1.5 and Theorem 2.11) based on certain normal forms for cuspidal edge and
swallowtail. Then we discuss several geometric aspects based on our normal form. We also
present several asymptotic formulas concerning our invariants with respect to Gauss curvature
and mean curvature.

Typical examples of wave fronts are parallel surfaces of a regular surface in the 3-
dimensional Euclidean space, and it is well-known that such surfaces may have several sin-
gularities like cuspidal edge and swallowtail. Singularity types of parallel surfaces are inves-
tigated in [3], and the next interest is to investigate local differential geometries of such sin-
gularities. There are several attempts to describe them. For instance, K. Saji, M. Umehara,
and K. Yamada ([12]) defined the notion of singular curvature «; and normal curvature «, of
cuspidal edge, and, later, K. Saji and L. Martins ([7]) described all invariants up to order 3.
It is clear that there are more differential geometric invariants in higher order terms, and to
describe all such invariants up to finite order is one motivation of the paper.

Since Gauss curvature and mean curvature are often diverge at singularities and we are
interested in their asymptotic behaviors near a singularity in terms of our invariants. We are
going to describe their asymptotic behaviors of our local differential geometric invariants of
cuspidal edge near swallowtail.

An ideas of singularity theory is to reduce a given map-germ (R?,0) — (R?, 0) to certain
normal form (see [9], for example). Their normal forms are obtained up to .4-equivalence
where A is the group of coordinate changes of the source and the target. In that context,
we reduce a given map-germ to one of normal forms in the list there, composing certain
coordinate changes of the source and the target. For differential geometric purpose, gen-
eral coordinate changes of the target are too rough, since they do not preserve differential
geometric properties, and we should restrict the coordinate change of the target to the mo-
tion group. From this point, we will consider the product group of coordinate change of the
source with the motion group of the target (the rotation group when we consider map-germs)
and we introduce a normal form for cuspidal edge (see (1.1)) and swallowtail (Theorem 2.4)
by the equivalence relation defined by this group. We believe that this is a powerful method
to investigate singular surfaces, since this unable us to describe all differential geometric
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962 T. Fukul

properties in terms of them. The purpose of the paper is to investigate them in a reasonably
complete form for cuspidal edge and swallowtail.

The paper is organized as follows. In §1, we investigate cuspidal edge as moving cusps
with introducing a normal form (1.1) with conditions (i), (ii), (iii) there. We describe the first
fundamental form and the second fundamental form, and conclude an asymptotic formula
(Theorem 1.9) of Gauss curvature, the mean curvature and thus the principal curvatures. We
also investigate the singularity of asymptotic lines at a non parabolic point (subsection 1.5)
and curvature lines (subsection 1.6) in a generic context. In §2, we investigate swallow-
tail with introducing a normal form (Theorem 2.4). We describe the first fundamental form
and the second fundamental form in terms of this normal form, and conclude an asymptotic
formula (Theorem 2.20) of Gauss curvature, the mean curvature and the principal curva-
tures. We also investigate the singularity of asymptotic lines (subsection 2.4) and curvature
lines (subsection 2.5) in a generic context. Asymptotic behaviors of several invariants of
cuspidal edge nearby swallowtail is also investigated in subsection 2.7. In Appendix A, we
quickly review several basic notions of a surface in the 3-dimensional Euclidean space for
convenience of reference. In Appendix B, we review criteria of singularity types.

The author would like to thank Kentaro Saji, who organized an opportunity to talk about
this topic in June 2016, A. Honda, M. Umehara, and K. Yamada, who have informed the au-
thor several application of computation in §1 to the construction of isomers of surfaces with
cuspidal edges ([5]) in March 2019, and the anonymous referee for several comments for
the earlier version of the paper. The author also thanks to JSPS (Grant-in-Aid for Scientific
Research (C), no. 15K04867 and 19K03486) and the Research Institute for Mathematical
Sciences for their supports (a Joint Usage/Research Center located in Kyoto University) for
their support.
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Throughout the paper, we use the following notation
e =(1,0,0), e, =(0,1,0), e3 = (0,0, 1),

which form a basis of the 3-dimensional Euclidean space R3. We sometimes (in §2) express
elements in R? using column vectors to shorten the expressions.

By custom, one writes f(u,v) = O(g(u,v)), if and only if there exist positive numbers
0 and M such that |f(u,v)] < M|g(u,v)] when |(u,v)] < 6. For shortness, one also writes

f(u,v) = O(p) when f(u,v) = O(|(u, )I").

1. Cuspidal edge

1.1. Cuspidal edge as moving cusps. Let y : (R,0) — (R?,0), s — y(s), be a regular
curve with arc length parameter s. Let ¢, n, b denote its Frenet-Serre frame. We consider a
map-germ f : (R%,0) — (R?,0) as a singular surface with the following conditions: There
is a sequence {f; : (R,0) — R3,0), s — Jr($)}k=12... of C*-maps so that

(o) for any positive integer m we have
S tk +1
(1.1) f(S,t)=7(S)+ka(S)E+0(tm )
k=1 :

(1) the singular set X(f) = {¢ = 0}.
(1) (fi(s),t(s)) =0fork=1,2,...,and
(iii) #2/2 is an arc length parameter of the section of the plane spanned by n and b, that
is, (fi(s, 1), fi(s, 1)) = 1.

Remark that f(s) = %{I[:o, (fos =0 = 1, {£i(s,0), fi(s,0)) = 0, and (f, f;) = £*. The
condition (ii) implies that ¢ is a parameter of the singular curves which are sections of the
surface with the planes spanned by n(s) and b(s). If these curves are of multiplicity 2, we
can take parameter 7 with the condition (iii). We remark that

m—1 m—1 k

e ! m
fs:t+k§1fkﬁ+0(t ), ﬁ:];)fkﬁ—lﬁ-i-o(t )’

and fil=0 = ¢, fil=o = f(s). By the condition (iii), we have (f;(s,0), fi(s,0)) = 0, and
conclude that f,(s) = 0. We remark that n = 9, represents a null vector on Z(f), i.e.,
df(n) = 0 on X(f).

Throughout this section we consider the map f : (R?,0) — (R?,0) with the properties
above.

We here recall the notion of multiplicities of curves vy ([4]). We say that y : (R,0) —
(R3,0) is of multiplicity m at ¢ = 0 if there is a C*-map ¥ : (R, 0) — R? with the following
property:
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m

YO =50, 30) %0,
m

REmARk 1.1. A typical singularity of a map with the conditions above is cuspidal edge, a
map f : (R%,0) — (R3,0) which is .A-equivalent to the map represented by

(1.2) (u,v) = (u, 0, 0).
Another example is cuspidal crosscap, a map which is A-equivalent to the map represented
by
(1.3) (u,v) - (u, v, uv’).

REmARrk 1.2. S. Shiba and M. Umehara ([14]) has analyzed (2, 3) cusp (3/2-cusp, in their
terminology) in the plane R? using the square root of an arc length parameter as a parameter

(they call it the half-arclength parameter). For a curve with multiplicity 2 in R", there exists
a parameter ¢ so that #2/2 is an arc length parameter ([4, Theorem 1.1]).

When the curvature « of y is not zero, we have the following Frenet-Serret formula for 7y:
t 0 «x 0\t
(1.4) nl=|l-«k 0 Tt||n
b 0 -t 0J\b
where ’ denote derivative by the arc length parameter s. Let us define 6 (0 < 6 < 7) and by,
by
(1.5) cosO@ =1t fr,bl, br=1tf,fil

We use the orthnormal frame defined by a; = ¢, a; = f,, and a3 = t X f,. When we write
a, =cosfn—sinfb,and a3 =y’ X f, =sinfn+cos @b, we have cos 6 = |t f, b| = (a3, b),
and thus

(1.6) n(s) = cos Ba,(s) + sinBas(s), b(s) = —sinba,(s) + cos Bas(s),

and

s X foo fs X fis) oo SIS Jss) = (Sso JiXSso o)

cos 6 =(az, b) = =

|f? X ﬁ”fv X .ﬁtl =0 - |fv X ft”fr X fssl t:O.

Lemma 1.3. Assume that k # 0. We have

a; 0 kcosO «ksinf)(a;
a,|=|-kcosd 0 T-0|la|.
a; —ksinf & -t 0 a;

Proof. Since (az)
as

a _y —sinf —cosb)\(n N cosf —sinéb\(n
a, " \cosd —sind/\b sin@ cos@ J\b’

cos —sind\(n we have
sin@ cos@ |\b/)
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__y sinf coséb)\(n N cosf) —sinb\[-x 0 T ;
a —cos@ sin@)\b) \sin@ cosd/\O0 -1t O 5

g 0 -1\(a> N —kcosd 0 1 Zl
1 0 as —ksinf -7 0f|7?

as
B cos 6 1\ (a>
__K(sine) (- 9)( 1 0)( )

We can write f, as a linear combination of @, and aj:

(1.7) [r=akay + braz, ap = (f;.az),

and we have f; = |a; as f5las (i.e., a3 = 0). Remark that f = y(s) + aa, + bas where

a=a(s,f) = — + Zak(s)— + 0™,

£
b =b(s,1) = Z bils) g5 + 0",
Lemma 1.4. The coefficient a; (k > 3) are determined by the lower order terms induc-
tively. Precisely speaking, ay is determined by by, bs, ..., by_y.
Proof. Under the condition (i) we have
<f ‘+1’f j 1>
2 _ _ k i J+
t —<ft’ft>—zt Z T,
k i+j=k

and we obtain that |f,| = 1, (f,, f3) =0, %(f29f4> + %<f39f3> =0

<f29fk> <fz+19fk z+1>
9+ 5 S0 =00 T Z o =06
Since a; = (f,, f1), ar (k > 3) are determined by b, b3, ..., by_;. m]

ReMARK 1.5. Itis clear that (d'b;/ds')(0) (k > 3) are invariants of the maps, under the ac-
tions by orientation preserving diffeomorphisms of the source preserving the singular curves
with their orientation and rotations of R3.

Proposition 1.6. Let f : (R?,0) — (R?,0) be a map as in the first paragraph in this
section. We have that
o the singularity of f is cuspidal edge if b3(0) # 0, and
e the singularity of f is cuspidal cross-cap if b3(0) = 0, b5(0) # 0,
where by is the invariant defined in (1.5)

Proof. See Appendix B.1. |
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1.2. The first order derivatives and the first fundamental form. Since

m—1

it *
(1.8)  fi=awa +bay = (1 + ;3 et 7+ Oz + (kz; bt 7+ OW™)as,

(1.9) fs =a\ + asa, + aa), + baz + bas’
=a, + asas + byas + a(—kcosba; + (t — 8 )az) + b(—«sinba; + (8’ — 7)a,)
=(1 —k(acos @ + bsinO))a; + (a; + b —1))a, + (by + a(t — 6))as,
we obtain the following expressions of the first fundamental quantities:
(fsr ) =(1 = k(acos @ + bsin0))* + (a; + b —1))* + (by + a(t — 6))*

bk sin
=1 — (kcos O)2 — %P + O,

b r
(fs J1) =aas + DO — 1)) + b(bs + a(r — ) = ?3(7 - 0’)6 + 01,
(finfi) =a} + b} = 1.
The last relation is expressed by

2=+ amt /i) + (3 bjat!/j1)?, and thus

i>3 j22
1=(1+ Y amat' iy + (Y bt [ 1)
i>2 j=1

Comparing the coefficients of #* in both sides, we easily see that a; is determined by a3, .. .,
ay-1, bs, ..., by—1 and by. By induction, we conclude that a; is determined by b, ..., by. We
also remark that

oo X 1) = (fss f)P = (1 = Prcos O + -+ -).

1.3. Unit normal vector v.

Lemma 1.7. We have the following asymptotic expansion of the unit normal vector v:

Vv = fix é
Ify x L]
Proof. Since

fi 1 t 2

t t
fs><7:(a1+a§§+~~-)><(a2+f3§+---)=a3—b3a2§+(a'2><a2)5+0(t3),

_[@ -5 + o PR 1-Be 0@
= -~ 1)5 + 0 )]a1+[—3z+ ()]az +| -+ 0 )|as.

we have
[fs X (/DI = 1= §(b30)* + O(F).
Since
ay, X a, = (—kcosba; + (1 —0)az) X a, = —kcosbaz — (1 - §)a,,

we have
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fe X (filt) = a3 = (b3/2)azt - (kcos O as + (T — 6')a))(1*/2) + OF),
and we obtain the expression of v. |
Lemma 1.8. The map (f,v) : (R?,0) = (R? xR3, (0,%(0))) is an embedding germ, if and
only if by # 0.

Proof. This is a consequence of the following:

—xsinf@ ¢ -1 0 “

0 —by/2 0f|“|
as

df(s,0) = (‘:)‘), dv(s,0) = (
O

1.4. The second order derivatives and the second fundamental form. Let us first com-

pute Christoffel symbols I}, T, I"},, T, 'y, I', defined by

fos =03 fs + T8 fi + L, fo =05 fs + T fi + My, fu =05 fs + 10 f; + Nv.
Since

for [5)s =2 fsss f), oo Jids =sss o) + s J) or [ =2Fsts fo),
Sor fohe =2fous [), oo Sooe =ous o) + oo Suds oo Joe =2 fus Jo)s

we obtain
1(<fs,fs> <fs,fz>)(l“§s s Ff1)=(<f9s,fs> (fsts f5) <fn,fs>)
2\ fy )\ T T sss Sy Fson Jor - s

=( (for fs)s oo Skt 2<fs,ft>z—<fnfx>s)
U foo fods = S fooe - S fids o Side

— l( <fbfs>s <fvvfs>t 2<fv, ﬁ)t)
2\ fso fids =S fs)e - O )

and we obtain that

(1.10) fis =0(Hay + [kcos O + O] as — [ksin 6 + O(?)as,
(1.11) for =[(=kcos )t + O] a; + [(t — )t + O(H)]as + (t — & )tas,
(1.12) fir =0(Ha; + [1 + O(*)]ay + [bst + O] as.

We thus obtain the following expressions of the second fundamental quantities:

bskcos 6

(fys, V) =K sin 6 — 1+ 0(),

b/
U@w=ﬁ—9ﬁ+§f+0ﬁx

by b a B
(Fur V) :fx + %tz + (as — f)g +O(h.

Theorem 1.9. We consider a map f : (R?,0) — (R3,0) as in the first paragraph of this
section. The asymptotic expansions of Gauss curvature K and the mean curvature H are
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expressed as follows:

1 (bsksin6 bysing b3cosf
Kz?( PR S e
H :l(ﬁ N (@ N ksiné
t\4 6 2
where k and T are the curvature and the torsion of y defined in (1.4), and 0, by are the
invariants defined in (1.5). If the singularity of f is cuspidal edge (i.e., b3 # 0), then the
principal curvatures are given by

)- -0+ 0(:2)), and

)+ 0(:2))

' bk cos 6 + 4(t — 6,)* 5 1/bs by 21-6,), 3
K| = Ksinf — . t+ 0@, K2=?(3+?l+b—3l +O(t )).
Proof. Since
bsksin b b2
Fiss Vit V) = (fan V)P = 3K;m e+ (?4’<Sin9 B ZS"COSQ —-(r— 9’)2)t2 +0(P),

we obtain the expression for K. Since

b b
oo fX i) = 2o XSt V) + i S SV = 514 (5 + K5in6)E +O(0),

we obtain the expression for H. The assertion for principal curvatures are obtained by solv-
ing the equation A% — 2HA + K = 0. O
We assume that b3 # 0, thatis, t — f(s, t) define a (2, 3)-cusp. Then we have the following:

e If ksin6 # 0, then one side of the singular locus is hyperbolic (i.e., K < 0) and the
other side of the singular locus is elliptic (i.e., K > 0) near the singular locus.
e If x # 0 and # = 0 modr, then K = —Kb§/4 —(t-60) +0(Q).

Remark 1.10. Several geometric invariants for cuspidal edge were already defined. Here
is a list for these invariants:

e normal curvature «, and singular curvature «, in [12],
e cuspidal curvature «, in [8], and
e cusp-directional torsion k; and edge inflectional curvature «; in [7].

We express them in terms of §1:
Ks =|fs fss asli=o = Kk cos 0, Ky =fss * Vl=o = ksin 6, ke = \fs Ju Jutli=0 = b3,
K =|fs fir foitli=0 = T — v, Ki =|fs fu fsssli=o = kT COS 6 + K’ sin .

To check them we need to look the mid terms closely, using (1.9), (1.8), (1.10), (1.11),
(1.12), and

far = —k(cos O + a, sin)a; + (0’ — 1)ay + (t — 0)as, fi =bzaz, on 1=0.

1.5. Asymptotic lines. The equation for asymptotic directions is defined by

bskcos 6

(1.13) [K sing — t+ O(tz)]dsz +2[(r — @)t + O(*)]ds dt + [%z + 0(:2)]dt2 =0

in the region defined by K =
edge (i.e., bz # 0). We say that a point in cuspidal edge (i.e., a point in the locus defined

+ .-+ < 0. Assume that the singularity of f is cuspidal

b3k sin 0
t
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by ¢ = 0) is parabolic if it is in the closure of the set of parabolic points in the regular
locus. Theparabolic cuspidal edge is defined by «sin8=0 in the generic context, that is,
ksin @ is not identically zero (see the end of Appendix A). If xsiné > 0 (or < 0), the
equation (1.13) defines asymptotic directions in the region t < 0 (or ¢ > 0), and there is a
homeomorphism of (R?,0) which sends solution curves of (1.13) to that of folded regular
point (see Appendex B.2). The singularities of asymptotic curves near a parabolic cuspidal
edge point (i.e., t = ksin 6 = 0) are degenerate, and we do not consider them here.

1.6. Curvature lines. The equation for principal directions is

1 - (kcos O + O(F®) «ksinf— 20+ 02)  di?
o) (t - 0)t + O(2) —dsdt| = 0.
£ B+ 0@ ds?

This reduces to
[(T— ) + %bg + ---]ds2 + [l;—3 + t(% —Ksine) + ---]dsdt— [ZZ(T—G’) + ---]dt2 = 0.

Assume that (f,v) is an embedding (i.e., b3 # 0). This defines two nonsingular transverse
flows at any point near ¢ = 0. This fact is already recognized in [10, Lemma 1.3]. The author
thanks the referee to let him know this paper.

1.7. Ridge and subparabolic lines. By the equation for principal directions in the pre-
vious subsection, we obtain the following expression of the principal vectors near cuspidal
edge.

2t - 0)F

200 — 1)
_ 3
o =1 7 +0())0, + ( P 0(1))d,,
2 -0 5 1 2(r-6)t 5
v, = (T +0())d; + (; T + 0(%))a.
So the ridge lines are defined by zero of
b2 (K’ sin@ + ktcos ) + 4t — ¢)3 b
V1K) =— ( . ) +4T-8) +0(0,  or by =— =+ 0.
b5 2t
Similarly the subparabolic lines are defined by zero of
b2kcosO+4(t — 6')? -0
VoK) = — 3 2tb3( ) + 0", or V1K) _T 2 +0(™h

1.8. Moving cusps along a straight line. Since Lemma 1.3 requires the assumption k #
0, we need to consider separately the case that the curvature « is identically zero. At this
case y(s)is apartof line,and a; = t =y, @, = f,, a3 = t X f, form an orthonormal frame.
One can define k by

a; 0 0 O0)(a;
a,|=10 0 k|faz].
a; 0 -k 0)\as
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For f(s,1) = y(s) + aa» + baz, a = 1*/2 — b§t4/32 + O(), b = b33 /6 + byt* /24 + O(t*), we
have f; = a| + (a, — bk)a, + (bg+ak)as, f; = a;a; + b.az, and

f ) =1+RE 4+ 0F), (fi [y =bst/12+ 0@, (f,, fiy = 1.
Since f; X f; = (asb; — a;bg — (aa,+bb))k)a, — b;a, + a,;as;, we have
v = (=R(*/2) + O())a; + (=b3t/2 — bs(t*/6) + O(*))ay + (1 — b3(£*/8) + O(t*))as.

The vector = 0, represents a null vector along X(f). Since A = det(f; f; v) = t + O(t%),
Y = det(t pvv) = —%3 - %t + O(#%), the singularity of f at (0,0) is cuspidal edge (resp.
a cuspidal crosscap) if b3(0) # O (resp. b3(0) = 0 and D5(0) # 0). We also remark that
(f,v) : (R?,0) = R3 x R? is an embedding if b3(0) # 0.

Moreover, we have fi; = (ay — 2b&k — ak*> — bk')a, + (b + kK(2a, — bk)+ak’)as, fy =
(ase — bik)ay + (by+ai)as, fir = ayas + byasz, and

2

2 t b b
FuV) =R +O0E), fuV) =R+ B+ 0@, ([} = 3% + =

3
We thus conclude the asymptotic expansions of Gauss curvature K and the mean curvature
H as follows:

£+ 0@).

IR , o 1,b; 1
K=-#%+ 7 b3k’ — 4biR) + o), H :?(Z + it + o).
Moreover, we obtain the asymptotic expansions of the principal curvatures:
1,bs by 5 2%? rd bgl? 4b4l_<2 5
—\=+=t+0()), —+(z——+ 1+ 0@)).
t(2 3 ( )) (b3 (2 b3 3b§ ) ( ))

The configuration of asymptotic lines is folded regular point if »3(0) # 0 and k¥’(0) # 0. The
equation for principal directions is
_ b 2\, (b3 ba > _2 3yy,72
(k+ 51+ 00 ))ds” + (? + 310 ))dsdt + (=kt* + O(F))de* = 0,

which defines two transverse directions whenever b3(0) # 0.

2. Swallowtails
2.1. Normal form theorem. Throughout this section, we consider a C*-map
f : (Rz’O) - (R?”O)a (uls U]) = f(ula vl)’

with the following conditions:
(1) The singular locus X(f) = {v; = 0}.
(i1) f(Z(f))is a curve of multiplicity 2 at u; = 0 with an arc length parameter (u1)?/2.
(iii) The Jacobi matrix of fss) is of rank 1.

RemARk 2.1. A typical singularity of a map with these conditions is swallowtail, a map
f:(R%,0) = (R3,0) which is A-quivalent to

2.1 (u,0) —~ Gu* + u’v, 41> + 2uv, v).
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We are going to change f a normal form under the action of the product group of coordinate
change of the source with the rotation group as we explained in Introduction.

We can assume that there is a sequence {g, : (R,0) — (R3,0)),u; - 9:(U)}k=012,. of
C*-maps so that

(2.2) fu,v) = Z gk(ul)— + O(v; ’””) for any positive integer m.

We express Taylor expansions of g, as follows.

= I T
gk(ul)_ Z bkl l_ 0( mk+1) (kzlvzvvm)
=2\ ) "
Lemma 2.2. Without loss of generality, we can assume the following condition:
(iv) go(u1) = urg,(uy) and g, (ur)| = 1.
(v) g, and g, satisfy the following:

1+ apuy m Ay

u l
2.3) g =| b |+ 3 b | S+ o,
0 =2 Cl,
(1)?/2 -b?, )’
(2.4) go(ur) =| b1y (1) /3| +|b12 — 2a11b1, 2 +O0((wr)?).
0 C12

Proof. Since df(u1,0) = (g((u1),g,(u1)), the condition (i) implies g, (u;) and g,(u;) are
linearly dependent. By (ii), g,(0) = 0 and the condition (iii) implies g, (0) # 0. So there is a
function g(u;) with g((u1) = g,(u1)g(ur), g(0) = 0, g’(0) # 0. Setting (u1,v1) = (u,v/lg; W),
we have

©)? mt gi(u) V* mt
f(ul,uo—z.qk(uo—m( 1)_Zlgk(u)|kk' o™,

So we can assume that |g;(u;)| = 1.
Rotating f(u1,v;) in R?, if necessary, we may assume (2.3). Since o = (u;)?/2 is an arc
length parameter of the curve u; — g(u;),

3 _ 149 dgy || do
gl = lgtunllgy )l = [0 = [52 25| = b,
and we conclude that g(u;) = +u;. We assume that g(u;) = u;. Then we have (2.4). m]

We can assume that b, ; > 0 changing the sign of u, if necessary.
Since the 1-jet of v = f,, X f,, is (0,0, b, v1), v = v/|v| is extendible continuously to
(ur,01) = (0,0),if by # 0.

Remark 2.3. If b;; = 0, then the singularity of f cannot be swallowtail. In fact, when
b1 = 0, the coefficient of uv in the Taylor expansion of f is zero. But a map, which is
swallowtail has non zero uv term whenever its 1-jet is ve.
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Theorem 2.4. Let f : (R%,0) — (R3,0) be a map as in the first paragraph of this section
with conditions (iv) and (v) of Lemma 2.2. If by # O, then there is a coordinate change,
(u,v) = (uy,v1) = h(u,v) = (hy(u,v), ha(u,v)), of the source so that

(1) Z(foh) ={v =0},
(ii) f(Z(foh)) is a curve of multiplicity 2 at u = 0 with an arc length parameter u® 2,

(iii) the Jacobi matrix of fohls fony is of rank 1, and

(V) ((foh)u» (foh)Mo=0 = u?, {(foh)u, (foh),) = u+O(p), and {(foh),, (foh),) = 1+ O(p)

for any positive integer p.
2.2. Proof of Theorem 2.4. The key of the proof of Theorem 2.4 is the following

Theorem 2.5. Let f : (R%,0) — (R3,0) be a map as in the first paragraph of this section
with conditions (iv) and (v) of Lemma 2.2. Let k be a positive integer and by > 0. There is
a coordinate system (uy, vy) so that uy = u + Uka—l, v = (1 + Qk), where Fk and Qk are
polynomials in (uy, vy) of degrees k — 1 and k, respectively, and

Fues ) = Ue + b7 107 + 0 OQ), (i o) = i + 0 Ok = 1), (f, fi,) = 1+ O(k).
For the coordinate system (u, vi), we easily see the following conditions:

1) X(f) = {or = 0}
(i) f(Z(f))is a curve of multiplicity 2 at u; = 0 with an arc length parameter (u)>/2;
(iii) The Jacobi matrix of f|ss) is of rank 1.

RemMark 2.6. If (f,, f,) = uand {f,, f,) = 1, then the curves v — f(u,v) present geodesics,
since (fu, ;) = 3(fos fido = 0, and (fou, fiu) = (fis fido — 3(fo fudu = 0. This is a strong

evidence to expect the existence of a geodesic which reaches swallowtail singularity.

Corollary 2.7. Under the same assumption to the previous theorem, there exists a C*-
coordinate system (u, v) so that the Taylor expansions of {f,, fu), {fu> fo) and {f,, f,) are given
by u? + bilzﬂ +v0Q2), u, and 1, respectively.

Proof. Consequence of the previous theorem and Bott’s theorem ([11, §1.5]). ]

Lemma 2.8. Assume that by # 0. If

2

2.5) _ by C g b2 _ %0 aiibyo b,

. p i1 q0 1,1 20, qi N 21, —b%l,
2.1y

then jzf(O) = |byuv| where uy = u+ pv,v; = v+ v(qou + q0).
2
0%

Proof. Taylor expansion of f is

(v )
got) + g, (ur)oy +gz<u1)—+2gk( D
>3
(u1)*/2 I +ayu > (@20 a;; [N
= 0 +or| briu +ub20+ bijM
’ 2 Y

0 0 €20 23\ ¢
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(u+ pu)2/2 1 +a;1(u+ pv) 02(1 rqoutq v)z azo
= 0 +u(l +gou+qiv)| bia(u+pv) |+ 02 ! by
0 0 €2,0
(l,’j : :
71 (u+ pv)/ (v + v(qou + q1v))’
" Z i il]!
i+j>3 Cij
v+ %) (an+p+4qo (@20 + 2a11p + p* + 241
= o [+ by w+ bayo +2b11p v* + 0(3).
0 0 €20

By (2.5), we have
ar +p+qo=0, ay+2a;,p+p*+2q =0, byy+2b1p=0,

and we conclude the result. O
By the lemma, we have

”72+v u 1
PO =|buw|, ' £0)=]biw], O =]|biul,
Cz,o% 0 2,00

(fur fu) =18 + b7 0> +00Q), (fur oy =u+0v0(D),  (fpr fi) = 1+ O(2).
This shows Theorem 2.5 when k = 2.

Lemma 2.9. Set f(u,v) = 22’:1 g, (W /k! + O@P*Y). Assume that g,(w) = gwg,(uw). If
(for f) = 1+ 0o + O@?), then

s o) = u+ OWFy + 0.
Proof. Since f, = 3.7 gy (W /k! + O@P),

Uk

p—1 Ui p—1 vj p—1
(2.6) (Jos Jo) =<Z Gis17> D 9j+17> +00") =), 3 <gi+1’gj+1>ﬁ +O0@")
iz oo T k=0 i j=k 1J:
=(91,91) + 291,900 + ((92.92) + <91,g3>)1)2 +0).

Since (g,,9,) = 1, and (g,,9,) = O(u*), we have
’ ’ 1
91.91) +$90.9>) :§<glegl>u +g(u)g,9,) = O(Mk)
Since u® = (g}, g,) = g(w)*(g,.9;) = g(u)*, we may assume that g(u) = u, and

(90-91) = 9u)g,.9,) = u.
Since f, = ZL‘S g,’((u)]“c—k! + 0P,
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o

p=1 i p-l v/ p—1
O Gofd (L0150 X 95 7) + O = T, 3 695055+ OW)
i=0 *j=0 :

il
k=0 i+j=k L

=(g}.91) + (g5, 92) + (g}, g )V + OW) = u+ O + OW).

We are looking for a coordinate system (u, v) with

(fusfuy = 0> + b7 ,0° +00Q),  (fu fi) = u+O0K), (fis fi) =1+ 0K)

where k is a positive integer. We consider tuples H;(u,v) of homogeneous polynomials of
degree i in (u, v) so that f(u,v) = f'{:l Hi(u,v) + O(k + 1). We have H{(u,v) = ve;, and

2 B2 v 2 P
u*/2 0 ¥ 2b1,1 2~ %06
Hy(u,v) = bl’luv ,  Hi(u,v) = bl,l - + bl,Z% + b;l% + b;o% .
c200%/2 0)° R T
g 1275 2,172 306
. €0 ¥ bro(cao=Cip) 1« _ 0021 _ bygcro(cro—cip) o« _
where b2,1 = E(CZ’O - 61’2), 62’1 =cC1 + b b30 = b, W) s 03’0 =
3bapcan | 3bo(x12—C20) . .
c30—3ax0c20 — o+ p7e . So by ; and ¢y are invariants of order 2, and b », ¢ 2,
’ 1,1
c5 - and ¢} , are invariants of order 3.
Lemma 2.10. Let (uy,vy) be a coordinate system so that
k+1 )
(2.8) f=uver + > Hi(u, vp) + by v Proa(ur, vi)ea + O(k +2),
i=2

(s fur) = U + b7 0 + 0 O(2),

(s o) = g + 03 Ary + by 10p Proo(ug, vg) + v O(K),

(foos foro =1+ Bi + O(k + 1),
where Ay_1 and By, are homogeneous polynomials in (uy, vy) of degrees k — 1 and k, respec-
tively. Setting uy = U1 + ket Pro1 (s 1, Upr1)s Uk = Uge1 (1 + Qr(Utgr1, Ugs1)) where Pr_y(u, v)

and Q(u,v) are homogeneous polynomials of degrees k — 1 and k in (u,v), respectively, we
have

k+1
2
f = vpier + > Hi(Urer, 0kr1) + D110y, Proa (e 1, k1 )e2
im

uvPr_1 (i1, V1) + 0Ok (Uies1, k1)
+ b1 0* Proy (ger 15 Ok1) + O(k +2),

2,000k (Upes 1, Vs 1)

and, for a suitable choice of Py_, and Qy, we conclude that

<fuk+1 ’fuk+l> :uiﬂ + b%,l”l%—*—l + Uk+1 0(2)’
Jgars Jor) =tis1 + Ugr1 O(k),
Sorers Joo) =1 + Ok + 1).
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Proof. Setting uy = u + vPy_1, vp = v(1 + Q), we have vre; = v(1 + Qp)ey,

/2 /2 uvPy-y
Hz(uk, Uk) = bl,lukvk = bl,luv + blylvak_l + O(k + 2).
c2007/2)  \eaov?/2 2,000k

Since

Y
(u+vPr)v/(1+ Q) = Z Z (;)(f)u"“*vsP;i_lv’Qi,

s=0 =0
we have H;(uy, vy) = Hi(u,v) + Ok +2),i=3,4,...,k+ 1. We thus have

u*/2 kel uvP_; + v0y
(2.9) f =ve; + bl’llxll) + Z H;(u,v) + bl,ll)sz_z(u, v)e, + bL]UZPk_l + O(k +2).
cr0v?/2) =3 2,000k
Then we obtain that
u ket (uoP_1 + v0p)u
fu=|brav|+ Y (H)u+ b1 Pio)uer +| biiv*(Peop)y |+ Otk + 1),
0 i=3 2,000k
0 k+1 (uoPy_1 + vQy)y
fo=er +|brau|+ Y (H)y + b1 Pea)er + | bii@Pey)y |+ Ok +1).
cov) =3 €2,0(Qx)y

Remark that the homogeneous part of degree k of (f,, f,) is

k
(210)  2(uwPiy + 00y + 267 1u(W Piog)y + S ((Hi)os (Hisa—i)o) + 2(His1 s €1).
=2

We choose a homogeneous polynomial Ry of degree k + 1 so that

1 k
(Ri+1)o = 3 D ((H)y, (Hgs2-1)0)s  (Rie1 + (Hie1,€1))li=0 = 0.
i

Since Ry41 + (Hi+1,€1) is divisible by v, we can choose a homogeneous polynomial Q. of
degree k so that
uka_l + UQk + b%,luvak_z + Rk+1 + (Hk+1,e1> =0.

Then (2.10) is zero and the first component of (2.9) does not depend on P;_;. Moreover, we
have that the degree k-part of (f,, f,) is equal to

k
SU(Hus (Hira-ido) + Pyt + 000y + (His s €1) + by (kv* Py

i=2
k
(2.11) = SUHu» (Hiz-)o) = Rice D) + b7 10°[kPi_y = (uPi—2),],
i=2
since (uvPi-y +vQi)y + by | (U0 Piog)y + (Ris1)u + ((His1)us €1) = 0. We finish the proof if

k—i—2

we choose Py_; so that (2.11) is zero. Setting Py, = f;oz pitt! , the equation becomes
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k k_2 . .
SUHDus (Hisr-00) = Rice ) + BTy >k = Dpiudh ™ = 0,
i=2 i=0
which is possible to solve inductively by Lemma 2.9. |
2.3. Computation based on the normal form. From now on, we assume that the C*-
map
f:(®%0) > R,0), (u,0) — f(u,v),

as in the first paragraph of this section with conditions (iv) and (v) of Lemma 2.2. Let
aijl i
uv
Hiw,v) = )" | b T k=12

i+j=k ci,j

be homogeneous polynomials with f(u,v) = zle Hi(x,y)+ O(p+1) for any positive integer
p. Remark that

2 2 3
v u’/2 0 S aip’st +an1'5 +asp
7 2 3
H1 =10 , H2 = bl,luv s and H3 = bl,l ? + bl,Z% + bz’l% + b3’()% .
> 2 2 3
0 Co0U /2 0 Cl,Z% + 02,1% + C3,0%

We first see the following

Theorem 2.11. Let f be as in the previous paragraph. The coefficients a; j, b; j, c; j are in-
variants under the action of orientation preserving diffeomorphisms of the source preserving
the singular curves with their orientation.

Proof. Assume that there is another coordinate (u’,v") with conditions (i)—(iv). We can
assume that ' = u + vy(u,v) and v = v(1 + ¥o(u,v)), by (i) and (ii). It is enough to
show that both ¢ (u, v), ¥>(u, v) are flat functions, that is, all partial derivatives, including
higher order’s, are zero at 0. Let us assume the contrary. Then there exist ¢;(u, v), ¢o(u, v)
homogeneous polynomials (possibly zero) of degree k — 1, &, respectively, so that ¢; # 0 or
¢> #0and Y| = ¢ + O(k), ¥ = ¢ + O(k + 1). We can assume that k > 2. Since

fu :(1 + (le)u)fu' + (UwZ)ufv” ﬁ) :(Ull’l)vﬁt' + (1 + (vl//Z)v)ﬁJ’,
we obtain
s Jo) =1+ D)) Dol furs fur) + [+ 1))+ 02)0) + (02) 1)l S, fir)
+ (vlpZ)u(l + (vlpZ)v)(ﬁ)” ﬁ/>,
For ) =@ s Srr) + 200010)u(1 + @) ) fors fir) + (14 (002)) s fir)-

Comparing degree k parts of them, we obtain that

0= (vp1)uut + vp1 + (v2)y, (V1)U + (v2), =0
and thus (v)),u = (v1),u + vy When ¢y = X0 au'vf~1~, we have

k-1 k-1
Z(k = Dau™ W =Y (4 Daud o
i=0 i=0
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This implies ¢; = 0, and ¢, = 0 also. m|
Remark that we have by = cy0(c20 — €12)/b1.1, b3o = —c20c2.1/(2b1 1) when by # 0.
Actually, we have the following

Proposition 2.12. The coefficients a; j (i > 1), b;j (i > 2) are determined by the lower
order terms and cp,j.j—p, 0 < p < i+ j, inductively, whenever by # 0. Precisely speaking,
Al f A2 k-1 «+ > Ak+1,05 b2,k—2, b3,k_3, ey bk,O are determined by bl,l; bl,z, ey bl,k—l; and Cp’q
(p+q<k).

Remark 2.13. This proposition implies that the coefficients in the first components of
Taylor expansions of g;(#) (i > 1) and the coefficients in the second components of Taylor
expansions of g;(u) (i > 2) are determined by the lower order terms. Remark that the
orthogonal projection of the singular curve g,(u) to y-axis (the principal normal line of g (1)
at u = 0) determines b, ; and the orthogonal projection of f(u, v) to z-axis (the binormal line
of go(u) at u = 0), determines c; ;. By Proposition 2.12, these informations determine all our

finite order invariants.

Proof of Proposition 2.12. By (2.4), we obtain

1=(g,,9,)=1+2a1u+(ap+ ail + bil)u2

P k=2

2a k ayidyj-i + b1 by j—i + C1iC1p-iy 4 ol
+kZ( Kl +Z Nk —i)! Jul + 0™,
=3 i=2
and ap i is determined by bl,l, bl,z, ceey bl,k—l, C1,15C125 -+s Cli—1- Since
u p 0 P
fo=|brw|+ > (H)+ 0+ 1), fy=er+|briu|+ > (H)y+O(p+1),
0 i=3 a0V i=3

for k > 2, the conditions imply that

k
0 =the degree k'part of <fua fv> = Z((Hi)ua (Hk+2—i)v> + <(Hk+1)u’ el>
i=2

u e 0
=< by 7(Hk)v> + Y A(Hi)us (His2-i)0) + <(Hk)u7 by 1u > + (Hi+1)us €1)
0 i=3 C2,0V
k-1
=uer, (Hi)o) + Y ((Hiu, (Hys2-1)o) + 200(Hy)us €3) + b11k(ea, Hi) + ((Hy+1)u» €1),
i=3
k
0 =the degree k-part of {fu, f,) = > ((Hi), (Hrs2-i)0) + 2((Hy+1)v, €1)
i
k-1 0
= > ((Hi)o, (Hr2-i)o) + 2< biiul, (Hk)v> + 2((Hk+1)v, €1)
i=3 Ca.00
k-1

= > {(H)o, (Hs2-i)o) + 2c2,00¢€3, (Hy)o) + 2b1 1ukea, (Hi)y) + 2{(Hi41)y, €1)-
i=3

In other words, we have
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k=1
by.1k{ez, Hy) + ((His1)us €1) = — uler, (Hi)o) = > {(Hi)us (His2-i)0) — c2,00{(Hi)u» €3),
i=3
1 k=1
b1 1ucez, (Hi)y) + {(Hy+1)v, €1) = — 3 > {(Hos (Hir2-i)o) — c200(€3, (Hi)y)-
i=3

These equations can be written in the following forms:

u'v’/ u'v’/
Z (b1,1kb;; + aj,i+1)m = Z Pj,im,
i+j=k i+j=k
u'v’ u'v’
Z (b1,1Djs1,i1 + aj+1,i)ﬁ = Z C]j,iﬁ-
i+j=k i+j=k
Setting b = by 1, we have
0O 1 --- 0 bk --- 0)|%=+10 Pko
. Qg1 Pk-1,1
o o --- 1 0 --- bk : :
1 0 -~ 0 0 - O0]|%,k1]|_|P2k2
01 b 0 bio qr0
bi-1,1 qi-1,1
: . .0 . :
0 - 0 1.0 - b ) q1.k-1
and this determines Q1,05 Akl -+ - A2 f—15 bk,O, bk—l,l, ceey bz,k_z. O

From now on, we assume that by ; # 0.

ReMARK 2.14. Let us assume that the coordinate (u, v) satisfies that

(fur fuy = 1 +00Q),  {fu fi) = u+ 00k = 1), (f,, fi) = 1+ O(h),

for any k. Since (g,,g;) = 1, we have (f,, f,) = u + v?>0(k) for any positive integer k by
(2.7). Since

(fus fu) = 0 + 2ulgy, g} v + OW*) = u* + O(W?),

we obtain (f,, f,) = u”> + v>¢> where ¢ is a non-zero function whose Taylor expansion is the
same as that of |(f, X f,)/v]. The first few terms of Taylor expansion of ¢ is given by

2 2
_ 20(c20—¢12) C12"%0 3 \u?
@ =Dy +bipu+ =G =20+ (52 + bis + by )
bipcap(cip=ca0) _ 2c13020+2¢1000,1=TC2002,1
+ ( 2, T Juv

2 2
¢0(C12=¢20) biacapca 12 1 1 1 1.2 v’
+(= ot e, 121 T 6620022 7 3€12630 + 5620030 ~ 36500105 + O0Q).
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Lemma 2.15. A unit normal v is expressed by
0 0 20 2e00—cip
Cla—Ca0 oo 2b1x(c20=c12) + c13=2c01 | 142
v=|0|+|—=—|u+|5—"|v+ b2 b —
bl,l 217” 1,1( )2 2
_ C1,2—C20
1,1
c2,1/2 €30
c0(c12=c20)*  bipca1 | c2-c30 c20021(C12=020) | G |y
+ 27, 2w, + = 20l |u + 2bjy] 3by.4 >t 0(3).
(c12—c20)C2.1 h 4 2
T W, T 20

In particular, (f,v) is an embedding, if and only if ¢ # 1.

Proof. Since

(fu X fu)/v =1(0,0,=b1 1) + (b1,1¢20,(C12 — C2,0)Ut + C2,10/2, =b1 pu — C20(C20 — C12)0/2) + O(2),

we obtain |(f, X f,)/v]'/? = b}—l — huawthavl2 4 9(2), and we conclude the formula up to order

2
h]]

2. The second order part is obtained similarly. The last assertion is a consequence of the

following:
00 O —C]‘Z_Cz‘” 0
dfmO.0= {1 oo B
g 2by1

Thus the initial terms of the second fundamental quantities are given by

(2.12) L =(fuu,v) = (20 — C12)0 = C20U” + (1]1'2(3;17@ + 301 — C13)uw
+ (béf:zl‘ —1eap+ 330 - cz,obil)v2 +0Q3),
(2.13) M =(fi, V) = —Co U — c210/2 — o> — (CZO(CZZZ)%_IC"Z)Z + C3'°;CV2‘2)uv
+(RREED - S0 4 0(3), |
(2.14) zv:gmv>:—q@—cmu—cuw—(iﬁgfﬁf+cmy§
+ (22 gy - (B4 4+ ea0)e? +OO)
We will use Christoffel symbols I, IV, I, v, '), Iy, defined by
S =L fu + T fo + Ly,
(2.15) Juw =i fu + Topfo + My,

Soo =L fu + Topfy + Nv.

.

Lemma 2.16. For any positive integer p, we have

| uQ + uvp, + v, © + v, 0
= — ( VY — urQ — urvp,

(F w L Fﬁu)
)]
P \—uvg, — 120® — 20,

Flb}m rlb}w rﬁv —M(QD + UQDU) 0

+ O(p).
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Proof. Since

2u+ 0, + OP) = {fr fidu = 2fus L)y 20097 + 0*00,) + O(D) = {fus fido = 2 fouos i)
1+ O(P) = <fu7 ﬁ)>u = <fuua ﬁ)> + <fu> fuv>a O(P) = <fus fv)v = <fuv’ ﬁ)) + <fua fuv>7

O(p) = {for fidu = 2 fuws fo)» O(p) = {for fido = 2 fous -
we obtain
(fows fo) =10 + V@ + O(p), (o ) =0(@* + v0@,) + O(P), {fuwr fu) =O(p),
(Fus fo) =1 = 0(@* + v02)) + O(p),  {fowr 1 =O(p), (foor 1) =O(p).
Since

(<fu,fu> <fu,fu>)(rzu Iy, Ff:v)
(fu £y fo fO)\IY, T4, T,

_1 ( (fus Judu s Fudo 2{Sus fodo — <ﬁ}7fv>u)
2 2<fu7 ﬁ))u - <fua fu>v <fv’ ﬁ))u <ﬁ1’ ﬁJ>v ’

we have

u? + 1)2902 +0(p) u+Op)\(y, Ii, I,
u+ 0(p) 1+ O(P) rgm FZU rﬁu

u+ UZ(,DM(,D Ut,a2 + 1)290% 0
= (0]
(1 —vp? — Vg, 0 0 O,
and thus
I U CAN —u u+0toup v+ vigp, 0
(FZu I, FZU) 0g? (—u uw + vz¢2) (1 - vp? — 1P, 0 o) T W)
. [ uQ + uvg, + vy, © + v, 0]
2 2
=— VY — UQY — uvp, + O(p).
v —u(p +uvp,) 0
i (—uvsou - v’ - v3¢2%) o+ vg0)
O
Lemma 2.17. The Gauss curvature K is given by
20, + vy,
K = _900—90 +0(p).
Proof. Since A = ((fu, i){fos fuy = (fur F))'* = lulg + O(p), we have
1 [ AT Al ] 1
=— =) - =) | = =—[0), = (£(¢ + v@,))u] + O(p)
A (<fu,fu>)“ (<fu,fu>)v vl
20, + Uy
=L o).
v
O

Remark 2.18. The formula in the previous lemma is equivalent to Gauss’s equations.
Minardi-Coddazi equations {(fiu)v, V) = {(fuw)u> V) {(fiw)v, V) = {(fw)u, V) are stated as fol-
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lows:
L,— M, + L—2uM+(£+¢2/v2)N (0 + vp,) + M<pu+N¢(><p—u<pu) = 0(p),
M, = Ny + "2 (o + vp,) = O(p).
Proposition 2.19. The singularity of f is swallowtail, if
(fov) 1 R2,0) > (R xR, (0,1(0)))
is an embedding (i.e.,crp # €12).
Proof. See Appendix B.1. |
Theorem 2.20. Let f : (R%,0) — (R3,0) be a map as in the first paragraph of this
section with conditions (iv) and (v) of Lemma 2.2. If the singularity of f is swallowtail (i.e.,

C20 # C12), then the asymptotic expansions of Gauss curvature K and the mean curvature
H are given by

7
_1[02,0(62,0 —C12) (302,0b1,2(62,0 —C12) L 20613 ¥ 21612 ~ 302021 )u

K =
2 3 2
v by by, by
2 2 2
C50(C20 =€12)"  biacagcay  €q T 2020022 —4C12030 + 6C20¢30
—( = - =5 - o + 3o )0+ 0),
11 L1 11
lrcoo—cip  (3bia(cip—c20)  Sc1—2c13
:_[ 2 ( 3 + 4[92 )
vt 2by, 2b7 | 11

2
(—02,0(01,2 —20)°  bipcar 30— can
7 3 2
2b1’1 4b1,1 4l?1’1

— ca0)o + 0(2)-

If the singularity of f is swallowtail (i.e., c2 # c12), then the asymptotic expansions of the
2

. . C
principal curvatures are k| = —Cp0 — €2, U + (m - 03,0)1) + 0Q2), and

1 [01,2 —C20 (3b1,2(6‘1.2 —c0)  Scpp— 2C1,3) (51,2C2,1 _ €2 =C30

Ky = — +
bt | by, 2by, 2b7 | 2b7

0 — ca0)o+ 0Q2)].

Proof. The assertions for K and H are followed by (A.1). The assertion for principal
curvatures is obtained by solving the equation A2 — 2HA + K = 0. m|

Remark 2.21. In [8], L. Martins, K. Saji, M. Umehara, and K. Yamda define the limiting
normal curvature «,, the normalized cuspidal curvature y., and the limiting singular curva-
ture 7, for swallowtail. We have that

C12 —C20

B2 » Ts=2b1.
LI

Ky = —C20, Mc =
The first equality is from (2.2) in [8]. We obtain the second comparing (4.6) in [8] with
the expression of H in Theorem 2.20. The last one is from the definition of 7, (the last
line of the page 272 in [8]) and the fact that x; = x cos 8 combining with (2.16) and (2.18)
below. The referee kindly informed the author that a normal form theorem, similar to us,
also appeared in K. Saji’s recent paper ([13]). He described the configurations of asymptotic
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lines and curvature lines, for example. We see below that one can recover such results in our
computation.

2.4. Asymptotic lines. The equation of the asymptotic directions is
((62,0 — C‘l’z)U + 0(2))du2 — (2C2,()u — (2,10 + 0(2))du dv — (Cz,() + U+ C3 00 + 0(2))(1’1)2 =0.

We observe that the coefficient of u? du? is €20-

When the singularity of f is swallowtail (i.e., c;2 — ¢z # 0), we conclude that there is
a homeomorphism of (R?,0) which sends solution curves of the equation above to that of
folded saddle (resp. folded node, folded focus), if ¢2,0(3¢c20+c12) > 0, (resp. %(cz,o —cl,z)2 <
c2003c20+¢12) <0, c20(B8cr0 +c12) < %(02,0 - Clyz)z). Use Lemma B.2 in subsection B.2,
to show this assertion.

2.5. Curvature lines. Since the equation of the principal directions is
w+v*e*> L dv*
u M —dudv| =0,
1 N di?
we have

o[(0()du + (c12 = c20 + O(1)dudv + (%1 +0(1))dv’| = 0.

It defines two transvese directions in the source in the region v # 0 and it extends on v = 0
as two transvese directions, when the singularity of f is swallowtail (i.e., c; 2 — ¢z # 0).

2.6. Ridge and subparabolic lines. We show here computational experiences. Since
principal vectors, on v # 0, are represented by

o

U1 :(CZ—,I + 0(1))6,,, + (1 - m

+02))o
2020 = C12 ( )) !

vy :(%’lv +0(1))a, + (—ﬁ +0(2))d,,

we obtain
2
3 ¢
DIk =2 ——— — 30+ O(1),
dcip—cap
1
v =| -2+ o0h)
v b]’]
1[cip—c2p0
e, o)
V1K) 02[ = (1
171 3b12(c20 = c12)
022 =—3[T((02,0 —ci12)u = [(01,3 —3c) + %]U) + 0(1)]-
v Lby, by,
Thus we have the following:
‘%,1

e A v;-ridge line is arriving at swallowtail, only if %Cl o0 = €30
e A vy-subparabolic line is arriving at swallowtail, only if 1 =0.
e No v;-subparabolic line is arriving at swallowtail.

e Exactly one v,-ridge line is arriving at swallowtail.
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2.7. Cuspidal edge nearby swallowtail. Suppose that there is a coordinate (i, v) with

(fus fy = +0°0> + O(p), {fu, 1) = u+ O(p), {fon 2y = 1+ O(p),

for any p. The goal of this sebsection is to obtain asymptotic expansions of differential
geometric invariants of cuspidal edge. They are functions on Z(f) \ {(0, 0)} near (0, 0), that
is, as meromorphic functions in u. Here u is a parameter of the singular curve X(f) so
that ?/2 is an arc length parameter of X(f). The statements of asymptotic expansions of
differential geometric invariants of cuspidal edge, defined in (1.4) and (1.5), are as follows.

Theorem 2.22. Let f : (R?,0) — (R3,0) be a map as in the first paragraph of this section
with conditions (iv) and (v) of Lemma 2.2. Assume that by ; # 0. The asymptotic expansions
of k, T, 0, by are given as follows:

2l
(2.16) [b11+b1 o+ (b3 + b, + —)— + 0.
c12 bl 1c13 = 2b1sc1
2.17 =— — :
( ) bl B Zb%,1
2010367, = 1)) 3(byscia + biacis) Cla4 u?
+ : — — — —— 4+ —-2b —+0
( 5 =) b i€l 2) (u )]
A b ~ b,
2.18) cosf=—1+ b;_O”_ - 20 = 4 o,
L1
-1 (2(c12—c20)  (S5c21—2c13  bip(cap—ci12)
(2.19) by = 1( 3 +( 2 + . Ju + O(u2)).
|by ul? 1,1 11 by,

Proof of (2.16), (2.17). Since s = u?/2 is an arc length parameter of £(f), we have

dgy _dg\/du _ 1dg _ dgy _dg, _ 1dg,
ds ds/du u du b ds? ds udu’
We thus obtain an asymptotic expansion of n, k, T as follows:
-b
0 _b] 1 1,3
dg,/d ’ o 2
(2.20) _dovjdu 111 o u+| b1, - béf L roud,
|dg1/dl/t| 0 a2 byiciz— 2b126:].2
bii T
dgl dgl 12 “2 3
s |u|| | |M|(b] 1+ b] 2U+ (b] 3+ b —1)7 + O(Lt )),
=|g6 g(/)/ gloll _ Igl gl 1| _ l[% + b1,1C1,3 - 2171.261’2
gy < gy ulg, xg( P ulby, 207 |
2c123b7, = €1)  3(biscin + biocis) Cla u?
H—— = = 2 2b — + 0(?)|.
( bil bi1 b, 1,1C1 2) 3 (u )]

Set ® = (f,, — uf,)/v. We have |®| = ¢, since
\fu = ufil? = o = fon fo = why) = (foos iy = 26 fus o) + 02 for fi) = 0°¢.
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Since fu, fu — ufo) = {fus fu) — ulfu> fo) = 02‘102,

Jus fu —ufo) _ [vlp
|full fu — wfol h 2 + 02902)1/2

whenever u # 0. Thus we conclude that the three vectors

) X D . X
alzlimﬁ, a, = —lim —, a3:—limf—:11rnu
v—0 U -0 @ v=0 U =0 VY

cos £(fu, @) = +0(p) = 0@ —0),

form an orthonormal frame along X(f). We also have

1 0 -b? —b11b
Su(,0) LH 2 DL 4
a = =10+ bl,l u+ b1,2 — + b1’3 — + O(I/t )
u 2 6
0 0 Ci12 €13
Since
0 -b?, 3b1,1b12
. ’ 2(cia—ca0)ca0 | U 3
(2.21) })1_1:%(1) =|bui|+| bia  |ut|bizt T >+ ow),
0 C12 — €20 c13 — 202,
and by b;; > 0, we obtain
fu - ufv
(2.22) a, =—- ——(u,0)
|fu - uﬁ)|
0 bl,l ) b(lc,2 20)? uz
27C2,0
=|-11+ 0 u+ b1,1 + Ibef( — +0@W),
_Cla=C0 b ’ 320,
0 b —2ﬁ(02,0 —-C12) — %
c12 = 2¢20
0 620(_)612 2b1o(c12=C20) + ai—cs3 |y 3
(2.23) a;=a;Xa,=|0 |- e L bt b1y E + O(u’).
-1 0 (c20-cin?
7,

Proof of (2.18). A Direct computation based on (2.20) and (2.22) shows

20
Gou”  c2o(bracap —brica1) 5

0=(na)=-1+—= +0(u),
cosf = (n, ay) b%’] 5 =) u (")

which completes the proof. m|
Setu = po+1tP,v=1tQ where P = 3, pi(s)f'/il, Q = 5 qi(s)f'/i!. We take P, Q so that

(fs(s,0), fi(s, 1)) = 0, (fils.0), fils, )y = 1.
When we set f(s,1) = X, fi()F/k! + O(m + 1), we have
m—1 k
A0 = fi(5), 50 =3, (o) + 00",
k=0 :
‘We obtain

(2.24) J1(5) =0, f(s) = ax(s), {fo(s), fi(s)) = 0.

Since f, = ara, + byas, we have a; = (f}, a2), by = (f}.a3), and
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(2.25) (az, f3) =0, %<a27f4> + %<f39f3> =0, ﬁ(az,fﬁ + é(fs’f4) =0
2(a2(s) fk(S)> fir1(s), fk z+1(S)>
(2.26) = Z T =0 (k> 6).

We obtain that az = 0, as/3 + b§/4 =0, as/2 + b3by = 0, ans so on. Since {f,,a;) is degree

one in g and a; = (f},a;) is degree one in p;_;, the conditions (2.24) and (2.25), (2.26)
determine py_1, gx inductively.

Lemma 2.23. We have the following:
So =f(po,0),
S1 =p1fu(po,0) + q1 fu(po, 0),
f2 =P2£4P0, 0) + @2 £:(P0, 0) + P fuu(P0, 0) + 2P141 fuo(Po, 0) + 1 fon(Po, 0,
S3 =p3fu(po, 0) + g3 /u(po, 0) + 3[p1p2fuupo, 0) + (P1g2 + q1P2) fur(Po, 0) + q1G2fu(Po, 0)]
+ P Fua(P0: 0) + 3P1q1 fiu(P0> 0) + 3147 funn(P0: 0) + 43 fuw(po- 0)-

Proof. Consequences of the following identity:

m] ‘ 9 0
zfmu%+0mﬁ%mn=lﬂmw+lew
k=0 .

m—1 m—1

= Z pz+1(s) fu(u v) + Z QHI(S) fu(u v) + O(m).

Lemma 2.24. We have that p\ = |pog(po,0)|"'/%, and g = —polpoe(po, 0)|7/2.

Proof. We show that p;po + g1 = 0 and p1g1¢(po,0) + 1 = 0. Since
g1 (fu— ufu
0=f1=P1fu+a11)(Po,0) = hm [(m + —)fu(po, v) = —1( )(po.v)]
= lim |(piu+qnar + ﬂaz] = (p1po + q1)ay,
u— po,v—0 u

we have p;po + ¢ = 0. By Lemma 2.23,

(2.27) fo =pafu+ @afy + P2 + 20101 fiuo + ¢ f) (D0, 0)
. 1) ,— U
= i [(po+ L) BT i 2pi S+ )
u— po,v—0

=(papo + q2)a@1 + (P2 fuu + 2P1G1 fuo + G fo)(P0, 0).

By Lemma 2.25 below, we have

Ju(Po,0) =a; — pop(po, 0)az + L(po, 0)as,
Juw(Po,0) = = @(po, 0)as + M(po, 0)as,
Jouw(po,0) =N(po, 0)as,

and we conclude that



986 T. Fukul

1 = (f5, a2) = =p1po@(po, 0) — 2p1q1¢(po, 0) = —(po, 0)p1(P1po + 2q1) = —@(po, 0)p14i1.

|
Let us consider a frame
u @ u x v
A1=L, Ay =——, A3=A1XA2=f f=V
u ¥ vyp
defined on u # 0. These are extensions of a;, a,, and a;. We remark that
AN (n 0 O\ (A) (£) (v O 0)(A
|1 - vy
A | = v wOf,,,fv_l = 0[] A2].
A3 0 0 1)\v 4 0O 0 1 A3
Since f, — uf, = v®, we have
L—uszLl, M—MN:UMl,
where L, = (®,,v) and M| = (®,,v). By (2.12) and (2.13), we have that
(2.28)
Ly =co0—cip+ (2c21 — 13— bl'Z(CI;f]_CZ’O))u + (blj,z,iz'l +¢30 = €22 = C20b7 o+ O(2).
We observe that
(A Ay =) = 14 22 4 0(p - 2),
—ulfuf, PP —i?
(A, Ay) = — <ﬁ4,ﬁ¢>ump<f Jo) _ _utv tpuw +0(p) _ _% L0 1),
(A, Ag) =12 =1,
Lemma 2.25. We have
D2 2
fuu =[1 - U‘P(‘P + U‘pv)]Al - [U(Qou - %) + (u + T‘p)(‘p + U‘pv)]A2 + LA3’
fuv = (‘10 + UQDU)AZ + MA3,
Jfow =NAj.
Proof. Since f, = uAy, f, = A| + £ A,, we obtain that
Juw = fu + Ty fo + Lv = (ulyy, + T, ) A1 + 2T, Ay + Ly,
fuw =Ty fu + Ui fy + My = (uly, + T3 ) A1 + T3 Ay + My,
foo =T fu + Tofy + Nv = (uly, + Ty )A | + =T, Az + Nv.
We then conclude the lemma, by (2.15). m|
Proof of (2.19). The asymptotic expansion of b5 is obtained by (2.28) and (2.14), because
of the following Proposition 2.26. m|

Proposition 2.26. b3 = —u~'"?¢3/>(2L; — uN,, + u>N,)(po, 0).

Before the proof of this proposition, we need some preliminary
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Lemma 2.27. We have
2
D, = = p(¢ + vp) A1 = (@u + (¢ + v9,) Ay + L1 A3,
D, =— ()DUA2 + <(Dvs V>A37
2 2 Pu—
(A = — HEI Ay — (1 + 55 ) +vp,) + L470) A, + LA,
(A2 =(¢ + vp,) (A1 + £ A2) — L As,
(A3)y =—MA, + (% - )4,
(A, = — 20 Ay + M A5,
(A2), = — T+ As,
(A3), = = NA; + (2 = Z5)As.
Proof. The formula for ®, and ®, can be concluded as follows:

(Du :(fu_vufv)u — fuu_ul{uv_ﬁ}

U2 2
=1[(1 - vp(p + vg,) A1 — (vl — £) + (u + Z5 )@ + vg,))Ar + LA3]
— 4[—(p +vp)As + MA3] - 1A - £A,

2
=— (g + vp)A| — (@u + “=(p +vp,) Ay + L1 A3,
(Du :(ﬁt—vufu )U — fuu—vufuu _ fu_zuﬁ) — Jw=fw _ @

v v v

== ERA) + (D, VA3 + LAy = —, Ay + (D, VA
We compute the differentials of A}, A, as follows:

(ADy =(fuJu), = 1w — L1

2 2
= 11— vp(p + vp )AL = (v = £) + (u+ EE) (@ + v9)As + LAs | - 1A,
_ vso(tﬁ;rv%)Al —((1+ Ui—fz)(QD + vgy) + v(m:;uz—tp))Az " %A3,

_ oy _ D ou @
Ay == () =—3+°

v 2
=5l +vp) A1 + (gu + (¢ +vp) A2 — LiAs] - 2 A,
=(¢ + vp) A1 + F(p +vp,) A2 — 2 As,
(A =(L), = Lo = —e200 g, 4 Mgy,

(I) QU U U ®U’ U ®U7
(Ay), =— (Z)v = i + %(I) = %Az + %A3 - %Az = —%A}

Setting (A3), = 51141 + 51242, (A3), = 52141 + 52242, wWe have

0 =(A1, A3}y = (A A3y + (A1 (A3)) = L+ 514(1 + 25) = 51,2,
0 =(A2, A3y = {(A2)u, A3) + (A2, (A3)y) = —% — S11% + S12,
0 =(A1, A3)y = (A, A3) + (A1, (A3)y) = ¥ + 551 (1 + Ui—fz) — 5227,
0 =(A2, A3), = ((A2)y, A3) + (A2, (A3),) = —% — 2.1 + 522

Solving the equation

987
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(s1,1 s1,2)(1 + Ui—fz —v<p/u) B (—L/u Ll/go)

s21 $20)\ —vep/u 1 ) \-M/u M/¢

we have
(sl,l 51’2)_(—L/u Ll/QO)( 1 U<P/M]
— 2.2
s s22) \=Mu Mi/¢)\vp/u 1+ £
D U2
~ (<—fuu + 00, V) (=% fu+ (L + EE)D,, )

2
<_fuv + Ucha V> <_Z_ffuv + (é + Uu_;p)(bv’ V>

_ (_M <_¥fuv + éq)u’ V)]
-V gt lo,n)

and we obtain the result.

Thus we conclude that, on v = 0,
fuuu == ”(M2N2 + ‘pz)al + (MZLT]N - 290 - ”‘pu)aZ + M(Ll + 3N + uNu)aS,

fuu == WPN? + g1)ay + (2 = @ )az + (Ly + N + uN,)as,

Joou == MNZal + %aZ + N,as,
2 M|N
Jow =—N-a; + Taz + Nyas.

Proof of Proposition 2.26. By Lemma 2.23, we have

(2.29) S5 =lpsfu + @3 fo + 3(p1p2fun + (P1G2 + q1P2) fuw + G192.f0)1(Po, 0)
+ [P} fuwe + 3P1G1 foaw + 3147 o + 41 o] (D0, 0)

lim [(ps +2)f, - 2 bl]
u— po,v—0 u u v

(3(P1p2fuu +(P192 + q1p2) fuw + 611Q2fvv))( 0.0)

+p?fuuu + 3p%q1fuuv + 3plq%fuvv + q?ﬁ)vv ’

=(p3u+ q3)ay + [3(p1p2fuu + (P192 + q1P2) fuw + G192 f10)

+ p?fuuu + 3p%q1fuuv + 3plq%fuuv + QTﬁJUU](pO, 0)

‘We remark that

(fuur @3) =pyN.

(fuv» @3) =poN,

(fw»az) =N,
(fruuu> @3) =po(Ly + 3N + poNy),
(fuuo» @3) =L1 + N + poNy,
(fuow» @3) =Ny, and

(fowo> @3) =N,

on {v = 0}. We thus have

by =(f3,az) = 3N[p1p2py + (P1G2 + q1p2)Po + q192]
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+ Pipo(Ly + 3N + poNu) +3p1q1 (L + N + poNu) + 3p1giNu + GiNolu=p,
=3N(p1po + q1)(P2po + 42) + (P1po + 3q1)piL1 + 3pT(p1po + )N
+ p1(pipg + 3pop1q1 + 34Ny + ¢iN,.
When q; = —p1po, we have

by = =2p>po2L; — poN, + PaN,)(po., 0).

|—1/2

Since p1 = |poe(po, 0) , we obtain the result. ]

Appendix A. A quick review of surfaces in R?

Since a surface in R? is locally expressed as the image of a C®-map f : (R?,0) — (R3,0),
it is possible to investigate surfaces as a subject of singularity theory. We describe this idea
briefly. The first fundamental quantities E, F', G are defined by

E = fus fu)s F = Jus o), G = {for fo)-

The singular point of f is exactly defined by EG — F? = 0. A unit normal vector v is defined
by v = f, X fi/|fu X f,| whenever the denominator is not zero. The second fundamental
quantities L, M, N are defined by

| foue Ju Jol
Ifu x fil

A principal curvature « is a solution to

_ Vaw fu £
lfu X fil 7

_ o Ju Sl

L:<fuuav>: = |f><f|

M = <fuu’ V) N = <fvu> V)

L—«kE M —«kF
M —-«kF N - «G

If this equation defines two principal curvatures «; and «;, then the kernel fields of the
L— KiE M — Kl'F
M -k, F N -G
The principal directions are also described by the solutions to

matrix ( ) represent the principal directions with respect to «;, i = 1, 2.

E L dv
F M —dudv|=0.
G N du?

A principal vector v; is a unit vector which represents the principal direction with respect
to x;. Integral curves of principal vectors are called curvature lines.

We say a point is v;-ridge if v;x; = 0 at this point. We say a point is v;-subparabolic if
v;k; = 0 at this point where j # i.

Asymptotic directions are represented by the solutions to L du? + 2M du dv + N dv* = 0.
Their integral curves are called by asymptotic lines.

The Gauss curvature K and the mean curvature H are defined by

LN — M? _ki+ky  EN+GL-2FM
EG-F* —~ 2 = 2EG-F?

(Al) K = K1Ky =

A parabolic point is defined by K = 0 whenever EG — F? # 0 (i.e., f is nonsingular).
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We consider Taylor expansion of f: f(u,v) = ’]77:0 h j(u)% + O@W™"). We have X(f) =
{v = 0} if rank(h(, k) < 2 and |h{ X hy + b} x k| # 0. The later condition also implies that

rank(h(, h;) = 1. The normal vector v = |§§§| is continuously extendible on X(f) in this
case.
Since

oo IN= M2 fu Sollfoo fu fol = Vo fu SiF
T EG-F? (EG - F?)12 ’

the notion of parabolic point is extended by p(x) = 0 on Z(f) = {v = 0} when
o Jo Follfow S £l = fow S £iF? = p@lol™ + O™, p(u) # 0.

We have m = 1 in generic context, that is, |h{ h{ hi|lhy h{ hi|— |k’ k) hi|* is not identically
zZero.

Appendix B. Criteria of singularity types

B.1. Criteria of singularity types of singular surfaces. Assume that f : (R?,0) —
(R3,0), (u,v) — f(u,v), has rank one singularity at 0 and an unit normal vector is extended
to v on the singular locus. Set A = det(f, f, v), ¥ = det(¢ nv v), where ¢ is a unit tanget
vector, and 7 is a vector field whose restriction is null to the singular locus. We have that
(f,v) : (R%,0) — (R® x R?, (0, ¥(0))) is an embedding, if and only if y(0) # 0.

Lemma B.1. The singularity of f is
e cuspidal edge, if y(0) # 0, nA(0) # 0;
o swallowtail, if y(0) # 0, nA(0) = 0, n?2(0) # 0;
e cuspidal cross-cap, if (0) = 0, nA(0) # 0, ¥’'(0) # 0.

Proof. See [6, §1-2] and [2, §1]. O

Proof of Proposition 1.6. In the notation in §1, n = d,. Setting f; = , A = |f; f; V|
|fs tv v| =t X (unit),

1 0 0 b
U(s,0) = det(t, v, v)(5,0) =0 0  1|=—=.
0 -b3/2 O
So the criteria above shows the proposition. O

Proof of Proposition 2.19. In the notation in §2, we have n = 9, — ud,,

A=\fu oVl = fuluuf — fuvl=vlA1 Ay V| =0,
nAd = (0, — udy)v = u, and ’A = (0, — ud,)u = 1. So f is swallowtail if (f,v) : (R%,0) —
(R3? x R3, (0, ¥(0))) is an embedding (i.e., €20 # C12)- m]
B.2. Criteria of singularity types of differential equations. We consider the binary

differential equation:

(B.1) Adx® +2Bdxdy + Cdy* =0,
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i.] i.J iJ
where A = > ;5 +003). B= Y b5l +003).C= Y e+ 00).
1y gl gl gl
0<i+j<2 0<i+j<2 0<i+j<2

The solution curves of this equation is investigated by Davidov ([1]).
Lemma B.2. We assume that apy = booy = 0, coo # 0. Then there is a homeomorphism
of (R?,0) which sends the solution curves of the equation (B.1) to
e that of udu® + dv* = 0, folded regular point, if a; o # 0;
o that of (Au> + v)du®> + dv> = O with 1 < 0 (resp. 0 < A < 1/16, 1/16 < Q)
folded saddle (resp. folded node, folded focus), if ajoy = 0, ap; # 0, 4 < 0 (resp.
0 <A< 1/16, 1/16 < A) where A = (azoco0 = ao1bro = 2b7 )/24a5 ;.

NN VA

folded regular point folded saddle  folded node folded focus

Proof (Sketch). First we remark that the gradient of the discriminant B> — AC is
—coo(aip,ao,) at (x,y) = (0,0). This implies the discriminant defines a nonsingular curve
near (0, 0). Set

2 o 3 o 3 o
¢=> ¢giju'v! +0Q3), x= Z piju't + O4), y = qo v+ Z ciju'v’ + 0O(4).
i=0 i+j=1 i+j=2
When a;g # 0, we canchoose ¢; ; (0<i+ j<2),p;;(1<i+j<3),q;2<i+j<3,
i # 0) so that

H(Adx* + 2Bdxdy + Cdy*) = (u+ O3)du? + 0O3)dudv + (1 + O3))dv*.

We then see the contact form w = dv — pdu defines a regular curves on the surface S :
u+ p?>+0@3) = 0in (u,v, p)-space. The projection S — R? defines a 2-1 map on the set
defined by B> — AC > 0, and we conclude the proof in the case a; o # 0.

The case that a9 = 0 and ag,; # 0 is similar. In this case, we can choose ¢; ; (0 < i+ j <
2), P20, P1,1> 4i,j (1 <i+j<3,i+0)sothat

H(Adx* + 2Bdxdy + Cdy?) = (u? + v + O3))du* + O3)dudv + (1 + O(3))dv’.

On the surface Au?+v+p*+0(3) = 0in (u, v, p)-space, we see the contact form w = dv—p du
defines a saddle (resp. a node, a focus), if 4 < 0 (resp. 0 < 1 < 1/16, 4 > 1/16). |

Note ADDED IN PROOF. The author thanks to K. Saji for informing that computation in
subsection 1.6 can be continued using Proposition 3.2 in the following paper: K. Saji, On
pairs of geometric foliations on a cuspidal edge, Advanced Studies in Pure Mathematics, 78,
2018, Singularities in Generic Geometry, 411-429.

https://projecteuclid.org/euclid.aspm/1538618984
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