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Abstract
We investigate the local differential geometric invariants of cuspidal edge and swallowtail

from the view point of singularity theory. We introduce finite type invariants of such singular-
ities (see Remark 1.5 and Theorem 2.11) based on certain normal forms for cuspidal edge and
swallowtail. Then we discuss several geometric aspects based on our normal form. We also
present several asymptotic formulas concerning our invariants with respect to Gauss curvature
and mean curvature.

Typical examples of wave fronts are parallel surfaces of a regular surface in the 3-
dimensional Euclidean space, and it is well-known that such surfaces may have several sin-
gularities like cuspidal edge and swallowtail. Singularity types of parallel surfaces are inves-
tigated in [3], and the next interest is to investigate local differential geometries of such sin-
gularities. There are several attempts to describe them. For instance, K. Saji, M. Umehara,
and K. Yamada ([12]) defined the notion of singular curvature κs and normal curvature κν of
cuspidal edge, and, later, K. Saji and L. Martins ([7]) described all invariants up to order 3.
It is clear that there are more differential geometric invariants in higher order terms, and to
describe all such invariants up to finite order is one motivation of the paper.

Since Gauss curvature and mean curvature are often diverge at singularities and we are
interested in their asymptotic behaviors near a singularity in terms of our invariants. We are
going to describe their asymptotic behaviors of our local differential geometric invariants of
cuspidal edge near swallowtail.

An ideas of singularity theory is to reduce a given map-germ (R2, 0) → (R3, 0) to certain
normal form (see [9], for example). Their normal forms are obtained up to -equivalence
where  is the group of coordinate changes of the source and the target. In that context,
we reduce a given map-germ to one of normal forms in the list there, composing certain
coordinate changes of the source and the target. For differential geometric purpose, gen-
eral coordinate changes of the target are too rough, since they do not preserve differential
geometric properties, and we should restrict the coordinate change of the target to the mo-
tion group. From this point, we will consider the product group of coordinate change of the
source with the motion group of the target (the rotation group when we consider map-germs)
and we introduce a normal form for cuspidal edge (see (1.1)) and swallowtail (Theorem 2.4)
by the equivalence relation defined by this group. We believe that this is a powerful method
to investigate singular surfaces, since this unable us to describe all differential geometric
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properties in terms of them. The purpose of the paper is to investigate them in a reasonably
complete form for cuspidal edge and swallowtail.

The paper is organized as follows. In §1, we investigate cuspidal edge as moving cusps
with introducing a normal form (1.1) with conditions (i), (ii), (iii) there. We describe the first
fundamental form and the second fundamental form, and conclude an asymptotic formula
(Theorem 1.9) of Gauss curvature, the mean curvature and thus the principal curvatures. We
also investigate the singularity of asymptotic lines at a non parabolic point (subsection 1.5)
and curvature lines (subsection 1.6) in a generic context. In §2, we investigate swallow-
tail with introducing a normal form (Theorem 2.4). We describe the first fundamental form
and the second fundamental form in terms of this normal form, and conclude an asymptotic
formula (Theorem 2.20) of Gauss curvature, the mean curvature and the principal curva-
tures. We also investigate the singularity of asymptotic lines (subsection 2.4) and curvature
lines (subsection 2.5) in a generic context. Asymptotic behaviors of several invariants of
cuspidal edge nearby swallowtail is also investigated in subsection 2.7. In Appendix A, we
quickly review several basic notions of a surface in the 3-dimensional Euclidean space for
convenience of reference. In Appendix B, we review criteria of singularity types.

The author would like to thank Kentaro Saji, who organized an opportunity to talk about
this topic in June 2016, A. Honda, M. Umehara, and K. Yamada, who have informed the au-
thor several application of computation in §1 to the construction of isomers of surfaces with
cuspidal edges ([5]) in March 2019, and the anonymous referee for several comments for
the earlier version of the paper. The author also thanks to JSPS (Grant-in-Aid for Scientific
Research (C), no. 15K04867 and 19K03486) and the Research Institute for Mathematical
Sciences for their supports (a Joint Usage/Research Center located in Kyoto University) for
their support.
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Throughout the paper, we use the following notation

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

which form a basis of the 3-dimensional Euclidean space R3. We sometimes (in §2) express
elements in R3 using column vectors to shorten the expressions.

By custom, one writes f (u, v) = O(g(u, v)), if and only if there exist positive numbers
δ and M such that | f (u, v)| ≤ M|g(u, v)| when |(u, v)| < δ. For shortness, one also writes
f (u, v) = O(p) when f (u, v) = O(|(u, v)|p).

1. Cuspidal edge

1. Cuspidal edge1.1. Cuspidal edge as moving cusps.
1.1. Cuspidal edge as moving cusps. Let γ : (R, 0) → (R3, 0), s �→ γ(s), be a regular

curve with arc length parameter s. Let t, n, b denote its Frenet-Serre frame. We consider a
map-germ f : (R2, 0) → (R3, 0) as a singular surface with the following conditions: There
is a sequence { f k : (R, 0)→ (R3, 0), s �→ f k(s)}k=1,2,... of C∞-maps so that

(o) for any positive integer m we have

(1.1) f (s, t) = γ(s) +
m∑

k=1
f k(s)

tk

k!
+ O(tm+1),

(i) the singular set Σ( f ) = {t = 0}.
(ii) 〈 f k(s), t(s)〉 = 0 for k = 1, 2, . . . , and

(iii) t2/2 is an arc length parameter of the section of the plane spanned by n and b, that
is, 〈 ft(s, t), ft(s, t)〉 = t2.

Remark that f k(s) = ∂k f
∂tk |t=0, 〈 fs, fs〉|t=0 = 1, 〈 fs(s, 0), ft(s, t)〉 = 0, and 〈 ft, ft〉 = t2. The

condition (ii) implies that t is a parameter of the singular curves which are sections of the
surface with the planes spanned by n(s) and b(s). If these curves are of multiplicity 2, we
can take parameter t with the condition (iii). We remark that

fs =t +
m−1∑
k=1

f ′k
tk

k!
+ O(tm), ft =

m−1∑
k=0

f k+1
tk

k!
+ O(tm),

and fs|t=0 = t, ft|t=0 = f 1(s). By the condition (iii), we have 〈 ft(s, 0), ft(s, 0)〉 = 0, and
conclude that f 1(s) = 0. We remark that η = ∂t represents a null vector on Σ( f ), i.e.,
d f (η) = 0 on Σ( f ).

Throughout this section we consider the map f : (R2, 0) → (R3, 0) with the properties
above.

We here recall the notion of multiplicities of curves γ ([4]). We say that γ : (R, 0) →
(R3, 0) is of multiplicity m at t = 0 if there is a C∞-map γ̃ : (R, 0)→ R3 with the following
property:
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γ(t) =
tm

m
γ̃(t), γ̃(0) � 0.

Remark 1.1. A typical singularity of a map with the conditions above is cuspidal edge, a
map f : (R2, 0)→ (R3, 0) which is -equivalent to the map represented by

(1.2) (u, v) �→ (u, v2, v3).

Another example is cuspidal crosscap, a map which is -equivalent to the map represented
by

(1.3) (u, v) �→ (u, v2, uv3).

Remark 1.2. S. Shiba and M. Umehara ([14]) has analyzed (2, 3) cusp (3/2-cusp, in their
terminology) in the plane R2 using the square root of an arc length parameter as a parameter
(they call it the half-arclength parameter). For a curve with multiplicity 2 in Rn, there exists
a parameter t so that t2/2 is an arc length parameter ([4, Theorem 1.1]).

When the curvature κ of γ is not zero, we have the following Frenet-Serret formula for γ:

(1.4)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t′

n′

b′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 κ 0
−κ 0 τ

0 −τ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t
n
b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where ′ denote derivative by the arc length parameter s. Let us define θ (0 ≤ θ ≤ π) and bk

by

(1.5) cos θ = |t f 2 b|, bk = |t f 2 f k|.
We use the orthnormal frame defined by a1 = t, a2 = f 2, and a3 = t × f 2. When we write
a2 = cos θ n− sin θ b, and a3 = γ

′ × f 2 = sin θ n+ cos θ b, we have cos θ = |t f 2 b| = 〈a3, b〉,
and thus

(1.6) n(s) = cos θa2(s) + sin θa3(s), b(s) = − sin θa2(s) + cos θa3(s),

and

cos θ =〈a3, b〉 = 〈 fs × ft, fs × fss〉
| fs × ft|| fs × ftt|

∣∣∣∣∣
t=0
=
〈 fs, fs〉〈 ft, fss〉 − 〈 fs, ft〉〈 fs, fss〉

| fs × ft|| fs × fss|
∣∣∣∣∣
t=0
.

Lemma 1.3. Assume that κ � 0. We have⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a′1
a′2
a′3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 κ cos θ κ sin θ
−κ cos θ 0 τ − θ′
−κ sin θ θ′ − τ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1

a2

a3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Proof. Since
(
a2

a3

)
=

(
cos θ − sin θ
sin θ cos θ

) (
n
b

)
, we have

(
a′2
a′3

)
=θ′

(− sin θ − cos θ
cos θ − sin θ

) (
n
b

)
+

(
cos θ − sin θ
sin θ cos θ

) (
n′

b′

)
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= − θ′
(

sin θ cos θ
− cos θ sin θ

) (
n
b

)
+

(
cos θ − sin θ
sin θ cos θ

) (−κ 0 τ

0 −τ 0

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t
n
b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=θ′

(
0 −1
1 0

) (
a2

a3

)
+

(−κ cos θ 0 τ

−κ sin θ −τ 0

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1

a2

a3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= − κ

(
cos θ
sin θ

)
a1 + (τ − θ′)

(
0 1
−1 0

) (
a2

a3

)
.

�
We can write f k as a linear combination of a2 and a3:

(1.7) f k = ak a2 + bk a3, ak = 〈 f k, a2〉,
and we have f 3 = |a1 a2 f 3|a3 (i.e., a3 = 0). Remark that f = γ(s) + aa2 + ba3 where

a =a(s, t) =
t2

2
+

m∑
k=3

ak(s)
tk

k!
+ O(tm+1),

b =b(s, t) =
m∑

k=3

bk(s)
tk

k!
+ O(tm+1).

Lemma 1.4. The coefficient ak (k ≥ 3) are determined by the lower order terms induc-
tively. Precisely speaking, ak is determined by b2, b3, . . . , bk−1.

Proof. Under the condition (i) we have

t2 = 〈 ft, ft〉 =
∑

k

tk
∑

i+ j=k

〈 f i+1, f j+1〉
i! j!

,

and we obtain that | f 2| = 1, 〈 f 2, f 3〉 = 0, 1
3〈 f 2, f 4〉 + 1

4 〈 f 3, f 3〉 = 0,

1
24〈 f 2, f 5〉 + 1

12 〈 f 3, f 4〉 = 0,
2〈 f 2, f k〉
(k − 1)!

+

k−2∑
i=2

〈 f i+1, f k−i+1〉
i!(k − i)!

= 0 (k ≥ 6).

Since ak = 〈 f 2, f k〉, ak (k ≥ 3) are determined by b2, b3, . . . , bk−1. �

Remark 1.5. It is clear that (dibk/dsi)(0) (k ≥ 3) are invariants of the maps, under the ac-
tions by orientation preserving diffeomorphisms of the source preserving the singular curves
with their orientation and rotations of R3.

Proposition 1.6. Let f : (R2, 0) → (R3, 0) be a map as in the first paragraph in this
section. We have that

• the singularity of f is cuspidal edge if b3(0) � 0, and
• the singularity of f is cuspidal cross-cap if b3(0) = 0, b′3(0) � 0,

where b3 is the invariant defined in (1.5)

Proof. See Appendix B.1. �
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1.2. The first order derivatives and the first fundamental form.
1.2. The first order derivatives and the first fundamental form. Since

ft =at a2 + bt a3 =
(
t +

m−1∑
k=3

ak+1
tk

k!
+ O(tm)

)
a2 +

(∑
k≥2

bk+1
tk

k!
+ O(tm)

)
a3,(1.8)

fs =a1 + asa2 + aa′2 + bsa3 + ba3
′(1.9)

=a1 + asa2 + bsa3 + a(−κ cos θa1 + (τ − θ′)a3) + b(−κ sin θa1 + (θ′ − τ)a2)

=(1 − κ(a cos θ + b sin θ))a1 + (as + b(θ′ − τ))a2 + (bs + a(τ − θ′))a3,

we obtain the following expressions of the first fundamental quantities:

〈 fs, fs〉 =(1 − κ(a cos θ + b sin θ))2 + (as + b(θ′ − τ))2 + (bs + a(τ − θ′))2

=1 − (κ cos θ)t2 − b3κ sin θ
3

t3 + O(t4),

〈 fs, ft〉 =at(as + b(θ′ − τ)) + bt(bs + a(τ − θ′)) = b3

2
(τ − θ′) t3

6
+ O(t4),

〈 ft, ft〉 =a2
t + b2

t = t2.

The last relation is expressed by

t2 =(t +
∑
i≥3

ai+1ti/i!)2 + (
∑
j≥2

b j+1t j/ j!)2, and thus

1 =(1 +
∑
i≥2

ai+2ti/i!)2 + (
∑
j≥1

b j+2t j/ j!)2.

Comparing the coefficients of tk in both sides, we easily see that ak is determined by a3, . . . ,
ak−1, b3, . . . , bk−1 and bk. By induction, we conclude that ak is determined by b2, . . . , bk. We
also remark that

〈 fs, fs〉〈 ft, ft〉 − 〈 fs, ft〉2 = t2(1 − t2κ cos θ + · · · ).

1.3. Unit normal vector ν.
1.3. Unit normal vector ν.

Lemma 1.7. We have the following asymptotic expansion of the unit normal vector ν:

ν =
fs × ft

t

| fs × ft
t |
=

[
(θ′ − τ)

t2

2
+ O(t3)

]
a1 +

[
−b3

2
t + O(t3)

]
a2 +

[
1 − b2

3

8
t2 + O(t3)

]
a3.

Proof. Since

fs × ft
t
= (a1 + a′2

t2

2
+ · · · ) × (a2 + f 3

t
2
+ · · · ) = a3 − b3a2

t
2
+ (a′2 × a2)

t2

2
+ O(t3),

we have

| fs × ( ft/t)|−1 = 1 − 1
8 (b3t)2 + O(t3).

Since

a′2 × a2 = (−κ cos θ a1 + (τ − θ′)a3) × a2 = −κ cos θ a3 − (τ − θ′)a1,

we have
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fs × ( ft/t) = a3 − (b3/2)a2t − (κ cos θ a3 + (τ − θ′)a1)(t2/2) + O(t3),

and we obtain the expression of ν. �

Lemma 1.8. The map ( f , ν) : (R2, 0)→ (R3 ×R3, (0, ν(0))) is an embedding germ, if and
only if b3 � 0.

Proof. This is a consequence of the following:

d f (s, 0) =
(
a1

0

)
, dν(s, 0) =

(−κ sin θ θ′ − τ 0
0 −b3/2 0

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1

a2

a3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
�

1.4. The second order derivatives and the second fundamental form.
1.4. The second order derivatives and the second fundamental form. Let us first com-

pute Christoffel symbols Γs
ss, Γ

t
ss, Γ

s
st, Γ

t
st, Γ

s
tt, Γ

t
tt defined by

fss =Γ
s
ss fs + Γ

t
ss ft + Lν, fst =Γ

s
st fs + Γ

t
st ft + Mν, ftt =Γs

tt fs + Γ
t
tt ft + Nν.

Since

〈 fs, fs〉s =2〈 fss, fs〉, 〈 fs, ft〉s =〈 fss, ft〉 + 〈 fst, ft〉, 〈 fs, fs〉t =2〈 fst, fs〉,
〈 fs, fs〉t =2〈 fst, fs〉, 〈 fs, ft〉t =〈 fst, ft〉 + 〈 fs, ftt〉, 〈 ft, ft〉t =2〈 ftt, ft〉,

we obtain

1
2

(〈 fs, fs〉 〈 fs, ft〉
〈 ft, fs〉 〈 ft, ft〉

) (
Γs

ss Γ
s
st Γ

s
tt

Γt
ss Γ

t
st Γ

t
tt

)
=

(〈 fss, fs〉 〈 fst, fs〉 〈 ftt, fs〉
〈 fss, ft〉 〈 fst, ft〉 〈 ftt, ft〉

)

=

( 〈 fs, fs〉s 〈 fs, fs〉t 2〈 fs, ft〉t − 〈 ft, ft〉s
2〈 fs, ft〉s − 〈 fs, fs〉t 〈 ft, ft〉s 〈 ft, ft〉t

)

=
1
2

( 〈 fs, fs〉s 〈 fs, fs〉t 2〈 fs, ft〉t
2〈 fs, ft〉s − 〈 fs, fs〉t 0 t

)
,

and we obtain that

fss =O(t2)a1 + [κ cos θ + O(t2)]a2 − [κ sin θ + O(t2)]a3,(1.10)

fst =[(−κ cos θ)t + O(t2)] a1 + [(τ − θ′)t + O(t2)]a2 + (τ − θ′)ta3,(1.11)

ftt =O(t2)a1 + [1 + O(t2)]a2 + [b3t + O(t2)]a3.(1.12)

We thus obtain the following expressions of the second fundamental quantities:

〈 fss, ν〉 =κ sin θ − b3κ cos θ
2

t + O(t2),

〈 fst, ν〉 =(τ − θ′)t + b′3
2

t2 + O(t3),

〈 ftt, ν〉 =b3

2
t +

b4

3
t2 + (a5 −

a3
3

2
)
t3

8
+ O(t4).

Theorem 1.9. We consider a map f : (R2, 0) → (R3, 0) as in the first paragraph of this
section. The asymptotic expansions of Gauss curvature K and the mean curvature H are



968 T. Fukui

expressed as follows:

K =
1
t

(b3κ sin θ
2

+
[
κ
(b4 sin θ

3
− b2

3 cos θ
4

)
− (τ − θ′)2

]
t + O(t2)

)
, and

H =
1
t

(b3

4
+

(b4

6
+
κ sin θ

2

)
t + O(t2)

)
where κ and τ are the curvature and the torsion of γ defined in (1.4), and θ, bk are the
invariants defined in (1.5). If the singularity of f is cuspidal edge (i.e., b3 � 0), then the
principal curvatures are given by

κ1 = κ sin θ − b2
3κ cos θ + 4(τ − θs)2

2b3
t + O(t2), κ2 =

1
t

(b3

2
+

b4

3
t +

2(τ − θs)2

b3
t2 + O(t3)

)
.

Proof. Since

〈 fss, ν〉〈 ftt, ν〉 − 〈 fst, ν〉2 = b3κ sin θ
2

t +
(b4

3
κ sin θ − b2

3

4
κ cos θ − (τ − θ′)2

)
t2 + O(t3),

we obtain the expression for K. Since

〈 fs, fs〉〈 ftt, ν〉 − 2〈 fs, ft〉〈 fst, ν〉 + 〈 ft, ft〉〈 fss, ν〉 = b3

2
t +

(b4

3
+ κ sin θ

)
t2 + O(t3),

we obtain the expression for H. The assertion for principal curvatures are obtained by solv-
ing the equation λ2 − 2Hλ + K = 0. �
We assume that b3 � 0, that is, t �→ f (s, t) define a (2, 3)-cusp. Then we have the following:

• If κ sin θ � 0, then one side of the singular locus is hyperbolic (i.e., K < 0) and the
other side of the singular locus is elliptic (i.e., K > 0) near the singular locus.
• If κ � 0 and θ ≡ 0 modπ, then K = −κb2

3/4 − (τ − θ′)2 + O(2).

Remark 1.10. Several geometric invariants for cuspidal edge were already defined. Here
is a list for these invariants:

• normal curvature κν and singular curvature κs in [12],
• cuspidal curvature κc in [8], and
• cusp-directional torsion κt and edge inflectional curvature κi in [7].

We express them in terms of §1:

κs =| fs fss a3|t=0 = κ cos θ, κν = fss · ν|t=0 = κ sin θ, κc = | fs ftt fttt|t=0 = b3,

κt =| fs ftt fstt|t=0 = τ − θ′, κi =| fs ftt fsss|t=0 = κτ cos θ + κ′ sin θ.

To check them we need to look the mid terms closely, using (1.9), (1.8), (1.10), (1.11),
(1.12), and

fstt = −κ(cos θ + att sin θ)a1 + (θ′ − τ)a2 + (τ − θ′)a3, fttt = b3a3, on t = 0.

1.5. Asymptotic lines.
1.5. Asymptotic lines. The equation for asymptotic directions is defined by

(1.13)
[
κ sin θ − b3κ cos θ

2
t + O(t2)

]
ds2 + 2[(τ − θ′)t + O(t2)]ds dt +

[b3

2
t + O(t2)

]
dt2 = 0

in the region defined by K = b3κ sin θ
t + · · · ≤ 0. Assume that the singularity of f is cuspidal

edge (i.e., b3 � 0). We say that a point in cuspidal edge (i.e., a point in the locus defined
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by t = 0) is parabolic if it is in the closure of the set of parabolic points in the regular
locus. Theparabolic cuspidal edge is defined by κ sin θ=0 in the generic context, that is,
κ sin θ is not identically zero (see the end of Appendix A). If κ sin θ > 0 (or < 0), the
equation (1.13) defines asymptotic directions in the region t ≤ 0 (or t ≥ 0), and there is a
homeomorphism of (R2, 0) which sends solution curves of (1.13) to that of folded regular
point (see Appendex B.2). The singularities of asymptotic curves near a parabolic cuspidal
edge point (i.e., t = κ sin θ = 0) are degenerate, and we do not consider them here.

1.6. Curvature lines.
1.6. Curvature lines. The equation for principal directions is∣∣∣∣∣∣∣∣∣

1 − (κ cos θ)t2 + O(t3) κ sin θ − b3κ cos θ
2 t + O(t2) dt2

O(t3) (τ − θ′)t + O(t2) −ds dt
t2 b3

2 t + O(t2) ds2

∣∣∣∣∣∣∣∣∣ = 0.

This reduces to[
(τ − θ′) + t

2
b′3 + · · ·

]
ds2 +

[b3

2
+ t

(b4

3
− κ sin θ

)
+ · · ·

]
ds dt −

[
t2(τ − θ′) + · · ·

]
dt2 = 0.

Assume that ( f , ν) is an embedding (i.e., b3 � 0). This defines two nonsingular transverse
flows at any point near t = 0. This fact is already recognized in [10, Lemma 1.3]. The author
thanks the referee to let him know this paper.

1.7. Ridge and subparabolic lines.
1.7. Ridge and subparabolic lines. By the equation for principal directions in the pre-

vious subsection, we obtain the following expression of the principal vectors near cuspidal
edge.

u1 =
(
1 − 2(τ − θ′)2t2

b2
3

+ O(t3)
)
∂s +

(2(θ′ − τ)
b3

+ O(t)
)
∂t,

u2 =
(2(τ − θ′)t

2
+ O(t2)

)
∂s +

(1
t
− 2(τ − θ′)2t

b2
3

+ O(t2)
)
∂t.

So the ridge lines are defined by zero of

u1κ1 =
b2

3 (κ′ sin θ + κτ cos θ) + 4(τ − θ′)3

b2
3

+ O(t), or u2κ2 = − b3

2t3 + O(t0).

Similarly the subparabolic lines are defined by zero of

u2κ1 = −
b2

3κ cos θ + 4(τ − θ′)2

2tb3
+ O(t0), or u1κ2 =

τ − θ′
t2 + O(t−1).

1.8. Moving cusps along a straight line.
1.8. Moving cusps along a straight line. Since Lemma 1.3 requires the assumption κ �

0, we need to consider separately the case that the curvature κ is identically zero. At this
case γ(s) is a part of line, and a1 = t = γ′, a2 = f 2, a3 = t × f 2 form an orthonormal frame.
One can define κ̄ by ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a′1
a′2
a′3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 0 κ̄

0 −κ̄ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1

a2

a3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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For f (s, t) = γ(s) + aa2 + ba3, a = t2/2 − b2
3t4/32 +O(t5), b = b3t3/6 + b4t4/24 +O(t4), we

have fs = a1 + (as − bκ̄)a2 + (bs+aκ̄)a3, ft = at a2 + bt a3, and

〈 fs, fs〉 = 1 + κ̄2t4/4 + O(t5), 〈 fs, ft〉 = b3t/12 + O(t5), 〈 ft, ft〉 = t2.

Since fs × ft = (asbt − atbs − (aat+bbt)κ̄)a1 − bt a2 + at a3, we have

ν = (−κ̄(t2/2) + O(t3))a1 + (−b3t/2 − b4(t2/6) + O(t3))a2 + (1 − b2
3(t2/8) + O(t3))a3.

The vector η = ∂t represents a null vector along Σ( f ). Since λ = det( fs ft ν) = t + O(t3),
ψ = det(t ην ν) = − b3

2 − b4
4 t + O(t2), the singularity of f at (0, 0) is cuspidal edge (resp.

a cuspidal crosscap) if b3(0) � 0 (resp. b3(0) = 0 and b′3(0) � 0). We also remark that
( f , ν) : (R2, 0)→ R3 × R3 is an embedding if b3(0) � 0.

Moreover, we have fss = (ass − 2bsκ̄ − aκ̄2 − bκ̄′)a2 + (bss + κ̄(2as − bκ̄)+aκ̄′)a3, fst =

(ast − btκ̄)a2 + (bst+atκ̄)a3, ftt = att a2 + btt a3, and

〈 fss, ν〉 = κ̄′ t
2

2
+ O(t3), 〈 fst, ν〉 = κ̄t + b′3

t2

2
+ O(t3), 〈 ftt, ν〉 = b3

2
t +

b4

3
t3 + O(t3).

We thus conclude the asymptotic expansions of Gauss curvature K and the mean curvature
H as follows:

K = − κ̄2 +
1
4

(b3κ̄
′ − 4b′3κ̄)t + O(t2), H =

1
t

(b3

4
+

1
6

b4t + O(t2)
)
.

Moreover, we obtain the asymptotic expansions of the principal curvatures:

1
t

(b3

2
+

b4

3
t + O(t2)

)
, t

(2κ̄2

b3
+

( κ̄′
2
− b′3κ̄

b3
+

4b4κ̄
2

3b2
3

)
t + O(t2)

)
.

The configuration of asymptotic lines is folded regular point if b3(0) � 0 and κ̄′(0) � 0. The
equation for principal directions is(

κ̄ +
b′3
2

t + O(t2)
)
ds2 +

(b3

2
+

b4

3
t + O(t2)

)
ds dt + (−κ̄t2 + O(t3))dt2 = 0,

which defines two transverse directions whenever b3(0) � 0.

2. Swallowtails

2. Swallowtails2.1. Normal form theorem.
2.1. Normal form theorem. Throughout this section, we consider a C∞-map

f : (R2, 0)→ (R3, 0), (u1, v1) �→ f (u1, v1),

with the following conditions:
(i) The singular locus Σ( f ) = {v1 = 0}.

(ii) f (Σ( f )) is a curve of multiplicity 2 at u1 = 0 with an arc length parameter (u1)2/2.
(iii) The Jacobi matrix of f |Σ( f ) is of rank 1.

Remark 2.1. A typical singularity of a map with these conditions is swallowtail, a map
f : (R2, 0)→ (R3, 0) which is -quivalent to

(2.1) (u, v) �→ (3u4 + u2v, 4u3 + 2uv, v).
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We are going to change f a normal form under the action of the product group of coordinate
change of the source with the rotation group as we explained in Introduction.

We can assume that there is a sequence {gk : (R, 0) → (R3, 0)), u1 �→ gk(u1)}k=0,1,2,... of
C∞-maps so that

(2.2) f (u1, v1) =
m∑

k=0

gk(u1)
(v1)k

k!
+ O(v1

m+1) for any positive integer m.

We express Taylor expansions of gk as follows.

gk(u1) =
m−k∑
i=2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ak,i

bk,i

ck,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (u1)i

i!
+ O(um−k+1

1 ) (k = 1, 2, . . . ,m).

Lemma 2.2. Without loss of generality, we can assume the following condition:

(iv) g′0(u1) = u1g1(u1) and |g1(u1)| = 1.
(v) g0 and g1 satisfy the following:

g1(u1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + a1,1u1

b1,1u1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
m∑

i=2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1,i

b1,i

c1,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (u1)i

i!
+ O(um+1

1 ),(2.3)

g0(u1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(u1)2/2

b1,1(u1)3/3
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b2
1,1

b1,2 − 2a1,1b1,1

c1,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (u1)4

8
+ O

(
(u1)5).(2.4)

Proof. Since d f (u1, 0) = (g′0(u1), g1(u1)), the condition (i) implies g′0(u1) and g1(u1) are
linearly dependent. By (ii), g′0(0) = 0 and the condition (iii) implies g1(0) � 0. So there is a
function g(u1) with g′0(u1) = g1(u1)g(u1), g(0) = 0, g′(0) � 0. Setting (u1, v1) = (u, v/|g1(u)|),
we have

f (u1, v1) =
m∑

k=1

gk(u1)
(v1)2

k!
+ O(v1

m+1) =
m∑

k=1

gk(u)
|g1(u)|k

vk

k!
+ O(vm+1).

So we can assume that |g1(u1)| = 1.
Rotating f (u1, v1) in R3, if necessary, we may assume (2.3). Since σ = (u1)2/2 is an arc

length parameter of the curve u1 �→ g0(u1),

|g(u1)| = |g(u1)||g1(u1)| =
∣∣∣∣dg0

du1

∣∣∣∣ = ∣∣∣∣dg0

dσ

∣∣∣∣∣∣∣∣ dσ
du1

∣∣∣∣ = |u1|,
and we conclude that g(u1) = ±u1. We assume that g(u1) = u1. Then we have (2.4). �

We can assume that b1,1 ≥ 0 changing the sign of u, if necessary.
Since the 1-jet of ν̃ = fu1 × fv1 is (0, 0, b1,1v1), ν = ν̃/|ν̃| is extendible continuously to

(u1, v1) = (0, 0), if b1,1 � 0.

Remark 2.3. If b1,1 = 0, then the singularity of f cannot be swallowtail. In fact, when
b1,1 = 0, the coefficient of uv in the Taylor expansion of f is zero. But a map, which is
swallowtail has non zero uv term whenever its 1-jet is ve1.
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Theorem 2.4. Let f : (R2, 0)→ (R3, 0) be a map as in the first paragraph of this section
with conditions (iv) and (v) of Lemma 2.2. If b1,1 � 0, then there is a coordinate change,
(u, v) �→ (u1, v1) = h(u, v) = (h1(u, v), h2(u, v)), of the source so that

(i) Σ( f ◦h) = {v = 0},
(ii) f (Σ( f ◦h)) is a curve of multiplicity 2 at u = 0 with an arc length parameter u2/2,

(iii) the Jacobi matrix of f ◦h|Σ( f◦h) is of rank 1, and
(iv) 〈( f ◦h)u, ( f ◦h)u〉|v=0 = u2, 〈( f ◦h)u, ( f ◦h)v〉 = u+O(p), and 〈( f ◦h)v, ( f ◦h)v〉 = 1+O(p)

for any positive integer p.

2.2. Proof of Theorem 2.4.
2.2. Proof of Theorem 2.4. The key of the proof of Theorem 2.4 is the following

Theorem 2.5. Let f : (R2, 0)→ (R3, 0) be a map as in the first paragraph of this section
with conditions (iv) and (v) of Lemma 2.2. Let k be a positive integer and b1,1 > 0. There is
a coordinate system (uk, vk) so that u1 = uk + vkP̃k−1, v1 = vk(1 + Q̃k), where P̃k and Q̃k are
polynomials in (uk, vk) of degrees k − 1 and k, respectively, and

〈 fuk , fuk〉 = u2
k + b2

1,1v
2
k + vk O(2), 〈 fuk , fvk〉 = uk + vk O(k − 1), 〈 fvk , fvk〉 = 1 + O(k).

For the coordinate system (uk, vk), we easily see the following conditions:
(i) Σ( f ) = {vk = 0};

(ii) f (Σ( f )) is a curve of multiplicity 2 at uk = 0 with an arc length parameter (uk)2/2;
(iii) The Jacobi matrix of f |Σ( f ) is of rank 1.

Remark 2.6. If 〈 fu, fv〉 = u and 〈 fv, fv〉 = 1, then the curves v �→ f (u, v) present geodesics,
since 〈 fvv, fv〉 = 1

2〈 fv, fv〉v = 0, and 〈 fvv, fu〉 = 〈 fu, fv〉v − 1
2 〈 fv, fv〉u = 0. This is a strong

evidence to expect the existence of a geodesic which reaches swallowtail singularity.

Corollary 2.7. Under the same assumption to the previous theorem, there exists a C∞-
coordinate system (u, v) so that the Taylor expansions of 〈 fu, fu〉, 〈 fu, fv〉 and 〈 fv, fv〉 are given
by u2 + b2

1,1v
2 + vO(2), u, and 1, respectively.

Proof. Consequence of the previous theorem and Bott’s theorem ([11, §1.5]). �

Lemma 2.8. Assume that b1,1 � 0. If

(2.5) p = − b2,0

2b1,1
, q0 = −a1,1 − b2,0

2b1,1
, q1 = −a2,0

2
+

a1,1b2,0

2b1,1
− b2

2,0

b2
1,1

,

then j2 f (0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u2

2 + v

b1,1uv
c2,0

v2

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ where u1 = u + pv, v1 = v + v(q0u + q1v).

Proof. Taylor expansion of f is

g0(u1) + g1(u1)v1 + g2(u1)
(v1)2

2
+

∑
k≥3

gk(u1)
(v1)k

k!

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(u1)2/2

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + v1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + a1,1u1

b1,1u1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + (v1)2

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a2,0

b2,0

c2,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
∑

i+ j≥3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ai, j

bi, j

ci, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (u1) j(v1)i

i! j!
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(u + pv)2/2

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + v(1 + q0u + q1v)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + a1,1(u + pv)

b1,1(u + pv)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + v
2(1 + q0u + q1v)2

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a2,0

b2,0

c2,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

∑
i+ j≥3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ai, j

bi, j

ci, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (u + pv) j(v + v(q0u + q1v))i

i! j!

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
v + u2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1,1 + p + q0

b1,1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ uv +
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a2,0 + 2a1,1 p + p2 + 2q1

b2,0 + 2b1,1 p
c2,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ v2 + O(3).

By (2.5), we have

a1,1 + p + q0 = 0, a2,0 + 2a1,1 p + p2 + 2q0 = 0, b2,0 + 2b1,1 p = 0,

and we conclude the result. �
By the lemma, we have

j2 f (0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u2

2 + v

b1,1uv
c2,0

v2

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , j1 fu(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u

b1,1v

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , j1 fv(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

b1,1u
c2,0v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

〈 fu, fu〉 = u2 + b2
1,1v

2 + vO(2), 〈 fu, fv〉 = u + vO(1), 〈 fv, fv〉 = 1 + O(2).

This shows Theorem 2.5 when k = 2.

Lemma 2.9. Set f (u, v) =
∑p

k=1 gk(u)vk/k! + O(vp+1). Assume that g′0(u) = g(u)g1(u). If
〈 fv, fv〉 = 1 + O(uk)v + O(v2), then

〈 fu, fv〉 = u + O(uk)v + O(v2).

Proof. Since fv =
∑p−1

k=0 gk+1(u)vk/k! + O(vp),

〈 fv, fv〉 =
〈p−1∑

i=0
gi+1

vi

i!
,

p−1∑
j=0
g j+1

v j

j!

〉
+ O(vp) =

p−1∑
k=0

∑
i+ j=k
〈gi+1, g j+1〉

vk

i! j!
+ O(vp)(2.6)

=〈g1, g1〉 + 2〈g1, g2〉v + (〈g2, g2〉 + 〈g1, g3〉)v2 + O(v3).

Since 〈g1, g1〉 = 1, and 〈g1, g2〉 = O(uk), we have

〈g′1, g1〉 + 〈g′0, g2〉 =
1
2
〈g1, g1〉u + g(u)〈g1, g2〉 = O(uk)

Since u2 = 〈g′0, g′0〉 = g(u)2〈g1, g1〉 = g(u)2, we may assume that g(u) = u, and

〈g′0, g1〉 = g(u)〈g1, g1〉 = u.

Since fu =
∑p−1

k=0 g
′
k(u) v

k

k! + O(vp),
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〈 fu, fv〉 =
〈p−1∑

i=0
g′i
vi

i!
,

p−1∑
j=0
g j+1

v j

j!

〉
+ O(vp) =

p−1∑
k=0

∑
i+ j=k
〈g′i , g j+1〉

vk

i! j!
+ O(vp)(2.7)

=〈g′0, g1〉 + (〈g′0, g2〉 + 〈g′1, g1〉)v + O(v2) = u + O(uk)v + O(v2).

�

We are looking for a coordinate system (u, v) with

〈 fu, fu〉 = u2 + b2
1,1v

2 + vO(2), 〈 fu, fv〉 = u + O(k), 〈 fv, fv〉 = 1 + O(k)

where k is a positive integer. We consider tuples Hi(u, v) of homogeneous polynomials of
degree i in (u, v) so that f (u, v) =

∑k
i=1 Hi(u, v) + O(k + 1). We have H1(u, v) = ve1, and

H2(u, v) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u2/2
b1,1uv

c2,0v
2/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , H3(u, v) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

b1,1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u3

3
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−b2

1,1
u2v
2 − c2

2,0
v3

6

b1,2
u2v
2 + b∗2,1

uv2

2 + b∗3,0
v3

6

c1,2
u2v
2 + c∗2,1

uv2

2 + c∗3,0
v3

6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
where b∗2,1 =

c2,0

b1,1
(c2,0 − c1,2), c∗2,1 = c2,1 +

b2,0(c2,0−c1,2)
b1,1

, b∗3,0 =
c2,0c2,1

b1,1
− b2,0c2,0(c2,0−c1,2)

b2
1,1

, c∗3,0 =

c3,0 − 3a2,0c2,0 − 3b2,0c2,1

2b1,1
+

3b2,0(x1,2−c2,0)
4b2

1,1
. So b1,1 and c2,0 are invariants of order 2, and b1,2, c1,2,

c∗2,1, and c∗3,0 are invariants of order 3.

Lemma 2.10. Let (uk, vk) be a coordinate system so that

f = vke1 +
k+1∑
i=2

Hi(uk, vk) + b1,1v
2
k Pk−2(uk, vk)e2 + O(k + 2),(2.8)

〈 fuk , fuk〉 = u2
k + b2

1,1v
2
k + vk O(2),

〈 fuk , fvk〉 = uk + vkAk−1 + b1,1v
2
k Pk−2(uk, vk) + vk O(k),

〈 fvk , fvk〉 = 1 + Bk + O(k + 1),

where Ak−1 and Bk are homogeneous polynomials in (uk, vk) of degrees k − 1 and k, respec-
tively. Setting uk = uk+1 + vk+1Pk−1(uk+1, vk+1), vk = vk+1(1 + Qk(uk+1, vk+1)) where Pk−1(u, v)
and Qk(u, v) are homogeneous polynomials of degrees k − 1 and k in (u, v), respectively, we
have

f = vk+1e1 +
k+1∑
i=2

Hi(uk+1, vk+1) + b1,1v
2
k+1Pk−2(uk+1, vk+1)e2

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
uvPk−1(uk+1, vk+1) + vQk(uk+1, vk+1)

b1,1v
2Pk−1(uk+1, vk+1)

c2,0vQk(uk+1, vk+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(k + 2),

and, for a suitable choice of Pk−2 and Qk, we conclude that

〈 fuk+1 , fuk+1〉 =u2
k+1 + b2

1,1v
2
k+1 + vk+1 O(2),

〈 fuk+1 , fvk+1〉 =uk+1 + vk+1 O(k),

〈 fvk+1 , fvk+1〉 =1 + O(k + 1).
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Proof. Setting uk = u + vPk−1, vk = v(1 + Qk), we have vke1 = v(1 + Qk)e1,

H2(uk, vk) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u2

k/2
b1,1ukvk

c2,0v
2
k/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2/2
b1,1uv

c2,0v
2/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uvPk−1

b1,1v
2Pk−1

c2,0vQk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(k + 2).

Since

(u + vPk−1)iv j(1 + Qk) j =

i∑
s=0

j∑
t=0

(
i
s

)(
j
t

)
ui−svsPs

k−1v
jQt

k,

we have Hi(uk, vk) = Hi(u, v) + O(k + 2), i = 3, 4, . . . , k + 1. We thus have

(2.9) f = ve1 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u2/2
b1,1uv

c2,0v
2/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
k+1∑
i=3

Hi(u, v) + b1,1v
2Pk−2(u, v)e2 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
uvPk−1 + vQk

b1,1v
2Pk−1

c2,0vQk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(k + 2).

Then we obtain that

fu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u

b1,1v

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
k+1∑
i=3

(Hi)u + b1,1(v2Pk−2)ue2 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(uvPk−1 + vQk)u

b1,1v
2(Pk−1)u

c2,0(vQk)u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(k + 1),

fv =e1 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

b1,1u
c2,0v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
k+1∑
i=3

(Hi)v + b1,1(v2Pk−2)ve2 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(uvPk−1 + vQk)v

b1,1(v2Pk−1)v
c2,0(vQk)v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(k + 1).

Remark that the homogeneous part of degree k of 〈 fv, fv〉 is

(2.10) 2(uvPk−1 + vQk)v + 2b2
1,1u(v2Pk−2)v +

k∑
i=2
〈(Hi)v, (Hk+2−i)v〉 + 2〈(Hk+1)v, e1〉.

We choose a homogeneous polynomial Rk+1 of degree k + 1 so that

(Rk+1)v =
1
2

k∑
i=2
〈(Hi)v, (Hk+2−i)v〉, (Rk+1 + 〈Hk+1, e1〉)|v=0 = 0.

Since Rk+1 + 〈Hk+1, e1〉 is divisible by v, we can choose a homogeneous polynomial Qk of
degree k so that

uvPk−1 + vQk + b2
1,1uv2Pk−2 + Rk+1 + 〈Hk+1, e1〉 = 0.

Then (2.10) is zero and the first component of (2.9) does not depend on Pk−1. Moreover, we
have that the degree k-part of 〈 fu, fv〉 is equal to

k∑
i=2
〈(Hi)u, (Hk+2−i)v〉 + (uvPk−1 + vQk)u + 〈(Hk+1)u, e1〉 + b2

1,1kv2Pk−2

=
k∑

i=2
〈(Hi)u, (Hk+2−i)v〉 − (Rk+1)u + b2

1,1v
2[kPk−2 − (uPk−2)u],(2.11)

since (uvPk−1 + vQk)u + b2
1,1(uv2Pk−2)u + (Rk+1)u + 〈(Hk+1)u, e1〉 = 0. We finish the proof if

we choose Pk−2 so that (2.11) is zero. Setting Pk−2 =
∑k−2

i=0 piuivk−i−2, the equation becomes
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k∑
i=2
〈(Hi)u, (Hk+2−i)v〉 − (Rk+1)u + b2

1,1

k−2∑
i=0

(k − i)piuivk−i = 0,

which is possible to solve inductively by Lemma 2.9. �

2.3. Computation based on the normal form.
2.3. Computation based on the normal form. From now on, we assume that the C∞-

map

f : (R2, 0)→ (R3, 0), (u, v) �→ f (u, v),

as in the first paragraph of this section with conditions (iv) and (v) of Lemma 2.2. Let

Hk(u, v) =
∑

i+ j=k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ai, j

bi, j

ci, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u jvi

i! j!
(k = 1, 2, . . . )

be homogeneous polynomials with f (u, v) = ∑p
k=1 Hk(x, y)+O(p+1) for any positive integer

p. Remark that

H1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
v

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , H2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u2/2
b1,1uv

c2,0v
2/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , and H3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

b1,1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u3

3
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1,2

u2v
2 + a2,1

uv2

2 + a3,0
v3

6
b1,2

u2v
2 + b2,1

uv2

2 + b3,0
v3

6
c1,2

u2v
2 + c2,1

uv2

2 + c3,0
v3

6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
We first see the following

Theorem 2.11. Let f be as in the previous paragraph. The coefficients ai, j, bi, j, ci, j are in-
variants under the action of orientation preserving diffeomorphisms of the source preserving
the singular curves with their orientation.

Proof. Assume that there is another coordinate (u′, v′) with conditions (i)–(iv). We can
assume that u′ = u + vψ1(u, v) and v′ = v(1 + ψ2(u, v)), by (i) and (ii). It is enough to
show that both ψ1(u, v), ψ2(u, v) are flat functions, that is, all partial derivatives, including
higher order’s, are zero at 0. Let us assume the contrary. Then there exist φ1(u, v), φ2(u, v)
homogeneous polynomials (possibly zero) of degree k − 1, k, respectively, so that φ1 � 0 or
φ2 � 0 and ψ1 = φ1 + O(k), ψ2 = φ2 + O(k + 1). We can assume that k ≥ 2. Since

fu =(1 + (vψ1)u) fu′ + (vψ2)u fv′ , fv =(vψ1)v fu′ + (1 + (vψ2)v) fv′ ,

we obtain

〈 fu, fv〉 =(1 + (vψ1)u)(vψ1)v〈 fu′ , fu′ 〉 + [(1 + (vψ1)u)(1 + (vψ2)v) + (vψ2)u(vψ1)v]〈 fu′ , fv′ 〉
+ (vψ2)u(1 + (vψ2)v)〈 fv′ , fv′ 〉,

〈 fv, fv〉 =(vψ1)2
v 〈 fu′ , fu′ 〉 + 2(vψ1)v(1 + (vψ2)v)〈 fu′ , fv′ 〉 + (1 + (vψ2)v)2〈 fv′ , fv′ 〉.

Comparing degree k parts of them, we obtain that

0 = (vφ1)uu + vφ1 + (vφ2)v, (vφ1)vu + (vφ2)v = 0

and thus (vφ1)vu = (vφ1)uu + vφ1. When φ1 =
∑k−1

i=0 aiuivk−1−i, we have

k−1∑
i=0

(k − i)aiui+1vk−i−1 =

k−1∑
i=0

(i + 1)aiuivk−i.
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This implies φ1 = 0, and φ2 = 0 also. �
Remark that we have b2,1 = c2,0(c2,0 − c1,2)/b1,1, b3,0 = −c2,0c2,1/(2b1,1) when b1,1 � 0.

Actually, we have the following

Proposition 2.12. The coefficients ai, j (i ≥ 1), bi, j (i ≥ 2) are determined by the lower
order terms and cp,i+ j−p, 0 ≤ p ≤ i + j, inductively, whenever b1,1 � 0. Precisely speaking,
a1,k, a2,k−1, . . . , ak+1,0, b2,k−2, b3,k−3, . . . , bk,0 are determined by b1,1, b1,2, . . . , b1,k−1, and cp,q

(p + q ≤ k).

Remark 2.13. This proposition implies that the coefficients in the first components of
Taylor expansions of gi(u) (i ≥ 1) and the coefficients in the second components of Taylor
expansions of gi(u) (i ≥ 2) are determined by the lower order terms. Remark that the
orthogonal projection of the singular curve g0(u) to y-axis (the principal normal line of g0(u)
at u = 0) determines b1, j and the orthogonal projection of f (u, v) to z-axis (the binormal line
of g0(u) at u = 0), determines ci, j. By Proposition 2.12, these informations determine all our
finite order invariants.

Proof of Proposition 2.12. By (2.4), we obtain

1 =〈g1, g1〉 = 1 + 2a1,1u + (a1,2 + a2
1,1 + b2

1,1)u2

+

p∑
k=3

(2a1,k

k!
+

k−2∑
i=2

a1,ia1,k−i + b1,ib1,k−i + c1,ic1,k−i

i!(k − i)!

)
uk + O(up+1),

and a1,k is determined by b1,1, b1,2, . . . , b1,k−1, c1,1, c1,2, . . . , c1,k−1. Since

fu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u

b1,1v

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
p∑

i=3

(Hi)u + O(p + 1), fv =e1 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

b1,1u
c2,0v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
p∑

i=3

(Hi)v + O(p + 1),

for k ≥ 2, the conditions imply that

0 =the degree k-part of 〈 fu, fv〉 =
k∑

i=2
〈(Hi)u, (Hk+2−i)v〉 + 〈(Hk+1)u, e1〉

=

〈⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u

b1,1v

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (Hk)v

〉
+

k−1∑
i=3
〈(Hi)u, (Hk+2−i)v〉 +

〈
(Hk)u,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

b1,1u
c2,0v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉
+ 〈(Hk+1)u, e1〉

=u〈e1, (Hk)v〉 +
k−1∑
i=3
〈(Hi)u, (Hk+2−i)v〉 + c2,0v〈(Hk)u, e3〉 + b1,1k〈e2,Hk〉 + 〈(Hk+1)u, e1〉,

0 =the degree k-part of 〈 fv, fv〉 =
k∑

i=2
〈(Hi)v, (Hk+2−i)v〉 + 2〈(Hk+1)v, e1〉

=
k−1∑
i=3
〈(Hi)v, (Hk+2−i)v〉 + 2

〈⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

b1,1u
c2,0v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (Hk)v

〉
+ 2〈(Hk+1)v, e1〉

=
k−1∑
i=3
〈(Hi)v, (Hk+2−i)v〉 + 2c2,0v〈e3, (Hk)v〉 + 2b1,1u〈e2, (Hk)v〉 + 2〈(Hk+1)v, e1〉.

In other words, we have
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b1,1k〈e2,Hk〉 + 〈(Hk+1)u, e1〉 = − u〈e1, (Hk)v〉 −
k−1∑
i=3
〈(Hi)u, (Hk+2−i)v〉 − c2,0v〈(Hk)u, e3〉,

b1,1u〈e2, (Hk)v〉 + 〈(Hk+1)v, e1〉 = − 1
2

k−1∑
i=3
〈(Hi)v, (Hk+2−i)v〉 − c2,0v〈e3, (Hk)v〉.

These equations can be written in the following forms:∑
i+ j=k

(b1,1kb j,i + a j,i+1)
uiv j

i! j!
=

∑
i+ j=k

p j,i
uiv j

i! j!
,

∑
i+ j=k

(b1,1b j+1,i−1 + a j+1,i)
uiv j

i! j!
=

∑
i+ j=k

q j,i
uiv j

i! j!
.

Setting b = b1,1, we have

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0 bk · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · bk
1 0 · · · 0 0 · · · 0

0 1
. . .

... b · · · 0
...

. . .
. . . 0

...
. . .

...

0 · · · 0 1 0 · · · b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak+1,0

ak,1
...

a2,k−1

bk,0

bk−1,1
...

b2,k−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pk,0

pk−1,1
...

p2,k−2

qk,0

qk−1,1
...

q1,k−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and this determines ak+1,0, ak,1, . . . a2,k−1, bk,0, bk−1,1, . . . , b2,k−2. �

From now on, we assume that b1,1 � 0.

Remark 2.14. Let us assume that the coordinate (u, v) satisfies that

〈 fu, fu〉 = u2 + vO(2), 〈 fu, fv〉 = u + vO(k − 1), 〈 fv, fv〉 = 1 + O(k),

for any k. Since 〈g1, g1〉 = 1, we have 〈 fu, fv〉 = u + v2O(k) for any positive integer k by
(2.7). Since

〈 fu, fu〉 = u2 + 2u〈g1, g
′
1〉v + O(v2) = u2 + O(v2),

we obtain 〈 fu, fu〉 = u2 + v2ϕ2 where ϕ is a non-zero function whose Taylor expansion is the
same as that of |( fu × fv)/v|. The first few terms of Taylor expansion of ϕ is given by

ϕ = b1,1 + b1,2u + c2,0(c2,0−c1,2)
2b1,1

v +
( c2

1,2−c2
2,0

b1,1
+ b1,3 + b3

1,1
) u2

2

+
( b1,2c2,0(c1,2−c2,0)

b2
1,1

− 2c1,3c2,0+2c1,2c2,1−7c2,0c2,1

4b1,1

)
uv

+ (− c2
2,0(c1,2−c2,0)2

6b3
1,1

+
b1,2c2,0c2,1

6b2
1,1
+ 1

12 c2
2,1 − 1

6 c2,0c2,2 − 1
3 c1,2c3,0 +

1
2 c2,0c3,0 − 1

3 c2
2,0b1,1) v

2

2 +O(3).
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Lemma 2.15. A unit normal ν is expressed by

ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
c1,2−c2,0

b1,1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c2,0
c2,1

2b1,1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ v +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2c2,0 − c1,2
2b1,2(c2,0−c1,2)

b2
1,1

+
c1,3−2c2,1

b1,1

(c1,2−c2,0)2

b2
1,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u2

2

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c2,1/2

c2,0(c1,2−c2,0)2

2b3
1,1

− b1,2c2,1

2b2
1,1
+

c2,2−c3,0

2b1,1
+ c2,0b1,1

(c1,2−c2,0)c2,1

2b2
1,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ uv +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c3,0

c2,0c2,1(c1,2−c2,0)
2b3

1,1
+

c3,1

3b1,1

c2
2,1

4b2
1,1
+ c2

2,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
v2

2
+ O(3).

In particular, ( f , ν) is an embedding, if and only if c2,0 � c1,2.

Proof. Since

( fu × fv)/v = (0, 0,−b1,1) + (b1,1c2,0, (c1,2 − c2,0)u + c2,1v/2,−b1,2u − c2,0(c2,0 − c1,2)v/2) + O(2),

we obtain |( fu× fv)/v|−1/2 = 1
b1,1
− b1,2u+b2,1v/2

b2
1,1

+O(2), and we conclude the formula up to order
2. The second order part is obtained similarly. The last assertion is a consequence of the
following:

d( f , ν)(0, 0) =

⎛⎜⎜⎜⎜⎜⎝0 0 0 0 c1,2−c2,0

b1,1
0

1 0 0 c2,0
c2,1

2b1,1
0

⎞⎟⎟⎟⎟⎟⎠ .
�

Thus the initial terms of the second fundamental quantities are given by

L =〈 fuu, ν〉 = (c2,0 − c1,2)v − c2,0u2 +
( b1,2(c1,2−c2,0)

b1,1
+ 3

2 c2,1 − c1,3
)
uv(2.12)

+
( b1,2c2,1

2b1,1
− 1

2 c2,2 +
1
2 c3,0 − c2,0b2

1,1
)
v2 + O(3),

M =〈 fuv, ν〉 = −c2,0u − c2,1v/2 − c2,1u2 − ( c2,0(c2,0−c1,2)2

2b2
1,1

+
c3,0+c2,2

2
)
uv(2.13)

+
( c2,0c2,1(c2,0−c1,2)

4b2
1,1

− c3,1

3
)
v2 + O(3),

N =〈 fvv, ν〉 = −c2,0 − c2,1u − c3,0v − ( c2,0(c2,0−c1,2)2

b2
11

+ c2,2
) u2

2(2.14)

+
( c2,0c2,1(c2,0−c1,2)

2b2
11

− c3,1
)
uv − ( c2,0c2

2,1

8b2
1,1
+ 1

2 (c3
2,0 + c4,0)

)
v2 + O(3).

We will use Christoffel symbols Γu
uu, Γvuu, Γu

uv, Γ
v
uv, Γ

u
vv, Γ

v
vv defined by

fuu =Γ
u
uu fu + Γvuu fv + Lν,

fuv =Γu
uv fu + Γvuv fv + Mν,(2.15)

fvv =Γu
vv fu + Γvvv fv + Nν.

Lemma 2.16. For any positive integer p, we have

(
Γu

uu Γu
uv Γ

u
vv

Γvuu Γvuv Γ
v
vv

)
=

1
vϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
uϕ + uvϕv + vϕu ϕ + vϕv 0(
vϕ − u2ϕ − u2vϕv

−uvϕu − v2ϕ3 − v2ϕ2ϕv

)
−u(ϕ + vϕv) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(p).



980 T. Fukui

Proof. Since

2(u + v2ϕϕu) + O(p) = 〈 fu, fu〉u = 2〈 fuu, fu〉, 2(vϕ2 + v2ϕϕv) + O(p) = 〈 fu, fu〉v = 2〈 fuv, fu〉
1 + O(p) = 〈 fu, fv〉u = 〈 fuu, fv〉 + 〈 fu, fuv〉, O(p) = 〈 fu, fv〉v = 〈 fuv, fv〉 + 〈 fu, fvv〉,
O(p) = 〈 fv, fv〉u = 2〈 fuv, fv〉, O(p) = 〈 fv, fv〉v = 2〈 fvv, fv〉,

we obtain

〈 fuu, fu〉 =u + v2ϕϕu + O(p), 〈 fuv, fu〉 =v(ϕ2 + vϕϕv) + O(p), 〈 fvv, fu〉 =O(p),

〈 fuu, fv〉 =1 − v(ϕ2 + vϕϕv) + O(p), 〈 fuv, fv〉 =O(p), 〈 fvv, fv〉 =O(p).

Since(〈 fu, fu〉 〈 fu, fv〉
〈 fu, fv〉 〈 fv, fv〉

) (
Γu

uu Γu
uv Γ

u
vv

Γvuu Γvuv Γ
v
vv

)

=
1
2

( 〈 fu, fu〉u 〈 fu, fu〉v 2〈 fu, fv〉v − 〈 fv, fv〉u
2〈 fu, fv〉u − 〈 fu, fu〉v 〈 fv, fv〉u 〈 fv, fv〉v

)
,

we have(
u2 + v2ϕ2 + O(p) u + O(p)

u + O(p) 1 + O(p)

) (
Γu

uu Γu
uv Γ

u
vv

Γvuu Γvuv Γ
v
vv

)

=

(
u + v2ϕuϕ vϕ2 + v2ϕϕv 0

1 − vϕ2 − v2ϕϕv 0 0

)
+ O(p),

and thus(
Γu

uu Γu
uv Γ

u
vv

Γvuu Γvuv Γ
v
vv

)
=

1
v2ϕ2

(
1 −u
−u u2 + v2ϕ2

) (
u + v2ϕuϕ vϕ2 + v2ϕϕv 0

1 − vϕ2 − v2ϕϕv 0 0

)
+ O(p)

=
1
vϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
uϕ + uvϕv + vϕu ϕ + vϕv 0(
vϕ − u2ϕ − u2vϕv

−uvϕu − v2ϕ3 − v3ϕ2ϕv

)
−u(ϕ + vϕv) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(p).

�

Lemma 2.17. The Gauss curvature K is given by

K = −2ϕv + vϕvv
vϕ

+ O(p).

Proof. Since A = (〈 fu, fu〉〈 fv, fv〉 − 〈 fu, fv〉2)1/2 = |v|ϕ + O(p), we have

K =
1
A

[( AΓu
vv

〈 fv, fv〉
)

u
−

( AΓu
uv

〈 fv, fv〉
)
v

]
=

1
|v|ϕ [(0)u − (±(ϕ + vϕv))v] + O(p)

= − 2ϕv + vϕvv
vϕ

+ O(p).

�

Remark 2.18. The formula in the previous lemma is equivalent to Gauss’s equations.
Minardi-Coddazi equations 〈( fuu)v, ν〉 = 〈( fuv)u, ν〉, 〈( fuv)v, ν〉 = 〈( fvv)u, ν〉 are stated as fol-
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lows:

Lv − Mu +
L−2uM+(u2+ϕ2/v2)N

vϕ
(ϕ + vϕv) +

Mϕu+N(ϕ−uϕu)
ϕ

= O(p),

Mv − Nu +
M−uN
vϕ

(ϕ + vϕv) = O(p).

Proposition 2.19. The singularity of f is swallowtail, if

( f , ν) : (R2, 0)→ (
R

3 × R3, (0, ν(0))
)

is an embedding (i.e., c2,0 � c1,2).

Proof. See Appendix B.1. �

Theorem 2.20. Let f : (R2, 0) → (R3, 0) be a map as in the first paragraph of this
section with conditions (iv) and (v) of Lemma 2.2. If the singularity of f is swallowtail (i.e.,
c2,0 � c1,2), then the asymptotic expansions of Gauss curvature K and the mean curvature
H are given by

K =
1
v

[c2,0(c2,0 − c1,2)
b2

1,1

+
(3c2,0b1,2(c2,0 − c1,2)

b3
11

+
c2,0c1,3 + c2,1c1,2 − 7

2 c2,0c2,1

b2
1,1

)
u

−
(c2

2,0(c2,0 − c1,2)2

b4
1,1

− b1,2c2,0c2,1

2b3
1,1

− c2
2,1 − 2c2,0c2,2 − 4c1,2c3,0 + 6c2,0c3,0

4b2
1,1

+ c2
2,0

)
v + O(2)

]
,

H =
1
v

[c2,0 − c1,2

2b2
1,1

+
(3b1,2(c1,2 − c2,0)

2b3
1,1

+
5c2,1 − 2c1,3

4b2
1,1

)
u

+
(−c2,0(c1,2 − c2,0)2

2b4
1,1

+
b1,2c2,1

4b3
1,1

+
c3,0 − c2,2

4b2
1,1

− c2,0

)
v + O(2)

]
.

If the singularity of f is swallowtail (i.e., c2,0 � c1,2), then the asymptotic expansions of the

principal curvatures are κ1 = −c2,0 − c2,1u +
( c2

2,1

4(c1,2−c2,0) − c3,0

)
v + O(2), and

κ2 =
1
v

[c1,2 − c2,0

b2
1,1

+
(3b1,2(c1.2 − c2,0)

b2
1,1

+
5c2,1 − 2c1,3

2b1,1

)
u +

(b1,2c2,1

2b3
1,1

− c2,2 − c3,0

2b2
1,1

− c2,0

)
v + O(2)

]
.

Proof. The assertions for K and H are followed by (A.1). The assertion for principal
curvatures is obtained by solving the equation λ2 − 2Hλ + K = 0. �

Remark 2.21. In [8], L. Martins, K. Saji, M. Umehara, and K. Yamda define the limiting
normal curvature κν, the normalized cuspidal curvature μc, and the limiting singular curva-
ture τs for swallowtail. We have that

κν = −c2,0, μc =
c1,2 − c2,0

b2
1,1

, τs = 2b1,1.

The first equality is from (2.2) in [8]. We obtain the second comparing (4.6) in [8] with
the expression of H in Theorem 2.20. The last one is from the definition of τs (the last
line of the page 272 in [8]) and the fact that κs = κ cos θ combining with (2.16) and (2.18)
below. The referee kindly informed the author that a normal form theorem, similar to us,
also appeared in K. Saji’s recent paper ([13]). He described the configurations of asymptotic
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lines and curvature lines, for example. We see below that one can recover such results in our
computation.

2.4. Asymptotic lines.
2.4. Asymptotic lines. The equation of the asymptotic directions is

((c2,0 − c1,2)v + O(2))du2 − (2c2,0u − c2,1v + O(2))du dv − (c2,0 + c2,1u + c3,0v + O(2))dv2 = 0.

We observe that the coefficient of u2 du2 is c2,0.
When the singularity of f is swallowtail (i.e., c1,2 − c2,0 � 0), we conclude that there is

a homeomorphism of (R2, 0) which sends solution curves of the equation above to that of
folded saddle (resp. folded node, folded focus), if c2,0(3c2,0+c1,2) > 0, (resp. 1

8 (c2,0−c1,2)2 <

c2,0(3c2,0 + c1,2) < 0, c2,0(3c2,0 + c1,2) < 1
8 (c2,0 − c1,2)2). Use Lemma B.2 in subsection B.2,

to show this assertion.

2.5. Curvature lines.
2.5. Curvature lines. Since the equation of the principal directions is∣∣∣∣∣∣∣∣∣

u2 + v2ϕ2 L dv2

u M −du dv
1 N du2

∣∣∣∣∣∣∣∣∣ = 0,

we have

v
[
(O(1))du2 + (c1,2 − c2,0 + O(1))du dv +

(c2,1

2
+ O(1)

)
dv2

]
= 0.

It defines two transvese directions in the source in the region v � 0 and it extends on v = 0
as two transvese directions, when the singularity of f is swallowtail (i.e., c1,2 − c2,0 � 0).

2.6. Ridge and subparabolic lines.
2.6. Ridge and subparabolic lines. We show here computational experiences. Since

principal vectors, on v � 0, are represented by

u1 =
( c2,1

2c2,0 − c1,2
+ O(1)

)
∂u +

(
1 − c2,1u

2(c2,0 − c1,2)
+ O(2)

)
∂v

u2 =
( 1
b1,1v

+ O(1)
)
∂u +

(
− u

b1,1v
+ O(2)

)
∂v,

we obtain

u1κ1 =
3
4

c2
2,1

c1,2 − c2,0
− c3,0 + O(1),

u2κ1 =
1
v

[
− c2,1

b1,1
+ O(1)

]
,

u1κ2 =
1
v2

[c1,2 − c2,0

b2
1,1

+ O(1)
]
,

u2κ2 =
1
v3

[ 1
b3

1,1

(
(c2,0 − c1,2)u −

[
(c1,3 − 5

2 c2,1) +
3b1,2(c2,0 − c1,2)

b4
1,1

]
v
)
+ O(1)

]
.

Thus we have the following:

• A u1-ridge line is arriving at swallowtail, only if 3
4

c2
2,1

c1,2−c2,0
= c3,0.

• A u2-subparabolic line is arriving at swallowtail, only if c2,1 = 0.
• No u1-subparabolic line is arriving at swallowtail.
• Exactly one u2-ridge line is arriving at swallowtail.
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2.7. Cuspidal edge nearby swallowtail.
2.7. Cuspidal edge nearby swallowtail. Suppose that there is a coordinate (u, v) with

〈 fu, fu〉 = u2 + v2ϕ2 + O(p), 〈 fu, fv〉 = u + O(p), 〈 fv, fv〉 = 1 + O(p),

for any p. The goal of this sebsection is to obtain asymptotic expansions of differential
geometric invariants of cuspidal edge. They are functions on Σ( f ) \ {(0, 0)} near (0, 0), that
is, as meromorphic functions in u. Here u is a parameter of the singular curve Σ( f ) so
that u2/2 is an arc length parameter of Σ( f ). The statements of asymptotic expansions of
differential geometric invariants of cuspidal edge, defined in (1.4) and (1.5), are as follows.

Theorem 2.22. Let f : (R2, 0)→ (R3, 0) be a map as in the first paragraph of this section
with conditions (iv) and (v) of Lemma 2.2. Assume that b1,1 � 0. The asymptotic expansions
of κ, τ, θ, b3 are given as follows:

κ =
1
|u|

[
b1,1 + b1,2u +

(
b1,3 + b3

1,1 +
c2

1,2

b1,1

)u2

2
+ O(u3)

]
,(2.16)

τ =
1
u

[ c1,2

b1,1
+

b1,1c1,3 − 2b1.2c1,2

2b2
1,1

u(2.17)

+
(2c1,2(3b2

1,2 − c2
1,2)

b3
1,1

− 3(b1,3c1,2 + b1,2c1,3)
b2

1,1

+
c1,4

b1,1
− 2b1,1c1,2

)u2

2
+ O(u3)

]
,

cos θ = − 1 +
c2

2,0

b2
1,1

u2

2
− c2,0(b1,2c2,0 − b1,1c2,1)

b3
1,1

u3 + O(u4),(2.18)

b3 =
−1

|b1,1u| 12
(2(c1,2 − c2,0)

b1,1
+

(5c2,1 − 2c1,3

b1,1
+

b1,2(c2,0 − c1,2)
b2

1,1

)
u + O(u2)

)
.(2.19)

Proof of (2.16), (2.17). Since s = u2/2 is an arc length parameter of Σ( f ), we have

dg0

ds
=

dg1/du
ds/du

=
1
u

dg0

du
= g1,

d2g0

ds2 =
dg1

ds
=

1
u

dg1

du
.

We thus obtain an asymptotic expansion of n, κ, τ as follows:

n =
dg1/du
|dg1/du| =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−b1,1

0
c1,2

b1,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−b1,3

−b2
1,1 −

c2
1,2

b2
1,1

b1,1c1,3−2b1,2c1,2

b2
1,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u2

2
+ O(u3),(2.20)

κ =
∣∣∣∣dg1

ds

∣∣∣∣ = 1
|u|

∣∣∣∣dg1

du

∣∣∣∣ = 1
|u|

(
b1,1 + b1,2u +

(
b1,3 + b3

1,1 +
c2

1,2

b1,1

)u2

2
+ O(u3)

)
,

τ =
|g′0 g′′0 g′′′0 |
|g′0 × g′′0 |2

=
|g1 g

′
1 g
′′
1 |

u|g1 × g′1|2
=

1
u

[ c1,2

b1,1
+

b1,1c1,3 − 2b1.2c1,2

2b2
1,1

u

+
(2c1,2(3b2

1,2 − c2
1,2)

b3
1,1

− 3(b1,3c1,2 + b1,2c1,3)
b2

1,1

+
c1,4

b1,1
− 2b1,1c1,2

)u2

2
+ O(u3)

]
.

�
Set Φ = ( fu − u fv)/v. We have |Φ| = ϕ, since

| fu − u fv|2 = 〈 fu − u fv, fu − u fv〉 = 〈 fu, fu〉 − 2u〈 fu, fv〉 + u2〈 fv, fv〉 = v2ϕ2.
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Since 〈 fu, fu − u fv〉 = 〈 fu, fu〉 − u〈 fu, fv〉 = v2ϕ2,

cos ∠( fu,Φ) =
〈 fu, fu − u fv〉
| fu|| fu − u fv| =

|v|ϕ
(u2 + v2ϕ2)1/2 + O(p)→ 0 (v→ 0),

whenever u � 0. Thus we conclude that the three vectors

a1 = lim
v→0

fu
u
, a2 = − lim

v→0

Φ

ϕ
, a3 = − lim

v→0

fu × Φ
uϕ

= lim
v→0

fu × fv
vϕ

form an orthonormal frame along Σ( f ). We also have

a1 =
fu(u, 0)

u
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
b1,1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−b2

1,1
b1,2

c1,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u2

2
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−b1,1b1,3

b1,3

c1,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u3

6
+ O(u4).

Since

lim
v→0
Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

b1,1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−b2

1,1
b1,2

c1,2 − c2,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3b1,1b1,2

b1,3 +
2(c1,2−c2,0)c2,0

b1,1

c1,3 − 2c2,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u2

2
+ O(u3),(2.21)

and by b1,1 > 0, we obtain

a2 = − fu − u fv
| fu − u fv| (u, 0)(2.22)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1,1

0
− c1,2−c2,0

b1,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b1,2

b2
1,1 +

(c1,2−c2,0)2

b2
1,1

−2 b1,2

b2
1,1

(c2,0 − c1,2) − c1,3−2c2,1

b2
1,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u2

2
+ O(u3),

a3 =a1 × a2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
c2,0−c1,2

b1,1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c1,2 − 2c2,0

2b1,2(c1,2−c2,0)
b2

1,1
+

c2,1−c1,3

b1,1

(c2,0−c1,2)2

b2
1,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u2

2
+ O(u3).(2.23)

Proof of (2.18). A Direct computation based on (2.20) and (2.22) shows

cos θ = 〈n, a2〉 = −1 +
c2

2,0

b2
1,1

u2

2
− c2,0(b1,2c2,0 − b1,1c2,1)

b3
1,1

u3 + O(u4),

which completes the proof. �
Set u = p0 + tP, v = tQ where P = ∑m

i=1 pi(s)ti−1/i!, Q = ∑m
i=0 qi(s)ti/i!. We take P, Q so that

〈 fs(s, 0), ft(s, t)〉 = 0, 〈 ft(s, t), ft(s, t)〉 = t2.

When we set f (s, t) =
∑m

k=0 f k(s)tk/k! + O(m + 1), we have

fs(s, 0) = f ′0(s), ft(s, t) =
m−1∑
k=0

f k+1(s)
tk

k!
+ O(tm).

We obtain

(2.24) f 1(s) = 0, f 2(s) = a2(s), 〈 f ′0(s), f k(s)〉 = 0.

Since f k = ak a2 + bk a3, we have ak = 〈 f k, a2〉, bk = 〈 f k, a3〉, and
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〈a2, f 3〉 = 0, 1
3〈a2, f 4〉 + 1

4 〈 f 3, f 3〉 = 0, 1
12〈a2, f 5〉 + 1

6 〈 f 3, f 4〉 = 0,(2.25)

2〈a2(s), f k(s)〉
(k − 1)!

+

k−2∑
i=2

〈 f i+1(s), f k−i+1(s)〉
i!(k − i)!

= 0 (k ≥ 6).(2.26)

We obtain that a3 = 0, a4/3 + b2
3/4 = 0, a5/2 + b3b4 = 0, ans so on. Since 〈 f k, a1〉 is degree

one in qk and ak = 〈 f k, a2〉 is degree one in pk−1, the conditions (2.24) and (2.25), (2.26)
determine pk−1, qk inductively.

Lemma 2.23. We have the following:

f 0 = f (p0, 0),

f 1 =p1 fu(p0, 0) + q1 fv(p0, 0),

f 2 =p2 fu(p0, 0) + q2 fv(p0, 0) + p2
1 fuu(p0, 0) + 2p1q1 fuv(p0, 0) + q2

1 fvv(p0, 0),

f 3 =p3 fu(p0, 0) + q3 fv(p0, 0) + 3[p1 p2 fuu(p0, 0) + (p1q2 + q1 p2) fuv(p0, 0) + q1q2 fvv(p0, 0)]

+ p3
1 fuuu(p0, 0) + 3p2

1q1 fuuv(p0, 0) + 3p1q2
1 fuvv(p0, 0) + q3

1 fvvv(p0, 0).

Proof. Consequences of the following identity:

m−1∑
k=0

f k+1(s)
tk

k!
+ O(m) = ft(s, t) =

∂u
∂t

fu(u, v) +
∂v

∂t
fv(u, v)

=
m−1∑
i=0

pi+1(s)
ti

i!
fu(u, v) +

m−1∑
i=0

qi+1(s)
ti

i!
fv(u, v) + O(m).

�

Lemma 2.24. We have that p1 = |p0ϕ(p0, 0)|−1/2, and q1 = −p0|p0ϕ(p0, 0)|−1/2.

Proof. We show that p1 p0 + q1 = 0 and p1q1ϕ(p0, 0) + 1 = 0. Since

0 = f 1 = (p1 fu + q1 fv)(p0, 0) = lim
u→p0,v→0

[(
p1 +

q1

u

)
fu(p0, v) − vq1

u

( fu − u fv
v

)
(p0, v)

]
= lim

u→p0,v→0

[
(p1u + q1)a1 +

vq1ϕ

u
a2

]
= (p1 p0 + q1)a1,

we have p1 p0 + q1 = 0. By Lemma 2.23,

f 2 =[p2 fu + q2 fv + p2
1 fuu + 2p1q1 fuv + q2

1 fvv](p0, 0)(2.27)

= lim
u→p0,v→0

[(
p2 +

q2

u

)
fu − vq2

u

( fu − u fv
v

)
+ p2

1 fuu + 2p1q1 fuv + q2
1 fvv

]
=(p2 p0 + q2)a1 + [p2

1 fuu + 2p1q1 fuv + q2
1 fvv](p0, 0).

By Lemma 2.25 below, we have

fuu(p0, 0) =a1 − p0ϕ(p0, 0)a2 + L(p0, 0)a3,

fuv(p0, 0) = − ϕ(p0, 0)a2 + M(p0, 0)a3,

fvv(p0, 0) =N(p0, 0)a3,

and we conclude that
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1 = 〈 f 2, a2〉 = −p2
1 p0ϕ(p0, 0) − 2p1q1ϕ(p0, 0) = −ϕ(p0, 0)p1(p1 p0 + 2q1) = −ϕ(p0, 0)p1q1.

�

Let us consider a frame

A1 =
fu
u
, A2 = −Φ

ϕ
, A3 = A1 × A2 =

fu × fv
vϕ

= ν

defined on u � 0. These are extensions of a1, a2, and a3. We remark that⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A1

A2

A3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
u 0 0
− 1
vϕ

u
vϕ

0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fu
fv
ν

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fu
fv
ν

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u 0 0
1 vϕ

u 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

A3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Since fu − u fv = vΦ, we have

L − uM = vL1, M − uN = vM1,

where L1 = 〈Φu, ν〉 and M1 = 〈Φv, ν〉. By (2.12) and (2.13), we have that

L1 =c2,0 − c1,2 +
(
2c2,1 − c1,3 − b1,2(c1,2−c2,0)

b1,1

)
u +

( b1,2c2,1

b1,1
+ c3,0 − c2,2 − c2,0b2

1,1
)
v + O(2).

(2.28)

We observe that

〈A1, A1〉 = 〈 fu, fu〉u2 = 1 + v2ϕ2

u2 + O(p − 2),

〈A1, A2〉 = − 〈 fu, fu〉−u〈 fu, fv〉
uvϕ = − u2+v2ϕ2−u2+O(p)

uvϕ = − vϕu + O(p − 1),

〈A2, A2〉 = |Φ|2ϕ2 = 1.

Lemma 2.25. We have

fuu =[1 − vϕ(ϕ + vϕv)]A1 − [
v
(
ϕu − ϕ

u
)
+

(
u + v2ϕ2

u
)
(ϕ + vϕv)

]
A2 + LA3,

fuv = − (ϕ + vϕv)A2 + M A3,

fvv =N A3.

Proof. Since fu = uA1, fv = A1 +
vϕ
u A2, we obtain that

fuu =Γ
u
uu fu + Γvuu fv + Lν = (uΓu

uu + Γ
v
uu)A1 +

vϕ
u Γ

v
uu A2 + Lν,

fuv =Γu
uv fu + Γvuv fv + Mν = (uΓu

uu + Γ
v
uv)A1 +

vϕ
u Γ

v
uvA2 + Mν,

fvv =Γu
vv fu + Γvvv fv + Nν = (uΓu

vv + Γ
v
vv)A1 +

vϕ
u Γ

v
vvA2 + Nν.

We then conclude the lemma, by (2.15). �
Proof of (2.19). The asymptotic expansion of b3 is obtained by (2.28) and (2.14), because

of the following Proposition 2.26. �

Proposition 2.26. b3 = −u−1/2ϕ−3/2(2L1 − uNu + u2Nv)(p0, 0).

Before the proof of this proposition, we need some preliminary
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Lemma 2.27. We have

Φu = − ϕ(ϕ + vϕv)A1 − (ϕu +
vϕ2

u (ϕ + vϕv))A2 + L1 A3,

Φv = − ϕvA2 + 〈Φv, ν〉A3,

(A1)u = − vϕ(ϕ+vϕv)
u A1 − ((

1 + v2ϕ2

u2

)
(ϕ + vϕv) +

v(uϕu−ϕ)
u2

)
A2 +

L
u A3,

(A2)u =(ϕ + vϕv)(A1 +
vϕ
u A2) − L1

ϕ
A3,

(A3)u = − M A1 +
( L1
ϕ
− vMϕ

u
)
A2,

(A1)v = − ϕ+vϕv
u A2 +

M
u A3,

(A2)v = − M1
ϕ

A3,

(A3)v = − N A1 +
( M1
ϕ
− vNϕ

u
)
A2.

Proof. The formula for Φu and Φv can be concluded as follows:

Φu =
( fu−u fv

v

)
u =

fuu−u fuv− fv
v

= 1
v

[
(1 − vϕ(ϕ + vϕv))A1 − (

v(ϕu − ϕ
u
)
+

(
u + v2ϕ2

u
)
(ϕ + vϕv)

)
A2 + LA3

]
− u

v
[−(ϕ + vϕv)A2 + M A3] − 1

v
A1 − ϕ

u A2

= − ϕ(ϕ + vϕv)A1 − (ϕu +
vϕ2

u (ϕ + vϕv))A2 + L1 A3,

Φv =
( fu−u fv

v

)
v =

fuv−u fvv
v
− fu−u fv

v2 =
fuv− fvv
v
− Φ

v

= − ϕ+vϕv
v

A2 + 〈Φv, ν〉A3 +
ϕ
v

A2 = −ϕvA2 + 〈Φv, ν〉A3.

We compute the differentials of A1, A2 as follows:

(A1)u =( fu/u)u =
fuu
u − fu

u2

= 1
u

[
(1 − vϕ(ϕ + vϕv))A1 − (

v
(
ϕu − ϕ

u
)
+

(
u + v2ϕ2

u
)
(ϕ + vϕv)

)
A2 + LA3

]
− 1

u A1

= − vϕ(ϕ+vϕv)
u A1 − ((

1 + v2ϕ2

u2

)
(ϕ + vϕv) +

v(uϕu−ϕ)
u2

)
A2 +

L
u A3,

(A2)u = − (Φ
ϕ

)
u = −Φu

ϕ
+

ϕuΦ

ϕ2

= 1
ϕ

[
ϕ(ϕ + vϕv)A1 +

(
ϕu +

vϕ2

u (ϕ + vϕv)
)
A2 − L1 A3

] − ϕu
ϕ

A2

=(ϕ + vϕv)A1 +
vϕ
u (ϕ + vϕv)A2 − L1

ϕ
A3,

(A1)v =( fu
u )v =

fuv
u = −ϕ+vϕvu A2 +

M
u A3,

(A2)v = − (Φ
ϕ

)v = −Φvϕ + ϕv
ϕ2Φ =

ϕv
ϕ

A2 +
〈Φv,ν〉
ϕ

A3 − ϕv
ϕ

A2 = −〈Φv,ν〉ϕ
A3.

Setting (A3)u = s1,1 A1 + s1,2 A2, (A3)v = s2,1 A1 + s2,2 A2, we have

0 =〈A1, A3〉u = 〈(A1)u, A3〉 + 〈A1, (A3)u〉 = L
u + s1,1(1 + v2ϕ2

u2 ) − s1,2
vϕ
u ,

0 =〈A2, A3〉u = 〈(A2)u, A3〉 + 〈A2, (A3)u〉 = − L1
ϕ
− s1,1

vϕ
u + s1,2,

0 =〈A1, A3〉v = 〈(A1)v, A3〉 + 〈A1, (A3)v〉 = M
u + s2,1(1 + v2ϕ2

u2 ) − s2,2
vϕ
u ,

0 =〈A2, A3〉v = 〈(A2)v, A3〉 + 〈A2, (A3)v〉 = −M1
ϕ
− s2,1

vϕ
u + s2,2.

Solving the equation
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s1,1 s1,2

s2,1 s2,2

) ⎛⎜⎜⎜⎜⎝1 + v2ϕ2

u2 −vϕ/u
−vϕ/u 1

⎞⎟⎟⎟⎟⎠ =
(−L/u L1/ϕ

−M/u M1/ϕ

)
,

we have (
s1,1 s1,2

s2,1 s2,2

)
=

(−L/u L1/ϕ

−M/u M1/ϕ

) ⎛⎜⎜⎜⎜⎝ 1 vϕ/u
vϕ/u 1 + v2ϕ2

u2

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝〈− fuu + vΦu, ν〉 〈− vϕu2 fuu + ( 1
ϕ
+

v2ϕ
u2 )Φu, ν〉

〈− fuv + vΦv, ν〉 〈− vϕu2 fuv + ( 1
ϕ
+

v2ϕ
u2 )Φv, ν〉

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝−M 〈− vϕu fuv + 1
ϕ
Φu, ν〉

−N 〈− vϕu fvv + 1
ϕ
Φv, ν〉

⎞⎟⎟⎟⎟⎠ ,
and we obtain the result. �

Thus we conclude that, on v = 0,

fuuu = − u(u2N2 + ϕ2)a1 +
( u2L1N

ϕ
− 2ϕ − uϕu

)
a2 + u(L1 + 3N + uNu)a3,

fuvu = − (u2N2 + ϕ2)a1 +
( uL1N

ϕ
− ϕu

)
a2 + (L1 + N + uNu)a3,

fvvu = − uN2a1 +
L1N
ϕ

a2 + Nua3,

fvvv = − N2a1 +
M1N
ϕ

a2 + Nva3.

Proof of Proposition 2.26. By Lemma 2.23, we have

f 3 =[p3 fu + q3 fv + 3(p1 p2 fuu + (p1q2 + q1 p2) fuv + q1q2 fvv)](p0, 0)(2.29)

+ [p3
1 fuuu + 3p2

1q1 fuuv + 3p1q2
1 fuvv + q3

1 fvvv](p0, 0)

= lim
u→p0,v→0

[(
p3 +

q3
u
)
fu − vq2

u
fu−u fv
v

]
+

(
3(p1 p2 fuu + (p1q2 + q1 p2) fuv + q1q2 fvv)
+p3

1 fuuu + 3p2
1q1 fuuv + 3p1q2

1 fuvv + q3
1 fvvv

)
(p0, 0)

=(p3u + q3)a1 + [3(p1 p2 fuu + (p1q2 + q1 p2) fuv + q1q2 fvv)

+ p3
1 fuuu + 3p2

1q1 fuuv + 3p1q2
1 fuvv + q3

1 fvvv](p0, 0).

We remark that

〈 fuu, a3〉 =p2
0N,

〈 fuv, a3〉 =p0N,

〈 fvv, a3〉 =N,

〈 fuuu, a3〉 =p0(L1 + 3N + p0Nu),

〈 fuuv, a3〉 =L1 + N + p0Nu,

〈 fuvv, a3〉 =Nu, and

〈 fvvv, a3〉 =Nv

on {v = 0}. We thus have

b3 =〈 f 3, a3〉 = 3N[p1 p2 p2
0 + (p1q2 + q1 p2)p0 + q1q2]
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+ p3
1 p0(L1 + 3N + p0Nu) + 3p2

1q1(L1 + N + p0Nu) + 3p1q2
1Nu + q3

1Nv|u=p0

=3N(p1 p0 + q1)(p2 p0 + q2) + (p1 p0 + 3q1)p2
1L1 + 3p2

1(p1 p0 + q1)N

+ p1(p2
1 p2

0 + 3p0 p1q1 + 3q2
1)Nu + q3

1Nv.

When q1 = −p1 p0, we have

b3 = −2p3
1 p0(2L1 − p0Nu + p2

0Nv)(p0, 0).

Since p1 = |p0ϕ(p0, 0)|−1/2, we obtain the result. �

Appendix A. A quick review of surfaces in R3

Appendix A. A quick review of surfaces in R3
Since a surface in R3 is locally expressed as the image of a C∞-map f : (R2, 0)→ (R3, 0),

it is possible to investigate surfaces as a subject of singularity theory. We describe this idea
briefly. The first fundamental quantities E, F, G are defined by

E = 〈 fu, fu〉, F = 〈 fu, fv〉, G = 〈 fv, fv〉.
The singular point of f is exactly defined by EG−F2 = 0. A unit normal vector ν is defined
by ν = fu × fv/| fu × fv| whenever the denominator is not zero. The second fundamental
quantities L, M, N are defined by

L = 〈 fuu, ν〉 = | fuu fu fv|
| fu × fv| , M = 〈 fuv, ν〉 = | fuv fu fv|

| fu × fv| , N = 〈 fvv, ν〉 = | fvv fu fv|
| fu × fv| .

A principal curvature κ is a solution to∣∣∣∣∣∣ L − κE M − κF
M − κF N − κG

∣∣∣∣∣∣ = 0.

If this equation defines two principal curvatures κ1 and κ2, then the kernel fields of the

matrix
(

L − κiE M − κiF
M − κiF N − κiG

)
represent the principal directions with respect to κi, i = 1, 2.

The principal directions are also described by the solutions to∣∣∣∣∣∣∣∣∣
E L dv2

F M −du dv
G N du2

∣∣∣∣∣∣∣∣∣ = 0.

A principal vector ui is a unit vector which represents the principal direction with respect
to κi. Integral curves of principal vectors are called curvature lines.

We say a point is ui-ridge if uiκi = 0 at this point. We say a point is ui-subparabolic if
uiκ j = 0 at this point where j � i.

Asymptotic directions are represented by the solutions to L du2 + 2M du dv+ N dv2 = 0.
Their integral curves are called by asymptotic lines.

The Gauss curvature K and the mean curvature H are defined by

(A.1) K = κ1κ2 =
LN − M2

EG − F2 , H =
κ1 + κ2

2
=

EN +GL − 2FM
2(EG − F2)

.

A parabolic point is defined by K = 0 whenever EG − F2 � 0 (i.e., f is nonsingular).
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We consider Taylor expansion of f : f (u, v) =
∑m

j=0 h j(u) v
j

j! + O(vm+1). We have Σ( f ) =
{v = 0} if rank(h′0 h1) < 2 and |h′0 × h2 + h′1 × h1| � 0. The later condition also implies that
rank(h′0 h1) = 1. The normal vector ν = fu× fv

| fu× fv | is continuously extendible on Σ( f ) in this
case.

Since

K =
LN − M2

EG − F2 =
| fuu fu fv|| fvv fu fv| − | fuv fu fv|2

(EG − F2)3/2 ,

the notion of parabolic point is extended by p(u) = 0 on Σ( f ) = {v = 0} when

| fuu fu fv|| fvv fu fv| − | fuv fu fv|2 = p(u)|v|m + O(|v|m+1), p(u) � 0.

We have m = 1 in generic context, that is, |h′′0 h′0 h1||h2 h′0 h1| − |h′1 h′0 h1|2 is not identically
zero.

Appendix B. Criteria of singularity types

Appendix B. Criteria of singularity typesB.1. Criteria of singularity types of singular surfaces.
B.1. Criteria of singularity types of singular surfaces. Assume that f : (R2, 0) →

(R3, 0), (u, v) �→ f (u, v), has rank one singularity at 0 and an unit normal vector is extended
to ν on the singular locus. Set λ = det( fu fv ν), ψ = det(t ην ν), where t is a unit tanget
vector, and η is a vector field whose restriction is null to the singular locus. We have that
( f , ν) : (R2, 0)→ (R3 × R3, (0, ν(0))) is an embedding, if and only if ψ(0) � 0.

Lemma B.1. The singularity of f is

• cuspidal edge, if ψ(0) � 0, ηλ(0) � 0;
• swallowtail, if ψ(0) � 0, ηλ(0) = 0, η2λ(0) � 0;
• cuspidal cross-cap, if ψ(0) = 0, ηλ(0) � 0, ψ′(0) � 0.

Proof. See [6, §1–2] and [2, §1]. �

Proof of Proposition 1.6. In the notation in §1, η = ∂t. Setting ft = tu, λ = | fs ft ν| =
| fs tu ν| = t × (unit),

ψ(s, 0) = det(t, ην, ν)(s, 0) =

∣∣∣∣∣∣∣∣∣
1 0 0
0 0 1
0 −b3/2 0

∣∣∣∣∣∣∣∣∣ =
b3

2
.

So the criteria above shows the proposition. �

Proof of Proposition 2.19. In the notation in §2, we have η = ∂u − u∂v,

λ = | fu fv ν| = | fu/u u fv − fu ν| = v|A1 A2 ν| = v,
ηλ = (∂u − u∂v)v = u, and η2λ = (∂u − u∂v)u = 1. So f is swallowtail if ( f , ν) : (R2, 0) →
(R3 × R3, (0, ν(0))) is an embedding (i.e., c2,0 � c1,2). �

B.2. Criteria of singularity types of differential equations.
B.2. Criteria of singularity types of differential equations. We consider the binary

differential equation:

(B.1) A dx2 + 2B dx dy +C dy2 = 0,
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where A =
∑

0≤i+ j≤2

ai, j
xiy j

i! j!
+ O(3), B =

∑
0≤i+ j≤2

bi, j
xiy j

i! j!
+ O(3), C =

∑
0≤i+ j≤2

ci, j
xiy j

i! j!
+ O(3).

The solution curves of this equation is investigated by Davidov ([1]).

Lemma B.2. We assume that a0,0 = b0,0 = 0, c0,0 � 0. Then there is a homeomorphism
of (R2, 0) which sends the solution curves of the equation (B.1) to

• that of u du2 + dv2 = 0, folded regular point, if a1,0 � 0;
• that of (λu2 + v)du2 + dv2 = 0 with λ < 0 (resp. 0 < λ < 1/16, 1/16 < λ),

folded saddle (resp. folded node, folded focus), if a1,0 = 0, a0,1 � 0, λ < 0 (resp.
0 < λ < 1/16, 1/16 < λ) where λ = (a2,0c0,0 − a0,1b1,0 − 2b2

1,0)/2a2
0,1.

Proof (Sketch). First we remark that the gradient of the discriminant B2 − AC is
−c0,0(a1,0, a0,1) at (x, y) = (0, 0). This implies the discriminant defines a nonsingular curve
near (0, 0). Set

φ =
2∑

i=0
φi, juiv j + O(3), x =

3∑
i+ j=1

pi, juiv j + O(4), y = q0,1v +

3∑
i+ j=2

ci, juiv j + O(4).

When a1,0 � 0, we can choose φi, j (0 ≤ i + j ≤ 2), pi, j (1 ≤ i + j ≤ 3), qi, j (2 ≤ i + j ≤ 3,
i � 0) so that

φ(A dx2 + 2B dx dy +C dy2) = (u + O(3))du2 + O(3)du dv + (1 + O(3))dv2.

We then see the contact form ω = dv − p du defines a regular curves on the surface S :
u + p2 + O(3) = 0 in (u, v, p)-space. The projection S → R2 defines a 2-1 map on the set
defined by B2 − AC > 0, and we conclude the proof in the case a1,0 � 0.

The case that a1,0 = 0 and a0,1 � 0 is similar. In this case, we can choose φi, j (0 ≤ i + j ≤
2), p2,0, p1,1, qi, j (1 ≤ i + j ≤ 3, i � 0) so that

φ(A dx2 + 2B dx dy +C dy2) = (λu2 + v + O(3))du2 + O(3)du dv + (1 + O(3))dv2.

On the surface λu2+v+p2+O(3) = 0 in (u, v, p)-space, we see the contact formω = dv−p du
defines a saddle (resp. a node, a focus), if λ < 0 (resp. 0 < λ < 1/16, λ > 1/16). �

Note added in proof. The author thanks to K. Saji for informing that computation in
subsection 1.6 can be continued using Proposition 3.2 in the following paper: K. Saji, On
pairs of geometric foliations on a cuspidal edge, Advanced Studies in Pure Mathematics, 78,
2018, Singularities in Generic Geometry, 411–429.

https://projecteuclid.org/euclid.aspm/1538618984
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