

Title	On polynomial curves in the affine plane
Author(s)	Fujimoto, Mitsushi; Suzuki, Masakazu; Yokoyama, Kazuhiro
Citation	Osaka Journal of Mathematics. 2006, 43(3), p. 597-608
Version Type	VoR
URL	https://doi.org/10.18910/7725
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Fujimoto, M., Suzuki, M. and Yokoyama, K.
Osaka J. Math.
43 (2006), 597–608

ON POLYNOMIAL CURVES IN THE AFFINE PLANE

IMITSUSHI FUJIMOTO, MASAKAZU SUZUKI and KAZUHIRO YOKOYAMA

(Received February 7, 2005, revised September 8, 2005)

Abstract

A curve that can be parametrized by polynomials is called a polynomial curve. It is well-known that a polynomial curve has only one place at infinity. Let C be a curve with one place at infinity. Sathaye presented the following question raised by Abhyankar: Is there a polynomial curve associated with the semigroup generated by pole orders of C at infinity? In this paper, we give a negative answer to this question using Gröbner basis computation.

1. Introduction

Let C be an irreducible algebraic curve in the complex affine plane \mathbf{C}^2 . We say that C has *one place at infinity*, if the closure of C intersects with the ∞ -line in \mathbf{P}^2 at only one point P and C is locally irreducible at that point P .

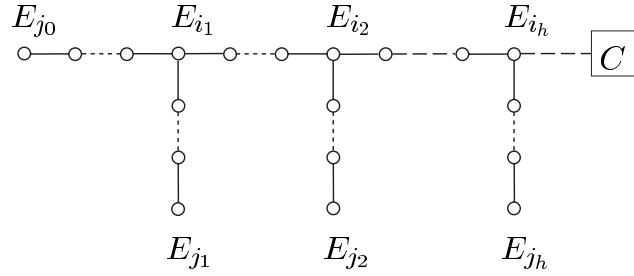
Abhyankar–Moh [1, 4, 5] investigated properties of δ -sequences that are sequences of pole orders of *approximate roots* of curves with one place at infinity and obtained a criterion for a curve to have only one place at infinity. This result is called Abhyankar–Moh’s semigroup theorem. Sathaye–Stenerson [14] proved that, conversely, if a sequence S of natural numbers satisfies Abhyankar–Moh’s condition then there exists a curve with one place at infinity having its δ -sequence S . Suzuki [16] made clear the relationship between the δ -sequence and the dual graph of the minimal resolution of the singularity of the curve C at infinity, and gave an algebro-geometric proof of the semigroup theorem and its inverse theorem due to Sathaye–Stenerson. Fujimoto–Suzuki [6] gave an algorithm to compute the defining polynomial of the curve with one place at infinity from a given δ -sequence.

A curve that can be parametrized by polynomials is called a *polynomial curve*. It is well-known that a polynomial curve has only one place at infinity. Let C be a curve with one place at infinity, and Ω the semigroup generated by pole orders of C at infinity. Sathaye [13] presented the following question for curves with one place at infinity raised Abhyankar: Is there a polynomial curve associated with Ω ? Sathaye–Stenerson [14] suggested a candidate for a negative answer to this question; however, they could not give an answer to the question since a root computation for a huge polynomial system was required.

We found a negative answer to the Abhyankar's question using a computer algebra system. In this paper, we give its details.

2. Preliminaries

Through this paper, we set $\mathbf{N} = \{n \in \mathbf{Z} \mid n \geq 0\}$ and $\mathbf{C}^* = \mathbf{C} \setminus \{0\}$. Let C be a curve with one place at infinity defined by a polynomial equation $f(x, y) = 0$ in the complex affine plane \mathbf{C}^2 . Assume that $\deg_x f = m$, $\deg_y f = n$ and $d = \gcd(m, n)$. The dual graph corresponding to the minimal resolution of the singularity of C at infinity is of the following form [16]:

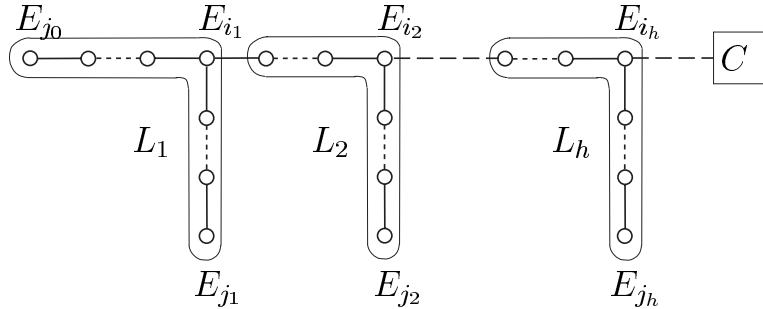


DEFINITION 1 (δ -sequence). Let f be a defining polynomial of a curve C with one place at infinity. Let δ_k ($0 \leq k \leq h$) be the order of the pole of f on the curves corresponding to the edge nodes E_{j_k} in the above dual graph. We call the sequence $\{\delta_0, \delta_1, \dots, \delta_h\}$ the δ -sequence of C (or of f).

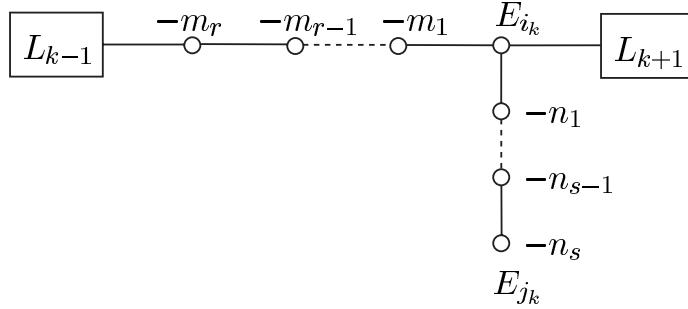
We have the following fact, since $\deg_x f = m$ and $\deg_y f = n$.

FACT 1. $\delta_0 = n$, $\delta_1 = m$.

We set L_k for each k ($1 \leq k \leq h$), the linear branches as shown in the following figure:



DEFINITION 2 ((p, q)-sequence). Now, we assume that the weights of L_k are of the following form:



We define the natural numbers p_k, q_k, a_k, b_k satisfying

$$(p_k, a_k) = 1, \quad (q_k, b_k) = 1, \quad 0 < a_k < p_k, \quad 0 < b_k < q_k,$$

$$\frac{p_k}{a_k} = m_1 - \cfrac{1}{m_2 - \cfrac{1}{m_3 - \ddots - \cfrac{1}{m_r}}} \quad \text{and} \quad \frac{q_k}{b_k} = n_1 - \cfrac{1}{n_2 - \cfrac{1}{n_3 - \ddots - \cfrac{1}{n_s}}}.$$

We call the sequence $\{(p_1, q_1), (p_2, q_2), \dots, (p_h, q_h)\}$ the (p, q) -sequence of C (or of f).

The following Abhyankar-Moh's semigroup theorem and its converse theorem by Sathaye-Stenerson are results for δ -sequence.

Theorem 1 (Abhyankar-Moh [1, 4, 5]). *Let C be an affine plane curve with one place at infinity. Let $\{\delta_0, \delta_1, \dots, \delta_h\}$ be the δ -sequence of C and $\{(p_1, q_1), \dots, (p_h, q_h)\}$ the (p, q) -sequence of C . We set $d_k = \gcd\{\delta_0, \delta_1, \dots, \delta_{k-1}\}$ ($1 \leq k \leq h+1$). We have then,*

- (i) $q_k = d_k/d_{k+1}$, $d_{h+1} = 1$ ($1 \leq k \leq h$),
- (ii) $d_{k+1}p_k = \begin{cases} \delta_1 & (k=1) \\ q_{k-1}\delta_{k-1} - \delta_k & (2 \leq k \leq h) \end{cases}$,
- (iii) $q_k\delta_k \in \mathbf{N}\delta_0 + \mathbf{N}\delta_1 + \dots + \mathbf{N}\delta_{k-1}$ ($1 \leq k \leq h$).

Theorem 2 (Sathaye-Stenerson [14]). *Let $\{\delta_0, \delta_1, \dots, \delta_h\}$ ($h \geq 1$) be a sequence of $h+1$ natural numbers. We set $d_k = \gcd\{\delta_0, \delta_1, \dots, \delta_{k-1}\}$ ($1 \leq k \leq h+1$) and $q_k = d_k/d_{k+1}$ ($1 \leq k \leq h$). Furthermore, suppose that the following conditions are satisfied:*

- (1) $\delta_0 < \delta_1$,
- (2) $q_k \geq 2$ ($1 \leq k \leq h$),
- (3) $d_{h+1} = 1$,
- (4) $\delta_k < q_{k-1}\delta_{k-1}$ ($2 \leq k \leq h$),
- (5) $q_k\delta_k \in \mathbf{N}\delta_0 + \mathbf{N}\delta_1 + \cdots + \mathbf{N}\delta_{k-1}$ ($1 \leq k \leq h$).

Then, there exists a curve with one place at infinity having the δ -sequence $\{\delta_0, \delta_1, \dots, \delta_h\}$.

Suzuki [16] gave an algebro-geometric proof of the above two theorems by a consideration of the resolution graph at infinity. Further, Suzuki gave an algorithm for mutual conversion of a dual graph and a δ -sequence.

3. Construction of defining polynomials of curves

We shall assume that $f(x, y)$ is monic in y . We define approximate roots by Abhyankar's definition.

DEFINITION 3 (approximate roots). Let $f(x, y)$ be a defining polynomial, monic in y , of a curve with one place at infinity. Let $\{\delta_0, \delta_1, \dots, \delta_h\}$ be the δ -sequence of f . We set $n = \deg_y f$, $d_k = \gcd\{\delta_0, \delta_1, \dots, \delta_{k-1}\}$ and $n_k = n/d_k$ ($1 \leq k \leq h+1$). Then, for each k ($1 \leq k \leq h+1$), a pair of polynomials $(g_k(x, y), \psi_k(x, y))$ satisfying the following conditions is uniquely determined:

- (i) g_k is monic in y and $\deg_y g_k = n_k$,
- (ii) $\deg_y \psi_k < n - n_k$,
- (iii) $f = g_k^{d_k} + \psi_k$.

We call this g_k the k -th approximate root of f .

We can easily get the following fact from the definition of approximate roots.

FACT 2. We have

$$g_1 = y + \sum_{j=0}^{\lfloor p/q \rfloor} c_j x^j, \quad g_{h+1} = f$$

where $c_j \in \mathbf{C}$, $p = \deg_x f/d$, $q = \deg_y f/d$, $d = \gcd\{\deg_x f, \deg_y f\}$ and $\lfloor p/q \rfloor$ is the maximal integer l such that $l \leq p/q$.

DEFINITION 4 (Abhyankar-Moh's condition). We call the conditions (1)–(5) concerning $\{\delta_0, \delta_1, \dots, \delta_h\}$ in Theorem 2 Abhyankar-Moh's condition.

In [6], we presented the following theorem to give normal forms of defining polynomials of curves with one place at infinity, and detailed a method of construction of their defining polynomials by computer.

Theorem 3 ([6]). *Let $\{\delta_0, \delta_1, \dots, \delta_h\}$ ($h \geq 1$) be a sequence of natural numbers satisfying Abhyankar-Moh's condition (see Definition 4). Set $d_k = \gcd\{\delta_0, \delta_1, \dots, \delta_{k-1}\}$ ($1 \leq k \leq h+1$) and $q_k = d_k/d_{k+1}$ ($1 \leq k \leq h$).*

(1) *We define g_k ($0 \leq k \leq h+1$) as follows:*

$$\left\{ \begin{array}{l} g_0 = x, \\ g_1 = y + \sum_{j=0}^{\lfloor p/q \rfloor} c_j x^j, \quad c_j \in \mathbf{C}, \quad p = \frac{\delta_1}{d_2}, \quad q = \frac{\delta_0}{d_2}, \\ g_{i+1} = g_i^{q_i} + a_{\bar{\alpha}_0 \bar{\alpha}_1 \dots \bar{\alpha}_{i-1}} g_0^{\bar{\alpha}_0} g_1^{\bar{\alpha}_1} \dots g_{i-1}^{\bar{\alpha}_{i-1}} \\ \quad + \sum_{(\alpha_0, \alpha_1, \dots, \alpha_i) \in \Lambda_i} c_{\alpha_0 \alpha_1 \dots \alpha_i} g_0^{\alpha_0} g_1^{\alpha_1} \dots g_i^{\alpha_i}, \\ a_{\bar{\alpha}_0 \bar{\alpha}_1 \dots \bar{\alpha}_{i-1}} \in \mathbf{C}^*, \quad c_{\alpha_0 \alpha_1 \dots \alpha_i} \in \mathbf{C} \quad (1 \leq i \leq h), \end{array} \right.$$

where $(\bar{\alpha}_0, \bar{\alpha}_1, \dots, \bar{\alpha}_{i-1})$ is the sequence of i non-negative integers satisfying

$$\sum_{j=0}^{i-1} \bar{\alpha}_j \delta_j = q_i \delta_i, \quad \bar{\alpha}_j < q_j \quad (0 < j < i)$$

and

$$\Lambda_i = \left\{ (\alpha_0, \alpha_1, \dots, \alpha_i) \in \mathbf{N}^{i+1} \left| \alpha_j < q_j \quad (0 < j < i), \quad \alpha_i < q_i - 1, \quad \sum_{j=0}^i \alpha_j \delta_j < q_i \delta_i \right. \right\}.$$

Then, g_0, g_1, \dots, g_h are approximate roots of f ($= g_{h+1}$), and f is the defining polynomial, monic in y , of a curve with one place at infinity having the δ -sequence $\{\delta_0, \delta_1, \dots, \delta_h\}$.

(2) The defining polynomial f , monic in y , of a curve with one place at infinity having the δ -sequence $\{\delta_0, \delta_1, \dots, \delta_h\}$ is obtained by the procedure of (1), and the values of parameters $\{a_{\bar{\alpha}_0 \bar{\alpha}_1 \dots \bar{\alpha}_{i-1}}\}_{1 \leq i \leq h}$ and $\{c_{\alpha_0 \alpha_1 \dots \alpha_i}\}_{0 \leq i \leq h}$ are uniquely determined for f .

4. Abhyankar's question and Sathaye-Stenerson's conjecture

DEFINITION 5 (planar semigroup). Let $\{\delta_0, \delta_1, \dots, \delta_h\}$ ($h \geq 1$) be a sequence of natural numbers satisfying Abhyankar-Moh's condition. A semigroup generated by $\{\delta_0, \delta_1, \dots, \delta_h\}$ is said to be a planar semigroup.

DEFINITION 6 (polynomial curve). Let C be an algebraic curve defined by $f(x, y) = 0$, where $f(x, y)$ is an irreducible polynomial in $\mathbf{C}[x, y]$. We call C a polynomial curve, if C has a parametrization $x = x(t)$, $y = y(t)$, where $x(t)$ and $y(t)$ are polynomials in $\mathbf{C}[t]$.

The following question was introduced by Sathaye [13].

Abhyankar's Question. Let Ω be a planar semigroup. Is there a polynomial curve with a δ -sequence generating Ω ?

Moh [11] showed that there is no polynomial curve with the δ -sequence $\{6, 8, 3\}$. But this is not a negative answer to the Abhyankar's question since there is a polynomial curve $(x, y) = (t^3, t^8)$ with the δ -sequence $\{3, 8\}$ that generates the same semigroup as above. Sathaye-Stenerson [14] proved that the semigroup generated by $\{6, 22, 17\}$ has no other δ -sequence generating the same semigroup, and proposed the following conjecture on this question.

Sathaye-Stenerson's Conjecture. There is no polynomial curve having the δ -sequence $\{6, 22, 17\}$.

By Theorem 3, the defining polynomial of the curve with one place at infinity having the δ -sequence $\{6, 22, 17\}$ is as follows:

$$\begin{aligned} f = & (g_2^2 + a_{2,1}x^2g_1) + c_{5,0,0}x^5 + c_{4,0,0}x^4 + c_{3,0,0}x^3 + c_{2,0,0}x^2 \\ & + c_{1,1,0}xg_1 + c_{1,0,0}x + c_{0,1,0}g_1 + c_{0,0,0} \end{aligned}$$

where

$$\begin{aligned} g_1 = & y + c_3x^3 + c_2x^2 + c_1x + c_0, \\ g_2 = & (g_1^3 + a_{11}x^{11}) + c_{10,0}x^{10} + c_{9,0}x^9 + c_{8,0}x^8 + (c_{7,1}g_1 + c_{7,0})x^7 \\ & + (c_{6,1}g_1 + c_{6,0})x^6 + (c_{5,1}g_1 + c_{5,0})x^5 + (c_{4,1}g_1 + c_{4,0})x^4 \\ & + (c_{3,1}g_1 + c_{3,0})x^3 + (c_{2,1}g_1 + c_{2,0})x^2 + (c_{1,1}g_1 + c_{1,0})x + c_{0,1}g_1 + c_{0,0}. \end{aligned}$$

Since a curve has one place at infinity and genus zero if and only if it has polynomial parametrization (see [2] or [3]), $\{6, 22, 17\}$ is a negative answer to the Abhyankar's question if it can be shown that the above type curve does not include a polynomial curve.

We summarize elementary facts about polynomial parametrizations (see [8], [9]).

DEFINITION 7 (proper polynomial parametrization). A polynomial parametrization $(x, y) = (u(t), v(t))$, where $u, v \in \mathbf{C}[t]$, is called proper if and only if t may be expressed as a rational function in x, y .

FACT 3. Any polynomial curve has a proper polynomial parametrization.

FACT 4. Let C be a polynomial curve defined by an irreducible polynomial equation $f(x, y) = 0$ in the complex affine plane \mathbf{C}^2 . Let $(x, y) = (u(t), v(t))$ be a proper polynomial parametrization of C . Then $\deg_t u = \deg_y f$ and $\deg_t v = \deg_x f$.

Now we assume that there exists a polynomial curve having the δ -sequence $\{6, 22, 17\}$. Thus, the defining polynomial f of C has the above form using the approximate roots g_1 and g_2 . By Fact 1 and Fact 4, this curve has the following polynomial parametrization:

$$\begin{cases} x = t^6 + a_1 t^5 + a_2 t^4 + a_3 t^3 + a_4 t^2 + a_5 t + a_6 \\ y = t^{22} + b_1 t^{21} + b_2 t^{20} + b_3 t^{19} + \cdots + b_{20} t^2 + b_{21} t + b_{22} \end{cases}$$

The following lemma presented in [14] plays a vital role to generate polynomial systems corresponding to δ -sequences.

Lemma 1. *Let C be a polynomial curve defined by $f(x, y) = 0$ having the proper polynomial parametrization $(u(t), v(t))$ and the δ -sequence $\{\delta_0, \delta_1, \delta_2\}$. Let g_2 be the second approximate root of f . Then $\deg_t g_2(u(t), v(t)) = \delta_2$.*

Proof. This follows immediately from the form of f ($= g_3$) obtained by Theorem 3. \square

By this lemma, all formal terms with t -degree more than 17 in $g_2(x(t), y(t))$ must be eliminated. We get the polynomial system I from the coefficients of these terms. Furthermore, we can successively eliminate some variables by using polynomials with the form: $cz - h(w_1, w_2, \dots, w_s)$ in I , where $c \in \mathbf{C}^*$, z, w_1, w_2, \dots, w_s are variables and $h \in \mathbf{C}[w_1, w_2, \dots, w_s]$. As a result, we obtain the polynomial system with 11 variables and 17 polynomials.

$\{6, 22, 17\}$ is a negative answer to the Abhyankar's question if the polynomial system I does not have a root. For such a huge polynomial system it is suitable to compute the Gröbner basis of the ideal. However, it has been impossible to compute the Gröbner basis of I under *well-known* term orderings, even using a computer with 8 GB of memory.

5. A negative answer to Abhyankar's question

We find a *lighter* candidate for a negative answer to the Abhyankar's question. Let C be a curve with one place at infinity defined by a polynomial equation $f(x, y) = 0$ in the complex affine plane \mathbf{C}^2 . Let M be the surface obtained by the minimal resolution of the singularity of C at infinity, and E the exceptional curve on M . We assume that E_0, E_1, \dots, E_{i_h} are irreducible components of E , where the numbering of indices is by the ordering generated in the process to get M . The holomorphic 2-form $\omega = dx \wedge dy$ in \mathbf{C}^2 extends to a meromorphic 2-form on M . The canonical divisor $K = (\omega)$ has the support on E . We get $K = \sum_{l=0}^{i_h} k_l E_l$, where k_l is the zero order of ω on E_l . We call the zero order k_{i_h} of ω on E_{i_h} *k-number*. We obtain the following fact, since the proper transform of C intersects only E_{i_h} on M .

FACT 5. $K \cdot C = k_{i_h}$.

The k -number corresponding to the δ -sequence $\{6, 22, 17\}$ is 20. We classified δ -sequences with genus ≤ 50 into groups that generate the same semigroups. Furthermore, we listed δ -sequences with the following three properties: (i) There is no other δ -sequence that generates the same semigroup. (ii) The number of generators is 3. (iii) k -number ≥ -1 . Then, we obtained $\{6, 15, 4\}, \{4, 14, 9\}, \{6, 15, 7\}, \{6, 21, 4\}, \{6, 10, 11\}, \{4, 18, 13\}, \dots$. We got $\{6, 21, 4\}$ as a negative answer to the Abhyankar's question using Gröbner basis computations for polynomial systems corresponding to these δ -sequences. We show its details below.

First, we need to prove the uniqueness of $\{6, 21, 4\}$ since the above-mentioned classification is for genus ≤ 50 . Let $\{\delta_0, \delta_1, \dots, \delta_h\}$ be a sequence of natural numbers satisfying Abhyankar-Moh's condition, where $h \geq 1$. Set $d_k = \gcd\{\delta_0, \delta_1, \dots, \delta_{k-1}\}$ ($1 \leq k \leq h+1$) and $q_k = d_k/d_{k+1}$ ($1 \leq k \leq h$).

Lemma 2. *For any k ($1 \leq k \leq h$), $d_{k+1} \neq \delta_k$.*

Proof. Assume that there exists a natural number k ($1 \leq k \leq h$) such that $d_{k+1} = \delta_k$. We get $q_k \delta_k = (d_k/d_{k+1}) \delta_k = d_k$. From this and $d_k = \gcd\{\delta_0, \delta_1, \dots, \delta_{k-1}\}$, $q_k \mid \delta_i$ for each i ($0 \leq i \leq k-1$). By Abhyankar-Moh's condition (5), it follows that there exists an integer k_0 ($0 \leq k_0 \leq k-1$) such that $q_k \delta_k = \delta_{k_0}$. However, it must be $k_0 = k-1$ from $q_k \delta_k = d_k$ and Abhyankar-Moh's condition (2). Thus, we obtain $d_k = \delta_{k-1}$ and $\delta_{k-1} > \delta_k$. We get $\delta_0 > \delta_1 > \dots > \delta_{k-1} > \delta_k$, using the above result inductively, which is contradictory to Abhyankar-Moh's condition (1). \square

DEFINITION 8 (primitive). An element of a semigroup is called primitive if it is not a sum of two nonzero elements of the semigroup.

Lemma 3 ([14]). *Let Ω be a semigroup and $\{\delta_0, \delta_1, \dots, \delta_h\}$ a generators of Ω . If x is a primitive element of Ω , there exists a integer k ($0 \leq k \leq h$) such that $x = \delta_k$.*

Proof. By the definition of primitive elements, this assertion is clear. \square

Proposition 1. *The planar semigroup generated by $\{6, 21, 4\}$ has no other sequence satisfying Abhyankar-Moh's condition.*

Proof. Let Ω be the planar semigroup generated by $\{6, 21, 4\}$. 6, 21 and 4 are primitive elements of Ω . Thus, by Lemma 3, 6, 21 and 4 belong to any generating set of Ω . There are six possible cases for the order of 6, 21 and 4.

(i) $\{\dots, 6, \dots, 21, \dots, 4, \dots\}$: By $\gcd\{6, 21, 4\} = 1$ and Abhyankar-Moh's condition (2), 4 is the last element of the sequence. By $\gcd\{6, 21\} = 3$, $\gcd\{6, 21, 4\} = 1$ and Abhyankar-Moh's condition (2), there is no element between of 6 and 21, and

also between of 21 and 4. Furthermore, by Lemma 2, 6 is the first element of the sequence. Thus, we get $\{6, 21, 4\}$.

(ii) $\{\dots, 21, \dots, 6, \dots, 4, \dots\}$: We get $\{21, 6, 4\}$ in the same way as (i). But this is contradictory to Abhyankar-Moh's condition (1).

(iii) $\{\dots, 4, \dots, 21, \dots, 6, \dots\}$: By $\gcd\{4, 21\} = 1$, this case is impossible.

(iv) $\{\dots, 21, \dots, 4, \dots, 6, \dots\}$: By $\gcd\{21, 4\} = 1$, this case is impossible.

(v) $\{\dots, 6, \dots, 4, \dots, 21, \dots\}$: We get $\{6, 4, 21\}$ in the same way as (i). But this is contradictory to Abhyankar-Moh's condition (1).

(vi) $\{\dots, 4, \dots, 6, \dots, 21, \dots\}$: We get $\{4, 6, 21\}$ in the same way as (i). From $d_1 = 4$, $d_2 = \gcd\{4, 6\} = 2$, $q_1 = d_1/d_2 = 2$. Thus, $q_1\delta_1 = 12 < \delta_2$. But this is contradictory to Abhyankar-Moh's condition (4).

As a consequence, the generating sequence of Ω satisfying Abhyankar-Moh's condition is only $\{6, 21, 4\}$. \square

We assume that there exists a polynomial curve having the δ -sequence $\{6, 21, 4\}$. The defining polynomial of this curve is as follows:

$$f = g_2^3 + a_{2,0}x^2 + c_{1,0,1}xg_2 + c_{1,0,0}x + c_{0,0,1}g_2 + c_{0,0,0}$$

where

$$\begin{aligned} g_2 &= g_1^2 + a_7x^7 + c_{6,0}x^6 + c_{5,0}x^5 + c_{4,0}x^4 + c_{3,0}x^3 \\ &\quad + c_{2,0}x^2 + c_{1,0}x + c_{0,0}, \\ g_1 &= y + c_3x^3 + c_2x^2 + c_1x + c_0. \end{aligned}$$

By the substitution of g_1 for g_2 and changing parameters, we get

$$\begin{aligned} g_2 &= y^2 + a_7x^7 + y(c_{3,1}x^3 + c_{2,1}x^2 + c_{1,1}x + c_{0,1}) \\ &\quad + c_{6,0}x^6 + c_{5,0}x^5 + c_{4,0}x^4 + c_{3,0}x^3 + c_{2,0}x^2 + c_{1,0}x + c_{0,0}. \end{aligned}$$

We can set $a_7 = -1$ by the automorphism of $\mathbf{C}[x, y]$, $x \mapsto -a^{-1/7}x$, $y \mapsto y$. By $x \mapsto x + c_{6,0}/7$, we can remove the term $c_{6,0}x^6$. Further, by $y \mapsto y - (c_{3,1}x^3 + c_{2,1}x^2 + c_{1,1}x + c_{0,1})/2$, we can remove the terms $y(c_{3,1}x^3 + c_{2,1}x^2 + c_{1,1}x + c_{0,1})$. The proper polynomial parametrization of this curve is of the following form:

$$\begin{cases} x = t^6 + a_1t^5 + a_2t^4 + a_3t^3 + a_4t^2 + a_5t + a_6 \\ y = t^{21} + b_1t^{20} + b_2t^{19} + b_3t^{18} + \dots + b_{19}t^2 + b_{20}t + b_{21} \end{cases}$$

By the automorphism of $\mathbf{C}[t]$, $t \mapsto t - a_1/6$, we may remove the term a_1t^5 in $x(t)$. By Lemma 1, we get $\deg_t g_2(x(t), y(t)) = 4$. All formal terms with t -degree more than 4 in $g_2(x(t), y(t))$ must be eliminated. We obtain the polynomial system J from the coefficients of these terms. Furthermore, we can successively eliminate the variables

$b_1, c_{5,0}, c_{4,0}, c_{3,0}, c_{2,0}, c_{1,0}, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{13}, b_{14}, b_{15}, b_{16}, b_{17}, b_{19}, b_{20}$ and b_{21} in this order by using polynomials with the form: $cz - h(w_1, w_2, \dots, w_s)$ in J , where $c \in \mathbf{C}^*$, z, w_1, w_2, \dots, w_s are variables and $h \in \mathbf{C}[w_1, w_2, \dots, w_s]$. As a result, we can get the polynomial system with 7 variables $\{a_2, a_3, a_4, a_5, a_6, b_{12}, b_{18}\}$ and 13 polynomials. We denote the obtained polynomial system by the same character J .

We used total degree reverse lexicographic ordering (DRL) with $a_2 > a_3 > a_4 > a_5 > a_6 > b_{12} > b_{18}$ to the Gröbner basis computation. The CPU time for the computation was 3 hours 40 minutes and the required memory 850 MB. The computation was conducted on a dual AMD AthlonMP 2200+ (1.8 GHz) machine with 4 GB memory running FreeBSD 4.7. The computer algebra system used was Risa/Asir [12].

The obtained Gröbner basis $G_{\{6,21,4\}}$ of the ideal $Id(J)$ was not $\{1\}$. However, the normal form of the coefficient p of the term with t -degree = 4 in $g_2(x(t), y(t))$ with respect to $G_{\{6,21,4\}}$ is 0. By the property of Gröbner bases for ideal membership, this shows that $p \in Id(J)$. Thus, we get $\deg_t g_2(x(t), y(t)) < 4$. Since this is contradictory to $\deg_t g_2(x(t), y(t)) = 4$, there is no polynomial curve having the δ -sequence $\{6, 21, 4\}$. Consequently, $\{6, 21, 4\}$ is a negative answer to the Abhyankar's question.

REMARK. We computed the Gröbner bases corresponding to the δ -sequences $\{6, 15, 4\}$, $\{4, 14, 9\}$ and $\{6, 15, 7\}$, and obtained the normal forms of the coefficients of terms with t -degree δ_2 in $g_2(x(t), y(t))$ with respect to them. However, they were not 0 unlike the case of $\{6, 21, 4\}$.

6. Gröbner basis computation using weighted ordering

It is well-known that Gröbner basis computation is accelerated by setting weights if the input polynomial system is quasi homogeneous (see [10]). The polynomial system J corresponding to the δ -sequence $\{6, 21, 4\}$ is quasi homogeneous by the constructing method, and J become homogeneous by setting the indices of each variable as weights. We get the following weighted ordering: $b_{18} > b_{12} > a_6 > a_5 > a_4 > a_3 > a_2$ with weights $\{18, 12, 6, 5, 4, 3, 2\}$.

After various trials and errors, we obtained the Gröbner basis of the ideal $Id(J)$ by lexicographic ordering (LEX) with the above setting in a very short time and only 11 MB of memory. For verification of the results obtained by Asir and a comparison of computation time, we used another computer algebra system Singular 2.0.4 [7]. The results obtained by Singular coincided with Asir. The computation times are as follows:

δ -seq.	System	DRL	Sawada	Sawada weight DRL	Sawada weight LEX	Weight DRL	Weight LEX
$\{6, 21, 4\}$	Asir	5884	2.17	0.28	0.26	0.24	0.17
	Singular	53 h	—	0.35	0.34	0.31	0.17

‘h’ means hour. The time unit of values without ‘h’ are seconds. The line ‘—’ means out of memory. ‘Sawada’ is an automatic block ordering by Dr. Sawada in AIST (see [15]). Sawada ordering is obtained by a heuristic algorithm.

We tried to compute the Gröbner basis of $\{6, 22, 17\}$ -type by using weighted ordering. Let I be the polynomial system corresponding to the δ -sequence $\{6, 22, 17\}$ (see Section 4). I has 11 variables $\{a_2, a_3, a_4, a_5, a_6, b_2, b_8, b_{12}, b_{14}, b_{18}, b_{20}\}$ and 17 polynomials. Further, I is also quasi homogeneous, and becomes homogeneous by setting the indices of each variable as weights. As the above, we get the following weighted ordering: $b_{20} > b_{18} > b_{14} > b_{12} > b_8 > a_6 > a_5 > a_4 > a_3 > b_2 > a_2$ with weights $\{20, 18, 14, 12, 8, 6, 5, 4, 3, 2, 2\}$. We obtained the Gröbner basis of the ideal $Id(I)$ by LEX with the above setting. The memory used was 116 MB. The computation times were as follows:

δ -seq.	System	DRL	Sawada	Sawada weight DRL	Sawada weight LEX	Weight DRL	Weight LEX
$\{6, 22, 17\}$	Asir	—	—	303.8	382.8	2368	285.7
	Singular	—	—	92 h	92 h	326 h	78 h

Let $G_{\{6, 22, 17\}}$ be the obtained Gröbner basis of $Id(I)$. Let q be the coefficient of the term with t -degree = 17 in $g_2(x(t), y(t))$. Further, let \bar{q} be the normal form of q with respect to $G_{\{6, 22, 17\}}$. We got that the normal form of \bar{q}^3 with respect to $G_{\{6, 22, 17\}}$ is 0 by Asir and Singular. This shows that $q \in \sqrt{Id(I)}$. This is contradictory to $\deg_t g_2(x(t), y(t)) = 17$. Consequently, the Sathaye-Stenerson’s conjecture is also true.

The data files for polynomial systems that appeared in this paper are available from <http://www.fukuoka-edu.ac.jp/~fujimoto/abh2/>.

ACKNOWLEDGEMENT. The authors would like to thank Dr. Kinji Kimura, Prof. Masayuki Noro and Dr. Hiroyuki Sawada for many helpful suggestions on term ordering for efficient Gröbner basis computation.

References

- [1] S.S. Abhyankar: Lectures on Expansion Techniques in Algebraic Geometry (Notes by B.Singh), Tata Institute of Fundamental Research Lectures on Mathematics and Physics **57**, Tata Institute of Fundamental Research, Bombay, 1977.
- [2] S.S. Abhyankar: *What is the difference between a parabola and a hyperbola?*, The Mathematical Intelligencer **10** (1988), 36–43.
- [3] S.S. Abhyankar: Algebraic Geometry for Scientists and Engineers, Mathematical Surveys and Monographs **35**, American Mathematical Society, Providence, Rhode Island, 1990.
- [4] S.S. Abhyankar and T.T. Moh: *Newton-Puiseux expansion and generalized Tschirnhausen transformation I, II*, J. Reine Angew. Math. **260** (1973), 47–83, **261** (1973), 29–54.

- [5] S.S. Abhyankar and T.T. Moh: *On the semigroup of a meromorphic curve*; in Proceedings of the International Symposium on Algebraic Geometry Kyoto 1977 (M. Nagata, ed.), Kinokuniya Book Store, Tokyo, 1978, 249–414.
- [6] M. Fujimoto and M. Suzuki: *Construction of affine plane curves with one place at infinity*, Osaka J. Math. **39** (2002), 1005–1027.
- [7] G.-M. Greuel, G. Pfister and H. Schönemann: *Singular 2.0.4 A Computer Algebra System for Polynomial Computations*, Centre for Computer Algebra, University of Kaiserslautern (2001), <http://www.singular.uni-kl.de>.
- [8] J. Gutierrez, R. Rubio and J. Schicho: Polynomial parametrization of regular curves, RISC-Linz Technical Report **00-17**, Johannes Kepler University, Austria, 2000. Available from <ftp://ftp.risc.uni-linz.ac.at/pub/techreports/2000/00-17.ps.gz>.
- [9] J. Gutierrez, R. Rubio and J. Schicho: *Polynomial parametrization of curves without affine singularities*, Computer Aided Geometric Design **19** (2002), 223–234, 673.
- [10] K. Kimura and M. Noro: *Automatic weight generator for Gröbner basis computation* (in Japanese); in Computer Algebra—Design of Algorithms, Implementations and Applications, RIMS Kokyuroku **1395** (2004), 1–7.
- [11] T.T. Moh: *On the Jacobian conjecture and the configurations of roots*, J. Reine Angew. Math. **340** (1983), 140–212.
- [12] M. Noro, et al.: *A computer algebra system Risa/Asir*, <http://www.math.kobe-u.ac.jp/Asir/asir.html>.
- [13] A. Sathaye: *On planar curves*, Amer. J. Math. **99** (1977), 1105–1135.
- [14] A. Sathaye and J. Stenerson: *Plane polynomial curves*; in Algebraic Geometry and its Applications (C.L. Bajaj, ed.), Springer-Verlag, New York–Berlin–Heidelberg, 1994, 121–142.
- [15] H. Sawada: *Automatic Generation of Ranking of Variables for Efficient Computation of Groebner Bases in Engineering Applications*; in Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing (CASC 2003), 2003, 319–328.
- [16] M. Suzuki: *Affine plane curves with one place at infinity*, Annales Inst. Fourier **49** (1999), 375–404.

Mitsushi Fujimoto
 Department of Information Education
 Fukuoka University of Education
 Munakata, Fukuoka 811-4192, Japan
 e-mail: fujimoto@fukuoka-edu.ac.jp

Masakazu Suzuki
 Faculty of Mathematics
 Kyushu University
 36, Fukuoka 812-8581, Japan
 e-mail: suzuki@math.kyushu-u.ac.jp

Kazuhiro Yokoyama
 Faculty of Mathematics
 Kyushu University
 36, Fukuoka 812-8581, Japan
 e-mail: yokoyama@math.kyushu-u.ac.jp

Current address:
 Department of Mathematics
 Rikkyo University
 Toshima-ku, Tokyo 171-8501, Japan
 e-mail: yokoyama@rkm.math.rikkyo.ac.jp