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Abstract
A curve that can be parametrized by polynomials is called a polynomial curve.

It is well-known that a polynomial curve has only one place atinfinity. Let C be
a curve with one place at infinity. Sathaye presented the following question raised
by Abhyankar: Is there a polynomial curve associated with the semigroup generated
by pole orders ofC at infinity? In this paper, we give a negative answer to this
question using Gr̈obner basis computation.

1. Introduction

Let C be an irreducible algebraic curve in the complex affine planeC2. We say
that C has one place at infinity, if the closure ofC intersects with the1-line in P2

at only one pointP and C is locally irreducible at that pointP.

Abhyankar–Moh [1, 4, 5] investigated properties ofÆ-sequencesthat are sequences
of pole orders ofapproximate rootsof curves with one place at infinity and obtained a
criterion for a curve to have only one place at infinity. This result is called Abhyankar-
Moh’s semigroup theorem. Sathaye–Stenerson [14] proved that, conversely, if a sequence
S of natural numbers satisfies Abhyankar–Moh’s condition thenthere exists a curve
with one place at infinity having itsÆ-sequenceS. Suzuki [16] made clear the rela-
tionship between theÆ-sequence and the dual graph of the minimal resolution of the
singularity of the curveC at infinity, and gave an algebro-geometric proof of the semi-
group theorem and its inverse theorem due to Sathaye–Stenerson. Fujimoto–Suzuki [6]
gave an algorithm to compute the defining polynomial of the curve with one place at
infinity from a givenÆ-sequence.

A curve that can be parametrized by polynomials is called apolynomial curve.
It is well-known that a polynomial curve has only one place atinfinity. Let C be a
curve with one place at infinity, and� the semigroup generated by pole orders ofC
at infinity. Sathaye [13] presented the following question for curves with one place at
infinity raised Abhyankar: Is there a polynomial curve associated with �? Sathaye–
Stenerson [14] suggested a candidate for a negative answer to this question; however,
they could not give an answer to the question since a root computation for a huge
polynomial system was required.

2000 Mathematics Subject Classification. Primary 14H50; Secondary 13P10, 68W30.
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We found a negative answer to the Abhyankar’s question usinga computer algebra
system. In this paper, we give its details.

2. Preliminaries

Through this paper, we setN = fn 2 Z j n � 0g and C� = C n f0g. Let C be a
curve with one place at infinity defined by a polynomial equation f (x; y) = 0 in the
complex affine planeC2. Assume that degx f = m, degy f = n and d = gcd(m;n). The
dual graph corresponding to the minimal resolution of the singularity of C at infinity
is of the following form [16]:

DEFINITION 1 (Æ-sequence). Letf be a defining polynomial of a curveC with
one place at infinity. LetÆk (0 � k � h) be the order of the pole off on the curves
corresponding to the edge nodesE jk in the above dual graph. We call the sequencefÆ0; Æ1; : : : ; Æhg the Æ-sequence ofC (or of f ).

We have the following fact, since degx f = m and degy f = n.

FACT 1. Æ0 = n, Æ1 = m.

We setLk for eachk (1 � k � h), the linear branches as shown in the following
figure:
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DEFINITION 2 ((p;q)-sequence). Now, we assume that the weights ofLk are of
the following form:

We define the natural numberspk;qk;ak;bk satisfying

(pk;ak) = 1; (qk;bk) = 1; 0< ak < pk; 0< bk < qk;
pk

ak
= m1 � 1

m2 � 1

m3 � . ..� 1

mr

and
qk

bk
= n1 � 1

n2 � 1

n3 � . ..� 1

ns

:

We call the sequencef(p1;q1); (p2;q2); : : : ; (ph;qh)g the (p;q)-sequence ofC
(or of f ).

The following Abhyankar-Moh’s semigroup theorem and its converse theorem by
Sathaye–Stenerson are results forÆ-sequence.

Theorem 1 (Abhyankar–Moh [1, 4, 5]). Let C be an affine plane curve with one
place at infinity. Let fÆ0; Æ1; : : : ; Æhg be theÆ-sequence of C andf(p1;q1); : : : ; (ph;qh)g
the (p;q)-sequence of C. We set dk = gcdfÆ0; Æ1; : : : ; Æk�1g (1 � k � h + 1). We
have then,
(i) qk = dk=dk+1, dh+1 = 1 (1� k � h),

(ii) dk+1pk =

�Æ1 (k = 1)
qk�1Æk�1 � Æk (2� k � h)

,

(iii) qkÆk 2 NÆ0 + NÆ1 + � � � + NÆk�1 (1� k � h).

Theorem 2 (Sathaye–Stenerson [14]).Let fÆ0; Æ1; : : : ; Æhg (h � 1) be a sequence
of h + 1 natural numbers. We set dk = gcdfÆ0; Æ1; : : : ; Æk�1g (1 � k � h + 1) and
qk = dk=dk+1 (1 � k � h). Furthermore, suppose that the following conditions are
satisfied:
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(1) Æ0 < Æ1,
(2) qk � 2 (1� k � h),
(3) dh+1 = 1,
(4) Æk < qk�1Æk�1 (2� k � h),
(5) qkÆk 2 NÆ0 + NÆ1 + � � � + NÆk�1 (1� k � h).
Then, there exists a curve with one place at infinity having theÆ-sequencefÆ0; Æ1; : : : ; Æhg.

Suzuki [16] gave an algebro-geometric proof of the above twotheorems by a con-
sideration of the resolution graph at infinity. Further, Suzuki gave an algorithm for
mutual conversion of a dual graph and aÆ-sequence.

3. Construction of defining polynomials of curves

We shall assume thatf (x; y) is monic in y. We define approximate roots by
Abhyankar’s definition.

DEFINITION 3 (approximate roots). Letf (x; y) be a defining polynomial, monic
in y, of a curve with one place at infinity. LetfÆ0; Æ1; : : : ; Æhg be theÆ-sequence off .
We setn = degy f , dk = gcdfÆ0; Æ1; : : : ; Æk�1g and nk = n=dk (1 � k � h + 1). Then,
for eachk (1 � k � h + 1), a pair of polynomials (gk(x; y);  k(x; y)) satisfying the
following conditions is uniquely determined:
(i) gk is monic in y and degy gk = nk,
(ii) degy  k < n� nk,

(iii) f = gdk
k + k.

We call this gk the k-th approximate root off .

We can easily get the following fact from the definition of approximate roots.

FACT 2. We have

g1 = y +
b p=q
X

j =0

ckxk; gh+1 = f

whereck 2 C, p = degx f =d, q = degy f =d, d = gcdfdegx f;degy f g and b p=q
 is the
maximal integerl such thatl � p=q.

DEFINITION 4 (Abhyankar-Moh’s condition). We call the conditions (1)–(5) con-
cerning fÆ0; Æ1; : : : ; Æhg in Theorem 2 Abhyankar-Moh’s condition.

In [6], we presented the following theorem to give normal forms of defining poly-
nomials of curves with one place at infinity, and detailed a method of construction
of their defining polynomials by computer.
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Theorem 3 ([6]). Let fÆ0; Æ1; : : : ; Æhg (h � 1) be a sequence of natural numbers
satisfying Abhyankar-Moh’s condition(seeDefinition 4). Set dk = gcdfÆ0; Æ1; : : : ; Æk�1g
(1� k � h + 1) and qk = dk=dk+1 (1� k � h).
(1) We define gk (0� k � h + 1) as follows:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

g0 = x;
g1 = y +

b p=q
X
j =0

c j x
j ; c j 2 C; p =

Æ1

d2
; q =

Æ0

d2
;

gi +1 = gqi

i + a�̄0�̄1����̄i�1g
�̄0
0 g�̄1

1 � � � g�̄i�1

i�1

+
X

(�0;�1;:::;�i )23i

c�0�1����i g
�0
0 g�1

1 � � � g�i
i ;

a�̄0�̄1����̄i�1 2 C�; c�0�1����i 2 C (1� i � h);
where (�̄0; �̄1; : : : ; �̄i�1) is the sequence of i non-negative integers satisfying

i�1X
j =0

�̄ j Æ j = qi Æi ; �̄ j < q j (0< j < i )

and

3i =

8<
:(�0;�1; : : : ;�i ) 2 Ni +1

������ � j < q j (0< j < i ); �i < qi �1; iX
j =0

� j Æ j < qi Æi

9=
; :

Then, g0; g1; : : : ; gh are approximate roots of f(= gh+1), and f is the defining
polynomial, monic in y, of a curve with one place at infinity having theÆ-sequencefÆ0; Æ1; : : : ; Æhg.
(2) The defining polynomial f, monic in y, of a curve with one place at infinity hav-
ing the Æ-sequencefÆ0; Æ1; : : : ; Æhg is obtained by the procedure of(1), and the values
of parametersfa�̄0�̄1����̄i�1g1�i�h and fc�0�1����i g0�i�h are uniquely determined for f.

4. Abhyankar’s question and Sathaye-Stenerson’s conjecture

DEFINITION 5 (planar semigroup). LetfÆ0; Æ1; : : : ; Æhg (h � 1) be a sequence
of natural numbers satisfying Abhyankar-Moh’s condition. Asemigroup generated byfÆ0; Æ1; : : : ; Æhg is said to be a planar semigroup.

DEFINITION 6 (polynomial curve). LetC be an algebraic curve defined by
f (x; y) = 0, where f (x; y) is an irreducible polynomial inC[x; y]. We call C a poly-
nomial curve, ifC has a parametrizationx = x(t), y = y(t), where x(t) and y(t) are
polynomials inC[t ].
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The following question was introduced by Sathaye [13].

Abhyankar’s Question. Let � be a planar semigroup. Is there a polynomial curve
with a Æ-sequence generating�?

Moh [11] showed that there is no polynomial curve with theÆ-sequencef6;8;3g.
But this is not a negative answer to the Abhyankar’s questionsince there is a poly-
nomial curve (x; y) = (t3; t8) with the Æ-sequencef3;8g that generates the same semi-
group as above. Sathaye–Stenerson [14] proved that the semigroup generated byf6;22;17g has no otherÆ-sequence generating the same semigroup, and proposed the
following conjecture on this question.

Sathaye-Stenerson’s Conjecture. There is no polynomial curve having theÆ-
sequencef6;22;17g.

By Theorem 3, the defining polynomial of the curve with one place at infinity
having theÆ-sequencef6;22;17g is as follows:

f =
�
g2

2 + a2;1x2g1
�

+ c5;0;0x5 + c4;0;0x4 + c3;0;0x3 + c2;0;0x2

+ c1;1;0xg1 + c1;0;0x + c0;1;0g1 + c0;0;0
where

g1 = y + c3x3 + c2x2 + c1x + c0;
g2 =

�
g3

1 + a11x
11� + c10;0x10 + c9;0x9 + c8;0x8 + (c7;1g1 + c7;0)x7

+ (c6;1g1 + c6;0)x6 + (c5;1g1 + c5;0)x5 + (c4;1g1 + c4;0)x4

+ (c3;1g1 + c3;0)x3 + (c2;1g1 + c2;0)x2 + (c1;1g1 + c1;0)x + c0;1g1 + c0;0:
Since a curve has one place at infinity and genus zero if and only if it has poly-

nomial parametrization (see [2] or [3]),f6;22;17g is a negative answer to the
Abhyankar’s question if it can be shown that the above type curve does not include
a polynomial curve.

We summarize elementary facts about polynomial parametrizations (see [8], [9]).

DEFINITION 7 (proper polynomial parametrization). A polynomial parametriza-
tion (x; y) = (u(t); v(t)), whereu; v 2 C[t ], is called proper if and only ift may be
expressed as a rational function inx; y.

FACT 3. Any polynomial curve has a proper polynomial parametrization.

FACT 4. Let C be a polynomial curve defined by an irreducible polynomial equa-
tion f (x; y) = 0 in the complex affine planeC2. Let (x; y) = (u(t); v(t)) be a proper
polynomial parametrization ofC. Then degt u = degy f and degt v = degx f .
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Now we assume that there exists a polynomial curve having theÆ-sequencef6;22;17g. Thus, the defining polynomialf of C has the above form using the ap-
proximate rootsg1 and g2. By Fact 1 and Fact 4, this curve has the following poly-
nomial parametrization:

(
x = t6 + a1t5 + a2t4 + a3t3 + a4t2 + a5t + a6

y = t22 + b1t21 + b2t20 + b3t19 + � � � + b20t2 + b21t + b22

The following lemma presented in [14] plays a vital role to generate polynomial
systems corresponding toÆ-sequences.

Lemma 1. Let C be a polynomial curve defined by f(x; y) = 0 having the proper
polynomial parametrization(u(t); v(t)) and the Æ-sequencefÆ0; Æ1; Æ2g. Let g2 be the
second approximate root of f. Thendegt g2(u(t); v(t)) = Æ2.

Proof. This follows immediately from the form off (= g3) obtained by Theo-
rem 3.

By this lemma, all formal terms witht-degree more than 17 ing2(x(t); y(t)) must
be eliminated. We get the polynomial systemI from the coefficients of these terms.
Furthermore, we can successively eliminate some variablesby using polynomials with
the form: cz� h (w1; w2; : : : ; ws) in I , wherec 2 C�, z; w1; w2; : : : ; ws are variables
and h 2 C[w1; w2; : : : ; ws]. As a result, we obtain the polynomial system with 11
variables and 17 polynomials.f6;22;17g is a negative answer to the Abhyankar’s question if the polynomial sys-
tem I does not have a root. For such a huge polynomial system it is suitable to com-
pute the Gr̈obner basis of the ideal. However, it has been impossible to compute the
Gröbner basis ofI underwell-knownterm orderings, even using a computer with 8 GB
of memory.

5. A negative answer to Abhyankar’s question

We find a lighter candidate for a negative answer to the Abhyankar’s question. Let
C be a curve with one place at infinity defined by a polynomial equation f (x; y) = 0
in the complex affine planeC2. Let M be the surface obtained by the minimal res-
olution of the singularity ofC at infinity, and E the exceptional curve onM. We
assume thatE0; E1; : : : ; Eih are irreducible components ofE, where the numbering
of indices is by the ordering generated in the process to getM. The holomorphic 2-
form ! = dx^dy in C2 extends to a meromorphic 2-form onM. The canonical divisor
K = (!) has the support onE. We getK =

Pih
l=0 kl El , wherekl is the zero order of!

on El . We call the zero orderkih of ! on Eih k-number. We obtain the following fact,
since the proper transform ofC intersects onlyEih on M.
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FACT 5. K � C = kih .

The k-number corresponding to theÆ-sequencef6;22;17g is 20. We classifiedÆ-
sequences with genus� 50 into groups that generate the same semigroups. Further-
more, we listedÆ-sequences with the following three properties: (i) There is no otherÆ-sequence that generates the same semigroup. (ii) The number of generators is 3.
(iii) k-number� �1. Then, we obtainedf6;15;4g; f4;14;9g; f6;15;7g; f6;21;4g;f6;10;11g; f4;18;13g; : : : . We got f6;21;4g as a negative answer to the Abhyankar’s
question using Gr̈obner basis computations for polynomial systems corresponding to
theseÆ-sequences. We show its details below.

First, we need to prove the uniqueness off6;21;4g since the above-mentioned
classification is for genus� 50. Let fÆ0; Æ1; : : : ; Æhg be a sequence of natural num-
bers satisfying Abhyankar-Moh’s condition, whereh � 1. Setdk = gcdfÆ0; Æ1; : : : ; Æk�1g
(1� k � h + 1) andqk = dk=dk+1 (1� k � h).

Lemma 2. For any k (1� k � h), dk+1 6= Æk.

Proof. Assume that there exists a natural numberk (1 � k � h) such thatdk+1 =Æk. We getqkÆk = (dk=dk+1)Æk = dk. From this anddk = gcdfÆ0; Æ1; : : : ; Æk�1g, qkjÆi for
eachi (0� i � k� 1). By Abhyankar-Moh’s condition (5), it follows that there exists
an integerk0 (0 � k0 � k � 1) such thatqkÆk = Æk0. However, it must bek0 = k � 1
from qkÆk = dk and Abhyankar-Moh’s condition (2). Thus, we obtaindk = Æk�1 andÆk�1 > Æk. We getÆ0 > Æ1 > � � � > Æk�1 > Æk, using the above result inductively, which
is contradictory to Abhyankar-Moh’s condition (1).

DEFINITION 8 (primitive). An element of a semigroup is called primitiveif it is
not a sum of two nonzero elements of the semigroup.

Lemma 3 ([14]). Let � be a semigroup andfÆ0; Æ1; : : : ; Æhg a generators of�.
If x is a primitive element of�, there exists a integer k(0� k � h) such that x= Æk.

Proof. By the definition of primitive elements, this assertion is clear.

Proposition 1. The planar semigroup generated byf6;21;4g has no other se-
quence satisfying Abhyankar-Moh’s condition.

Proof. Let � be the planar semigroup generated byf6;21;4g. 6;21 and 4 are
primitive elements of�. Thus, by Lemma 3, 6;21 and 4 belong to any generating set
of �. There are six possible cases for the order of 6;21 and 4.

(i) f : : : ;6; : : : ;21; : : : ;4; : : : g: By gcdf6;21;4g = 1 and Abhyankar-Moh’s con-
dition (2), 4 is the last element of the sequence. By gcdf6;21g = 3, gcdf6;21;4g = 1
and Abhyankar-Moh’s condition (2), there is no element between of 6 and 21, and
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also between of 21 and 4. Furthermore, by Lemma 2, 6 is the firstelement of the se-
quence. Thus, we getf6;21;4g.

(ii) f : : : ;21; : : : ;6; : : : ;4; : : : g: We get f21;6;4g in the same way as (i). But
this is contradictory to Abhyankar-Moh’s condition (1).

(iii) f : : : ;4; : : : ;21; : : : ;6; : : : g: By gcdf4;21g = 1, this case is impossible.
(iv) f : : : ;21; : : : ;4; : : : ;6; : : : g: By gcdf21;4g = 1, this case is impossible.
(v) f : : : ;6; : : : ;4; : : : ;21; : : : g: We get f6;4;21g in the same way as (i). But

this is contradictory to Abhyankar-Moh’s condition (1).
(vi) f : : : ;4; : : : ;6; : : : ;21; : : : g: We get f4;6;21g in the same way as (i). From

d1 = 4, d2 = gcdf4;6g = 2, q1 = d1=d2 = 2. Thus,q1Æ1 = 12< Æ2. But this is contradic-
tory to Abhyankar-Moh’s condition (4).

As a consequence, the generating sequence of� satisfying Abhyankar-Moh’s con-
dition is only f6;21;4g.

We assume that there exists a polynomial curve having theÆ-sequencef6;21;4g.
The defining polynomial of this curve is as follows:

f = g3
2 + a2;0x2 + c1;0;1xg2 + c1;0;0x + c0;0;1g2 + c0;0;0

where

g2 = g2
1 + a7x7 + c6;0x6 + c5;0x5 + c4;0x4 + c3;0x3

+ c2;0x2 + c1;0x + c0;0;
g1 = y + c3x3 + c2x2 + c1x + c0:

By the substitution ofg1 for g2 and changing parameters, we get

g2 = y2 + a7x7 + y
�
c3;1x3 + c2;1x2 + c1;1x + c0;1�

+ c6;0x6 + c5;0x5 + c4;0x4 + c3;0x3 + c2;0x2 + c1;0x + c0;0:
We can seta7 = �1 by the automorphism ofC[x; y], x 7! �a�1=7x, y 7! y. By
x 7! x + c6;0=7, we can remove the termc6;0x6. Further, byy 7! y� (c3;1x3 + c2;1x2 +
c1;1x + c0;1)=2, we can remove the termsy(c3;1x3 + c2;1x2 + c1;1x + c0;1). The proper
polynomial parametrization of this curve is of the following form:

(
x = t6 + a1t5 + a2t4 + a3t3 + a4t2 + a5t + a6

y = t21 + b1t20 + b2t19 + b3t18 + � � � + b19t2 + b20t + b21

By the automorphism ofC[t ], t 7! t � a1=6, we may remove the terma1t5 in x(t).
By Lemma 1, we get degt g2(x(t); y(t)) = 4. All formal terms witht-degree more than
4 in g2(x(t); y(t)) must be eliminated. We obtain the polynomial systemJ from the
coefficients of these terms. Furthermore, we can successively eliminate the variables
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b1;c5;0;c4;0;c3;0;c2;0;c1;0;b2;b3;b4;b5;b6;b7;b8;b9;b10;b11;b13;b14;b15;b16;b17;b19;b20

and b21 in this order by using polynomials with the form:cz� h (w1; w2; : : : ; ws) in
J, wherec 2 C�, z; w1; w2; : : : ; ws are variables andh 2 C[w1; w2; : : : ; ws]. As a re-
sult, we can get the polynomial system with 7 variablesfa2;a3;a4;a5;a6;b12;b18g and
13 polynomials. We denote the obtained polynomial system bythe same characterJ.

We used total degree reverse lexicographic ordering (DRL) with a2 � a3 � a4 �
a5 � a6 � b12 � b18 to the Gr̈obner basis computation. The CPU time for the com-
putation was 3 hours 40 minutes and the required memory 850 MB.The computation
was conducted on a dual AMD AthlonMP 2200+ (1:8 GHz) machine with 4 GB mem-
ory running FreeBSD 4.7. The computer algebra system used was Risa/Asir [12].

The obtained Gr̈obner basisGf6;21;4g of the ideal I d(J) was not f1g. However,
the normal form of the coefficientp of the term with t-degree = 4 ing2(x(t); y(t))
with respect toGf6;21;4g is 0. By the property of Gr̈obner bases for ideal membership,
this shows thatp 2 I d(J). Thus, we get degt g2(x(t); y(t)) < 4. Since this is contra-
dictory to degt g2(x(t); y(t)) = 4, there is no polynomial curve having theÆ-sequencef6;21;4g. Consequently,f6;21;4g is a negative answer to the Abhyankar’s question.

REMARK . We computed the Gröbner bases corresponding to theÆ-sequencesf6;15;4g; f4;14;9g and f6;15;7g, and obtained the normal forms of the coefficients
of terms with t-degreeÆ2 in g2(x(t); y(t)) with respect to them. However, they were
not 0 unlike the case off6;21;4g.

6. Gröbner basis computation using weighted ordering

It is well-known that Gr̈obner basis computation is accelerated by setting weights
if the input polynomial system is quasi homogeneous (see [10]). The polynomial sys-
tem J corresponding to theÆ-sequencef6;21;4g is quasi homogeneous by the con-
structing method, andJ become homogeneous by setting the indices of each variable
as weights. We get the following weighted ordering:b18 � b12 � a6 � a5 � a4 � a3 �
a2 with weights f18;12;6;5;4;3;2g.

After various trials and errors, we obtained the Gröbner basis of the idealId(J)
by lexicographic ordering (LEX) with the above setting in a very short time and only
11 MB of memory. For verification of the results obtained by Asir and a compari-
son of computation time, we used another computer algebra system Singular 2.0.4 [7].
The results obtained by Singular coincided with Asir. The computation times are as
follows:

Æ-seq. System DRL Sawada
Sawada
weight
DRL

Sawada
weight
LEX

Weight
DRL

Weight
LEX

f6;21;4g Asir 5884 2:17 0:28 0:26 0:24 0:17
Singular 53 h — 0:35 0:34 0:31 0:17
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‘h’ means hour. The time unit of values without ‘h’ are seconds. The line ‘—’ means
out of memory. ‘Sawada’ is an automatic block ordering by Dr.Sawada in AIST (see
[15]). Sawada ordering is obtained by a heuristic algorithm.

We tried to compute the Gröbner basis off6;22;17g-type by using weighted or-
dering. Let I be the polynomial system corresponding to theÆ-sequencef6;22;17g
(see Section 4).I has 11 variablesfa2;a3;a4;a5;a6;b2;b8;b12;b14;b18;b20g and 17
polynomials. Further,I is also quasi homogeneous, and becomes homogeneous by set-
ting the indices of each variable as weights. As the above, weget the following
weighted ordering:b20 � b18 � b14 � b12 � b8 � a6 � a5 � a4 � a3 � b2 � a2

with weights f20;18;14;12;8;6;5;4;3;2;2g. We obtained the Gröbner basis of the
ideal Id(I ) by LEX with the above setting. The memory used was 116 MB. The com-
putation times were as follows:

Æ-seq. System DRL Sawada
Sawada
weight
DRL

Sawada
weight
LEX

Weight
DRL

Weight
LEX

f6;22;17g Asir — — 303:8 382:8 2368 285:7
Singular — — 92 h 92 h 326 h 78 h

Let Gf6;22;17g be the obtained Gröbner basis ofId(I ). Let q be the coefficient of the
term with t-degree = 17 ing2(x(t); y(t)). Further, letq̄ be the normal form ofq with
respect toGf6;22;17g. We got that the normal form of̄q3 with respect toGf6;22;17g
is 0 by Asir and Singular. This shows thatq 2 pId(I ). This is contradictory to
degt g2(x(t); y(t)) = 17. Consequently, the Sathaye-Stenerson’s conjectureis also true.

The data files for polynomial systems that appeared in this paper are available
from http://www.fukuoka-edu.ac.jp/˜fujimoto/abh2/ .
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