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Abstract
A curve that can be parametrized by polynomials is called lgnponial curve.
It is well-known that a polynomial curve has only one placeirdinity. Let C be
a curve with one place at infinity. Sathaye presented thevidatlg question raised
by Abhyankar: Is there a polynomial curve associated with gamigroup generated
by pole orders ofC at infinity? In this paper, we give a negative answer to this
question using Gibner basis computation.

1. Introduction

Let C be an irreducible algebraic curve in the complex affine pl@3e We say
that C hasone place at infinityif the closure ofC intersects with theo-line in P?
at only one pointP and C is locally irreducible at that poinP.

Abhyankar—Moh [1, 4, 5] investigated propertiessefequenceshat are sequences
of pole orders ofapproximate rootof curves with one place at infinity and obtained a
criterion for a curve to have only one place at infinity. Thesult is called Abhyankar-
Moh’s semigroup theorem. Sathaye—Stenerson [14] proveddbiaversely, if a sequence
S of natural numbers satisfies Abhyankar—-Moh’s condition thiggre exists a curve
with one place at infinity having it$-sequenceS. Suzuki [16] made clear the rela-
tionship between thé-sequence and the dual graph of the minimal resolution of the
singularity of the curveC at infinity, and gave an algebro-geometric proof of the semi-
group theorem and its inverse theorem due to Sathaye—Stendfujimoto—Suzuki [6]
gave an algorithm to compute the defining polynomial of thevewvith one place at
infinity from a givené-sequence.

A curve that can be parametrized by polynomials is calledolynomial curve
It is well-known that a polynomial curve has only one placeirdinity. Let C be a
curve with one place at infinity, anf the semigroup generated by pole ordersCof
at infinity. Sathaye [13] presented the following question ¢urves with one place at
infinity raised Abhyankar: Is there a polynomial curve assed with Q? Sathaye—
Stenerson [14] suggested a candidate for a negative answéistquestion; however,
they could not give an answer to the question since a root atatipn for a huge
polynomial system was required.

2000 Mathematics Subject Classification. Primary 14H50p8¢éary 13P10, 68W30.
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We found a negative answer to the Abhyankar’s question usingmputer algebra
system. In this paper, we give its details.

2. Preliminaries

Through this paper, we séd = {he€ Z | n > 0} andC* = C\ {0}. Let C be a
curve with one place at infinity defined by a polynomial equatif (x,y) = 0 in the
complex affine planeC?. Assume that degf =m, deg, f =n andd = gcdf, n). The
dual graph corresponding to the minimal resolution of thegglarity of C at infinity
is of the following form [16]:

E; E;, E;, Ei,

DEFINITION 1 (§-sequence). Leff be a defining polynomial of a curv€ with
one place at infinity. Letx (0 < k < h) be the order of the pole of on the curves
corresponding to the edge nodg&s, in the above dual graph. We call the sequence
{80, 81, . .., 8} the §-sequence ofC (or of f).

We have the following fact, since dedg =m and deg f =n.
FACT 1. 6p=n, §;=m.

We setLy for eachk (1 < k < h), the linear branches as shown in the following
figure:

E-

10
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DEFINITION 2 ((p, g)-sequence). Now, we assume that the weights ofire of
the following form:

—my —My_1 —MN Eik

Ly  ——O0——0--- T Lt

We define the natural numberk, gk, ax, bk satisfying

(poax)=1, (o, b)=1, O<a<p, O<be<a,

Px 1 Ok 1

=Z=m; — and — =n; — .
& ! 1 be 1

mp—-— np— ———

mz — | 1 1

m; Ns

Nz — |

We call the sequence{(pi, G1), (P2, G2). ---,(Pn, Gn)} the (p, g)-sequence ofC
(or of f).

The following Abhyankar-Moh’s semigroup theorem and its\eoree theorem by
Sathaye—Stenerson are results fesequence.

Theorem 1 (Abhyankar—Moh [1, 4, 5]). Let C be an affine plane curve with one
place at infinity Let {8, 81, ..., 5h} be thes-sequence of C anf{py, q1), - .., (Pn, On)}
the (p, q)-sequence of CWe set d = gcdo, 81,...,81} (1 < k < h+1). We
have then
(i) Ok =dk/dk+1, Ohe1 =1 (1< k < h),

i 681 (k=1)
(1) deapi= {Qk15k1 -8 (<k=<h)’
(iii) gkdk € N8g + N8y +---+N8_1 (L <k <h).

Theorem 2 (Sathaye—Stenerson [14])Let {5o, 81, ..., dn} (h > 1) be a sequence
of h+ 1 natural numbersWe set d = gcdéo, 61,...,8 1} (1 < k < h+1) and
Ok = dk/dk+1 (1 < k < h). Furthermore suppose that the following conditions are
satisfied
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(1) 8o < 61,

(2) =2 (1=<k<h),

() dh+1 =1,

(4) 8k < Gk-18k-1 2 <k <h),

(5) Okdk € N&o+Ndg +---+Nék—1 (L <k <h).

Then there exists a curve with one place at infinity havingdksequencédy, 61, . .., dn}.

Suzuki [16] gave an algebro-geometric proof of the above tiwemrems by a con-
sideration of the resolution graph at infinity. Further, @izgave an algorithm for
mutual conversion of a dual graph andS-®equence.

3. Construction of defining polynomials of curves

We shall assume thaf(x, y) is monic in y. We define approximate roots by
Abhyankar’s definition.

DEFINITION 3 (approximate roots). Lef(x,y) be a defining polynomial, monic
in y, of a curve with one place at infinity. Ld8g, 1, ..., dn} be thes-sequence off.
We setn = degj f, d« = gcd{8o, 81, ...,0k_1} andng = n/dk (1 < k < h+1). Then,
for eachk (1 < k < h+ 1), a pair of polynomials (X, ¥), ¥«(X, ¥)) satisfying the
following conditions is uniquely determined:

(1) gk is monic iny and deg gk = n,

(i) degy Yk < N =N,

(i) f =g+ Y.

We call thisgi the k-th approximate root off.

We can easily get the following fact from the definition of appmate roots.

FacT 2. We have

Lp/al
B=y+ Y oxX, gwa=f
j=0

wherecy € C, p=deg, f/d, q =deg, f/d, d = gcddeq, f,deg, f} and | p/q] is the
maximal integerl such that < p/q.

DEFINITION 4 (Abhyankar-Moh's condition). We call the conditions (B5)}-€on-
cerning{8p, 81, ..., dx} in Theorem 2 Abhyankar-Moh'’s condition.

In [6], we presented the following theorem to give normalnierof defining poly-
nomials of curves with one place at infinity, and detailed ahoé of construction
of their defining polynomials by computer.
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Theorem 3 ([6]). Let {3g, d1,..-,8n} (h > 1) be a sequence of natural numbers
satisfying Abhyankar-Moh’s conditiofsee Definition 4). Set ¢ = gcdd, 31, - - -, Sk—1}
(I<k<h+1)and g =di/dk+1 (1 <k <h).

(1) We define g(0 <k <h+1) as follows

Jo = X,
Lp/al 5, 5
—y+ cix), ¢cjeC, p=—, q=—,
G=y JZ_(;, j P=g 97 g
Qi1

g+a1=0" + aﬁ?oal"'&i—lggogfl 0

(o4 o (04
Y Carew GO0 G

(xo,@1,...,a )EA

Apa, @, € C*, Cypapqf €C (L <i <h),

where (ag, a1, ..., @j_1) IS the sequence of i non-negative integers satisfying
i—1
Z(Y]5j=qi5i, C?j <q,— (O<j <I)
i=0

and

Aj = {(ao,al,...,ai) e N'*t

i
o < (Qj (0< j <i), ap <G -1, ZaJSj < G
j=0

Then go, 01, ..., 0y are approximate roots of f{= gn+1), and f is the defining
polynomial monic in y, of a curve with one place at infinity having tléesequence
{80, 81, - .., Sn}-

(2) The defining polynomial ,fmonic in y, of a curve with one place at infinity hav-
ing the §-sequencgéy, 41, ..., dh} is obtained by the procedure dfl), and the values
of parameters{az,a,..4_;}1<i<h aNnd {Cuga, ..o Jo<i<h are uniquely determined for.f

4. Abhyankar’s question and Sathaye-Stenerson’s conjecte

DEFINITION 5 (planar semigroup). Le{do, 81, ..., én} (h > 1) be a sequence
of natural numbers satisfying Abhyankar-Moh'’s condition.sémigroup generated by
{80, 81, - .-, Sn} IS said to be a planar semigroup.

DEFINITION 6 (polynomial curve). LetC be an algebraic curve defined by
f(x,y) =0, where f(x, y) is an irreducible polynomial irC[x, y]. We call C a poly-
nomial curve, ifC has a parametrizatior = x(t), y = y(t), where x(t) and y(t) are
polynomials inCJt].
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The following question was introduced by Sathaye [13].

Abhyankar's Question. Let Q be a planar semigroup. Is there a polynomial curve
with a §-sequence generating?

Moh [11] showed that there is no polynomial curve with #heequencds, 8, 3}.
But this is not a negative answer to the Abhyankar's questioge there is a poly-
nomial curve &, y) = (t3, t8) with the s-sequence3, 8} that generates the same semi-
group as above. Sathaye—Stenerson [14] proved that thegmemi generated by
{6,22, 17} has no othe-sequence generating the same semigroup, and proposed the
following conjecture on this question.

Sathaye-Stenerson’s Conjecture. There is no polynomial curve having the
sequencg6, 22, 17}.

By Theorem 3, the defining polynomial of the curve with onecplat infinity
having thes-sequencd®6, 22, 17} is as follows:
f= (9% + 82,1X291) +C5,0,0X> + C4,00X" + C3,0,0x% + C2,0,0%

+C1,1,0XG1 + C1,0,0X *+ Cp,1,001 + Co,0,0

where

g1 = Y + Cax3 + CoX? + C1X + Co,
O2= (gf + allxll) + 100X+ Co 0X° + Cg X + (C7,101 + C7,0)X”
+(C,101 + C6,0)X® + (C5.101 + C5,0)X° + (C4,101 + Ca.0)X*
+(C3.101 + Ca.0)X> + (C2,101 + C2,0)X? + (C1.101 + C1,0)X + Co,101 + Co,0.

Since a curve has one place at infinity and genus zero if ang ibiitl has poly-
nomial parametrization (see [2] or [3]){6,22, 17} is a negative answer to the
Abhyankar’'s question if it can be shown that the above typerecwloes not include
a polynomial curve.

We summarize elementary facts about polynomial paranativizs (see [8], [9]).

DEFINITION 7 (proper polynomial parametrization). A polynomial paedriza-
tion (X, y) = (u(t), v(t)), whereu, v € C[t], is called proper if and only it may be
expressed as a rational functionny.

FacT 3. Any polynomial curve has a proper polynomial parametiora

FACT 4. LetC be a polynomial curve defined by an irreducible polynomialaeq
tion f(x,y) = 0 in the complex affine plan€?. Let (x,y) = (u(t), v(t)) be a proper
polynomial parametrization o€. Then degu = deg, f and degv = deg f.
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Now we assume that there exists a polynomial curve having dtsequence
{6,22,17}. Thus, the defining polynomiaf of C has the above form using the ap-
proximate rootsg; and g,. By Fact 1 and Fact 4, this curve has the following poly-
nomial parametrization:

{x =t6 + ayt® + axt? + agt3 + aut? + ast + ag

y= t22 + b1t21 + bztzo + bgtlg +..-+ b20t2 + byt + by

The following lemma presented in [14] plays a vital role tngeate polynomial
systems corresponding ®sequences.

Lemma 1. Let C be a polynomial curve defined byxfy) = 0 having the proper
polynomial parametrizatior(u(t), v(t)) and the §-sequence{do, 81, 52}. Let g be the
second approximate root of . fThendeg g2(u(t), v(t)) = 2.

Proof. This follows immediately from the form of (= gs) obtained by Theo-
rem 3. ]

By this lemma, all formal terms witlh-degree more than 17 igx(x(t), y(t)) must
be eliminated. We get the polynomial systdmfrom the coefficients of these terms.
Furthermore, we can successively eliminate some varidhegsing polynomials with
the form:cz—h (wq, wo, ..., ws) in |, wherec € C*, z, wy, wy, ..., ws are variables
and h € Clwi, wy, ..., ws]. As a result, we obtain the polynomial system with 11
variables and 17 polynomials.

{6,22, 17} is a negative answer to the Abhyankar's question if the pmtyial sys-
tem | does not have a root. For such a huge polynomial system ititab$ei to com-
pute the Gobner basis of the ideal. However, it has been impossibleotopate the
Grobner basis of underwell-knownterm orderings, even using a computer with 8 GB
of memory.

5. A negative answer to Abhyankar's question

We find alighter candidate for a negative answer to the Abhyankar's questieh
C be a curve with one place at infinity defined by a polynomialatigun f(x,y) =0
in the complex affine plan€?. Let M be the surface obtained by the minimal res-
olution of the singularity ofC at infinity, and E the exceptional curve oM. We
assume thatEg, Eg, ..., Ej, are irreducible components d&, where the numbering
of indices is by the ordering generated in the process toMjefThe holomorphic 2-
form w = dxAdy in C? extends to a meromorphic 2-form ov. The canonical divisor
K = (w) has the support olE. We getK = Z:”:Ok. E;, wherek; is the zero order ofv
on E;. We call the zero ordek;, of w on E;, k-number We obtain the following fact,
since the proper transform @ intersects onlyE;, on M.
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FacTt 5. K-C=k;,.

The k-number corresponding to thisequenced6, 22, 17} is 20. We classified-
sequences with genus 50 into groups that generate the same semigroups. Further-
more, we listeds-sequences with the following three properties: (i) Thexend other
3-sequence that generates the same semigroup. (i) The muofbgenerators is 3.
(i) k-number> —1. Then, we obtained{6, 15, 4}, {4, 14, 9}, {6, 15, 7}, {6, 21, 4},
{6,10, 11}, {4,18,13},.... We got ({6, 21, 4} as a negative answer to the Abhyankar's
guestion using Gibner basis computations for polynomial systems corredipgnto
theses-sequences. We show its details below.

First, we need to prove the uniqueness {6f21, 4} since the above-mentioned
classification is for genus< 50. Let {§g, 81, ...,3n} be a sequence of natural num-
bers satisfying Abhyankar-Moh'’s condition, whdre> 1. Setdy = gcdSo, 81, - - -, Sk—1}

(A <k<h+1)andg = d¢/dk+1 (L <k < h).

Lemma 2. For any k(1 <k <h), dk+1 # k-

Proof. Assume that there exists a natural nunibét < k < h) such thatdg:; =
3k. We getqedk = (dk/dk+1)8k = dk. From this anddy = gcdSo, 81, ..., dk—1}, Okldi for
eachi (0 <i <k —1). By Abhyankar-Moh’s condition (5), it follows that ther&ists
an integerkg (0 < ko < k — 1) such thatgkéx = 8,. However, it must beky =k — 1
from qdx = di and Abhyankar-Moh's condition (2). Thus, we obtalp = 8«_1 and
Sk—1 > &k- We getdp > 81 > --- > Sk_1 > &, using the above result inductively, which
is contradictory to Abhyankar-Moh’s condition (1). U

DEFINITION 8 (primitive). An element of a semigroup is called primitifeit is
not a sum of two nonzero elements of the semigroup.

Lemma 3 ([14]). Let Q be a semigroup anddo, é1, ..., én} a generators ofS.
If x is a primitive element of2, there exists a integer kO < k < h) such that x= .

Proof. By the definition of primitive elements, this assettis clear. U

Proposition 1. The planar semigroup generated K6, 21,4} has no other se-
quence satisfying Abhyankar-Moh'’s condition

Proof. LetQ be the planar semigroup generated {21, 4}. 6,21 and 4 are
primitive elements of2. Thus, by Lemma 3, 81 and 4 belong to any generating set
of Q. There are six possible cases for the order d2l6and 4.

@ {...,6,...,21...,4,...}: By gcd6, 21,4} = 1 and Abhyankar-Moh’s con-
dition (2), 4 is the last element of the sequence. By{gcdl} = 3, gcd6, 21,4} =1
and Abhyankar-Moh'’s condition (2), there is no element betwef 6 and 21, and
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also between of 21 and 4. Furthermore, by Lemma 2, 6 is thediesbent of the se-
guence. Thus, we g€B6, 21, 4}.

@iy {...,21,...,6,...,4,...}: We get{21, 6,4} in the same way as (i). But
this is contradictory to Abhyankar-Moh’s condition (1).

@iy {...,4,...,21,...,6,...}: By gcd4, 21} =1, this case is impossible.

(iv) {...,21,...,4,...,6,...}: By gcd21, 4} = 1, this case is impossible.

V) {...,6,...,4,...,21 ...} We get{6,4,21} in the same way as (i). But
this is contradictory to Abhyankar-Moh’s condition (1).

(vi) {...,4,...,6,...,21...}: We get{4,6, 21} in the same way as (i). From
d, =4,d, =gcd4,6} =2, q, =dy/dy = 2. Thus,q;16; = 12 < 6,. But this is contradic-
tory to Abhyankar-Moh’s condition (4).

As a consequence, the generating sequenc® sétisfying Abhyankar-Moh’s con-
dition is only {6, 21, 4}. ]

We assume that there exists a polynomial curve havingsteequenceg6, 21, 4}.
The defining polynomial of this curve is as follows:

_ .3 2
f =05 +ap0X“ +C1,01X% +C100X +Co0,102 + Co00
where

02 = 0% + arx” + Cg 0X° + G5 X + €4 0X* + €3 0X°
+ C2,0X2 + C1,0X + Cp,0,

g1 = Y +Cax + Cox? + C1X + Co.
By the substitution ofg; for g, and changing parameters, we get

—\2 7 3 2
Q2 =y~ +arX +Y(C3.1X +C21X +Cl.1X+Co.1)

+Cp X% + Cs.oX5 +cqoxt + Ca,ox3 + Cz.oX2 + C1,0X + Co0-

We can seta; = —1 by the automorphism o€[x,y], X = —a Y'x, y — y. By
X > X +Cg0/7, We can remove the termy ox8. Further, byy i y — (C31x3 + Cp 1 X% +
CL1X + Cg1)/2, we can remove the termgcs1x® + Cp1X? + Cp1X + Cg1). The proper
polynomial parametrization of this curve is of the follogifiorm:

X = 18+ aytd + apt* + agt® + agt? + agt + ag

y = t21+ byt 20 + ot 19 + bt 18 + . . - + bygt? + byot + by
By the automorphism oC[t], t — t — a;/6, we may remove the terra.t® in x(t).
By Lemma 1, we get de@y(X(t), y(t)) = 4. All formal terms witht-degree more than

4 in go(Xx(t), y(t)) must be eliminated. We obtain the polynomial systdnirom the
coefficients of these terms. Furthermore, we can succégsilieninate the variables
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b1, Cs.0, C4,0, C3,0, C2,0, C1,0, D2, b3, b4, bs, bg, b7, bg, bg, b1o, P11, b13, B14, b1s, b16, D17, D19, B2o
and by in this order by using polynomials with the fornez— h (w1, wa, ..., ws) in
J, wherec € C*, z, wy, wy, ..., ws are variables anth € Clwy, wy, ..., ws]. As a re-
sult, we can get the polynomial system with 7 variables as, as, as, ag, b12, big} and
13 polynomials. We denote the obtained polynomial systenthleysame charactet.

We used total degree reverse lexicographic ordering (DRith & > az > a4 >
as > ag > by, = big to the Gibbner basis computation. The CPU time for the com-
putation was 3 hours 40 minutes and the required memory 850TiB. computation
was conducted on a dual AMD AthlonMP 2200+.8 GHz) machine with 4 GB mem-
ory running FreeBSD 4.7. The computer algebra system usadRisa/Asir [12].

The obtained Gibner basisG 214 Of the ideal 1d(J) was not{1}. However,
the normal form of the coefficienp of the term witht-degree = 4 ingy(x(t), y(t))
with respect t0Gs 21,4y is 0. By the property of Gibner bases for ideal membership,
this shows thatp € 1d(J). Thus, we get deg(x(t), y(t)) < 4. Since this is contra-
dictory to degga(x(t), y(t)) = 4, there is no polynomial curve having tliesequence
{6, 21, 4}. Consequently{6, 21, 4} is a negative answer to the Abhyankar’s question.

REMARK. We computed the ®bner bases corresponding to thesequences
{6, 15, 4}, {4, 14,9} and {6, 15, 7}, and obtained the normal forms of the coefficients
of terms witht-degreed, in g(x(t), y(t)) with respect to them. However, they were
not O unlike the case 0f6, 21, 4}.

6. Grobner basis computation using weighted ordering

It is well-known that Gobner basis computation is accelerated by setting weights
if the input polynomial system is quasi homogeneous (sed.[IThe polynomial sys-
tem J corresponding to th&-sequence(6, 21, 4} is quasi homogeneous by the con-
structing method, and become homogeneous by setting the indices of each variable
as weights. We get the following weighted orderitigg > b;o > ag > as > a4 > ag >
a, with weights {18, 12 6,5, 4, 3, 2}.

After various trials and errors, we obtained thedt@mer basis of the idedt(J)
by lexicographic ordering (LEX) with the above setting in ery short time and only
11 MB of memory. For verification of the results obtained by rAahd a compari-
son of computation time, we used another computer algelsi@rsySingular 2.0.4 [7].
The results obtained by Singular coincided with Asir. Thempatation times are as
follows:

Sawada] Sawada : i
_ A . Weight | Weight
s-seq. | System | DRL | Sawada| weight | weight DRL | LEX

DRL LEX
Asir 5884 217 0.28 0.26 0.24 0.17
Singular| 53h — 0.35 0.34 0.31 0.17

{6,21, 4}
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‘h’ means hour. The time unit of values without ‘h’ are secentihe line ‘— means
out of memory. ‘Sawada’ is an automatic block ordering by Bawada in AIST (see
[15]). Sawada ordering is obtained by a heuristic algorithm

We tried to compute the @bner basis of{6, 22, 17}-type by using weighted or-
dering. Let!l be the polynomial system corresponding to theequence(6, 22, 17}
(see Section 4)1 has 11 variableqay, az, a4, as, as, b2, bg, b1, b14, b1g, byp} and 17
polynomials. Further] is also quasi homogeneous, and becomes homogeneous by set-
ting the indices of each variable as weights. As the above,get the following
weighted orderingbyg > big = by = by > bg = ag > as > a4 > azg > b, = &
with weights {20, 18,14, 12 8,6, 5, 4, 3, 2, 2}. We obtained the Gbner basis of the
ideal Id(1) by LEX with the above setting. The memory used was 116 MB. Téma-c
putation times were as follows:

Sawada Sawada ; :
5-seq. System | DRL | Sawada| weight | weight V\[/)ell?tht V{gg{ht
DRL LEX
Asir — — 3038 3828 2368 | 2857
6.2217 Feingular| — | — 92h| 92h| 326h| 78h

Let Gs.2217, be the obtained @Gbner basis ofd(l). Let q be the coefficient of the
term with t-degree = 17 ingy(x(t), y(t)). Further, letq be the normal form ofy with
respect t0G.2217. We got that the normal form of® with respect toG,2217
is 0 by Asir and Singular. This shows thate /Id(T). This is contradictory to
deg g2(x(t), y(t)) = 17. Consequently, the Sathaye-Stenerson’s conjetduaéso true.

The data files for polynomial systems that appeared in thjzepare available
from http://www.fukuoka-edu.ac.jp/ fujimoto/abh2/

ACKNOWLEDGEMENT. The authors would like to thank Dr. Kinji Kimura,
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