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Abstract

We consider half-line media which consist of many kinds obstances. We
assume that the waves through this media are described mn#idimensional wave
equation. We can directly observe the data near the bourgtary of the half-line,
but we cannot directly observe the data of things away from libundary point.
In this situation, we try to identify these unknown things btseating an artificial
explosion and observing on the boundary point the wavesrgtteby the explosion.
In the previous works related to this problem, only the speefithe waves were
treated, but we also take into account the impedances of #d#anin our setting.

1. Introduction

We consider half-line media which consist of many kinds dbstances. We can
directly observe the data near the boundary point of the-limdf but we cannot di-
rectly observe the data of things away from the boundarytpdim this situation, we
perform the following experiment in order to investigaternin We first create an arti-
ficial explosion at a point near the boundary point. Wavesegged by this explosion
travel in the media. Then we observe the waves at the bourmtzEng, and guess the
situation away from the boundary point.

This problem has been studied by Bartoloni-Lodovici-&irfll], for example.
However, from the experimental point of view, this resultshsome problem with
respect to the formulation of the situation. Indeed, in [tbey deal with

32U d au

—t,x)=—{SX)—(@,x)), t>0, x>0

e 00= 2 (SWEE0). 120 x>

in order to express behavior of the waves inside the hadf-limhereS(x) is a piece-

wise constant function. In this case, the interface or trassion conditions are deter-
mined by only the speeds of the waves. However this is notralasince the interface
or transmission conditions depend on not only the speed$i@fwaves but also the
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Fig. 1. The situation which we consider.

impedances of the substances. Then we consider this prablemnsideration of the
impedances, and we try to reconstruct the unknown data etatgr

Now, we introduce the notations and formulate this probleBut hy := 0. Let
hy be a positive constant anldk > hy_; for k=1,...,N — 1. We call the interval
(hk_1, hy) Mediumk for k=1,...,N —1 and the intervaliy_1, o0) Medium N. Let
a, and bx be positive constants fak = 1,..., N. The positive numbery describes
the speed of the waves through Medilkmnand by the impedance of Mediurk. Put
D = (1/i)(0/0t) and Dy := (1/i)(9/9x), wherei is the imaginary unit. We define
P«(Dt, Dx) =a2D2 — D2 for k=1,..., N. Suppose 0<y < hy.

We consider the following equations:

(1) Pi(Dy, Dy)u(t, x) =8(t,x —y), 0<x < hy,

) Pe(Dy, DU, X) =0, hegi<x<he (2<k<N-=1),

3 Pn(Dt, Du(t, x) =0, hn_y <X,

4) Dyu(t, X)Ix=0+0 = 0,

(5) u(t, X)lx=h, 0 = U(t, X)[x=h+o (I <k=<N-1),

(6) abk Dxu(t, X)lx=h,—0 = Ak+1bks1 DxU(t, X)lx=n+0 (1 <k <N —1).

The equation (4) means the free boundary condition at thatpoE 0. The equa-
tions (5) and (6) fork express the conditions at the poixt= hy which is the joining
of Medium k and Mediumk + 1. The equation (5) describes the continuity of the dis-
placement of the waves, and (6) the continuity of the str@$® equations (1)—(6) ex-
press the situation that the initial data is the delta funmctt the pointy in Medium 1
at the timet = 0 with the boundary condition (4) and the interface or tmission con-
ditions (5) and (6) at the joining point between Medikrand Mediumk + 1.

The following main result says that we can reconstruct thpeancedy.; and
the ratios fik — hx_1)/ax of the width to the speeds of the waves by the observation
datau(t, 0) when the data;, b; of Medium 1 are known.
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ai, b hy ap, by| |h
az, by az, by
The n-dimensional case (n > 2). The one-dimensional case.

Fig. 2. The two-layer case.

Main result. Suppose that the constants, &;, y are known Assume pZ bj+1
for j =1,...,N — 1. Assume that the observation daté) := u(t, 0) are given on
[0,T), where |t,x) denotes the solution of the equatiofi3—(6). Then k., and (hy —
hx_1)/ax are reconstructed by the following process
e The first step Put vy(t) := (1/ay)H(t — y/a1) — v(t), where H is the Heaviside
function
e The(k+1)-ststep(k=1,2,..): If v(t) =0 then the process is finishedf v(t)
0, then put ¢ :=inf{t € [0, T): v(t) # 0}, reconstruct the constani$y — hx_1)/ax and
bk+1 by

k-1
hk — i1 - }<tk+l> _Z hj _hJ—l,
a 2 & R

22 2T CH(bybyaa) + vkt + O)as [Ti21(b) + bjer)?
- _ — ks
222 [T_}(bjbj+1) — vi(ti + O)ay [T§=1 (bj +bj+1)2

Dy+1

definevks+1(t) by the known data and the reconstructed datad go the next step

We state the concrete way of determining,(t) in Theorem 13. We remark that
we can reconstruct the impedandag; but we cannot identify the speeds them-
selves of the waves. This result is not obtained by [1].

On the other hand, our main result is also the expansion oty [4] for the
one-dimensional case. In [4], the author considers thetsito that the half-line con-
sists of two layers, and determine the unknown data by udirgobservation data on
the whole time. However, our main result says that we cannscact the unknown
data by the observation data on the finite time, and how mateg/ \a can reconstruct
is determined as to the observation time.

We remark that the one-dimensional case differs fromrtfttmensional casen(>
2) in that the speeds themselves cannot or can be recomstruictdeed, we obtain the
following result from [4] for example. We consider the twayer case (see Fig. 2),
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and assume thed; andb; are known. Let observation data be given. Then, we can
identify ap, b, and h; when the physical space dimension is greater than or equal to
two. However, we can identifyp, and hy/a; (namely h; itself) but cannot identifya,
when the physical space dimension is one.

Finally, we explain the plan of this paper. In Section 2, wastaict the solution
formula of the equations (1)—(6). In Section 3, we state oamnmesult concretely and
give its proof. In Appendix, we discuss the case that the aapee of the adjacent
media may be equal, that is; = bj+1; may hold.

2. The solution formula

In this section, we construct the explicit solution formuta Medium 1 of the
equations (1)—(6). In order to make the dependence of thdi@olon the coefficients
clearly, we denote the solution of (1)—(6) by

u(t, x) =un(t,x; a1, ...,an; b1, ..., bnshe, o a1 ).

In Section 2.1, we express it in the caseMf= 1. In Section 2.2, we construct it for
N > 2.

2.1. The solution formula for N = 1. The equations which we deal with are as
following:

Pl(Dtv DX)ul(t! X) = 3(t! X — y)a X > 01

Dyus(t, X)Ix=0+0 = O.

By Matsumura [2], we find the solution

1 X — 1 X +
uy(t, x; ag; by; -;y)=2—alH<t— | a1y|)+2_alH<t_ a1y>'

We remark that its Fourier-Laplace transform algmg  —imlog(2 +|z|) with respect
totis

R 1 . .
U1(p, X) = Zalip{eflpley\/al + eflp(x+y)/a1}, X > 0.

2.2. The solution formula for N > 2. We construct the solution of (1)—(6) by
induction onN. Then we first defineF{")(t,x) = F"V(t, x; a1, ... ,an; by, ..., by;
hy, ..., hno1ry) by

FV( %) = un-a(t x) —un(t,x), her<x<he (L<k<N-1),
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F&N)(ta X) =un(t,x), hno1 <X,
where we write

Un—1(t,x) =un_a(t, X;@g, ..., an-1; by, ..., D1 by, oo B2l ),
Un(t,X) =un(t,x;ag,...,an; by, ... by hy, oo g y)
for short notation. The distributiorFk(N)(t, X) expresses the behavior of the waves in

Mediumk which are affected by Mediurhl. We remark that thi§k(N)(t,x) and F(t, x)

in Matsumura [3] are different. By the definition EﬁN)(t,x), the equations (1)—(6) are
changed for

7 RFEN= ( EkNiin hi Eif:i)f N — 1) )
® DM =0

© (R - FRd)|en, =0 @<k<N-2),

(10) ab D RN —ak+1bk+1Dka+1)|x =0 (I<k<N-2),

xehy_y = UN=1lx=hy_s»

(
1) (FU+FOY)
(

(12) an_1bn_1DxF{"; +anby DxFY" )|X:hN71:aNflelexuNfﬂx:hN,y

where P = P(D¢, Dy), Fk(N) = Fk(N)(t, x) and
Un—1=Un-a(t, X5ag, ..., an-1 br, .o bnegy by, oo b2 y)
for short notation. We solve these equations. We apply thei&eLaplace transforma-

tion alongp =t —imlog(2 +|t|) with respect tat to these equations as in Matsumura
[3], wherem is a positive real large enough. Then by (7) we can write

@) FVe0= @‘km(p)e(_%) *‘I’ﬁN)(P)e%) (L<k=<N-1)
14 RVex= <I><N”>(p)e(‘i>,
an

wheree(s) ;= e(s; p) ;= expfps). In the same way aEk(N)(t, X), we write
q)(kN)(IO) = d)(kN)(,Oi ap,...,an; by, ..., by hy, oo hoas ),

‘IJIEN)(p) = ‘I’EN)(p; ap,...,an; by, ..., by hy, oo hnogy)
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in order to make the dependence on the coefficients clearbyd&fineKy [resp.Lwu] (p;
al,...,aM;bl,...,bM;hl,...,hM_l,hM;y) by

Km(p;aa,...,am; b1, ..., bw; e, ... hyo1, b y)
=Uu(p, X;a1,-..,am; by, ..., by ha, oo -1 Y)lxehy s
Lm(o;a,...,am; by, ..., bm;hy, ... hyzg, hus y)

aub o
=2 MDxUM(P,X;al,---,aM;bl,---,bM;hl,---,hM—linx:hM

for M =1,2,.... Now, we substitute (13) and (14) into the Fourier-Laplasssform
of the equations (8)—(12) and simplify them. Then we have

F ™1 o ]
W 0
oV
wiM

(15) ZN = :
o | |
‘I’ﬁlN—)l Kn-1

L oW 1 Lt

where we define thej(l)-components
ZN(p; a‘l! e Ya'N; bl! AR bN; hll A ] hN*l)]I
of the (2N — 1) x (2N — 1) matrix

Zn(psag, ... an; by, ..o by hy, oo hnoy)
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by
Zn(psag, ..., an; by, ... by ha, oo hnsg)g
1, j=11=1,
-1, j=1,1=2,
hi .
e[ —— ), j=2k 1=2k-1 (=1,...,N—1),
a
hi .
e[ =), j=2k =2 (k=1,...,N—1),
ax
h
bke(—ak) j=2k+1,1=2%k-1 (k=1,...,N—1),
hi .
—bee[ = ), j=2k+1,1=2 (k=1,...,N—1),
ax
hi .
—el — , j=2k, 1=2k+1 (=1,...,N—-2),
= A+1
hi .
—e , j=2k 1=2%+2 (k=1,...,N—2),
Ac+1
h
—bk+1e<— k), j=2k+1,1=2%k+1 (k=1,...,N—2),
Ak+1
h
bk+1e< k), j=2k+1,1=2%+2 (K=1,...,N—2),
A+l
e<—hN‘1>, j=2N—2,1=2N—1,
aN
bNe(—h'“), j=2N—1,1 =2N —1,
an
0, otherwise

and we write
2Zn=2n(psag, ... an; b, .. by he, oo ),
CDE(N)[‘-MEN)] = q)(kN)[\I/&N)](P; a,...,aN, b]_, Cey bN; hj_, PR hN—l; y),
Kn-1[Ln-1] = Knoa[bn-a](esag, ..o van—1;bg, ..o bty he, ooy hinegs y)
for short notation in the equation (15).
We need to express the explicit formula wft, 0) in order to discuss our inverse
problem. Then we construc!"(p) and w{"¥)(p). Now, for short notation we write
Kn[Ln] = Kn[Ln](ps @z, .. van; by, ..o by ha, oo hines, s ),
(D(NN) = ‘DE\]N)(P§ a,...,an; by, ..o by hy, oo s ),
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ZN = ’ZN(p; all e YaN; bl’ ter bN; hl! A | hN*l)
in Lemmas 1, 2, 3 and Corollary 4. We first express Zgtexplicitly.

Lemma 1. Let N> 2. Then

hn_
detZy :(—1)Ne<— N 1)
an

(16)

hy hy—hy hnot —hne2
Z iby, ..., by —, -
X N<,0 1 N a a an_1

holds where we denote

ZN(pl bla b21 sy bNa ®11®21 sy ®N—1)

N-2 N-1
= Z Ollil_[(bj +ajaj+1bj+1)}(bN1+aN1bN)e<Z 0(j®j>

ax=+1 j=1 j=1
(1=<k=N-1)

for N > 2, and we defing]}L,%(bj +ojaj+1bj+1) = 1 when N=2.

Proof. We prove this lemma by induction dd. It is easy to obtain the equa-
tion (16) for the case ofN = 2. Then we assume that the equation (16) Kor(> 2)
holds, and we show the equation (16) fdr+ 1. We first expand defy.; along the
(2N + 1)-st column, and expand them along thé\jzh row. Then we have

detZn+i(po; @, . .., an, an+1; br, . .., by, bneg; by, - hinog, i)
= —e(— hn >{bNe(_h_N>e(2hN_l) detzy + bNe<h—N> detZ,T,}
an+1 aN aN aN
h h 2hn— h
+ bN+1e<— N ){e(——N>e< N 1) detZy — e(—N> detZ,’(,}
aN+1 an an an
hN IﬂlN +
=—e| — (bN + bN+1)e — detZN
aN+1 aN

2hny_1 —h
+(bny — bN+l)e(7N al N) detZ,Q}

N
Jai

® h hn N hn-1
0 —e(—aNﬂ){(bN +bN+1)e<a)(—1) e(— -

2hy 1 —h hy_
+ (bn —bN+1)e($)(—l)Ne<— N-1

w)d
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— (_ W+ _ hn )
( 1) e< an+1

N-2 N-1 h: —h: L
X Z al{l_[(bj +Oljaj+1bj+1)}e<z OlJ'JTJ_>
j=1

ax=%1 j=1
(1=k=N-1)

hy — hne
X { Z (bN*l"'(XNf]_OleN)(bN +aNbN+l)e<aN u)}

a
an=+1 N
hn

an+1

= (—1)N+1e( )ZN+1<b1, U o N o NP

hy h —hy hn-1—hnz hy _th)

a a o an-1 an
where we write
ZE=2n(p; &, ..., an—1,an; by, . .., byog, £bn; by, . L. hneg),

hi h,—h hno1 — hne
Z?\IE:ZN(,O; bl,---,bN—LibN;a—l, 2 1, Nt N 2)
1

a - an-1

for short notation and we use the inductive hypothesisxat Hence we obtain the
equation (16) forN + 1. Ul

Next, we expresKy and Ly explicitly.

Lemma 2. For N > 2

Ky = <I>(NN)e<—2—:>, Ln =bnKy
hold.
Proof. Because ohy_1 < hy, we have
D{Tn (P, %) ,cp, = DEFR (02 %) oy,
for j =0, 1. From this equation we can obtain this lemma easily. ]

Lemma 3. For N > 2 we have

__Z)Nfl 1 N-1
17 o = = b
(7 N 2a1ip detZy [T
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Proof. We prove the equation (17) by induction Bn First we consider the case
of N =2. We remark that we obtain

1 h
Ki(p; a1; b1; hy;y) = 2a1i,0e<_a_i> > e(val),

v=+£1

Li(p; ag; by; hyy y) = biKy(p; ag; bi; ha; y)

from the definition ofK; and L;, and Section 2.1. By these equations, we have this
lemma forN = 2. Then we assume that the equation (17) ¥oi(> 2) holds, and we
show the equation (17) foN + 1. We have

o\ D0 @, . . ., an, anet; b, . - ., by, buats ha - Ao, b y)

0
= (the (2N + 1)-st component of Z1,) - { Kn :|)

Ln

the (2N, 2N + 1)-cofactor of Z K
Geiz the ( ) v

+ (the (N + 1, 2N + 1)-cofactor of Zy+1)Ln}

#) 1 hN hN—l _ hN
= — —— 2 Zy — — tZ
detZN+1{ bNe( aN>e( an )det N bNe<aN detZy
hN hN_l _ hN
+ - 2 detZy —b — ) detZ
bNe( aN>e< aN ) eton Ne<aN> ¢ N}

h
X CD(NN)e<— —N>
an

detZ
= - N bN (DS\IN)
detZN+1

©, detZy (—2N-1 1 Nflb.
B detZn+1 N 2a1i,o detZy J

=1

Ze)

—(=2V 1 N
2a1ip detZn+1

j=1
where we write
ZN = 2n(p; a1, ..., an; by, .. byog, =D hy, Lo hinsg),
Zn+1 = Znsalpos @, - .o, an, ansg; by, - oo by bess by, o hineg, hin)

for short notation, and we expand the determinant along 2hg-th row and use Lem-
ma 2 at (#), and we use the inductive hypothesis«at ( ]
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Corollary 4. For N > 2,

—(=2M* 1 [
Kn = b;
N 2a1i 14 detZN g J ,

hold.
Proof. By Lemmas 2 and 3, we obtain this corollary easily. Ul

REMARK 5. We defineZi(p; as; by; -) =(-1), Z1(p;bs1; -)=1. Then Lemma 1
and Corollary 4 hold also foN =1, where we deflne}’[] Jtby=1for N=1.

Now, we expressb!") and w{™) explicitly.

Lemma 6. For N > 2,

oM(piay,...,an; by, ..., by he, ..o g y)
=wM(p;as,...,an;by, ... by hy, . g )
22N—4

bn-1— hno1 hneg
bibi. R
2a1| 1% detZy detZN, { 1—[( J 1)} Z ( a1 aN-—1 an )

v=+1

holds where we write
ZN :ZN(IO;alY“‘laN;bll"‘!bN;hli‘"YhN71)1

Zn-1 = Zn-alps @, ..o an—g; by, Do e, L hinso)

for short notation and we defind[)L;*(bjbj+1) = 1 for N = 2.

Proof. It is easy to obtaimd{")(p) = w{M(p) from the equation (15). Then we
find the explicit formula 0fd>(1N)(,o). We have

<I>(1N)(p;a1,.. . ,aN;bl,.. .,bN; hl,. . .,hN_j_; y)

0
= (the first component of Z*) - ( Kn_1 ))
Ln-1

1
= detzn {(the (2N — 2, 1)-cofactor of Z\)Kn_1

+ (the (2N — 1, 1)-cofactor of Z\)Ln_1}
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@ bn —bn-g hn-1
= — Kn_—
detZy e( an ) Nt
h;j h;j
N—2 e . el 3 .
d t J+ J+
< [Tde h, h,
j=1 L bJ+1e bj+]_e
aj+1 a]+1
bN - bel hN 1 N=2
= K 2 n
detZy e( an N= l( ) l_[ bJ !

— bno hno 2N-2 N—2
® by —bn 1o Nt (=2) i l—[ b,
detZN an 231,0 detZN 1

j=1

x Z (v—— iy 1)( 2)N- 2(]‘[ b,+1>

22N—4 by_1 —

hnot hnos
2a1|,o detZy detZN {l_[(bJ bj+1)} Z ( a -

v==£1

where we use Corollary 4 at (#) and we write
Zn=2n(p; a1, ... an; by, ..o b by, hne),
ZN-1=2n-1(ps a1, ..., @N-1; 01, ..., Bnogs Dy, L hnz2),
Kno1=Knoi(ps @, - .., an—1; b1, ..., byoas by, -
Ln-1=Lnalpsar, ... an-13bg, oo ybyeashe, ooy bz, s y)
for short notation.

Proposition 7. For N > 2,

FM(t, x;ay,...,an; by, ..., by;hy, ..., hy 15 )

hy ho—h hno1 —hne
= f(N)<t|X;bly"'bey s 2 1 . Mry)

a & an-1

holds where we put

f(N)(t,X; b]_, . ,bN; @1, ey ®N—1; y)

1
':_g Z wN(mll"'ymN—l;bly"'be)
O<mk<oo
(k=1,..N—1)

N—-1
x Z H( —<v—+va—l+22(m3+1)®J>>

v,v=+1 J=1

- hN—Z! hN—l; y)i
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and defineyy by

+
Y2(my; by, bp) = (E:Ej)ml l

for N =2 and as following for N> 3:

Yn(ma,...,mno1; b, .., by)

_ Z 22N74(_1)h§1mk+ugN(l_#{k: ak:_l})j”ﬁe%,l(l_#{k: B=—1))ip

{(Ja)accy »(ig)peay_q JECN
y (T MY co, (AH#K: 0r=—1)) ja =Y pen, ,#K: B=—1ip)!
[T { (M=t Ja =D pento- 1) (MN-1= 2 cceo )!
N (X pean,ip)!
{TTaecy () HITpeny, (6D }

N—3 my+tmy—2 Y. juo—2 Y g
y l—[ bybji1  (by—biu v -
3o (ba+b341)2\ by +bjsy

My _2+My_1—2 > I

y bn_2bn-1 (sz - le) wec{NEN-D-
(bn—2+bn-1)? \ by_2+bn_1

bn—1—by ™+
x| —= .
bn-1+by

Here we defind]}53() = 1 for N = 3 and we put

Av ={a=(a1,...,an-1)ax =31, o #(1,1,..., 1)},
Bn = {x € An: #{k o = =1} =1},

Cn = An \ By,

Aﬁfl ..... ku)i:{aeAN:aklz...:akU::I:].},
C&kl ,,,,, ku)i:{aeCN:aklz...:akv:il},
Gn =Gn(Mmy, ..., my_1)

{(Ja)aecy, (ig)peny_):

jo =0,i5 >0,
= Zja"'ziﬁfmk(lSkSN—Z),
weCy)” peAl

Z Jo =M1

aec -
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REMARK 8. For exampley; and 4 are as following:
Y3(my, My; by, by, bs)

i (mp+mp —j —u)!
— _1\Mm—jn2
D s ol T

y bib, by — b\ ™™ by — by ™
(by +b2)% \ by + by b +bs ’
Ya(my, My, Mz; by, by, b3, by)

- Z (_l)m2+m3—j1—j2—j3—2j4—i324

j1.J2.13,a)01.i2,13=0

Jot )3t atlatiz=my

Jit st st Hiz=my
Jit]at]a=m3

j, =0,
jH<my,
j<my

(My+ma+m3— j1— jo— ja—2jg— i1 — iz — 2i3)!
(M —j2—Js—ja—iz2—ig)! (M2 — j1 — ja — ja — i1 —ig3)!
(iz+iz+ia)!
(Mg — j1— 2 — ja)t ja! J2! Ja! jadin!intis!
biby (bl - bz)ml+m2_2(j3+j“+i3)

* (by +b2)? \ by +by
bobs (b — g™ M2 g — py\ ™
X(b2+b3)2(b2+b3> (b3+b4) '

In the case ofyr3, the indicesj and: correspond to the indiceg, andig in Propo-
sition 7, respectively. We remark that, = {(—1)} and C3 = {(—1,—1)}. In the same
way, the indicesj, (x =1,2,3,4) and, (x =1,2,3) correspond to the indicgs andig
in Proposition 7 as following, respectivelyjs = ja-1-1), J2 = j(~1,1-1), 13 = J(~1-1,1),
Ja= 111, 1=y, 2= 011y, 13 =111

Proof of Proposition 7. By the equation (13) fe&r= 1 and Lemmas 6 and 1,
we have
El(N)(P, X;ag,...,an; b, ... by hy, o bz y)

11 N-2
= 22Ny — bN): [Tt bJﬂ)}
(18) 28y ip =1

1 1 - ||\, —NN-2
e<vl +Vi — A),
:tl

X JES—
VAN A NS e a & an-1

where we write

hi h, —h hno1 — hno
zN:zN<p;b1,...,bN;—1, 2— 1 N2>,
a a an-1
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hy h,—h hn_s — hno
ZN1:ZN1<,0;b1,~- Jongp —, =1 A2 W 3>
a' @ an-2

for short notation. Then we discusgZy (o;b1,...,bu;O1,...,0n_1). We first have

Zm(p; by, ..., by O, ..., On_1)
M—1 M-1
= {H(bJ +bJ+l)} (Z ®J>
J=1 J=1
1 M2 by +ayageibye \ buos + am_1bu [ e 16
177 Z “ l_[ by + by by_1+ bwm € ;(QJ_ 101

acAm J=1

for M > 2. Here, we remark that the absolute value of

M-2 M-1
by +jogebysr \ bu_1 + am_1bm
-1
Z a1<l_[ by + by ) bm-1 + by e(;(m ) J)

acAy J=1

can be small enough when the positive nhumbrers large enough. Then we obtain

1
ZM(blY'“!bM;®1!"‘Y®M71)

1 M—1
= — ¢ — C¥
(b +by41) ( ; )
by+tajayebye
RPN “1)<1_[ —)
K=l O[aeAM bJ+b‘J+l
K
bv_1+am—1bm =
X ————¢ a3 —1)®
WY (;( 1—1)0y

; (ZaeAM ja)!
l—I (bJ +bJ+1) 0<jo <00 l_[oteAM(ja!)

(xeAwm)
Y e [Mo2 > e
- by — bJ+1> @< Ay
x (— 1) A . CACAEE
(=1 [ g < by +bjy.1 }

x(ib“"l_b“")ae%%” ' le 2 ) jut1p0
bm_1+bwm = “ ’

aeA(J)’
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We substitute this equation into the equation (18). Then axeh
FM(o, %81, an; b, ..., bushy, ... hng; y)
IR O P 'i_f bybyet
C2ayi I,o (by +bj41)?
% Z Z (ZaeAN Ja) (Z,BEAN 1. )
0<ju <00 0<ig<oo {HO‘EAN(Ja!)}{HﬁEAN—l(Iﬂ')}

(¢eAN) (BeAn-1)

- i _ Y et X g
Z<1)+Ja Z(m i by—by_1, « PN
X(_l)uEAN peAN"y 1_[ agega==l  pypye=-1
=1 bJ +bJ+l
Z jo{+ Z i/3
o bn2—bn-1),, Gofo el
bn-2+Dbn-1
> et
% bn-—1—bn acAlll -1~ ’
bn-_1+ by
N—2
~ _ hy—1
X elv=—+v——-2 J ig+1
a1 a1 a
vy=+1 J=1 O(EA<NJ)7 ,BEA(J)i

for N > 3. Now, we apply the inverse Fourier-Laplace transfornmatidth respect to
7 to this equation, and we change the indices frgm(e € By) to my by the relations

j(1,...,1,£k)1,1 ..... 1) =M Z Jo = Z lp (I=k=N-2),

aeCﬁPf ﬁeA‘kP

ja..1-1) = Mn_1 — Z Jor

e

Here we remark that
drs
f;l[i—](t) = H(t+s).
P

Then we obtain this proposition fdl > 3. We can also prove the case Nf= 2 in
the same way. ]
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3. The proof of the main result

In this section, we prove our main result. We first discuss likbavior of the
function f(P(t, 0) neart = 0 in Lemmas 9 and 10.

Lemma 9. For p>2and©;>y/a, ©;>0(j=2,...,p—1),

f(P(t,0;by,...,bp; O,...,0p 1;Y)

y
0 telo—L+2Y 0,
) e[; al Z J>|

j=1

1 y = y
_— b,...,b,te —=+2 O, ——+2 O +¢
aqu(l p) <a1 JX:; - ]X:; jtép

holds where we define

p-2

— b; b'+1 b 1 — bp
q(b11-~-1b):22p4 1~ P ,
' " g (bj +bj+1)? | by_1+bp

&p = 8p(a1; ®q,... ,@p—l; Y) =2 min{all, ®q,... v®p—1}-

Proof. From

¥p(0,...,0;by, ..., bp) = qp(by, . .., bp)

and
y & y &
= +2 i+ >—=—+2) O;+ =41
Val Z(m] ) ] = a Z j 8p (V )
j=1 j=1
except for (ny, ..., mp_1;v) =(0,...,0;—-1) we obtain this lemma. Ll

Lemma 10. For N>k+1>2and®; > y/a;, ®; >0 (j=2,...,N—1),

N

> 10, 0by, L by O, L, Op 13 Y)
p=k+1

k
y Z
—— +2 .
O, te |:O, a @J)y

j=1

k k
1 y y -
o Gea(Bn D), te <—a—1 +2) 0, -—+2) 0, +ak>

=1 =1
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holds where we define

ek =ek(@1; 01, . . ., Ok, Ops1; Y) = 2 min{al, O1,..., 6, ®k+1}-
1

Proof. By Lemma 9, we obtain this lemma easily. L]
Here, we state the proposition which is the key of the proobwf main result.

Proposition 11. Let N>k+1>2and®; > y/a;, ® >0 (j =2,...,N—-1).
Suppose pb# bx+1. Let T > 0. Put

N
o(t):= Y fP(t, 0;by,. .., bp; Oy, ..., Op 1} ).
p=k+1

Then the following holds
e If Y(t)=00n][0,T) then

k-1
1 y

19 ® —T+=)— O;.

(19) k22< al> j§=1i i

e Assumev(t) # 0 on [0, T). Put  :=inf{t € [0, T): ¥(t) # 0}. Then there exist a
constant ¢ and a positive constars; > 0 such that

Yt)=cc on (t, t+ 8{()

Furthermore
k-1
1
(20) @k:_(tk+1>_ o
2 a; =t
2k—2 k-1 k—1 2
(21) b = 2 l_[jzl(bjbj+1)+cka1 szl(bj +bj+1) b
k+1 = — = '
22k—2 Hl](:]:}(bJ b] +1) — Ckaq HIJ(:]:P(bj + bJ +1)2
hold.

Proof. By Lemmas 9 and 10, there exists- 0 such that

k
y
0, te[o,—a—l+2;®j>,
() = J

K K
1 y y
—a—1Qk+1(b1,.--,bk+1), te (—a—1+2 E 0, — a—1+2 E CF +s)

j=1 j=1
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holds. We remark thady.1(bs,. . .,b+1) 7 0 since we assume thbt # bsq. If V(t) =0
on [0,T) then we have

k
y
T<-——+2 O
= rere

namely the equation (19). Hereafter we assume gt 0 on [0,T). Then the
constantty in this proposition satisfies

We obtain the equation (20) from this equation. On the otrerdh we can take the
constante, in this proposition ag, and the constant in this proposition satisfies

1
C = ——QK+1(b1* ey bk+l)
a

By this equation, we have the equation (21). ]

Next, we remark that there is a possibility that the same rvbien data can be
obtained even if the unknown constants are different.

Lemma 12. Leta,b; (j=1,...,N),h; (j=1,...,N—1),&,bj (j=1,...,N),
hj (j =1,...,N —1) be positive constantsAssume that h>h; ; (j =1,...,N—1)
andh; >h; 1 (j =1,...,N — 1), where we put f:=0 and hp := 0. Let T > 0.
Assume a=3;. Suppose

hj —hj _hj—hjs

a, a

(1<j=<Nr=1), bj=b (@=j=Ny,

where the natural number Nsatisfies

Nt Nt o~ ™

Yy . hj —hj,1 hj —hj,1
T<—-—=—+2min ) =
ap § a,- ; aj

Then for te [0, T)

un(t, O;aq,...,an; b1, ... bnshe, oo hnsg y)

EuN(t,O;al,...,aﬁ;Bl,...,Bﬁ;ﬁl,...,ﬁﬁ,l; y)

holds
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Proof. We remark that we have
un(t, O;ag,...,an; b1, ... by he, oo hneg y)
= uy(t, 0;a1; by - y)

hy h,—h hp-1—hp_
—Zf“’)(tom by =, L pz;y)
al ay ap-1

by the definition ofFl(p)(t,x) and Proposition 7. In particular, we have
un(t,0;ag,...,an; by, ..., bnshy, o hneg )
= uy(t, 0;a9; by; -5 y)

hy ho—h hp 1 —hp_
_Zf(p)<t0b1 by 2 1.”’ p-1 P2;y>
a]_ ap Ap-1

hy h,—h hp 1 — hy_
Z f(p)(tObl,...,b, L T “;y),
p=Nr+1 & & ap-1

and the last term vanishes foe [0,T) by Lemma 10. Then we obtain this lemmad.]

By Lemma 12, we cannot identifgx and h, themselves even if the observation
data on [0po) are given. We can identify onlpx and bk — hk—1)/ax. Then we try
to reconstruct them.

Now, we state the process in order to reconstruct them.

Theorem 13. Suppose the constants, &,y are known Assume p # b4 for
j=1,...,N—=1. Assume that the observation daté) := uy(t,0) are given on[0, T),
where w(t, x) is the solution of(1)«6). Then R.; and (hy — hg_1)/ax (k=1,...,
No — 1) are reconstructed by the following process
e The first step Put vy(t) := (L/ap)H (t — y/a1) — v(t).

e The(k+1)ststep(k=1,2,...): If w(t)=0 on]0,T) then the process is fin-
ished If vy(t) %0 on [0, T) then we carry out the following proces®ut t = inf{t €
[0, T): w(t) #0}. Then there exist a constani end a positive constant;, such that

w(t) =c on (i, tk + &)

The constantghy — hx_1)/a« and k., are reconstructed by

hk_hk—l 1 y k1 hj _hj—l
— =t + =) — _
ay 2<k a1 Z a,

=1
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2226} bjs1) + Geay [T§=1 () + bje)?
222 l_[lj(zll(bj bj+1) — ca l_[lj(zll(bj +bj41)?

Pysa :
We define

1
k2 (t) = ve(t) + — Z Yrer(My, ..., Mg by, L, bre)
a
m (1=l=<k):
XM+ 1)y —hj_1)/a) <(1/2)(T+y/as)

K hj —hj_
X Z H(t— <vall+2j2:l:(mj +1)——= a J 1))

v=t1 J

and go the next stepvhere y+1 is defined inProposition 7.
Furthermore when the process is finished at t{féy+1)-st step that is to say vy, (t) =
0 on |0, T), we have either N= Ny or the following

hng — Png—1 - }(T+l) ~ N02*:1 h; _hjfl_
an, -2 ag =t a;

N > Np and

REMARK 14. Fork=2,3,..., we have
k-1
1 y hj — hj—l 1
e+ =)=y T = St~ teg),
2(k a1> Y = e
that is to say, we can also reconstrubg ¢ hy_1)/ax by

he —he1 1
— = —(tx — tk—1).
a 2( k — tk-1)
Proof of Theorem 13. We first remark that
un(t,0;aq,...,an; by, ..., by ha, oo hneas )
=uy(t, 0;a; by; -3 y)

N
hy h,—h hi—1 — hy—
_Zf(k)<t,0;b1,...,bk;—l, L L kz;v)
o a1 a -1

holds as the same way in the proof of Lemma 12. Now, wewp(t) := (1/a;)H(t —
y/a1) — v(t). Then we obtain

N
hy h,—h he_1 — hx_
vt:E f(k)<t,0;b,...,b;—l, 21 ke kz;)
1(t) 2 1 “a @ L y
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sinceuq(t, 0;a; by; -;y) = (L/a;)H(t — y/a;) holds. From this equation and Proposi-
tions 7 and 11, we obtain this theorem. ]

4. Appendix

In this section, we discuss the case that the impedances adiacent media may
be equal. In this case, the following lemma is a key lemma.

Lemma 15. Let N>« +1. If b, =b.+; then

Fl(N)(t,X; ag,...,an; by, ..., by hy, oo hnog y)

0 (N =x+1),
(N-1) (9
= Fl (tlx;ala"'aat(—laayay(+2,--.,aN;
bll"'yb/(—lyb/(yb/(+2,...,bN; (N2K+2)

hl, ey h,(_]_, hK+1, hK+2, ey hN—l; y)
holds where the constan& satisfies

hK+1 - h,(,]_ _ h/c - hK*l + h/c+l - hK‘

a A Qe+l

Proof. We remark that

fl(N)(p,X;a1,~--!aN;bl""’bN;hl""’hN_l; y)

11 N-2
=—— 2Ny 1 —b b;bj.
22510 (bn-1 N)“:[l( b, 1)}
1 1 y [ <X hN—l_hN—2>
X — E elv+v—- - — "<
N In-1 Sy < a & an-1

which appears in the proof of Proposition 7, where we write

ch hp—hy th_hN2>

ZN:ZN<p;b1,---,bN

"l @ Y an-1
hi h,—h hnoo — hne
ZN1:ZN1(/O;b1,---,bN1;—1, - 3)
a1 ao aN-2

for short notation. Hence
(22) Fi0, x; @, ..., aes1; b1, - by, . b y) =0
holds sinceb, — b,+1 =0. Let N > « +2. We remark that we obtain

Ze+a(pi by bes1; O, .0, O,) = 20&(O) Ze (03 bry - - B O, Oa)
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and

ZM(,O;bl,...,bM;@l,...,@M_l)
(k)
:ZbKZMfl(pi bl!"'le!bK'+2!"'!bM;®ll'“I®K+®K+ll"'l®M*1)
for M > k +2. Then we have

’Ifl(N)(,o,x;al,...,aN;bl,...,bN; hi, ..., hno1 )

~(N— ()
23) =FN Do, x; a0, ... 8, 1, @, 8042, . - -, BN

blv ey bK—l! bK: b/(+21 ey bNy
hl, ey h,(_j_, hK+1, hK+2, ey hN_j_; y)

Hence we have this lemma by applying the inverse Fourietdcaptransformations
with respect top =t —imlog(2 +|7]|) to the equations (22) and (23). [l

Lemma 16. Let b #by+y for k=1,...,N —1. Then

M .
Fl( )(t,X.al,l,---.aul,---,aK,l,---,aK,,\K.,-.-,
AN-1,15 - -+ s AN—1an_1s AN,1y - - - » AN Ay s
A1 A AN-1 AN
—_—

bl,...,bl,...,bK,...,bK,...,bN_l,...,bN_l,bN,...,bN;

hig, oo hep, oo hen, oo he oo

IS T | INECTII « [N TI oINPT )
0, AN > 2,
A1 AN-1
hy, —hy, hno1 —hneg,
= f(N><t,x; by, ... by; Y o et TN T N y>,
= ay, — aN-—1,
n=1 n=1
AN =1,
where M:= Y"1, Ak, hio:=0,and ho:=h, 1, , fork=2,...,N - 1.
Proof. We obtain this lemma from repeating Lemma 15. Ul

By Lemma 16, we can only find out that the situation is as Fig.n&mvthe impedances
of the adjacent media may be equal, where we reconstugtand i — hx_1)/ax as
Theorem 13 and the constardg, and hy, satisfy

i B, — b 1 _ he — i1
- EW a
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hap
I
hig hiy,
1 1
0 hii hip  hi3 s hiaa hi hy
ap arn a3 ay i, az
by by by by by
hio Ris10
I I
hx—1,_, hi
I I
. hi— hk,l hk; ]’lk‘3 . hk,)\kfl hi hk+l,l
A1 A2 ai3 A Ak+1,1
by by, by by, bi1

Fig. 3. The situation when the impedances of the adjaceniamed
may be equal.

ACKNOWLEDGEMENTS  This research is partially supported by Grant-in-Aid for
JSPS Research Fellowships for Young Scientists. The awtbald like to express his
sincere gratitude to Professor Mitsuru Sugimoto for his llinfaguidance and his use-
ful advice. The author also thanks the referee for usefulments.

References

[1] A. Bartoloni, C. Lodovici and F. Zirilli: Inverse problem for a class of one-dimensional wave
equations with piecewise constant coefficiedtsOptim. Theory Appl76 (1993), 13-32.

[2] M. Matsumura: Localization theorem in hyperbolic mixed problenf&roc. Japan Acad47
(1971), 115-119.

[8] M. Matsumura: On the singularities of the Riemann functions of mixed @wotd for the wave
equation in plane-stratified media Il, Proc. Japan Acads52 (1976), 289-295.

[4] S. Nagayasu:An inverse problem for the wave equation in plane-stratifieeldia Osaka J.
Math. 42 (2005), 613-632.



INVERSE PROBLEM FOR ONE-DIMENSIONAL MULTILAYER MEDIA 439

Department of Mathematics
Graduate School of Science
Osaka University

1-16 Machikaneyama-cho
Toyonaka, Osaka 560-0043
Japan

Current address:

Department of Mathematics

Graduate School of Science

Hokkaido University

North 10 West 8, Kita

Sapporo, Hokkaido 060-0810

Japan

e-mail: nagayasu@math.sci.hokudai.ac.jp



