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Abstract
We consider half-line media which consist of many kinds of substances. We

assume that the waves through this media are described by theone-dimensional wave
equation. We can directly observe the data near the boundarypoint of the half-line,
but we cannot directly observe the data of things away from the boundary point.
In this situation, we try to identify these unknown things bycreating an artificial
explosion and observing on the boundary point the waves generated by the explosion.
In the previous works related to this problem, only the speeds of the waves were
treated, but we also take into account the impedances of the media in our setting.

1. Introduction

We consider half-line media which consist of many kinds of substances. We can
directly observe the data near the boundary point of the half-line, but we cannot di-
rectly observe the data of things away from the boundary point. In this situation, we
perform the following experiment in order to investigate them: We first create an arti-
ficial explosion at a point near the boundary point. Waves generated by this explosion
travel in the media. Then we observe the waves at the boundarypoint, and guess the
situation away from the boundary point.

This problem has been studied by Bartoloni-Lodovici-Zirilli [1], for example.
However, from the experimental point of view, this result has some problem with
respect to the formulation of the situation. Indeed, in [1],they deal with

�2u�t2
(t , x) =

��x

�
S(x)

�u�x
(t , x)

�
, t > 0, x > 0

in order to express behavior of the waves inside the half-line, whereS(x) is a piece-
wise constant function. In this case, the interface or transmission conditions are deter-
mined by only the speeds of the waves. However this is not natural since the interface
or transmission conditions depend on not only the speeds of the waves but also the
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Fig. 1. The situation which we consider.

impedances of the substances. Then we consider this problemin consideration of the
impedances, and we try to reconstruct the unknown data concretely.

Now, we introduce the notations and formulate this problem.Put h0 := 0. Let
hk be a positive constant andhk > hk�1 for k = 1, : : : , N � 1. We call the interval
(hk�1, hk) Medium k for k = 1, : : : , N � 1 and the interval (hN�1,1) Medium N. Let
ak and bk be positive constants fork = 1, : : : , N. The positive numberak describes
the speed of the waves through Mediumk, and bk the impedance of Mediumk. Put
Dt := (1=i )(�=�t) and Dx := (1=i )(�=�x), where i is the imaginary unit. We define
Pk(Dt , Dx) = a2

k D2
x � D2

t for k = 1, : : : , N. Suppose 0< y < h1.
We consider the following equations:

P1(Dt , Dx)u(t , x) = Æ(t , x � y), 0< x < h1,(1)

Pk(Dt , Dx)u(t , x) = 0, hk�1 < x < hk (2� k � N � 1),(2)

PN(Dt , Dx)u(t , x) = 0, hN�1 < x,(3)

Dxu(t , x)jx=0+0 = 0,(4)

u(t , x)jx=hk�0 = u(t , x)jx=hk+0 (1� k � N � 1),(5)

akbk Dxu(t , x)jx=hk�0 = ak+1bk+1Dxu(t , x)jx=hk+0 (1� k � N � 1).(6)

The equation (4) means the free boundary condition at the point x = 0. The equa-
tions (5) and (6) fork express the conditions at the pointx = hk which is the joining
of Medium k and Mediumk + 1. The equation (5) describes the continuity of the dis-
placement of the waves, and (6) the continuity of the stress.The equations (1)–(6) ex-
press the situation that the initial data is the delta function at the pointy in Medium 1
at the timet = 0 with the boundary condition (4) and the interface or transmission con-
ditions (5) and (6) at the joining point between Mediumk and Mediumk + 1.

The following main result says that we can reconstruct the impedancesbk+1 and
the ratios (hk � hk�1)=ak of the width to the speeds of the waves by the observation
datau(t , 0) when the dataa1, b1 of Medium 1 are known.
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Fig. 2. The two-layer case.

Main result. Suppose that the constants a1, b1, y are known. Assume bj 6= b j +1

for j = 1, : : : , N � 1. Assume that the observation datav(t) := u(t , 0) are given on
[0,T), where u(t ,x) denotes the solution of the equations(1)–(6). Then bk+1 and (hk�
hk�1)=ak are reconstructed by the following process:
• The first step: Put v1(t) := (1=a1)H (t � y=a1) � v(t), where H is the Heaviside
function.
• The(k+1)-st step(k = 1,2,: : : ): If vk(t) � 0 then the process is finished. If vk(t) 6�
0, then put tk := infft 2 [0, T): vk(t) 6= 0g, reconstruct the constants(hk � hk�1)=ak and
bk+1 by

hk � hk�1

ak
:=

1

2

�
tk +

y

a1

�� k�1X
j =1

h j � h j�1

a j
,

bk+1 :=
22k�2 Qk�1

j =1 (b j b j +1) + vk(tk + 0)a1
Qk�1

j =1 (b j + b j +1)2

22k�2
Qk�1

j =1 (b j b j +1)� vk(tk + 0)a1
Qk�1

j =1 (b j + b j +1)2
bk,

definevk+1(t) by the known data and the reconstructed data, and go the next step.

We state the concrete way of determiningvk+1(t) in Theorem 13. We remark that
we can reconstruct the impedancesbk+1 but we cannot identify the speedsak them-
selves of the waves. This result is not obtained by [1].

On the other hand, our main result is also the expansion of Nagayasu [4] for the
one-dimensional case. In [4], the author considers the situation that the half-line con-
sists of two layers, and determine the unknown data by using the observation data on
the whole time. However, our main result says that we can reconstruct the unknown
data by the observation data on the finite time, and how many data we can reconstruct
is determined as to the observation time.

We remark that the one-dimensional case differs from then-dimensional case (n �
2) in that the speeds themselves cannot or can be reconstructed. Indeed, we obtain the
following result from [4] for example. We consider the two-layer case (see Fig. 2),
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and assume thata1 and b1 are known. Let observation data be given. Then, we can
identify a2, b2 and h1 when the physical space dimension is greater than or equal to
two. However, we can identifyb2 and h1=a1 (namelyh1 itself) but cannot identifya2

when the physical space dimension is one.
Finally, we explain the plan of this paper. In Section 2, we construct the solution

formula of the equations (1)–(6). In Section 3, we state our main result concretely and
give its proof. In Appendix, we discuss the case that the impedance of the adjacent
media may be equal, that is,b j = b j +1 may hold.

2. The solution formula

In this section, we construct the explicit solution formulain Medium 1 of the
equations (1)–(6). In order to make the dependence of the solution on the coefficients
clearly, we denote the solution of (1)–(6) by

u(t , x) = uN(t , x; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y).

In Section 2.1, we express it in the case ofN = 1. In Section 2.2, we construct it for
N � 2.

2.1. The solution formula for N = 1. The equations which we deal with are as
following:

P1(Dt , Dx)u1(t , x) = Æ(t , x � y), x > 0,

Dxu1(t , x)jx=0+0 = 0.

By Matsumura [2], we find the solution

u1(t , x; a1; b1; � ; y) =
1

2a1
H

�
t � jx � yj

a1

�
+

1

2a1
H

�
t � x + y

a1

�
.

We remark that its Fourier-Laplace transform along� = � � im log(2 +j� j) with respect
to t is

bu1(�, x) =
1

2a1i� fe�i�jx�yj=a1 + e�i�(x+y)=a1g, x > 0.

2.2. The solution formula for N � 2. We construct the solution of (1)–(6) by
induction on N. Then we first defineF (N)

k (t , x) = F (N)
k (t , x; a1, : : : , aN ; b1, : : : , bN ;

h1, : : : , hN�1; y) by

F (N)
k (t , x) = uN�1(t , x)� uN(t , x), hk�1 < x < hk (1� k � N � 1),
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F (N)
N (t , x) = uN(t , x), hN�1 < x,

where we write

uN�1(t , x) = uN�1(t , x; a1, : : : , aN�1; b1, : : : , bN�1; h1, : : : , hN�2; y),

uN(t , x) = uN(t , x; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

for short notation. The distributionF (N)
k (t , x) expresses the behavior of the waves in

Medium k which are affected by MediumN. We remark that thisF (N)
k (t ,x) and F1(t ,x)

in Matsumura [3] are different. By the definition ofF (N)
k (t , x), the equations (1)–(6) are

changed for

Pk F (N)
k = 0

�
hk�1 < x < hk (1� k � N � 1)
hN�1 < x (k = N)

�
,(7)

Dx F (N)
1

��
x=0 = 0,(8) �

F (N)
k � F (N)

k+1

���
x=hk

= 0 (1� k � N � 2),(9) �
akbk Dx F (N)

k � ak+1bk+1Dx F (N)
k+1

���
x=hk

= 0 (1� k � N � 2),(10) �
F (N)

N�1 + F (N)
N

���
x=hN�1

= uN�1jx=hN�1,(11) �
aN�1bN�1Dx F (N)

N�1 + aNbN Dx F (N)
N

���
x=hN�1

= aN�1bN�1DxuN�1jx=hN�1,(12)

where Pk = Pk(Dt , Dx), F (N)
k = F (N)

k (t , x) and

uN�1 = uN�1(t , x; a1, : : : , aN�1; b1, : : : , bN�1; h1, : : : , hN�2; y)

for short notation. We solve these equations. We apply the Fourier-Laplace transforma-
tion along� = � � im log(2 +j� j) with respect tot to these equations as in Matsumura
[3], where m is a positive real large enough. Then by (7) we can write

bF (N)
k (�, x) = 8(N)

k (�)e

�� x

ak

�
+9(N)

k (�)e

�
x

ak

�
(1� k � N � 1),(13)

bF (N)
N (�, x) = 8(N)

N (�)e

�� x

aN

�
,(14)

wheree(s) := e(s; �) := exp(i�s). In the same way asF (N)
k (t , x), we write

8(N)
k (�) = 8(N)

k (�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y),

9(N)
k (�) = 9(N)

k (�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)
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in order to make the dependence on the coefficients clearly. We defineKM [resp.L M ] (�;
a1, : : : , aM ; b1, : : : , bM ; h1, : : : , hM�1, hM ; y) by

KM (�; a1, : : : , aM ; b1, : : : , bM ; h1, : : : , hM�1, hM ; y)

:=buM (�, x; a1, : : : , aM ; b1, : : : , bM ; h1, : : : , hM�1; y)jx=hM ,

L M (�; a1, : : : , aM ; b1, : : : , bM ; h1, : : : , hM�1, hM ; y)

:= �aMbM� DxbuM (�, x; a1, : : : , aM ; b1, : : : , bM ; h1, : : : , hM�1; y)jx=hM

for M = 1, 2,: : : . Now, we substitute (13) and (14) into the Fourier-Laplace transform
of the equations (8)–(12) and simplify them. Then we have

(15) ZN

2
6666666666666666666666666664

8(N)
1

9(N)
1

8(N)
2

9(N)
2

...

8(N)
N�1

9(N)
N�1

8(N)
N

3
7777777777777777777777777775

=

2
6666666666666666666666666664

0

0

...

0

KN�1

L N�1

3
7777777777777777777777777775

,

where we define the (j , l )-components

ZN(�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1) j l

of the (2N � 1)� (2N � 1) matrix

ZN(�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1)
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by

ZN(�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1) j l

:=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1, j = 1, l = 1,�1, j = 1, l = 2,

e

��hk

ak

�
, j = 2k, l = 2k� 1 (k = 1, : : : , N � 1),

e

�
hk

ak

�
, j = 2k, l = 2k (k = 1, : : : , N � 1),

bke

��hk

ak

�
, j = 2k + 1, l = 2k� 1 (k = 1, : : : , N � 1),

�bke

�
hk

ak

�
, j = 2k + 1, l = 2k (k = 1, : : : , N � 1),

�e

�� hk

ak+1

�
, j = 2k, l = 2k + 1 (k = 1, : : : , N � 2),

�e

�
hk

ak+1

�
, j = 2k, l = 2k + 2 (k = 1, : : : , N � 2),

�bk+1e

�� hk

ak+1

�
, j = 2k + 1, l = 2k + 1 (k = 1, : : : , N � 2),

bk+1e

�
hk

ak+1

�
, j = 2k + 1, l = 2k + 2 (k = 1, : : : , N � 2),

e

��hN�1

aN

�
, j = 2N � 2, l = 2N � 1,

bNe

��hN�1

aN

�
, j = 2N � 1, l = 2N � 1,

0, otherwise

and we write

ZN = ZN(�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1),

8(N)
k

�9(N)
k

�
= 8(N)

k

�9(N)
k

�
(�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y),

KN�1[L N�1] = KN�1[L N�1](�; a1, : : : , aN�1; b1, : : : , bN�1; h1, : : : , hN�1; y)

for short notation in the equation (15).
We need to express the explicit formula ofu(t , 0) in order to discuss our inverse

problem. Then we construct8(N)
1 (�) and9(N)

1 (�). Now, for short notation we write

KN [L N ] = KN [L N ](�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1, hN ; y),

8(N)
N = 8(N)

N (�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y),
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ZN = ZN(�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1)

in Lemmas 1, 2, 3 and Corollary 4. We first express detZN explicitly.

Lemma 1. Let N � 2. Then

detZN = (�1)Ne

��hN�1

aN

�

� ZN

��; b1, : : : , bN ;
h1

a1
,

h2 � h1

a2
, : : : , hN�1 � hN�2

aN�1

�(16)

holds, where we denote

ZN(�; b1, b2, : : : , bN ;21,22, : : : ,2N�1)

:=
X
�k=�1

(1�k�N�1)

�1

(
N�2Y
j =1

(b j + � j� j +1b j +1)

)
(bN�1 + �N�1bN)e

 
N�1X
j =1

� j2 j

!

for N � 2, and we define
QN�2

j =1 (b j + � j� j +1b j +1) = 1 when N= 2.

Proof. We prove this lemma by induction onN. It is easy to obtain the equa-
tion (16) for the case ofN = 2. Then we assume that the equation (16) forN (� 2)
holds, and we show the equation (16) forN + 1. We first expand detZN+1 along the
(2N + 1)-st column, and expand them along the (2N)-th row. Then we have

detZN+1(�; a1, : : : , aN , aN+1; b1, : : : , bN , bN+1; h1, : : : , hN�1, hN)

= �e

�� hN

aN+1

��
bNe

��hN

aN

�
e

�
2hN�1

aN

�
detZ�

N + bNe

�
hN

aN

�
detZ+

N

�

+ bN+1e

�� hN

aN+1

��
e

��hN

aN

�
e

�
2hN�1

aN

�
detZ�

N � e

�
hN

aN

�
detZ+

N

�

= �e

�� hN

aN+1

��
(bN + bN+1)e

�
hN

aN

�
detZ+

N

+ (bN � bN+1)e

�
2hN�1 � hN

aN

�
detZ�

N

�
(�)
= �e

�� hN

aN+1

��
(bN + bN+1)e

�
hN

aN

�
(�1)Ne

��hN�1

aN

�
Z+

N

+ (bN � bN+1)e

�
2hN�1 � hN

aN

�
(�1)Ne

��hN�1

aN

�
Z�

N

�



INVERSE PROBLEM FOR ONE-DIMENSIONAL MULTILAYER MEDIA 423

= (�1)N+1e

�� hN

aN+1

�

� X
�k=�1

(1�k�N�1)

�1

(
N�2Y
j =1

(b j + � j� j +1b j +1)

)
e

 
N�1X
j =1

� j
h j � h j�1

a j

!

�
( X
�N=�1

(bN�1 + �N�1�NbN)(bN + �NbN+1)e

��N
hN � hN�1

aN

�)

= (�1)N+1e

�� hN

aN+1

�
ZN+1

�
b1, : : : , bN , bN+1;

h1

a1
,

h2 � h1

a2
, : : : , hN�1 � hN�2

aN�1
,

hN � hN�1

aN

�
,

where we write

Z�
N = ZN(�; a1, : : : , aN�1, aN ; b1, : : : , bN�1,�bN ; h1, : : : , hN�1),

Z�
N = ZN

��; b1, : : : , bN�1,�bN ;
h1

a1
,

h2 � h1

a2
, : : : , hN�1 � hN�2

aN�1

�

for short notation and we use the inductive hypothesis at (�). Hence we obtain the
equation (16) forN + 1.

Next, we expressKN and L N explicitly.

Lemma 2. For N � 2

KN = 8(N)
N e

��hN

aN

�
, L N = bN KN

hold.

Proof. Because ofhN�1 < hN , we have

D j
xbuN(�, x)

��
x=hN

= D j
x
bF (N)

N (�, x)
��
x=hN

for j = 0, 1. From this equation we can obtain this lemma easily.

Lemma 3. For N � 2 we have

(17) 8(N)
N =

�(�2)N�1

2a1i� 1

detZN

 
N�1Y
j =1

b j

! X
�=�1

e

�� y

a1

�
.
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Proof. We prove the equation (17) by induction onN. First we consider the case
of N = 2. We remark that we obtain

K1(�; a1; b1; h1; y) =
1

2a1i� e

��h1

a1

� X
�=�1

e

�� y

a1

�
,

L1(�; a1; b1; h1; y) = b1K1(�; a1; b1; h1; y)

from the definition ofK1 and L1, and Section 2.1. By these equations, we have this
lemma for N = 2. Then we assume that the equation (17) forN (� 2) holds, and we
show the equation (17) forN + 1. We have

8(N+1)
N+1 (�; a1, : : : , aN , aN+1; b1, : : : , bN , bN+1; h1, : : : , hN�1, hN ; y)

=

0
�the (2N + 1)-st component of

�
Z�1

N+1

� �
2
4 0

KN

L N

3
5
1
A

=
1

detZN+1
f(the (2N, 2N + 1)-cofactor ofZN+1)KN

+ (the (2N + 1, 2N + 1)-cofactor ofZN+1)L Ng
(#)
=

1

detZN+1

��bNe

��hN

aN

�
e

�
2

hN�1

aN

�
detZ�

N � bNe

�
hN

aN

�
detZN

+ bNe

��hN

aN

�
e

�
2

hN�1

aN

�
detZ�

N � bNe

�
hN

aN

�
detZN

�

�8(N)
N e

��hN

aN

�

= �2
detZN

detZN+1
bN8(N)

N

(�)
= 2

detZN

detZN+1
bN

(�2)N�1

2a1i� 1

detZN

 
N�1Y
j =1

b j

! X
�=�1

e

�� y

a1

�

=
�(�2)N

2a1i� 1

detZN+1

 
NY

j =1

b j

! X
�=�1

e

�� y

a1

�
,

where we write

Z�
N = ZN(�; a1, : : : , aN ; b1, : : : , bN�1,�bN ; h1, : : : , hN�1),

ZN+1 = ZN+1(�; a1, : : : , aN , aN+1; b1, : : : , bN , bN+1; h1, : : : , hN�1, hN)

for short notation, and we expand the determinant along the (2N)-th row and use Lem-
ma 2 at (#), and we use the inductive hypothesis at (�).
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Corollary 4. For N � 2,

KN =
�(�2)N�1

2a1i� 1

detZN

 
N�1Y
j =1

b j

! X
�=�1

e

�� y

a1
� hN

aN

�
, L N = bN KN

hold.

Proof. By Lemmas 2 and 3, we obtain this corollary easily.

REMARK 5. We defineZ1(�; a1; b1; � ) = (�1), Z1(�; b1; � ) = 1. Then Lemma 1
and Corollary 4 hold also forN = 1, where we define

QN�1
j =1 b j = 1 for N = 1.

Now, we express8(N)
1 and9(N)

1 explicitly.

Lemma 6. For N � 2,

8(N)
1 (�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

= 9(N)
1 (�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

=
22N�4

2a1i� bN�1 � bN

detZN detZN�1

(
N�2Y
j =1

(b j b j +1)

) X
�=�1

e

�� y

a1
� hN�1

aN�1
� hN�1

aN

�

holds, where we write

ZN = ZN(�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1),

ZN�1 = ZN�1(�; a1, : : : , aN�1; b1, : : : , bN�1; h1, : : : , hN�2)

for short notation, and we define
QN�2

j =1 (b j b j +1) = 1 for N = 2.

Proof. It is easy to obtain8(N)
1 (�) = 9(N)

1 (�) from the equation (15). Then we

find the explicit formula of8(N)
1 (�). We have

8(N)
1 (�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

=

0
�the first component of

�
Z�1

N

� �
0
� 0

KN�1

L N�1

1
A
1
A

=
1

detZN
f(the (2N � 2, 1)-cofactor ofZN)KN�1

+ (the (2N � 1, 1)-cofactor ofZN)L N�1g
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(#)
=

bN � bN�1

detZN
e

��hN�1

aN

�
KN�1

� N�2Y
j =1

det

2
6664

�e

�� h j

a j +1

� �e

�
h j

a j +1

�

�b j +1e

�� h j

a j +1

�
b j +1e

�
h j

a j +1

�
3
7775

=
bN � bN�1

detZN
e

��hN�1

aN

�
KN�1(�2)N�2

 
N�2Y
j =1

b j +1

!

(#)
=

bN � bN�1

detZN
e

��hN�1

aN

�
(�2)N�2i

2a1�
1

detZN�1

 
N�2Y
j =1

b j

!

� X
�=�1

e

�� y

a1
� hN�1

aN�1

�
(�2)N�2

 
N�2Y
j =1

b j +1

!

=
22N�4

2a1i� bN�1 � bN

detZN detZN�1

(
N�2Y
j =1

(b j b j +1)

) X
�=�1

e

�� y

a1
� hN�1

aN�1
� hN�1

aN

�
,

where we use Corollary 4 at (#) and we write

ZN = ZN(�; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1),

ZN�1 = ZN�1(�; a1, : : : , aN�1; b1, : : : , bN�1; h1, : : : , hN�2),

KN�1 = KN�1(�; a1, : : : , aN�1; b1, : : : , bN�1; h1, : : : , hN�2, hN�1; y),

L N�1 = L N�1(�; a1, : : : , aN�1; b1, : : : , bN�1; h1, : : : , hN�2, hN�1; y)

for short notation.

Proposition 7. For N � 2,

F (N)
1 (t , x; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

= f (N)

�
t , x; b1, : : : , bN ;

h1

a1
,

h2 � h1

a2
, : : : , hN�1 � hN�2

aN�1
; y

�

holds, where we put

f (N)(t , x; b1, : : : , bN ;21, : : : ,2N�1; y)

:= � 1

2a1

X
0�mk<1

(k=1,:::,N�1)

 N(m1, : : : , mN�1; b1, : : : , bN)

� X
�,e�=�1

H

 
t �

 
� y

a1
+e� x

a1
+ 2

N�1X
J=1

(mJ + 1)2J

!!
,
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and define N by

 2(m1; b1, b2) =

�
b1 � b2

b1 + b2

�m1+1

for N = 2 and as following for N� 3:

 N(m1, : : : , mN�1; b1, : : : , bN)

=
X

f( j�)�2CN ,(i� )�2AN�1g2GN

22N�4(�1)

N�1P
k=2

mk+
P�2CN

(1�#fk : �k=�1g) j�+
P�2AN�1

(1�#fk : �k=�1g)i�

�
�PN�1

k=1 mk+
P�2CN

(1�#fk : �k=�1g) j��P�2AN�1
#fk : �k=�1gi��!�QN�2

k=1

��
mk�P�2C(k)�

N
j��P�2A(k)�

N�1
i��!	��mN�1�P�2C(N�1)�

N
j��!

�
�P�2AN�1

i��!�Q�2CN
( j�!)

	�Q�2AN�1
(i� !)

	
�
(

N�3Y
J=1

bJbJ+1

(bJ +bJ+1)2

�
bJ�bJ+1

bJ +bJ+1

�mJ+mJ+1�2
P�2C(J,J+1)�

N

j��2
P�2A(J,J+1)�

N�1

i�)

� bN�2bN�1

(bN�2 +bN�1)2

�
bN�2�bN�1

bN�2 +bN�1

�mN�2+mN�1�2
P�2C(N�2,N�1)�

N

j�

��bN�1�bN

bN�1 +bN

�mN�1+1

.

Here we define
QN�3

J=1 (�) = 1 for N = 3 and we put

AN = f� = (�1, : : : , �N�1) : �k = �1, � 6= (1, 1,: : : , 1)g,
BN = f� 2 AN : #fk : �k = �1g = 1g,
CN = AN n BN ,

A(k1,:::,k� )�
N = f� 2 AN : �k1 = � � � = �k� = �1g,

C(k1,:::,k� )�
N = f� 2 CN : �k1 = � � � = �k� = �1g,

GN = GN(m1, : : : , mN�1)

=

8>>>>>>>>>><
>>>>>>>>>>:

f( j�)�2CN , (i�)�2AN�1g :
j� � 0, i� � 0,X
�2C(k)�

N

j� +
X

�2A(k)�
N�1

i� � mk (1� k � N � 2),

X
�2C(N�1)�

N

j� � mN�1

9>>>>>>>>>>=
>>>>>>>>>>;

.
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REMARK 8. For example, 3 and 4 are as following:

 3(m1, m2; b1, b2, b3)

=
X
j , ��0,

j +��m1,
j�m2

(�1)m2� j 22 (m1 + m2 � j � �)!
(m1 � j � �)! (m2 � j )! j !

� b1b2

(b1 + b2)2

�
b1 � b2

b1 + b2

�m1+m2�2 j�b2 � b3

b2 + b3

�m2+1

,

 4(m1, m2, m3; b1, b2, b3, b4)

=
X

j1, j2, j3, j4,i1,i2,i3�0
j2+ j3+ j4+i2+i3�m1
j1+ j3+ j4+i1+i3�m2

j1+ j2+ j4�m3

(�1)m2+m3� j1� j2� j3�2 j4�i324

� (m1 + m2 + m3 � j1 � j2 � j3 � 2 j4 � i1 � i2 � 2i3)!

(m1 � j2 � j3 � j4 � i2 � i3)! (m2 � j1 � j3 � j4 � i1 � i3)!

� (i1 + i2 + i3)!

(m3 � j1 � j2 � j4)! j1! j2! j3! j4! i1! i2! i3!

� b1b2

(b1 + b2)2

�
b1 � b2

b1 + b2

�m1+m2�2( j3+ j4+i3)

� b2b3

(b2 + b3)2

�
b2 � b3

b2 + b3

�m2+m3�2( j1+ j4)�b3 � b4

b3 + b4

�m3+1

.

In the case of 3, the indices j and � correspond to the indicesj� and i� in Propo-
sition 7, respectively. We remark thatA2 = f(�1)g and C3 = f(�1,�1)g. In the same
way, the indicesj� (� = 1,2,3,4) andi� (� = 1,2,3) correspond to the indicesj� and i�
in Proposition 7 as following, respectively:j1 = j(1,�1,�1), j2 = j(�1,1,�1), j3 = j(�1,�1,1),
j4 = j(�1,�1,�1), i1 = i (1,�1), i2 = i (�1,1), i3 = i (�1,�1).

Proof of Proposition 7. By the equation (13) fork = 1 and Lemmas 6 and 1,
we have

bF (N)
1 (�, x; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

= � 1

2a1

1

i� 22N�4(bN�1 � bN)

(
N�2Y
J=1

(bJbJ+1)

)

� 1

ZN

1

ZN�1

X
�,e�=�1

e

�� y

a1
+e� x

a1
� hN�1 � hN�2

aN�1

�
,

(18)

where we write

ZN = ZN

��; b1, : : : , bN ;
h1

a1
,

h2 � h1

a2
, : : : , hN�1 � hN�2

aN�1

�
,
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ZN�1 = ZN�1

��; b1, : : : , bN�1;
h1

a1
,

h2 � h1

a2
, : : : , hN�2 � hN�3

aN�2

�

for short notation. Then we discuss 1=ZM (�; b1, : : : ,bM ;21, : : : ,2M�1). We first have

ZM (�; b1, : : : , bM ;21, : : : ,2M�1)

=

(
M�1Y
J=1

(bJ + bJ+1)

)
e

 
M�1X
J=1

2J

!

�
"

1�
(
� X

�2AM

�1

 
M�2Y
J=1

bJ + �J�J+1bJ+1

bJ + bJ+1

!
bM�1 + �M�1bM

bM�1 + bM
e

 
M�1X
J=1

(�J � 1)2J

!)#

for M � 2. Here, we remark that the absolute value of

X
�2AM

�1

 
M�2Y
J=1

bJ + �J�J+1bJ+1

bJ + bJ+1

!
bM�1 + �M�1bM

bM�1 + bM
e

 
M�1X
J=1

(�J � 1)2J

!

can be small enough when the positive numberm is large enough. Then we obtain

1

ZM (b1, : : : , bM ;21, : : : ,2M�1)

=
1QM�1

J=1 (bJ +bJ+1)
e

 
� M�1X

J=1

2J

!

� 1X
K=0

(X
�2AM

(��1)

 
M�2Y
J=1

bJ +�J�J+1bJ+1

bJ +bJ+1

!

� bM�1 +�M�1bM

bM�1 +bM
e

 
M�1X
J=1

(�J�1)2J

!)K

=
1QM�1

J=1 (bJ +bJ+1)

X
0� j�<1
(�2AM )

�P�2AM
j��!Q�2AM

( j�!)

� (�1)

P�2A(1)+
M

j�8<
:

M�2Y
J=1

�
bJ�bJ+1

bJ +bJ+1

� P� 2 AM�J�J+1 = �1

j�9=
;

��bM�1�bM

bM�1 +bM

� P�2A(M�1)�
M

j�
e

0
�� M�1X

J=1

8<
:2

X
�2A(J)�

M

j� +1

9=
;2J

1
A.
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We substitute this equation into the equation (18). Then we have

bF (N)
1 (�, x; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

= � 1

2a1

1

i� 22N�4

(
N�2Y
J=1

bJbJ+1

(bJ + bJ+1)2

)

� X
0� j�<1
(�2AN )

X
0�i�<1
(�2AN�1)

�P�2AN
j��! �P�2AN�1

i��!�Q�2AN
( j�!)

	�Q�2AN�1
(i� !)

	

�(�1)

P�2A(1)+
N

j�+
P�2A(1)+

N�1

i�8><
>:

N�3Y
J=1

�
bJ�bJ�1

bJ +bJ+1

� P�2AN�J�J+1=�1

j�+
P�2AN�1�J�J+1=�1

i�9>=
>;

��bN�2�bN�1

bN�2 + bN�1

� P� 2 AN�N�2�N�1 = �1

j�+
P�2A(N�2)�
N�1

i�

��bN�1�bN

bN�1 + bN

� P�2A(N�1)�
N

j�+1

� X
�,e�=�1

e

0
�� y

a1
+e� x

a1
�2

N�2X
J=1

0
� X
�2A(J)�

N

j� +
X

�2A(J)�
N�1

i� + 1

1
AhJ � hJ�1

aJ

�2

0
� X
�2A(N�1)�

N

j� + 1

1
AhN�1� hN�2

aN�1

1
A

for N � 3. Now, we apply the inverse Fourier-Laplace transformation with respect to� to this equation, and we change the indices fromj� (� 2 BN) to mk by the relations

j
(1,:::,1,

(k)�1,1,:::,1)
= mk � X

�2C(k)�
N

j� � X
�2A(k)�

N�1

i� (1� k � N � 2),

j(1,:::,1�1) = mN�1 � X
�2C(N�1)�

N

j�.

Here we remark that

F�1�
�

ei�s

i�
�
(t) = H (t + s).

Then we obtain this proposition forN � 3. We can also prove the case ofN = 2 in
the same way.
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3. The proof of the main result

In this section, we prove our main result. We first discuss thebehavior of the
function f (p)(t , 0) neart = 0 in Lemmas 9 and 10.

Lemma 9. For p � 2 and21 > y=a1, 2 j > 0 ( j = 2, : : : , p� 1),

f (p)(t , 0;b1, : : : , bp;21, : : : ,2p�1; y)

=

8>>>>>><
>>>>>>:

0, t 2
"

0,� y

a1
+ 2

p�1X
j =1

2 j

!
,

� 1

a1
qp(b1, : : : , bp), t 2

 
� y

a1
+ 2

p�1X
j =1

2 j ,� y

a1
+ 2

p�1X
j =1

2 j + "p

!

holds, where we define

qp(b1, : : : , bp) = 22p�4

(
p�2Y
j =1

b j b j +1

(b j + b j +1)2

)
bp�1 � bp

bp�1 + bp
,

"p = "p(a1;21, : : : ,2p�1; y) = 2 min

�
y

a1
,21, : : : ,2p�1

�
.

Proof. From

 p(0, : : : , 0; b1, : : : , bp) = qp(b1, : : : , bp)

and

� y

a1
+ 2

p�1X
j =1

(m j + 1)2 j � � y

a1
+ 2

p�1X
j =1

2 j + "p (� = �1)

except for (m1, : : : , mp�1; �) = (0, : : : , 0;�1) we obtain this lemma.

Lemma 10. For N > k + 1� 2 and21 > y=a1, 2 j > 0 ( j = 2, : : : , N � 1),

NX
p=k+1

f (p)(t , 0; b1, : : : , bp;21, : : : ,2p�1; y)

=

8>>>>><
>>>>>:

0, t 2
"

0,� y

a1
+ 2

kX
j =1

2 j

!
,

� 1

a1
qk+1(b1, : : : , bk+1), t 2

 
� y

a1
+ 2

kX
j =1

2 j ,� y

a1
+ 2

kX
j =1

2 j +e"k

!
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holds, where we define

e"k =e"k(a1;21, : : : ,2k,2k+1; y) = 2 min

�
y

a1
,21, : : : ,2k,2k+1

�
.

Proof. By Lemma 9, we obtain this lemma easily.

Here, we state the proposition which is the key of the proof ofour main result.

Proposition 11. Let N � k + 1� 2 and21 > y=a1, 2 j > 0 ( j = 2, : : : , N � 1).
Suppose bk 6= bk+1. Let T > 0. Put

ev(t) :=
NX

p=k+1

f (p)(t , 0; b1, : : : , bp;21, : : : ,2p�1; y).

Then the following holds:
• If ev(t) � 0 on [0, T) then

(19) 2k � 1

2

�
T +

y

a1

�� k�1X
j =1

2 j .

• Assumeev(t) 6� 0 on [0, T). Put tk := infft 2 [0, T) : ev(t) 6= 0g. Then there exist a
constant ck and a positive constant"0k > 0 such that

ev(t) � ck on (tk, tk + "0k).

Furthermore

2k =
1

2

�
tk +

y

a1

�� k�1X
j =1

2 j ,(20)

bk+1 =
22k�2 Qk�1

j =1 (b j b j +1) + cka1
Qk�1

j =1 (b j + b j +1)2

22k�2
Qk�1

j =1 (b j b j +1)� cka1
Qk�1

j =1 (b j + b j +1)2
bk(21)

hold.

Proof. By Lemmas 9 and 10, there exists" > 0 such that

ev(t) =

8>>>>><
>>>>>:

0, t 2
"

0,� y

a1
+ 2

kX
j =1

2 j

!
,

� 1

a1
qk+1(b1, : : : , bk+1), t 2

 
� y

a1
+ 2

kX
j =1

2 j , � y

a1
+ 2

kX
j =1

2 j + "
!
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holds. We remark thatqk+1(b1,: : :,bk+1) 6= 0 since we assume thatbk 6= bk+1. If ev(t)� 0
on [0,T) then we have

T � � y

a1
+ 2

kX
j =1

2 j ,

namely the equation (19). Hereafter we assume thatev(t) 6� 0 on [0,T). Then the
constanttk in this proposition satisfies

tk = � y

a1
+ 2

kX
j =1

2 j .

We obtain the equation (20) from this equation. On the other hand, we can take the
constant"0k in this proposition as", and the constantck in this proposition satisfies

ck = � 1

a1
qk+1(b1, : : : , bk+1).

By this equation, we have the equation (21).

Next, we remark that there is a possibility that the same observation data can be
obtained even if the unknown constants are different.

Lemma 12. Let aj , b j ( j = 1,: : : , N), h j ( j = 1,: : : , N�1),ea j ,eb j ( j = 1,: : : ,eN),eh j ( j = 1,: : : ,eN� 1) be positive constants. Assume that hj > h j�1 ( j = 1,: : : , N� 1)
andeh j > eh j�1 ( j = 1, : : : , eN � 1), where we put h0 := 0 andeh0 := 0. Let T > 0.
Assume a1 =ea1. Suppose

h j � h j�1

a j
=
eh j �eh j�1ea j

(1� j � NT � 1), b j =eb j (1� j � NT ),

where the natural number NT satisfies

T � � y

a1
+ 2 min

(
NTX
j =1

h j � h j�1

a j
,

NTX
j =1

eh j �eh j�1ea j

)
.

Then for t2 [0, T)

uN(t , 0;a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

� ueN�t , 0;ea1, : : : ,eaeN ;eb1, : : : ,ebeN ;eh1, : : : ,eheN�1; y
�

holds.
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Proof. We remark that we have

uN(t , 0;a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

= u1(t , 0;a1; b1; � ; y)

� NX
p=2

f (p)

�
t , 0; b1, : : : , bp;

h1

a1
,

h2 � h1

a2
, : : : , hp�1 � hp�2

ap�1
; y

�

by the definition ofF (p)
1 (t , x) and Proposition 7. In particular, we have

uN(t , 0;a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

= u1(t , 0;a1; b1; � ; y)

� NTX
p=2

f (p)

�
t , 0; b1, : : : , bp;

h1

a1
,

h2 � h1

a2
, : : : , hp�1 � hp�2

ap�1
; y

�

� NX
p=NT +1

f (p)

�
t , 0; b1, : : : , bp;

h1

a1
,

h2 � h1

a2
, : : : , hp�1 � hp�2

ap�1
; y

�
,

and the last term vanishes fort 2 [0,T) by Lemma 10. Then we obtain this lemma.

By Lemma 12, we cannot identifyak and hk themselves even if the observation
data on [0,1) are given. We can identify onlybk and (hk � hk�1)=ak. Then we try
to reconstruct them.

Now, we state the process in order to reconstruct them.

Theorem 13. Suppose the constants a1, b1, y are known. Assume bj 6= b j +1 for
j = 1,: : : , N�1. Assume that the observation datav(t) := uN(t , 0) are given on[0,T),
where uN(t , x) is the solution of(1)–(6). Then bk+1 and (hk � hk�1)=ak (k = 1, : : : ,
N0 � 1) are reconstructed by the following process:
• The first step: Put v1(t) := (1=a1)H (t � y=a1)� v(t).
• The (k + 1)-st step(k = 1, 2,: : : ): If vk(t) � 0 on [0, T) then the process is fin-
ished. If vk(t) 6� 0 on [0, T) then we carry out the following process: Put tk := infft 2
[0, T) : vk(t) 6= 0g. Then there exist a constant ck and a positive constant"0k such that

vk(t) � ck on (tk, tk + "0k).

The constants(hk � hk�1)=ak and bk+1 are reconstructed by

hk � hk�1

ak
:=

1

2

�
tk +

y

a1

�� k�1X
j =1

h j � h j�1

a j
,
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bk+1 :=
22k�2 Qk�1

j =1 (b j b j +1) + cka1
Qk�1

j =1 (b j + b j +1)2

22k�2
Qk�1

j =1 (b j b j +1)� cka1
Qk�1

j =1 (b j + b j +1)2
bk.

We define

vk+1(t) := vk(t) +
1

a1

X
ml (1�l�k) :Pk

j =1(m j +1)(h j�h j�1)=a j�(1=2)(T+y=a1)

 k+1(m1, : : : , mk; b1, : : : , bk+1)

� X
�=�1

H

 
t �

 
� y

a1
+ 2

kX
j =1

(m j + 1)
h j � h j�1

a j

!!

and go the next step, where k+1 is defined inProposition 7.
Furthermore, when the process is finished at the(N0+1)-st step, that is to say, vN0(t)�
0 on [0, T), we have either N= N0 or the following:

N > N0 and
hN0 � hN0�1

aN0

� 1

2

�
T +

y

a1

�� N0�1X
j =1

h j � h j�1

a j
.

REMARK 14. For k = 2, 3,: : : , we have

1

2

�
tk +

y

a1

�� k�1X
j =1

h j � h j�1

a j
=

1

2
(tk � tk�1),

that is to say, we can also reconstruct (hk � hk�1)=ak by

hk � hk�1

ak
=

1

2
(tk � tk�1).

Proof of Theorem 13. We first remark that

uN(t , 0;a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

= u1(t , 0;a1; b1; � ; y)

� NX
k=2

f (k)

�
t , 0; b1, : : : , bk;

h1

a1
,

h2 � h1

a2
, : : : , hk�1 � hk�2

ak�1
; y

�

holds as the same way in the proof of Lemma 12. Now, we putv1(t) := (1=a1)H (t �
y=a1)� v(t). Then we obtain

v1(t) =
NX

k=2

f (k)

�
t , 0; b1, : : : , bk;

h1

a1
,

h2 � h1

a2
, : : : , hk�1 � hk�2

ak�1
; y

�



436 S. NAGAYASU

sinceu1(t , 0;a1; b1; � ; y) = (1=a1)H (t � y=a1) holds. From this equation and Proposi-
tions 7 and 11, we obtain this theorem.

4. Appendix

In this section, we discuss the case that the impedances of the adjacent media may
be equal. In this case, the following lemma is a key lemma.

Lemma 15. Let N � � + 1. If b� = b�+1 then

F (N)
1 (t , x; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

=

8>>><
>>>:

0 (N = � + 1),

F (N�1)
1 (t , x; a1, : : : , a��1,

(�)ea , a�+2, : : : , aN ;
b1, : : : , b��1, b� , b�+2, : : : , bN ;
h1, : : : , h��1, h�+1, h�+2, : : : , hN�1; y)

(N � � + 2)

holds, where the constantea satisfies

h�+1� h��1ea =
h� � h��1

a� +
h�+1� h�

a�+1
.

Proof. We remark that

bF (N)
1 (�, x; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

= � 1

2a1

1

i� 22N�4(bN�1 � bN)

(
N�2Y
J=1

(bJbJ+1)

)

� 1

ZN

1

ZN�1

X
�,e�=�1

e

�� y

a1
+e� x

a1
� hN�1 � hN�2

aN�1

�

which appears in the proof of Proposition 7, where we write

ZN = ZN

��; b1, : : : , bN ;
h1

a1
,

h2 � h1

a2
, : : : , hN�1 � hN�2

aN�1

�
,

ZN�1 = ZN�1

��; b1, : : : , bN�1;
h1

a1
,

h2 � h1

a2
, : : : , hN�2 � hN�3

aN�2

�

for short notation. Hence

(22) bF (�+1)
1 (�, x; a1, : : : , a�+1; b1, : : : , b�+1; h1, : : : , h� ; y) � 0

holds sinceb� � b�+1 = 0. Let N � � + 2. We remark that we obtain

Z�+1(�; b1, : : : , b�+1;21, : : : ,2� ) = 2b�e(2� )Z� (�; b1, : : : , b� ;21, : : : ,2��1)
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and

ZM (�; b1, : : : , bM ;21, : : : ,2M�1)

= 2b�ZM�1(�; b1, : : : , b� , b�+2, : : : , bM ;21, : : : , (�)2� +2�+1, : : : ,2M�1)

for M � � + 2. Then we have

bF (N)
1 (�, x; a1, : : : , aN ; b1, : : : , bN ; h1, : : : , hN�1; y)

= bF (N�1)
1 (�, x; a1, : : : , a��1,

(�)ea , a�+2, : : : , aN ;

b1, : : : , b��1, b� , b�+2, : : : , bN ;

h1, : : : , h��1, h�+1, h�+2, : : : , hN�1; y).

(23)

Hence we have this lemma by applying the inverse Fourier-Laplace transformations
with respect to� = � � im log(2 + j� j) to the equations (22) and (23).

Lemma 16. Let bk 6= bk+1 for k = 1, : : : , N � 1. Then

F (M)
1 (t , x; a1,1, : : : , a1,�1, : : : , a�,1, : : : , a�,�� , : : : ,

aN�1,1, : : : , aN�1,�N�1, aN,1, : : : , aN,�N ;�1z }| {
b1, : : : , b1, : : : ,

��z }| {
b� , : : : , b� , : : : ,

�N�1z }| {
bN�1, : : : , bN�1,

�Nz }| {
bN , : : : , bN ;

h1,1, : : : , h1,�1, : : : , h�,1, : : : , h�,�� , : : : ,
hN�1,1, : : : , hN�1,�N�1, hN,1, : : : , hN,�N�1; y)

=

8>>>><
>>>>:

0, �N � 2,

f (N)

 
t , x; b1, : : : , bN ;

�1X
�=1

h1,� � h1,��1

a1� , : : : , �N�1X
�=1

hN�1,� � hN�1,��1

aN�1,� ; y

!
,

�N = 1,

where M :=
PN

k=1 �k, h1,0 := 0, and h�,0 := h��1,���1 for � = 2, : : : , N � 1.

Proof. We obtain this lemma from repeating Lemma 15.

By Lemma 16, we can only find out that the situation is as Fig. 3 when the impedances
of the adjacent media may be equal, where we reconstructbk+1 and (hk � hk�1)=ak as
Theorem 13 and the constantseak,� andehk,� satisfy

�kX
�=1

ehk,� �ehk,��1eak,� =
hk � hk�1

ak
.
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Fig. 3. The situation when the impedances of the adjacent media
may be equal.
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