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Abstract

The computing architectures are shifting quickly as we move forward to exascale computing.
Heterogeneous computing architectures employing accelerators like graphics processing unit
(GPU) have become the mainstream approach for high-performance computing (HPC) sys-
tems from supercomputers to mobile devices. However, the increased layers of the memory
hierarchy in heterogeneous architectures have hindered the users to extract the full poten-
tial and maximum scalability of the hardware. Communication cost for transferring data
between memory hierarchy dominates the overall processing time for most applications and
the floating-point operations per second (flop/s) has become comparatively irrelevant.

In this work, we look into two applications to address the problems in accelerating ap-
plications with GPUs. The first application is the cone beam computed tomography (CT)
reconstruction, which is an widely used by medical imaging devices. The second applica-
tion is a matrix decomposition algorithm called randomized singular value decomposition
(RSVD). We show that the CPU-GPU data transfer is the main bottleneck for processing
large scale data on GPU-enabled systems. We first propose methods to accelerate RSVD by
reducing the data transfer between the CPU and GPU. We then propose algorithms which
modify the original RSVD to fit into the heterogeneous computing architecture. The pro-
posed methods successfully move the performance bottleneck from CPU-GPU bandwidth
bound to compute bound, so that the computation ability of the GPUs can be fully utilized
for acceleration.

This thesis is divided into three parts. In the first part of this work, we propose a cache-
aware optimization method to accelerate the out-of-core cone beam CT reconstruction on
a GPU. Out-of-core data here are data that are too large to fit into the GPU memory at
once. Utilizing the GPU in reconstructing CT images has gained its popularity for its high
performance and low cost implementation compared to other methods. The proposed method
extends a GPU-based previous method by increasing the cache hit rate to speed up the
reconstruction of high-resolution volumes that exceed the capacity of GPU memory. More
specifically, our approach accelerates the well-known Feldkamp, Davis, and Kress (FDK)
algorithm by utilizing the following three strategies: (1) a loop organization strategy that
identifies the best trade-o↵ point between the cache hit rate and the number of o↵-chip
memory accesses; (2) a data structure that exploits high locality within a layered texture; and
(3) a fully pipelined strategy for hiding file input/output (I/O) time of GPU execution and
data transfer time. We implement our proposed method on NVIDIA’s Maxwell architecture
and provide a tuning guideline for adjusting the execution parameters, which include the
granularity and shape of thread blocks as well as the granularity of I/O data to be streamed
through the pipeline, which maximizes reconstruction performance. Our experimental results
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show that it took less than three minutes to reconstruct a 20483-voxel volume from 1200
20482-pixel projection images on a single GPU; this translates to a speedup of approximately
1.47 as compared to a previous method. We also make clear a trade-o↵ between the texture
cache hit rate and the number of memory accesses. Concerning GPU optimization, we found
that it is not necessarily e�cient to compact as many tasks as possible into kernel execution
to decrease total execution time. Instead, proper tuning is required to identify the optimum
number of tasks that will minimize the overall time. With the aid of texture interpolation and
cache-aware strategies, our presented GPU implementation achieves performance advantages
over other computing platforms.

In the second part, we propose two acceleration methods, namely Fused and Gram,
for reducing the out-of-core data access when performing RSVD on GPUs. Both methods
accelerate GPU-enabled RSVD using the following three schemes: (1) a highly tuned general
matrix-matrix multiplication (GEMM) scheme for processing out-of-core data on GPUs; (2)
a data-access reduction scheme based on one-dimensional (1D) data partition; and (3) a first-
in, first-out (FIFO) scheme that reduces CPU-GPU data transfer using a reverse iteration.
The Fused method further reduces the amount of out-of-core data access by merging two
GEMM operations into a single operation. In contrast, the Gram method reduces both in-
core (i.e., all the working data can be held on the GPU memory) and out-of-core data access
by explicitly forming the Gram matrix. According to our experimental results, the Fused
and Gram methods improved the RSVD performance by up to 1.9⇥ and 5.2⇥, respectively,
compared with a straightforward method that deploys schemes (1) and (2) on the GPU.
In addition, we present a case study of deploying the Gram method for accelerating robust
principal component analysis (RPCA), a convex optimization problem in machine learning.

In the third part, we propose a two-pass RSVD, named block randomized SVD (BRSVD),
designed for matrices with a slow-decay singular spectrum that is often observed in image
data. BRSVD fully utilizes the power of modern computing system architectures and e�-
ciently processes large-scale data in a parallel and batched fashion. Our experiments show
that BRSVD e↵ectively moves the performance bottleneck from data transfer to computa-
tion, so that outperforms existing RSVD methods in terms of speed with retaining similar
accuracy. We also show an application of randomized SVD to convex RPCA on a GPU,
which shows significant speedup in computer vision applications.

Our work demonstrates that communication cost is an important factor to influence
the overall performance. The first application demonstrates that cache-aware optimization
improves overall performance e↵ectively. The second application shows that reducing the
communication cost at the expense of increased computational cost is a viable approach in
a computing environment where communication cost exceeds the computational cost. Fur-
thermore, our work shows that redesigning algorithms to fit for the heterogeneous computing
architecture is a feasible approach in dealing with bandwidth bound problems.
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Chapter 1

Introduction

In this chapter, we first brief the history of high-performance computing (HPC). We then
describe the recent heterogeneous computing architecture with GPU and the bottleneck for
accelerating applications on this architecture. After that, We introduce the two topics of
this work. Finally, we summarize the contributions of this thesis.

1.1 Overview of High-Performance Computing

In recent years, HPC has gradually entered almost all aspects of science and engineering.
HPC enables scientists and engineers to construct and validate large simulation models like
molecular simulation and plasma fusion simulation. Supercomputers now are regarded as
an essential tool in driving new exploration and discovery. In 1997, the first supercomputer
reached Tflop/s was called ASCI Red and was built by Sandia National Lab [21]. In 2008,
a supercomputer called RoadRunner at Los Alamos National Lab first reached Pflop/s [8].

As we move forward to exascale computing [19], the supercomputing architectures are
rapidly shifting. The traditional customized CPUs, networking, and storage systems for su-
percomputers are diminishing. Three architectures are emerging: the first is that the trend of
building supercomputers with commodity CPUs like Intel Xeon. Those machines have dom-
inated the Top 500 list1. The second is that systems with accelerators are increasing. Over
one hundred systems out of Top 500 adopt accelerators like GPUs or field-programmable gate
array (FPGA). This kind of heterogeneous architectures is expected to become mainstream
soon. The third is that lightweight CPUs like advanced RISC machine (ARM) have entered
the realm of supercomputing. Lightweight CPUs have much lower power consumption and
heat dissipation than traditional CPUs. This kind of supercomputer fits needs like building
supercomputers with a limited power supply.

Regarding the benchmark software for supercomputers, LINPACK [20] has been the de
facto tool for more than 30 years. Solving a dense system of linear equation Ax = b is
used as the benchmark in LINPACK. The idea is that making matrix A as large as possible,
then solving the equation using Gaussian elimination with partial pivoting. By measuring
the performance with a maximum size of A, an actual performance peak will be obtained.

1top500.org

1



Combined with the theoretical peak performance, those numbers are the benchmark values
for supercomputers on the Top 500 list.

1.2 Overview of Graphics Processing Unit (GPU)

NVIDIA, AMD, and ARM are three major vendors for commodity GPUs. The former
two provide their GPUs mainly for desktops and workstations, while ARM only provides
GPUs for mobile devices with low power consumption. All of their products support the
programming framework OpenCL [66]. In this work, we focus on NVIDIA GPUs and their
programming framework called CUDA [77]. The reason is that NVIDIA GPUs yield the best
performance per unit and dominate the accelerator market in HPC. The methods proposed
in the work are general and can be extended to GPUs provided by other vendors.

1.2.1 Architectural Di↵erence between CPU and GPU

The major di↵erence between CPU and GPU is that CPU is latency-focused or serial-
focused, while GPU is throughput-focused or parallel-focused. Modern CPUs have powerful
arithmetic logic units (ALUs), which include complex circuits for functions like instruction
reordering, branch prediction, out-of-order execution, paging, and caching. Almost all those
functions aim at reducing the latency of program execution.

On the other hand, GPUs use the opposite strategy. The ALUs on GPUs have much
fewer functions than those on CPUs. Those simple ALUs are called CUDA cores by NVIDIA.
A typical GPU is compacted with thousands of CUDA cores. GPU hides the latency behind
high throughput provided by CUDA cores and complex memory systems. CUDA cores are
grouped into an array of streaming multiprocessors (SMs). To compensate for the CUDA
cores, each SM is also equipped with ALUs like special function units (SFUs), double pre-
cision units, and warp schedulers. CUDA cores are in charge of processing 32-bit integer
and floating-point operations. SFUs are in charge of special arithmetic operations like recip-
rocation. Double-precision units are in charge of double-precision operations. The number
of double-precision units in a single SM varies according to the target market of a certain
GPU. In the CUDA framework so far, 32 threads are packed into a single unit called warp for
managing and scheduling execution. A hardware mechanism called warp scheduler manages
the dispatch of warps to CUDA cores.

In general, using implementations based on CUDA o✏oads the performance bottleneck
of a CPU-based sequential code. Such o✏oaded workloads can be implemented as kernel
functions, which can be parallelized via millions of GPU threads for acceleration.

1.2.2 GPU Computing Model

Single instruction multiple data (SIMD) is the most widely adopted parallel computing
model. SIMD generally means that all processors execute the same instruction while the
data can be di↵erent on each processor. The constraint is that SIMD uses vector instructions
(e.g. AVX for Intel CPU). Vector instructions perform the same operation on multiple data
elements. However, data must be loaded and stored contiguously in vector instructions.
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Figure 1.1: Maxwell GPU architecture [71].

NVIDIA improved the SIMD computing model and proposed single instruction multiple
threads (SIMT) model for its GPU computing. SIMT relaxes the constraint of SIMD. SIMT
allows threads to take di↵erent execution paths in the unit of warp.

We use the the Maxwell GPU [71] (Fig. 1.1) for the explanation of the GPU computing
model. Similar to other CUDA-compatible GPUs, this architecture has an array of SMs to
process millions of tasks in parallel. Regarding the memory hierarchy inside the SM, there
are registers, a shared memory, and L1 cache. Registers provide the shortest access latency,
analogous to CPU registers, but di↵erent in number; here there are 64K 32-bit registers.
The shared memory is a software-managed cache that allows CUDA cores to more e�ciently
share data inside an SM so that they do not need to share through the slow o↵-chip memory.
Finally, the L1 cache acts as a read-only cache and coalescing bu↵er for o↵-chip memory
access [72]. L1 cache can be accessed by all threads assigned to the current SM. Outside
the SM, there are L2 cache, memory controller, texture caches, and translation lookaside
bu↵ers. L2 cache and memory controller together controls memory request so that threads
that access the same piece of memory do not need to access slow o↵-chip memory.

Outside of the SMs, there is an o↵-chip memory called GPU memory. Although GPU
memory provides a large storage of up to 32 GB, its latency of several hundreds of clock
cycles is much longer than that of the on-chip memory. GPU memory can be used as both
texture and global memory. Here, texture memory stores read-only data that can be accessed
using hardware interpolation, while global memory stores readable/writable data for CUDA
cores. As shown in the figure, the L2 cache is an on-chip cache located between the SMs
and global memory.

During kernel execution, threads are cyclically assigned to SMs in the unit of a thread
block [77], i.e., a group of threads organized by CUDA programmers. Di↵erent thread
blocks must be independent of each other with respect to data dependencies; otherwise
parallelization cannot be correctly achieved. Resident thread blocks that have been assigned
consume SM resources, including registers and shared memory, such that there are limitations
on the maximum number of resident threads and that of thread blocks. This assignment
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process is repeated until all thread blocks finish execution.
Threads in a warp, which share the same instruction at each clock cycle, are processed

on an SM in parallel. While threads in the same warp access global memory, memory
access coalescence is critical for maximizing e↵ective memory bandwidth [77]. In most cases,
assigning multiple thread blocks to an SM is an e↵ective approach for overlapping memory
accesses with computation, because the SM has more data-independent resident warps to
switch while waiting for data to be fetched from o↵-chip memory. Thus, if we maximize
the occupancy, or ratio of the number of resident thread blocks to the maximum number
of resident thread blocks, we can hide memory access latencies with computation. In other
words, fewer resident thread blocks expose memory latency.

Each thread can also independently access memory in the SIMT model, which means the
data can be loaded and stored non-contiguously. Although each thread is free to branch and
execute independently, the threads can be stalled for reasons like data fetching latency. As we
previously mentioned, the memory access has a tremendous impact on program performance.
If the memory access requests from a warp have stride larger than the memory segment limit
(e.g. 128 bytes in recent GPU memory system), those requests need to be severed by several
memory transactions which degrade the performance. The best case is that the memory
access stride is small enough to be severed with only one transaction, which is called memory
coalescing. Despite memory coalescing, a lot of other factors like cache hit rate and shared
memory bank conflicts also influence the performance significantly.

1.3 Challenges in Heterogeneous Computing Architec-
tures

There are a few major challenges that hinder applications to fully benefit from emerging new
computing architectures. First, more layers of the memory hierarchy in new architecture
complicate programming, migration, and optimization. Heterogeneous architectures make
the situation even worse. Tuning the granularity of tasks, the locality of data, coordination,
and synchronization for those system imposes a tremendous burden on researchers.

Second, communication across distinct memory hierarchies or networks often constitutes
a performance bottleneck [18, 37] due to the increasing gap between arithmetic and com-
munication performance [15]. Supercomputers now have more than millions of computing
cores. The spent time for communication between those cores usually dominates the overall
processing time for large scale data. The methodology for algorithm design has shifted from
reducing the computational cost to reducing the communication cost [15, 30, 113].

Figure 1.2 illustrates the memory hierarchy in a heterogeneous computing architecture
with GPUs. The capacity of each layer in Fig. 1.2 is normally more than 10⇥ larger than
its upper layer. However, the access speed will also decrease to less than 1/10 for accessing
the lower layer with a larger capacity.

In this work, the GPU is regarded as the computing core, and the data is stored out-
of GPU memory and brought into GPU memory to be processed. Out-of-core data access
here involves CPU-GPU data transfer in our target CPU-GPU system, where by contrast,
in-core data can be rapidly accessed without additional CPU-GPU data transfer. Currently,
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Figure 1.2: Illustration of the memory hierarchy in a heterogeneous computing architecture with GPUs.

the in-core data access speed for GPU has reached 900 GB/s (V100 GPU). Comparatively,
the PCIe 3.0 interface for CPU-GPU data transfer has a theoretical maximum bandwidth
of 15.75 GB/s. This large performance gap renders the out-of-core data transfer to be the
bottleneck of accelerating applications with a large data set.

1.4 Contributions of This Thesis

The contributions of this thesis are divided into three parts:
In the first part, we look into an application called cone beam CT reconstruction. We

analyze the bottleneck of accelerating cone beam CT reconstruction on the GPU. We propose
a cache-aware optimization method to maximize the usage of the cache mechanism on GPUs.

In the second part, we investigate a randomized matrix decomposition algorithm called
randomized singular value decomposition (RSVD). We focus on accelerating RSVD on GPUs.
We use a roofline model [111] to show that the theoretical peak performance is bounded by
CPU-GPU data transfer. We then propose out-of-core methods that reduce data transfer
especially for tall-skinny matrices. Our methods do not modify the original algorithm.

In the third part, we propose an algorithm which is called Block Randomized Singular
Value Decomposition (BRSVD). BRSVD is based on the original RSVD algorithm and is
modified to fit for the heterogeneous computing environment with GPUs. The out-of-core
methods proposed in the second part loose the constraint of CPU-GPU bandwidth, but
the bandwidth remains the performance bottleneck. BRSVD successfully moves the perfor-
mance bottleneck from CPU-GPU bandwidth bound to performance bound at the expense
of slightly reducing the accuracy of the original algorithm.
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Chapter 2

Cache-Aware GPU Optimization for
Out-of-Core Cone Beam CT
Reconstruction of High-Resolution
Volumes

2.1 Introduction

CT reconstruction is a radiology imaging technology that converts two-dimensional X-ray
projection images generated by a rotary CT scanner into a three-dimensional (3D) volume,
such that CT data can be viewed using 3D visualization software. The FDK algorithm [26]
is the de facto standard for cone beam CT reconstruction and is widely adopted in medical
and industrial applications [24, 53, 62]. Because reconstruction time is critical, especially for
real-time medical applications such as image-guided surgery [90, 108], research activities on
accelerating the FDK algorithm have been ongoing ever since its advent in 1984.

With the development of parallel computing and computer graphics technologies, ef-
forts to parallelize the FDK algorithm have included various computing devices, including
a GPU [112, 117], a cell broadband engine (CBE) [52], a field-programmable gate array
(FPGA) [29] and a Xeon Phi coprocessor [43]. CBE has eight synergistic processing ele-
ments (SPEs) allow for a theoretical performance of 192 Gflop/s. Data mining techniques
and double bu↵ering of input data were extensively used to optimally utilize both the mem-
ory bandwidth and the available local store of each SPE. The pixel-driven back-projection
code uses floating point arithmetic and either inear interpolation or nearest neighbor in-
terpolation between neighboring detector channels. For FPGA implementation, Gac et al.
proposed a prediction algorithm to prefetch the data needed into cache so as to increase the
spatial and temporal localities [29].

In particular, utilizing CUDA, compatible with GPUs [77], to parallelize FDK compu-
tation has gained popularity due to its high performance and low-cost implementation as
compared to other devices [24, 46, 91]. Given this parallelization technique, the performance
bottleneck of the FDK algorithm lies in its back-projection of projection images in which
interpolated pixel values are accumulated back to form voxel values, which then compose
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the 3D volume. Therefore, typical implementations store projection images in textures to
take advantage of hardware-accelerated interpolation available on the GPU.

In addition to this fundamental implementation scheme, Okitsu et al. [82] presented a
multiplication method that back-projects multiple projections with a single kernel invoca-
tion. This multiplication method accelerates the back-projection procedure by reducing the
number of o↵-chip memory accesses. In [82], Okitsu et al. concluded that GPU memory
bandwidth (i.e., the memory bandwidth between SMs [77] and o↵-chip memory) determines
reconstruction throughput on a GeForce 8800 GTX GPU. The FDK has long been proved to
be a memory-bound application on parallel computers. A performance model [45] is normally
used to indicate the implementation e�ciency on a specific hardware. The model is given
E = 4⇢/B, where B is the total memory bandwidth of the deployed machine, ⇢ is the back-
projection throughput. Okitsu et al. emphasized memory coalescing to improve the overall
performance, because the GPU memory bandwith was the bottleneck on the deployed G80
architecture [69] and the cache capacity was too small to impact on the overall performance.
Therefore, in this chapter, we propose a cache-aware optimization method [61] to accelerate
the FDK algorithm for handling out-of-core data on a GPU. To our knowledge, no work has
been done in modeling the GPU cache performance. The reason is that the cache hit rate
varies greatly with di↵erent applications. Also, the cache is transparent to the programmer,
which means that the programmer has no direct control over the data movement. Regarding
the general purpose modeling of the GPU memory, latency, and bandwidth, several works
has been done. Those works do not take the cache into their models. For example, Nakano
has proposed asynchronous memory machine model for GPU computing [67]. They applied
the model in analyzing several applications like interval sum and prefix-summing. However,
the proposed model is not cache-aware.

In this chapter, we extends Okitsu’s method [82] by increasing the cache hit rate, thereby
improving out-of-core cone beam CT reconstruction. The proposed method consists of the
following three key strategies: (1) a loop organization strategy which identifies the best
trade-o↵ point between the cache hit rate and the number of o↵-chip memory accesses; (2) a
data structure that exploits high locality within a layered texture; and (3) a fully pipelined
strategy for hiding file I/O times with GPU execution and data transfer times. We analyze
the underlying mechanism of these strategies and provide tuning guidelines for adjusting
the execution parameters, which include the granularity and shape of thread blocks [77]
and the granularity of I/O data to be streamed through the pipeline, the latter maximizing
reconstruction performance on NVIDIA’s latest Maxwell architecture [71].

The rest of this chapter is organized as follows. In Section 2.2 we introduce related studies
regarding the acceleration of cone beam CT reconstruction. In Section 2.3 we summarize the
FDK algorithm and its previous GPU-based implementation [82]. In Section 2.4, we describe
our proposed method, and then present our experimental results in Section 2.5 along with
discussion on tuning for the Maxwell architecture. Finally, in Section 2.6, we conclude our
chapter and suggest avenues for future work.
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2.2 Related Work

Table 2.1 shows a comparison of our present work with recent studies, showing the advantages
of our proposed method. In the table, the back-projection throughput ⇢ is presented in giga
voxel updates per second (GUPS), where giga denotes 109. In summary, our present work
employs a single-GPU machine to achieve high back-projection throughput for large amounts
of data that exceed not only GPU memory but also CPU memory. Further, we incorporate
optimization method based on NVIDIA’s Maxwell architecture [71].

To our knowledge, Scherl et al. [91] first proposed the use of a CUDA-based GPU to
accelerate the FDK algorithm, claiming that reducing register file usage raised GPU oc-
cupancy [77] so as to accelerate reconstruction. They demonstrated that a GeForce 8800
GTX GPU achieved two times higher reconstruction performance as compared to a CBE. A
similar CUDA-based approach with similar results was presented by Noël et al. [68].

As for kernel optimization, Okitsu et al. [82] extended Xu’s method [112], who first pro-
posed back-projecting multiple projections in a single kernel invocation. These multiplica-
tion schemes reduced the number of o↵-chip memory accesses and that of kernel invocations.
They concluded that GPU memory bandwidth determines reconstruction performance; thus,
the back-projection kernel should process more projections at a time. A similar scheme was
presented by Papenhausen et al. [85], who processed 64 projections with a single kernel exe-
cution. In contrast to the above studies, we show that excessive projections result in a lower
texture cache hit rate on the latest Maxwell architecture [71]. Consequently, it is important
to find the best trade-o↵ point between texture cache hit rate and the number of o↵-chip
memory accesses.

Based on Okitsu’s multiplication method [82], Zinßer et al. [123] swapped the nested loop
structure proposed in [82] such that threads that share the same instruction can simultane-
ously access a single projection. Zinßer et al. claimed that their loop organization not only
increased the texture cache hit rate but also reduced the number of o↵-chip memory accesses
by processing 32 projections with a single kernel invocation. A key drawback of their loop
organization is that it consumes more registers than the original organization. Consequently,
only four xy-slices of the volume were produced by a kernel invocation, whereas the original
organization produced 512 xy-slices at a time. This consumption issue must be resolved
for large amounts of data, which we focus on in the present study, because 128 times more
kernel invocations are required to produce the entire volume. In our work, we present a data
structure capable of achieving an L1/texture cache hit rate of more than 95%, even with the
original loop organization.

In contrast to the input-related optimization mentioned above, Zheng et al. [122] pre-
sented a cache-aware method capable of maximizing write throughput for the output volume.
Their method rearranges volume data according to the back-projection angle such that a
series of memory transactions can be coalesced into a single transaction. Since this data re-
arrangement incurs overhead, they allocated another copy of the volume to avoid rearrange-
ment overhead; however, such duplicated data must be eliminated to handle large amounts
of data on limited GPU memory. Our method realizes memory access coalescence by adopt-
ing a workload distribution scheme in which threads are responsible for angle-independent
regions of the volume.

With respect to out-of-core reconstruction in which I/O data flow exceed GPU memory,
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Table 2.1: Comparison of the performance of our work with relevant recent works. Note that back-
projection throughput ⇢ which is measured in GUPS, is given by ⇢ = NXY Z/T , where N is the number
of projections, X ⇥ Y ⇥ Z is the volume size in voxels, and T is the back-projection time, which includes
data transfer times between CPU and GPU. Further, U and V are the horizontal and vertical sizes of a
projection, respectively. Note that e�cient cache utilization achieves an e�ciency of more than 100%.
Work Platform Memory specification Data specification Throughput E�ciency

Bandwidth (GB/s) Capacity (GB) NUV ! XY Z Size (GB) ⇢ (GUPS) E (%)
Scherl (2007) [91] 8800 GTX 86.4 0.8 414⇥ 1024⇥ 1024! 5123 1.6! 0.5 6.2 29
Okitsu (2010) [82] 2⇥Tesla C870 2⇥ 76.8 2⇥ 1.5 1024⇥ 1024⇥ 1024! 10243 4.0! 4.0 48.9 127
Ino (2010) [45] 4⇥Tesla S1070 4⇥ 102.0 4⇥ 4.0 2048⇥ 2048⇥ 2048! 20483 32.0! 32.0 105.7 104
Noël (2010) [68] GTX 280 141.7 1.0 106⇥ 1024⇥ 1024! 5123 0.4! 0.5 2.3 6
Zheng (2010) [122] GTX 480 177.4 1.5 364⇥ 1024⇥ 768! 5123 1.1! 0.5 12.0 27
Zhang (2012) [120] 2⇥GTS 450 2⇥ 57.7 2⇥ 1.0 360⇥ 1024⇥ 1024! 5123 1.4! 0.5 11.1 38
Treibig (2013) [100] 4⇥Xeon E7-4870 4⇥ 34.2 N/A 496⇥ 1248⇥ 960! 10243 2.2! 4.0 12.0 35
Papenhausen (2013) [85] GTX 680 192.3 2.0 496⇥ 1248⇥ 960! 5123 2.2! 0.5 72.3 150
Zinßer (2013) [123] GTX 680 192.3 2.0 496⇥ 1248⇥ 960! 10243 2.2! 4.0 88.2 183
Blas (2014) [9] 2⇥GTX 680 2⇥ 192.3 2⇥ 2.0 720⇥ 1024⇥ 1024! 10243 2.8! 4.0 117.5 122
Serrano (2014) [92] 2⇥GTX 680 2⇥ 192.3 2⇥ 2.0 360⇥ 512⇥ 512! 5123 0.4! 0.5 27.1 28

2⇥Xeon Phi 7120P 2⇥ 352.0 2⇥ 16.0 360⇥ 512⇥ 512! 5123 0.4! 0.5 26.7 15
This work (2016) GTX 980 224.0 4.0 1200⇥ 512⇥ 512! 5123 1.2! 0.5 116.7 208

1200⇥ 1024⇥ 1024! 10243 4.7! 4.0 128.5 229
1200⇥ 2048⇥ 2048! 20483 18.8! 32.0 92.9 166

several studies have explored a multi-GPU machine to achieve further acceleration [9, 45,
120]. Existing multi-GPU implementations adopt a pipelined approach to overlap kernel
execution with data transfer between CPU and GPU; however, except for Blas et al. [9], file
I/O overhead has not been considered in detail. Blas et al. [9] did indeed consider file I/O
overhead, thus realizing on-the-fly reconstruction, which produces the volume immediately
after image acquisition; however, cache optimization issues were not addressed. Our out-
of-core pipelined strategy yields a fully pipelined cache-aware solution for processing large
amounts of data on a single-GPU system. Further, although we evaluated the advantages of
our method on a single-GPU machine, our method can be expanded to support a multi-GPU
environment in a straightforward manner.

On the other hand, Serrano et al. [92] proposed using a directive-based programming
approach [83] to parallelize the FDK algorithm on GPUs and Intel Xeon Phi coprocessors.
Compared with CUDA, this directive-based approach provides an easy programming scheme
in which parallelization is achieved by adding compiler directives to sequential code; however,
using such a high-level programming style degrades the performance. Due to the same
performance related reason, we prefer CUDA rather than OpenCL [56].

Finally, Treibig et al. [100] explored optimizing the AVX instruction set [47]. They in-
dicated that GPU-based solutions degrade reconstruction throughput for large amounts of
data, because limited GPU memory requires data transfers between CPU and GPU. Our
pipelined solution overlaps these required data transfers with GPU computation, thereby
achieving higher out-of-core reconstruction performance as compared to CPU-based ap-
proaches (Table 2.1).

2.3 Preliminaries

Let F be the 3D volume of size X ⇥ Y ⇥ Z to be reconstructed. To estimate each voxel
value F (x, y, z) in F , where 0  x < X, 0  y < Y , and 0  z < Z, the FDK algorithm
back-projects set P of two-dimensional projection images onto the target volume F , where
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Figure 2.1: Geometry for back-projection of the n-th filtered projection, where 0  n < N .

P = {P0, P1, . . . , PN�1} and N is the number of projection images. As shown in Fig. 2.1, Pn

represents a projection obtained with rotational angle ✓n, where 0  n < N . In the following
subsections, we assume that all projection images comprise U ⇥ V pixels.

2.3.1 FDK Reconstruction Algorithm

The FDK algorithm is composed of two processing stages, i.e., ramp filtering and back-
projection. The ramp filtering stage performs one-dimensional convolution along the hor-
izontal direction (i.e., the u-axis). Given raw projection Pn, where 0  n < N , the pixel
value Qn(u, v) of filtered projection Qn, where 0  u < U and 0  v < V , is given by

Qn(u, v) =
RX

r=�R

2

⇡2(1� 4r2)

D
p
D2 + r2 + v2

Pn(r, v), (2.1)

where R denotes the ramp filter radius and D denotes the distance between the X-ray source
and the projection panel, as shown in Fig. 2.1.

Next, the back-projection stage back-projects filtered projections Q0, Q1, . . . , QN�1 into
3D volume F . Voxel value F (x, y, z) at point (x, y, z) is given by

F (x, y, z) =
1

2⇡N

N�1X

n=0

W (x, y, n) Qn(u(x, y, n), v(x, y, z, n)), (2.2)

where weight W (x, y, n) and coordinates u(x, y, n) and v(x, y, z, n) are calculated separately
by

W (x, y, n) =

✓
dn

dn � x cos ✓n � y sin ✓n

◆2

, (2.3)

u(x, y, n) =
D(�x sin ✓n + y cos ✓n)

dn � x cos ✓n � y sin ✓n
, (2.4)

v(x, y, z, n) =
Dz

dn � x cos ✓n � y sin ✓n
, (2.5)
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where dn denotes the distance between the X-ray source and the origin of the xyz coordinates.
According to Eq. (2.2), the time complexity of the back-projection stage is O(NXY Z),

which represents the performance bottleneck of the FDK algorithm. In particular, 3D data
accesses required to read Qn(u(x, y, n), v(x, y, z, n)) and write F (x, y, z) determine total ex-
ecution time; as such, the back-projection stage constitutes more than half of the total
execution time [82, 122]. Note that Eq. (2.5) can be e�ciently computed via the following
recurrence relation:

v(x, y, z + 1, n) = v(x, y, z, n) + v(x, y, 1, n). (2.6)

Because the second term v(x, y, 1, n) can be precomputed for all n, this relation is useful
for reducing computational cost; more specifically only an addition is needed to compute
v(x, y, z, n) within the z loop.

2.3.2 GPU Implementation of the FDK Algorithm

As presented in Table 2.1, Okitsu’s method [82] was one of the most e�cient comparative
methods in terms of memory bandwidth. Figure 2.2(a) illustrates the reconstruction pipeline
realized in their implementation. This pipeline has four major stages, i.e., projection input,
ramp filtering, back-projection, and volume output.

In the projection input stage, raw projections P0, P1, . . . , PN�1 are loaded from a storage
device to CPU memory (i.e., main memory), and then sequentially transferred to GPU
memory. Next, the ramp filtering stage filters each projection Pn into Qn, where 0  n < N ,
and transfers these filtered projections back to CPU memory. The back-projection stage
then handles both filtered projections and volume via a divide-and-conquer approach to
overcome limited GPU memory, as illustrated in Fig. 2.3. From the figure, volume F is
partitioned along the z-axis into subvolumes F0,F1, . . . ,FZ/Z0�1, each with Z 0 xy-slices,
whereas the filtered projections are partitioned into subsets Q0,Q1, . . . ,QN/N 0�1 with N 0

projections each, thus indicating that the back-projection kernel is launched N/N 0 times
for each subvolume Fk, where 0  k < Z/Z 0

� 1. Finally, the produced subvolumes are
transferred back to CPU memory, and then written to the storage device in the volume
output stage.

Algorithm 1 shows the pseudocode of the back-projection kernel, which generates sub-
volume Fk from subset Qm of projections, where 0  k < Z/Z 0

� 1 and 0  m < N/N 0
� 1.

This kernel assumes that each thread block is in charge of reconstructing a slab along the
z-axis, where a thread with global index (x, y) computes F (x, y, z) for all kZ 0

 z < (k+1)Z 0

(i.e., Z 0 voxels along the z-axis); this volume is stored in writable global memory, whereas
projections are stored in textures to take advantage of hardware-accelerated interpolation.
Note that this workload distribution scheme always achieves memory access coalescing when
writing voxel values, because threads in the same warp access consecutive voxels on the same
xy-plane, i.e., threads are responsible for an angle-independent region of the volume. Similar
to [85], atomic instructions are deployed to maximize the collision-free write throughput of
the volume on line 14 of Algorithm 1.
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Figure 2.2: Reconstruction pipelines of (a) Okitsu’s previous method [82] and (b) the proposed method.
Both pipelines consist of the following eight steps, with the first and last steps not pipelined in the previous
method: (1) raw projections are loaded from a storage device into CPU memory, (2) projections in CPU
memory are then transferred to GPU memory; (3) ramp filtering is applied to produce filtered projections, (4)
filtered projections are transferred back to CPU memory if necessary, (5) filtered projections are transferred
from CPU memory to GPU memory if necessary; (6) back-projection is performed to produce a subvolume;
(7) the subvolume is transferred to CPU memory, and (8) the subvolume in CPU memory is written to the
storage device.
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Figure 2.3: Data decomposition scheme in which the back-projection kernel is invoked for each pair
hQm,Fki of subset Qm of projections and subvolume Fk, where 0  m < N/N 0

� 1 and 0  k < Z/Z 0
� 1.
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Algorithm 1: back-projection kernel
Input : subset Qm of N 0 filtered projections, projection subset index m, and

subvolume index k, where 0  m < N/N 0
� 1 and 0  k < Z/Z 0

� 1
Output: subvolume Fk = {Fk(x, y, z) | 0  x < X, 0  y < Y, kZ 0

 z < (k + 1)Z 0
} of

Z 0 slices

1 calculate responsible voxel coordinate (x, y) from thread index and thread block
index;

2 z  k ⇥ Z 0 ; // first z coordinate in Fk

3 n m⇥N 0 ; // first projection index in Qm

4 for i 0 to N 0
� 1 do // for each projection

5 wi  W (x, y, n+ i); ui  u(x, y, n+ i); vi  v(x, y, z, n+ i) ;
// Eqs.(2.3)-(2.5)

6 end
7 for j  0 to Z 0

� 1 do // for each z-slice

8 t 0;
9 for i 0 to N 0

� 1 do // for each projection

10 vi  v(x, y, z + j, n+ i) ; // Eq. (2.6)

11 r  Qn+i(ui, vi) ; // texture memory access

12 t t+ wi ⇥ r ; // Eq. (2.2)

13 end
14 Fk(x, y, z + j) Fk(x, y, z + j) + t ; // atomic write to global memory

15 end

2.4 Proposed Method

The main approach to optimizing GPU performance is to locate the performance bottleneck
or resource constraint, and then attempt to exchange it for the use of another resource. Ap-
plying this to the FDK algorithm, lines 11 and 14 of Algorithm 1 determine the performance
of the back-projection kernel, because an arithmetic instruction generally takes several clock
cycles, whereas an o↵-chip memory access takes hundreds of clock cycles. Therefore, reduc-
ing or hiding memory access latency is pivotal to maximizing the reconstruction performance
on a GPU. Our solution here is twofold: (1) maximize cache utilization to reduce memory
access latency on line 11 of the algorithm; and (2) back-project multiple projections to re-
duce the number of o↵-chip memory access on line 14 [82]. Therefore, in the subsections
below, we present the following three strategies to systematically optimize the reconstruction
procedure:

1. Cache-aware loop organization, which identifies the best trade-o↵ point between the
cache hit rate and the number of o↵-chip memory accesses (Section 2.4.1)

2. A cache-aware data structure with a layered texture (Section 2.4.2)

3. A pipelined strategy that includes I/O (Section 2.4.3)
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2.4.1 Cache-aware Loop Organization

As shown in Fig. 2.4, Eqs. (2.4) and (2.5) indicate that coordinates (u(x, y, n), v(x, y, z, n))
are similar in that they are calculated from consecutive projection angles. In other words,
a series of pixels (un, vn), (un+1, vn+1), . . . , (un+N 0�1, vn+N 0�1) are intensively fetched from a
small area of projections on line 11 of Algorithm 1; however, this high locality of coordinates
may not be extended to that of texture pixels (i.e., texels) because successive projections are
stored with a stride of UV (Fig. 2.4). To handle this issue, Zinßer et al. [123] reversed the
ji-loop of Algorithm 1 to form an ij-loop and synchronized threads before proceeding to the
next projection, j; further, they changed the inter-projection first loop to an intra-projection
first loop. As mentioned in Section 2.2, this method improved the texture cache hit rate by
creating threads to simultaneously access the same projection within the inner j-loop, but
threads consume more registers to store their responsible slabs, i.e., voxel values along the
z-axis. In more detail, variable t in Algorithm 1 must be extended as variables t0, t1, . . . , tZ0�1

because they cannot be flushed within the inner j-loop. Without this extension, the amount
of global memory access cannot be minimized. In this study, we therefore adopt the original
loop organization of the previous method [82] and present a data structure that is more
tolerant to the intra-projection first loop: 3D access spreading over di↵erent projections.

As mentioned above, the previous method [82] partitions input projections into N/N 0

subsets to back-project each subset with a single kernel invocation. This multiplication
method reduces both the number of kernel invocations and the number of global memory
writes by a factor of N 0, because N 0 successive kernel executions are packed into a single
execution. More specifically, the previous method [82] improves reconstruction performance
by maximizing N 0, which leads to e�cient use of registers; however, increasing N 0 consumes
more registers for variables wi, ui and vi, which decreases the occupancy on the SM.

Large N 0 also implies that threads can simultaneously fetch pixels from di↵erent projec-
tions because they are executed in an SIMT manner in which di↵erent warps are allowed
to simultaneously process di↵erent lines in the kernel. Therefore, excessive N 0 decreases
the L1/texture cache hit rate, particularly for high-resolution images, because stride UV
between successive projections increases with image resolution U ⇥ V . Note that synchro-
nization is useful to enforce warps keeping pace with other warps, which prevents warps from
accessing di↵erent projections; however, CUDA prohibits inter-block synchronization during
kernel execution; thus, synchronization is not a perfect solution for this issue.

In addition to the loop organization described above, our method optimizes cache be-
havior by choosing the best granularity and shape of thread blocks according to the char-
acteristics of memory access patterns. Because CUDA organizes threads in a three-level
hierarchy composed of elementary threads, warps, and thread blocks, cache optimization
can be achieved at each of these three levels accordingly. Sugimoto et al. [98] concluded
that, with respect to volume-rendering applications, the most important level is the warp
level, because memory access transactions are issued on a per-warp basis. Similarly, Okitsu
et al. [82] concluded that square-shaped thread blocks are suitable for the back-projection
kernel because warps are organized such that back-projection performance is averaged for
arbitrary rotational angles. Refer to [82] for details.
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Figure 2.4: Schematic illustrating texture access. In this example, a thread block is responsible for
producing the enclosed region in the volume. Given filtered projections Qn, Qn+1, and Qn+2, warps in
the given thread block access homogeneous texture coordinates (un, vn), (un+1, vn+1) and (un+2, vn+2) on
the filtered projections, respectively (see Algorithm 1). This locality on two-dimensional coordinates cannot
extend to the locality of o↵-chip memory, because successive projections are stored with a stride of UV ,
where U and V are the horizontal and vertical resolutions of projections, respectively.

2.4.2 Cache-aware Data Structure with Layered Texture

The proposed data structure is realized via a layered texture [77], which packs equally-sized
textures of the same type into a single object. Texels in a layered texture can be accessed
using floating-point coordinate (x, y) and a layer specified by integer index l. Intra-layer
interpolation can be applied to the xy-plane, but inter-layer interpolation is not available.
Layered textures are ideal for processing multiple textures of the same size and format in that
they reduce the overhead of texture access. Because its 3D locality has not been explicitly
stated [77], we design a suite of micro-benchmarks to analyze its performance advantages
with the memory access patterns of the FDK algorithm.

Figure 2.5 shows the pseudocode for the micro-benchmarks, which run a single GPU
thread to determine whether a layered texture has been optimized for 3D locality; here, two
access patterns are investigated to compare the performance of a layered texture and non-
layered (i.e., naive two-dimensional) textures. The first micro-benchmark, i.e., Fig. 2.5(a),
examines an intra-layer-first pattern in which a thread finishes fetching all texels from the
current layer before accessing the next layer. Conversely, the other micro-benchmark, i.e.,
Fig. 2.5(b), examines an inter-layer-first pattern in which a thread fetches texels from all
layers at the same coordinate (u, v) before going to the next coordinate.

Figure 2.6 shows the timing and profiling results obtained using the micro-benchmarks.
As shown in the figure, the inter-layer-first pattern on a layered texture achieved the best
performance with a higher L1/texture cache hit rate. Consequently, we conclude that layered
textures have 3D locality and are thereby optimized for 3D texture access. This performance
characteristic agrees with the memory access pattern of the back-projection kernel, which is
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for l  0 to L� 1 do {for each layer}
for v  0 to V � 1 do
for u 0 to U � 1 do
fetch texel at coordinate (u, v) of layer l;

end for
end for

end for
(a)

for v  0 to V � 1 do
for u 0 to U � 1 do
for l  0 to L� 1 do {for each layer}
fetch texel at coordinate (u, v) of layer l;

end for
end for

end for
(b)

Figure 2.5: Micro-benchmarks for evaluating texture access performance. Here two access patterns were
examined with U = V = 1024 and 1  L  64; the access patterns are (a) intra-layer-first and (b) inter-
layer-first patterns. A single thread was used to fetch all texels. The innermost loop of both patterns was
unrolled for optimization.

an inter-layer-first pattern as shown on lines 7–15 of Algorithm 1.
According to our benchmark results, we decided to use a layered texture with the inter-

layer-first loop. We implemented the layered texture with the texture object application
programming interface (API) introduced in the Kepler architecture [70]. Compared to the
legacy texture reference API, the texture object API simplifies the resulting programming
style and eliminates several restrictions [77]. For example, the texture object API does not
require manual binding and unbinding of texture references to memory addresses. Therefore,
texture references can be used in a more dynamic manner, whereas the texture reference API
requires texture references to be declared as static global variables.

2.4.3 Pipelined Strategy that Includes I/O Interface

Similar to Blas et al. [9], our out-of-core pipelined strategy decomposes not only computation
steps but also file I/O steps, namely steps (1) and (8) in Fig. 2.2(b), thus overlapping them
with other steps. Such an I/O-included pipelining strategy is extremely important for large
amounts of data that exceed not only GPU memory but also CPU memory. Without this
strategy, the entire reconstruction throughput is bounded by file I/O time, even though the
back-projection procedure is significantly accelerated on the GPU.

Algorithm 2 presents pseudocode for our pipelined FDK algorithm. As with the previous
method [82], this algorithm divides the input projections and output volume into N/N 0
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Figure 2.6: Benchmark and profiling results for di↵erent loop organizations and data structures, showing
(a) execution time, (b) L1/texture cache hit rate, and (c) L2 cache hit rate. Here, intra-layer-first and inter-
layer-first patterns were investigated with a layered texture and non-layered (i.e., naive two-dimensional)
textures.

subsets and Z/Z 0 subvolumes, respectively. The filtering and back-projection procedures are
then carried out for each pair hQm,Fki of projection subset Qm and subvolume Fk, where
0  m < N/N 0

� 1 and 0  k < Z/Z 0
� 1. Given the limited capacity of GPU memory,

filtered projections are pushed back to CPU memory to save GPU memory consumption for
the subvolume to be generated (i.e., line 8 of Algorithm 2). Further, filtered projections are
reused to allow us to skip the filtering step for succeeding subvolumes (i.e., line 12). Note
that the bu↵ers to be used for the back-projection kernel are doubled to enable overlaps
with other steps (i.e., lines 12 and 16). Without these double-bu↵ers, overlaps cannot be
achieved due to the data dependence that exists between succeeding steps.

2.5 Experimental Results

We compared our proposed method with the previous method [82] in terms of reconstruction
time. All timing results were measured using the NVIDIA Visual Profiler [80]. Table 2.2
lists the specifications of our experimental machine.

In our experiments, we used three sets of the Shepp-Logan phantom [94] at di↵erent
resolutions: a small dataset with U = V = X = Y = Z = 512, a medium dataset with
U = V = X = Y = Z = 1024 and a large dataset with U = V = X = Y = Z = 2048, each
with N = 1200 projections. The middle slice of the reconstructed volume is shown in Fig.
2.7. Pixels in the projections and voxels in the volumes consist of four bytes; thus, the small,
medium, and large datasets consumed 1.7 GB, 8.7 GB and 50.8 GB of memory, respectively.
Therefore, the medium and large datasets could not be entirely stored in CPU memory or
GPU memory (see Table 2.2).
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Algorithm 2: Fully pipelined FDK reconstruction

Input : set P = {P0, P1, . . . , PN�1} of raw projections

Output: volume F =
SZ/Z0�1

k=0 Fk

1 for k  0 to Z/Z 0
� 1 do in parallel // for each subvolume

2 for j  0 to N/N 0
� 1 do // for each projection subset

3 if k == 0 then
4 for i 0 to N 0

� 1 do in parallel // for each projection in

projection subset

5 load raw projection PN 0j+i from the storage device;
6 transfer PN 0j+i from CPU to GPU asynchronously;
7 QN 0j+i  RampFilteringKernel(PN 0j+i) ; // Eq. (2.1)

8 transfer QN 0j+i from GPU to CPU asynchronously;
9 end

10 set Qj = {QN 0j, QN 0j+1, . . . , QN 0j+N 0�1};
11 else
12 transfer Qj = {QN 0j, QN 0j+1, . . . , QN 0j+N 0�1} from CPU to GPU

asynchronously ; // Qj is double buffered on GPU

13 end
14 Fk  back-projectionKernel(Qj, j, k) ; // Algorithm 1

15 end
16 transfer Fk from GPU to CPU ; // Fk is double buffered on CPU

17 store Fk to the storage device asynchronously;
18 end

Table 2.2: Specifications of our experimental machine.
Item Specification
CPU Intel Core i7-4770K
Main memory capacity 32 GB
GPU NVIDIA GeForce GTX 980
Clock speed 1126 GHz (base), 1216 GHz (boost)
Texture fill rate 144.1 Gtexel/s (base), 155.6 Gtexel/s (boost)
GPU memory capacity 4 GB
GPU memory bandwidth 224.3 GB/s
Bus interface PCIe 3.0 ⇥16 bus
Storage Samsung 850 EVO SSD 500 GB
OS Fedora 22 64-bit
Compiler CUDA 7.5 and gcc 5.11
Compiler option -O3 -arch=compute 52 -code=compute 52 -Xcompiler -fopenmp -lgomp

Driver 352.55

2.5.1 Parameter Configuration

We conducted preliminary experiments to identify execution parameters that achieve the
highest reconstruction performance; these parameters included (1) the granularity and shape
of thread blocks, (2) projection subset size N 0, and (3) subvolume size Z 0.
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Figure 2.7: Shepp-Logan phantom [94] reconstructed by our experimental machine.

The appropriate shape of the thread blocks was firstly investigated for the back-projection
kernel. Figure 2.8 shows the back-projection times, L1/texture cache hit rates, and L2 cache
hit rates for all rotational angles with di↵erent thread block shapes. As expected (see Section
2.4.1), square blocks of 16⇥16 threads achieved the highest performance with approximately
95% L1/texture cache hit rates. In contrast, the lowest performance was obtained with a
shape of 256 ⇥ 1 threads, which yielded a 50% L1/texture cache hit rate, observed around
rotational angles of 90 and 270 degrees. With these rotational angles, resident warps in
such non-squared thread blocks accessed wide rows of projections, thereby dropping the
L1/texture cache hit rate.

Next, as shown in Fig. 2.9, we investigated back-projection performance with di↵erent
projection subset sizes N 0 and thread block sizes. As shown in Fig. 2.9(a), setting N 0 = 20
and using blocks of 256 threads yielded the best performance for the medium dataset. As for
projection subset size N 0, Figs. 2.9(b) and 2.9(c) show that there was a trade-o↵ between the
L1/texture cache hit rate and the number of global memory accesses, as stated in Section
2.3.2. The number of global memory accesses here is given by 8 ⇥ X ⇥ Y ⇥ Z ⇥ N/N 0 in
bytes, because four-byte voxels are loaded and stored once per kernel invocation.

Conversely, the previous method [82] improved reconstruction performance by maximiz-
ing N 0 on the G80 architecture [69]; thus, this previous idea must to be adapted to the
new Maxwell architecture accordingly. In other words, the previous results partially agreed
with our results when N 0 < 20, where the number of global memory accesses decreased
with N 0, but back-projection time increased slightly with N 0 when N 0 > 20. As shown in
Fig. 2.9(b), excessive N 0 increased memory access strides and degraded L1/texture hit rates,
which outweighed the performance gain contributed by fewer kernel invocations and fewer
write accesses.

As noted earlier, global memory access bypasses the L1 caches; therefore, the L1/texture
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Figure 2.8: Back-projection performance and profiling results with di↵erent shapes of thread blocks and
rotational angles: (a) back-projection time, (b) L1/texture cache hit rate, and (c) L2 cache hit rate. These
results were obtained with a thread block size of 256 for the medium dataset, with N 0 = 20 and Z 0 = 512.

cache hit rate primarily corresponds to texture memory performance (i.e., the read through-
put of the back-projection kernel). In summary, an appropriate N 0 can be selected according
to the trade-o↵ mentioned above. Similarly, we found that N 0 = 20 and N 0 = 16 were the
best sizes (i.e., the trade-o↵ point) for the small and large datasets, respectively.

Next, we discuss thread block size. As we decrease the thread block size, more thread
blocks can be dispatched to each SM, which leads to higher occupancy; however, a thread
block size of 64 was too small for assigning a square region to the SMs. In this case, we
found that eight thread blocks were resident on each SM. Although each thread block was
responsible for a square 8 ⇥ 8 region, these eight squares appeared in a rectangular region
because of the cyclic assignment described in Section 1.2.2. Such a rectangular region cannot
be e�ciently back-projected from an unfavorable angle, as we presented in Fig. 2.8, for the
shape of thread blocks. In contrast, the number of resident thread blocks decreases as we
increase the thread block size; however, a thread block size of 512 was too large to maximize
the projection subset size N 0, because such a large thread block consumes more registers.
Execution for N 0 > 8 failed when using a thread block size of 1024. In summary, our solution
is to maximize the thread block size such that its shape is kept as a square (i.e., a block of
16⇥ 16 threads).

Finally, we minimized subvolume size Z 0 such that (1) the o↵-chip memory could hold
both a subvolume and a projection subset and (2) at least two subvolumes were generated
for overlapping file I/O time (Z/Z 0

� 2). Note that for all subvolumes, filtered projections
must be transferred to GPU memory. Consequently, the amount of data transfer between
CPU and GPU increases with Z/Z 0. According to this guideline, we used Z 0 = 256, 512,
and 128 for the small, medium, and large datasets, respectively.
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Figure 2.9: Back-projection performance and profiling results with di↵erent projection subset sizes N 0

and thread block sizes: (a) back-projection times, (b) L1/texture cache hit rates, and (c) number of global
memory accesses. These results were obtained with a medium dataset and Z 0 = 512.

2.5.2 Breakdown Analysis

Using the best parameters identified above, we investigated the impact of our data structure
and that of our I/O-included pipeline using di↵erent data sizes; results are summarized in
Table 2.3. Here, the layered texture e�ciently improved back-projection performance for the
small and medium datasets, achieving speedups of at least a factor of 1.44 over the given
baseline; however, speedup decreases to only a factor of 1.14 for the large dataset, which
fetches texels from projections that are four times as large. In this case, data size 4UV of
a projection reaches 16 MB, which immediately depletes the L1/texture and L2 caches. For
such large datasets, our pipeline increased speedup from a factor of 1.14 to that of 1.47 by
realizing overlapped file I/O steps (1) and (8), which consumed 31% of the overall time before
such overlapping was achieved. Thus, our I/O-included pipeline complements cache-aware
back-projection, thereby demonstrating large speedups for both small and large datasets.

Next, we investigated the breakdown of reconstruction time for the large dataset, with
our results summarized in Table 2.4. We evaluated the impact of our pipelined strategy;
thus, all comparative methods used the same cache-aware kernel during our measurements.
In addition, a non-pipelined version deployed synchronous APIs such that the sum of the
breakdowns never equaled the execution times of the pipelined versions, which deployed
asynchronous APIs. The previous method reduced the execution time from 265.5 s to 211.8 s,
and our proposed method further reduced the execution time to 159.6 s, achieving speedups
of 1.66 and 1.33 times the non-pipelined method and the previous method, respectively.
Thus, pipelining must be applied not only to the filtering and back-projection steps (2)–(7)
but also to file I/O steps (1) and (8).

With respect to the filtering stage, i.e., steps (1)–(4), the previous method had little
advantage over the non-pipelined implementation in that only data transfer stages (2) and
(4) were partially overlapped with filtering stage (3). In contrast, our proposed method
realized a full overlap, including file I/O stage (1), such that the execution time was reduced
from 59.6 s to 38.5 s.
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Table 2.3: Comparing the performance of our proposed method and previous method using di↵erent data
sizes. The baseline corresponds to Okitsu’s method [82] with the best parameters tuned for the Maxwell
architecture. Further, “Both strategies” corresponds to our proposed method.
Data size Step Baseline [82] Layered texture I/O pipeline Both strategies

Time (s) Time (s) Speedup Time (s) Speedup Time (s) Speedup
Small (6) Backproj. 1.7 1.1 1.55 1.7 1.00 1.1 1.55

Total 5.4 4.6 1.17 4.3 1.26 3.9 1.38
Medium (6) Backproj. 13.1 9.1 1.44 13.1 1.00 9.1 1.44

Total 31.3 25.9 1.20 25.0 1.25 21.8 1.43
Large (6) Backproj. 112.9 98.4 1.14 113.0 1.00 98.3 1.14

Total 234.3 211.8 1.11 166.1 1.41 159.6 1.47

Table 2.4: Breakdown analysis of execution times for the large dataset. Here, “No pipeline” means that all
steps were processed sequentially with synchronous APIs, whereas the “Previous pipeline” and “Proposed
pipeline” were processed asynchronously. These results were obtained with the large dataset, with N 0 = 16
and Z 0 = 256.

Step No pipeline Previous pipeline [82] Proposed pipeline
(1) T1: Storage ! CPU 36.9 — —
(2) T2: CPU ! GPU 3.2 — —
(3) T3: Ramp filtering 16.3 — —
(4) T4: GPU ! CPU 3.2 — —
(5) T5: CPU ! GPU 55.1 — —
(6) T6: Back-projection 98.4 — —
(7) T7: GPU ! CPU 5.4 — —
(8) T8: CPU ! storage 46.5 — —
(1)–(4) 59.6 58.1 38.5
(5)–(8) 205.4 153.7 121.1
Total 265.5 211.8 159.6

With respect to the back-projection stage, i.e., steps (5)–(8), the previous method over-
lapped step (5) with step (6), such that the corresponding execution time was reduced from
205.4 s to 153.7 s. Our method further realized an overlap of steps (7) and (8), thereby
reducing the execution time to 121.1 s. Note that step (8) for the last subvolume cannot be
overlapped with other steps. Similarly, step (1) for the first subvolume cannot be overlapped
with other steps.

2.5.3 E�ciency Analysis

To analyze the performance bottleneck of our method, we measured arithmetic performance,
L1/texture cache throughput, L2 cache texture load throughput, and texture fill rate using
the NVIDIA Visual Profiler; results are shown in Fig. 2.10. According to Eq. (2.2), each
voxel requires one pixel per projection; thus, the e↵ective texture fill rate can be given by
NXY Z/T6, where T6 is the back-projection time as shown in Table 2.4. The peak texture
fill rate was derived according to a boosted clock speed because the clock speed was boosted
during back-projection.
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Figure 2.10: Profiling results for di↵erent data sizes: (a) arithmetic performance in Gflop/s, (b) L1/texture
cache throughput, (c) L2 cache texture load throughput, and (d) e↵ective texture fill rate. FMA, ADD, and
MISC in (a) refer to fused multiply-add [77], addition, and other instructions, respectively. The horizontal
lines in (c) and (d) are peak memory bandwidth and peak texture fill rate, respectively, with the latter
derived according to the boosted clock speed presented in Table 2.2.

Our results indicate three key findings. First, Fig. 2.10(d) implies that the texture
fill rate determined reconstruction performance for the small and medium datasets. The
Maxwell architecture has eight texture units devoted to each SM; thus, 16 CUDA cores
share a single texture unit. Given these limited resources, the e↵ective texture fill rates
were limited to approximately 141.2 Gtexel/s, which is 9.3% lower than the peak (boosted)
value of 155.6 Gtexel/s. These e↵ective values were close to the peak (base) value of 144.1
Gtexel/s; thus, we conclude that our back-projection kernel is highly optimized for the
Maxwell architecture. As for the large dataset, we determined that the average L2 texture
read cache hit rate decreased to 55.8% due to the increased projection size, which decreased
the e↵ective texture fill rate to 104.9 Gtexel/s.

Second, our cache-aware method and the rich caching mechanism of the Maxwell architec-
ture moved the performance bottleneck from the o↵-chip memory bandwidth to the texture
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fill rate. As shown in Fig. 2.10(c), the e↵ective throughput was approximately one-quarter
of the theoretical peak value, which indicates that o↵-chip memory accesses do not limit
back-projection performance on the Maxwell architecture. These results were not observed
in the previous study [82], which concluded that o↵-chip memory access was the performance
bottleneck of the back-projection kernel on the G80 architecture.

Third, reconstruction performance for the large dataset was sacrificed due to limited
GPU memory. As compared to the medium dataset, the large dataset consisted of four
times larger xy-slices, which decreased the subvolume size Z 0 from 512 to 128. This decrease
in Z 0 led to more kernel executions and reduced the amount of memory accesses per warp,
i.e., 32N 0Z 0 in bytes, from 1.25 MB to 0.25 MB. An alternative solution for increasing Z 0 is
to partition the volume along the x- or y-plane instead of the z-plane; however, this solution
requires recombining the volume after reconstruction. Such a post-processing task will likely
slow the I/O-included pipeline.

2.5.4 Estimated Performance on the Future Architecture

In this subsection, we brief the evolution of the GPU architecture and give our analysis for
implementing the FDK algorithm with newer architecture. We listed three typical GPUs
with di↵erent architectures in Table 2.5: G80 (previous work [69]), GTX 980, RTX 2080
( [75], released in 2018). The theoretical texture fill-rate is calculated as GPU core clock
⇥ the number of texture units. From G80 to GTX 980, the core clock improved about
10%. Comparatively, texture units, Bandwidth and L1 cache size improved about 3–4⇥.
The most significant improvement is the L2 cache which increased by approximately 21⇥.
Here we use the middle size data to illustrate how the L2 cache size increase enables the
proposed cache-aware strategies. The volume is reconstructed layer by layer in z direction.
Threads blocks in the same kernel invocation will use similar coordinates to access pixels on
projection images. The texture units will fetch two rows from images for interpolation. The
data size is 2⇥1024⇥4B=8KB. If 20 images are packed into a single kernel invocation, the
data access will be 160KB. This is much larger than the L2 cache size on the G80 GPU,
which will cause cache hit-miss anyway for thread blocks with di↵erent shapes and sizes. If
we reduce the number of packed images, the kernel invocations will increase greatly. Owing
to those constraints, it is impossible to employ any cache-ware strategy on the G80 GPU.
With 2048KB L2 cache on the GTX 980, approximately 24 rows of 20 images can be cached.
This improved cache enables the proposed cache-aware strategies to move the bottleneck
from bandwidth bound to texture fill-rate.

Regarding the architecture transformation from GTX 980 to RTX 2080, the improve-
ments are similar for all the listed items, which are around 1.5–2⇥. We can see that although
a lot of new features (e.g. half-precision computing [75]) have been added in the last decade,
the memory hierarchy of GPUs and computing units to cache ratio has settle down. We
speculate that accelerating the FDK algorithm will be a compute-bound (mainly texture
fill-rate) problem.
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Table 2.5: GPU architecture comparsion.

G80 (previous work) GTX 980 RTX 2080
Architecture Tesla [69] Maxwell [82] Turing [75]
Core clock (GHz) 1.1 1.2 1.8
Texture units 32 128 184
Texture fill-rate (Gtextel/s) 35.2 155 348
Bandwidth(GB/s) 86.4 224.3 448
L1 cache (KB) 16 48 64
L2 cache (KB) 96 2048 4096

2.6 Conclusions

In this chapter, we presented a cache-aware optimization method to accelerate out-of-core
cone beam CT reconstruction on a GPU. Our proposed method extended the previous
method described in [82] and accelerated the FDK algorithm via three key strategies, i.e.,
an improved loop organization strategy, an improved data structure, and an I/O-included
pipeline. We also presented tuning guidelines for determining the best configuration for the
granularity and shape of thread blocks, as well as the projection subset size and subvolume
size, i.e., the granularity of I/O data to be streamed through the pipeline.

Our experimental results showed a trade-o↵ between the texture cache hit rate and the
number of memory accesses. We also found that it took 159.6 s on a GeForce GTX 980
to reconstruct a 20483-voxel volume from 1200 20482-pixel projections, consuming 50.8 GB
of memory. This reconstruction performance is approximately 1.47 times higher than that
achieved by the previous method [82]. Concerning GPU optimization, we found that it is
not necessarily more e�cient to compact as many tasks as possible into kernel execution
to decrease kernel executions. Instead, proper tuning is required to identify the optimum
number of tasks that will minimize the overall time required. With the aid of texture interpo-
lation and cache-aware strategies, our presented GPU implementation achieved performance
advantages over other computing platforms.
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Chapter 3

Reducing the Amount of Out-of-Core
Data Access for GPU-Accelerated
Randomized SVD

3.1 Introduction

SVD [34] is a matrix approximation algorithm that finds two orthogonal matrices U and
V and a diagonal matrix ⌃ of an input matrix A such that A = U⌃V>, where A can
be approximated with matrices smaller than itself by truncating U, V, and ⌃. Studies on
improving the performance and numerical stability of SVD algorithms have been ongoing
ever since its advent [28, 33, 55], and successfully applied to various fields, such as bioinfor-
matics [102, 107], physics [27, 41], and machine learning [10, 60, 121]. In particular, SVD
of dense tall-skinny matrices, whose the height (m rows) is at least one magnitude larger
than the width (n columns), is of great interest to researchers in computer vision [81], image
compression [6], facial recognition [103], and data analysis [40].

Recently, RSVD algorithms [39, 57, 64] have been proposed to further accelerate SVD
by exploiting the low-rank structure inherent in matrix data. Compared with classical de-
terministic algorithms [34], randomized algorithms have been shown to access the input
data less number of times, while maintaining the desirable accuracy of the approxima-
tion [39, 57, 64]. RSVD is typically build upon random sampling [22, 39] and power it-
eration methods [39, 54, 88]. The sampling method constructs a subspace of the input
matrix, which reduces dimension. The power method takes powers of A (i.e., A>A) to
increase the approximation accuracy. Both underlying methods can be implemented using
GEMM routines, whereas general matrix-vector multiplication (GEMV) [31] is required for
deterministic SVD computation. GEMM is more suitable for modern parallel computers,
where it achieves 20–40 times higher flop/s than GEMV [18, 31].

While matrix approximation, such as SVD, has been made e�cient based on randomiza-
tion methods, modern computing architectures, such as the use of the GPU accelerators [74],
enable the development of even faster algorithms by taking the advantage of parallel com-
puting. Nevertheless, there are a few major challenges that prevent matrix approximation
algorithms to fully benefit from the modern computing architectures. First, large matrix data
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may not fit into the GPU memory due to its limited capacity. Second, communication across
distinct memory hierarchies or networks often constitutes a performance bottleneck [18, 37]
due to the increasing gap between arithmetic and communication performance [15, 93].

The above challenges have been addressed using the following two strategies: communication-
avoiding algorithms [5, 42] reduce the communication of intermediate data during compu-
tation, whereas pass-e�cient algorithms [22, 23] save the memory bandwidth by reducing
the number of passes over data. As for the multi-pass RSVD [39], target data is passed over
2q + 1 times to attain a high-accuracy approximation, where q denotes the number of itera-
tions in the power method [39, 88]. By contrast, single-pass algorithms [101, 118] access the
target data in just one pass. However, single-pass algorithms include iterations to construct
a sketch [39, 101, 118], which have data dependency that avoids parallelization required
by the modern computing architectures. Furthermore, there exists an accuracy-performance
trade-o↵ in single-pass algorithms [101, 118]. Due to this accuracy issue, multi-pass RSVD is
preferred in convergence-sensitive applications such as RPCA, where the noise and low-rank
component in input data are typically separated in an iterative manner [14].

In this study, we focus on a multi-pass RSVD algorithm proposed by Martinsson et
al. [39, 64], which has a higher accuracy than single-pass algorithms according to solid error-
bound analysis. We extend this algorithm so that large tall-skinny matrices can be rapidly
decomposed using a divide-and-conquer method that reduces out-of-core data access on a
CPU-GPU heterogeneous system. Compared with previous in-core algorithms [106, 114],
which made the assumption that input and intermediate data can be fully stored in the
GPU memory, we consider an RSVD algorithm at scale, where the matrices include more
than 106 entries. Our out-of-core approach relaxes the limitation on the data size by allowing
the data to be stored in both the CPU and GPU memories.

The main contributions of this research include:

• Highly tuned, out-of-core GEMM with theoretical performance model.

Since GEMM is a building block of RSVD algorithms, we extensively tuned the GEMM
operation with theoretical performance analysis based on an extension of the roofline
model [111]. The extended model shows that GPU-accelerated out-of-core GEMM is
bandwidth bound for tall-skinny matrices. In addition, we present experimental re-
sults where our out-of-core scheme achieved higher performance than previous GEMM
schemes.

• Two out-of-core RSVD methods, namely Fused and Gram.

Both methods are based on three common schemes: (1) the above-mentioned out-of-
core GEMM scheme; (2) a data-access reduction scheme based on 1D data partitioning;
and (3) a first-in, first-out (FIFO) scheme that reduces CPU-GPU data transfer by
reverse iteration. The Fused method is a communication-avoiding algorithm because
the method merges GEMM operations to reduce the amount of the CPU-GPU data
transfer, (i.e., out-of-core data access). By contrast, the Gram method is a pass-
e�cient algorithm because the method explicitly computes the Gram matrix to reduce
the number of data passes (i.e., both in-core and out-of-core data access) from 2q + 1
to 3.
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• Case study with a practical application.

We apply the Gram method to nuclear norm minimization in an RPCA algorithm [10]
that heavily relies on SVD computation. We found that our GPU-based implementa-
tion provided 23.3⇥ faster RSVD computation compared with that of a CPU-based
implementation, doubling the RPCA performance for the video background subtrac-
tion.

Our source code, which will be included into the MAGMA package [2], is freely available at
http://www-ppl.ist.osaka-u.ac.jp/research/code/.

The rest of this chapter is organized as follows. Section 3.2 provides an overview of related
studies. Section 3.3 presents a technical background regarding RSVD. Section 3.4 outlines the
proposed highly tuned out-of-core GEMM scheme with its theoretical performance analysis
and preliminary evaluation. Section 3.5 details our proposed methods constructed over the
underlying GEMM scheme. Section 3.6 compares and contrasts the proposed methods with
the existing methods. Section 3.7 describes the case study with an RPCA application.
Conclusions and prospects for future work are provided in Section 3.8.

3.2 Related Work

In this section, we brief the related work regarding deterministic SVD algorithms, randomized
algorithms, and GPU-accelerated randomized algorithms.

3.2.1 Deterministic SVD Algorithms

In 1965, Golub and Kahan [33] proposed the first stable SVD algorithm for computers using
a bidiagonlization method. EISPACK [95] first implemented the bidiagonlization method
in Fortran. EISPACK was designed to run on a single-core CPU and was replaced by
LINPACK [20], which first implemented the SVD algorithm with Basic Linear Algebra Sub-
programs (BLAS) interface. The performance of LINPACK was limited by the level-1 BLAS
(BLAS1) implementation and benefited little from multi-core architectures [18]. LAPACK [4]
redesigned the SVD algorithm to use level-3 BLAS (BLAS3) routines wherever possible to
improve the performance on the multi-core CPUs. Recently, a two-stage bidiagonal reduc-
tion method has been proposed to adapt SVD to new computer architectures like GPU
accelerators [31].

Theoretically, deterministic SVD of a matrix A can be calculated with its Gram matrix
A>A, which is a well-known method [97]. However, forming the Gram matrix is usually
avoided due to its high computational cost in linear algebra packages like LAPACK [4]
or MAGMA [2]. In this work, we apply this idea to out-of-core RSVD computation; we
introduce a method which explicitly forms the Gram matrix to reduce the number of data
passes, i.e., the amount of in-core and out-of-core data access.

3.2.2 Randomized Algorithms

Randomized algorithms [28, 39, 57, 63, 64, 88, 89] have been proposed to reduce the time and
space complexities required for the approximation of high-dimensional data. The e�ciency
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of such algorithms in tackling large scale data has led to an increased interest from the HPC
community.

In general, randomized algorithms have a typical computation flow. First, they construct
a subspace of the input data using random sampling. Computation is then performed only
on the sampled subspace to reduce the costs of computation, communication, and storage.
Randomized algorithms are popular in the field of big data analytics, where large quantities of
data are missing or contain noise. There is a strong demand for low-precision approximation
that is useful for the restoration of the entire data and elimination of irrelevant data hindering
data analysis. Randomized algorithms typically employ one of the two sampling methods:
namely, uniform and nonuniform sampling methods.

The uniform sampling method uses independent and identically distributed random num-
bers as the entries of sampling matrices, which are then multiplied with the target matrix.
This method is also called random projection; it has a strong relative-error bound and widely
used in randomized matrix factorization [39]. The major objective of random projection is
to project the high-dimensional data onto a low-dimensional subspace by exploiting the
low-rank characteristics of the data [39]. Deterministic decomposition is then performed on
this subspace, and the decomposed results are projected back to form the full factorization.
However, uniform sampling has relatively higher computational cost compared with that
of nonuniform sampling. In particular, given a matrix A 2 Rm⇥n and sampling matrix
Q 2 Rn⇥`, it takes O(mn`) time to compute the sampled matrix AQ.

In contrast, the nonuniform sampling method constructs a subspace by selecting a certain
set of vectors from the target data. Given a matrix A 2 Rm⇥n, an importance sampling
distribution [22] of the input matrices is first computed to perform the selection. The distri-
bution and selection have the time complexity of O(mn), which is lower than the overhead
of the uniform sampling mentioned above. Moreover, nonuniform sampling has a higher ac-
curacy compared with that of uniform sampling. Hence, our base RSVD algorithm [39, 64]
deploys uniform sampling.

3.2.3 GPU-Accelerated Randomized Algorithms

Randomized algorithms have been implemented on GPUs to achieve further acceleration.
For example, low-rank approximations of dense matrices were computed and evaluated with
a truncated SVD [51] and a truncated QR factorization with column-pivoting [65]. The
RSVDPACK library [106] contains a set of randomized algorithms for computing low-rank
matrix approximations on a single GPU. These studies assume that the matrix data are
small enough to fit into the GPU memory. Therefore, the maximum data size was limited
by the capacity of the GPU memory, which is an order of magnitude smaller than that of
the CPU memory.

As for large matrices whose data size exceeds the capacity of the GPUmemory, traditional
matrix factorization algorithms have been investigated for more than a decade [2, 105]. For
example, divide-and-conquer methods have been proposed to perform out-of-core LU [13],
QR, or Cholesky factorization [115, 116]. Similarly, underlying BLAS routines have been
extended to deal with large matrices. To the best of our knowledge, cuBLAS-XT [76] is
the first library, implementing the out-of-core BLAS routines. BLASX [109] deploys a least
recently used cache management scheme to implement the BLAS routines for out-of-core
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matrices, which aims at reducing the amount of the data transfer between the CPU and
GPU.

While GPUs are widely used as accelerators for memory- or compute-intensive applica-
tions, GPU programming is still not easy partly due to its complex memory hierarchy levels.
In particular, application developers are required to manually manage CPU and GPU mem-
ories to gain a high performance of GPU-based systems. To deal with this issue, NVIDIA
introduced Unified Memory [77], that realizes an integrated memory space available from
both the CPU and GPU. This capability frees application developers from explicitly man-
aging data movement between the CPU and GPU. Furthermore, Unified Memory accepts
large data that may exceed the capacity of the GPU memory.

3.3 RSVD Algorithm

Algorithm 3 lists a pseudocode of the RSVD algorithm [39, 64]. Given a matrix A 2 Rm⇥n,
the target rank k, oversampling parameter o, and power iteration count q, the algorithm
outputs matrices ⌃, U, and V, where ⌃ is the diagonal matrix whose diagonal entries
approximate the k-largest singular values of A, and U and V approximate the corresponding
left and right singular vectors, respectively. The oversampling parameter o is added to the
target rank k to guarantee the approximation accuracy for matrices with a slow singular
value decay.

First, the RSVD algorithm generates the basis vectors P and Q that approximate the
range and domain of the matrix A, respectively. The power iteration method in lines 2–7
improves the approximation accuracy. During these q power iterations, basis vectors of P
and Q are orthogonalized to maintain the numerical stability. After the power iterations,
QR factorization is performed on P in line 9 such that the upper triangular matrix B is the
projected matrix of dimension ` ⇥ ` (i.e., B = PTAQ). In other words, a small matrix B
can be created by GEMM when matrix A is low-rank, i.e., rank(A) = k ⌧ min(m,n). This
small matrix B is useful for revealing the SVD of the original matrix A at low cost. The
SVD of B is then computed by deterministic SVD in line 10. Finally, the left singular vector
eU and right singular vector eV are projected back onto P and Q to generate the left and
right singular vectors of A in lines 12 and 13, respectively.

The orthogonalizations in lines 4 and 6 of Algorithm 3 ensure that the di↵erent columns
of P or Q converge to di↵erent dominant singular vectors. However, the original RSVD
algorithm [64] was later improved to skip the orthogonalization of P [39]. Halko et al. [39]
used a diverse collection of real applications to illustrate the accuracy and stability of RSVD
with skipping the orthogonalization of P. Their test cases included the adaptive range
approximation in physics, the graph Laplacian approximation in image processing and the
face recognition in machine learning. Similar studies [25, 81] were presented based on the
improved algorithm [64]. Thus, the orthogonalization of P can be skipped depending on
the accuracy required by the target application; this improvement is widely accepted for
practical applications.

Algorithm 3 indicates that RSVD is dominated by GEMM computation in lines 3 and
5 with access to the large tall-skinny matrix A, which we assume not to fit in the GPU
memory. Therefore, a straightforward solution deploys the out-of-core GEMM routines that
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Algorithm 3: Multi-pass RSVD. Function orth(·) orthogonalizes the column vec-
tors while functions qr(·) and svd(·) return the QR factorization and deterministic
SVD of a matrix, respectively. We use e⌃(1 : k, 1 : k) and eU (:, 1 : k) to denote the
leading k ⇥ k submatrix of e⌃ and the submatrix consiting of the first k columns of
eU, respectively.

Input : matrix A 2 Rm⇥n, target rank k, oversampling parameter o and power
iteration count q.

Output: ⌃, U and V such that A ⇡ U⌃V> with k ⇥ k diagonal ⌃, and
orthonormal column vectors U and V.

1 Generate a random matrix Q ⇠ N (0, 1)n⇥`, where ` = k + o.
2 for i = 1 to q do
3 P = AQ;
4 P = orth (P) ; // if needed

5 Q = A>P;
6 Q = orth(Q)
7 end
8 P = AQ;
9 [P, B] = qr (P) ;

10

h
eU, e⌃, eV

i
= svd (B) ;

11 ⌃ = e⌃(1 : k, 1 : k);

12 U = PeU (:, 1 : k) ;

13 V = QeV (:, 1 : k) ;

o✏oad heavy computation to GPUs. In this case, the amount of CPU-GPU data transfer
increases linearly with the number q of power iterations because A is accessed 2q + 1 times
in Algorithm 3. Thus, RSVD solvers for large data rely on out-of-core GEMM, whose
performance fluctuates drastically according to divide-and-conquer strategies. In the next
section, we provide theoretical analysis and empirical results to reveal that out-of-core RSVD
is bandwidth bound requiring a data-access reduction scheme to minimize the amount of data
transfer between the CPU and GPU.

3.4 GPU-Accelerated Out-of-Core GEMM

In this section, we first extend the roofline model [111] to investigate the upper bound of the
GPU-accelerated out-of-core GEMM performance. We then propose a 1D partition scheme
for tall-skinny matrices and compare our GEMM implementation with several existing im-
plementations.

The following analysis and experiments were conducted in double precision using an ex-
perimental system equipped with two Intel 8-core Xeon Silver 4110 CPUs and two NVIDIA
Tesla V100 (Volta) GPUs [74]. These CPUs had 96 GB of DDR4-2133 main memory and
provided a double precision peak performance of 0.67 Tflop/s in total. Each GPU had 16 GB
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of GPU memory with theoretical peak performance of 7.0 Tflop/s in double precision. Each
GPU was connected to the CPU via a PCIe 3.0 link allowing bidirectional transfer between
the CPU and the GPU. In our system, we observed 6.9 Tflop/s for in-core GEMM compu-
tation, and the e↵ective transfer bandwidth per PCIe link was 13.1 GB/s and 12.8 GB/s for
CPU-to-GPU and GPU-to-CPU, respectively. The CPU and GPU implementations used
Intel MKL 2018.0.3 [48] and cuBLAS 9.2 [76], respectively, for processing in-core GEMM
operations. In addition, we used MAGMA 2.4 [2] and LAPACK 3.7 [4] to evaluate the
approximation accuracy and initialize multi-threaded computation.

3.4.1 Performance Model

We now propose a performance model based on the roofline model [111] to investigate an
upper bound of the GPU-accelerated out-of-core GEMM performance. The roofline model is
useful for locating the performance bottleneck, i.e., either arithmetic or memory operations,
which limits the entire performance of linear algebra algorithms [36, 110]. Considering the
roofline model, the attainable performance in flop/s can be defined as

T = min

✓
F

D
B, C

◆
, (3.1)

where F denotes the number of floating point operations, D denotes the amount of mem-
ory access, B denotes the peak memory bandwidth and C denotes the peak computational
performance of the target hardware. The term F/D is called operational intensity, which
represents the ratio of floating point operations to total data access. The operational inten-
sity is the key algorithmic factor that determines attainable flop/s, whereas the remaining
parameters B and C depend on the target hardware.

In the following discussion, we consider DGEMM, C = ↵AB + �C, to investigate the
performance of the tall-skinny GEMM, P = AQ, where P 2 Rm⇥`, A 2 Rm⇥n (m � n)
and Q 2 Rn⇥`, which appears in the power iteration in line 3 of Algorithm 3. Since our
focus is on the tall-skinny A, we assume that (1) the large matrix A must be partitioned
into smaller blocks to be processed with a divide-and-conquer strategy, and (2) the small
projection matrix Q fits into the GPU memory and hence is broadcast to all GPUs. In
addition, we assume that (3) the input and output matrices exist in the CPU memory; (4)
m, n, and ` are multiplies of the block dimension b to simplify the discussion; and (5) the
DGEMM implementation sends the output matrix C to the GPU even if � = 0.

To illustrate the impact of matrix shapes on the out-of-core GEMM performance, we
substituted the operational intensity with the matrix size parameters such as m, n, and
`. The flop F of GEMM was fixed to 2mn` for double precision GEMM. By contrast, the
memory access cost D was interpreted as CPU-GPU data transfer cost to consider the out-
of-core execution on the GPU. Furthermore, the cost D was appropriately selected according
to the two data partition schemes as follows.

1. Row-wise 1D partition scheme with block dimension b (Fig. 3.1). According to this
scheme, m/b blocks in total must be computed for the matrix P. Each block requires
b⇥n entries in A and n⇥ ` entries in Q to compute all entries in the block. Providing
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Q can be reused on the GPU, and
⇣Pm/b

j=1 bn
⌘
+ n`+m` = mn+ n`+m` entries are

transferred from the CPU to GPU and m` entries for the opposite direction. Assum-
ing bidirectional transfer between the CPU and GPU, the data transfer cost can be
calculated as D = mn+n`+m`. Therefore, the attainable performance T1 for the 1D
partition scheme can be written as

T1 = min

✓
2mn`

mn+ n`+m`
B, C

◆
. (3.2)

2. 2D partition scheme with the block dimension b⇥b, where b is the block size. According
to this scheme, m`/b2 blocks in total must be computed for the matrix P. Each block
requires b⇥ n entries in A and n⇥ b entries in Q to compute all entries in the block.

Providing Q can be reused on the GPU, and
⇣Pm`/b2

j=1 bn
⌘
+n`+m` = mn`/b+n`+m`

entries are transferred from the CPU to GPU and m` entries for the opposite direction.
Assuming the bidirectional transfer scheme mentioned above, the data transfer cost can
be calculated as D = mn`/b + n` + m`. The attainable performance T2 for the 2D
partition scheme can be written as

T2 = min

✓
2mn`

mn`/b+ n`+m`
B, C

◆
. (3.3)

Equations (3.2) and (3.3) can be further simplified by considering the shape of the matrix
Q. In more detail, the parameter ` can be eliminated for the following two cases: (1) square
matrix (` = n) and (2) tall-skinny matrix (` = n/10, for example). After this elimination,
Eqs. (3.2) and (3.3) can be rewritten as functions ofm and n. Consequently, the performance
upper bound can be shown on a 2D heatmap, where the vertical and horizontal axes are the
matrix dimensions m and n of A, respectively (Fig. 3.2).

Figure 3.2 clearly demonstrates that a higher performance illustrated as a red area can
be expected only with the 1D partition scheme. With respect to the 2D partition scheme
shown in Figs. 3.2(c) and 3.2(d), the performance upper bounds are strictly limited for both
the square and tall-skinny shapes of the matrix Q with less than 1 Tflop/s due to the narrow
bandwidth of the CPU-GPU data transfer. The same limitation can also be found for the 1D
partition scheme; however, the maximum performance reached up to 7 Tflop/s in this case.
Another remarkable point here is that the shape of the matrix A also strongly impacts the
performance upper bound if the matrix Q is tall-skinny, which is demonstrated by a larger
blue area in Fig. 3.2(b) compared with that in Fig. 3.2(a). Thus, the transfer bandwidth
between the CPU and GPU limits the GPU-accelerated out-of-core GEMM performance for
the tall-skinny A (m� n), which frequently appears in big data analytics.

In summary, we make the following observations about the extended performance model.

• Row-wise 1D data partition is a promising solution for the GEMM operations of large
tall-skinny matrices because this solution minimizes the amount of CPU-GPU data
transfer.

• 2D data partition inevitably increases the amount of CPU-GPU data transfer limiting
the out-of-core GEMM performance. The performance will deteriorate, especially for
the tall-skinny GEMM operations, which are the main focus of our research.
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Figure 3.1: Proposed row-wise 1D partition scheme for tall-skinny GEMM. (a)P = AQ (line 3 of Algorithm
3), where A is partitioned into blocks and Q is broadcasted among GPUs. (b) Q = A

>
P, where Q is

accumulated by reduction. Blocks are assigned to CUDA streams [77] in a round-robin fashion (i.e., block-
cyclic distribution as illustrated with di↵erent colors). Because P is computed in a block-wise manner, the
GPU is allowed to store the part of P.

3.4.2 Row-wise 1D Partition Scheme for Out-of-Core GEMM

We propose a row-wise 1D partition scheme for the two GEMM operations applied to tall-
skinny matrices in lines 3 and 5 of Algorithm 3. We use row-wise partition rather than
column-wise partition for the following two reasons.

• Lower data transfer cost. The outer-product update of the matrix P results in a large
amount of CPU-GPU data transfer for each GEMM computation if the tall-skinny A
is partitioned into 1D column blocks. Furthermore, the column-wise partition requires
multiple bu↵ers and a complicated synchronization mechanism to accumulate the up-
dates from di↵erent blocks. In contrast, the row-wise partition allows per-block GEMM
operations to be data-independent without a race condition. This asynchronous prop-
erty enables the pipelined execution of partitioned blocks, where data transfers are
e�ciently overlapped with GEMM computation. In more detail, software pipelining
can be implemented using CUDA streams [77].

• Higher GEMM performance. GEMM routines generally run faster for square matri-
ces rather than tall-skinny matrices. Compared with the column-wise partition, the
row-wise partition generates square-like blocks, which are useful for maximizing the
performance of per-block GEMM operations.

Figure 3.1 illustrates how we apply our 1D partition scheme to the GEMM operations
in the RSVD algorithm. As shown in Fig. 3.1(a), we partition the tall-skinny matrices A
and P into blocks for the first GEMM, P = AQ. Given the block size b, this partition
scheme generates m/b blocks for each A and P, each having dimensions of b⇥ n and b⇥ `,
respectively. The small n ⇥ ` matrix Q is initialized on the CPU and then broadcast to
all GPUs to allow them to independently call the cuBLAS routines for applying the in-core
GEMM operations to blocks. The second GEMM, Q = A>P, is based on an outer-product
of Q. Similar to the process illustrated in Fig. 3.1(a), we broadcast Q to all GPUs for
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Figure 3.2: Performance upper bound of GPU-accelerated out-of-core GEMM: P = AQ, where P 2 Rm⇥`,
A 2 Rm⇥n and Q 2 Rn⇥`. Row-wise 1D partitioning results for (a) square (` = n) and (b) tall-skinny
matrices Q (` = n/10). 2D partition results for (c) square (` = n) and (d) tall-skinny matrices Q (` = n/10).
Hardware specific parameters were set for the Tesla V100 GPU: B = 13 GB/s and C = 7 Tflop/s. Both
partition schemes used the block size b of 1024, which was the default setup of cuBLAS-XT [76].

processing blocks in parallel (Fig. 3.1(b)). A reduction of small Q is followed after finishing
all GEMM operations.

As mentioned above, GEMM is not universally e�cient for tall-skinny matrices. This low
e�ciency is due to the computation of tall-skinny GEMM, which is closer to GEMV (BLAS2
routines) than GEMM (BLAS3 routines). The BLAS2 routines are less e�cient than the
BLAS3 routines due to vector accesses that degrade cache hit rate on both the multi-core
CPU and GPU; BLAS3 routines are 20–40 times more e�cient than BLAS2 routines [18, 31].
Regarding the in-core performance of tall-skinny GEMM, Chen et al. [11] achieved 1.1–3.0⇥
speedups over cuBLAS for tall-skinny matrices with up to 16 columns. Their GEMM solution
can be easily integrated into our RSVD solver, but the maximum number of columns is
limited by 16, mainly due to the limitation on computational resources, such as register files.

In the following discussion, we use the sub-matrix notation [34, 39] to denote the block
matrix; each block of A is expressed as A(J,:) 2 Rb⇥n, where J is an ordered set of indices
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defined as J = [jb, jb+ 1, . . . , jb+ b� 1] for the j-th block (j � 0).

3.4.3 Performance Tuning and Comparison of Out-of-Core GEMM

We first tuned our out-of-core GEMM implementation with respect to the block size b. Fig-
ure 3.3 illustrates the measured performance with di↵erent block sizes, ranging from 512 to
8192. The block size was also maximized to measure the performance without data parti-
tion; due to the lack of data partition, we failed to execute large matrices of m � 2 ⇥ 105

entries. Similarly, we measured the performance of a multi-threaded CPU implementation
for reference. All except one of the setups allocated matrices in the pinned CPU mem-
ory. Pinned CPU memory gives higher performance for CPU-GPU data transfer in GPU
programming [77].

Figure 3.3 demonstrates that the pinned memory was faster than the pageable memory;
the e↵ective bandwidth from the pinned memory to the GPU memory was 1.7 times higher
than that from the pageable memory. Hence, we allocated matrices in the pinned memory for
the rest of the experiments. We also observed that the performance for the maximum block
size (b = max) was significantly degraded due to the lack of overlapped execution; there
were no partitioned blocks that could be processed in the pipeline. Therefore, data partition
schemes are necessary to maximize the performance of the out-of-core GEMM operations.

As mentioned in Section 3.4, the in-core GEMM computation ran at 6.9 Tflop/s, which
was close to the theoretical peak of 7.0 Tflop/s. With respect to the out-of-core GEMM
computation, Fig. 3.3 demonstrates that there is some margin between the theoretical upper
bound and the measured results. This margin occurred due to data partition, which applies
GEMM operations to the partitioned blocks. In other words, partitioned blocks are not
su�cient large to maximize the e↵ective performance; in-core GEMM runs without such
data partition. However, small blocks are required to overlap CPU-GPU data transfer with
GPU computation.

As for the block size, a trade-o↵ point must be found to maximize the performance of
1D partition scheme. For small block sizes of b  2048, we observed only 8–11 GB/s of
CPU-GPU transfer bandwidth and 8.3–9.3 Gflop/s of arithmetic performance, because the
parallelism in each small block was not su�cient to achieve the maximum e�ciency on the
GPU. On the other hand, the maximum block size b = max resulted in a poor performance
due to ine�cient execution of the pipeline. Weighing the trade-o↵s here, we selected b = 4096
for the following experiments.

We now compare and contrast the performance of out-of-core GEMM implementation
against that obtained with previous out-of-core GEMM implementations: cuBLAS-XT [76]
and BLASX [109]. Figure 3.4 illustrates the performance comparison when using a single
Tesla V100 GPU. Among these implementations, the proposed GEMM was the fastest in
most cases. Note that cuBLAS-XT was evaluated with the following three setups: (1) 2D
partition with pinned memory (default); (2) 1D partition with pinned memory; and (3) 1D
partition with Unified Memory. As for 1D partition, we set the block size as b = n, which
enforced the row-wise 1D block partition. Among these setups, the highest performance was
obtained when using the second setup, i.e., 1D partition with pinned memory. The default
setup failed to achieve high performance for the out-of-core GEMM operations; this behavior
is consistent with Eqs. (3.2) and (3.3), which imply that 2D partition transfers more entries
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Figure 3.3: Out-of-core GEMM performance with di↵erent block sizes b on a single Tesla V100 GPU.
Measured results for (a) small (` = n = 1000) and (b) large square matrices (` = n = 5000). The maximum
block size (b = max) indicates the performance without data partition. A multithreaded CPU version was
also evaluated on two 8-core CPUs. Note that the upper-bound line is curved because the horizontal axis of
our extended model is the height of matrix A, which is di↵erent from that (i.e., the operational intensity)
of the original roofline model.

than 1D partition. Therefore, excessive data transfers saturated the CPU-GPU bandwidth,
resulting in a lower performance. While enforced 1D partition significantly increased the
performance, there was still a performance gap compared with that of the proposed GEMM.
The advantage of the proposed GEMM implementation comes from manual broadcast of the
small matrix Q to GPUs (Fig. 3.1(a)), which reduces the amount of CPU-GPU data transfer
for all block GEMM operations. We obtained similar results for another GEMM operation
in the power method (Q = A>P in Fig. 3.1(b)).

With Unified Memory, we failed to increase the performance for larger m even with 1D
partition. We speculate that Unified Memory failed to e�ciently deal with the complicated
memory access pattern. It is not easy to automate CPU-GPU data transfer without explicitly
managing the memory. Finally, BLASX performed stably for all setups (Fig. 3.4). However,
the maximum matrix size was limited to m  2 ⇥ 106 entries; matrices larger than the
maximum size resulted in an execution failure without any error message.

We also evaluated the speedups of the considered implementations on two Tesla V100
GPUs (Fig. 3.5). For each implementation, we used the same implementation as the baseline,
which ran on a single V100 GPU. All implementations except Unified Memory demonstrated
increased speedups as m grows; the speedups reached around 1.8⇥ for m � 2⇥ 104 demon-
strating a scalable performance on two GPUs. By contrast, small matrices of m < 1 ⇥ 104

resulted in low speedups, due to the overheads of GPU initialization that took up around
30% of the overall execution time. Similarly, cuBLAS-XT with Unified Memory degraded
the GEMM performance when using two GPUs.
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Figure 3.4: Performance comparison of the out-of-core GEMM implementations on a single Tesla V100
GPU. Results with di↵erent shapes for the matrix Q: (a) tall-skinny (n = 5000, ` = 500), (b) short-wide
(n = 500, ` = 5000), (c) small square (` = n = 1000) and (d) large square (` = n = 5000). BLASX is a
high-level library that hides specific data partition and memory allocation methods.

3.5 Proposed Out-of-Core RSVD Methods

We first describe the basic scheme that uses 1D partition for out-of-core RSVD computation.
We then present a FIFO scheme that reduces the amount of CPU-GPU data transfer by
employing the reverse iteration. We further elaborate on two methods, namely Fused and
Gram, which are our main contribution to this work. Both the Fused and Gram methods
are built upon the basic and FIFO schemes.

Table 3.1 summarizes the computational and communication costs of all proposed vari-
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Figure 3.5: Speedup of the out-of-core GEMM implementations on two Tesla V100 GPUs. Results with
di↵erent shapes for the matrix Q. (a) tall-skinny (n = 5000, ` = 500), (b) short-wide (n = 500, ` = 5000),
(c) small square (` = n = 1000) and (d) large square (` = n = 5000). For each implementation, we executed
the same implementation on a single GPU to compute the speedup.

ations. This table considers only the power method, which is the main contribution of the
chapter. As shown in Table 3.1, our main concern is to reduce the amount of CPU-GPU
data transfer, which limits the performance of out-of-core computation on the GPU. We
also show a pipelined mechanism to overlap kernel execution with data transfer. As for ker-
nel optimization, our approach is to deploy vendor’s optimized GEMM kernels with tuned
execution setups, as investigated in Section 3.4.3.
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Table 3.1: Comparison of the proposed methods in terms of computational cost, the number of data passes,
and CPU-GPU data transfer cost. The number of data passes and CPU-GPU data transfer cost correspond
to in-core access cost and out-of-core access cost, respectively. We consider matrix A to evaluate the number
of data passes. Both the Fused and Gram methods adopt the FIFO scheme to reduce the CPU-GPU data
transfer cost.
Method F : # of floating point operations # of data passes D: CPU-GPU data transfer cost
Basic (data-access reduction) (2q + 1)mn` 2q + 1 (2q + 1)mn
FIFO (reverse iteration) (2q + 1)mn` 2q + 1 < (2q + 1)mn
Fused (2q + 1)mn` 2q + 1 < (q + 1)mn
Gram mn2 + qn2`+mn` 3 < 2mn

3.5.1 Basic and FIFO Schemes for Reducing Out-of-Core Data
Access

As summarized in Table 3.1, a straightforward divide-and-conquer implementation of RSVD
passes A for 2q + 1 times with the proposed 1D scheme, where A and P are partitioned,
whereas Q is broadcast to all GPUs (Fig. 3.1). The QR factorization of P in line 9 of
Algorithm 3 is computed using Cholesky factorization [96] shown in Algorithm 4. In Algo-
rithm 4, the GEMM operation at line 4 can be processed by calling the GEMM function,
such as the cublasDgemm() kernel of the cuBLAS library. Algorithm 4 only transfers small
` ⇥ ` matrices B and R between the CPU and GPU because Algorithm 3 stores the input
matrix P in the GPU memory (at line 8) before processing the QR factorization. Note that
the data transfers are omitted in Algorithm 4 to simplify its description. Both SVD and
QR procedures in line 10 of Algorithm 3 and line 6 of Algorithm 4, respectively, can be
implemented using the standard LAPACK routines. We denote this implementation as the
basic scheme.

The basic scheme can be easily improved by reorganizing the loop structure. Algorithm 5
presents the FIFO scheme that requires less access toA. As shown in lines 7–9, the execution
order of iterations for computingQ is reversed such that blocks ofA(J,:) from the first GEMM
in line 5 can be reused for that for the second GEMM in line 8; the data transfer of A(J,:)

occurs only before the first GEMM in line 5, where the CUDA kernel is invoked from the
CPU. As compared with the basic scheme, this data reuse on the GPU reduces the amount
of CPU-GPU data transfer; at the same time, the reduced amount depends on the number
of blocks that can be stored at once in the GPU memory (Table 3.1). In addition to this
data reuse, blocks can be further reused across di↵erent iterations, i.e., the second GEMM
at the current i-th loop can be reused for the first GEMM at the next (i+ 1)-th loop. Note
that the worst case of mn+2q(m�b)n occurs when the GPU memory can hold only a single
block of A(J,:); all blocks of the total size mn are sent to the GPU at the first data access
to A (i = 1, lines 4–6), then a block of b ⇥ n entries is reused 2q times by the following
GEMM. By contrast, the best case of mn can be obtained when the GPU memory can hold
all blocks of A(J,:); however, this contradicts to our assumption that data size exceeds the
GPU memory capacity.
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Algorithm 4: QR Factorization. Function chol(·) returns the Cholesky factoriza-
tion of a matrix.
Input : P 2 Rm⇥`.
Output: P 2 Rm⇥` and R 2 R`⇥`.

1 B = 0`⇥` ; // Initialize B with all 0

2 s = m/b ; // # of blocks

3 for j = 1 to s do
4 B += P>

(J,:)P(J,:)

5 end
6 R = chol(B) ; // factored on CPU

7 for j = 1 to s do
8 P(J,:) = P(J,:)R�1

9 end

Algorithm 5: FIFO scheme. This method replaces lines 2–8 of Algorithm 3.

Input : A 2 Rm⇥n,Q 2 Rn⇥`, block size b and power iteration count q.
Output: P 2 Rm⇥`,Q 2 Rn⇥` and B 2 R`⇥`.

1 B = 0`⇥` ; // Initialize B with all 0

2 s = m/b ; // # of blocks

3 for i = 1 to q do
4 for j = 1 to s do
5 P(J,:) = A(J,:)Q;
6 end
7 for j = s to 1 do
8 Q += A>

(J,:)P(J,:) ; // reuse 1D blocks

9 end
10 [Q, ⇠] = qr(Q);
11 end
12 for j = 1 to s do
13 P(J,:) = A(J,:)Q;
14 B += P>

(J,:)P(J,:);

15 end

3.5.2 Fused Method for Reducing Out-of-Core Data Access

The amount of CPU-GPU data transfer can be further reduced by taking the advantage of
the fact that the orthogonalization of P in line 4 of Algorithm 3 can be omitted in many
practical applications, as mentioned in Section 3.3. Algorithm 6 shows the Fused method
that skips the orthogonalization of P. Consequently, the two block GEMM operations in
lines 5 and 8 of Algorithm 5 can be processed in a single Fused loop, as shown in lines 6–7
and 11–12 of Algorithm 6. After this loop fusion, the two GEMM operations are performed
with the same block A(J,:) to compute P(J,:) and eQ before accessing the next block; the
if-else statement in lines 4–14 is used to process A(J,:) in inverse order such that the
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Algorithm 6: Fused method. This method replaces lines 2–11 of Algorithm 5.

Input : A 2 Rm⇥n, Q 2 Rn⇥`, block size b and power iteration count q.
Output: P 2 Rm⇥` and Q 2 Rn⇥`.

1 eQ = 0n⇥` ; // Initialize eQ with all 0

2 s = m/b ; // # of blocks

3 for i = 1 to q do
4 if i%2 == 1 then
5 for j = 1 to s do
6 P(J,:) = A(J,:)Q;

7 eQ += A>
(J,:)P(J,:) ; // reuse 1D blocks

8 end
9 else

10 for j = s to 1 do
11 P(J,:) = A(J,:)Q;

12 eQ += A>
(J,:)P(J,:) ; // reuse 1D blocks

13 end
14 end

15 [Q, ⇠] = qr(eQ);
16 end

blocks can be reused in the next i loop. Consequently, the matrix A is transferred only once
in every iteration, and thus, the amount of CPU-GPU data transfer is reduced to (q+1)mn.
Combined with the FIFO scheme, the worst case of mn + q(m � b)n occurs when only a
single block of P(J,:) is reused, whereas the best case of mn is obtained when all blocks are
reused at all GEMM operations.

Recall here that each block GEMM operation is processed by calling the GEMM kernel,
which runs on the GPU. Therefore, the if-else statement in Algorithm 6, which exists
outside the CUDA kernel function, is executed on the CPU. Consequently, there is no concern
on warp divergence issues [77], which degrade the performance on the GPU.

The Fused method requires an additional memory space for storing eQ, which has the
same size as the sampling matrix Q. However, this additional cost is negligible because the
size of Q is assumed to be small (` ⇥ `). With respect to the number of data passes, the
Fused method requires the same number 2q + 1 of data passes as the basic scheme.

3.5.3 Gram Method for Reducing In-Core and Out-of-Core Data
Access

Similar to the Fused method, the Gram method skips the orthogonalization of P in line 4 of
Algorithm 3. Therefore, every power iteration computes the following equation:

Q = orth(A>(AQ)). (3.4)
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We explicitly form the Gram matrix as G = A>A 2 Rn⇥n, and thereby, Eq. (3.4) is
mathematically equivalent to the following equation:

Q = orth(A>(AQ)) = orth((A>A)Q) = orth(GQ). (3.5)

As mentioned in Section 3.2.1, forming the Gram matrix is usually avoided due to its high
computation cost; however, we do that to reduce the number of data passes, i.e., the amount
of in-core and out-of-core data access.

Algorithm 7 lists a pseudocode of our proposed Gram method. The power method is
applied to the Gram matrix G without accessing A in lines 6–9 of Algorithm 7, so that the
number of data passes is reduced to 3, which is independent from q. These q-independent
passes prevent the performance degradation if some data present a slow singular decay
pattern that requires more power iterations to form the approximation [39]. In this case,
the communication cost with more passes to A incurs a tremendous burden on the narrow
CPU-GPU bandwidth.

For 1D partition of A, GEMM operations for forming G (lines 3–5 of Algorithm 7) can
be processed with the data transfer cost of mn. However, the Gram method increases the
number of floating-point operations from (2q + 1)mn` to mn2 + qn2`+mn`; mn2 and qn2`
correspond to lines 3–5 and 6–9 of Algorithm 7, respectively. Despite this extra computa-
tion, the Gram method reduces the amount of CPU-GPU data transfer to less than 2mn
when combined with the FIFO scheme (Table 3.1). Considering the large gap between the
communication cost and computational cost, we believe that forming G reduces the overall
run time at the expense of increased floating-point operations. We experimentally validate
this assumption in Section 3.6.

3.5.4 Implementation details

We implemented all of the proposed methods with the underlying GEMM operations tuned
in Section 3.4.3. In addition, we integrated the following techniques into our RSVD solver.

Kernel optimization: The MAGMA library [2], which wraps the CUDA library, was
deployed for all GEMM operations, GPU initialization, memory management, and data
transfer. The MAGMA library assumes that (1) matrices are stored in column-major for-
mat and (2) the leading dimension of matrices are round up to multiples of 32. These
assumptions are useful for maximizing e↵ective memory bandwidth by achieving memory
access coalescing [77] on the GPU. For QR and deterministic SVD computations on the
CPU, we used the potrf() and gesvd() routines included in LAPACK [4], respectively.

Software pipeline: A double bu↵ering approach was implemented to realize a software
pipeline mechanism to overlap CUDA kernel execution with CPU-GPU data transfer. In
more detail, our solver creates two CUDA streams [77] per GPU. Each stream, wrapped inside
the MAGMA queue structure [2], runs asynchronously so that overlapping can be achieved
to maximize the entire performance. For the GEMM operation at line 5 of Algorithm 5, a
CUDA stream calls a single cuBLAS CUDA kernel on a bu↵er while another stream executes
data transfer on another bu↵er.

Multi-GPU execution: Our solver assigns matrix blocks to GPUs in a round-robin
fashion. For the FIFO and Fused methods, each GPU obtains intermediates of B and Q
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Algorithm 7: Gram method. This method replaces line 1–11 of Algorithm 5.

Input : A 2 Rm⇥n, Q 2 Rn⇥` and block size b.
Output: Q 2 Rn⇥`.

1 G = 0n⇥n ; // Initialize G with all 0

2 s = m/b ; // # of blocks

3 for j = 1 to s do // G = A>A: form Gram matrix with 1D partition of A
4 G += A>

(J,:)A(J,:)

5 end
6 for i = 1 to q do
7 Q = GQ;
8 [Q, ⇠] = qr(Q);
9 end

after processing assigned blocks. The solver then transfers Q to the CPU to process the
QR factorization with the potrf() routine on the CPU. Finally, the CPU calls the axpy()
routine to form B and Q from all the intermediates. A similar approach was used to obtain
matrix G for the Gram method. We used a single GPU to compute the power iteration
process in lines 6–9 of Algorithm 7 because Q and G are small enough to fit into a single
GPU memory.

3.6 Experimental Results

We now evaluate the proposed methods in terms of the performance and numerical stability.
In the following discussion, the CPU-GPU data transfer time was taken into account for the
measured performance in flop/s.

We also compare the proposed methods with the previous methods. We implemented a
CPU-based method using the LAPACK library for reference. The CPU-based method was
multi-threaded using OpenMP directives [84]. Intel MKL 11.3.1 was linked to LAPACK for
BLAS routines. We thoroughly tuned the solver to gain the highest performance on our
experimental CPUs. All implementations were compiled using GNU C++ 7.4.0 and CUDA
10.1.

All experiments were conducted in double precision using two Intel Xeon Silver 4114
CPUs and two NVIDIA Tesla V100 GPUs. These CPUs had 384 GB of DDR4-2666 main
memory and provided a double precision peak performance of 0.9 Tflop/s in total.

3.6.1 Performance Evaluation

We applied the proposed schemes to the basic scheme step by step to investigate the perfor-
mance impact of each scheme; (1) the basic method (the basic scheme in Section 3.5.1), (2)
the FIFO method (the FIFO scheme in Section 3.5.1), (3) the Fused method (Section 3.5.2),
and (4) the Gram method (Section 3.5.3). For the power iteration count, we used q = 1, 4,
and 8, which covers from low to high accuracy approximation. Note that with q = 4, RSVD
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achieved almost the same level of accuracy as the deterministic SVD (Section 3.6.3). Fig-
ure 3.6 shows the RSVD performance measured with di↵erent numbers of rowsm. In Fig. 3.6,
the FIFO method slightly reduced the overall runtime by approximately 10%. Furthermore,
the Fused method increased the basic performance by reducing the amount of CPU-GPU
data transfer D from (2q+1)mn to less than (q+1)mn, which corresponds to at most 33%,
42%, and 44% reductions for q = 1, 4, and 8, respectively. Accordingly, the overall execution
time was reduced by 24.2%, 37.8%, and 42.5% for q = 1, 4, and 8, respectively. Thus, the
gap between the reduction rate on execution time and that on data transfer amout became
closer as we increased q. To understand this behavior, we investigated the time breakdowns
of the Fused method; the proportion other than GEMM operations dropped from 12.5% to
6.7%, which implies that reducing data transfer amount increased its impact as q increased.
Overall, the Fused method achieved up to 1.7⇥ speedup over the basic method.

Regarding the performance of the Gram method, the execution time for m = 9.2 ⇥ 105

remained at approximately 12 s, which was independent of q. In fact, the proportions of
GEMM in the Grammethod maintained at 93% from q = 1 to q = 8 withm = 9.2⇥105. With
q = 1, the Gram method performed slightly worse than the Fused method due to increased
computation cost. Comparatively, the execution time of the Fused method increased from
12.2 s in Fig. 3.6(a) to 38.2 s in Fig. 3.6(b) with m = 9.2⇥105. With q = 8 and m = 9.2⇥105

in Fig. 3.6(c), the execution times of the Gram and Fused methods were 12.7 s and 38.2 s,
respectively. This 3.0⇥ speedup of the Gram method was achieved by further reducing D
from (q+1)mn to 2mn via Gram matrix computation. Overall, the Gram method improved
the performance by up to 5.2⇥ over the basic method.

Figure 3.7 shows the speedup of one GPU over two CPUs with di↵erent numbers of
rows m. The speedup gradually increased for all methods as we increased q, because the
proportion of GEMM increased with q and the GPU performed better than CPUs for GEMM
operations. The Gram method achieved up to 70⇥ speedup over two CPUs with q = 8 in
Fig. 3.7(c).

Figure 3.8 shows that all proposed methods achieved similar speedups over one GPU,
demonstrating e�cient scaling on two GPUs. However, when m  1⇥105, the speedups were
at most 1.7⇥ because the GPU initialization time surpassed the performance gain provided
by two GPUs.

We next focus on the Fused and Gram methods to investigate the performance with
di↵erent numbers of columns n and di↵erent power iteration count q (Fig. 3.9). As shown
in Fig. 3.9(a), the Gram performance was independent from q, as explained in Section 3.5.3.
Thus, the additional computational cost needed for forming the Gram matrix had a limited
impact on the GPU-based RSVD performance. In fact, the number (qn2`) of floating-point
operations for power iteration is much smaller than that (mn2) for forming the Gram matrix
G. Consequently, the measured run time for power iteration was less than 1% of that for
forming the Gram matrix on our experimental machine.

As shown in Fig. 3.9(a), for a small power iteration number (q = 1), the Fused method
outperformed the Gram method. In particular, their gap increased with n. The reason for
this behavior is that the Gram method has a higher computation cost (mn2+n2`+mn`) than
the Fused method (3mn`) when q = 1. In particular, the computation cost for forming the
Gram matrix, i.e., mn2, made the Gram method slower compared with the Fused method
when n � 1 ⇥ 104. As for the data transfer cost D, when q = 1, there was no significant
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Figure 3.6: RSVD execution time a single Tesla V100 GPU with di↵erent numbers of rows m. Results
for power iteration counts (a) q = 1, (b) q = 4, and (c) q = 8. Matrix sizes were n = 5000 and ` = 500.
The results are shown in execution time instead of flop/s because the flop counts of the Gram method are
di↵erent from others. CPU-based results are omitted to focus on GPU-based results.

2 4 6 8
4

5

6

7

8

9

10

11

Sp
ee

du
p

2 4 6 8
0

10

20

30

40

Sp
ee

du
p

2 4 6 8
0

20

40

60

80

Sp
ee

du
p

(   10  )5(   10  )5(   10  )5

FIFO Fused GramBasic

Figure 3.7: Speedup of one Tesla V100 GPU over two Xeon Silver 4114 CPUs with di↵erent numbers of
rows m. Results for power iteration counts (a) q = 1, (b) q = 4, and (c) q = 8. Matrix sizes were n = 5000
and ` = 500. For each method, we executed a multithreaded version of Algorithm 3 on two CPUs to compute
the speedup.

di↵erence between the Fused and Gram methods; the data transfer cost for both methods
was approximately 2mn when q = 1 (Table 3.1). However, when we increased the power
iteration count to q = 4, the cost D for the Fused method increased to approximately 5mn,
whereas that for the Gram method remained 2mn. Consequently, the Gram method was
twice as fast as the Fused method when q = 4 and n < 0.6 ⇥ 104 in Fig. 3.9(a). Thus, the
Gram method is robust for large q values but sensitive to large n values, whereas the Fused
method is robust for large n values but sensitive to large q values. Therefore, we think that
the Gram method is useful especially when a large number of iterations is required to acquire

47



2 4 6 8
0

0.5

1

1.5

2

Sp
ee

du
p

2 4 6 8
0

0.5

1

1.5

2

Sp
ee

du
p

2 4 6 8
0

0.5

1

1.5

2

Sp
ee

du
p

(   10  )5(   10  )5(   10  )5

FIFO Fused GramBasic

Figure 3.8: Speedup of two Tesla V100 GPUs over one V100 GPU with di↵erent numbers of rows m.
Results for power iteration counts (a) q = 1, (b) q = 4, and (c) q = 8. Matrix sizes were n = 5000 and
` = 500. For each method, we executed the same method on a single GPU to compute the speedup.

0

10

20

30

40

50

Ex
ec

ut
io

n 
tim

e 
(s

)

0

5

10

15

20

25

30

Sp
ee

du
p

0

0.5

1

1.5

2

Sp
ee

du
p

0.2 0.4 0.6 0.8 1 1.2
(   10  )4

0.2 0.4 0.6 0.8 1 1.2
(   10  )4

0.2 0.4 0.6 0.8 1 1.2
(   10  )4

Figure 3.9: RSVD performance comparison of Fused and Gram methods with di↵erent numbers of columns
n and di↵erent power iteration count q. (a) Execution time on a single Tesla V100 GPU, (b) speedup of
one GPU over two Xeon Silver 4114 CPUs, and (c) speedup of two GPUs over one GPU. Matrix sizes were
m = 4 ⇥ 105 and ` = n/10. We executed a multi-threaded version of Algorithm 3 to compute the speedup
over two CPUs in (b). For each method in (c), the same method was executed to compute the speedup over
a single GPU.

a high-accuracy approximation.
Figure 3.9(b) shows the speedup of one GPU over two CPUs. The speedup of the Fused

method was up to 17⇥ for di↵erent q. Comparatively, the speedup of the Gram method
gradually increased from 7⇥ to 24⇥ as we increased power iteration count from q = 1 to
q = 8. Figure 3.9(c) shows the speedup of two GPUs over one GPU. The performance was
slightly better than the growing height case in Fig. 3.8, achieving 1.5–1.9⇥ speedups.

Figure 3.10 shows the breakdown of the execution time obtained with the Gram method.
We used two experimental setups: (a) increasing the height m of the matrix A with the fixed
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Figure 3.10: Breakdown of execution time on a single Tesla V100 GPU with ` = n/10 and q = 4. Results
of (a) growing height m of A with fixed width n = 5000 and of (b) growing width n of A with fixed height
m = 1 ⇥ 105. GEMM includes the time of CPU-GPU data transfer and GEMM operations. SVD denotes
the deterministic SVD of matrix B. Misc. is composed of initialization and random matrix generation.

width and (b) increasing the width n of the matrix A with the fixed height. Figure 3.10(a)
demonstrates that the proportion of GEMM execution gradually increased with m and
reached 90%. This behavior was due to the computational cost of GEMM (mn2+qn2`+mn`),
which increases linearly with m, whereas that of SVD is fixed to O(n3). Consequently,
GEMM operations dominate the computation for extremely tall-skinny matrices.

In contrast, the proportion of SVD gradually increased with n and reached 24% of the
total time when n = 2.4⇥104 for A transformed from tall-skinny to square-like Fig. 3.10(b).
This was due to the computational cost of SVD and GEMM, O(n3) and mn2 + qn2`+mn`,
respectively. Assuming that GEMM is parallelizable while other operations are not, parallel
GEMM can achieve a linear speedup (Fig. 3.10(a)). By contrast, the theoretical speedup for
situations similar to that illustrated in Fig. 3.10(b) is limited to at most 5⇥ according to
the Amdahl’s law [3].

3.6.2 Performance Comparison

We next compared the proposed methods with the previous methods in terms of the out-of-
core RSVD performance. As a comparative method, we used cuBLAS-XT [76] as a GPU-
accelerated method. According to our preliminary results reported in Section 3.4, we max-
imized the GEMM performance by applying the row-wise 1D partition to cuBLAST-XT.
With respect to the proposed method, we used the Fused method to compare the RSVD
performance in Tflop/s because all methods, except the Gram method, had the same number
of floating-point operations.

We varied the matrix setup m : n : ` from 100 : 10 : 1 to 10000 : 10 : 1 to investigate the
out-of-core RSVD performance (Fig. 3.11). We first used a rectangular matrix setup where
m : n : ` = 100 : 10 : 1. Figure 3.11(a) demonstrates that all GPU-based methods achieved
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4 Tflop/s, which outperformed the CPU-based method (approximately 0.35 Tflop/s); the ba-
sic, FIFO, and cuBLAS-XT methods showed similar performance whereas the Fused method
achieved the highest flop/s. The GPU-based methods achieved approximately 14⇥ higher
flop/s than the CPU-based method. This performance gap came from that the deployed
CPUs provided a theoretical peak performance of 0.9 Tflop/s, which was one-fifteenth as
compared with that of a single V100 GPU. The second setup in Fig. 3.11(b) used tall-skinny
matrices where m : n : ` = 1000 : 10 : 1. The GPU performance dropped with the in-
creasing ratio of m : n and achieved a maximum of 2.6 Tflop/s. On the other hand, the
CPUs still resulted in around 0.35 Tflop/s. The third setup in Fig. 3.11(c) was obtained
with the extremely tall-skinny matrices where m : n : ` = 10000 : 10 : 1. The GPU per-
formance dropped to 0.95 Tflop/s, but the achieved performance was still higher than that
on the CPUs (0.3 Tflop/s). The CPU performance stagnated and dropped slightly after
m > 1.2⇥ 106. Thus, the CPU performance was less sensitive to input matrix shapes than
the GPU performance. In summary, the GPU-based methods outperformed the CPU-based
method for square-like input matrices. However, the performance advantage over multi-core
CPUs dropped as we increased the m : n ratio. The main reason is that with the increasing
m : n ratio from 10 : 1 to 1000 : 1, the GEMM operations in RSVD get close to GEMV
operations which are less e�cient for GPUs.

We then used two GPUs to demonstrate the scalability of each implementation. As
shown in Fig. 3.12, the proposed methods scaled well on two GPUs, achieving speedups of
up to 1.9⇥ over one GPU. The performance gap between cuBLAS-XT and our methods
increased significantly on two GPUs. The speedups of cuBLAS-XT were about 0.9–1.2⇥ in
all setups. While cuBLAS-XT was enforced to 1D partition, we failed to make cuBLAS-XT
to perform similar to our 1D scheme that was free of reduction between GPUs. The excessive
data transfer of both CPU-GPU and GPU-GPU was the main reason for the performance
degradation.

At last, we compare the out-of-core RSVD with the in-core RSVD for input data smaller
than 7GB in Fig. 3.13. We also added an in-core full SVD results. We used the in-core SVD
routine which was included in the MAGMA package. The results show that in-core RSVD
achieved up to 226⇥ and 32⇥ acceleration against the in-core full SVD for square matrices
(Fig. 3.13 (a)) and tall-skinny matrices (Fig. 3.13 (b)), respectively. The out-of-core RSVD
is approximately 5⇥ and 4⇥ faster than in-core full SVD for square and tall-skinny matrices.

3.6.3 Numerical Study with Synthetic and Real Data

We used synthetic and real data to evaluate the numerical stability of the following three
methods: (1) a deterministic SVD method provided by LAPACK [4], (2) the original RSVD
method [39] that orthogonalizes both P and Q, and (3) the proposed Gram method.

We used two di↵erent singular value distributions for the synthetic data: geometric and
exponential distributions. For the geometric distribution, the j-th singular value �j was
defined as �j = �1�j�1 with the parameter � = 0.99. For the exponential distribution, the
j-th singular value �j was defined as �j = �1e�j/� with the parameter � = 160. The matrix
size m⇥ n was set to 10, 000⇥ 5000 with the sampling parameters k = 64 and o = 64. The
real data came from the facial recognition technology dataset [87] containing human face
images. All 25, 389 images were resized to the resolution of 512 ⇥ 768 pixels, and thus the
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di↵erent matrix shapes. (a) rectangular with m : n : ` = 100 : 10 : 1, (b) tall-skinny with m : n : ` = 1000 :
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Table 3.2: Comparison of approximation error kA� ÂkF /kAkF with di↵erent SVD methods and di↵erent
power iteration count q.

Data Deterministic SVD Original RSVD Gram method
q = 1 q = 4 q = 1 q = 4

Geometric distribution 0.5204 0.5297 0.5204 0.5302 0.5204
Exponential distribution 0.6622 0.6828 0.6623 0.6830 0.6623
FERET [87] 0.1661 0.1690 0.1661 0.1690 0.1661

input matrix consisted of 393, 216⇥ 25, 389 entries.
Table 3.2 shows the approximation error kA � ÂkF/ kAkF , where k·kF denotes the

Frobenius norm. When q = 4, the Gram method achieved similar errors compared with those
of the original RSVD and deterministic SVD methods. By contrast, when q = 1, there were
small di↵erences across these methods. Thus, increasing the number q of power iterations
slightly improved the accuracy for randomized methods. Hence, the Gram method achieved
the same level of accuracy as the deterministic SVD method without the orthogonalization
of P (line 4 of Algorithm 3).

3.7 Case Study with RPCA

Finally, we demonstrate the performance of out-of-core RSVD with an RPCA applica-
tion [10]. RPCA is a common method in computer vision and machine learning, which
recovers a low-rank matrix with an unknown fraction of data corruption [10]. While being
e↵ective, RPCA algorithms are computationally demanding due to iterative SVD operations
required to reveal the singular values for thresholding.
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Figure 3.12: Speedup of two Tesla V100 GPUs over one V100 GPU with di↵erent matrix shapes: Results for
(a) rectangular matrices with m : n : ` = 100 : 10 : 1, (b) tall-skinny matrices with m : n : ` = 1000 : 10 : 1,
and (c) extremely tall-skinny matrices with m : n : ` = 10000 : 10 : 1. Power iteration count was q = 4. For
each method, the same method was executed to compute the speedup.

Algorithm 8 lists a pseudocode of the RPCA algorithm [10, 58], which separates the
sparse corruptions S from the original data M so that a low-rank matrix L can be obtained
as L = M� S. The problem can be written as

min
L,S

||L||⇤ + �||S||1 subject to M = L+ S, (3.6)

where ||·||⇤ and ||·||1 denote the nuclear norm and `1 norm of a matrix, respectively, and � is a
positive weighting parameter that is usually set to � = 1/

p
max(m,n). Various solvers have

been proposed for this convex optimization problem, and recent solution methods drastically
improved the computation e�ciency [58, 59, 119]. Similar to Oh et al. [81], we used an RSVD
solver to replace the deterministic SVD solver in RPCA to accelerate the computation. The
shrinkage operator S" [·] in line 4 of Algorithm 8 is defined as

S" [x] =

8
><

>:

x� ", if x > ",

x+ ", if x < �",

0, otherwise,

(3.7)

where " represents the threshold value.
In Algorithm 8, GEMM operations appear in lines 3–4, whereas all other computations

are vector summations. GEMM operations have a higher operational intensity than vector
summations, which cannot be e�ciently o✏oaded to GPUs. Therefore, we decided to call
LAPACK routines to implement vector summations on the CPU. On the other hand, we
used the Gram method for RSVD in line 3 and the out-of-core GEMM with 1D partition for
the reconstruction of L at line 4. Vector summations were implemented on the CPU with
LAPACK routines.

All experiments were conducted in double precision using the same machine described in
Section 3.4. The sampling parameters for RSVD were k = 100, o = 100, and q = 4. The
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Figure 3.13: Comparison of out-of-core and in-core performance. (a) Execution time with square matrices
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Figure 3.14: An execution example of RPCA. (a) Input image, (b) low-rank image and (c) sparse image.

parameters in Algorithm 8 were set as t = 10�6, ⇢ = 1.5, µ0 = 1.5/||M||1, and " = µ�1
i .

As for data, we used a high definition tra�c video that was heavily corrupted by camera
jittering and a large tra�c volume. We extracted 1000 frames with a resolution of 1920⇥1080.
Therefore, the input matrix M is of size 2, 073, 600⇥ 1, 000. Figure 3.14 illustrates a sample
frame output, which indicates that our implementation successfully separated the input data
into sparse tra�c noise and the low-rank background.

Table 3.3 compares the RPCA performance measured on the experimental machine.
Compared with a multi-core CPU implementation, our GPU-accelerated Gram method accel-
erated the RSVD computation by 23.3⇥, which halved the total RPCA time. This speedup
is reasonable according to the out-of-core GEMM performance presented in Fig. 3.7(b); the
acceleration on two GPUs over two 10-core CPUs was up to 35⇥ for out-of-core RSVD.
Fig. 3.3(a); the highest performances on two GPUs and two CPUs were about 2.5 Tflop/s
and 0.22 Tflop/s, respectively, demonstrating a speedup of 11.4⇥ for out-of-core GEMM.
Fig. 3.3(a); the highest performances on two GPUs and two CPUs were about 2.5 Tflop/s
and 0.22 Tflop/s, respectively, demonstrating a speedup of 11.4⇥ for out-of-core GEMM.
However, the maximum performance of two Tesla V100 GPUs was close to 14 Tflop/s
(Fig. 3.3(b)), implying that the data size was not su�ciently large to maximize the per-
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Algorithm 8: RPCA by RSVD

Input : matrix M 2 Rm⇥n, target rank k, oversampling parameter o, power
iteration count q, convergence condition t and parameters µ0 and ⇢.

Output: low-rank matrix L 2 Rm⇥n and sparse matrix S 2 Rm⇥n.

1 Y0 = M / max(||M||2, ��1
||M||1); S0 = 0m⇥n; i = 0;

2 while TRUE do
3 [U,⌃,VT ] = rsvd(M� Si + µi

�1Yi , k, o, q);
4 Li+1 = USµi

�1 [⌃]VT ; // shrinkage operation on ⌃
5 Si+1 = S�µi

�1 [M� Li+1 + µi
�1Yi];

6 Zi+1 = M� Li+1 � Si+1;
7 Yi+1 = Yi + µiZi+1;
8 if ( ||Zi+1||F / ||M||F < t ) break; // evaluate convergence

9 µi+1 = ⇢µi; i = i+ 1;
10 end

Table 3.3: Execution time of RPCA based on two Xeon Silver 4114 CPUs and two Tesla V100 GPUs. Both
implementations converged with the same number (28) of iterations.

Breakdown CPU (s) GPU (s)
RSVD 1120 48
Miscellaneous 951 946
Total RPCA 2071 994

formance on the GPU. By accelerating RSVD with GPUs, the performance bottleneck of
RPCA moved to the vector summation part, which has a low operational intensity. The
acceleration of out-of-core algorithms with a low operational intensity, such as vector sum-
mation, is still limited by the CPU-GPU transfer bandwidth, which is a challenge to fully
utilize GPUs.

3.8 Conclusions

Over the past decade, randomized algorithms have shown significant advancements in terms
of the computation e�ciency. However, there have not been many attempts to harness the
modern computing architectures such as GPU accelerators. The likely explanation is that
GPUs are still considered as specialized devices. At the same time, large-scale computing is
now performed on supercomputers that are prevalently equipped with accelerators; hence,
developing new algorithms for evolving computing architectures is becoming urgent.

We studied GPU-accelerated methods, namely, Fused and Gram, to reduce out-of-core
data access for computing RSVD. The Gram method, which was especially e↵ective for
tall-skinny matrices, achieved up to 5.2⇥ speedup compared with a straightforward method
that deploys the highly-tuned GEMM scheme and the 1D data partition scheme. The Fused
method e↵ectively accelerated the RSVD up to 1.9⇥ compared with the straightforward
method. This work allows us to see the directions of the randomized algorithm development
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as we move toward exascale computing. Most immediate direction is the independent block
operations which fit for accelerators.

Our analysis and empirical results also revealed that CPU-GPU transfer bandwidth lim-
its the RSVD performance on a common workstation, especially for tall-skinny matrices
that limits the scalability on GPUs. This constraint is expected to be mitigated with the
introduction of the next generation PCIe and NVlink [77] buses. Nevertheless, reducing
the amount of data access and communication remains the major challenge in developing
scalable linear algebra algorithms for both single- and multi-node systems. This is also our
main focus in the future.

55



56



Chapter 4

Block Randomized Singular Value
Decomposition on GPUs

4.1 Introduction

SVD is an essential tool in computer vision, machine learning, data analysis, and various
other scientific computing. Studies on improving the performance and numerical stability
of SVD have been ongoing ever since its advent [18, 28, 33, 55], and have been successfully
applied to applications such as principal component analysis (PCA) [44, 86]. Recently, an
RSVD algorithm has been proposed to further accelerate SVD by exploiting the low-rank
structure of data [39, 106] and now appears a method of choice for fast approximate SVD
computation.

While SVD has been made e�cient in terms of its computational complexity based on
these findings, the transition of modern computing architectures, such as GPUs, allow us
to develop even faster methods by taking advantage of high parallelism. Nevertheless, to
fully benefit from the modern computing architectures, there are a few major challenges.
Although computers’ arithmetic operations are becoming ever e�cient, communication be-
tween memory hierarchies or through networks is emerging as the bottleneck for a lot of
applications in distributed memory systems equipped with accelerators [7, 49, 50]. The gap
between communication cost and computational cost is expected to increase, where arith-
metic operations are fast and highly parallelized but data communication remains slow [15].
Note that the communication refers to not only the data transfer between computing nodes
but also the data transfer of CPUs/accelerators to their memory. A series of communica-
tion avoiding algorithms have been proposed to tackle this gap [16, 17, 42]. These studies
aim to redesign linear algebraic algorithms to reduce data communication among memory
hierarchies.

For fast SVD computation, this trend requires a locality-aware method with less access to
the input data. Especially, for large-scale data, the traditional SVD computation cannot fully
benefit from a fast BLAS3 computation, or its main computational kernel GEMM, due to
that (1) the data may not fit in a single memory space, (2) its computation pattern includes
vast data accesses, and (3) communication between distinct memory hierarchy levels [37]. As
for RSVD, input data will be accessed for 2q+2 times, where q denotes the number of power
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iterations [39, 88], to attain a high accuracy approximation. Single-pass algorithms [101,
118], also called streaming algorithms, are proposed, which access the target with “one
touch.” Mostly, they include iterations to construct a sketch [39, 101, 118], which have
data dependency and is di�cult be made in parallel. Furthermore, there exists an accuracy-
performance trade-o↵ in these algorithms [101, 118].

To our best knowledge, few works have been done to accelerate single-pass RSVD on
GPUs. Regarding accelerating multi-pass RSVD [39] on GPUs, the computations of RSVD
are mainly matrix-matrix multiplication. It means that implementing RSVD on multi-core
CPUs or GPUs is relatively easier than implementing deterministic SVD [18]. Yamazaki et
al. [114] proposed exploiting random sampling to update partial SVD on a hybrid CPU/GPU
cluster. Their work showed that a random sampling algorithm achieved a speedup of up to
14.1⇥ compared with a standard deterministic SVD implementation on multi-core CPUs.
They assumed that GPU memory can hold all the working data. Voronin et al. proposed a
comprehensive randomized linear algebra library named RSVDPACK [106]. While e↵ective,
their GPU implementation is in-core, and e�cient computation can only be achieved when
the data fits in the space of GPU memory.

This study considers redesigning the RSVD algorithm especially for large matrices that
do not fit in the GPU memory and a limited CPU-GPU communication bandwidth. We pro-
pose a two-pass RSVD algorithm named block randomized SVD (BRSVD), which accesses
the input data only twice in the whole computation. Similar to the GPU-only strategy [35],
BRSVD uses GPUs for all computations which fully utilizes the power of accelerators and
e�ciently processes data without burdening the host CPU. BRSVD decomposes the origi-
nal power method into independent block executions to reduce access to the target matrix.
Di↵erent from the previous works [106, 114], our proposed out-of-core algorithm frees the
memory capacity limitation on the input data. Furthermore, BRSVD decomposes the origi-
nal power method into independent block executions to reduce the communication between
CPUs and GPUs.

We compare the e�ciency with an in-core implementation, which is the performance
upper-bound of RSVD. For large-scale data, BRSVD achieves a significant speedup in com-
parison to the original algorithm. We then assess the accuracy of the proposed method using
both synthetic and real data and compare with existing algorithms. Our experiment shows
that with a moderate partition size of the input matrix, BRSVD gives a close approximation
to the original algorithm. The empirical results also indicate that the proposed algorithm
outperforms the single-pass algorithm in terms of accuracy.

Section 4.2 introduces the preliminaries regarding RSVD algorithm. We describe the
proposed BRSVD algorithm in Section 4.3 and give the experimental results in Section 4.4.
Section 4.6 concludes this chapter and discuss the future work.

4.2 Preliminaries

RSVD has been made popular by Halko et al.’s work [39] built upon the previous studies on
randomized linear algebra [28, 57, 64, 88, 89]. The randomization approach outperformed
classical deterministic SVD methods in terms of speed while maintaining equivalent accuracy
and robustness.
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As described in [39], given a matrix A 2 Rm⇥n, an orthonormal basis Q can be con-
structed such that A ⇡ QQ>A. The factorization (SVD and QR) then can be e�ciently
computed using a relatively small sketch matrix B = Q>A, when the basis matrixQ has few
columns. In other words, when the rank of matrixA is small, i.e., rank(A) = k ⌧ min(m,n),
a small matrix B can be created and an SVD of the small matrix B reveals the SVD of the
original matrix A as long as the range of the projector Q retains the action of the original
matrix A.

The process of randomized factorization has two stages: (1) construction of the basis
Q with a random projection of the original matrix A, and (2) factorization of the small
matrix B with a standard deterministic method. In stage (1), it is important to construct
Q = (q(1),q(2), . . . ,q(l)), in which q(i) denotes the i-th column vector of Q, such that Q
covers the range of A. To achieve this, a random vector ! can be used to form a sample
vector y as

y(i) = A!(i), i = 1, 2, . . . , l, (4.1)

where l = k + o, and o denotes the oversampling parameter. With l samplings, a sample
matrix Y = (y(1),y(2), . . . ,y(l)) can be constructed. In some cases, the singular spectrum
of matrix A may decay slowly, power iteration is used to overcome this issue by projecting
more information of A into the sample matrix Y so as to accelerate the spectrum decay:

Y = (AA>)qA⌦, (4.2)

where the random matrix ⌦ =
�
!(1),!(2), . . . ,!(l)

�
is a standard Gaussian matrix of i.i.d

normal random variables with mean 0 and variance 1. The acceleration of the power method
can be achieved with

Y = (AA>)qA⌦

= (U⌃V>V⌃U>)qU⌃V>⌦

= U⌃2q+1V>⌦. (4.3)

Afterward, the basis of Y is computed by Q = orth (Y), where the operator orth (·) repre-
sents orthonormalization. In stage (2), matrix B is formed as B = Q>A and factorized by
a conventional deterministic factorization method. The RSVD algorithm is summarized in
Algorithm 9.

4.3 Proposed Method: Block Randomized SVD (BRSVD)

In modern computing architectures, flop counts become rather irrelevant due to the greatly
increased communication cost between storage and processor. A measure of algorithmic
communication performance is called pass-e�ciency [39], which counts how many times
the data is accessed by a specific algorithm. In lines 2 and 4 of Algorithm 9, the power
method [88] requires totally 2q + 2 passes mainly for matrix-matrix multiplication, which
translates to communication cost of (2q+2)mn. However, if the memory of processor cannot
hold all working data for matrix-matrix multiplication, the algorithm has to be implemented
with out-of-core GEMM routines, which will increase communication cost significantly. High
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Algorithm 9: RSVD algorithm [39]

Input : matrix A 2 Rm⇥n, target rank k, oversampling parameter p, and power
iteration exponent q.

Output: SVD of A: matrices U 2 Rm⇥l, ⌃ 2 Rl⇥l, and V
>
2 Rl⇥n.

1 Generate a Gaussian matrix ⌦ 2 Rn⇥l, where l = k + o.

2 Y = (AA
>)qA⌦ ; // sketch A and perform power iterations

3 Q = orthonormalize(Y) ; // form an orthonormal basis of Y

4 B = Q
>
A ; // form B

5

h
eU,⌃,V>

i
= svd(B) ; // truncated rank-l SVD of B

6 U = QeU ; // form U

communication cost will be the bottleneck for processing large-scale data. We will give
detailed analysis in Section 4.3.1. Our goal is to design a new RSVD algorithm by reducing
the communication cost without hurting the algorithm’s accuracy.

Note that the sampling process in Eq. (4.1) is a matrix-matrix multiplication, which
can be decomposed into block operations and conducted independently. We wish to design a
block power method so as to reduce the data access toA. With a moderate partitioning of the
input matrix, we can accelerate the singular value decay for each sub-matrix independently.
Therefore, BRSVD (Algorithm 10) can avoid out-of-core GEMM in processing large-scale
data.

We give our assumption before elaborating our proposed algorithm. Suppose that the
input matrix A 2 Rm⇥n is partitioned into s column sub-matrices. We use the sub-matrix
notation in [34, 39] here, then each column sub-matrix is expressed as A(:,�j) 2 Rm⇥n0

,
where �j is an ordered set of indices defined as �j = [jn0, jn0 + 1, . . . , (j + 1)n0

� 1] for the
j-th sub-matrix with n0 columns. Each submatrix A(:,�j) has its own singular values ⌃j.
Our assumption is that the singular spectrums of sub-matrices do not highly deviate from
each other. With similar singular spectrums, the spectrum decay of each sub-matrix can
be accelerated independently by the power method. This assumption reflects the practical
situation. In data processing, it is not recommended to combine unrelated matrices into a
single matrix. Therefore, it is a rare case to have an input matrix which is composed of
sub-matrices with extremely di↵erent singular values. Regarding the accuracy of BRSVD,
it is experimentally confirmed in Section 4.4.4.

Figure 4.1 illustrates the overall pipeline of the proposed algorithm. A Gaussian matrix
⌦j 2 Rn0⇥l is drawn to sketch each A(:,�j). The resulting matrix is further refined via a
power method with exponent q by reusing the transferred column block A(:,�j), and the
sample matrix Yj 2 Rm⇥l is calculated independently as

Yj =
⇣
A(:,�j)A

>
(:,�j)

⌘q

A(:,�j)⌦j, (4.4)

which we call a block power method. The sub-matrix A(:,�j) can be orthonormalized before
applying the power method on sample matrix A(:,�j)⌦j. The orthonormalization will reduce
the magnitude of the projection so that batches with large magnitude will not overwhelm
the final sample matrix Y. Note that with the power iteration number q = 0, BRSVD and
RSVD become equivalent.
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Algorithm 10: BRSVD algorithm
Input : matrix A 2 Rm⇥n, target rank k, oversampling parameter o, power iteration

exponent q, and partition number s.
Output: SVD of A: matrix U 2 Rm⇥l, ⌃ 2 Rl⇥l, and V

>
2 Rl⇥n.

1 n0 = dn/se; l = k + o; Y = 0m⇥l;
2 for j  0 to s� 1 do in parallel

3 Generate a Gaussian matrix ⌦j 2 Rn0⇥l;

4 Yj =
⇣
A(:,�j)A(:,�j)

>
⌘q

A(:,�j)⌦j ; // sampling & block power iteration

5 end

6 Q = orthonormalize(
P

Yj) ; // reduction and orthonormalization

7 for j  0 to s� 1 do in parallel

8 B(:,�j)  Q
>
A(:,�j) ; // form each B(:,�j)

9 end

10

h
eU,⌃,V>

i
= svd(B) ; // gather B(:,�j) into B and SVD

11 U = QeU ; // form U

We can observe that if s = 1, Eq. (4.4) is equivalent to Eq. (4.2). For an extreme case
where s = n, each sub-matrix is shrunk to a column ofA and results inYj = (ajaj

>)qaj⌦j =
aj(aj

>aj)q⌦j = |aj|
2qaj⌦j. For a moderate batch s 2 (1, n), the block power method will

weaken the e↵ect of accelerating the spectrum decay of sample matrix Y. We will use
extensive experiments to verify its accuracy in the next section. Because the sampling and
power iteration of each block are independent operations, the data transfer and computation
can be overlapped and executed concurrently.

The sample matrix Y can then be computed by reduction as

Y =
s�1X

j=0

Yj

After each update of Y, the transferred column block A(:,�j) can be discarded from the GPU
for avoiding memory overflow. Once the sample matrix Y is created, its orthonormalized
basis Q 2 Rm⇥l can be constructed by QR decomposition. After acquiring the basis Q, the
input matrix A is accessed for the second pass to compute a small core matrix B 2 Rl⇥n:

B(:,�j)  Q>A(:,�j).

As the above operation shows, sub-matrix B(:,�j) also can be independently computed from
the corresponding column blockA(:,�j). Finally, all sub-matrices ofB is gathered and an SVD

of B is computed to yield its decomposition eU,⌃,V>, and by re-projecting the obtained
basis eU via Q, the left singular vectors U = QeU of the input matrix A can be obtained.

4.3.1 E�ciency Analysis

For now, let us look at the e�ciency analysis summarized in Table 4.1. We suppose that the
data size exceeds the GPU memory, therefore RSVD has to be implemented in an out-of-core
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Figure 4.1: Diagram of proposed BRSVD method. Column blocks A(:,�j) in local memory are reused in
the RSVD computation pipeline.

fashion. Table 4.1 compares the computational and communication costs of the proposed
algorithm with a straightforward implementation for RSVD. #flops refers to the arithmetic
computational cost in floating point operations. #words refers to the communication cost
between CPU and GPU memory. We first show the #flops of the original and proposed
algorithm. In Algorithm 9, the first GEMM operation for A⌦ (line 1) requires 2mnl flops,
and the following power iteration requires 4qmnl. The QR operation to orthonomralize
Y requires 2ml2 flops. Forming B requires 2mnl flops. The SVD operation and forming
U requires 6nl2 and 2ml2, respectively. Regarding BRSVD, each block sampling A(:,�j)⌦j

requires 2mn0l flops. The overall flops for s blocks are s⇥ 2mn0l = 2mnl, which equals the
original algorithm. The other GEMM operations also have the same #flops as the original
algorithm. The remaining operations have slightly di↵erent #flops for BRSVD, while they
only contribute to a small portion of overall computation (We will show the time breakdown
in the next section). Therefore, we come to the conclusion that BRSVD have the same
theoretical flop counts as the RSVD algorithm.

While the #flops remains the same in both algorithms, BRSVD significantly reduces
the communication cost. As shown in Table 4.1, the #words for RSVD in sampling is
mnl/b, where b denotes the partition size in out-of-core GEMM. RSVD requires overall
2(q + 1)mnl/b +ml to calculate the out-of-core GEMM. The best case is that if b � l, the
communication cost is 2(q + 1)mn + ml. We leave b in those equations because GEMM
library other than cuBLAS [76] may not allow users to set the partition size b. On the
other hand, the communication cost of the proposed BRSVD is fixed to 2mn + ml, which
is independent of the power iteration number q. This reduction comes from the fact that
BRSVD avoids out-of-core GEMM entirely and reuses the column blocks A(:,�j) on the local
memory (see Fig. 4.1). As we will see in the next section, this reduction of communication
cost significantly improves the e�ciency of RSVD computation for large-scale data.
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Table 4.1: Computational and communication costs comparison. #flops refers to the arithmetic compu-
tational cost in floating point operations. #word indicates communication cost between CPU and GPU.
Line # indicates the corresponding operation blocks in Algorithm 10. The non-dominant terms of #flops
for random number generation in (1), QR in (4) and SVD in (6) are dropped. (For a detailed #flops count,
please refer to Matrix Computations [34] and LAPACK working note [12].) We show the commucation cost
for out-of-core GEMM in item (2), (3) and (5). b denotes the partition size in out-of-core GEMM. The value
of b varies in di↵erent implementations (e.g. LAPACK or cuBLAS) and hardware architectures. Note that
if b � l, #words (RSVD) are mn, 2qmn and mn for item (2), (3) and (5), respectively.

line # #flops #words (RSVD) #words (BRSVD)
(1) Random number generation 3 nl 0 0
(2) Sampling 4 2mnl mnl/b mn
(3) Power Iterations 4 4qmnl 2qmnl/b 0
(4) Orthonormalization 6 2ml2 (p.A208 of [16]) 0 0
(5) Form B 8 2mnl mnl/b mn
(6) SVD 10 6nl2 (p.493 of [34]) 0 0
(7) Form U 11 2ml2 ml ml

Total 4(q + 1)mnl + 4ml2 + 6nl2 + nl 2(q + 1)mnl/ b+ml 2mn+ml

4.3.2 Implementation Detail

Here we describe implementation details of BRSVD that will be needed to reproduce the
work.

For generating Gaussian random matrices ⌦j on the GPU, we have used cuRAND li-
brary [78]. The random number generation is performed in parallel with transferring sub-
matrix A(:,�j) and sampling of the previous submatrix. The GEMM calculation sequence in
line 4 of Algorithm 10 is reversed from right to left based on the associative law of matrix-
matrix multiplication so as to avoid generating a large projection matrix of size m ⇥m in
the process:

Yj  

 �����������������������������

A(:,�j)A(:,�j)
>
· · ·A(:,�j)A(:,�j)

>

| {z }
q (power iteration)

A(:,�j)⌦j, (4.5)

in which the long arrow on the top represents the order of matrix multiplication.
To orthonormalize the sample matrixY, instead of using a classical Gram-Schmidt (p.254

of [34]) or Cholesky QR (p.163 of [34]), we use the Communication avoiding QR (CAQR)
factorization proposed by Demmel et al. [16]. CAQR has a lower communication cost com-
pared to Householder QR [34]. The in-core GPU implementation [5] achieves fewer data
accesses between GPU and GPU memory. In our test, the in-core CAQR runs roughly 1.5⇥
faster than MAGMA library [99]. Note that we used the geqrf() routine for QR factoriza-
tion and orgqr() routine for generating matrix Q in MAGMA implementation. In addition,
since CAQR is built on the block Householder QR [16], it has intrinsically higher numerical
stability than Gram-Schmidt and Cholesky QR.

For computing SVD of the small matrix B on the GPU, we compared gesvd() routines
provided by MAGMA and cuSolver [79] libraries and found that there were not much perfor-
mance di↵erence in terms of both speed and accuracy. We therefore chose cuSolver included
in the CUDA library to keep the implementation simple and portable. We implemented
BRSVD as a general solver, which can be extended to di↵erent precisions. Note that all the
following experiments were conducted in double-precision.
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4.4 Experiments

In this section, we use numerical examples to compare the proposed algorithm with several
existing ones in terms of computational performance and accuracy. Section 4.4.1 gives the
comparison objects and Section 4.4.2 describes the experiment environment and setup. In
Section 4.4.3, we use synthetic low-rank matrices with di↵erent sizes to compare BRSVD and
RVSD in various computing environments. Section 4.4.4 focuses on validating the numerical
stability using matrices with di↵erent singular spectrum decay patterns.

4.4.1 Performance Comparison

To assess the performance of the proposed BRSVD method, we compare with other RSVD
implementations listed below. All the implementations are carefully optimized so as to yield
the best performance in each setting.

1. RSVD by cuBLAS-XT: This implements Algorithm 9 using the cuBLAS-XT package [76].
cuBLAS-XT is a BLAS3 routines provided by the vendor that can process data larger
than the GPU memory. cuBLAS-XT uses 2D partition in calculating out-of-core GEMM.
cuBLAS-XT frees users from dealing with GPU memory allocation and CPU-GPU com-
munication. However, users cannot control the reuse of the transferred data.

2. CPU: This is a straightforward implementation of Algorithm 9 on multi-core CPUs, with
which all the working data is processed on CPUs.

3. in-core on GPU: This is an in-core GPU implementation, with which all the working
data is held on the GPU memory. Since there is no data communication between CPU
and GPU, we expect this implementation to give a reference to the performance peak for
accelerating RSVD on the GPU. However, this implementation only works for small scale
data that can well fit in the GPU memory.

4.4.2 Experiment Environment and Setup

For evaluation, we used an NVIDIA Telsa V100 (Volta) GPU with 16 GB memory. A V100
was connected to the host via PCIe 3.0 interface. The theoretical peak in double precision
is 7.5 Tflop/s. Although V100 can access its own memory at 900 GB/s, the speed of CPU
to GPU data transfer is limited to 15.8 GB/s at maximum. cuBLAS 10.1 and cuSolver 10.1
were used for BLAS and solver routines, respectively. For CPU implementation, we used a
system equipped with two Intel 8-core Xeon Silver 4114 processors with 384 GB DDR4-2666
memory. The theoretical peak in double precision is 0.9 Tflop/s for two CPUs. Intel MKL
2018.0.3 [48] was used for CPU BLAS and solver routines.

Regarding the data, we generated matrices with various shapes and sizes with di↵erent
ranks. A low-rank input matrix A 2 Rm⇥n with rank-k was created by a product of two low-
dimensional matrices Al 2 Rm⇥k and Ar 2 Rk⇥n that were both random Gaussian matrices.
For selecting the block size n0, we use the maximal block size by querying available memory
size at runtime.

64



4.4.3 Performance Comparison Results

We first tuned the performance of RSVD by cuBLAS-XT. As shown in Table 4.1, the com-
munication cost of out-of-core GEMM for double precision is 8mnl/b in item (2). If b � l,
cuBLAS-XT is set to do 1D partition on the large input matrix A, which yields the minimum
communication cost of 8mn. According to the roofline model [111], the maximum flop/s =
(#flops/#words) ⇥ bandwidth = (l/4) ⇥ bandwidth. The theoretical peak bandwidth is
15.8 GB/s for CPU-GPU communication. The largest parameters used in our experiments
were set to m = 589, 824, n = 18, 432, and l = 1152 for tall-skinny test cases. The largest
parameters for square cases are set to m = 104, 267, n = 104, 267, and l = 814. Therefore,
the maximum theoretical peaks are limited to 4.5 Tflop/s and 3.2 Tflop/s for tall-skinny and
square cases, respectively. The theoretical peak performance of V100 GPU is 7.5 Tflop/s,
which means the performances in all test cases are bandwidth bound. Items (3) and (5) in
Table 4.1 have the same results as item (2). In the performance tuning, we set the b with
di↵erent sizes and found that b = 4096 gave the best performance for both tall-skinny and
square cases. We then set b = 4096 for cuBLAS-XT in all the following experiments. Note
that 4096 is larger than the maximum l value in the following setups.

Figure 4.2 shows the running time of RSVD and BRSVD with di↵erent power iteration
number q values. In each experiment, the ratio of matrix dimensions (m,n) and rank k were
fixed, and the performance was measured by varying the size of input data. For the attained
performance, all measurements include the CPU-GPU data transfer time. As mentioned in
Section 4.3, with q = 0, BRSVD and RSVD are exactly the same algorithm. The results for
q = 0 in both Figs. 4.2(a) and (b) are almost overlapped, which means that the performance
results of both implementations are close, with the same computational and communication
cost. The BRSVD shows its advantage over RSVD with a larger q value. With q = 3, BRSVD
achieves 1.6⇥ and 1.7⇥ maximum acceleration against RSVD by cuBLAS-XT for tall-skinny
and square matrices, respectively.

Figure 4.3 summarizes the performance comparison with multi-core CPU and in-core re-
sults in Tflop/s. The performance peaks of in-core on GPU were 2.57 Tflop/s and 1.88 Tflop/s
for tall-skinny and square matrices, respectively. These can be used as references for other
out-of-core curious space. The experimental results in Figs. 4.3(a) and (b) show stable per-
formance of BRSVD compared to RSVD by cuBLAS-XT. For data size smaller than 20 GB,
BRSVD and RSVD by cuBLAS-XT both showed lower performance than in-core on GPU due
to the high communication cost for initial and final data transfer between CPU and GPU.
As we increased the data size, where the size of the working data exceeded the GPU memory
capacity at 16 GB, the performance of BRSVD gradually increased and reached 2.57 Tflop/s
for tall-skinny matrices and 2.17 Tflop/s for square ones. We profiled each GEMM oper-
ation by the NVIDIA Visual Profiler [80] and found the performance of GEMM peaks at
2.9 Tflop/s for tall-skinny and 2.3 Tflop/s for square. This performance drop rooted from
the di↵erent matrix shapes of two setups. The performance peak of GEMM varies according
to the sizes and shapes of the input matrices. For a detailed GEMM performance analysis,
please refer to [105]. Results of large matrices showed slightly higher performance com-
pared to in-core on GPU. This performance improvement came from the reduced proportion
of execution overheads in processing large-scale data. Regarding RSVD by cuBLAS-XT, the
performance peaks were 1.82 Tflop/s and 1.44 Tflop/s for tall-skinny and square matrices,
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Figure 4.2: Performance comparison of BRSVD and RSVD with di↵erent power iteration number q.
(a) and (b) show the execution time of tall-skinny matrices (m : n : k = 1024 : 32 : 1) and square
(m : n : k = 256 : 256 : 1) ones with di↵erent q. The partition number for BRSVD was set to s = 10. The
sampling parameters were set as: o = k for all setups.

respectively.

Figures 4.3(c) and (d) show the breakdown analysis of the running time of BRSVD. Fig-
ure 4.3(c) shows that GEMM routines in sampling, power iteration, and forming B dominate
the running time for tall-skinny matrices. For square matrices, due to the increased portion
of SVD computation and declined GEMM performance which render low flop/s for both
CPU and GPU, the overall performance in Fig. 4.3(d) is reduced by 15.5% compared with
the tall-skinny curious space.

To further evaluate the actual amount of communication between CPU and GPU, we
profiled the communication and running time of RSVD by cuBLAS-XT and BRSVD. Figure 4.4
gives the profiling results in sampling and power iteration. Figure 4.4(a) shows that the data
transfer of RSVD by cuBLAS-XT fully saturated the CPU-GPU bandwidth which rendered
the performance to be data transfer bound. Therefore, the performance can not be easily
improved by employing more GPUs. Figure 4.4(b) shows that BRSVD e↵ectively reduced the
amount of data transfer which moved the performance bottleneck to computation. Because
the parallelizability of BRSVD, its implementation on multiple GPU accelerators is expected
to achieve further acceleration.

4.4.4 Accuracy Evaluation

Now we evaluate the accuracy and robustness of the proposed algorithm. In the setup, the
dimension of matrix A was fixed to 103 ⇥ 103. We consider several synthetic matrices with
di↵erent singular value decay patterns to assess the approximation accuracy of BRSVD.
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Figure 4.3: Performance comparison for di↵erent data sizes in double precision. (a) and (b) show overall
performance of tall-skinny matrices (m : n : k = 1024 : 32 : 1) and square (m : n : k = 256 : 256 : 1) ones in
Tflop/s. Tflop/s is calculated as #flops (Table 4.1) divided by the measured running time. (c) and (d) show
the measured time breakdown of BRSVD for tall-skinny and square matrices. The parameters were set as:
o = k and q = 2.

1. Geometric and exponential decays of singular spectrum: We used two di↵erent singular
value decay patterns here: geometric and exponential decays. For the geometric decay,
the j-th singular value �j was defined to have the form of �j = �1gj�1. For the exponential
decay, it was defined as �j = �1 exp (�j/w). As illustrated in Fig. 4.5(a), the parameters
were set to g = {0.99, 0.9} and w = {160, 50}, respectively.

2. Low-rank patterns: In addition to the geometric and exponential decays, we used the
experiment setup proposed in [101]. The matrices had a fixed t leading singular values
and a tail with polynomial or exponential decay. For matrices with a polynomial tail, the
spectrum have the form

⌃ = diag(1, ..., 1| {z }
t

, 2�p, 3�p, ..., (n� t+ 1)�p).
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(b)

(a)

Figure 4.4: Profiling results for RSVD by cuBLAS-XT (a) and BRSVD (b). Beige and dark blue denote
communication time and computation time, respectively. The data size was set to m = 4 ⇥ 105, n = 104

and k = 400 (40 GB for the input matrix). Other parameter is set as: q = 2. Note that the time scales are
di↵erent in (a) and (b) to make illustration clearer.

For matrices with a exponential tail, the form of spectrum is defined as

⌃ = diag(1, ..., 1| {z }
t

, 10�h, 10�2h, ..., 10�(n�t)h).

As plotted in Fig. 4.5(b), the parameters were set to t = 10, p = {1, 2} and h = {0.25, 1}.

The left singular matrix U and right singular matrix V are generated as random orthogonal
matrices. The test matrices are generated by matrix-matrix multiplication as A = U⌃V>.

For assessing the accuracy, we used two di↵erent measures, namely, relative and actual
approximation errors [101]. The relative approximation error is defined as

e1 =
kA� ÂkF
⌧l+1(A)

� 1,

where Â denotes the approximations of A obtained by a matrix decomposition algorithm
and ⌧l+1(A) denotes the root sum of squared singular values after l-th [101]. The actual
approximation error is defined as

e2 =
kA� ÂkF
kAkF

,

which evaluates the di↵erence from the ground truth.
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Figure 4.5: Singular spectrum decay pattern of matrices used in experiments. (a) shows geometric and
exponential decay of singular value. (b) shows a low-rank with decaying tail.

Figure 4.6 depicts the relative approximation errors e1 of the BRSVD in comparison to
RSVD using (a) geometric and exponential decay patterns and (b) low-rank patterns. For
the parameters of this experiment, we used k = o = 10 and q = 2 in all the conditions. The
result shows that the proposed BRSVD e↵ectively gives a close approximation to RSVD
regardless of the number of batches. In particular, BRSVD is shown e↵ective for a matrix
with a slow singular value decay pattern (Exp w = 160). For matrices with a faster decay
rate, the result indicates that a moderately small batch size can yield good approximation.

We now show three test patterns to take a closer look at actual approximation errors
e2 using di↵erent algorithms in Fig. 4.7. We include comparisons with a single-pass RSVD
algorithm [118], which is the most accurate approximation among several state-of-the-art
single-pass RSVD algorithms. We can see that BRSVD gives substantially closer to the
optimal result (RSVD with power iterations) than RSVD without power iteration (q = 0
case) and single-pass algorithms. As the result shows, the proposed BRSVD achieves good
accuracy with a reduced data accesses.

Table 4.2 shows the accuracy of each algorithm with di↵erent q values. We set the
partition number s = 10 for BRSVD, which is a normal partition number for the out-of-core
GPU computation. We found that for the geometric and exponential decay patterns, BRSVD
requires approximately one more iteration to acquire a comparable accuracy of RSVD. For
the polynomial low-rank pattern, BRSVD failed to obtain the same level of accuracy as
RSVD. Regarding the exponential low-rank pattern, power iteration decreased the error of
BRSVD. In contrast, the error of RSVD increased with the increasing q values. Those results
also show that it requires the users to set sampling rate k and power iteration number q to
find the optimal values for unknown matrix inputs.
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Figure 4.6: Result of relative error w.r.t. the varying number of batches. (a) Geometric and exponential
decay pattern. (b) Low-rank pattern.

Table 4.2: Accuracy comparison with di↵erent power iteration number q. The parameters were set as:
k = o = 20 and s = 10. The results were calculated by actual approximation error.

Data q = 0 q = 1 q = 2 q = 3
RSVD BRSVD RSVD BRSVD RSVD BRSVD RSVD BRSVD

Geo g = 0.99 0.898 0.898 0.850 0.867 0.836 0.858 0.829 0.854
Exp ! = 160 0.936 0.936 0.905 0.918 0.896 0.913 0.891 0.910
Poly p = 1 0.178 0.178 0.093 0.125 0.091 0.128 0.09 0.131
Exp h = 1 4.21e-11 4.21e-11 1.42e-06 3.33e-11 1.30e-04 3.23d-11 3.36e-04 1.71e-11

4.4.5 Algorithm Comparison

In this subsection, we compared the proposed methods in Chapter 3 in Table 4.3. We
first compare the Fused method (Chapter 3) and BRSVD. From Table 4.3, we can see
that the computational costs for Fused and BRSVD are the same for Fused and BRSVD.
However, the communication costs are di↵erent. The communication cost of the Fused
method is dependent on the power iteration number q, which means the higher accuracy, the
higher communication cost. Comparatively, BRSVD only access A with two passes which is
independent of q.

We then compare the Gram method and BRSVD. Both two methods access the matrix A
for 2 times. However, the gram method will have a higher computational cost than BRSVD
and only works well for tall-skinny matrices.

Regarding the applications of methods proposed in Chapter 3 and BRSVD. The methods
proposed in Chapter 3 mainly focused on reducing the CPU-GPU data transfer for RVSD.
Those methods reduced the data transfer at the cost of increased computational cost. How-
ever, the CPU-GPU bandwidth remains the bottleneck for accelerating RSVD on GPUs.
As shown in Table 4.3, the Fused and Gram are exactly the same as the original RSVD.
Therefore, the proposed methods have a rigid error-bound for decomposition results. They
fit for applications that require a high decomposition accuracy. This chapter focused on
redesigning the RSVD algorithm to remove the bandwidth constraint. The experimental re-
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Figure 4.7: Actual error with di↵erent singular spectrum decay patterns which are (a) Poly p = 1, (b) Poly
p = 2, and (c) Exp h = 1, respectively.

sults show that the performance bottleneck has been moved to the GPU peak performance.
Since the proposed method is hardware independent, BRSVD will fit better for a multi-
node computing environment where the ratio of communication cost to computational cost
is much higher than a single node environment.

Table 4.3: Comparison of the proposed methods in Chapter 3 and this Chapter. #flops denotes the
computational cost for the sampling and power iteration part. Pass of A represents the communication cost
of transferring matrix A between CPU and GPU. q denotes the power iteration number.

Fused (Chapter 3) Gram (Chapter 3) BRSVD
#flops (2q + 1)mnl mnl2 + qn2l + kmnl (2q + 1)mnl
Pass of A q + 1 2 2
Accuracy exact exact approximation
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4.5 Applications of BRSVD

In this section, we demonstrate the performance of the proposed method on a diverse collec-
tion of data. All data used in the experiments exceeded the GPU memory capacity (16 GB).
In Section 4.5.1, we take Eigenface [103] and computed tomography data as examples to
assess the proposed BRSVD in comparison to both deterministic SVD and RSVD. The
hardware used in the experiment was the same in Section 4.4.2.

4.5.1 Eigenfaces

We apply the proposed BRSVD method to two real datasets. First, we used the extended
Yale face dataset [32] to assess the leading left singular vectors, which are known as eigen-
faces [103]. The database contains 2383 cropped face images, and each image has the reso-
lution of 168⇥ 192. Then a matrix of 32, 256⇥ 2383 was constructed as the input matrix A.
Figures 4.8(a) and (b) show the leading 4 eigenfaces calculated by BRSVD and determin-
istic SVD, respectively. The results show that our proposed algorithm has no discernible
deviation from the deterministic method.

Second, we used a large dataset derived from the facial recognition technology (FERET)
dataset [87]. 11, 333 images are of size 512⇥768. The remaining 14, 056 images were resized
to the resolution of 512⇥ 768 so that all images can be processed in the same matrix; thus
the input matrix size becomes 393, 216⇥ 25, 389. This matrix with double precision entries
will take up about 80 GB for storage. As shown in Fig. 4.8(c), the eigenfaces are blurred
compared with the Yale dataset due to that FERET contains portraits taken from di↵erent
directions and distances. Figure 4.8(d) compares the leading 32 singular values calculated
by BRSVD and RSVD, which indicates that BRSVD gives a very close approximation of
singular values to the RSVD method.

We compared the accuracy of approximated left singular vectors with the results calcu-
lated by deterministic SVD. The relative error of singular vectors is calculated as:

e3 =
kvi � v̂ik

kvik
,

where vi and v̂i denote the i-th singular vector obtained by the deterministic SVD and the
target algorithm, respectively.

As shown in Table 4.4, the accuracy of BRSVD is of the same order of magnitude as
RSVD for both two datasets, which means BRSVD can accurately approximate the leading
singular vectors of real data.

4.5.2 Computed Tomography

SVD has been used in CT reconstruction and denoising [1, 104]. To evaluate the performance
on large scale data, we used a standard Shepp-Logan phantom [94] as the input dataset.
Each entry of the data is a double precision gray-scale voxel of the phantom. 2048 slices
of CT image with a resolution of 2048 ⇥ 2048 (= 4, 194, 304) were vectorized to form a
4, 194, 304 ⇥ 2048 double precision matrix. This matrix took up 64 GB for storage. As
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Figure 4.8: Comparison of BRSVD and deterministic rank-k SVD. (a) and (b) shows the eigenfaces from
the Extended Yale Face dataset [32] approximated by BRSVD and deterministic rank-k SVD, respectively.
(c) shows the eigenfaces computed from the FERET dataset [87] approximated by BRSVD. (d) shows the
singular values calculated by BRSVD and RSVD for the FERET dataset.

shown in Table 4.5, BRSVD and RSVD achieved 6.3⇥ and 3.7⇥, respectively, against the
multi-core CPU implementation.

4.6 Conclusions

This paper presented a fast RSVD algorithm named BRSVD that fully utilizes GPU acceler-
ators. We provided a detailed study of the data access e�ciency of the proposed algorithm,
and demonstrated the performance with detailed experimental results and real applications.
The proposed algorithm allows us to see the directions of randomized algorithm development
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Table 4.4: Accuracy comparison for the leading four left singular vectors. The sampling parameters were
set as: k = o = 32 for Yale Face and k = o = 128 for FERET, respectively. Other parameters were set as:
q = 2 and s = 10 for both datasets.

Yale Face FERET
RSVD BRSVD RSVD BRSVD

v1 1.47e-5 3.51e-5 9.46e-7 4.77e-6
v2 1.52e-4 3.39e-4 8.22e-5 3.20e-4
v3 3.43e-3 9.13e-3 6.44e-5 5.21e-4
v4 2.92e-3 9.91e-3 5.72e-4 2.05e-3

Table 4.5: Performance comparison of BRSVD, RSVD by cuBLAS-XT, and RSVD on CPU. All experiments
were conducted in double precision. The parameters used in the experiments were set as: k = o = 64, q = 2,
and s = 8.

BRSVD RSVD by cuBLAS-XT RSVD on CPU
Time (s) 23.1 39.4 145.3

in evolving computing environments. Most immediate is the independent operations which
fit accelerators. Regarding the accuracy of the proposed algorithm, our proposed two-pass
algorithm has a higher accuracy than the single-pass one. However, it has a slightly lower
accuracy than the standard multi-pass with the same computational cost.

Our future work mainly focuses on showing the mathematical proof of BRSVD. Other
work includes mixed-precision randomized algorithms and enabling BRSVD to run in a
multi-GPU cluster environment to achieve further acceleration.
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Chapter 5

Conclusions

In this chapter, we summarize our work and discuss future work.

5.1 Summary of This Thesis

In this work, we investigated two algorithms: cone beam CT (Chapter 2) and RSVD (Chapter
3 and 4). Both works focus on enabling those algorithms to process large-scale data on GPUs.
Both our proposed methods are based on the divide-and-conquer strategy in dealing with
the input and output data.

In Chapter 2, we proposed a cache-aware optimization method for cone beam reconstruc-
tion. The previous work [82] has revealed that the GPU bandwidth instead of CPU-GPU
bandwidth is the performance bottleneck for the G80 GPU. Our work started with a com-
paratively newer GPU. We analyzed the Cone Beam CT algorithm and GPU architecture.
We found the improved cache capacity can be utilized to reduce the o↵-chip data transfer.
The proposed method accelerated the FDK algorithm via three strategies: (1) an improved
loop organization strategy, (2) an improved data structure, and (3) an I/O-included pipeline.
We also presented tuning guidelines for determining the best configuration for the granular-
ity and shape of thread blocks. Through the proposed method, we successfully moved the
bottleneck of this application from the bandwidth of GPU memory to the cache hardware
throughput. We showed that the sophisticated cache hardware on the new GPUs gives a new
perspective on accelerating cone beam reconstruction using GPU. Compared to the previous
strategy of emphasizing memory coalescing to reduce GPU memory access, the proposed
cache-aware strategies focus on optimizing the cache-hit rate of the GPU.

In Chapter 3, we first analyzed the performance bottleneck and data access pattern of
accelerating RSVD on GPUs. The main building block of RSVD is GEMM, and GEMM has
been highly optimized. Compared with the Cone Beam CT, the performance peak of GEMM
is close to the theoretical peak for in-core computation, which means the GPU memory is
not the bottleneck. We used a roofline model to benchmark the out-of-core GEMM perfor-
mance. The benchmark results revealed that the CPU-GPU bandwidth is the performance
bottleneck. Therefore, di↵erent from the Cone Beam CT in Chapter 2, our main focus in
Chapter 3 was to reduce the CPU-GPU data transfer instead of improving the cache per-
formance. The proposed methods demonstrated that reducing the communication cost at
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the expense of increased computational cost is a feasible strategy to improve the overall per-
formance. We proposed data transfer reducing methods that relieve the constraint imposed
by CPU-GPU bandwidth for RSVD. The proposed Fused method e↵ectively accelerated the
RSVD up to 1.9⇥ compared with a straightforward method that deploys the highly-tuned
GEMM scheme and the 1D data partition scheme. The Gram method achieved up to 5.2⇥
speedup for tall-skinny matrices compared with a straightforward method.

In Chapter 4, we explored potential techniques for improving the performance of RSVD
on the heterogeneous architecture. Our proposed methods in Chapter 3 relaxed the con-
strained of CPU-GPU bandwidth. However, RSVD still remained an CPU-GPU bandwidth
bound problem in Chpater 3. In Chapter 4, we redesigned the RSVD algorithm to further
reduce the CPU-GPU data transfer. The proposed BRSVD algorithm successfully moved
the bottleneck of RSVD from bandwidth bound to the computational ability of the GPU.
Our work demonstrated a sample of reducing communication costs at the expense of losing
a small fraction of accuracy.

5.2 Future Work

Recent developments in GPUs provide new possibilities for HPC. One of them is a new fea-
ture called mixed precision. Mixed-precision is a computational method that combines the
use of di↵erent numerical precisions. The mixed-precision allows users to reduce the compu-
tational cost and storage cost without extra e↵orts for typecasting. From the Pascal GPU
architecture [73], NVIDIA starts to provide support for mixed-precision computation, in-
cluding double-precision (64-bit), single-precision (32-bit), and half-precision (16-bit). This
function mainly targets the rapidly growing needs for accelerating neural networks on GPUs.
Half-precision on GPUs has twice the throughput of single-precision arithmetic computa-
tion and 4⇥ the throughput of double precision. The theoretical maximum performance of
V100 GPU reaches 31.4 Tflop/s with half-precision, 15.7 Tflop/s with single-precision, and
7.8 Tflop/s with double-precision. For accelerating image processing applications, data from
cameras or other kinds of sensors do not require high-precision floating point computation.
For cone beam CT systems that do not have a high dynamic range X-ray sensor to span the
range of 32-bit floating point, it is possible to replace most of 32-bit computations with 16-bit
and make the output voxel 32-bit. These mixed-precision computation can be achieved in
the CUDA kernel level.

For accelerating linear algebra applications, the cuBLAS library provides API level mixed-
precision which allows users to access BLAS3 API without extra storage and computation for
converting precisions. Based on those new functions, mixed-precision iterative refinement
has been proposed to the LU factorization in solving Ax = b by GPUs [38]. Replacing
intermediate computation inside other linear algebra algorithms is in progress [30]. Besides,
extending the mixed-precision computation to randomized algorithms is a possible research
direction.
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[41] A. Höcker and V. Kartvelishvili. SVD approach to data unfolding. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 372(3):469–481, 1996.

[42] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis, Uni-
versity of California, Berkeley, Berkeley, CA, USA, 2010.

[43] J. Hofmann, J. Treibig, G. Hager, and G. Wellein. Performance engineering for a
medical imaging application on the Intel Xeon Phi accelerator. In Proceedings of the
27th International Conference on Architecture fo Computating Systems (ARCS), pages
222–228, Feb. 2014.

[44] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24(6):417–441, 1933.

[45] F. Ino, Y. Okitsu, T. Kishi, S. Ohnishi, and K. Hagihara. Out-of-core cone beam
reconstruction using multiple GPUs. In Proceedings of the 7th IEEE International
Symposium on Biomedical Imaging (ISBI), pages 792–795, Apr. 2010.

[46] F. Ino, S. Yoshida, and K. Hagihara. RGBA packing for fast cone beam reconstruction
on the GPU. In Proceedings of the SPIE Medical Imaging (MI), Feb. 2009. 8 pages
(CD-ROM).

[47] Intel Corporation. Intel architecture instruction set extensions programming refer-
ence, Dec. 2013. http://download-software.intel.com/sites/default/files/

managed/71/2e/319433-017.pdf.

80



[48] Intel Corporation. Developer Reference for Intel R�Math Kernel Library - C. https:

//software.intel.com/en-us/mkl-developer-reference-c/, 2019.

[49] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. Journal of Parallel and Distributed Computing,
64(9):1017–1026, 2004.

[50] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. August.
Automatic CPU-GPU communication management and optimization. ACM SIGPLAN
Notices, 46(6):142–151, 2011.

[51] H. Ji and Y. Li. GPU accelerated randomized singular value decomposition and its
application in image compression. In Proceedings of the Modeling, Simulation, and
Visualization Student Capstone Conference, pages 39–45, 2014.

[52] M. Kachelrieß, M. Knaup, and O. Bockenbach. Hyperfast parallel-beam and cone-beam
backprojection using the cell general purpose hardware. Medical Physics, 34(4):1474–
1486, Apr. 2007.

[53] J. Kastner, B. Harrer, G. Requena, and O. Brunke. A comparative study of high
resolution cone beam X-ray tomography and synchrotron tomography applied to Fe-
and Al-alloys. NDT & E International, 43(7):599–605, Oct. 2010.

[54] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalue by the power
and Lanczos algorithms with a random start. SIAM Journal on Matrix Analysis and
Applications, 13(4):1094–1122, 1992.

[55] R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. DAIMI
Report Series, 27(537), 1998.

[56] M. Leeser, S. Mukherjee, and J. Brock. Fast reconstruction of 3D volumes form 2D
CT projection data with GPUs. BMC Research Notes, 7(582), June 2014. 8 pages.

[57] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert. Randomized
algorithms for the low-rank approximation of matrices. Proceedings of the National
Academy of Sciences of the United States of America (PNAS), 104(51):20167–20172,
2007.

[58] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055v3, 2013.

[59] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. Fast convex optimization
algorithms for exact recovery of a corrupted low-rank matrix. Technical Report UILU-
ENG-09-2214, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2009.

[60] B. Liu, J. Huang, L. Yang, and C. Kulikowsk. Robust tracking using local sparse
appearance model and k-selection. In Proceedings of the 24th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1313–1320, 2011.

81



[61] Y. Lu, F. Ino, and K. Hagihara. Cache-aware GPU optimization for out-of-core cone
beam CT reconstruction of high-resolution volumes. IEICE Transactions on Informa-
tion and Systems, E99-D(12):3060–3071, Dec 2016.

[62] K. Machin and S. Webb. Cone-beam X-ray microtomography of small specimens.
Physics in Medicine and Biology, 39(10):1639–1657, Oct. 1994.

[63] M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and
Trends R�in Machine Learning, 3(2):123–224, 2011.

[64] P.-G. Martinsson, V. Rockhlin, and M. Tygert. A randomized algorithm for the ap-
proximation of matrices. Technical Report YALEU/DCS/TR-1361, Yale University,
Department of Computer Science, New Haven, CT, USA, 2006.

[65] T. Mary, I. Yamazaki, J. Kurzak, P. Luszczek, S. Tomov, and J. Dongarra. Performance
of random sampling for computing low-rank approximations of a dense matrix on
GPUs. In Proceedings of the 27th International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), number 60, 2015.

[66] A. Munshi. The OpenCL specification. In Proceedings of the 21st IEEE Hot Chips
Symposium (HCS), pages 1–314, 2009.

[67] K. Nakano. Asynchronous memory machine models with barrier synchronization. IE-
ICE TRANSACTIONS on Information and Systems, 97(3):431–441, 2014.
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