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Abstract

In recent years the interest of heavy hadrons containing heavy quarks has been greatly increased

by the current experimental facilities such as LHCb and Belle which are actively reporting discoveries.

Many heavy hadrons are newly observed and some of them may be considered as exotics hadrons.

Their nature is not yet well-established and under many discussions due to the creation of a light quark-

antiquark pair. Among them, the heavy baryon which contain one heavy quark and light quarks could

be a suitable place to study the behavior of light quarks inside the heavy quark environment, which

is possibly the key to understand the heavy hadrons including new findings.

In this dissertation, we focus on the study of heavy baryons by investigating their three-body

decays. Specifically, we investigate the two-pion emission decays of the low-lying Λc resonances; Λ∗c →
Λcππ. The relevant decay processes such as sequential processes going through Σ

(∗)
c in intermediate

states and a direct process have been considered in the calculation. The Λb bottom baryons are also

studied similarly. We employ effective Lagrangians in a non-relativistic framework where the coupling

strengths are computed from the quark model.

In heavy baryons, it is known that the orbital excitations between λ and ρ mode are well separated.

By studying the three-body decay of Λ∗c(2595) and Λ∗c(2625), we show that the decay properties are

sensitive to their internal structures. In comparison to the experimental data, both resonances are

consistent with the λ-mode excitation. We also show that the direct process is particularly important

for Λ∗c(2625), and its presence can be tested by measuring the Dalitz plots.

Furthermore, the three-body decay is also helpful to determine the unknown spin and parity of

Λ∗c(2765), which still have a one-star rating in PDG. By performing a similar analysis, we show that

the newly observed Λ∗b(6072) by LHCb can be an analogous state of Λ∗c(2765). Because of that, we

arrive at the conclusion that both states may be related to Roper resonances, N(1440), namely the

radial excitation of baryons. This discovery tells us that they have common properties which are

independent of their flavor contents. The flavor independent nature of Roper-like resonances may

provide an interesting hint to the dynamics of hadron resonances.

Keywords:

Quark model, effective Lagrangian, heavy baryon, Dalitz plot, three-body decay, spin-parity, Roper-like

resonance.
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Chapter 1

Introduction

1.1 QCD and quark model

As we may know, atomic nuclei are composed of protons and neutrons. The proton itself is a

composite particle made of three quarks which is classified as a hadronic particle. The quarks and

gluons inside the hadrons interact strongly to each other governed by a fundamental theory so-called

quantum chromodynamics (QCD). The strong interaction is one of the fundamental interactions in

nature along with gravitation, electromagnetic, and weak interactions. Even though we have a theory

of hadrons, there are many unsolved problems and puzzles in the low-energy regime due to its non-

perturbative nature. It can be understood that the strong interaction is described by the strong

coupling αs, which is energy-dependent. Opposite to the electromagnetic interaction, the strong

coupling is quite large in the low-energy region. Consequently, we cannot make use of the perturbation

theory and therefore we need to construct an alternative model respecting the symmetries of QCD to

understand various properties of hadrons in this region.

As mentioned above, one of the most important problems in studying hadrons is how to construct

effective models which is suitable at the low-energy regime. The effective models have an important

role to give us an intuitive description of hadrons at this regime. In reality, it is quite challenging that

one model can explain all properties of hadrons. But, by comparing several models with various ex-

perimental observables, we may obtain the relevant description of hadrons or even model-independent

relation. Up to now, various effective models such as the quark model, the skryme model, the bag

model and so forth have been developed in attempts to explain various hadronic phenomena from

different perspectives. In addition, Lattice QCD simulation which is based on the first principle of

QCD is also being developed recently following the rise of high-performance computers.

The quark model is one of the successful effective models in explaining various properties of the

ground state and the low-lying excited hadrons [1, 2]. In this description, baryons and mesons are

composed of three quarks and quark-antiquark pairs, respectively. Despite its success, it is quite

problematic to explain the properties of the higher excited hadrons. For example, the quark model

predicts a lot of states compared to the observed hadrons in nature, leading to the term called ”missing

resonances”. In the nucleon sector, there is also a well-known state called Roper resonance, N(1440),

which is now believed to be a radial excitation state of the nucleon. The mass ordering of this state

cannot be explained by the simple quark model. Moreover, there are also some excited states which

are not compatible with the quark model expectation. These states are known as the ”exotic states”.

Therefore, it is fair to say that there reside many problems that cannot be answered by the conventional

quark model. Now, the questions are to what extent we can use the quark model in studying hadrons

and what the next step is to go beyond the quark model.
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1.2 Exotic states and heavy baryons

In recent years, there are significant developments in experimental facilities constructed by various

collaborations around the world. These experimental facilities are equipped by high-energy acceler-

ators and high precision detectors. Owing to these experimental developments, many new hadrons

are discovered recently [3]. With the high-energy beam, new kinds of hadrons containing a heavy

quark are also observed in the experiment. These hadrons are usually called heavy hadrons. The

charm and bottom quarks are considered as heavy quarks because their masses are considerably larger

than the standard QCD scale ΛQCD of around 300 MeV. Because of that, there is an emergence of a

new symmetry so-called heavy-quark symmetry that governs the interaction of heavy hadrons [4]. In

this symmetry, the heavy quark acts as the static object which is decoupled from the other two light

quarks, making the dynamics of heavy hadrons simpler as compared to conventional hadrons such as

nucleon. Therefore, heavy hadrons will provide a good place to test effective models in explaining

the properties of hadrons with various flavor contents. Understanding the dynamics of heavy hadrons

may shed light on the structure of hadrons in general.

In the past decades, heavy hadron spectroscopy is enriched by the discoveries of X,Y, and Z exotic

states and also Pc pentaquarks [5–8]. These states are beyond the standard understanding of hadrons

which may be in the form of either baryons or mesons. However, the observations of these states tell

us that the tetraquarks and pentaquarks, or even multiquark states can exist. Although such states

are allowed in QCD, the nature of these states should be clarified in the future. Furthermore, these

states are not compatible with the quark model expectations which is mainly due to the opening

thresholds. The effect of the opening thresholds is not yet well understood which may be a source

of the debate about how we interpret the observed states. In fact, the observed exotics states are

generally located near the thresholds. The suitable parameterizations of the experimental data and

the more comprehensive models are certainly of importance to advance our knowledge about these

states. Of course, the more precise experimental data and measurements of various observables will

also help to clarify their nature.

One common thing about the above-mentioned exotic states is that they contain at least one heavy

quark. One of the simplest systems containing a heavy quark is a singly heavy baryon. It contains a

heavy quark along with two light quarks. As explained before, the opening threshold may influence

the properties of the exotic states. This opening threshold is actually due to the creation of a pair

of light quark-antiquark which makes the system more complicated. The (singly) heavy baryons will

provide an ideal platform to study the dynamics of the light quarks in the heavy quark environments.

Hence, studying the heavy baryons may give a hint on the structure of exotic states.

In this dissertation, we study the heavy baryons in particular their excited states within the quark

model descriptions. In this manner, the low-lying heavy baryons are investigated to see how the quark

model works. By studying this way, we may get to know when the quark model expectation will

deviate from the experimental data, and we can think of when we should go beyond the quark model

and see the possibility of the exotic states.
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1.3 Three-body decays

There are a lot of ways how we can study the heavy baryons, e.g. studying their mass spectra,

productions, decays, and so on. Among them, three-body decay provides a good place to study heavy

baryons because of the additional kinematical variables as compared to two-body decay. Moreover,

many heavy baryons mainly decays into three particles such as Λ∗c → Lambdaππ. Indeed, the ex-

perimental groups such as Belle and LHCb have a large amount of experimental data that has not

yet released. Moreover, it is rather difficult to conduct the scattering experiments of heavy baryons

because their lifetimes are very small. In fact, the exotic states including pentaquarks are recently

found by analyzing the three-body decays. This situation stimulates us to study the three-body decay

more comprehensively.

In the standard way, the three-body decay is described by a two-dimensional plot so-called Dalitz

plot. This Dalitz plot is made by a combination of two invariant masses. Generally, the structure

inside the plot contains all information about the underlying decay mechanism from which we can

study the structure of heavy baryons. Dalitz plot can be directly compared with the experimental

data by which we can testify our theoretical models. We may also deform the shape of the Dalitz

plots to which it gives a more clearer picture. Also, studying other related quantities such as invariant

mass distribution, projection of Dalitz plot into one of the axis, will be useful to extract the relevant

information about the structure.

1.4 Purpose

In this dissertation, we aim to study the structures of heavy baryons through their two-pion emis-

sion decays. The heavy baryons are described in the quark model picture and the pion is regarded as

a Nambu-Goldstone boson. We will make the use of effective Lagrangians in non-relativistic approx-

imation for actual computations of three-body decay amplitude. The Dalitz plots and other related

quantities are investigated to extract the information on their structures from the experimental data.

1.5 Outline

The dissertation is organized as the following:

Part 1: we review the heavy baryons from both the experimental and theoretical sides.

Chapter 2: we review the experimental progress on charmed and bottom baryons separately for

each flavor. The heavy baryons are limited to the singly heavy baryons. The baryons with two or

more heavy quarks are not discussed in the present work. We also limit our discussions to the strong

and radiative decays. We notice that there are many experimental data on weak interactions related

to heavy baryons, but they are beyond our scopes.

Chapter 3: the theoretical perspectives in attempts to elucidate the observed heavy baryons are

reviewed. First, we explain the general properties of heavy baryons. Then, we discuss the various
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theoretical models which have been proposed and the interpretations of each heavy baryons according

to those models.

Part 2: we introduce our formulations used in the present study.

Chapter 4: the basic formulation of the quark model is explained. We explain the heavy baryon

wave function in the quark model description and their interaction between pion and quark. The

concrete calculation of the amplitude of heavy baryons decays is discussed in detail.

Chapter 5: the effective Lagrangian is formulated to calculate the three-body decay amplitudes.

The non-relativistic reduction is performed and the spin transfer matrices are introduced. We also

show how to extract the coupling strength from the quark model.

Chapter 6: Dalitz plots and three-body decay kinematics are introduced. The various relations

related to Dalitz plots are also explained.

Part 3: The results of our studies are presented and discussed.

Chapter 7: we start the investigation by considering the sequential processes going through Σ
(∗)
c

in intermediate states for the low-lying charmed baryon resonances, Λ∗c(2595) and Λ∗c(2625). Here, we

will discuss how the invariant mass distributions are useful to distinguish the internal structures of

heavy baryons.

Chapter 8: We take into account the direct process for Λ∗c(2595) and Λ∗c(2625) decays. We

propose to study the angular correlations to further clarify the role of the direct process especially for

Λ∗c(2625) decay. This direct process is closely related to the chiral partner structures of light diquarks

inside the heavy baryons.

Chapter 9: The comprehensive analysis is performed in order to determine the spin and parity of

the Λ∗c(2765) baryon. The Dalitz plots have been made for various spin and parity assignments, and

the convolution of the Dalitz plots have been also made. It turns out that the ratio and the angular

correlations are the keys to spin and parity determination.

Chapter 10: We discuss the newly observed Λ∗b(6072) as a Roper-like resonance. We show that

the Dalitz plots and other related quantities are consistent with the experimental data. The result

implis that there is a flavor-independent nature of the Roper-like resonance, which is the first radial

excitation of baryons with spin and parity JP = 1/2+.

Part 4: We summarize the results and discuss the future prospects of our studies.

Chapter 11: We summarize and discuss the possible interpretations of our results. Then, we will

give some remarks and messages on the structure of heavy baryons studied from the two-pion emission

decays. Also, we will discuss some parts of our investigations which are not yet done in this study

and some possible natural extensions.

“The begining is the most important part of the work”, Pluto
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Chapter 2

Experimental progresses

In this chapter, we shall review the experimental status of observed heavy baryons so far. We focus

on the review of the charmed and bottom baryons which contain only one heavy quark. This is one

of the simplest systems containing a heavy quark. As we may wonder, there are also heavy baryons

with more than one heavy quark as shown in Fig. 2.1, however, they are beyond our scope. There

also exists the heaviest quark, namely top quark, but we will not discuss here. It is because the top

quark decay through weak interaction before it forms hadronic particles. Moreover, we mainly cover

the strong decay of heavy baryons, the weak decay of ground state heavy baryons are not covered

here. Before going further, the interested reader may visit Refs [1, 3, 9–16] for the detail review on

heavy baryons.

As we may realize later, the observed heavy baryon resonances have relatively narrow decay widths

compared to light baryons such as nucleon or hyperon resonances. For example, the 1/2− and 3/2−

states in the Λ baryons, Λ(1405) and Λ(1520) have widths of about 50 MeV and 15 MeV, respectively,

while the analogue states in the charm sector, Λc(2593) and Λc(2625) have widths of around 2.5 MeV

and < 1.0 MeV, respectively. This sort of situation gives the advantage to study them experimentally.

Thanks to the narrow width, it is experimentally easy to discover heavy baryons and measure various

properties.

Many of the excited states of heavy baryons are discovered e+e− collider experiments such as

CLEO, Belle, and BaBar. Historically, CLEO discovered the low-lying excited states while the next

generation B-factory experiments discovered higher excited states. Very recently, LHCb also joins the

spectroscopy of charmed and bottom baryons. Because of the continuous developments of experimental

facilities, the interest of the heavy baryon physics has been increased recently. Furthermore, we expect

a lot of new states will be discovered by the current facilities in the near future.
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Figure 2.1. SU(4) multiplet of baryons made of u, d, s, and c quarks. The figure is adopted from
PDG. In this work, we focus on heavy baryon containing one heavy quark.
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2.1 Experimental facilities

When we are talking about the experiment for the heavy-baryon production, we will find that

heavy baryons are usually studied in B-factory. The B-factory experiment is an electron-positron

collider experiment that is originally designed to test the CP violation by studying B-meson decays,

not for studying heavy baryons. However, it is later found that the huge amount of B meson decay and

e+e− collision data can be used to study heavy baryons. In such experiments, the electron-positron

collide at c.m. energy of around 11 GeV and an excited bottomonium state Υ(4S) is produced which

subsequently decays mainly into a B and anti B meson pair as described in Fig. 2.2. This is the origin

of the name B-factory.

There are two B-factory experimental facilities built around the 1990s. One is the Belle experi-

ment at the KEKB in Tsukuba, Japan and the other one is the BaBar experiment which is built at

SLAC laboratory, California, US. Both experiments have completed the data collection around 2010.

However, it does not mean that the experiments have been stopped. Now, there are still many ongoing

analyses of the existing data and the results will be reported in the near future. The next-generation

of B-factories have been proposed and to be built after 2010. However, some of them have been can-

celed or they are not approved yet. In Japan, on the other hand, an upgrade of the Belle experiment,

so-called Belle II experiment, has been approved and then constructed around 2018. It is worth noting

that these experiments are mostly used for the charmed baryon.

In addition to B factories, there is the LHCb experiment at the LHC, Europe, which started the

operation in 2010 and is currently active in collecting the experimental data. Although this LHCb

experiment is studying hadrons containing the bottom quark, it is not considered as a B factory. It is

because they are using a proton-proton collider experiment and it is not solely for studying the physics

of hadrons with bottom quark. Thanks to high-energy beam, the bottom baryon can be studied and

many excited stated of bottom baryons are discovered recently in this LHCb experiment.

We note that heavy baryons are mainly produced from the decay of B meson and the fragmentation

of cc̄ (or bb̄ for bottom baryon) from pp or e−e+ collision. For B meson decay, the analysis of the spin

determination is relatively easy due to the spin 0 of Bmeson. For the latter one, the production rate

is much higher but they suffer a high level of background.

e− e+bb̄

B̄

B
Υ(4S)

Figure 2.2. The illustration of B-meson production in B factory experiment. The B-meson is
produced by the collision of asymmetric energy e+e−.
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2.2 Charmed baryon

In this section, we review the charmed baryons. Up to now about 20 states have been discovered.

Among them, all ground states of charmed baryons have been established experimentally. However,

the higher excited state are not well established despite the several experiments have been done. Here,

we shall review them for each baryon separately in the following.

2.2.1 Λc family

Λc baryon is an isospin-0 charmed baryon consisted of udc quarks. The ground state of Λc is firstly

discovered by Fermilab in 1976 [17]. The most precise measurement of its mass was performed by

BaBar in 2005 [18]: mΛc = (2286.46 ± 0.14) MeV, which is later adopted by PDG. Most of the Λc
excited states are discovered before the B-factory experiments. In recent years, the higher excited

states are observed by B-factories and LHCb.

The observed Λ+
c baryons are listed in Table 2.1. They are observed in Λ+

c π
+π− and pD0 invari-

ant masses. The first two excited states Λc(2595)+ and Λc(2625)+ are the first orbital excitations.

However, the spin and parity are determined by the quark model, not yet measured experimentally.

These states has been observed in numerous experiments [19–25].

Table 2.1. Mass spectra and widths of Λ+
c with their decay modes.

State JP Mass (MeV) Width (MeV) Decay modes Refs

Λ+
c

1
2

+
2286.46± 0.14 - Weak Fermilab [17]

Λc(2595)+ 1
2

−
2592.25± 0.28 2.6± 0.6 Λcππ, Σcπ CLEO [23]

Λc(2625)+ 3
2

−
2628.11± 0.19 < 0.97 Λcππ, Σcπ ARGUS [19]

Λc(2765)+ ?? 2766.6± 2.4 50 Λcππ, Σ
(∗)
c π CLEO [26]

Λc(2860)+ 3
2

+
2856.1+2.3

−6.0 68+12
−22 pD0 LHCb [27]

Λc(2880)+ 5
2

+
2881.63± 0.24 5.6+0.8

−0.6 Λcππ, Σ
(∗)
c π, CLEO [26]

pD0 BaBar [28]

Λc(2940)+ 3
2

−
2939.6+1.3

−1.5 20+6
−5 Λcππ, Σ

(∗)
c π, Belle [29]

pD0 BaBar [28]

The spin and parity of the higher excited states of Λ+
c are still not well determined. Moreover, there

are many quark model states predicted in this mass regions and there are several opening thresholds

nearby. More analysis needs to be done to resolve the problems. The Λc(2765)+ state is firstly found

by CLEO [26]. Recently, Belle determine the isospin of Λc(2765)+ to be zero [30]. Before that, it is not
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resolved whether it is a Σc or Λc state. However, the spin-parity determination is still underway [31].

Despite the clear existence of Λc(2765)+, PDG still regards it as a one-star resonance [1].

The new Λc(2860)+ is observed by LHCb in pD0 invariant mass [27]. However, its existence needs

to be confirmed by other experiments in pD0 and also Λ+
c π

+π− invariant masses. If it does exist, this

resonance can be naturally assigned as 3/2+ which is a D-wave partner of Λc(2880)+ with 5/2+. Note

that the spin 5/2 of Λc(2880)+ is determined by analyzing its decay angular distributions of Σc(2455)π

by Belle [29]. The last Λc(2940)+ is reported by Belle, BaBar, and LHCb [27–29]. LHCb claims that

its spin-parity of 3/2− is favored. However, the higher spin-parity such as 7/2 can not be ruled out.

2.2.2 Σc family

Σc baryons are composed of the c quark and two ud quarks with an isospin one resulting in isotriplet

of Σc. There are two ground state of Σc, namely Σc(2455) and Σc(2520). They are a heavy quark spin

doublet with spin-parity 1/2+ and 3/2+ with brown muck spin j = 1. Both ground states are found

before B-factory experiments. The higher excited state Σc(2800) is discovered by Belle and BaBar.

The observed Σc states are summarized in Table 2.2.

The ground state Σc(2455) is unique compared to Σ in the strange sector, that Σc(2455) can

decay strongly to Λcπ. Σc(2455)++ and Σc(2455)+ are firstly observed by BNL in 1975 [32]. The

neutral Σc(2455)0 is later found by BEBC in 1980 [33]. Later it is confirmed by CLEO [34]. This

states has been observed in many experiments [35–43]. In the last decade, new measurements have

been conducted by CDF [24] with more precise experimental instruments. The Σc(2455) state is

confirmed by B-factory experiments: Belle[44] and BaBar[45]. The spin of Σc(2455) state is measured

by analyzing the angular correlations in B → Λcp̄π decay performed by BaBar[45]. The result fit

favors spin 1/2 hypothesis. The helicity of Σc(2455) is fixed to be 1/2 due to the helicity conservation

and the fact that the B-meson has spin 0 and proton has spin 1/2.

The ground state Σc(2520)++ is firstly discovered by SKAT in 1993 [46]. Later, isotriplet Σc(2520)

states are discoved by CLEO [40, 47, 49]. The more precise measurement is done by CDF [24] and

Belle [44]. However, it is not seen in BaBar analysis [45]. The spin-parity of Σc(2520) is not measured

yet in the experiment. Both Σc(2455) and Σc(2520) states are found in Λcπ invariant mass implying

that they are indeed isotriplet states.

The highest state of isotriplet Σc(2800) which is rather a broad state is discovered by Belle in

2005 [48]. The Σc(2800) state is seen in Λcπ confirming that it is isotriplet state. It is also found

that there is no peak corresponding to Λc/Σc(2765) in Λcπ indicating that it is Λc state [48]. The

Σc(2800) state is later confirmed in B → Λcp̄π by BaBar [45]. The observed mass has a discrepancy

compared to the one measured by Belle. The measured mass by BaBar is (2846± 8± 10) MeV and it

is 3σ away from Belle. It could be a distinct state, but, for now, it is considered to be the same state.

Furthermore, it is not enough statistics to perform angular analysis for this state. Belle II experiment

is expected to have enough statistics to analyze this decay channel to measure the spin of Σc(2800).

So far Σc(2800) is not seen in Λcππ invariant mass, it is only seen in Λcπ invariant mass. In fact,

the quark model calculation predicts several states in this mass region. With upgraded experimental
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Table 2.2. Mass spectra and widths of Σc with their decay modes.

State JP Mass (MeV) Width (MeV) Decay modes Refs

Σc(2455)++ 2453.97± 0.14 1.89+0.09
−0.18 Λ+

c π
+ BNL [32]

Σc(2455)+ 1
2

+
2452.9± 0.4 < 4.6 Λ+

c π
0 TST [33]

Σc(2455)0 2453.75± 0.14 1.83+0.11
−0.19 Λ+

c π
− BNL [32]

Σc(2520)++ 2518.41+0.21
−0.19 14.78+0.30

−0.40 Λ+
c π

+ SKAT [46]

Σc(2520)+ 3
2

+
2517.4± 2.3 < 17 Λ+

c π
0 CLEO [47]

Σc(2520)0 2518.48± 0.20 15.3+0.4
−0.5 Λ+

c π
− CLEO [40]

Σc(2800)++ 2801+4
−6 75+22

−17 Λ+
c π

+ Belle [48]

Σc(2800)+ ?? 2792+14
−5 62+60

−40 Λ+
c π

0 Belle [48]

Σc(2800)0 2806+5
−7 72+22

−15 Λ+
c π
− Belle [48]

facilities, we expect the nature of Σc(2800) state would be revealed in the near future.

2.2.3 Ξc family

Ξc baryons are composed of cs quarks and one u or d quark. Five Ξc states were observed prior

to the B-factory experiments: ground state Ξc, and the doublets: Ξ′c,Ξc(2645), and another P -wave

doublet: Ξc(2790), and Ξc(2815). The B-factory experiments have established three new excited Ξc
states. Recently, LHCb discovered several new Ξc states in ΛcK invariant mass. The observed Ξc
states are summarized in Table. 2.3.

The Ξ+
c ground state was first observed by CERN in 1983 [50]. Its isospin partner Ξ0

c was discovered

later in the Ξ−π+ final states by the CLEO in 1988 [51]. Meanwhile, the Ξ
′
c isospin doublet is discovered

by CLEO in 1998 by analyzing their electromagnetic decay Ξcγ [52]. These two resonances are the

flavor symmetric partner of Ξc. The mass difference between Ξc and Ξ′c us too small to allow the

strong decay Ξ′c → Ξcπ. The only allowed decay modes between them are the radiative decays, which

were the observed channels. Around 1995, the Ξc(2645) state was reported by the CLEO [53, 54] and

later reported by E687 [62]. Belle confirmed these resonances with more precise mass measurements

in [59, 63] and recently in 2016 [64]. Although its spin-parity has not been measured, Ξc(2645) was

identified to be JP = 3/2+ state.

The two excited Ξc states Ξc(2790) and Ξc(2815) were first observed by the CLEO. The Ξc(2790)

was observed in the decay Ξ′cπ by CLEO [55] and confirmed by Belle [59, 64]. Then, the Ξc(2815) were

also observed by CLEO in the decays into Ξcπ
+π− via the intermediate states Ξc(2645) respectively

[56] and Belle confirmed their existence [59]. In 2016, more precise measurement is done by Belle [64].
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Table 2.3. Mass spectra and widths of Ξc and Ξ′c with their decay modes.

States JP Mass (MeV) Width (MeV) Decay modes Refs

Ξ+
c

1
2

+
2467.94+0.17

−0.20 - Weak CERN [50]

Ξ0
c 2470.90+0.22

−0.29 - Weak CLEO [51]

Ξ
′+
c

1
2

+
2578.4± 0.5 - Ξcγ CLEO [52]

Ξ
′0
c 2579.2± 0.5 - Ξcγ CLEO [52]

Ξc(2645)+ 3
2

+
2645.56+0.24

−0.30 2.14± 0.19 Ξcπ CLEO [53]

Ξc(2645)0 2646.38+0.20
−0.23 2.35± 0.22 Ξcπ CLEO [54]

Ξc(2790)+ 1
2

−
2792.4± 0.5 8.9± 1.0 Ξ′cπ CLEO [55]

Ξc(2790)0 2794.1± 0.5 10.0± 1.1 Ξ′cπ CLEO [55]

Ξc(2815)+ 3
2

−
2816.74+0.20

−0.23 2.43± 0.26 Ξcππ,Ξ
∗
cπ, CLEO [56]

Ξ′cπ CLEO [55]

Ξc(2815)0 2820.25+0.25
−0.31 2.54± 0.25 Ξcππ,Ξ

∗
cπ, CLEO [56]

Ξ′cπ CLEO [55]

Ξc(2923)0 ?? 2923.04± 0.25 7.1± 0.8 ΛcK̄ LHCb [57]

Ξc(2939)0 ?? 2938.55± 0.21 10.2± 0.8 ΛcK̄ LHCb [57]

Ξc(2965)0 ?? 2964.88± 0.26 14.1± 0.9 ΛcK̄ LHCb [57]

Ξc(2970)+ ?? 2966.34+0.17
−1.00 20.9+2.4

−3.5 ΛcK̄π,ΣcK̄, Belle [58]

Ξcππ Belle [59]

Ξc(2970)0 2970.9+0.4
−0.6 28.1+3.4

−4.0 ΛcK̄π,ΣcK̄, Belle [58]

Ξcππ Belle [59]

Ξc(3055)+ ?? 3055.9± 0.4 7.8± 1.9 ΛcK̄π,ΣcK̄, BaBar [60]

DΛ Belle [61]

Ξc(3080)+ ?? 3077.0± 0.4 3.6± 1.1 ΛcK̄π,Σ
(∗)
c K̄, Belle [58]

DΛ Belle [61]

Ξc(3080)0 3079.9± 1.4 5.6± 2.2 ΛcK̄π,Σ
(∗)
c K̄, Belle [58]

DΛ Belle [61]

Ξc(3123)+ ?? 3122.9± 1.3 4.4± 3.8 ΛcK̄π,Σ
∗
cK̄ BaBar [60]
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Both Ξc(2790) and Ξc(2815) states were interpreted as the charmed strange partner of the Λc(2595)+

and Λc(2625)+.

The Ξc(2930)0 state was seen in the Λ+
c K

− invariant mass in B → Λ̄−c Λ+
c K

− decay by BaBar[65].

This Dalitz plot and its projection to Λ+
c K

− support this resonance as shown. It is also confirmed

recently by Belle [66]. Recently LHCb made a measurement on ΛcK invariant mass with better

statistics [57]. As a result, several Ξc states are found and two of them, Ξc(2923) and Ξc(2935), could

be related to previously observed Ξc(2930) state.

In 2006, the Belle Collaboration reported a new charmed strange baryons, Ξc(2970), decaying into

Λ+
c K

−π+ and Λ+
c K

0
cπ
− [58]. The Ξc(2970) was confirmed later by Belle in its decay into Ξc(2645)π[59].

In 2016, more precise measurement is done by Belle [64]. However, it is not seen in Λ+
c K

− invariant

mass by BaBar[65]. Later, this state is confirmed in Λ+
c K

−π+ invariant mass by BaBar in 2008 [60].

Also, the Ξc(2965) state is discovered recently whose mass is very close to the Ξc(2970) [57]. But,

their decay widths are significantly different implying that they could be distinct particles.

In 2008, the Ξc(3055) is reported by BaBar in Λ+
c K

−π+ invariant mass [60]. Later in 2014, the

Ξc(3055) state is confirmed by Belle in Λ+
c K

−π+ invariant mass with higher statistics [63]. Recently,

the Ξc(3055) is studied in ΛD channel by Belle [61] and measure the branching ratio

B(Ξc(3055)+ → ΛD+)

B(Ξc(3055)+ → Σ++
c K−)

= 5.09± 1.01± 0.76. (2.1)

In 2006, the Ξc(3080) is reported along with Ξc(2970), decaying into Λ+
c K

−π+ and Λ+
c K

0
cπ
−[58].

In 2008, the Ξc(3080) is also reported by BaBar in Λ+
c K

−π+ invariant mass [60]. Later in 2014, the

Ξc(3080) state is confirmed by Belle in Λ+
c K

−π+ invariant mass [63]. Recently, the Ξc(3055) is studied

in ΛD channel by Belle [61] and measure the branching ratio

B(Ξc(3080)+ → ΛD+)

B(Ξc(3080)+ → Σ++
c K−)

= 1.29± 0.30± 0.15, (2.2)

B(Ξc(3080)+ → Σ∗++
c K−)

B(Ξc(3080)+ → Σ++
c K−)

= 1.07± 0.27± 0.01. (2.3)

The Ξc(3123) is also reported by BaBar [60]. However, it is not seen in the latest Belle report [63].

This resonance still has a one-star rating in PDG. The quantum numbers for all these excited Ξc states

have not been determined yet. More experimental information is required to constrain the allowed

possibilities.

2.2.4 Ωc family

Ωc baryons are composed of a c quark and two s quarks with isospin 0. The ground states have

been established and there are several excited states observed which are possibly related to the p-wave

excitations. The observed Ωc baryons are summarized in Table. 2.4.

The Ω0
c ground state was first reported in 1985 by the experiment WA62 [67] prior to the B-
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factories. BaBar observed the spin partner Ωc(2770)0 in the Ωcγ final state [68]. In 2009, the Belle

Collaboration provided a more precise mass measurement of the Ωc[69].

In the same experiment of Belle, the excited state Ωc(2770)0 was also reconstructed in the Ω0
cγ

mode[69]. This resonance Ωc(2770)0 was originally discovered by BaBar in the same channel [68].

Such a mass difference is too small for any hadronic strong decay to occur. Although its JP has not

been measured, the Ωc(2770)0 was predicted to be the JP = 3/2+ partner of the Σc(2520).

LHCb observed 5 excited Ωc states Ωc(3000)0,Ωc(3050)0,Ωc(3065)0,Ωc(3090)0, and Ωc(3120)0, in

the Ξ+
c K

− final state (The evidence of Ωc(3188)0 was also reported, but it is not significant)[70]. Belle

confirmed the existence of these states except for Ωc(3120)0[71]. Naively, five excited Ωc states are

expected (one 1/2−, two 3/2−, and 5/2−) in the P -wave state as the spin of the two strange quarks

is one. Some of these newly discovered states should correspond to these P -wave states.

Table 2.4. Mass spectra and widths of Ωc with their decay modes.

States JP Mass (MeV) Width (MeV) Decay modes Refs

Ω0
c

1
2

+
2695.2± 1.7 - Weak WA62 [67]

Ω0
c(2770) 3

2

+
2765.9± 2.0 - Ωγ BaBar [68]

Ω0
c(3000) ?? 3000.41± 0.22 4.5± 0.7 ΞcK LHCb [70]

Ω0
c(3050) ?? 3050.20± 0.13 < 1.2 ΞcK LHCb [70]

Ω0
c(3066) ?? 3065.46± 0.28 3.5± 0.4 ΞcK LHCb [70]

Ω0
c(3090) ?? 3090.0± 0.5 8.7± 1.3 ΞcK LHCb [70]

Ω0
c(3120) ?? 3119.1± 1.0 < 2.6 ΞcK LHCb [70]

2.3 Bottom baryon

In this section, we review the bottom baryons. All the ground state bottom baryons have been

observed, except the Ω∗b of JP = 3/2+. Hence, we only list their averaged masses and widths from

PDG together with the experiments first observing them, but we note that not all of them are well

known. Recently, the bottom baryons are mainly discovered by LHCb experiments. Here, we shall

review the baryon for each flavor separately in the following.
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2.3.1 Λb family

Λb baryon consists of u, d, and b quark. Even though the ground states have been reported in 1981

by CERN R415 Collaboration [72], not many observations of the excited states until the LHCb began

their operations. Now, it seems that the number of excited states is similar to its charm counterpart

Λc baryon. The observed Λb baryons are summarized in Table. 2.5.

In 2012, the negative parity doublet, the Λb(5912)0 of 1/2− and the Λb(5920)0 of 3/2−, were first

reported by LHCb [73] in the Λ0
bπ

+π− invariant mass. Later, the Λb(5920)0 was confirmed by the CDF

Collaboration [74]. We may notice that the mass difference is about 8 MeV which is much smaller

than of Λc negative parity doublet. This is understood by the spin-dependent interaction is suppressed

as the heavy quark mass increases under the heavy-quark symmetry. Furthermore, both states have a

very narrow width, less than 1 MeV. This is mainly because the Σ
(∗)
b channel is kinematically closed.

Therefore, the main contribution is from the non-resonant process and hence the width is small.

Very recently, the Λb(6072) is observed by CMS [75] and it is confirmed and reanalized by LHCb

[76]. It is expected to be a radial excited state with spin-parity 1/2+ from the excitation energy. It also

bears a resemblance with Λc(2765) whose width is quite broad around 70 MeV. In this dissertation,

we discuss that it is most likely 1/2+ by studying its three-body decay. In contrast to the negative

parity states, the decay of this state is dominated by the Σ
(∗)
b resonant processes.

The Λb(6146) and Λb(6152) baryons are observed by LHCb in 2019 [77] which are expected to a

D-wave doublet if we analyze their mass. However, further investigation is still needed from their

decay properties to clarify their nature. It is also important to note that, the decay width of Λb is

relatively smaller than Λc, except for Λb(6072). It could show a hint for a flavor-independent nature

of the radial excited state.

Table 2.5. Mass spectra and widths of Λ0
b with their decay modes.

State JP Mass (MeV) Width (MeV) Decay modes Refs

Λ0
b

1
2

+
5619.51± 0.23 - Weak CERN [72]

Λb(5912)0 1
2

−
5912.21± 0.03 < 0.25 Λbππ LHCb [73]

Λb(5920)0 3
2

−
5920.11± 0.02 < 0.19 Λbππ LHCb [73]

Λb(6072)0 ?? 6072.3± 2.9 72± 11 Λbππ, Σ
(∗)
b π CMS [75]

Λb(6146)0 ?? 6146.17± 0.33 2.9± 1.3 Λbππ, Σ
(∗)
b π LHCb [77]

Λb(6152)0 ?? 6152.51± 0.26 2.1± 0.8 Λbππ, Σ
(∗)
b π LHCb [77]
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2.3.2 Σb family

The Σb baryons are made of u, d, and b quark with isospin 1. Similar to Σc, the ground state

doublet of Σb are observed and one state of a possibly p-wave state is also observed. However, only

charged Σb are observed while the neutral state remains unobserved. Also, the mass difference between

the different charge states seems quite large around 5 MeV compared to the Σc baryons which are

around 1 MeV. The Σb baryon observed in experiments are tabulated in Table 2.6.

The two ground state Σb baryons, were discovered in the Λ0
bπ invariant mass by CDF [78] in 2007.

Later they confirmed them with better statistics [79]. In 2018, the more precise measurement is done

by LHCb [80]. Still, no measurement has been done so far for the neutral state of Σ
(∗)
b .

Along with the precise measurement of ground state Σb, LHCb also reported the excited state of

Σb(6097) [80]. This resonance is relatively broad around 30 MeV. Since the quark model predict many

several states in this energy region which also happen to Ξb and Ωb states, two adjacent state scenario

can not be ruled out.

Table 2.6. Mass spectra and widths of Σb with their decay modes.

State JP Mass (MeV) Width (MeV) Decay modes Refs

Σb(5810)+ 1
2

+
5810.55± 0.11 4.83± 0.31 Λ0

bπ
+ CDF [78]

Σb(5810)− 5815.64± 0.14 5.33± 0.42 Λ0
bπ
− CDF [78]

Σb(5830)+ 3
2

+
5830.28± 0.14 9.34± 0.47 Λ0

bπ
+ CDF [78]

Σb(5830)− 5834.73± 0.17 10.68± 0.60 Λ0
bπ
− CDF [78]

Σb(6097)+ ?? 6095.8± 1.7 31.0± 5.5 Λ0
bπ

+ LHCb [80]

Σb(6097)− 6098.0± 1.7 28.9± 4.2 Λ0
bπ
− LHCb [80]

2.3.3 Ξb family

The Ξb baryon consists of three different quarks: up or down, strange, and bottom quarks. This

baryon has not yet explored enough as only one excited state Ξb(6227) observed, along with the ground

state Ξb and Ξ′b. The number of excited states is too few compared to the Ξc case in the charm sector

as shown in Table 2.7.

The Ξb ground state was reported by the DELPHI in 1995 [81]. Almost twenty years later, the Ξ′b
state of 1/2+ was firstly observed in the Ξ0

bπ
− invariant mass by LHCb [82] and the Ξ′b partner with

3/2+ Ξb(5945)0 was observed two years before, in 2012, by CMS [83]. Another state, Ξ∗b(5955)−, was

later observed by the LHCb [82] and it is believed as the charged partner of Ξb(5945)0 despite some

discrepancies in their masses.

In 2018 the Ξb(6277)− was observed by the LHCb in Ξbπ and ΛbK invariant mass [84]. This
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state could be the p-wave excited state of Ξ′b baryon, and again there should be several states appear

in this energy region. In the charm sector, three states are discovered in ΛcK. Therefore, further

investigation with higher statistics is certainly needed.

It is worth noting that the excited states of Ξb are not found at all. By simply changing the flavor

from charm to bottom for Ξ baryons, we expect there will be some reports for the negative parity

doublet, radial excited states, and so forth by LHCb in the near future. These states are possibly

found in Ξbππ invariant mass.

Table 2.7. Mass spectra and widths of Ξb and Ξ′b with their decay modes.

States JP Mass (MeV) Width (MeV) Decay modes Refs

Ξ0
b

1
2

+
5791.9± 0.5 - Weak DELPHI [81]

Ξ−b 5797.0± 0.9 - Weak DELPHI [81]

Ξ
′−
b

1
2

+
5935.02± 0.05 < 0.08 Ξbπ LHCb [82]

Ξb(5945)0 3
2

+
5952.3± 0.9 0.90± 0.18 Ξbπ CMS [83]

Ξb(5955)− 5955.33± 0.13 1.65± 0.33 Ξbπ LHCb [82]

Ξb(6227)− ?? 6226.9± 2.0 18.1± 5.4 Ξbπ, LHCb [84]

ΛbK LHCb [84]

2.3.4 Ωb family

The Ω−b baryon consists of two strange and bottom quarks belong to symmetric multiplet. The

observed Ω−b baryons are summarized in Table. 2.8. Up to now, only Ω−b ground state of 1/2+ is

observed so far by the D/0 Collaboration [85]. But, the Ω−b partner with JP = 3/2+ is not reported by

any experiments. Similar to the charm sector, the Ω−b with JP = 3/2+ can be discovered by analyzing

the radiative decay. In 2020, LHCb surprisingly reported several adjacent excited states of Ω−b [86].

This situation is very similar to the Ω0
c baryon, and show the hyperfine splitting phenomena in heavy

baryons. Although the observation of several Ω−b states are following the quark model prediction, we

still need to clarify their spin and parity.
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Table 2.8. Mass spectra and widths of Ω−b with their decay modes.

States JP Mass (MeV) Width (MeV) Decay modes Refs

Ω−b
1
2

+
6046.1± 1.7 - Weak D/0 [85]

Ωb(6316)− ?? 6315.64± 0.31 < 2.8 ΞbK LHCb [86]

Ωb(6330)− ?? 6330.30± 0.28 < 3.1 ΞbK LHCb [86]

Ωb(6340)− ?? 6339.71± 0.26 < 1.5 ΞbK LHCb [86]

Ωb(6350)− ?? 6349.88± 0.35 1.4± 0.1 ΞbK LHCb [86]

2.4 Summary

In this chapter, we have reviewed the experimental progress on charmed and bottom baryon

spectroscopy. Heavy baryons observed in various experiments are summarized in Fig. 2.3. There are

several remarks related to the progress on heavy baryons spectroscopy given as the following:

It is observed that the ground states of heavy baryons are well established except the Ω−b with spin-

parity 3/2+. The missing Ω−b will be a future search that can be performed by LHCb collaboration.

Since the missing Ω−b cannot decay strongly, the experimental search on its gamma decay will be

helpful.

The negative parity doublet of anti-triplet heavy baryons is mostly established, except for the case

of Ξb baryons. These states should be observed in Ξbππ invariant mass. Again, this can be confirmed

by LHCb collaboration.

The negative parity states of sextet heavy baryons are predicted to have five adjacent states in

the quark model. Since their mass splitting is quite narrow, there could be the observed states are

overlapping states. Therefore, the nature of these states should be clarified with higher statistics by

the Belle II or LHCb experiment.

The positive parity (the first radial excitation) of anti-triplet heavy baryons have been observed

except for Ξb. This state has unusual features compared to other heavy baryons that their decay width

is quite broad. The higher excited states of anti-triplet heavy baryons are observed. They could be

related to D-wave excitation. However, the D-wave partner need to be studied further in the future.

As explained above, there are still some puzzles and missing resonances in the heavy baryon sectors.

With the existing experiments, it is expected to be able to observe more the missing resonances and

solve some of the puzzles. Following that, the theoretical developments are certainly of importance to

give essential input to experimentalists and more importantly to understand the underlying structure

of heavy baryons.

“Gentlemen, we have run out of money. It’s time to start thinking.”, Ernest Rutherford

17



Λc

Σ*c

Σc Ξc Ξ′ c

Ξ*c Ω*c

Ωc Λb

Σ*b
Σb

Ξb
Ξ′ b

Ξ*b Ωb

Λc(2595)
Λc(2625)

Λc(2765)

Λc(2860)
Λc(2880)

Λc(2940)

Σc(2800)
Ξc(2790)
Ξc(2815)

Ξc(2970)

Ξc(3055)
Ξc(3080)

Ξc(3213)

Ξc(2923)

Ξc(2939)
Ξc(2965)

Ωc(3000)

Ωc(3050)

Ωc(3066)
Ωc(3090)
Ωc(3119)

Λb(5912)
Λb(5920)

Λb(6072)

Λb(6146)
Λb(6152)

Σb(6097) Ξb(6227)

Ωb(6316)

Ωb(6340)
Ωb(6330)

Ωb(6350)

bottom baryonscharmed baryons

Figure 2.3. Spectra of charmed and bottom baryons observed in various experiments. The heavy
baryon spectra are plotted with the excitation energy normalized to their respective ground states.
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Chapter 3

Theoretical perspectives

In this chapter, we will review heavy baryons in theoretical perspectives. As mentioned before, to

study baryon resonances we would like to make the use of effective models due to the non-perturbative

nature of QCD. Up until now, there are lots of phenomenological models developed by various groups

around the globe to understand the properties of heavy baryons. In addition to that, there is a Lattice

QCD calculation based on the first principle of QCD which is progressively performed recently in the

rise of the high-performance computer.

Historically, the hadron containing charm quark was discovered a long time ago in 1974. Two

groups from SLAC and Brookhaven national lab reported the same particle simultaneously. They

called the particle differently as J and ψ particles, which are later known as a J/ψ particle. This

discovery is called as November Revolution since it opened a new area of research in hadron physics

and changed our view about the elementary particle.

In 1990, the heavy-quark symmetry is introduced [87]. This symmetry is widely used in con-

structing effective models to study heavy baryons. In this work, we will discuss charmed and bottom

baryons separately and are limited to the singly heavy baryons. Also, we will discuss each resonance

in view of various models. However, the details of the models are not discussed here. The reader may

consults to Refs. [3, 13] for details. The models we are using in this thesis are discussed in Part II.

Formulation.

3.1 General properties

�Σ+
c (u dc)�Σ+ +

c (uuc) �Σ0
c(ddc)

�Ω0
c(ssc)

�Ξ′�+c (u sc) �Ξ′�0c (dsc)

�Λ+
c (u dc)

�Ξ+
c (u sc) �Ξ0

c(dsc)

Figure 3.1. SU(3) multiplets of singly-charmed baryons. For the bottom baryon, the charm quark
is replaced by bottom quark.

Generally, singly heavy baryons are composed of one heavy quark and two light quarks. The light

quarks include up, down, and strange quarks. The charm and bottom quarks are considered to be
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Figure 3.2. Comparison of the mass difference between an HQS doublet with various flavors. The
mass difference is getting smaller as one of the quark mass is increasing.

heavy quarks because their masses about 1500 MeV and 5000 MeV, respectively, are significantly

larger than ΛQCD around 300 MeV. Consequently, heavy baryons posses a new symmetry a so-called

heavy-quark symmetry. In this symmetry, the heavy quark is decoupled to that two light quarks. For

example, the multiplet of heavy baryons are constructed by two light quarks with SU(3) symmetry as

the following

3⊗ 3 = 3̄⊕ 6 (3.1)

where the multiplet is described in Fig. 3.1.

In heavy-quark symmetry, we may introduce a new quantum number so-called brown-muck spin

j, which represents a total angular momentum of light quarks. Along with the heavy quark spin, the

total spin J of heavy baryon is constructed. In this way, there will be a so-called HQS (Heavy-Quark

Symmetry) doublet where the spin is made of J = j ± 1/2. However, for brown muck spin j = 0,

there will be an HQS singlet instead. Moreover, in heavy quark spin symmetry, it is known that the

spin-dependent interaction is suppressed by a factor of 1/mQ. This factor is leading to a suppression

of mass difference between an HQS doublet as portrayed in Fig. 3.2. In heavy quark limit, namely

when mQ =∞, the heavy quark spin will be decoupled completely to the spin of the light quark.

As shown in Eq. (3.1), two light quarks inside heavy baryons, we use the term “diquark” to

represent them, can have either symmetric or anti-symmetric flavor wave functions. For the ground

states heavy baryons, we will obtain the diquark having either spin 0 (good diquark) or spin 1 (bad

diquark). Keep in mind that we need to anti-symmetrize the total wave function including color,
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Figure 3.3. A schematic picture of separation between λ and ρ mode excitation in heavy baryons.
The orbital excitations are mixed when the three quarks have similar masses as in light baryons.

flavor, spin, and orbital wave function as

Good diquark (j = 0) → 3̄flavor(A), lorbital(S), Sspin(A) (3.2)

Bad diquark (j = 1) → 6flavor(S), lorbital(S), Sspin(S) (3.3)

where we put a label inside a parenthesis either S (symmetric) or A (anti-symmetric) for each wave

function. Noted that the color wave function is anti-symmetric. We will discuss more detail in

the chapter of the quark model. Consequently, the sextet heavy baryons will have an HQS doublet

with JP = 1/2+ and 3/2+. Meanwhile, the anti-triplet heavy baryons will be an HQS singlet with

JP = 1/2+. Historically, the good diquarks are named so because they are easily observed than of

the bad diquarks.

Another feature of heavy baryon is that there is a separation of the orbital motions due to the

mass difference between light and heavy quark. One is so-called λ mode which is the relative motion

between heavy quark and the center of mass of light quarks. The other one is the relative motion

between two light quark called ρ mode. The orbital motion is related to Jacobi coordinates which are

widely used for the analysis of a three-body system such as heavy baryon. In more concrete manner,

the coordinates are defined as

~ρ = ~r2 − ~r2, (3.4)

~λ =
1

2
(~r1 + ~r2)− ~r3. (3.5)

As discussed above, these λ and ρ mode orbital excitations are well separated. For singly heavy

baryons, the λmode excitation appears lower than of the ρmode. This ordering can be understood that

the moment inertia of the λ mode excitation is larger such that it can be excited more easily. Because of

21



Resonance

Production
Mass spectrum

Decay

Figure 3.4. Some ways to study heavy baryons: production, mass spectrum, and decay.

the separation of the orbital excitation, the heavy baryon could be exclusively dominated by λ mode

rather than ρ mode. In fact, the observed heavy baryons seem to correspond to λ mode although

further investigation should be done. For the time being, there is no decisive way to distinguish

whether a heavy baryon is related to λ or ρ mode excitation. On the other hand, if the mass of the

three quarks is similar, the orbital excitations are mixed and become indistinguishable. A schematic

picture of the separation of orbital excitation is given in Fig. 3.3.

The internal structure of heavy baryons is in general reflected in their spectrum, production, and

decay as depicted in Fig 3.4. There are many investigations devoted to explaining those properties by

constructing effective models. Even though the study of heavy baryon properties seems to be simpler

than of light baryons because of the heavy-quark symmetry, there are still many puzzles that remain

to be solved in the heavy baryon sector. Furthermore, the connection between the properties of light

and heavy baryons are not well understood easily. In this following, we will review the theoretical

developments in this direction to get a complete picture of baryon resonances.

3.2 Modeling decay process

Here, we focus on reviewing various models in attempts to study heavy baryons from their decay

process. Up to date, there are several models commonly used to study heavy baryons. As we can see

later, the decay process is helpful to extract the internal structure of heavy baryons. It is interesting

to note that the heavy baryon decays are saturated with the three-body decay (or two-pion emission

decay) unless it is forbidden. However, it is adequate to study the one-pion emission for the first step.

First, the heavy baryon decay is studied in the chiral quark model. In this model, the heavy

baryon wave functions are described in the quark model where the pion is regarded as Nambu-

Goldstone boson (a point-like particle). The axial-vector type coupling is used to model the interaction

between quark and pion in accordance with the low-energy theorem. The schematic picture of this

model is described in Fig. 3.5. This model has been applied to the one-pion emission decay of Λc [88],

and later the model is calculated by the j-j scheme which is suitable with heavy-quark symmetry [89].
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Figure 3.5. Degree of freedom in different model (a) heavy-hadron chiral perturbation theory (b)
chiral model, and (c) quark-pair creation model.

In the past years, this model has been applied to the various flavors of heavy baryons, not only

charmed baryons [90–94], but also bottom baryons [95–99]. The radiative decay can also be calculated

in studying heavy baryons [94]. There is also an attempt to calculate the D-meson emission decay by

assuming SU(4) symmetry. However, it is rather difficult to explain the experimental data [90].

The 3P0 model or quark-pair creation model is another kind of model in studying heavy-baryon

decay. In this description, a pair of quark is created during the decay process in a vacuum and

along with the initial three quarks, the pair of quark regroup into meson and baryon in final states.

The baryons wave functions are described by the quark model. This model has been applied to the

various flavor of heavy baryons [100–106]. Another attempt of studying heavy baryon decay is by

using Eichten-Hill-Quigg decay formula. In this formula, the geometric factor is factored out which

described by the six-j symbol in addition to the transition factor which is computed from 3P0 model.

This model has been used to study various heavy baryons [107–112].

The other model, which is called heavy-hadron chiral perturbation theory, is constructed by

incorporating heavy-quark and chiral symmetry to model the interaction between the heavy baryons

and Nambu-Goldstone bosons. In this case, the effective degrees of freedom are in the hadron level.

This model is applied to study one-pion emission decay of various heavy baryons [113–117]. The ratio

of the decay rate into Σ∗cπ and Σcπ channels, respecting the heavy-quark symmetry, is also discussed

in addition to the comparison of decay width. Another method using the hadron degree of freedom

is using light-cone sum rule, which based on heavy-quark effective theory (HQET). The method is

applied to many heavy baryons [118–121].

Recently, the two-pion emission decay is analyzed by the effective Lagrangian with the input

of the chiral quark model [122]. The three-body decay is also studied in the effective Lagrangian

respecting the chiral and heavy-quark symmetry [123, 124]. This model also employs the chiral

partner structure to estimate the coupling of direct process, where the experimental prediction

on the Dalitz plot is provided in Ref. [125]. It is also found that three-body decay can be used to

determine the spin-parity [126, 127]. The extraction of the ND scattering length can also be done

to study the heavy baryon [128]. Moreover, many hyperons, nucleons, or meson resonances can be

studied in the three-body weak decay of ground state heavy baryons [129–131].
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3.3 Charmed baryon

In this section, we summarize the theoretical discussions about the charmed baryons which have

been observed so far in the experiments. As mentioned previously, we limit the discussion to the

charmed baryon containing only one charm quark. We may notice that all of the ground states of

charmed baryons have already been observed and their masses are consistent with the expectation

from various theoretical calculations. However, the nature of the excited states of charmed baryons is

not well known.

3.3.1 Λc(2595), Λc(2625), Ξc(2790) and Ξc(2815)

Since Λc and Ξc belong to anti-triplet charmed baryons, there is a doublet of 1/2− and 3/2−

respectively for P -wave excitations with λ-mode in quark model description. These observed Λc(2595),

Λc(2625) and Ξc(2790),Ξc(2815) can be naturally assigned to the P -wave excited states. Furthermore,

their excitation energy and mass difference are consistent with various theoretical analysis [132–134].

The one-pion emission decay are analyzed by various models, e.g. Refs [88, 89, 100, 107, 113].

From such analysis, it is shown that Λc(2595) and Λc(2625) could belong to λ-mode excitation of

1/2− and 3/2−, respectively. The detailed analysis of their two-pion emission decay processes is also

helpful to discuss their internal structures [122]. Note that Λc(2595) shows an isospin breaking effect

where the decay width is dominated by the Λcπ
0π0 neutral channel due to the slightly larger phase

space which is mainly originated from the mass difference from pion. It is also known from the PDG

that Λc(2625) has a large contribution from the non-resonant process which may originate from direct

or Σ∗c(2520) process. The large contribution of the direct process is predicted in the chiral partner

structure of heavy baryons [123], which later extended to the case of Ξc [124]. This direct process will

modify the structure on Dalitz plots which provided in Ref [125] and therefore it is interesting to test

the chiral partner structure in heavy baryons.

Since Λc(2595) is located near πΣc threshold, it is subject to the discussion of its compositeness.

Λc(2595) is discussed to be dominated by three-quark state by analyzing their scattering length and

effective range which found to be unnatural and in terms of the compositeness [135]. The more delicate

analysis is done and asserts the result that Λc(2595) is dominated by three-quark state [136]. However,

the compositeness condition could be model-dependent and it is shown that Λc(2595) have a meson-

baryon dominant unless for large Nc [137]. There is an attempt to model the DN interaction and

regard Λc(2595) as a dynamically generated state, similar to Λ(1405) [138]. It is also shown in lattice

QCD simulation is that the Λc(2595) is dominated by the three-quark state unlike its counterpart in

the strange sector Λ(1405) [139]. Recently, the interplay between the bare three-quark state and πΣc

threshold is analyzed where the Λc(2595) has a predominant molecular state [140]. From the above

discussions, the Λc(2595) is most likely a quark model state.
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3.3.2 Σc(2800), several Ξ′c and Ωc

The Σc,Ξ
′
c, and Ωc baryons belong to the symmetric sextet in which there are five P -wave λ-

mode excitations. According to the mass spectrum analysis, Σc(2800) is consistent with the P -wave

excitation [141, 142]. The decay properties of Σc(2800) have also been examined where it could be P -

wave excitation [94, 107]. However, more resonances are expected in this energy region. The molecular

state is also discussed for Σc(2800) since it is located near DN threshold [143–146]. Furthermore, the

extraction of DN threshold parameter may be important to understand Σc(2800) [129].

The recently observed Ξc(2923),Ξc(2935), and Ξc(2965) states in ΛcK could correspond to the

P -wave excitations from their excitation energies [91, 102, 119]. Moreover, the Ξc(2930) could be

overlapping states of Ξc(2923) and Ξc(2935). The molecular description of these states is also discussed

[147]. It is worth noting that Ξc(2965) mass is very close to that of Ξc(2970). But, their decay rate

differs significantly, indicating that they may be distinct states.

Lastly, the Ωc(3000),Ωc(3050),Ωc(3066), and Ωc(3090), which was found in ΞcK invariant mass,

may also correspond to P -wave excitations from the mass spectrum analysis [148–150]. The de-

cay process has also been analyzed within the quark model with various possible decaying chan-

nels [94, 117, 151]. Moreover, Lattice QCD simulation is performed and the result supports the

P -wave excitation [152]. Beside the quark model description, there exists other interpretation such as

pentaquark states [153–155] or molecular description [156–159].

3.3.3 Λc(2765) and Ξc(2970)

The Λc(2765) was discovered in Λcππ invariant mass by CLEO around the 2000s. This state

has unusual behavior with a large decay width compared to other charmed baryons. It is also quite

difficult to say whether Λc(2765) is Λc with 1/2+ or the Σc resonance with 1/2− or 3/2− [88]. To

determine the isospin of this state, Belle measures the Λcππ invariant mass with the wrong sign, and

the enhancement is not found, indicating that this state is Λc baryon.

From the mass spectrum analysis, these two states can be interpreted as 2S excitation [160–167].

If that is the case, these states have similarities with other resonances with excitation energy around

500 MeV, which is called Roper-like resonances. For this assignment, the quark model predicts a

narrow decay width, which contradicts the experimental data [88, 89, 107, 114, 168]. The possible

interpretation is that this Roper-like resonance has strong coupling to the meson clouds [169] which

is also supported by the Lattice simulation [170, 171]. There are alternative ideas such collective

monopole vibrations [172], deformed oscillator states [173], pion exchange interaction [174] and so on.

Recently, the study of their three-body decay turns out to be helpful to determine the spin-parity

unambiguously by measuring the ratio R between Σ∗cπ and Σcπ channel; and angular correlations [126].

However, there is an interference region between Σ∗++
c and Σ∗0c which makes the analysis a bit com-

plicated. Moreover, it is implied from the experimental observation that the f0(500) or σ meson

contribution is insignificant, which may provide a hint to its dynamical content.

Similarly, Ξc(2970) state is observed in Ξcππ and ΛcKπ invariant masses. This state has a rather

large decay width, implying that it is a potential analog state of Λc(2765) in the strange-charm sector.
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From the mass spectrum analysis, it might be Ξc(2S) state although it is always difficult to say whether

it belongs to sextet or anti-triplet Ξc baryon [133, 161]. In fact, there is another Ξc(2965) observed

with almost the same mass.

From decay analysis, the Ξc(2970) baryon is predicted to be a narrow resonance in the quark model

if the Ξc(2S) is assigned [90, 100, 113, 175]. Compared with the absolute value of the decay width,

it is discussed as P -wave excitation of Ξ′c baryon. A similar angular correlation analysis can be done

for the two-pion emission decay of Ξc(2970). In this case, the analysis will be easier because there is

no kinematical reflection, resulting in no complicated intereferences [126]. Therefore, measuring the

angular correlation is quite interesting to disentangle its internal structure.

3.3.4 Λc(2860),Λc(2880) and Λc(2940)

The Λc(2860) resonance is first observed in Λb → Dpπ decay, which is located slightly above Dp

threshold. This state has a broad width of around 60 MeV and its spin-parity is determined as 3/2+ by

LHCb. However, it is not yet seen in Λcππ invariant mass and not yet confirmed by other experiments

in Dp invariant mass, which makes the existence of this state questionable. From its mass spectrum,

Λc(2860) can be naturally assigned as 3/2+[107, 176, 177] where it forms a D-wave doublet along

with Λc(2880). Moreover, by assigning Λc(2860) as 3/2+, it is predicted that its decay width has a

considerable contribution from Λcππ [93, 113]. More experimental evidence is required to establish

this state.

In contrast to Λc(2860), the Λc(2880) resonance is already found in Λcππ and Dp invariant masses;

and has a narrow decay width. Its existence is also rather established and its spin-parity has been

determined to be 5/2+ by measuring its angular distribution of πΣc and ratio R. It is also supported

by the mass spectrum analysis that this state is compatible with the 5/2+ assignment [161, 178, 179].

However, it seems that Λc(2880) has brown-muck spin j = 3, not j = 2, which is implied from the

measured ratio R [88, 100, 108]. It is also discussed that the ratio R is largely contaminated by the

broad Λc(2860) [93]. Beside, if Λc(2880) state has j = 3, it implies that the higher state Λc(2940)

could be its D-wave partner [89]. A more comprehensive discussion should be done to understand the

internal structure of Λc(2880).

So far, the highest excited state observed is Λc(2940). It is observed in both Λcππ and Dp invariant

masses in various experiments and therefore the existence is undoubted. Also, the spin-parity is

determined to be 3/2− by LHCb although other possibilities such as 7/2+ can not be ruled out. In

fact, it is difficult to assign this state as 3/2− in the quark model description because the calculated

mass is significantly higher than the observed one [177, 178]. In addition to that, from the analysis

of its decay, this state is compatible with 3/2− or 7/2+ assignment within the quark model [89, 101].

Because of this fact, there also exist molecular interpretations [143, 180–182]. Moreover, it is also

supported by the fact that it is located slightly below the D∗p threshold. Furthermore, the two-pion

emission decay of Λc(2940) could provide important constraints, ratio, and angular correlation, to

determine its spin-parity [126], which is crucial for understanding its nature.
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3.3.5 Ξc(3055),Ξc(3080) and Ξc(3123)

The Ξc(3055) resonance is observed in ΛcKπ and ΛD. Opposite to Λc(2860), the width of this

state is rather narrow. From its excitation energy, it is compatible with a D-wave excitation of Ξc
with JP = 3/2+ [133, 177]. The strong decay has been analyzed in various models [90, 93, 107, 183].

However, the quark model with SU(4) symmetry assumption failed to predict the experimental data

of branching ratio between ΛD and ΣcK where one of the sources of the problem is the significant

breaking of SU(4) symmetry [93]. By assigning this state as 3/2+, it is also predicted that the Ξcππ

is rather suppressed [107].

Similarly, the Ξc(3080) resonance is found in ΛcKπ and ΛD. By analyzing its excitation energy,

this state could be 5/2+ or D-wave excitation of Ξc [133, 161, 177]. From its strong decay, the ratio

between ΣcK and Σ∗cK is almost unity. However, the prediction from the various model for 5/2+ with

λ mode excitation, the decay is dominated by Σ∗cK. Therefore, it is not easy to assign this state as a

5/2+ with λ mode [93, 107, 114, 145]. The situation is similar to Λc(2880) where the ratio can not be

easily explained by the λ-mode D-wave excitation.

The Ξc(3123) resonance is found only in ΛcKπ with Σ∗cK as a dominant mode. There is no more

evidence or confirmation from other experiments and it has a one-star rating in PDG. In the theoretical

perspectives, several predictions have been made, but there are a lot of uncertainies [90, 183]. Given

the present data, it is fair that it is quite difficult to clarify its nature.

3.4 Bottom baryon

In this section, we will discuss the bottom baryons observed by the experiment. Up until now, the

ground state bottom baryons have been already observed, except Ωb with JP = 3/2+ which could be

potentially observed in the radiative decay. Here, we will discuss the theoretical perspectives of the

excited states of bottom baryons.

3.4.1 Λb(5912) and Λb(5920)

Λb(5912) and Λb(5920) are observed in Λbππ by LHCb. These states can be naturally assigned to be

P -wave doublet of 1/2− and 3/2− from their mass spectra in the various quark model [134, 164, 178].

The three-body decay of Λb(5912) and Λb(5920) are studied in several models such as chiral partner

structures [123, 184]. Since the Σ
(∗)
b π channel is closed, the decay is dominated by the direct process.

Therefore, the decay rate is very small, less than 1 MeV. In this situation, the branching fraction

of the radiative decay could be large [94]. Similar with the P -wave doublet of Λc, these states are

compatible with the quark model expectation. In addition to that, the dynamical contents of these

states are also investigated [185–189].
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3.4.2 Σb(6097),Ξb(6227), and several Ωb.

Σb(6097) is a candidate of P -wave excited state of Σb baryon observed by LHCb. In PDG, the

spin-parity is not assigned yet because there are many states predicted in this energy region from

the mass spectrum analysis [177, 190–192]. Moreover, the observed decay width is relatively large.

Therefore, the possibility of a superposition of two states can not be ignored. As we have already

seen, there are several Ωc and Ωb states observed in recent years. One may expect such structures

also occur for the case of Σb. Tentatively, the Σb(6072) may be either 3/2− or 5/2− by analyzing

their decay properties [97, 111, 121, 193, 194]. In addition to that, there is a claim that the newly

observed Λb(6072) could be a Σb states with negative parity [96]. Beside, a molecular interpretation

is also possible [188].

Ξb(6227) is found in ΛbK and Ξbπ invariant mass by LHCb. This state is expected to be a P -

wave excited state of Ξ′b analyzed by its mass spectrum [133, 161, 164, 177, 179, 195]. Again, as

there are several states predicted, there are possibilities to be a superposition of several states and

therefore the spin-parity of Ξb(6227) is not yet assigned in PDG. Another perspective from their decay

properties, Ξb(6227) can be tentatively assigned as 3/2− or 5/2− [94, 97, 111, 121, 196]. Furthermore,

the ratio between decay rate into ΛbK and Ξbπ is measured and would be an important constraint

to determine their spin and parity. This state may also be a molecular state as discussed in various

models [186, 197–199]. But, more precise data is needed before proceeding further. In fact, Ξbππ

invariant mass is not yet explored by LHCb and will perhaps provide interesting constraints or even

find new states of Ξb [124, 127].

Recently LHCb discovered four Ωb resonances in ΞbK invariant masses, namely Ωb(6136),Ωb(6330),

Ωb(6340) and Ωb(6350). From their mass excitation, these states can be interpreted as 1P -wave or

possibly 2S excitations of Ωb baryon in the various models [111, 134, 148, 161, 177, 200–203]. These

observations are similar to that of several Ωc baryon in ΞcK where the quark contents of Ωc are

changed from bss to be css. However, it is predicted that one state is missing in the Ωb spectrum.

Their decay properties have been investigated and it is suggested that these states are compatible with

the P -wave excitations [99, 106, 204]. The narrow widths of these states can be understood that Ωb

has no non-strange quark which does not couple to pion directly. Furthermore, other interpretation

such as molecular state is also discussed [205, 206].

3.4.3 Λb(6072)

The Λb(6072) is first observed by CMS and subsequently confirmed by LHCb in 2020. This state

is predicted to be Λb(2S) state by looking at its excitation energy which has been calculated in the

various quark model [133, 164, 177, 178] and recently in QCD sum rule [207]. In addition to that,

other observables such as decay properties should also be examined to determine its spin-parity more

decisively.

Different from other heavy baryons, this state has a broad width around 70 MeV which is very

similar to Λc(2765). This resemblance indicates that both states may have similar dynamics. Moreover,

its decay channel is saturated with the Λbππ. The excitation energy around 500 MeV and similar decay
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properties with Λc(2765) has led us to the discussion of the flavor independent nature of Roper-like

resonance. Moreover, the study of its three-body decay of Λb(6072)→ Λbππ suggests that its spin and

parity is 1/2+. It is found that the angular correlation can be a strong constraint that can be measured

by the LHCb experiment. Although f0(500) or σ meson is expected to contribute to the three-body

decay of Λb(6072), the experimental data shows that such contribution is not important [127]. This

empirical fact might also provide a constraint to its dynamics. Here, we also notice that there are a

considerable isospin breaking of Σb mass, which is studied in Refs [208, 209]

Since it is not yet well established, there are several other interpretations of this state. It is

discussed in the quark model that Λb(6072) could be a ρ-mode excitation by looking at its decay

rates [104]. Note that the quark model predicts a narrow Λb(2S) state which can not explain the

observed broad Λb(6072). This finding has brought us an alternative idea about the exotic description

of this state such as dynamically generated resonances. As Λb(6072) solely decay into Λbππ, not into

Λbπ, the possibility being Σb state is disfavored. Even so, it is also discussed that there are negative

parity Σb state around this energy [96]. So, it is fair to say that more experimental information is

crucial to pin down the internal structure of Λb(6072).

3.4.4 Λb(6146) and Λb(6152)

This Λb doublet is observed by LHCb experiment and one of them is later confirmed by CMS.

From their excitation energy, Λb(6146) and Λb(6152) are predicted to be D-wave excitations with

spin-parity 3/2+ and 5/2+, respectively, by various models [133, 164, 178, 210]. Recently Λb(6146) is

studied to be 3/2+ within QCD sum rule along with its charm partner Λc(2860). Moreover, Regge

trajectory analysis also supports these assignments [211]. Unlike their analog states in charm sectors,

Λc(2860) and Λc(2880), the BN threshold is closed resulting in the narrow decay width.

It is rather difficult to say which D-wave doublet they belong to because the study of their decay

properties suggests that there is a mass inversion [95, 103]. More concretely, Λb(6146) and Λb(6152)

is best suited to 5/2+ and 3/2+, respectively, by inspecting the ratio R between the decay rate into

Σ∗bπ and Σbπ. Since the mass difference between Σb and Σ∗b states are quite small, the ratio R may be

contaminated by the interference terms resulting in the problem of the mass inversion. Furthermore,

f0(500) state may also contribute and change the observables since the model calculated so far only

analyze their one-pion emission decay. Therefore, the analysis of their three-body decay is quite

important.

Another scenario is also made. The recent analysis of these states within the QCD sum rule

suggests that these states could correspond to 5/2+ and 7/2+ [212]. This is similar to the analysis

for charmed baryons in Ref [89]. It is also worth noting that the angular analysis may also help to

determine their spin as done for Λc(2880).
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3.5 Summary

In the past year, theoretical models have been developed significantly, induced by continuous

reports from various experimental groups. It turns out that the study of baryons with various flavor

may give a hint to underlying structures. Especially, investigating differences and similarities among

baryons with different flavors would unravel the dynamics of baryon resonances.

Up until now, most of the observed heavy baryons could be naturally assigned to the λ-mode

excitations in the quark model description. In addition to that of λ mode, the quark model also

predicts other states containing ρ mode excitations which have not been observed in the experiments.

According to the theoretical calculations, these ρ mode states have larger masses compared to that

of λ mode. As we have noticed, the problem of missing resonances seems to also occur in the case of

heavy baryons.

Furthermore, we have already seen that the quark model does not work well for the higher excited

states, even with λ mode assignments. This fact would result in other interpretations, i.e. exotic state

which is beyond the quark model. One of the reason is due to the opening thresholds that may affect

the resonance dynamics. Therefore, careful treatment of the interplay between the quark model and

the opening threshold would be one of the keys to understanding the higher excited states of heavy

baryons. In addition to that, a more precise machine is certainly needed, but the developments of the

existing theory are also important to unveil the nature of baryon resonances.

“If I could remember the names of these particles, I would have been a botanist.”, Enrico Fermi
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Part II

Formulation
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Chapter 4

Quark model

4.1 Introduction

In the quark model description, hadrons are classified according to their valence quarks which

are confined inside of hadrons. Generally, there are two types of hadrons: baryons, and mesons as

described in Fig. 4.1 (a). Baryons are composed of three quarks and mesons are composed of a pair

of quark and anti-quark.

|Baryon〉 = |qqq〉 (4.1)

|Meson〉 = |qq̄〉 (4.2)

where q and q̄ represent quark and anti-quark respectively. However, there could be other states such

as tetraquarks, pentaquarks, and so forth as depicted in Fig. 4.1 (b). These types of states are usually

called exotic states which are beyond the simple picture of baryons and mesons [6].

Meson

Baryon

Pentaquark

Tetraquark

(a) (b)

Figure 4.1. Hadrons are classified in terms of their valence quarks. (a) conventional hadron, and
(b) exotic states.

In the quark model, the quantum numbers of hadrons, e.g. spin and flavor, are determined by the

combination of the quantum numbers of their valence quarks. The quark is classified as fermion, which

has spin-1/2 and therefore baryons have ahalf-integer spin (fermion), while mesons have an integer

spin (boson). Moreover, the quark has six different flavors: up, down, strange, charm, bottom and

top, in which they have different mass, charge, etc. With a proper combination of quark’s quantum

numbers, the hadron quantum numbers are made. Later, the classification of hadrons is proposed by

Gell-Mann so-called eightfold way for hadrons containing u, d, and s quarks [2].

Another important quantum number of quarks is called color. Historically, color is introduced

to describe ∆++ state. In the quark model, ∆++ has totally symmetric wavefunction, including its
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flavor and spin, which is not allowed if quarks are fermions. One solution is to introduce an additional

anti-symmetric quantum number, so-called color. The quark has color either red, green, or blue, and

only colorless objects such as baryons and mesons are observables. In other words, the quark itself

can not be observed directly because the quark is a colored object. This situation is usually called

color confinement.

It is also worth noting that the quark considered here is the so-called constituent quark. Its mass is

made of the current (bare) quark mass dressed by the interactions through virtual quarks and gluons.

The consituent quark mass is rather large about Mu ≈ 350 MeV compared to its bare mass, mu ≈ 3

MeV.

Despite its simple picture, the quark model is successful to explain the hadron spectroscopy. But,

there are still some problems and limitations which should be addressed in the future. In this chapter,

we will introduce the quark model that we are using for the analysis of heavy baryon decays. As we

will find later, the quark model works well for the description of the low-lying heavy baryon.

4.2 Baryon in the quark model

As we have discussed previously, baryons are composed of three constituent quarks. In the quark

model, baryon wavefunctions consist of a combination of orbital, spin, flavor, and color wavefunction of

each quark. Since a baryon is a fermion, we need to construct the wavefunction totally anti-symmetric

under the interchange of two quarks as given by

|Baryon〉 = |qqq〉A = Ψorbital ⊗ ψspin ⊗ φflavor ⊗ φcolor, (4.3)

Since the color wavefunction is always anti-symmetric,

φcolor =
1√
6

(rgb− rbg + gbr − grb+ brg − bgr) (4.4)

The combination between orbital, spin, and flavor wavefunctions should be symmetric. Let us first

discuss in detail each wavefunction before constructing the total wavefunction. Note that we consider

the singly heavy baryon containing one heavy quark in this work.

4.2.1 Orbital part

In this calculation, we assume that quarks inside a heavy baryon are confined in the harmonic

oscillator potential as illustrated in Fig. 4.2 (a). Beside its simplicity, one of the advantages of using

the harmonic oscillator is that the analytical or exact solution is known. The spring constant or

potential parameter k is also assumed to be independent of the quark flavor. The Hamiltonian of

harmonic oscillator model in the non-relativistic form can be written as

H = −
3∑
i=1

~∇2
i

2mi
+
∑
i<j

k

2
(~ri − ~rj)2 (4.5)
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Figure 4.2. Definitions and notations used in the calculation. (a) Harmonic oscillator model and
(b) Jacoobi cordinate.

where ~ri and mi are the coordinate and mass of the i-th quark.

To seperate between the internal motion (~λ and ~ρ) and c.m. motion of quark ( ~X), the Hamiltonian

can be re-expressed by

H =
1

2(2m+M)
~∇2
X +

1

2mρ

~∇2
ρ +

1

2
mρωρ~ρ

2 +
1

2mλ

~∇2
λ +

1

2
mλωλ~λ

2 (4.6)

where the light and heavy quark masses are denoted as m1 = m2 = m and m3 = M . Also, the reduced

masses are defined by

mρ =
m

2
, mλ =

2mM

2m+M
. (4.7)

Then, the oscillator energies are denoted as

ωρ =

√
3k

m
=

√
3k

2mρ
, (4.8)

ωλ =

√
k(2m+M)

mM
=

√
2k

mλ
, (4.9)

and potential strengths are given by

aλ =
√
mλωλ, (4.10)

aρ =
√
mρωρ, (4.11)

which is not independent to each other, they are related by

a2
λ =

√
8M

3(2m+M)
a2
ρ (4.12)

The relation between the Jacobi and spatial coordinates can be found in Appendix A.
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Figure 4.3. The behavior of the λ and ρ mode excitation energy with the increase of heavy-quark
mass.

It is also interesting to see that the ωρ and ωλ are well separated for heavy baryons as described in

Fig. 4.3. For the singly heavy baryons, ωλ turns out to be smaller than ωρ, implying that the low-lying

heavy baryons are dominated by the λ mode excitation. We also notice that the ωρ does not change

with the increase of heavy quark mass. The ratio between the ωλ and ωρ is given by

ωλ
ωρ

=

√
1

3

(
1− 2m

M

)
≤ 1. (4.13)

As we can see, that the gap between ωλ and ωρ is getting larger for heavier mass M . This is the unique

feature of heavy baryons, which we have discussed in the earlier chapter. In the actual situation, heavy

baryon could be mixed between λ and ρ mode excitations. However, for simplicity, we will treat them

exclusively.

The orbital wavefunction is made of the product between the wavefunction related to the internal

and c.m. motions as given by

Ψ(~r1, ~r2, ~r3) = ψ(~λ) ψ(~ρ) ei
~P · ~X (4.14)

where ψ(~λ) and ψ(~ρ) are the wave function of harmonic oscillator in Jacobi coordinates, and ei
~P · ~X

corresponds to the c.m. motion. The wavefunction of the harmonic oscillator is identified as

ψnlm(~r) = Rnl(r) Ylm(r̂) (4.15)

where the radial functions Rnl(r) and the spherical harmonic function Ylm(r̂) are given in detail in

Appendix A.
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The total principal quantum number is denoted as

N = Nλ +Nρ, (4.16)

where Nλ = 2nλ + lλ and Nρ = 2nρ + lρ are those related to λ and ρ mode excitation, respectively.

We define n and l as the nodal and orbital angular momentum quantum numbers. The total orbital

angular momentum is given by

~l = ~lλ +~lρ. (4.17)

In the present work, we limit the discussion up to the principal quantum number N = 2 or the

excitation energy 2~ω.

It is also worth noting that the orbital wavefunction has symmetry under the interchange of the

light quarks. Except ψ01(~ρ), the other orbital wavefunction is symmetric as described in Table 4.1.

For mixed λρ mode, the orbital wavefunction ψ01(~λ)ψ01(~ρ) is anti-symmetric since it contains ψ01(~ρ).

Table 4.1. Symmetry properties of orbital wavefunction under the interchange of two light quarks.

Symmetry Orbital wavefunction

Symmetric (S) ψ00(~λ), ψ00(~ρ)

ψ01(~λ)

ψ10(~λ), ψ10(~ρ)

ψ02(~λ), ψ02(~ρ)

Anti-symmetric (A) ψ01(~ρ)

4.2.2 Spin part

There are two types of coupling for combining the spin and angular momentum of three particles,

namely, LS and jj couplings. For the light baryon, it is customary to use the LS coupling as

[[lλ, lρ]
l, [[s1, s2], s3]s]J . (4.18)

However, for heavy baryons, the later one is compatible with the heavy-quark spin symmetry [89]

which can be written as

[[[lλ, lρ]
l, [s1, s2]s]j , s3]J . (4.19)

Because of that, we will separate between the spin of the two light quarks and the heavy quark.

The heavy quark spin itself can be either ↑ (+1/2) or ↓ (−1/2), where we denote it as χc. Mean-
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while, the two light quark spin can be combined as

1
2 ⊗

1
2 = 1 + 0̄. (4.20)

The wavefunction of the two light quarks can be found in Table 4.2. We may notice that the spin-1

(spin-0) wavefunction is symmetric (anti-symmetric) under the interchange of quarks. Here, we have

defined the spin of the light quarks as d1 and d0 for that of spin 1 and spin 0, respectively.

Table 4.2. Spin wavefunction of two light quarks inside heavy baryons.

Spin Notation Wavefunction

d1
1 ↑↑

1 d1
0

1√
2

(↑↓ + ↓↑)
d1
−1 ↓↓

0̄ d0
0

1√
2

(↑↓ − ↓↑)

4.2.3 Flavor part

For the case of heavy baryons, they contain at least a heavy quark, charm or bottom quarks, in

addition to the light quarks: up, down, and strange quarks. As already discussed, the heavy quark

is decoupled from the light quarks due to its heavy mass. The flavor wavefunction of the two light

quarks which belong to SU(3) symmetry can be combined as follows

3⊗ 3 = 3̄ + 6, (4.21)

which is tabulated in Table 4.3. For references, the quark mass for each flavor is given by

mu(d) = 350 MeV, (4.22)

ms = 450 MeV, (4.23)

mc = 1500 MeV, (4.24)

mb = 5000 MeV. (4.25)

In this sense, it is interesting to say that Ξc(b) baryon have three different quarks. However, we will

regard the strange quark in the same footing as the up and down quarks for the first approximation.

To this date, the treatment of three different quarks is not quite well established because we, strictly

speaking, cannot introduce λ or ρ coordinate. In contrast, the Λc,Σc, and Ωc can be treated more

easily. In this distertation, we will focus on Λc and Σc baryons along with their bottom partners. The

other heavy baryons can be studied in similar manners, in which we will do it for future studies.
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Table 4.3. Flavor wavefunction of singly charmed baryons. For bottom baryons, we can replace
charm quark by bottom quark.

Multiplet Heavy baryon Flavor wavefunction

Σ++
c uuc

Σ+
c

1√
2
(ud+ du)c

Σ0
c ddc

6 Ξ+
c

1√
2
(us+ su)c

Ξ0
c

1√
2
(ds+ sd)c

Ω0
c ssc

Ξ
′+
c

1√
2
(us+ su)c

3̄ Ξ
′0
c

1√
2
(ds+ sd)c

Λ+
c

1√
2
(ud− du)c

4.2.4 Configuration

In this subsection, we will construct the total wavefunction of Λc and Σc. Based on the observed

excited states, we limit the discussion up to N = 2 for Λc and N = 1 for Σc, respectively. Here, we will

omit the color wavefunction which is known to be anti-symmetric. The total wavefunction including

orbital, spin and flavor

Λc(J(j)P ) =

[[
ψnlm(~λ) ψnlm(~ρ), d

]j
, χc

]J
m

φΛc , (4.26)

Σc(J(j)P ) =

[[
ψnlm(~λ) ψnlm(~ρ), d

]j
, χc

]J
m

φΣc , (4.27)

should be symmetric. We also note that the jj coupling scheme is used for the spin and orbital

part which is compatible with heavy-quark symmetry. For bottom baryons, the total wavefunction is

similar to the charmed baryon. The only difference is that the charm quark is replaced by the bottom

quark in flavor wavefunction. Here, we also introduce a so-called brown muck spin j, which is the

total angular momentum of light quarks.

Ground state

The ground states of charm baryons are constructed as

Λc(1S, 1/2(0)+) =

[[
ψ00(~λ)ψ00(~ρ), d0

]0
, χc

]1/2

m

φΛc , (4.28)
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and

Σc(1S, 1/2(1)+) =

[[
ψ00(~λ)ψ00(~ρ), d1

]1
, χc

]1/2

m

φΣc , (4.29)

Σc(1S, 3/2(1)+) =

[[
ψ00(~λ)ψ00(~ρ), d1

]1
, χc

]3/2

m

φΣc . (4.30)

As we know, the φΛc is anti-symmetric such that the light quark spin should zero (anti-symmetric),

resulting in a HQS singlet. On the other hand, for Σc, the light quark spin is one which forms a

so-called HQS doublet. In heavy baryons, the HQS doublet is formed when j is not equal to zero.

Otherwise, the HQS singlet is formed instead.

Negative parity state

For negative parity excitation states (N = 1), there are two possibilities: λ-mode (lλ = 1) or

ρ-mode ( lρ = 1) excitations. For Λc baryon, the wavefunctions are given by

Λ∗c(1Pλ, J(1)−) =

[[
ψ01(~λ)ψ00(~ρ), d0

]1
, χc

]1±1/2

m

φΛc , (4.31)

Λ∗c(1Pρ, J(j)−) =

[[
ψ00(~λ)ψ01(~ρ), d1

]j
, χc

]J
m

φΛc . (4.32)

In order to anti-symmetrize the wavefunction, the Λc with λ-mode excitation is formed with the light

quark spin d = 0, and make a HQS doublet JP = 1/2−, 3/2− with brown-muck spin j = 1. For

ρ-mode excitation, the light quark spin d = 1 is needed, resulting in five possible states with j = 0, 1,

and 2. In total, there are seven possible configurations for negative parity states as

Λ∗c(1/2
−) = Λ∗c(1Pλ, 1/2(1)−),Λ∗c(1Pρ, 1/2(0)−),Λ∗c(1Pρ, 1/2(1)−), (4.33)

Λ∗c(3/2
−) = Λ∗c(1Pλ, 3/2(1)−),Λ∗c(1Pρ, 3/2(1)−),Λ∗c(1Pρ, 3/2(2)−), (4.34)

Λ∗c(5/2
−) = Λ∗c(1Pρ, 5/2(2)−). (4.35)

The list of possible configurations of negative parity states are summarized in Table 4.4. Although

a physical state could be a mixing of several configurations with the same spin-parity, we will treat

them exclusively as a first step because λ and ρ mode excitation energies are well separated. We also

expect that the low-lying excited states might correspond to the λ-mode excitations.

For Σc baryons, there are also seven negative parity states. However, there are now five states

related to the λ-mode excitations. It can be understood because Σc has opposite symmetry of flavor
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wavefunction. The wavefunctions read

Σ∗c(1Pλ, J(j)−) =

[[
ψ01(~λ)ψ00(~ρ), d1

]j
, χc

]J
m

φΣc , (4.36)

Σ∗c(1Pρ, J(1)−) =

[[
ψ00(~λ)ψ01(~ρ), d0

]1
, χc

]1±1/2

m

φΣc . (4.37)

Table 4.4. Negative parity states of Λc baryon: 2 λ-mode and 5 ρ-mode states. For Σc baryons,
they appear inversely. See the text for the details.

lλ lρ ltotal d j χc JP

1 0 1 0 1 1/2 1/2− 3/2−

0 1 1 1 0 1/2 1/2−

1 1/2 1/2− 3/2−

2 1/2 3/2− 5/2−

Positive parity state

Up until now, there are several excited states of Λc observed which may correspond to the positive

parity states. Because of that, it is also certainly of interest to examine those states in the quark

model description. Here, we will provide the wavefunctions of positive parity states for Λc baryons.

In the quark model, the positive parity states are related to the N = 2 or 2~ω excitations. In

this energy region, the quark model predicts a lot of states which are classified into radial (nodal)

excitation (n = 1) and D-wave excitation (l = 2). For radial (nodal) excitations, we have

Λ∗c(2Sλλ, 1/2(0)+) =

[[
ψ10(~λ)ψ00(~ρ), d0

]0
, χc

]1/2

m

φΛc , (4.38)

Λ∗c(2Sρρ, 1/2(0)+) =

[[
ψ00(~λ)ψ10(~ρ), d0

]0
, χc

]1/2

m

φΛc . (4.39)

In this case the nodal excited states n = 1 is excited, the form of the wavefunction is similar to the

ground state. Since the brown muck spin j = 0, the radial excitation forms an HQS singlet.

For D-wave excitations, there are several possible combinations, i.e. λ mode (lλ = 2), ρ mode

(lρ = 2), and mixed λρ mode (lλ = 1, lρ = 1). For λ and ρ mode, the wavefunctions are written as

Λ∗c(1Dλλ, J(2)+) =

[[
ψ02(~λ)ψ00(~ρ), d0

]2
, χc

]2±1/2

m

φΛc , (4.40)

Λ∗c(1Dρρ, J(2)+) =

[[
ψ00(~λ)ψ02(~ρ), d0

]2
, χc

]2±1/2

m

φΛc , (4.41)
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Table 4.5. Positive parity states of Λc baryon: 2 radial (n = 1) and 17 D-wave (l = 2) excitations.

nλ nρ lλ lρ ltotal d j χc JP

1 0 0 0 1/2 1/2+

0 1 0 0 1/2 1/2+

2 0 2 0 2 1/2 3/2+ 5/2+

0 2 2 0 2 1/2 3/2+ 5/2+

1 1 0 1 1 1/2 1/2+ 3/2+

1 1 0 1/2 1/2+

1 1/2 1/2+ 3/2+

2 1/2 3/2+ 5/2+

2 1 1 1/2 1/2+ 3/2+

2 1/2 3/2+ 5/2+

3 1/2 5/2+ 7/2+

where the light quarks have spin zero. As we can see, D-wave excitations form an HQS doublet of

JP = (3/2+, 5/2+) with j = 2.

For the mixed λρ excitations, the wavefunction is given by

Λ∗c(1Dλρ, J(j)+) =

[[
ψ01(~λ)ψ01(~ρ), d1

]j
, χc

]J
m

φΛc . (4.42)

where the light quark spin is one. In this case the total angular momentum have several possibilites

l = (lλ + lρ) = 0, 1, and 2, resulting in 13 λρ mode excitation states. If we collect all the the positive

parity states from N = 2, we obtain

Λ∗c(1/2
+) = Λ∗c(2Sλλ, 1/2(0)+),Λ∗c(2Sρρ, 1/2(0)+),Λ∗c(1Dλρ, 1/2(1)+

0 ),

Λ∗c(1Dλρ, 1/2(0)+
1 ),Λ∗c(1Dλρ, 1/2(1)+

1 ),Λ∗c(1Dλρ, 1/2(1)+
2 ), (4.43)

Λ∗c(3/2
+) = Λ∗c(1Dλλ, 3/2(2)+),Λ∗c(1Dρρ, 3/2(2)+),Λ∗c(1Dλρ, 3/2(1)+

0 ),

Λ∗c(1Dλρ, 3/2(1)+
1 ),Λ∗c(1Dλρ, 3/2(2)+

1 ),Λ∗c(1Dλρ, 3/2(1)+
2 ),

Λ∗c(1Dλρ, 3/2(2)+
2 ), (4.44)

Λ∗c(5/2
+) = Λ∗c(1Dλλ, 5/2(2)+),Λ∗c(1Dρρ, 5/2(2)+),Λ∗c(1Dλρ, 5/2(2)+

1 ),

Λ∗c(1Dλρ, 5/2(2)+
2 ),Λ∗c(1Dλρ, 5/2(3)+

2 ) (4.45)

Λ∗c(7/2
+) = Λ∗c(1Dλρ, 7/2(3)+

2 ). (4.46)

where there are 19 configurations in total. The positive parity states are summarized in Table. 4.5.
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As we may notice, there are a lot of states predicted by the quark model in this energy region.

However, there are only a few states observed in experiments so far, leading to a well-known problem

called missing resonances. Note that the potential we are using in this quark model is the harmonic

oscillator. The different choices of potential may give distinct excitation states. The thorough experi-

mental exploration in this energy region with various flavor contents may give a hint to the underlying

dynamics.

4.3 Interaction between quarks and pion

In the quark model description, we assume that a pion couples to a single light quark inside a

heavy baryon as a dominant process. Here, the pion is effectively regarded as a Nambu-Goldstone

boson (point-like particle) based on the low-energy chiral dynamics. One of the reasons we treat the

pion as a point-like particle is because its mass is quite small.

In relativistic framework, there are two type of coupling between quarks and the pion, namely,

axial-vector and psudo-scalar types as

Lpvπqq =
gqA
2fπ

q̄γµγ5~τq · ∂µ~π, (4.47)

Lpsπqq =
gqA
2fπ

q̄γ5~τq · ~π. (4.48)

where gqA is denoted as the quark axial coupling and fπ is the pion decay constant 1. The pion and

quark field are defined as π and q respectively. These two couplings are equivalent to the case of

on-shell particles. However, it does not apply to the quarks confined in heavy baryons, which are

off-shell. In this case, these couplings are no longer equivalent. In principle, we can use one of them

or their linear combinations by imposing some constraints.

In non-relativistic framework, the interaction translates as

nonderivative → ~σ · ~q, (4.49)

derivative → ~∇ · ~σ. (4.50)

where ~q is the pion momentum and ~σ is the Pauli matrix. The axial-vector coupling contains both of

them, but the pseudo-scalar one consist of only the nonderivative piece. For heavy baryons, we may

show that the pion momentum ~q is almost zero for Λ∗c(2595) decay. However, the finite decay rate

is observed, indicating that the derivative piece ~∇ · ~σ is quite important since the ~σ · ~q piece would

result in a negligible contribution. By this observation, we will employ the axial-vector coupling for

our present calculation, which is consistent with the low-energy theorem in chiral dynamics.

1We use the convention fπ = 93 MeV in our calculation.
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π

Yc Y′ cP P′ 

x1p1 p′ 1
p2 p′ 2
p3 p′ 3

Figure 4.4. Illustration of one-pion emission decay of heavy baryon (Yc) in the quark model.

4.4 Matrix elements of heavy baryon decay

In this section, we will calculate the matrix elements of heavy baryon decay in the quark model as

described in Fig. 4.4. The matrix elements are obtained by sandwiching the interaction Lagrangian

between the pion and quarks with the heavy baryon wavefunction in the quark model. Remind that

the pion can couple to a single light quark.

The momentum representation of the heavy baryon state, for instance Λc or Σc, is given by

|Yc(P, J)〉 =
√

2MYc

∑
s,l

∫
d3~pρ
(2π)3

d3~pλ
(2π)3

ψlρ(~pρ)ψlλ(~pλ)
√

2m
√

2m
√

2M
|q1(p1, s1)〉 |q2(p2, s2)〉 |q3(p3, s3)〉 (4.51)

where the heavy baryon state consists of the three quark states |q1〉 |q2〉 |q3〉 and the sum is taken to

make the spin J heavy baryon out of the spin and angular momentum of the three quarks. The heavy

baryon state is calculated in its rest frame with mass MYc , spin J , the relative momenta

~pλ =
1

2m+M
(M~p1 +M~p2 − 2m~p3) and ~pρ =

1

2
(~p1 − ~p2), (4.52)

and the total momentum

~P = ~p1 + ~p2 + ~p3. (4.53)

The quark states are normalized by the factor 1/
√

2m such that∫
d3pj
(2π)3

|ψ(~pj)|2 = 1. (4.54)

Now, we have obtained the wavefunction of the initial and final heavy baryons.

The decay amplitude for Yc → Y ′cπ process can be written as

iTYc→Y ′cπ =

∫
d4x1

〈
Y ′c (P ′, J ′)π(q)|iL(x1)|Yc(P, J)

〉
(4.55)
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where we first assume the pion couples the first light quark q1. Meanwhile, the other quarks act as

spectators. For the first quark transition, we perform the non-relativistic reduction as

〈
q′1(p′1, s

′
1)π(q)|iLπqq(x1)|q1(p1, s1)

〉
≈ −

gqA
2π
ei(p

′
1−p1+q)·x1

〈
χs′1

∣∣∣(ωπ(~p1 + ~p ′1) · ~σ − 2m~q · ~σ
)∣∣∣χs1〉 (4.56)

where we denote the energy and momentum of pion as ωπ and ~q, respectively. The matrix elements

of the other quarks are just a delta function given by

〈
q′j(p

′
j , s
′
j)|qj(pj , sj)

〉
= 2Ej(2π)3δ(3)(~p ′j − ~pj)δsjs′j = 2Ej

∫
d3xje

−i(~p ′j−~pj)·~xj
〈
χs′j

∣∣∣χsj〉 (4.57)

where j = 2, 3.

If we collect all of the x-integral, we will obtain∫
dx0

1d
3x1d

3x2d
3x3e

−i(E1−E′1−ωπ)·x0e−i(~p
′
1−~p1+~q)·~x1e−i(~p

′
2−~p2)·~x2e−i(~p

′
3−~p3)·~x3 . (4.58)

Here we can observe that there are the integrals of the space and time. The time integral will give

the energy conservation (2π)δ(E1 − E′1 − ωπ) in q → q′π in the quark level or (2π)δ(E − E′ − ωπ) in

the baryon level where the total energy of three quark is given by E = E1 +E2 +E3. To evaluate the

space integral, we make a coordinate change into Jacobi coordinates∫
d3Xd3ρd3λe−i(

~P ′−~P )· ~Xe−i(~p
′
ρ−~pρ)·~ρe−i(~p

′
λ−~pλ)·~λe−i~q·(

~X+ M
2m+M

~λ+ 1
2

), (4.59)

where it gives a momentum conservation (2π)3δ(~P − ~P ′ − ~q) by integrating ~X.

Now, we can write the decay amplitude as

−iT = −
gqA
2fπ

√
2MYc

√
2MY ′c

2m

∑
Λc,Σc

∫
d3~λd3~ρ e−i~qλ·

~λe−i~qρ·~ρ
d3~pρ
(2π)3

(
ψlρ(~pρ)e

i~pρ·~ρ
)
×

d3~pλ
(2π)3

(
ψlλ(~pλ)ei~pλ·

~λ
) d3~p ′ρ

(2π)3

(
ψ∗l′ρ(~p

′
ρ)e
−i~p ′ρ·~ρ

) d3~p ′λ
(2π)3

(
ψ∗l′λ

(~p ′λ)e−i~p
′
λ·~λ
)
×〈

χs′2

∣∣∣χs2〉 〈χs′c∣∣χsc〉{ωπ 〈χs′1∣∣∣(~p ′λ + 2~p ′ρ) · ~σ
∣∣∣χs1〉+

(
ωπM

2m+M
− 2m

)〈
χs′1

∣∣∣~σ · ~q∣∣∣χs1〉}
(4.60)

where the transfer momentums are defined by

~qλ =
M

2m+M
~q and ~qρ =

1

2
~q. (4.61)

The term in Eq. (4.60) containing the momenta (~p ′λ + 2~p ′ρ) can be replaced by the derivative of the
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wave functions as∫
d3~p ′ρ
(2π)3

~p ′ρψ
∗
l′ρ

(~p ′ρ)e
−i~p ′ρ·~ρ = i~∇ρ

∫
d3~p ′ρ
(2π)3

ψ∗l′ρ(~p
′
ρ)e
−i~p ′ρ·~ρ = i~∇ρψ∗l′ρ(~ρ), (4.62)

where the one corresponding to λ-mode can be calculated similarly. Finally, the decay amplitude now

reads

−iTΛ+
c →Σ++

c π− = −
gqA
2fπ

√
2MΛc

√
2MΣc

2m

∫
d3~λe−i~qλ·

~λe−i~qρ·~ρ
〈

Σc

∣∣∣τ+
(1)

∣∣∣Λc〉×〈
Σc

∣∣∣∣{ωπ(i ~∇λ + 2i ~∇ρ) · ~σ(1) +

(
ωπ

M

2m+M
− 2m

)
~σ(1) · ~q

}∣∣∣∣Λc〉 (4.63)

where we have shown explicitly the isospin factor in the amplitude and the heavy baryon state is

redefined as

|Λc〉 =
∣∣[[ψlλ(λ)ψlρ(ρ), d]j , χc]

J
M

〉
≡
∑
l,s

ψlλ(λ)ψlρ(ρ) |χs1〉 |χs2〉 |χsc〉 . (4.64)

Note that the operator σ and τ act on the first quark. To this end, we also need to consider when

the pion couples to the other light quark q2(x2). However, after following the similar procedures,

the resulting amplitude has the same form and therefore we can simply insert factor two into the

amplitude in Eq. (4.63).

4.5 Helicity amplitude

When calculating the decay amplitude, there are two different choices of basis, the partial wave

basis and helicity basis as depicted in Fig. 4.5. In the partial wave basis, the spin of the final state is

quantized along the same z′ axis with the initial state. Here, we will use the later one, which makes

the computation easier. In helicity basis, the spin of final state is now quantized along its momentum

direction as ∣∣Y ′c (~p ′, h)
〉

=
∣∣Y ′c (~p ′, J ′, h)

〉
z
. (4.65)

z
z′ 

z
z′ 

Ω

(a) (b)π π
Yc

Y′ c Yc
Y′ c

Figure 4.5. The choice of the quantization axis: (a) partial wave basis and (b) helicity basis.
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For the spin of the inital state, we can rotate it into z axis by

|Yi(J, J)〉z′ =
∑
m

DJ
mJ(−φ, θ, φ) |Yi(J,m)〉z , (4.66)

where DJ
mJ(−φ, θ, φ) is the Wigner D-function. Then, the matrix element can be written as

z

〈
Yf (~p ′, J ′, h)π(−~p ′) |T |Yi(J, J)

〉
z′

= DJ
mJ(−φ, θ, φ)z

〈
Yf (~p ′, J ′, h)π(−~p ′) |T |Yi(J, J)

〉
z
, (4.67)

where the angular dependences are factored out. For convenience, we define the helicity amplitude as

(2π)4δ(4)(Pf − Pi)Ah =z

〈
Yf (~p ′, J ′, h)π(−~p ′) |T |Yi(J, J)

〉
z
. (4.68)

Note that the helicity is conserved in the decay process, implying that only diagonal components

survive.

To estimate the decay width for the one-pion emission decay, we need to take into account not

only the decay amplitude but also the phase space factor. We will discuss the decay kinematics in

detail in Chapter 6. For the reference, the decay width calculated in different basis is given as follows,

Partial wave basis→ Γ =
1

16π2

q

2M2
i

∫
dΩ
∑
f

|T |2, (4.69)

Helicity basis→ Γ =
1

4π

q

2M2
i

1

2J + 1

∑
h

|Ah|2. (4.70)

where the pion momentum q and the initial particle mass Mi. The concrete form of decay amplitudes

can be found in Appendix A.

4.6 Model parameter

In the quark model, there are three parameters in the harmonic oscillator model, the light and heavy

quark masses, and the spring constant k. Here, we fix the quark mass for each flavor as in Eqs. (4.22)-

(4.25). Meanwhile, the sprint constant k is adjusted such that ωλ reproduces excitation energy of the

low-lying excited state, e.g. Λc(2595) and the radius of heavy baryon as
√
〈R2〉 = 0.45 − 0.55 fm.

Note that we have assumed that Λc(2595) is λ-mode excitation state. From the input parameters, we

obtain other output parameters as

m,M, k → ωλ, ωρ, aλ, aρ,
√
〈R2〉. (4.71)

The value of the parameters including the model ambiguities for charmed baryons with various flavors

are tabulated in Table 4.6. For bottom baryons, we can just replace the charm quark mass by the

bottom quark mass and keep the spring constants the same. It is worth mentioning that there are

model uncertainties, originating from the quark axial coupling gqA and the pion decay constant fπ.
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r1 − X
m

m

M

r3 − X
r2 − X

Figure 4.6. Estimation of the heavy baryon radius in the quark model.

Here, the baryon radius is defined as the average distance of each quark from the center-of-mass

as described in Fig. 4.6. Then, the radius can be written as

〈
R2
〉

=
1

3

3∑
i=1

(~ri − ~X)2 =
1

3

[
2(2m2 +M2)

(2m+M)2

〈
λ2
〉

+
1

2

〈
ρ2
〉]
, (4.72)

〈
λ2
〉

=

∫
d3λ λ2ψ∗00(~λ)ψ00(~λ) =

3

2

1

a2
λ

, (4.73)

〈
ρ2
〉

=

∫
d3ρ ρ2ψ∗00(~ρ)ψ00(~ρ) =

3

2

1

a2
ρ

. (4.74)

where
〈
λ2
〉

and
〈
ρ2
〉

are computed by using the ground states in the harmonic oscillator.

Table 4.6. Parameters used in quark model for charmed baryon with various flavors.

Parameter Λc(udc) Ξc(usc) Ωc(ssc)

Input m 0.3-0.4 GeV 0.35-0.45 GeV 0.4-0.5 GeV

M 1.4-1.6 GeV 1.4-1.6 GeV 1.4-1.6 GeV

k 0.02-0.04 GeV3 0.02-0.04 GeV3 0.02-0.04 GeV3

Output ωλ 0.27-0.44 GeV 0.26-0.41 GeV 0.25-0.40 GeV

ωρ 0.39-0.63 GeV 0.37-0.59 GeV 0.35-0.55 GeV

aλ 0.36-0.45 GeV 0.37-0.46 GeV 0.38-0.47 GeV

aρ 0.26-0.33 GeV 0.27-0.34 GeV 0.28-0.35 GeV√
〈R2〉 0.42-0.56 fm 0.41-0.53 fm 0.39-0.51 fm

“The world of quark has everything to do with a jaguar circling in the night”, Murray Gell-Mann
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Chapter 5

Effective Lagrangian approach

5.1 Introduction

In this chapter, we will introduce our strategies in investigating the three-body decay of heavy

baryons. In the previous chapters, we have discussed the quark model to describe two-body decay.

However, to study their three-body decay, we need to employ another phenomenological model to

simplify the calculation.

In the present work, we employ a so-called effective Lagrangian approach to describe the decay pro-

cess. In this approach, we first need to determine relevant tree-level Feynman diagrams that contribute

to the decay process as described in Fig. 5.1(a). Also, the parameters in the effective Lagrangian are

usually unknown and should be fixed either by the experimental data or other microscopic models.

Here, we will fix the parameter by the input from the quark model. This method is also called the iso-

bar model where we put some resonances in intermediate states by hand. This model may suffer more

uncertainties when we consider more resonances in the decay process. In this study, however, only

several resonances may contribute to the process which makes the analysis has fewer uncertainties.

Generally, the isobar model suffers an inherent problem such as it violates the unitarity. However,

in the heavy baryon decay, in particular, Λ∗c → Λcππ decay, the opening threshold is sufficiently far,

which justify the application of this method where the unitarity is not badly violated. If the opening

thresholds play dominant roles, the dynamical model is certainly needed to maintain the unitarity. In

fact, the dynamical model, as described in Fig. 5.1(b), is a more complete model and has been studied

extensively in various studies, e.g. Ref [213]. But, depending on the situation, the isobar model can

work sufficiently well and in some works, the momentum dependence in the propagator is introduced

to restore the unitarity.

Effective Lagrangians are usually constructed in the relativistic framework as done in many works

e.g. Ref [214]. In this framework, the Lagrangian consists of the relevant meson and baryon fields with

Cillford algebra. The calculation will be complicated as we consider the higher spin-parity resonances.

However, in this study, the pion momentum in Λ∗c → Λcππ decay is quite small where the non-

relativistic approximation is quite good. Therefore, we perform the non-relativistic reduction of the

amplitudes for practical calculation [122]. In this way, it not only simplifies the calculation but also

Λ*c Λ+
c

π−π+

Λ*c Λ+
c

π−π+(a) (b)

Figure 5.1. How to model the three-body decay: (a) isobar model and (b) dynamical model.
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gives more intuitive pictures of the underlying problem. In particular, the angular dependence can be

derived more intuitively in this method as we will see later.

5.2 Non-relativistic reduction

In calculating the heavy-baryon decay, we practically employ effective Lagrangians in the non-

relativistic framework. This approximation is sufficiently good because the energy of the emitting pion

is relatively small in heavy-baryon decay. Here, we will give some examples of how the relativistic

effective Lagrangian can be reduced into the non-relativistic one, by picking up the leading order term.

The concrete formulations that we use in the present work will be discussed in the next section.

(a)

Λ∗
c Σc

π
(b)

Λ∗
c

Σc

Λc

π π

Figure 5.2. (a) two-body decay of Λ∗c → Σcπ and (b) three-body decay of Λ∗c → Λcππ going through
Σc in intermediate state.

5.2.1 Two-body decay

First, let us consider the two-body decay of Λ∗c(p) → Σc(p
′)π(q) which is depicted in Fig. 5.2(a).

Note that the corresponding momentum is written in the parenthesis. The effective Lagrangian is

given by

LΛ∗cΣcπ = g ψ̄ΣcΓ5ψΛ∗cπ + h.c., (5.1)

where h.c. stands for hermitian conjugate. Also, we omit the isospin for simplicity and we define

Γ5 =

 1 for Λ∗c(1/2
−),

γ5 for Λ∗c(1/2
+).

(5.2)

Remember that Σc has spin-parity 1/2+.

For the case of Λc(1/2
−), we obtain the amplitude as

−iT = g ū(p′)u(p). (5.3)
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The amplitude can be expanded as

−iT = g
√
E′ +m′

√
E +m

(
χ†Σc ,−χ

†
Σc

σ · p′

E′ +m′

) χΛ∗c
σ · p
E +m

χΛ∗c


= g

√
2m′
√

2m χ†Σc

(
1− σ · p

′

2m′
σ · p
2m

)
χΛ∗c (5.4)

where the energy and mass of the baryons are denoted as E and m, respectively. We denote the spin

state of Λ∗c and Σc as χΛ∗c and χΣc , respectively. The leading oder term of this amplitude is given by

−iTnr ∝ g χ†Σc1χΛ∗c , (5.5)

where the amplitude does not have pion momentum dependent, which is consistent with the s-wave

decay of Λc(1/2
−)→ Σcπ.

For the case of Λc(1/2
+), we obtain the amplitude as

−iT = g ū(p′)γ5u(p). (5.6)

We expand the amplitude as

−iT = g
√
E′ +m′

√
E +m

(
χ†Σc ,−

σ · p′

E′ +m′
χ†Σc

) 0 1

1 0

 χΛ∗c
σ · p
E +m

χΛ∗c


= g

√
2m′
√

2mχ†Σc

(
σ · p
2m

− σ · p
′

2m′

)
χΛ∗c

= g
√

2m′
√

2mχ†Σc

(
σ · q
m+m′

)
χΛ∗c (5.7)

By taking the pion momentum p− p′ = q, we obtain the amplitude as

−iTnr ∝ g χ†Σc (σ · q)χΛ∗c , (5.8)

where it is now propotional to the pion momentum q. We will obtain the similar result by using

different type of coupling, namely the psudovector coupling. The interaction Lagrangian is given by

LΛ∗cΣcπ = g′ ψ̄Σcγµγ5ψΛ∗c∂
µπ + h.c., (5.9)

Then, we obtain the amplitude

−iT = g′ ū(p′)/kγ5u(p). (5.10)
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The non-relativistic expansion is obtained as

−iT = g′
√
E′ +m′

√
E +m

(
χ†Σc ,−

σ · p′

E′ +m′
χ†Σc

) ω −σ · q

σ · q −ω

 0 1

1 0

 χΛ∗c
σ · p
E +m

χΛ∗c


= g′

√
2m′
√

2mχ†Σc

[
−σ · q + ω

(
σ · p
2m

+
σ · p′

2m′

)]
χΛ∗c + . . . (5.11)

where “ . . . ” corresponds to the higher momentum term. As we can see, the leading order term is

proportional to the pion momentum q, which is similar to that of Eq. (5.8). The difference is the

dimension of the coupling strength

g = g′(m+m′). (5.12)

For the Λc with spin-parity 3/2±, we need to introduce the Rarita-Schwinger field, and the non-

relativistic reduction can be performed similarly. In the non-relativistic approximation, the resulting

amplitude is proportional to the momentum qL with the suitable spin operator. Note that L is the

relative angular momentum of the outgoing particles.

5.2.2 Three-body decay

Now let us consider the three-body decay of Λ∗c → Σcπ → Λcππ as illustrated in Fig. 5.2(b).

Suppose the the initial state Λ∗c has the spin and parity 1/2−, then we have the Lagrangian for the

first and the second vertices as

LΛ∗cΣcπ = g1 ψ̄ΣcψΛ∗cπ + h.c., (5.13)

LΣcΛcπ = g2 ψ̄Λcγ5ψΣcπ + h.c. (5.14)

Then, the decay amplitude can be written as

−iT = g1g2 ū(p3)γ5
i

/p2
+ /p3

−mΣc

u(p)

= g1g2 ū(p3)γ5
/p2

+ /p3
+mΣc

(p2 + p3)2 −m2
Σc

u(p) = g1g2 ū(p3)
(−/p2

−mΛc +mΣc)γ5

(p2 + p3)2 −m2
Σc

u(p)

= −g1g2 ū(p3)
/p2
γ5

(p2 + p3)2 −m2
Σc

u(p), (5.15)

where here the p1, p2, and p3 correspond to the momentum of π1, π2 and Λc in final states. By

performing the non-relativistic reduction, we will obtain the amplitude as

−iTnr ∝ g1g2

χ†Λc (σ · p2)χΛ∗c

(p2 + p3)2 −m2
Σc

. (5.16)
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Now, we can see that the amplitudes are propotional to p2 where the Σc decay into Λcπ in p wave,

whereas no p1 dependence in the amplitude which is telling us that the Λ∗c decay in s wave. If we use

the pseudovector coupling for the second vertex, we will obtain a similar result.

5.3 Non-relativistic Feynman rule

Now let us try to construct Feynman’s rule for the three-body decay in the non-relativistic frame-

work based on our observations. We first consider the Lagrangian for each vertex as

LΛ∗cΣcπ = g1 ψ̄ΣcΓ1ψΛ∗cπ + h.c., (5.17)

LΣcΛcπ = g2 ψ̄ΛcΓ2ψΣcπ + h.c. (5.18)

Then, we can write amplitudes as

−iT1 = g1 χ
†
Σc

(v1)χΛ∗c , (5.19)

−iT2 = g2 χ
†
Λc

(v2)χΣc , (5.20)

where v1 and v2 are the leading order terms in the non-relativistic expansion. The propagator is given

by

i

p2
Σc
−m2

Σc

→ i

p2
Σc
− (mΣc − iΓΣc/2)2

, (5.21)

where the Σc has a finite width ΓΣc .

The three-body decay amplitude can be expressed as

−iT = 〈−iT2〉
i

p2
Σc
− (mΣc − iΓΣc/2)2

〈−iT1〉

= ig1g2

√
EΛc +mΛc

√
EΛ∗c +mΛ∗c (EΣc +mΣc)

χ†Λc(v2)χΣc χ
†
Σc

(v1)χΛ∗c

m2
23 − (mΣc − iΓΣc/2)2

. (5.22)

where we have replace p2
Σc

= (p2 + p3)2 = m2
23 in the second line. This m2

23 is usually known as the

invariant mass of particle 2 (π2) and 3 (Λc). We can further approximate the propagator

m2
23 − m̃2

Σc = (m23 + m̃Σc)(m23 − m̃Σc)

≈ (EΣc +mΣc)(m23 − m̃Σc). (5.23)

such that the amplitude can be written as

−iT = ig1g2

√
EΛc +mΛc

√
EΛ∗c +mΛ∗c

χ†Λc(v2) (v1)χΛ∗c

m23 −mΣc + iΓΣc/2
. (5.24)
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This approximation is valid for the slowly moving Σc resonance and near m23 ≈ mΣc , which is the

case for our practical calculation.

5.4 Decay amplitude

In the present work, we are interested in studying the two-pion emission decays of heavy baryons,

such as Λc,Ξc,Λb, and Ξb. To model such a three-body decay process, we employ the Lagrangian in the

non-relativistic framework, which is sufficiently well for these baryons. If we revisit the quark model

configuration up to N = 2, there are many possible states with spin and parity JP = 1/2±, 3/2±, 5/2±

and 7/2+. In this calculation, we will consider such spin-parity assignments for the initial particle.

In this section, let us consider Λ∗c → Λcππ decay going through Σc(1/2
+) and Σ∗c(3/2

+) in in-

termediate states. What we need to calculate first is the decay amplitude for each vertex. For that

purpose, we denote the spin transition operators as given in Table 5.1, which are represented in the

cartesian coordinates. We can construct them by using Wigner-Eckart theorem as〈
Jf mf

∣∣SLµ ∣∣ Ji mi

〉
=

(
Ji mi L µ

∣∣Jf mf

)
, (5.25)

where the operator is expressed in the spherical basis. From the equation above, the matrix element

of the spin transition operators is related to the Clebsh-Gordan coefficients. The rank of the operator

L is following the partial wave of the outgoing pion. We have defined the reduced matrix element

equal to unity for the spin transition operators. Note that the arbitrariness is taken into account in

the coupling strength of the amplitude. The concrete forms of the spin transition operator can be

found in Appendix C.

Table 5.1. Definitions of the spin transition operators used in this calculation.

Spin operator Spin transition operator

σ spin 1/2 S† spin 1/2 to 3/2

Σ spin 3/2 T† spin 3/2 to 5/2

U† spin 5/2 to 7/2

V†ij spin 3/2 to 3/2 (d-wave)

W†
ijk spin 3/2 to 3/2 (f -wave)

X†ijk spin 3/2 to 5/2 (f -wave)

Next let us consider the first vertex, Λ∗c → Σ
(∗)
c π decay. The amplitude with the various spin-parity

assignment of Λ∗c is given in Table 5.2. Remind that p1 and p2 correspond to the pion momentum

emitted from the first and second vertex, respectively. The coupling strength g1a and g1b are related

to that of Σc and Σ∗c , respectively, where the partial wave of pion is written as a superscript.

We observe that there is only one partial wave of pion is possible for Σcπ channel. On the other
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Table 5.2. Amplitudes of Λ∗c → Σ
(∗)
c π decay with various spin-parity assignments of Λ∗c . The

definitions can be found in the text.

Initial state −iTΛ∗c→Σcπ −iTΛ∗c→Σ∗cπ

Λ∗c(1/2
−) gs1a χ

†
Σc
χΛ∗c gd1b χ

†
Σ∗c

(S† · p1)(σ · p1)χΛ∗c

Λ∗c(3/2
−) gd1a χ

†
Σc

(σ · p1)(S · p1)χΛ∗c gs1b χ
†
Σ∗c
χΛ∗c +

gd1b χ
†
Σ∗c

(p1 ·V · p1)χΛ∗c

Λ∗c(5/2
−) gd1a χ

†
Σc

(S · p1)(T · p1)χΛ∗c gd1b χ
†
Σ∗c

(Σ · p1)(T · p1)χΛ∗c

Λ∗c(1/2
+) gp1a χ

†
Σc

(σ · p1)χΛ∗c gp1b χ
†
Σ∗c

(S† · p1)χΛ∗c

Λ∗c(3/2
+) gp1a χ

†
Σc

(S · p1)χΛ∗c gp1b χ
†
Σ∗c

(Σ · p1)χΛ∗c +

gf1b χ
†
Σ∗c

(Wijk p1i p1j p1k)χΛ∗c

Λ∗c(5/2
+) gf1a χ

†
Σc

(σ ·p1)(S·p1)(T·p1)χΛ∗c gp1b χ
†
Σ∗c

(T · p1)χΛ∗c +

gf1b χ
†
Σ∗c

(Xijk p1i p1j p1k)χΛ∗c

Λ∗c(7/2
+) gf1aχ

†
Σc

(S·p1)(T·p1)(U·p1)χΛ∗c gf1bχ
†
Σ∗c

(Σ·p1)(T·p1)(U·p1)χΛ∗c

hand, there are two possible partial waves for the case of Σ∗cπ channel, except for Λc(1/2
±). For the

case of Λc(5/2
−) and Λc(7/2

+), although the higher partial waves ( g and h wave, respectively) are

possible in baryon level, there is a brown-muck selection rule in the quark model which forbids such

transition. Therefore, we will not consider them in the calculation.

Similarly, we can compute the amplitude for the second vertex Σc → Λcπ and Σ∗c → Λcπ as

−iTΣc→Λcπ = gp2a χ
†
Λc

(σ · p2)χΣc , (5.26)

−iTΣ∗c→Λcπ = gp2b χ
†
Λc

(S · p2)χΣ∗c , (5.27)

where both Σ
(∗)
c decay into Λcπ in p wave.

5.4.1 Helicity amplitude

The amplitude can also be expressed in the helicity amplitudes. This procedure can simplify

the calculation because we do not have to calculate whole the matrix element of the spin transition

operators. Moreover, we will compare this helicity amplitude to that of the quark model.

Here, we will provide some example of calculating the helicity amplitudes. Let us start from
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Table 5.3. Helicity amplitudes calculated in effective Lagrangians with various spin and parity

assignments of Λ∗c for Λ∗c → Σ
(∗)
c π and Σ

(∗)
c → Λcπ decays.

Initial state h Ah(Λ∗c → Σcπ) Ah(Λ∗c → Σ∗cπ)

Λ∗c(1/2
−) 1/2 gs1a

√
2
3g
d
1b p

2

Λ∗c(3/2
−) 1/2 −

√
2
3g
d
1a p

2 gs1b − 1√
5
gd1b p

2

3/2 gs1b + 1√
5
gd1b p

2

Λ∗c(5/2
−) 1/2

√
2
5g
d
1a p

2 −
√

3
5g
d
1b p

2

3/2 −
√

18
5 g

d
1b p

2

Λ∗c(1/2
+) 1/2 gp1a p

√
2
3g
p
1b p

Λ∗c(3/2
+) 1/2 −

√
2
3g
p
1a p gp1b p − 3√

35
gf1b p

3

3/2 3gp2 p + 1√
35
gf2 p3

Λ∗c(5/2
+) 1/2

√
2
5g
f
1a p

3 −
√

3
5g
p
1b p +

√
6
35g

f
1b p

3

3/2 −
√

2
5g
p
2 p − 3√

35
gf1b p

3

Λ∗c(7/2
+) 1/2 −

√
8
35g

f
1a p

3
√

12
35g

f
1b p

3

3/2
√

12
7 g

f
1b p

3

Ah(Σ
(∗)
c → Λcπ)

Σc(1/2
+) 1/2 gp2a p

Σ∗c(3/2
+) 1/2 −

√
2
3g
p
2b p

Λ∗c(1/2
−) decays, the helicity amplitudes are calculated as

−iA1/2(Λ∗c → Σcπ) = gs1a
〈

1
2 ,

1
2

∣∣ 1
2 ,

1
2

〉
= gs1a, (5.28)

−iA1/2(Λ∗c → Σ∗cπ) = gd1b
〈

3
2 ,

1
2

∣∣ (S† · p)(σ · p)
∣∣1

2 ,
1
2

〉
=

√
2

3
gd1b p

2. (5.29)

As we may notice, the amplitudes now consist of the momentum and coupling strength along with

the suitable constants which originiated form the Clebsh-Gordon coefficients.

Similarly, for Λ∗c(3/2
−)→ Σcπ decay, we obtain

−iA1/2(Λ∗c → Σcπ) = gd1a
〈

1
2 ,

1
2

∣∣ (σ · p)(S · p)
∣∣3

2 ,
1
2

〉
= −

√
2

3
gd1a p

2. (5.30)
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Note that for Σ∗cπ channel, we have two helicity amplitudes A1/2 and A3/2 because now Σ∗c has spin

3/2. Also, there are two partial waves available, namely s and d waves. For the case of s-wave, the

amplitudes are given by

−iA1/2(Λ∗c → Σ∗cπ) = gs1b
〈

3
2 ,

1
2

∣∣ 3
2 ,

1
2

〉
= gs1b, (5.31)

−iA3/2(Λ∗c → Σ∗cπ) = gs1b
〈

3
2 ,

3
2

∣∣ 3
2 ,

3
2

〉
= gs1b, (5.32)

and for the case of d-wave, they are written as

−iA1/2(Λ∗c → Σ∗cπ) = gd1b
〈

3
2 ,

1
2

∣∣ (p ·V · p)
∣∣3

2 ,
1
2

〉
= gd2 p

2
〈

3
2 ,

1
2

∣∣Vzz ∣∣32 , 1
2

〉
= − 1√

5
gd1b p

2, (5.33)

−iA3/2(Λ∗c → Σ∗cπ) = gd1b
〈

3
2 ,

3
2

∣∣ (p ·V · p)
∣∣3

2 ,
3
2

〉
=

1√
5
gd1b p

2. (5.34)

Thus, the helicity amplitudes for h = 1/2 and 3/2 are given by

−iA1/2(Λ∗c → Σ∗cπ) = gs1b −
1√
5
gd1b p

2, (5.35)

−iA3/2(Λ∗c → Σ∗cπ) = gs1b +
1√
5
gd1b p

2. (5.36)

We can also calculate the helicity amplitude of second vertex Σ
(∗)
c → Λcπ in similar manner as

−iA1/2(Σc → Λcπ) = gp2a
〈

1
2 ,

1
2 |(σ · p)| 1

2 ,
1
2

〉
= gp2a p

〈
1
2 ,

1
2 |σz|

1
2 ,

1
2

〉
= gp2a p, (5.37)

−iA1/2(Σ∗c → Λcπ) = gp2b
〈

1
2 ,

1
2 |(S · p)| 3

2 ,
1
2

〉
= gp2b p

〈
1
2 ,

1
2 |Sz|

3
2 ,

1
2

〉
= −

√
2

3
gp2b p. (5.38)

Other amplitudes are computed similarly. Then, we summarize the helicity amplitude of the effective

Lagrangian in Table 5.3.

5.5 Coupling strength

The coupling strengths in the effective Lagrangian are unknown and need to be fixed by either

experimental data or microscopic model. In this present work, these coupling strengths are computed

from the quark model [89]. We can extract the coupling by equating

Aelh = Aqmh , (5.39)

where Aelh and Aqmh are the helicity amplitudes computed from the effective Lagrangian and quark

model, respectively.
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Table 5.4. The obtained coupling strengths computed from the quark model. The definition of the
quark model states Λ∗c(nlξ, J(j)P ) can be found in the text.

Excitation Channel Coupling constant

Λ∗c(1Pλ, 1/2(1)−) Σcπ(s) gs1a = − 1√
2
Cλ0 + 1

3
√

2
p2Cλ2

Σ∗cπ(d) gd1b = − 1√
6
Cλ2

Λ∗c(1Pλ, 3/2(1)−) Σcπ(d) gd1a = 1√
6
Cλ2

Σ∗cπ(s) gs1b = − 1√
2
Cλ0 + 1

3
√

2
p2Cλ2

Σ∗cπ(d) gd1b = −
√

5
3
√

2
Cλ2

Λ∗c(1Pρ, 5/2(2)−) Σcπ(d) gd1a = 1√
6
Cρ2

Σ∗cπ(d) gd1b = − 1
3
√

2
Cρ2

Λ∗c(2Sλλ, 1/2(0)+) Σcπ(p) gp1a = 1
3
√

2
Cλλ1 − 1

6
√

2
p2Cλλ3

Σ∗cπ(p) gp1b = −1
3

√
3
2C

λλ
1 + 1

6

√
3
2p

2Cλλ3

Λ∗c(1Dλλ, 3/2(2)+) Σcπ(p) gp1a = −
√

5
12C

λλ
1 +

√
1
60p

2Cλλ3

Σ∗cπ(p) gp1b = − 1
6
√

5
Cλλ1 + 1

30
√

5
p2Cλλ3

Σ∗cπ(f) gf1b = −
√

7
10 C

λλ
3

Λ∗c(1Dλλ, 5/2(2)+) Σcπ(f) gf1a = 1
2
√

6
Cλλ3

Σ∗cπ(p) gp1b = − 1√
2
Cλλ1 + 1

5
√

2
p2Cλλ3

Σ∗cπ(f) gf1b = −
√

7
15 C

λλ
3

Λ∗c(1Dλρ, 7/2(3)+) Σcπ(f) gf1a = 1
2
√

3
Cλρ3

Σ∗cπ(f) gf1b = −1
6C

λρ
3

Σc(1S, 1/2(1)+) Λcπ(p) gp2a = − 1√
3
C1

Σ∗c(1S, 3/2(1)+) Λcπ(p) gp2b = −C1
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For example, the coupling strength for Λ∗c(1Pλ, 3/2(1)−)→ Σcπ decay can be obtained by

−iAel1/2 = −iAqm1/2,√
2

3
gd1a p

2 =

(
−1

3

)
p2Cλ2 ,

gd1a = − 1√
6
Cλ2 (5.40)

where only h = 1/2 is allowed. For the case of Λ∗c(1Pλ, 3/2(1)−) → Σ∗cπ, we have , however, two

helicity amplitudes, A1/2 and A3/2 where their coupling strengths are computed as

Ael1/2 = Aqm1/2, (5.41)

Ael3/2 = Aqm3/2. (5.42)

For convenience, we denote D2h
l where l = s or d and h = 1/2 or 3/2 for the coefficient in the helicity

amplitudes calculated in the quark model. Hence, we can equate the helicity amplitudes as

gs1b −
1√
5
gd1b p

2 = D1
s +D1

d p
2, (5.43)

gs1b +
1√
5
gd1b p

2 = D3
s +D3

d p
2, (5.44)

where two partial wave s and d waves are allowed. Now, the coupling strengths gs1b and gd1b can be

extracted as

gs1b = 1
2(D1

s +D3
s) + 1

2(D1
d +D3

d) p
2 = − 1√

2
Cλ0 +

1

3
√

2
Cλ2 p2, (5.45)

gd1b = −
√

5
2 (D1

d −D3
d) = −

√
5

3
√

2
Cλ2 . (5.46)

So, we have demonstrated to compute the coupling strengths when one or two partial waves are

allowed. The other coupling strengths can be extracted similarly without complications. The resulting

coupling strengths of various Λ∗c and Σ
(∗)
c decays are given in Table 5.4.

5.6 Three-body decay amplitude

Now, we have all of the ingredients for calculating the three-body decay amplitudes. Let us first

consider Λ∗c → Λcπ
+π− going through Σc as depicted in Fig 5.3. There are two charged states of

Σ0
c and Σ++

c originated from the direct and cross diagrams, respectively. These decay amplitudes are
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Λ∗+
c

Σ0
c

Λ+
c

π+ π−

+

Λ∗+
c

Σ++
c

Λ+
c

π+

π−

Figure 5.3. Three-body decay of Λ+
c → Λ+

c π
+π− going through Σ0

c and Σ++
c in intermediate states.

given by

−iT
[
Σ0
c

]
=

〈
−iTΣ0

c→Λ+
c π−

〉 i

m23 −mΣ0
c

+ i
2ΓΣ0

c

〈
−iTΛ∗+c →Σ0

cπ
+

〉
, (5.47)

−iT
[
Σ++
c

]
=

〈
−iTΣ++

c →Λ+
c π+

〉 i

m13 −mΣ++
c

+ i
2ΓΣ++

c

〈
−iTΛ∗+c →Σ++

c π−

〉
, (5.48)

where the two-body decay amplitudes can be found in the previous sections. Note that in the prop-

agator part, the m23 invariant mass is replaced by m13 for the Σ++
c , the cross diagram. The other

resonance contribution such as Σ∗c(3/2
+) can be calculated similarly. Then, we sum the amplitudes

coherently. It is worth noting that there is no phase ambiguity when we use the quark model for the

coupling strengths. The actual forms and the squared amplitudes with various spin-parity assignments

of Λ∗c are discussed in detail in Appendix C.

“It is not unscientific to make a guess, although many people who are not in science think it is.”,

Richard Feynman
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Chapter 6

Dalitz plot analysis

6.1 Introduction

The standard way to describe the three-body decay is by using the so-called Dalitz plot. This

name is originated from Richard Dalitz who developed this technique [215]. The modern Dalitz plot

is a bit different from its original version where now the plot is represented by the invariant masses as

shown in Fig. 6.1. Although three-body decay is more complicated than two-body decay, it contains

rich information due to the additional kinematical variables. In this chapter, we will introduce the

general aspects of the Dalitz plot, which is useful for practical analysis.

This method is very powerful for finding a new resonance these days because the scattering experi-

ment is difficult to perform directly especially for heavy hadron whose lifetime is very short. One of the

examples, the pentaquarks Pc are recently observed in Λb → J/ψKp decay [7]. Furthermore, there are

many other exotic hadrons found in the three-body decay process. Therefore, developing the Dalitz

plot analysis will be crucial for the hadron spectroscopy in the future, in particular, constructing a

suitable parameterization for the three-body decay.

Λ*c
Λ+

c

π+

π−

Figure 6.1. (left) Two-pion emission decay of Λ∗c → Λ+
c π

+π− and (right) the typical Dalitz plot.

The Dalitz plot is also useful for the determination of the spin and parity of the resonances. As

we can observe in Fig. 6.1, the resonance is represented as a band and the angular distribution along

the band may reflect its spin and parity. In this present study, we will show how to determine the

spin and parity of heavy baryons by using the Dalitz plot. Moreover, we can measure the Dalitz

plot directly from the experiment by which we can study the decay mechanism. This is one of the

advantages of this work, we can not only discuss the spin and parity of the resonance but also other

possible structures. This sort of analysis should be pursued in the future to clarifying the nature of

hadron resonances.
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6.2 Kinematics

Before going into detail, let us review the kinematics of two-body and three-body decay. Then, we

may have some intuitions in discussing the Dalitz plots.

6.2.1 Two-body decay

Let us first consider the Λc with mass M decays into two particles: (1) Σc and (2) π as shown

in Fig. 6.2. In the final states, there are two particles defined by four components (energy and three

momenta). In total, there are eight degrees of freedom. But, we have some constraints such as:

1. Well-defined final state mass, namely p2
1 = m2

1 and p2
2 = m2

2 ( two constraints).

2. Energy and momentum conservation, P = p1 + p2 (four constraints).

As a result, we have two degrees of freedom left. Since the decay occurs on one axis, one can choose

two angular parameters (θ, φ) and then determine other kinematical variables.

Λ*c
Σc

π

Λ*c
Σc

π(a) (b)

Figure 6.2. Two-body decay of Λ∗c → Σcπ (a) in the rest frame and (b) in the moving frame of the
initial particle

Now let us calculate the energy and momentum of the final states in the rest frame of the initial

particle where P = (M,0). For particle 1, we can write the relation

p2 = P − p1, (6.1)

and then we take the square

p2
2 = (P − p1)2,

m2
2 = P 2 + p2

1 − P · p1 = M2 +m2
1 − (ME1 − 0 · p1),

m2
2 = M −2 +m2

1 −ME1. (6.2)

Thus, the energy of particle 1 is given by

E1 =
M2 +m2

1 −m2
2

2M
. (6.3)
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In the same way, we can also obtain

E2 =
M2 +m2

2 −m2
1

2M
. (6.4)

Their momentum can be calculated by using the relation |p1| =
√
E2

1 −m2
1, resulting in

|p1| =

√
λ(M2,m2

1,m
2
2)

2M
, (6.5)

where λ(x, y, z) is defined by

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz). (6.6)

In two-body decay, the energy and momentum of daughter particles can be well determined when we

know the mass of each participating particles. It is also worth noting that the daughter particles are

always going back to back, p2 = −p1, in the rest frame of the initial particle.

The situation is a bit different when we boost the initial particle with a momentum P , such that

E =
√
P 2 +M2, (6.7)

γ =
E

M
, (6.8)

v =
P

M
, (6.9)

and it moves with a certain velocity toward one direction as shown in Fig. 6.2(b). This is a moving

frame of the initial particle or usually called a lab frame. In this case, the daughter particles will not

go back to back, but they create a decay angle. The momentum and energy in this frame can be

obtained by performing a Lorentz transformation

p′1x = p1x, (6.10)

p′1z = γ(p1z + vE1), (6.11)

tan θ1 =
p′1x
p′1z

(6.12)

by assuming the initial particle move toward z-axis.

The decay width of a parent particle decaying into two daughter particles is given by

Γ =

∫
(2π)4

2M
|T |2dΦ2(P, p1, p2),

=

∫
(2π)4

2M
|T |2δ4(P − p1 − p2)

d3p1

2E1(2π)3

d3p2

2E2(2π)3
. (6.13)

Integrating p2 will give the momentum conservation and transforming the p1 integral in spherical
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coordinate will result in

Γ =
1

8M(2π)2

∫
|T |2δ(M − E1 − E2)

p2
1 dp1 dΩ

E1E2
. (6.14)

where we denote p1 = |p1|. The Dirac δ function can be evaluated as

δ(f(p1))dp1 = |f ′(p∗)|−1δ(p1 − p∗) dp1,

δ(M − E1 − E2) dp1 = δ

(
M −

√
m2

1 + p2
1 −

√
m2

2 + p2
1

)
dp1

=

∣∣∣∣p1
E1 + E2

E1E2

∣∣∣∣−1

δ(p1 − p∗) dp1, (6.15)

where p∗ is the value of p1 that satisfies the original δ-function. Then, the decay width becomes

Γ =
1

8M(2π)2

∫
|T |2

∣∣∣∣p1
E1 + E2

E1E2

∣∣∣∣−1

δ(p1 − p∗)
p2

1 dp1 dΩ

E1E2

=
1

16π2

p1

2M2

∫
|T |2dΩ. (6.16)

6.2.2 Three-body decay

Next let us consider the decay of Λ∗c with mass M into three particles: (1) π+, (2) π− and (3)

Λc which are depicted in Fig. 6.3. In this case, there are twelve degrees of freedom in the final states

coming from the energy and momenta of the three particles. Such degrees of freedom are constraints

by

1. The well-defined mass, p2
i = m2

i (three constraints),

2. Energy and momentum conservation, P = p1 + p2 (four constraints),

3. Orientation of the decay plane (three constraints).

Now, we have two remaining degrees of freedom which can be described by introducing invariant

masses such as

s = P 2 = M2, (6.17)

m2
23 = (P − p1)2 = (p2 + p3)2, (6.18)

m2
13 = (P − p2)2 = (p1 + p3)2, (6.19)

m2
12 = (P − p3)2 = (p1 + p3)2, (6.20)

where m23 shows the invariant mass of particle 2 and 3. In similar manner, m13 and m12 can be

defined as the invariant mass of particle (1,3) and (1,2), respectively. Those invariant masses are not
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Λ+
c

π−

π+
Λ*c

Figure 6.3. Three-body decay of Λ∗c → Λ+
c π

+π− in the rest frame of Λ∗c .

independent but related to each other by the following equation

m2
23 +m2

12 +m2
13 = M2 +m2

1 +m2
2 +m2

3. (6.21)

In the three-body decay, the energy and momentum will depend on a combination of two invariant

masses out of the m2
23,m

2
13 and m2

12, from which we can make a two-dimensional plot a so-called Dalitz

plot. This plot represents a kinematical region of a certain decay whose boundary is determined by

the mass of the participating particles. One point inside the Dalitz plot corresponds to a certain

configuration of the three-body decay. We will introduce them in detail shortly.

The rest frame of initial particle

Let us first consider the rest frame of Λ∗c with P = (M, 0) as shown in Fig. 6.3. We can imagine

that the final states can go to any directions as long as they satisfy the total energy and momentum

conservation. For instance, let us compute the energy and momentum of particle 1. The energy of

particle 1 is given by

m2
23 = (P − p1)2 = M2 +m2

1 − 2ME1,

E1 =
1

2M
(M2 +m2

1 −m2
23), (6.22)

Table 6.1. Energy and momentum of final states in the rest frame of initial particle.

Variables Particle 1 Particle 2 Particle 3

Ei
1

2M

(
M2 +m2

1 −m2
23

) 1

2M

(
M2 +m2

2 −m2
13

) 1

2M

(
M2 +m2

3 −m2
12

)
p2
i

1

4M2
λ
(
M2, m2

1, m
2
23

) 1

4M2
λ
(
M2, m2

2, m
2
13

) 1

4M2
λ
(
M2, m2

3, m
2
12

)
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θ13θ12 θ12

θ13 θ23 θ23

Figure 6.4. Three-body decay of Λ∗c → Λ+
c π

+π− in the moving frame of Λ∗c such that the resonance
is at rest.

and momentum is computed by

E2
1 = m2

1 + p2
1,

p2
1 = E2

1 −m2
1 =

1

4M2
λ(M2,m2

1,m
2
23). (6.23)

The other variables can be calculated similarly. The energy and momentum of the final states are

summarized in Table 6.1. We notice that the energy and momentum depend on not only the particle

masses but also the invariant masses. This condition is different from the case of two-body decay.

The rest frame of intermediate state

We can boost the system with appropriate velocity to achieve the rest frame of the intermediate

state as shown in Fig. 6.4. Basically, there are three options of the way we boost the system which

are denoted as

R(12) → Rest frame of particle 1 and 2, (6.24)

R(13) → Rest frame of particle 1 and 3, (6.25)

R(23) → Rest frame of particle 2 and 3. (6.26)

For example, let us boost the system in order to get the R(23) rest frame. First, we need to boost

the system opposite to the particle 3 with velocity

v = −|p2 + p3|
E2 + E3

= − |p1|
(M − E1)

, (6.27)

γ =
1√

1− v2
=
M − E1

m23
, (6.28)

such that the particle 1 and 2 will be going back to back. Note that the minus sign means opposite
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to particle 3. Then, the energy and momentum are transformed via Lorentz transformation

P ′µ = Λνµ Pν and p′µ = Λνµ pν , (6.29)

where the P and p are the momentum of the initial and final states, respectively. For example, the

energy of the moving initial particle can be obtained as

E′ = γM =
M2 +m2

1 −m2
23

2m23
, (6.30)

and its momentum is given by

P ′2 = −vγM =
λ(M2,m2

1,m
2
23)

4m2
23

. (6.31)

The energy of the particle 1 is computed as

E′ = m23 + E′1,

E′1 = E′ −m23 =
M2 −m2

1 −m2
23

2m23
(6.32)

while its momentum is obtained as

E′ = m23 + E′1,√
M2 + P ′2 = m23 +

√
m2

1 + p′1
2,

p′1
2

=
λ(M2,m2

1,m
2
23)

4m2
23

, (6.33)

where the momentum of initial particle and particle 1 is the same, p′1 = P ′, in the R(23) rest frame.

Similarly, we can calculate other varibales of final states. The other kinematical variables are summa-

rized in Table 6.2.

Besides the energy and momentum, another useful kinematical variable is usually called helicity

angle. For example, this angle is formed between particles 1 and 2 in the R(23) rest frame as shown in

Fig. 6.4. Note that there is a convention of this angle whether the reference axis is along the direction

of particle 1, or the opposite direction. In the present study, we will use the former one, which is

shown in Fig. 6.4.

Now let us calculate this helicity angle θ12 in the R(23) rest frame. For the fix value of m2
23, we

can find the range of the m12 as

m2
12 = (p1 + p2)2 = m2

1 +m2
2 + 2

(
E′1 E

′
2 − p′1 p′2 cos θ12

)
, (6.34)

(m2
12)± = m2

1 +m2
2 + 2

(
E′1 E

′
2 ± p′1 p′2

)
. (6.35)
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Table 6.2. Energy and momentum of final states in the rest frame of various intermediate states.

Variables R(23) R(13) R(12)

E′1
1

2m23

(
M2 −m2

1 −m2
23

) 1

2m13

(
m2

13 +m2
1 −m2

3

) 1

2m12

(
m2

12 +m2
1 −m2

2

)
E′2

1

2m23

(
m2

23 +m2
2 −m2

3

) 1

2m13

(
M2 −m2

2 −m2
13

) 1

2m12

(
m2

12 +m2
2 −m2

1

)
E′3

1

2m23

(
m2

23 +m2
3 −m2

2

) 1

2m13

(
m2

13 +m2
3 −m2

1

) 1

2m12

(
M2 −m2

2 −m2
12

)
p′1

1

2m23

√
λ
(
m2

23, M
2, m2

1

)
p′3

1

2m12

√
λ
(
m2

12, m
2
1, m

2
2

)
p′2

1

2m23

√
λ
(
m2

23, m
2
2, m

2
3

) 1

2m13

√
λ
(
m2

13, M
2, m2

2

)
p′1

p′3 p′2
1

2m13

√
λ
(
m2

13, m
2
1, m

2
3

) 1

2m12

√
λ
(
m2

12, M
2, m2

3

)

where cos θ12 = ±1 at max and min value. Then, we can compute the cos θ12 as

cos θ12 =
(m2

12)+ + (m2
12)− − 2m2

12

(m2
12)+ − (m2

12)−
(6.36)

This angle is not independent quantity but it depends on the invariant masses. In this R(23) rest

frame, we can observe that

θ13 = π − θ12, (6.37)

θ23 = π. (6.38)

The relations of other angles can be found in Table 6.3. The straight line at the fixed value of m2
23

represents the angular distribution ranging from cos θ12 = −1 to cos θ12 = +1 as shown in Fig. 6.5.

6.2.3 Dalitz boundary

Next, we will compute the boundary of the Dalitz plots or the kinematical regions of the three-body

decay. In the rest frame of initial particle, we have

m2
23 = (P − p1)2 = M2 +m2

1 − 2ME1. (6.39)

Because the decay should occur when E1 ≥ m1, then we can obtain

(m2
23)max = (M −m1)2, (6.40)
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Table 6.3. Helicity angles in the rest frame of intermediate states.

Rest frame Helicity angle Relation

R(13) cos θ23
(m2

23)+ + (m2
23)− − 2m2

23

(m2
23)+ − (m2

23)−

R(23) cos θ12
(m2

12)+ + (m2
12)− − 2m2

12

(m2
12)+ − (m2

12)−

R(12) cos θ13
(m2

13)+ + (m2
13)− − 2m2

13

(m2
13)+ − (m2

13)−

that is when the particle 1 is at rest and the particle 2 and 3 going back to back. The minimum value

can be achieved when the particle 2 and 3 going out in the same direction with no relative velocity

(m2
23)min = (p2 + p3)2 = (m2 +m3)2, (6.41)

and the particle one is going in the opposite direction. These limits are portrayed in Fig. 6.5.

We can summarize the limits of the invariants as

(m2 +m3)2 ≤ m2
23 ≤ (M −m1)2, (6.42)

(m1 +m3)2 ≤ m2
13 ≤ (M −m2)2, (6.43)

(m1 +m2)2 ≤ m2
12 ≤ (M −m3)2. (6.44)

However, not the entire cube is accesible for the decay process. For example, we calculate the boundary

of the Dalitz plot in m2
23,m

2
12 plane. Then, max and limit of m2

23 are given above. Meanwhile, for the

fixed value of m2
23, the limit of m2

12 is given by

(m2
12)± = m2

1 +m2
2 + 2

(
E′1 E

′
2 ± p′1 p′2

)
. (6.45)

From the equation above, we can obtain the boundary of the Dalitz plot as given in Fig. 6.5. The

other Dalitz plots with different combinations of invariant masses can be calculated similarly.

In principle, there are three combinations of the invariant masses to form a Dalitz plot with different

shapes. However, in this case, there are two particles, pions, having the same mass in the final states

resulting in only two different shapes of the Dalitz plot as shown in Fig. 6.6. Generally, these Dalitz

plots contain the same information about the decay mechanism. The difference is that from which

point of view we see that information. We may notice that the Dalitz plot in the middle and right

panel in Fig. 6.6 have a larger area which makes us easier to observe the structure inside.

Furthermore, the size of the Dalitz plot depends on the initial mass. The heavier the initial mass,

the larger the size of the Dalitz plot. Note that the Dalitz plot is made with a fixed value of the initial
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Figure 6.5. The boundary of the Dalitz plot in m2
23,m

2
12 plane for Λ∗c → Λcππ decay with initial

mass M = 2765 MeV.

mass. Here, we show for example the Dalitz plot with the variation of the initial mass as described

in Fig. 6.7. This knowledge is very useful when we are trying to study the broad resonance such as

Λc(2765), where the Dalitz plot is convoluted by the plots with various initial masses. A detailed

explanation will be given in the part of the result and discussion.

6.3 Resonance in intermediate state

One of the usages of the Dalitz plot is to search for resonance in three-body decay. This search

can be done by analyzing the Dalitz plot whether there is an expected structure as theory predicts.

Generally, the resonance will appear as a band inside the Dalitz plot. If such a band is found inside

the plot, it means that we have found a resonance. Interestingly, the resonance can have non-trivial

distribution along the band, in our language, we call it an angular correlation. Such distribution along

the resonance band reflects the spin and parity of the participating particles. Therefore, the Dalitz

plot is useful to not only search a resonance but also determine the spin and parity.

6.3.1 Resonance band

Now suppose we “artificially” have three resonances which couple to particle (2,3), (1,3), and (1,2),

respectively. If we plot the resonance separately, the Dalitz plot will appear as described in Fig. 6.8.

The resonance bands appear in different directions, namely perpendicular to the axis of invariant

masses where the resonance couples to. Note that we make the Dalitz plot in m2
23,m

2
12 plane, the

similar behavior also happens when we plot it in different shapes of Dalitz plot.
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Figure 6.6. The boundary of the Dalitz plot with three different combination of invariant masses.
Since there are two identical particles in Λ∗c → Λcππ decay, two Dalitz plots will appear to be the
same. Here, we fix the initial mass M = 2765 MeV.
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Figure 6.7. The boundary of Dalitz plot with various initial masses. The biggest plot corresponds
to the largest initial mass. We vary the initial mass from 2700 to 2800 MeV.

For the plot in the left panel in Fig. 6.8, if we make a projection into m2
23 invariant mass, there

will be a peak located at m2
23 = M2

res with the width of the peak correspond to Γres. However, for

the plot in the middle panel where the resonance band has a horizontal direction, there will be no

significant peak in m2
23 invariant mass. This happens because the resonance couple to different final

states, m2
12, which we call it as kinematical reflection. In some cases, the kinematical reflection can

mimic a resonance peak due to its angular correlation along its band. Therefore, we should be careful

when we find a peak in the invariant mass distribution in the experiment because the peak could not

necessarily correspond to the resonance peak we are interested in.
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Figure 6.8. The Dalitz plot in m2
23,m

2
12 plane with one resonance couples to (left) particle 2 and 3,

(middle) particle 1 and 3, (right) particle 1 and 2.

Interference

In a more realistic situation, there could be more than one resonance or other processes can involve.

In such a case, there will be interference among them which is similar to the double-slit experiments.

Like the wave phenomena, the resonances can interfere each other either contructively or destructively,

depending on the relative phase between them

|T |2 =
∣∣∣a1e

−iδ1 + a2e
−iδ2

∣∣∣2 . (6.46)

For instance, we instance we show how the resonance interfere to each other as shown in Fig. 6.9.

From the interference pattern, we may extract the information on the relative phase of the resonance.

Note that there may also exist the non-resonant contribution which interferes with the resonance

contribution. In this case, one needs to be careful about choosing a suitable parameterization.
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Figure 6.9. The interference between two resonances in Dalitz plot: (left) constructive and (right)
destructive patterns.
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It is also worth noting that the branching fraction is one of the useful values measured in experi-

ments. Refering to Eq. (6.46), we calculate the branching fraction between a1 and a2 as

B1 =
|a1|2

|T |2
and B2 =

|a2|2

|T |2
(6.47)

Then, due to the interference effect, the addition between B1 and B2 is not necessarily unity. In a

practical situation, this branching fraction is measured by cutting the resonance band where it is not

possible to separate the interference terms. Another method is to perform a multi-dimensional fit by

assuming a model. Also, the ratio between them R = B1/B2 is strongly affected by the interference if

there is an overlapping region.

6.3.2 Angular correlation

Another important aspect of the resonance properties observed in the Dalitz plot is its angular

correlation. The angle along the resonance band is depicted in Fig. 6.5 where the definition can be

found in Fig. 6.4. Up until now, there are some formalisms can be used to determine the angular

correlations such as helicity formalism, relativistic formalism, tensor formalism, and so forth. Here,

we show some examples how the resonance band looks like in Fig. 6.10 with a given angular correlation

left → 1, (6.48)

middle → 1 + 3 cos2 θ, (6.49)

right → 1 + 3 sin2 θ. (6.50)

Practically, we need to take into account all the spin and parity of the paritcipating particles to deter-

mine the angular correlation. Even though it seems to be simple to observe the angular correlation, in

the real situation, there are many other processes that may contribute which contaminate it such that

the analysis becomes more complicated. Of course, more statistics are needed to see such distribution

along the resonance band in the experiment.

6.4 Three-body decay phase space

So far we have already had the boundary of Dalitz plot and defined all independent variables which

determine the shape of the Dalitz plot. Let us now examine the three-body decay phase space which

is expressed by

dΓ =
(2π)4

2M
|T |2 δ4(P − p1 − p2 − p3)

d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3
, (6.51)
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Figure 6.10. The angular correlation along the resonance band: (left) flat, (middle) valley, and
(right) hill.

By integrating over d3p2, then we have

dΓ =
1

2M

1

(2π)5
|T |2 δ(M − E1 − E2 − E3)

p2
1 dp1 dΩ1 p

2
3 dp3 dΩ13

8E1E2E3
, (6.52)

where we have changed the integration of momentum vector in spherical coordinate. Important to

note that, if we choose to integrate d3p1 or d3p3 instead, we will get other angular variables.

The next step is to make the transformation as following to express momentum variable in terms

of energy

dp1 =
E1

p1
dE1, (6.53)

which is obtained by taking derivative on the equation of E2
1 = m2

1 + p2
1. Then, the decay width

becomes

dΓ =
1

2M

1

(2π)5
|T |2δ(M − E1 − E2 − E3)

p1dE1d cos θ1dφ1 p3dE3d cos θ13dφ13

8E2
, (6.54)

Here, we can express the delta function as

δ(M − E1 − E2 − E3) d cos θ13 =

∣∣∣∣p1p3

E2

∣∣∣∣−1

δ(cos θ13 − cos θ̃13) d cos θ13, (6.55)

where cos θ̃13 is the value when the energy conservation hold and we have used

∂(M − E1 − E2 − E3)

∂ cos θ13
=
p1p3

E2
. (6.56)
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Now we have

dΓ =
1

16M

1

(2π)5
|T |2 dE1 dE3 d cos θ1 dφ1 dφ13. (6.57)

Next we can also transform E1 and E3 in term of invariant mass m2
23 and m2

13 as follow

dE1 =
dm2

23

2M
, (6.58)

The decay width is written as

dΓ =
1

64M3

1

(2π)5
|T |2 dm2

12 dm2
23 d cos θ1 dφ1 dφ13. (6.59)

If we integrate over the angles, we will obtain

dΓ =
1

32M3

1

(2π)3
|T |2 dm2

12 dm2
23. (6.60)

Alternatively, we can calculate the decay width by considering the three-body decay as two quasi

two-body decay. This is done by inserting∫
d4p23 δ

4(p23 − p2 − p3) = 1 (6.61)

As a result, the decay width is now written as

dΓ =
(2π)4

2M
|T |2

[
δ4(p23 − p2 − p3)

d3p2

(2π)32E2

d3p3

(2π)32E3

] [
δ4(P − p1 − p23)d4p23

d3p1

(2π)32E1

]
(6.62)

Because the terms inside each brace is Lorentz invariant quantity, we can evaluate both terms in

different frame. We evaluate the first brace in the resonance rest frame m23 while the second brace is

evaluated in the rest frame of the initial particle. Here, we put apostrophe to indicate the quantities

evaluated in the resonance rest frame. Firstly, we calculate the first brace as

[1] = δ4(p23 − p′2 − p′3)
d3p′2

(2π)32E′2

d3p′3
(2π)32E′3

=
p′2

4m23

dφ′12 d cos θ′12

(2π)6
. (6.63)

We have integrated over d3p′3 at first but it is also possible to integrate over d3p′2 and in the end we

will have Ω13 instead. The second brace is calculated as

[2] = δ4(P − p1 − p23) d4p23
d3p1

(2π)32E1
=
p1 m23 dm23

2M

dΩ1

(2π)3
. (6.64)
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Thus, the decay width is now given by

dΓ =
1

16M2(2π)5
|T |2 p′2 p1 dΩ1 dΩ′12 dm23. (6.65)

If we integrate the angular variables except the helicity angle, we have

dΓ =
1

8M2(2π)3
|T |2 p′2 p1 d cos θ′12 dm23. (6.66)

Note that now the Dlaitz plot is potrayed in the combination of helicity angle and invariant mass.

“Dalitz plots led to the discovery of some 100 ephemeral particles, many living no longer than the

time taken by the light beam to cross an atomic nucleus”, Richard Dalitz
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Part III

Results and discussions
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Chapter 7

Λ∗c(2595) and Λ∗c(2625) in the quark model

7.1 Motivation

Our study starts with the investigation of the low-lying excited states of Λc baryons. This Λc
baryon is one the lightest baryon containing the heavy quark and two light quarks. As we have

already known, the orbital excitation of charmed baryons split into λ and ρ modes. From the Fig. 4.3,

the λ-mode excitation appears lower than that of ρ mode. Because of the significant energy difference,

the mixing between λ and ρ mode might be small. In that sense, one may expect that the low-lying Λc
baryons correspond to λ-mode excitation. However, such statements should be proved by a thorough

analysis of many observables.

To begin with, we focus on studying Λ∗c(2595) and Λ∗c(2625) states. The excitation energy around

300 MeV suggests that these states may correspond to the negative parity states l = 1 in the quark

model description. Furthermore, in the mass spectrum analysis, these states can be easily explained

by 1/2− and 3/2− with λ-mode as expected [132–134]. The corresponding negative parity states with

ρ mode excitations appear significantly higher, implying that these states are dominated by the λ

mode excitations. But, more evidences should be confirmed by other methods.

Λc

Λ*c (2595)
Λ*c (2625)

Σc

Σ*c

Figure 7.1. Illustration of the sequential processes going through Σc and Σ∗c in intermediate states.

Here, we aim to examine the decay of Λ∗c(2595) and Λ∗c(2625) states to study their internal struc-

tures. As shown in PDG, their decay modes are saturated with the two-pion emission decay, namely

Λ∗c → Λcππ. Up until now, there are several analyses have been performed [88, 89, 100, 107, 113].

But, they are mostly limited to the two-body decay analysis, i.e. Λ∗c → Σcπ. In such a calculation,

the Σc baryon is assumed to be a stable particle. In the standard way, the decay rates are estimated

and by the comparison with the experimental data, we may exclude some configurations and find a

suitable assignment for the observed charmed baryons. However, the absolute value of decay rates

77



predicted in the various models may suffer uncertainties originated from the model parameters. In

order to solve the problem, the ratio of the decay rate is often introduced in which such uncertainties

are canceled out.

In the present study, we will perform the three-body decay analysis of Λ∗c → Λcππ. This sort of

analysis has advantages due to the additional kinematical variables and gives a complete picture of their

decay processes. Furthermore, this three-body decay analysis is not yet explored rigorously [184, 216].

For the first step, we will consider the sequential processes going through Σc(2455) and Σ∗c(2520)

in intermediate states as shown in Fig. 7.1 and discuss the role of each process. Interestingly, the

Σ∗c(2520)π channel is kinematically closed and cannot be considered in the two-body decay calculation.

However, the Σ∗c(2520)π channel can be accessible in the three-body decay analysis. Because it is

closed, Σ∗c(2520) will not appear as a peak but a background shape which is originated from its tail.

This is particularly interesting because Λ∗c(2625) has a sizable contribution from the non-resonant

process where one may expect Σ∗c(2520) closed channel may play a significant role. The detailed study

of the three-body decay may unveil the internal structures of the charmed baryons.

7.2 Our strategy

Now let us construct the model to study the two-pion emission decay of Λ∗c(2595) and Λ∗c(2625).

First, we consider the relevant Feynman diagrams for these decay processes as shown in Fig. 7.2. For

Λ∗c → Λ+
c π

+π−, they include the Σ
(∗)0
c and Σ

(∗)++
c in intermediate states which correspond to the

first and second diagrams, respectively. Here, we define the Σ
(∗)
c notation for Σc and Σ∗c resonances.

Hence, in this total, we have four Feynman diagrams. For the neutral channel Λ∗c → Λ+
c π

0π0, there is

only Σ+
c resonance which appears from both first and second diagrams.

Λ∗+
c

Σ
(∗)0
c

Λ+
c

π+ π−

+

Λ∗+
c

Σ
(∗)++
c

Λ+
c

π+

π−

+

Λ∗+
c Λ+

c

π+

π−

Figure 7.2. The Feynman diagrams considered in this calculation for Λ∗c → Λ+
c π

+π− decay.

Each vertex in the Feynman diagram is then described by the effective Lagrangian in the non-

relativistic approximation. The spin-parity of Λ∗c(2595) and Λ∗c(2625) has been determined in PDG1

as 1/2− and 3/2−, respectively. The two-body amplitudes can be found in the first and second rows

in Table 5.2. When Λ∗c(2595) is assigned as Λ∗c(1/2
−), it decay into Σcπ in s-wave and Σ∗cπ in d-wave.

Because the energy pion is relatively small, we may expect that Λ∗c(2595) will decay dominantly into

Σcπ. On the other hand, Λ∗c(2625) as Λ∗c(3/2
−) will decay into Σ∗cπ in s-wave and Σcπ in d-wave. The

1The spin and parity is not measured yet in the experiment, but it is determined in the quark model.
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dominant decay mode should be Σ∗cπ, but it is kinematically closed. So, we need to see how large the

contribution of Σ∗cπ in Λ∗c(2625) decay is.

Furthermore, the decay property not only depends on their spin-parity but also their internal

structure. In fact, there are several quark model configurations of 1/2− and 3/2− which correspond to

λ and ρ mode excitations as given in Table 4.4. Hence, we will consider the quark model configuration

as

Λ∗c(2595) → Λ∗c(1Pλ, 1/2(1)−),Λ∗c(1Pρ, 1/2(0)−),Λ∗c(1Pρ, 1/2(1)−), (7.1)

Λ∗c(2595) → Λ∗c(1Pλ, 3/2(1)−),Λ∗c(1Pρ, 3/2(1)−),Λ∗c(1Pρ, 3/2(2)−). (7.2)

Then, the coupling strengths in the effective Lagrangians are extracted from the quark model by

equating the helicity amplitudes

AELh = AQMh . (7.3)

We first calculate the three-body decay amplitude of Λ∗c → Λcπ
+π− as described in Fig. 7.2. The

amplitude for the first diagram is given by

−iT
[
Σ(∗)0
c

]
=
〈
−iT

Σ
(∗)0
c →Λ+

c π−

〉 i

m23 −mΣ
(∗)0
c

+ i
2Γ

Σ
(∗)0
c

〈
−iT

Λ∗+c →Σ
(∗)0
c π+

〉
, (7.4)

and for the second diagram

−iT
[
Σ(∗)++
c

]
=
〈
−iT

Σ
(∗)++
c →Λ+

c π+

〉 i

m13 −mΣ
(∗)++
c

+ i
2Γ

Σ
(∗)++
c

〈
−iT

Λ∗+c →Σ
(∗)++
c π−

〉
, (7.5)

Then, we sum them up coherently as

T = T
[
Σ0
c

]
+ T

[
Σ++
c

]
+ T

[
Σ∗0c
]

+ T
[
Σ∗++
c

]
. (7.6)

The squared amplitudes of the amplitude above can be found in Appendix C.

For the neutral channel Λ∗c → Λcπ
0π0, the neutral pions can not be distinguishable although we

assign them as particle 1 and 2. Moreover, the intermediate states that originated from the first and

second diagrams have the same charge, namely Σ+
c . The total amplitude then

T = T1

[
Σ+
c

]
+ T1

[
Σ∗+c

]
+ T2

[
Σ+
c

]
+ T2

[
Σ∗+c

]
, (7.7)

where we put subscript in the amplitude T to indicate from which diagram they are originated. Note

that we need to divide the squared amplitude by the symmetric factor, |T |2 → 1
2 |T |2.

For the first step, we will use the angle average approximation as

(~p1 · ~p2)2 → 1

3
|~p1|2|~p2|2. (7.8)

79



such that the angular dependence will vanish and the calculation will be less complicated. The

equation above is obtained by taking
〈
cos2 θ12

〉
= 1/3. Interestingly, the interference terms vanish as

〈cos θ12〉 = 0. The angular dependence will be studied rigorously in the following chapters.

7.3 Numerical results

In this section, we will discuss our numerical results for the Λ∗c(2595) and Λ∗c(2625) decay. We not

only discuss their decay rates but also their Dalitz plots and related quantities which can be directly

compared with the experimental data. The Dalitz plot for these decays is illustrated in Fig. 7.3. The

smaller Dalitz plot is shown for Λ∗c(2595) where we can observe that the Σc bands are located at the

boundary. For Λ∗c(2625), Σc bands are well inside the Dalitz plot. However, in both cases, Σ∗c bands

are completely outside of the plot.

5.9 6.0 6.1 6.2 6.3 6.4
m2

23( +
c ) [GeV2]

5.9

6.0

6.1

6.2
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6.4

m
2 13

(
+ c

+
) [

Ge
V2 ]

*++
c

++
c

*0
c

0
c 0

3

6

9

Figure 7.3. The illustration of Dalitz plot for Λ∗c → Λ+
c π

+π−: (smaller plot) Λ∗c(2595) decay and
(larger plot) Λ∗c(2625) decay.

7.3.1 Λ∗c(2595) decay

The lowest-lying excited state of the charmed baryon is Λ∗c(2595) state. Its mass and width is

given by

M = 2592.25± 0.28 MeV, (7.9)

Γ = 2.6± 0.6 MeV, (7.10)
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Table 7.1. Various components of Λ∗c(2595)→ Λcππ decay with various quark model configurations
for JP = 1/2− (in MeV).

Component Λ∗c(1Pλ, 1/2(1)−) Λ∗c(1Pρ, 1/2(0)−) Λ∗c(1Pρ, 1/2(1)−) Exp

Σ++
c π− 0.237 - 1.001 0.624 (24%)

Σ0
cπ

+ 0.182 - 0.770 0.624 (24%)

Σ+
c π

0 1.629 - 6.896 -

non-resonant 0.468 (18%)

Σ∗++
c π− 1 ×10−6 - 6× 10−7 -

Σ∗0c π
+ 1 ×10−6 - 7× 10−7 -

Σ∗+c π0 5 ×10−6 - 3× 10−6 -

Γtotal 2.048 - 8.667 2.6± 0.6

where its excitation energy is about 300 MeV. The spin and parity are identified as 1/2− in PDG

which is determined from the quark model, not from the experiment. Its decay is saturated to Λcππ

mode where Σcπ is the dominant channel. From several quark model calculations, they suggested that

Λ∗c(2595) might correspond to the λ-mode excitation.

π

Λc Σc

q

(0−)

jp = 1+

q
Q Q

jp = 0−
q
q

Figure 7.4. The illustration of the brown muck selection rule, e.g. the diquark transition 0− →
1+ + 0− is forbidden.

In the present study, we investigate how λ and ρ mode assignments modify its three-body decay

properties. The corresponding two-body decay analysis using this model has been done in Ref [89]. As

shown in Eq. (7.1), we consider three different quark model configurations. In Table 7.1, we compare

our numerical results with the experimental data adopted in PDG. It is shown that Λ∗c(1Pλ, 1/2(1)−) is

the most suitable one if we compare the total decay width to the data. For the case of Λ∗c(1Pρ, 1/2(0)−),

the decays into Σcπ and Σ∗cπ are forbidden due to the brown muck selection rule. This is because the
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Figure 7.5. The Dalitz plot of Λ∗c(2595)→ Λ+
c π

+π− and Λ+
c π

0π0 with Λ∗c(1Pλ, 1/2(1)−) assignment
along with the Λ+

c π
− invariant mass distribution.

diquark transition 0− → 1+ + 0− is not allowed as shown in Fig. 7.4. As a result, this configuration

can be ruled out. Note that this selection rule may also happen to the decay of other configurations.

For Λ∗c(1Pρ, 1/2(1)−), the calculated decay witdh over predict the data significantly such that its

possibility can be also ruled out.

The components of the decay width are also shown in Table 7.1. The upper and lower three rows

are related to Σc and Σ∗c resonances in intermediate states. We observe that the contribution from Σ∗c
resonance is negligible (about 10−6) because it is closed and has the d-wave nature of the first vertex

of Λ∗c(1/2
−) → Σ∗cπ. Also, the Σ+

c π
0 channel is dominant compared to other charged Σ++

c π− and

Σ0
cπ

+ channels. This phenomenon is called the isospin breaking effect. The dominance of the neutral

channel is due to the mass difference between the neutral and charged pion. In PDG, however, the

Σ++
c and Σ0

c channel has larger values than our predictions. This is because PDG has assumed the

isospin symmetry. Note that the neutral channel has not yet measured in experiments due to the

difficulty of detecting neutral pions.

The isospin breaking effect can be seen in the Dalitz plots as described in Fig. 7.5. For the Λcπ
0π0

channel, the plot size is slightly bigger than that of Λcπ
+π−. Consequently, the Σ+

c band is located

completely inside the plot. We also notice that there are two Σ+
c bands, vertical and horizontal

direction, originated from the first and second diagrams in Fig. 7.2 for the case of Λcπ
0π0. On the

contrary, Σ++
c and Σ0

c bands are slightly outside the plot. In the invariant mass distribution, the Σ+
c

peak is clearly seen while only the tail of Σ0
c peak can be seen. It is worth emphasizing that the isospin

breaking effect is sizable when the resonance is located very close to the threshold.

In Table 7.1, there is actually another contribution from non-resonant process (denoted as 3-body
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Λcππ in PDG). However, we can not explain it by introducing the Σ∗c closed channel. In fact, there

is another kind of process such as direct four-point coupling which may contribute to this decay. We

will discuss the role of this process in detail in the next chapter.

7.3.2 Λ∗c(2625) decay

Now, let us move to discuss the numerical result of Λ∗c(2625) decay. In PDG, this state has mass

and width as

M = 2628.11± 0.19 MeV, (7.11)

Γ < 0.97 MeV. (7.12)

In PDG, the spin-parity of the state is determined from the quark model to be 3/2−. Its decay is

also saturated to Λcππ where both Σc and non-resonant processes have sizable contributions. The

Σc contribution has been examined in several analyses. But, the Σ∗c closed channel is not yet well

explored.

In this work, we study the three-body decay properties of Λ∗c(2625) with various quark model con-

figurations as described in Eq. (7.2). The Σcπ channel has been investigated, however, the two-body

decay analysis can not differentiate their internal structure. In this three-body decay analysis, we

primarily examine the role of Σ∗cπ contribution through the Dalitz plot. We compare our theoretical

calculation to the experimental data in Table 7.2. The total decay width calculated in various config-

urations is consistent with the data. As a result, we can not say which one is a suitable assignment

for this state.

Table 7.2. Various components of Λ∗c(2625)→ Λcππ decay with various quark model configurations
for JP = 3/2− (in MeV).

Component Λ∗c(1Pλ, 3/2(1)−) Λ∗c(1Pρ, 3/2(1)−) Λ∗c(1Pρ, 3/2(2)−) Exp

Σ++
c π− 0.037 0.018 0.033 <0.05 (<5%)

Σ0
cπ

+ 0.031 0.016 0.030 <0.05 (<5%)

Σ+
c π

0 0.053 0.027 0.049 -

Non-resonant (large)

Σ∗++
c π− 0.044 0.190 0 -

Σ∗0c π
+ 0.064 0.285 0 -

Σ∗+c π0 0.071 0.306 0 -

Γtotal 0.300 0.842 0.112 < 0.97

R 0.61 0.93 0
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If we look at the components of the decay, the Σc contributions are insensitive to the internal

structure and consistent with the data. Their values are rather small (0.03 MeV) due to the d-wave

nature of the first vertex of Λc(3/2
−)→ Σcπ. Moreover, there is no significant isospin breaking effect

as compared to that of Λ∗c(2595) since the Σc band is completely inside the plot. For the Σ∗c channel,

the contribution is sensitive to their internal structure. Λ∗c(1Pλ, 3/2(1)−) and Λ∗c(1Pρ, 3/2(1)−) have

rather large contribution because they decay into Σ∗cπ in s wave. But, Λ∗c(1Pρ, 3/2(2)−) has a very

small coupling to Σ∗cπ. In this case, there is another brown-muck selection rule where the diquark

transition 2+ → 1+ + 0− is forbidden in s-wave. Consequently, Λ∗c(1Pρ, 3/2(2)−) decay into Σ∗cπ in d

wave which is the reason why its contribution is suppressed.

In PDG, the non-resonant process has a large contribution. By using this fact, we can rule out the

Λ∗c(1Pρ, 3/2(2)−) assignment due to its negligible value of Σ∗c contribution. There is also information

about the ratio between the non-resonant contribution and the total decay width as

R =
Γ(Λ∗c → Λcπ

+π−(non-resonant))

Γ(Λ∗c → Λcπ+π−(total))
, (7.13)

The measured ratio is R = 0.54±0.14 [19]. Compared to this value, we may conclude that the λ mode

is the most suitable assignment as expected. Therefore, Λ∗c(2595) and Λ∗c(2625) can be explained by

a p-wave doublet (1/2−, 3/2−) with λ mode. It is important to note that the other process such as

direct four-point coupling might contribute to the decay width which might increase the value of ratio

R. Even though we include this process, our conclusion on the assignment does not change.

Figure 7.6. The Dalitz plot of Λ∗c(2625)→ Λ+
c π

+π− with various assignments and the corresponding
Λ+
c π
− invariant mass distributions are given in the bottom side of each Dalitz plot.

Now let us discuss the Dalitz plots in Fig. 7.6 made with various quark model configurations for

Λ∗c(2625) decay. As we can see, we observe two resonance bands correspond to Σ++
c (horizontal)

and Σ0
c (vertical) in the middle side of Dalitz plots. Note that we have employed the angle average

approximation such that the resonance band looks like flat without any distortions. In the real

situation, the resonance band is a little bit distorted due to the interference terms which we will
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cover in the next chapter. The big difference in the Dalitz plots is the strength of the tail of Σ∗c
closed channel. In the Dalitz plot, it appears as a non-resonant shape, not as a resonance band as

seen in Fig 7.6. The difference can be seen more clearly by projecting the Dalitz plot into Λ+
c π
−

invariant mass. The lineshapes are different depending on the internal structures. We can compare

these theoretical results to the experimental data such as from Belle to further study the internal

structure of Λ∗c(2625).

7.4 Summary

We have investigated the three-body decay of Λ∗c(2595) and Λ∗c(2625) into Λcππ. In this analysis,

we have considered the sequential processes going through Σc and Σ∗c in intermediate states. We have

found that both Λ∗c(2595) and Λ∗c(2625) are best suited to 1/2− and 3/2− assignments, respectively,

with λ-mode excitations by examining their decay properties.

For Λ∗c(2595) decay, it is found that Σcπ channel plays a significant role due to the s-wave nature,

while the Σ∗cπ contribution is negligible. Also, the decay is dominated by Σ+
c π

0 due to its larger phase

space, leading to the isospin breaking effect. For Λ∗c(2625) decay, the Σ∗cπ closed channel is important

to disentangle the quark model assignments. The comparison of the Dalitz plot and invariant mass

distribution may give a hint to its internal structure.

Furthermore, there exist the brown-muck selection rule which forbids the decay of Λ∗c(1/2
−) with

j = 0 in the view of its light diquark transition. Also, the decay of Λ∗c(3/2
−) with j = 2 into Σ∗cπ is

not allowed in s wave due to such selection rule. This selection rule is particularly important which

reflects the internal structure of heavy baryons.

Lastly, in this work, we have used the angle average approximation such that the angular correla-

tions and interference terms vanish, and we have not considered the direct four-point coupling which

may contribute to the decay in our present calculation. Thus, the comprehensive study of these issues

should be pursued in the future. Moreover, the study beyond the quark model is interesting to explore

for Λc(2595). It is because its strange partner Λ(1405) can not be explained by the conventional quark

model. The study with various flavor is crucial for understanding baryon resonances.

“Reality is complicated. There is no justification for all of the hasty conclusions.”, Hideki Yukawa
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Chapter 8

Chiral partner structure in heavy baryon decay

8.1 Motivation

In the previous chapter, we have discussed the three-body decay of Λ∗c(2595) and Λ∗c(2625) with

the consideration of the Σc and Σ∗c in intermediate states. It is demonstrated that these states are

compatible with the λ-mode excitations by analyzing their decay properties. However, it is also shown

that the large non-resonant contribution particularly in Λ∗c(2625) decay [1] can not be explained by

introducing the Σ∗c closed channel [122], indicating that there may exist another process in this decay.

As was anticipated, one can come up with the idea of the inclusion of the so-called direct process.

In this process, the Λ∗c is emitting two pions directly as illustrated in Fig. 8.1. But, the problem is

that the coupling strength of such a process is not well understood. Therefore, one should estimate it

by constructing a model respecting some symmetries or fit it with the experimental data.

Recently Kawakami and Harada proposed a model based on the chiral partner structure to estimate

the coupling strength of the direct process [123, 124]. Within this scheme, the Λ∗c(2625) and Σ∗c(2520)

are regarded as a chiral partner such that their coupling strengths are equivalent in the chiral limit.

Then, they computed the decay width of Λ∗c(2625) and found that the direct process has a substantial

contribution. Thus, the further study of this decay in Dalitz plot analysis is certainly of interest to

provide more theoretical predictions to be compared with the experimental data.

Λc

Λ*c (2595)
Λ*c (2625)

Σc

Σ*c

Figure 8.1. Illustration of the direct process (red line) and sequential processes going through Σc

(green line) and Σ∗c (blue line).

In this chapter, we will take into account the direct process in addition to the sequential process

for Λ∗c(2595) and Λ∗c(2625) decays. We compute the Dalitz plots and related quantities by putting an

emphasis on the role of the direct process. In the present work, we also consider the angular correlation

in the amplitude concretely which is ignored in our previous calculation. It is found that the angular
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correlation is crucial to prove the presence of the direct process especially in Λ∗c(2625) decay. The

measurements of the corresponding observables may provide a hint on the chiral partner structure in

the heavy baryon sector.

8.2 Formalism

8.2.1 Chiral partner structures

As we have introduced in the Introductory part, charm baryons possess a so-called heavy-quark

symmetry due to the presence of the charm quark inside. This heavy-quark symmetry is reflected not

only in the mass spectrum but also in their transition between the states. In Fig. 8.2, it is shown

that there exist the heavy-quark symmetry (HQS) doublet of [Λ∗c(1/2
−),Λ∗c(3/2

−)] with the brown-

muck spin jP = 1− and [Σc(1/2
+),Σ∗c(3/2

+)] with jP = 1+. The mass difference between the HQS

partner is originated from the spin-spin dependence interaction which is proportional to the inverse of

heavy-quark mass 1/mQ. Consequently, the HQS partner will be degenerate in the heavy-quark limit,

mQ →∞. However, in the real world, the heavy-quark mass has a finite value as mQ = 1500 MeV and

5000 MeV for the charm and bottom quark, respectively. Therefore, they have a finite mass difference

for the case of charm baryons that we are considering in the present study. Although it seems to be

straightforward to recognize the HQS partner as described in Fig. 8.2, it can be challenging to identify

the HQS partner for higher excited states.

Λ*c (1/2−)

Λ*c (3/2−)

Σc(1/2+)

Σ*c (3/2+)

HQS partner

HQS partner chiral partnerchiral partner

Figure 8.2. Structure of chiral and heavy-quark symmetry partner in the low-lying heavy baryons.

Heavy baryon contains two light quarks together with the heavy quark. The dynamics of these light

quarks are governed by the chiral symmetry where the quark can be left-handed qL or right-handed

qR. These quarks are transformed as

qR
R−→ R qR, and qL

L−→ L qL. (8.1)
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The effective Lagrangian constructred such that it is invariant under this transformation. We have

define the R and L as the chiral transformation operators for the case of SU(2)L×SU(2)R symmetry

group,

R = exp(−iθR · τ ), and L = exp(−iθL · τ ), (8.2)

where we denote the Pauli matrices τ in the flavor space and the rotation angles θR,θL. We can

also construct vector V = L + R and axial-vector A = R − L transformation operators. These

transformations relate the so-called chiral partner, for instance π(0−) and σ(0+) meson as

~π
A−→ ~π + ~θσ, and σ

A−→ σ + ~θ~π. (8.3)

The chiral partner, negative and positve parity states, can be rotated to each other by the chiral

transformation as shown above. In the chiral limit, where the quark mass goes to zero m → 0, their

masses are degenerate. In reality, the chiral symmetry is spontaneously broken causing the mass

difference between the chiral partner.

For the present study, we adopted the chiral partner structures in heavy baryons proposed by

Kawakami and Harada as shown in Fig. 8.2, namely,

[Σc(1/2
+),Λ∗c(1/2

−)] and [Σ∗c(3/2
+),Λ∗c(3/2

−)]. (8.4)

Note that the chiral partner is actually identified between the light quarks inside of heavy baryons.

Generally, the identification of the chiral partner in the hadron level is a new phenomenon that is not

well appreciated and should be further studied.

One of the important consequences of this chiral partner structure is that the coupling of Λ∗c →
Λcππ direct process is equivalent to the coupling of Σ

(∗)
c → Λcπ (second vertex in the sequential

process). In other words, the direct process has a finite contribution in this scheme. If such a direct

process is observed in the experiment, it suggests the existence of the chiral partner structure in heavy

baryons.

8.2.2 Decay amplitudes

Now, let us compute the three-body decay amplitudes of Λ∗c → Λcππ. In the present work, we

include the direct four-point coupling as shown in the last diagram in Fig. 8.3. The corresponding

sequential processes in the first two diagrams are computed similarly as in the previous chapter. By

taking into account the direct process, we have then considered all possible second-order process.

Here, we consider all quark model configurations for Λ∗c(2595) and Λ∗c(2625) with 1/2− and 3/2−

assignments, respectively, as done previously for completeness. But, we will focus on the λ-mode

excitation for the Dalitz plot analysis as it is the most suitable one. For simplicity, we also neglect

the Σ∗c contribution for the case of Λ∗c(2595) decay since its contribution is found to be insignificant.

In the Dalitz plot, the direct process appears as a background shape which is similar to that of
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Figure 8.3. The Feynman diagrams of Λ∗c → Λcπ
+π− decay considered in the present work. (left)

Σ
(∗)0
c resonance, (middle) Σ

(∗)++
c resonance, and (right) direct process.

Σ∗c closed channel. However, the event distribution inside the plot originated from the direct process

might show a unique structure depending on the participating particles. This analysis is also done to

clarify this issue.

For Λ∗c(2595) decay, the amplitude of direct process can be written as

−iTDirect =
g1/2

fπ
ūΛc(p1 + p2)µ

(
γµ +

Pµ

M

)
γ5uΛ∗c , (8.5)

≈
G1/2

fπ
χ†Λc {σ · (p1 + p2)}χΛ∗c , (8.6)

where g1/2 is the coupling strength of the direct process and we denote G1/2 = g1/2

√
2mΛ∗c

√
2mΛc in

the second line after performing the non-relativistic reduction. Here, we follow the same notation used

in previous Chapters. By employing the chiral partner structure, we can estimate the direct process

coupling as g1/2 = gp2a (coupling of Σc → Λcπ decay). Similarly, we can write the direct process

amplitude for Λ∗c(2625) decay as

−iTDirect =
g3/2

fπ
ūΛc(p1 + p2)µu

µ
Λ∗c
, (8.7)

≈
G3/2

fπ
χ†Λc {S · (p1 + p2)}χΛ∗c , (8.8)

where now the coupling of direct process is denoted as g3/2 and estimated in the chiral partner

structure as g3/2 = gp2b (coupling of Σ∗c → Λcπ decay). We note that the coupling strengths in the

sequential processes are extracted from the quark model and all of the decay amplitudes are calculated

in the non-relativistic framework. The total amplitudes are obtained by summing up the amplitudes

coherently and the relative phases are fixed in the quark model.

We notice that the decay process amplitudes for both decays have similar structures, namely, they

are proportional to the pion momentum which means that the outgoing pions have angular momentum

l = 1. This is because the Λ∗c with 1/2− and 3/2− directly decay into Λc(1/2
+)π(0−)π(0−) in p wave.

Therefore, the amplitudes obtained by performing the non-relativistic reduction is unique.
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8.3 Roles of direct process

In the following, we will discuss the roles of the direct process in Λ∗c decays. We also stress the

usefulness of the Dalitz plots for differentiating the decay mechanisms. The Dalitz plots and other

related quantities are presented for the comparison with the experimental data which is currently

being analyzed by Belle collaboration.

8.3.1 Λ∗c(2595) decay

First, let us consider the decay of Λ∗c(2595). As was discussed previously, the decay is dominated

by the Σcπ channel due to the s-wave nature. The results obtained in this work are summarized in

Table 8.1. It is shown that the direct process has a small contribution because Λ∗c directly decays

by emitting two pions in p wave. Since we now take into account the angular dependences, the

contribution from interference terms become finite. Also, the relative phase between λ and ρ modes

are opposite for the direct process, indicated by the different sign of the interference terms. In this

case, we can still say that Λ∗c(2595) is dominated by the λ-mode excitation. Note that not only the

absolute value of decay width is consistent with the data, but also the calculated branching fraction,

B(Σc(2455)0π+) = 0.082, (8.9)

has good agreement with the Belle measurement B(Σc(2455)0π+) = 0.125± 0.035 [25]. In that sense,

it is suggested that Λ∗c(2595) is a quark model states (three-quark state) in the view of their decay

properties. Also, we can not neglect the possibility of the chiral partner structure between Λ∗c(2595)

and Σc resonances.

Table 8.1. Various components of Λ∗c(2595)→ Λcππ decay with various quark model configurations
for JP = 1/2− (in MeV).

Component Λ∗c(1Pλ, 1/2(1)−) Λ∗c(1Pρ, 1/2(0)−) Λ∗c(1Pρ, 1/2(1)−) Exp

Σ0
cπ

+ 0.182 - 0.770 0.624 (24%)

Σ++
c π− 0.218 - 0.946 0.624 (24%)

Direct 0.004 - 0.004 -

Interference 0.068 - -0.122 -

Σ+
c π

0 0.719 - 7.278 -

Direct 0.005 - 0.005 -

Interference 0.026 - -0.090 -

Γtotal 2.222 - 8.791 2.6± 0.6
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Figure 8.4. The Dalitz plot of Λ∗c(2595)→ Λ+
c π

+π− with Λ∗c(1Pλ, 1/2(1)−) assignment along with
the Λ+

c π
− invariant mass distribution.

Next the Dalitz plots of Λ∗c → Λ+
c π

+π− are shown in Fig. 8.4. Similar to the previous calculation,

the plot in (m2
23,m

2
13) plane is made on the left side. As we can see, angular dependence is shown in

the Dalitz plot where it appears rather inclined along the resonance bands. The angular dependence is

mainly from the interference effect and direct process, which contain the terms proportional to cos θ12.

In this case, there is no unique indication of the presence of the direct process. Moreover, there is no

significant difference after the inclusion of the direct process in the Λ+
c π
− invariant mass distribution.

Note that the invariant mass distribution has a similar shape with the one previously calculated in

the angle average approximation. This justifies that such an approximation is sufficiently good for

this decay.

Here we also show another plot in a different plane, (m2
23,m

2
12) plane. This Dalitz plot has an

advantage because of its larger area where the structure inside the plot can be seen more clearly.

Generally, this plot has exactly the same information as the previous one. The π+π− invariant mass

distribution is also presented. If the direct process has a large coupling, the lower region of π+π−
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invariant mass will be enhanced. This might be an indication of the existence of the direct process.

8.3.2 Λ∗c(2625) decay

Let us now turn the discussion to the Λ∗c(2625) decay. In this case, we observe that the direct pro-

cess has a significant contribution. This direct process with the p-wave nature can now compete with

the d-wave Σcπ channel and s-wave Σ∗cπ closed channel as expected because of the large contribution

of the non-resonant process according to PDG. Our numerical result is presented in Table 8.2. Note

that the interference terms have different behavior for λ and ρ mode.

Table 8.2. Various components of Λ∗c(2625)→ Λcππ decay with various quark model configurations
for JP = 3/2− (in MeV).

Component Λ∗c(1Pλ, 3/2(1)−) Λ∗c(1Pρ, 3/2(1)−) Λ∗c(1Pρ, 3/2(2)−) Exp

Σ0
cπ

+ 0.037 0.019 0.034 < 0.050

Σ++
c π− 0.031 0.016 0.028 < 0.050

Σ∗0c π
+ 0.044 0.197 0.000 -

Σ∗++
c π− 0.064 0.314 0.000 -

Direct 0.061 0.061 0.061 -

Interference 0.090 -0.166 -0.011 -

Σ+
c π

0 0.056 0.029 0.052 -

Σ∗+c π0 0.072 0.325 0.000 -

Direct 0.045 0.045 0.045 -

Interference 0.070 -0.130 -0.009 -

Γtotal 0.570 0.710 0.200 < 0.970

Since the coupling of the direct process is extracted from the Σ∗c → Λcπ decay, its partial decay

width is the same for various assignments of the initial Λ∗c(2625). We can see that the direct process

contribution is relatively small as compared to the Σ∗c closed channel for the case of Λ∗c(1Pρ, 3/2(1)−)

while it is dominant for the case of Λ∗c(1Pρ, 3/2(2)−). In the Λ∗c(1Pλ, 3/2(1)−), the direct process has

comparable contribution compared to the Σ∗c closed channel. The component of the non-resonant

process could provide the constraint on the internal structure of Λ∗c(2625). Moreover, the calculated

branching fraction of the Σc(2455)0π+ for Λ∗c(1Pλ, 3/2(1)−),

B(Σc(2455)0π+) = 0.065, (8.10)

has good agreement with the experimental data measured by Belle. This finding might be the evidence
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that this Λ∗c(2625) corresponds to the λ-mode excitation. Therefore, although we can not say anything

from the comparison of the total decay width, the branching fraction of each component could reflect

the underlying structure.

Figure 8.5. The Dalitz plot of Λ∗c(2625)→ Λ+
c π

+π− with Λ∗c(1Pλ, 3/2(1)−) assignment along with
the Λ+

c π
− invariant mass distribution.

The corresponding Dalitz plot is given in Fig. 8.5. We show the plot both in (m2
23,m

2
13) and

(m2
23,m

2
12) planes. For the upper Dalitz plots where only the sequential process is considered, the

Σc bands in the middle are slightly distorted. This is because of the angular dependence originated

from the interference terms between these Σc resonances. The bands are far more distorted when the

direct process is taken into account as shown in the lower Dalitz plots. Remind that the interference

will be enhanced when there is an overlapping region among the amplitudes. This direct process

appears as a background shape all over the plot, causing strong interference to the resonance bands.

Furthermore, the interference involving the direct process has a characteristic pattern where there

is a strong accumulation of signals on the left side of the Dalitz plot in (m2
23,m

2
12) plane. We can

see further the effect of the direct process in the invariant mass distribution shown on the bottom

side of each Dalitz plots. In Λ+
c π
− invariant mass distribution, the direct process generally enhances
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the overall factor. In the middle, there are two peaks projected from the Σ0 and Σ++
c . When we

consider only the sequential process, the Σ++
c peak is lower because it is a known as the kinematical

reflection where Σ++
c band appear horizontally in the Dalitz plot in (m2

23,m
2
13) plane. However, this

peak is much enhanced when we include the direct process. This occurs because of the characteristic

interference pattern that is discussed above. Such a pattern also affects the π+π− invariant mass

distribution where the lower energy region is more enhanced, leading to asymmetry.

Figure 8.6. The components of the direct process and the interference term are eclusively shown in
the Dalitz plot for Λ∗c(2625) decay.

In Fig. 8.6, we show exclusively the contribution from the direct process1. In the upper plot, it is

shown that the direct process signals spread over the plot. It is also seen that the signals are more

enhanced on the left side due to its p-wave nature as discussed in the previous section. Interestingly,

the characteristic interference pattern is shown in Fig. 8.5 is originated from the interference involving

the direct process. We show such a pattern exclusively in Fig. 8.6.

1The lower plot is chosen as a picture in the kaleidoscope of Physical Review D based on the aestetic.
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Figure 8.7. The angular correlation along the Σc band for Λ∗c(2625) decay.

It is also interesting to plot the angular correlation along the Σc resonance band2. In this case, we

will obtain an asymmetric pattern in the angular correlation as shown in Fig. 8.7 when there exists

the direct process. It can be seen that the angular correlation is rather flat when we exclude the direct

process. One should also be aware that such asymmetry is mainly originated from the characteristic

interference pattern. Here is one of the indications of the presence of the direct process in Λ∗c(2625).

If such a pattern is observed in the experiment, it suggests the chiral partner structures between Λ∗c
and Σ∗c in heavy baryons.

8.4 Summary

In this work, the three-body decay of Λ∗c(2595) and Λ∗c(2625) is revisited with the inclusion of

the direct process. We estimate the coupling strengths of the direct process by employing the chiral

partner structure. It is found that the direct process has a significant role especially in Λ∗c(2625) decay.

We also found several indications of the presence of the direct process in the Dalitz plot and other

quantities. The asymmetric patterns are observed along the Σc resonance bands. Our prediction can

be tested in the current experimental facility such as Belle. If we find good agreement with the data,

it suggests the chiral partner structure between Λc and Σc.

To understand the situation, it is also interesting to futher study the other three-body decays of

the negative parity states with various flavors such as the Λb,Ξc, and Ξb resonances. In this direction,

we can obtain a more complete picture of the chiral partner structures in heavy baryons. Furthermore,

the behavior of such a chiral partner in the medium since the chiral symmetry is partially restored.

“Jibunde wa kataranai, riron ni kataraseru”, Yoichiro Nambu

2one should be careful of the convention of the angular correlations. In some cases, it is defined as oppositely.
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Chapter 9

Spin-parity determination of Λ∗c(2765)

9.1 Introduction

Among Λc charm baryons, Λ∗c(2765) has poor information about its existence and quantum number

although it was discovered around the 2000s. This state still has a one-star rating and its isospin is

not yet determined in PDG [1]. One of the reasons is that it is also predicted there may exist the Σc

state in this energy region. In fact, the Λ∗c(2765) is found in Λ+
c π

+π− invariant mass in which the

resonances with isospin 0 or 1 are allowed. Recently Λ+
c π
±π± invariant masses are analyzed by Belle

and no enhancement is found, indicating that it is not Σc state [30]. Therefore, we should call this

resonance is associated with the isospin I = 0 state, Λ∗c(2765).

Furthermore, the spin and parity of Λ∗c(2765) are not experimentally known. Also, in the quark

model, there are a lot of states predicted around this energy region such that the spin and parity are

not well determined. Up until now, there are many theoretical analyses in attempts to study this

state from various perspectives. The mass spectrum and decay analysis have also been performed

thoroughly [89, 107, 114, 160–162]. But, it is not so easy to conclude the spin and parity of this state.

In the experimental side, the data on this state has been accumulated over the years, and the analysis

for determination of the spin and parity is underway [31].

Unlike other charmed baryons, this particular state Λ∗c(2765) has a broad width of around 50

MeV. This is significantly broader than typical charmed baryon Λ∗c(2595) which has narrow width 2.6

MeV, respectively. The unusual decay property might provide a hint to its internal structure. On top

of that, its excitation energy is around 500 MeV which bears resemblance with the so-called Roper

resonance, N(1440) with spin and parity JP = 1/2+. In reality, other Roper-like resonances are also

observed in the other flavors, such as Λ(1600) and Σ(1660) with similar excitation energy. But so far

no observed charmed baryons correspond to the analog of the Roper resonance. It is also recognized

that such states can not be explained by the quark model. To date, there are a number of alternative

pictures to elucidate this state [169, 172–174]. However, before discussing the internal structures more

seriously. It is instructive to determine the spin and parity of Λ∗c(2765) in a model-independent way.

Up to now, we have seen the use of the Dalitz plot for determination of spin and parity of resonances.

This method has been widely used for the meson spectroscopy where the involving particles have

integer spin or even spinless. However, the application of the Dalitz plot is not easy because the

participating particles have a half-integer spin. Moreover, particularly Λ∗c(2625), the decay width is

rather broad adding more complications in the analysis.

In this work, we aim to study the decay of Λ∗c(2625) by using the Dalitz plot analysis in order

to determine its spin and parity. We will consider all of possible spin and parity assignments in the

quark model up to N = 2 such that we can grasp whole possibilities. In this decay, the Σ∗cπ channel

is open due to the larger phase space as shown in Fig. 9.1 and provide interesting observables, namely
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Figure 9.1. Illustration of the sequential and direct processes. In the Λ∗c(2765) decay, Σ∗cπ channel
is now open.

the angular correlations which are helpful to determine the spin and parity. For completeness, the

effect of the finite widths is taken into account in the current analysis.

9.2 Our strategy

Λ∗+
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Σ
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Figure 9.2. The Feynman diagrams of Λ∗+c (2765) → Λ+
c π

+π−. Note that the direct process is
empirically observed to be insignificant.

Before performing the actual analysis, let us first set up our model and limit our interest in

this present work. Our main goal is to determine the spin and parity of Λ∗c(2765) from its decay

properties. The possible Feynman diagrams for this three-body decay is described in Fig. 9.2. From

the experimental observations, the decay is dominated by the Σc and Σ∗c resonances. The contribution

from the direct process1 is not significant, which is implied in Fig. 1 of Ref [29]. Therefore, we

will use this empirical fact as our working hypothesis. We then consider only the contribution from

Σ
(∗)
c resonances in the present analysis. Keep in mind that if the direct process contribution were

1In our language, the direct process includes the contribution from f0(500) resonance.
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Table 9.1. The quark model configuration classified according to the spin-parity JP and brown
muck spin j.

Spin-parity (JP ) j Quark model configuration

Λ∗c(1/2
−) 0 Λ∗c(1Pρ, 1/2(0)−)

1 Λ∗c(1Pλ, 1/2(1)−),Λ∗c(1Pρ, 1/2(1)−)

Λ∗c(3/2
−) 1 Λ∗c(1Pλ, 3/2(1)−),Λ∗c(1Pρ, 3/2(1)−)

2 Λ∗c(1Pρ, 3/2(2)−)

Λ∗c(5/2
−) 2 Λ∗c(1Pρ, 5/2(2)−)

Λ∗c(1/2
+) 0 Λ∗c(2Sλλ, 1/2(0)+),Λ∗c(2Sρρ, 1/2(0)+),Λ∗c(1Dλρ, 1/2(0)+

1 )

1 Λ∗c(1Dλρ, 1/2(1)+
0 ),Λ∗c(1Dλρ, 1/2(1)+

1 ),Λ∗c(1Dλρ, 1/2(1)+
2 )

Λ∗c(3/2
+) 1 Λ∗c(1Dλρ, 3/2(1)+

0 ),Λ∗c(1Dλρ, 3/2(1)+
1 ),Λ∗c(1Dλρ, 3/2(1)+

2 )

2 Λ∗c(1Dλλ, 3/2(2)+),Λ∗c(1Dρρ, 3/2(2)+),Λ∗c(1Dλρ, 3/2(2)+
1 ),

Λ∗c(1Dλρ, 3/2(2)+
2 )

Λ∗c(5/2
+) 2 Λ∗c(1Dλλ, 5/2(2)+),Λ∗c(1Dρρ, 5/2(2)+),

Λ∗c(1Dλρ, 5/2(2)+
1 ),Λ∗c(1Dλρ, 5/2(2)+

2 )

3 Λ∗c(1Dλρ, 5/2(3)+
2 )

Λ∗c(7/2
+) 3 Λ∗c(1Dλρ, 7/2(3)+

2 )

significant, our results obtained in this work would be greatly modified.

Now, in the quark model, many states are predicted in this energy region. They include the

states with the spin and parity JP = 1/2±, 3/2±, 5/2±, and even 7/2+ as shown in Table 9.1, in

which we collect the configuration with the same spin-parity and brown muck spin j. As we may

notice, the Λ∗c(2595) and Λ∗c(2625) states have been assigned by JP = 1/2− and 3/2− with λ mode,

respectively. But, we still consider such spin and parity assignment because Λ∗c(2765) could correspond

to the negative parity with ρ-mode excitation. Our attitude is to consider all configurations that have

possibilities to explain this state. For this purpose, we have discuss our methods comprehensively, in

Part II. Formulation, which includes the quark model and the effective Lagrangians with the above-

mentioned spin and parity assignments.

We first revisit the two-body decays of Λ∗c(2765) → Σ
(∗)
c π with all possible configurations in the
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quark model as given in Table 9.1. Then, we will inspect the resulting decay width and the ratio

R =
Γ(Λ∗c(2765)→ Σ∗c(2520)π)

Γ(Λ∗c(2765)→ Σc(2455)π)
, (9.1)

from which we may be able to extract some information about its spin and parity. In addition to

that, we also compare the ratio R obtained from the quark model with the prediction from the heavy-

quark spin symmetry [87]. As we have discussed, the heavy quark spin is decoupled from the light

quark spin in the heavy-quark limit. As a result, the transition occurs between the brown muck spin

j → j′ + π where the heavy quark act as the spectator. Thus, we can calculate the decay width of

J(j)→ J ′(j′) + π with the six-j symbol as

Γ = (2j + 1)(2J ′ + 1)

∣∣∣∣∣
{
J J ′ L

j′ j sq

}∣∣∣∣∣
2

p(2L+1)|ML|2. (9.2)

where sq = 1/2 is the heavy-quark spin, L is the relative angular momentum of the final states Σ
(∗)
c π,

p the emitted pion momentum, and ML the reduced matrix element. Note that this prediction of

the ratio can only be calculated for the same partial wave where the reduced matrix element |ML|2

cancels. The ratio R is computed as

R =
(2J ′Σ∗c + 1)× p(Σ∗cπ)(2L+1)

(2J ′Σc + 1)× p(Σcπ)(2L+1)

∣∣∣∣∣
{
JΛ∗c J ′Σ∗c L

j′Σ∗c jΛ∗c sq

}∣∣∣∣∣
2

∣∣∣∣∣
{
JΛ∗c J ′Σc L

j′Σc jΛ∗c sq

}∣∣∣∣∣
2 . (9.3)

The discussion of the ratio R has an advantage with less ambiguity because the uncertaintis coming

from the quark model parameters cancel out. It is worth noting that the discussion of ratio R is

not applicable for the Λ∗c(2695) and Λ∗c(2625), in the previous chapters, since the Σ∗c is kinematically

closed.

For the three-body decay analysis, one of the prominent problems is that this Λ∗c(2765) is a broad

resonance. In actual computation is the Dalitz plot is made with a given (or fixed) value of the initial

mass. This method is acceptable for the narrow resonance. Knowing this situation, we first make a

narrow cut at the central value of its mass Λ∗c(2765) and discuss the Dalitz plots and related quantities

accordingly. Afterward, we try to treat the mass distribution of the Λ∗c(2765) with a simple Breit-

Wigner parameterization. In this way, we may have a picture of how the Dalitz plots are transformed

for the case of broad resonances. To the end, the Dalitz plots and other related observables computed

with various spin and parity assignments given in Table 9.1 are analyzed in an attempt to provide

theoretical predictions for the experimentalist what to measure for determination of the spin and

parity of Λ∗c(2765).
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9.3 Two-body decays

Let us discuss the results obtained from the two-body decay analysis as shown in Table 9.2. So far,

the only experimental data, which is available in PDG, is the mass and total decay width Γexp = 50

MeV. If we naively compare this value with the results calculated in the quark model, we might have

a conclusion that it might correspond to either 1/2− or 3/2− with λ mode excitations, the first two

rows in Table 9.2. In fact, only configurations with these spin and parity give rather large decay

width which is mainly due to the s-wave decay into either Σcπ or Σ∗cπ channel. But, as we know,

these configurations have been assigned to the P -wave doublet of Λ∗c . One can also argue that the Λ∗c
might correspond to that of the ρ mode where the broad width is produced although it overpredicts

the experimental value. This looks promising but it should be supported by the other measurements.

Furthermore, if this Λ∗c(2765) has a non-zero brown muck spin j, it suggests that there exists its HQS

partner which should be clarified.

The other configurations predict relatively small decay widths where we can simply rule them out

in the view of its magnitude of the decay width. As we discussed previously, the direct process has

small contributions as implied in the experimental observation. In other words, the decay width is

saturated with the Σ
(∗)
c contribution. Therefore, if Λ∗c(2765) is indeed 1/2+, which is suggested by

many works, it can not be explained by the quark model since we have a contradiction where the

predicted width is very small. Needless to say, we can not draw a conclusion at this moment by

looking at the total decay width.

In Table 9.2, we also show other components such as the partial decay widths of Σ
(∗)
c π channel along

with the ratio. In the last column, we show the ratio calculated in the heavy-quark spin symmetry

and it is shown that the ratios calculated from the quark model have good agreement with it. This

demonstrates that the quark model that we have constructed respect the heavy-quark symmetry.

For the Λ∗c(1/2
−) and Λ∗c(3/2

−) with j = 1, the partial waves of Σcπ and Σ∗cπ are different such

that the ratio R will be very small and very large, respectively, as

R[Λ∗c(1/2(1)−)] =
Γ(Σ∗cπ)d
Γ(Σcπ)s

� 1, (9.4)

R[Λ∗c(3/2(1)−)] =
Γ(Σ∗cπ)s + Γ(Σ∗cπ)d

Γ(Σcπ)d
� 1, (9.5)

where we denote RHQ equal to “ - ” since it is not applicable. Note that the decay of Λ∗c(1/2
−) with

j = 0 is forbidden due to the brown-muck selection rule. Interestingly, for the Λ∗c(3/2
−) with j = 2,

the s wave is also not allowed. In such a case, the ratio R is significantly changed as

RHQ[Λ∗c(3/2(2)−)] =
Γ(Σ∗cπ)d
Γ(Σcπ)d

= 1× p(Σ∗cπ)5

p(Σcπ)5
= 0.22. (9.6)
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Table 9.2. Calculated decay widths and the ratios of the decay of Λ∗c(2765) → Σ
(∗)
c π with various

quark model configurations.

Excitations Γtotal [Σcπ]+ [Σ∗cπ]+ R RHQ

Λ∗c(1Pρ, 1/2(0)−) - - - - -

Λ∗c(1Pλ, 1/2(1)−) 65.1-146 61.2-140 3.90-6.10 0.04-0.06 -

Λ∗c(1Pρ, 1/2(1)−) 326-676 324-673 2.10-3.00 0.004-0.006 -

Λ∗c(1Pλ, 3/2(1)−) 52.2-104 7.9-11.9 44.3-92.4 5.60-7.80 -

Λ∗c(1Pρ, 3/2(1)−) 210-413 4.20-5.80 206-408 49.0-70.0 -

Λ∗c(1Pρ, 3/2(2)−) 9.40-13.1 7.60-10.5 1.90-2.70 0.25-0.26 0.22

Λ∗c(1Pρ, 5/2(2)−) 6.30-8.80 3.40-4.70 2.90-4.20 0.87-0.90 0.76

Λ∗c(2Sλλ, 1/2(0)+) 1.60-4.50 0.86-2.49 0.78-1.98 0.79-0.91

Λ∗c(2Sρρ, 1/2(0)+) 4.69-11.2 2.60-6.55 2.09-4.60 0.70-0.80 0.80

Λ∗c(1Dλρ, 1/2(0)+
1 ) 0.66-1.79 0.42-1.12 0.25-0.67 0.60-0.60

Λ∗c(1Dλρ, 1/2(1)+
0 ) 5.47-13.4 4.53-11.3 0.93-2.10 0.19-0.21

Λ∗c(1Dλρ, 1/2(1)+
1 ) 0.24-0.64 0.21-0.56 0.03-0.08 0.15-0.15 0.20

Λ∗c(1Dλρ, 1/2(1)+
2 ) 11.4-23.8 9.78-20.5 1.61-3.32 0.16-0.16

Λ∗c(1Dλρ, 3/2(1)+
0 ) 3.47-8.06 1.13-2.82 2.33-5.24 1.86-2.06

Λ∗c(1Dλρ, 3/2(1)+
1 ) 0.13-0.35 0.05-0.14 0.08-0.21 1.49-1.51 1.99

Λ∗c(1Dλρ, 3/2(1)+
2 ) 6.48-13.4 2.45-5.13 4.03-8.31 1.62-1.65

Λ∗c(1Dλλ, 3/2(2)+) 4.70-10.9 4.40-10.1 0.33-0.72 0.07-0.08

Λ∗c(1Dρρ, 3/2(2)+) 11.5-23.3 10.7-21.8 0.77-1.43 0.07-0.06 0.07

Λ∗c(1Dλρ, 3/2(2)+
1 ) 0.28-0.74 0.26-0.70 0.02-0.04 0.06-0.06

Λ∗c(1Dλρ, 3/2(2)+
2 ) 23.5-49.3 22.0-46.2 1.49-3.11 0.07-0.07

Λ∗c(1Dλλ, 5/2(2)+) 1.90-4.40 0.13-0.32 1.77-4.04 12.8-13.8 -

Λ∗c(1Dρρ, 5/2(2)+) 4.45-8.63 0.13-0.31 4.32-8.32 26.8-33.2 -

Λ∗c(1Dλρ, 5/2(2)+
1 ) 0.09-0.25 - 0.09-0.25 - -

Λ∗c(1Dλρ, 5/2(2)+
2 ) 8.92-18.4 0.19-0.40 8.73-18.0 44.7-44.9 -

Λ∗c(1Dλρ, 5/2(3)+
2 ) 0.25-0.54 0.22-0.46 0.04-0.08 0.17-0.18 0.15

Λ∗c(1Dλρ, 7/2(3)+
2 ) 0.17-0.37 0.12-0.26 0.05-0.11 0.41-0.43 0.35
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Similarly, Λ∗c(5/2
−) with j = 2 decays into both channels in d wave such that the ratio is given by

RHQ[Λ∗c(5/2(2)−)] =
Γ(Σ∗cπ)d
Γ(Σcπ)d

=
7

2
× p(Σ∗cπ)5

p(Σcπ)5
= 0.76. (9.7)

However, we can see that the ratio has different value with that of Λ∗c(3/2(2)−). The difference is

from the factor originated from how angular momentums are coupled, which is represented by the

six-j symbol.

For the case of Λ∗c(1/2
+) and Λ∗c(3/2

+), they both decay into Σ
(∗)
c π in p wave. Accordingly, the

ratio R can be obtained as

RHQ[Λ∗c(1/2(0)+)] = 2× p(Σ∗cπ)3

p(Σcπ)3
= 0.80, (9.8)

RHQ[Λ∗c(1/2(1)+)] =
1

2
× p(Σ∗cπ)3

p(Σcπ)3
= 0.20. (9.9)

RHQ[Λ∗c(3/2(1)+)] = 5× p(Σ∗cπ)3

p(Σcπ)3
= 1.99, (9.10)

RHQ[Λ∗c(3/2(2)+)] =
1

5
× p(Σ∗cπ)3

p(Σcπ)3
= 0.07. (9.11)

The above equations explain sufficiently well that the calculated ratio R in the quark model for

Λ∗c(1/2(0)+) is bigger than that of Λ∗c(1/2(1)+) by factor four. This applies to the case of Λ∗c(3/2
+).

For the case of Λ∗c(5/2
+) with j = 2, the ratio is much larger than unity because of the p-wave

dominance as

R[Λ∗c(5/2(2)+)] =
Γ(Σ∗cπ)p + Γ(Σ∗cπ)f

Γ(Σcπ)f
� 1. (9.12)

There is an exception for Λ∗c(1Dλρ, 5/2(2)+
1 ) where the Σcπ channel is forbidden because of the orbital

angular momentum conservation. Again, for the higher brown-muck spin, namely j = 3, the p-wave

decay is not allowed and therefore the ratio can be computed as

RHQ[Λ∗c(5/2(3)+)] =
5

4
× p(Σ∗cπ)7

p(Σcπ)7
= 0.15, (9.13)

where the decays occur in f wave. Also for Λ∗c(7/2(3)+), the ratio is given by

RHQ[Λ∗c(7/2(3)+)] = 3× p(Σ∗cπ)7

p(Σcπ)7
= 0.35. (9.14)

In summary, the ratio will give a useful constraint on the spin and parity of the Λ∗c(2765). It is also

found that the ratios computed in the quark model follow the heavy-quark symmetry. However, as

we may notice, the ratio itself can not be used for the spin and parity determination and therefore we

102



need more constraints. For that reason, we will analyze its three-body decay into Λcππ where there

are additional kinematical variables, which might give other constraints.

9.4 Three-body decays

To analyze the broad resonance like Λ∗c(2765), we will divide the discussion into two parts. Firstly,

we perform a Dalit plot analysis by fixing the mass of Λ∗c(2765) at a certain value. For instance,

we choose three different masses as shown in Fig 9.3. The Dalitz plot shows not only different sizes

but also different structures. As we go away from the central value, the probability becomes much

smaller. In such cases, the comparison to the experimental data could be challenging because of the

lack of statistics. To avoid that, we will discuss the Dalitz plot at the central mass. Practically,

experimentalists need to make a very narrow cut in order to compare with our calculation.
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Figure 9.3. The mass distribution of Λ∗c(2765) and The corresponding Dalitz plots with three
different initial masses.

Secondly, we will consider the mass distribution of the Λ∗c(2765) and convolute whole Dalitz plots

with different initial mass and weighted by the Breit-Wigner distribution. Actually, there is an open-

ing DN channel near 2800 MeV just above the central mass which may distort the Breit-Wigner

distribution. This such effect should be taken into account more seriously in the later stage when the

experimental data becomes available. Although it is not trivial in the theoretical side, this is what

experimentalists usually do because they want to consider all signals. Of course, the statistics will be

huge in which the structures inside the Dalitz plot can be seen more clearly. However, one should be

careful because after performing the convolution the resulting Dalitz plot may look very different and

we could arrive at the wrong conclusion. This is the work to clarify this issue as well.
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9.4.1 Dalitz plot with a narrow cut

Let us now look at the Dalitz plots and related quantities for the fixed mass M = 2765 MeV. This

Dalitz plot corresponds to the middle plot in Fig. 9.3. As we can see, there is actually an accident

interference between Σ∗c with a different charge, bringing a complication in this analysis. In this case,

the interference effect should be considered carefully when discussing the structure inside the Dalitz

plots.

Here, we consider all different spin and parity as shown in Table 9.1. For a given spin and parity,

we can have several configurations. However, it is found that they give similar behavior by looking at

the value of the ratio in the two-body analysis. Therefore, we will choose one low-lying configuration

for each spin and parity assignment. Furthermore, the other configurations with the same spin and

parity are inspected for example.

Relative strengths: ratio

The resulting Dalitz plots in (m2
23,m

2
13) plane and Λ+

c π
− invariant mass distribution are given in

Fig. 9.4 where the spin and parity are written in each plot along with the brown muck spin. It is

shown that there are four resonance bands from left to right correspond to Σ0
c ,Σ

∗0
c ,Σ

∗++
c and Σ++

c ,

respectively. The Σ
(∗)0
c are the resonances in Λ+

c π
− invariant mass and the corresponding Σ

(∗)++
c

are the kinematical reflections. In Dalitz plot, the Σ0
c and its kinematical reflection have the same

strengths of its resonance band. The difference is just the direction of the resonance band in which Σ0
c

band is vertical while Σ++
c band is diagonal. It is also understood that the peaks originated from the

kinematical reflections will look different from the resonance peak in Λ+
c π
− invariant mass distribution,

but their yields are generally the same because they correspond to the same particle with a different

charge.

From the Dalitz plots made with various spin and parity assignments, we can see one notable

difference, that is the relative strengths between Σc and Σ∗c bands. For instance, the Σc band is

stronger than that of Σ∗c in the Dalitz plot for Λ∗c(1/2
−). On the other hand, the Σ∗c band is stronger

for the case of Λ∗c(3/2
−). This observation is clearly seen in the invariant mass distribution where

the relative strengths of the resonance peaks are different from one to other cases. For the case of

Λ∗c(1/2
+), the strength of bands is relatively similar. The reason behind this is similar to the discussion

of the ratio R that we have discussed previously. We also check the other configuration with the same

spin and parity but different brown muck spin j, and the resulting Dalitz plots show the different ratio

of relative strengths of resonance bands as expected.

One should be careful because the Σ∗c band has a strong interference which may contaminate the

ratio R to some extents. It is because the R is usually measured by cutting the resonance bands where

the interference terms can not be separated. As was mentioned previously, the discussion of the Dalitz

plot for the initial mass slightly away from the central value may be helpful because the interference

effect will be reduced. In fact, the resonance bands will be well separated as seen in Fig. 9.3. But it

may suffer from the small statistics where the structure may not be visible clearly.
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Figure 9.4. The Dalitz plots and Λ+
c π
− invariant mass distribution with various spin and parity

assignments made by a fixed initial mass at M = 2765 MeV.
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Figure 9.5. The angular correlations obtained by cutting the Σ∗0c resonance band.

Angular correlations

Another notable difference among the Dalitz plots in Fig. 9.4 is the angular correlations along the

Σ∗c resonance band located in the middle. For instance, if we cut the Σ∗0c resonance band, the angular

correlations for the positive parity case are given in Fig. 9.5. For Λ∗c(1/2
+), we can observe that the

valley structure is exhibited. Meanwhile, for the Λ∗c(3/2
+), the angular correlation shows oppositely

like a hill structure and it is rather flat for Λ∗c(5/2
+). Of course, the asymmetric pattern is clearly

seen, which is mainly due to the interference at the top side of the Dalitz plot or near the backward

angle. In Fig. 9.6, we show the components of angular correlation for the case of 1/2+. It can be seen

that the large contribution at the backward angle is coming from the interference terms. Apparently,

the interference contaminates the angular correlations, but the characteristic shape still remains.
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Figure 9.6. The enhancement of the angular correlation at the backward angle due to the interference
terms.

The resulting angular correlations are related to the Wigner D function d
3/2
hfhi

(θ12) since Σ∗c has

spin 3/2. In such a case, the helicity of Σ∗c can be either 1/2 and 3/2, which give valley and hill

structure in the angular correlation, respectively. The obtained angular correlation is the combination
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Table 9.3. The ratio and the angular correlations for various spin and parity assignments. Note that
we define two different ratio R and R̃.

J(j)P L(Σcπ) L(Σ∗cπ) R̃ R W (θ12)

1/2(0)− �s �d - - -

1/2(1)− s d 0 0.05 1 + 3 cos2 θ12

1/2(0)+ p p 0 0.80 1 + 3 cos2 θ12

1/2(1)+ p p 0 0.20 1 + 3 cos2 θ12

3/2(1)− d s, d 1 6.70 1

3/2(2)− d �s, d 1 0.22 1

3/2(1)+ p p, ��f 9 1.99 1 + 6 sin2 θ12

3/2(2)+ p p, f 9 0.07 1 + 6 sin2 θ12

5/2(2)− d d, �g 6 0.76 1 + (15/4) sin2 θ12

5/2(2)+ f p, f 2/3 13.3 1 + (1/3) cos2 θ12

5/2(3)+ f �p, f 3/2 0.15 1 + (3/8) sin2 θ12

7/2(3)+ f f,�h 5 0.35 1 + 3 sin2 θ12

between them, which is given by

W (θ12) ∝
∣∣A1/2(Λ∗c → Σ∗cπ)

∣∣2 × (1 + 3 cos2 θ12) +
∣∣A3/2(Λ∗c → Σ∗cπ)

∣∣2 × 3 sin2 θ12, (9.15)

∝ 1× (1 + 3 cos2 θ12) + R̃× 3 sin2 θ12. (9.16)

We observe the ratio R̃ between the helicity amplitudes with h = 1/2 and 3/2 control the shape of

the angular correlations as

R̃ > 1 → hill, (9.17)

R̃ = 1 → flat, (9.18)

0 < R̃ < 1 → valley. (9.19)

In fact, the ratio R̃ can be computed as

R̃ =

∣∣A3/2(Λ∗c → Σ∗cπ)
∣∣2∣∣A1/2(Λ∗c → Σ∗cπ)
∣∣2 =

|(J 3
2 L 0 |32

3
2)|2

|(J 1
2 L 0 |32

1
2)|2

, (9.20)

where we have defined J for the spin of Λ∗c(2765) and L the relative angular momentum of Σ∗cπ. It

is shown that the ratio R̃ is completely dictated by the Clebsh-Gordan coefficients. The ratio R̃ and
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Figure 9.7. The angular correlations along the resonance band of Σ∗c for various spin and parity
assignments in an ideal situation.

the angular correlations W (θ12) are then summarized in Table 9.3 and depicted in Fig. 9.7.

By combining the analysis on its ratio and angular correlations, we can determine the spin and

parity of Λ∗c(2765) unambiguously. For the case of JP = 1/2±, the main indication is that the angular

correlation is proportional to 1 + 3 cos2 θ12, shown as a valley structure. This is because the helicity

amplitude with h = 3/2 is forbidden, resulting in the R̃ is equal to zero. To differentiate the parity,

the ratio R will be useful because the negative parity the ratio becomes very small due to the d

wave nature of Σ∗cπ channel. The determination for other spin and parity can be discussed similarly.

Furthermore, the comparison to other observables such as Dalitz plots and invariant mass distribution

will give more convincing results.

9.4.2 Convoluted Dalitz plot

Now, we consider the mass distribution of Λ∗c(2765) where the width is around 50 MeV described

in Fig. 9.3. Here, we give one example, namely for the case of 1/2+ with brown muck spin j = 0

to discuss the effect of the convolution of Dalitz plot. The mass distribution is assumed to have a

Breit-Wigner form as

Γ̃ =
1

N

∫
Γ(M̃Λ∗c ) dM̃Λ∗c

(M̃Λ∗c −MΛ∗c )
2 + Γ2

Λ∗c
/4
, (9.21)

where we define the wdith for a given intial mass as Γ(M̃Λ∗c ). It can be imagined that we sum up all

the Dalitz plot made by initial masses weighted by its mass distribution. The convolution is illustrated

in Fig. 9.8 where we can see that the Dalitz plots with different sizes are summed up in one place (at
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Figure 9.8. The convoluted Dalitz and invariant mass plots for Λ∗c(2765) with J(j)P = 1/2(0)+.

the bottom).

The resulting plots are given in Fig. 9.9. After the convolution, we first notice that the Dalitz

plot has a larger area and the invariant mass distribution has a wider range. In the Dalitz plot in

(m2
23,m

2
13) plane, we can observe four different bands. However, it is also seen that along the Σc bands

seem to have a hill structure. But, in reality, we know that the angular correlation along Σc is flat.

This happens is due to the Dalitz plot is convoluted with the Breit-Wigner as a weight. Therefore, it

is not appropriate to look at the angular correlation this way.

Another interesting thing is that the kinematical reflection spread out in the Dalitz plot in

(m2
23,m

2
12) plane. Moreover, the peak due to kinematical reflection disappears and it becomes a

background shape distribution. This is one of the prominent effects of convolution. But, the ratio R

between the Σc and Σ∗c stays the same.

Because it is not so easy to see the angular correlation in the Dalitz plot, we also make another

version of Dalitz plot which we call the square plot as shown on the right side in Fig. 9.9. In the case

of 1/2+ , we can see the angular correlation in the plot exhibits a valley structure on the Σ∗c band,
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Figure 9.9. The convoluted Dalitz and invariant mass plots for Λ∗c(2765) with J(j)P = 1/2(0)+.

and it remains flat for Σc band. This behavior is similar to what we obtain in the narrow cut analysis.

Note that the square plot can be produced by a similar way depicted in Fig. 9.8, but the Dalitz plot

is transformed into the square plot at each initial mass such that they convolute in the same area.

Ideally, for the case of 1/2+, we should have W (θ12) ∝ 1 + 3 cos2 θ12. However, in the reality, the

fitted angular correlation is contaminated by the interference terms so that we obtain

W (θ12) ∝ 1 + 6.0 cos2 θ12 − 0.5 cos θ12. (9.22)

where the is additional cos θ12 term, leading to assymetry pattern. Even though it looks complicated,

once we can parameterize the interference, we can still study the angular correlations.
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9.5 Summary

In an attempt to determine the spin and parity of the Λ∗c(2765), we have done a comprehensive

analysis of their two-body and three-body decay. It is found that the ratio R and angular correlations

provide useful constraints for its spin and parity. In addition to that, the comparison of the Dalitz

plot and invariant mass distribution will further confirm the result.

In this work, we have considered both negative and positive parity states up to N = 2 in the quark

model. As for now, we can not conclude which configuration is compatible with the experimental

data. On top of that, if Λ∗c(2765) is 1/2+ as suggested in many works, then its decay property can

not be explained by the quark model. This implies that this state could be beyond the quark model

states as discussed for other Roper-like resonances.

In this analysis, we have used the empirical fact that the direct process is suppressed. However,

we know that f0(500) resonance can contribute to this decay. This is also an interesting observation

because the suppression of such a process contradicts our expectations. Therefore, it should be clarified

in future work.

We note that our results here as tabulated in Table 9.3 are rather universal, which can be applied

to other cases with different systems. For instance, this method can also be used to determine the

spin-parity of higher excited states of Λc. Also, the analysis of the decay of Ξ∗c → Ξcππ and their

analogs in the bottom sector can be done in principle. Moreover, we also notice that the treatment

of the three-body decay of broad resonance is not well established. This issue is certainly important

since the excited states usually have a finite width due to the nature of the strong decay. In this case,

the development of such a method as done here could play a crucial role in advancing our knowledge

in heavy-baryon spectroscopy.

“I never did anything by accident, nor did any of my inventions come by accident; they came by

work.”, Thomas Edison
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Chapter 10

Λ∗b(6072) as a Roper-like resonance

10.1 Introduction

CMS and LHCb recently reported a new broad resonance of Λ∗b(6072) in Λbππ invariant mass

where its mass and width are measured to be M = 6072.3± 2.9 MeV and Γ = 72± 11 MeV [75, 76].

Because of its excitation energy around 500 MeV, it is tempting to identify them as the analog of

Roper resonance N(1440) with spin and parity 1/2+. In fact, there exist several Roper-like resonances

with various flavor contents as shown in Fig. 10.1.

(udu) (uds) (uds) (udc) (usc) (udb)

Quark content

0

0.5

M
 [G

eV
]

N c c b

N(1440) (1600) (1660) c(2765) c(2970) b(6072)

Figure 10.1. The Roper-like resonance candidates with various flavor contents. They have similar
excitation energy of around 500 MeV. The red bars are the analog states in heavy baryon sector.

Roper resonance has a long history in hadron physics [217]. It was discovered around the 1970s, but

its nature is still mysterious up to now. After tremendous efforts have been done both in the theoretical

and experimental side, we are now convinced that it is a first radial excitation with 1/2+ [218]. One of

the prominent problems is that the Roper resonance has an inverse mass ordering in which it appears

lower than that of the negative parity excitation. This inverse mass ordering can not be explained

by the simple quark model expectations. Because of that, many alternative ideas were constructed to

elucidate such ordering [174].

Recently the analog states are also found in the heavy baryon sector. The most promising candi-

dates are Λc(2765),Ξc(2970), and the newly observed Λb(6072). There are still other missing states

which should be further investigated in future experiments. In fact, they have similarities in their

decay properties: large decay width and small coupling to f0(500). Their width around 70 MeV is

observed to be significantly larger than that of heavy baryons in general with only several MeV. More-

over, we also observe that the f0(500) resonance is surprisingly suppressed as found in our analysis

on Λ∗c(2765) and further suggested in the present analysis. This rather peculiar behavior may reflect

their internal structures which are independent of the flavor content.

112



10.2 Dalitz plot analysis

Inspired by our previous study on Λ∗c(2765), we will perform the three-body decay analysis of

Λ∗b(6072) and discuss it as the Roper-like resonance with spin and parity JP = 1/2+. In fact, there

are two possible brown muck spins either j = 0 and j = 1. As we may know, the first radial excitations

correspond to Λ∗b(2Sλλ, 1/2(0)+) and Λ∗b(2Sρρ, 1/2(0)+) in the quark model. Therefore, we assume this

resonance having j = 0, implying that Λ∗b(6072) will appear as a singlet without any HQS partner.

10.2.1 Decay amplitude

In this study, we also consider only the sequential processes coming from Σb and Σ∗b in intermediate

states. The direct process including the f0(500) resonance is not considered in this calculation because

we will show later that the sequential process is sufficiently good to describe the decay property.

Therefore, the direct process contribution is negligible. The Feynman diagrams considered in this

work are shown in Fig. 10.2.
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Figure 10.2. Feynman diagrams of Λ∗0b → Λ0
bπ

+π− with Σ
(∗)−
b and Σ

(∗)+
b in intermediate states.

Here, we also use the non-relativistic reduction as done in the previous chapters. For the case of

Λb(1/2
+), the two-body decay amplitudes for each vertex in the sequential processes going through

Σb and Σ:
b are computed as

−iTΛ∗b→Σbπ = gp1a χ
†
Σb

(σ · p)χΛ∗b
, (10.1)

−iTΛ∗b→Σ∗bπ
= gp1b χ

†
Σ∗b

(S† · p)χΛ∗b
, (10.2)

−iTΣb→Λbπ = gp2a χ
†
Λb

(σ · p)χΣb , (10.3)

−iTΣ∗b→Λbπ = gp2b χ
†
Λb

(S · p)χΣ∗b
. (10.4)

where all of the amplitudes is proportional to pion momentum due to the p-wave nature. Then, the

three-body decay ampiltudes are then given by

−iT
[
Σ−b
]

=
〈
−iTΣ−b →Λ0

bπ
−

〉 i

m23 −mΣ−b
+ i

2ΓΣ−b

〈
−iTΛ∗0b →Σ−b π

+

〉
(10.5)

The obtained amplitudes containing Σ
(∗)−
b and Σ

(∗)+
b are summed up coherently without any polar-

ization.
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10.2.2 Coupling strength and ratio

In this work, we do not compute the coupling strengths in the decay amplitudes from the quark

model. Because it is demonstrated in the previous chapter that the quark model predicts a small

width for the case of 1/2+. We have checked it for the case of Λ∗b(6072) that it is indeed the case,

indicating that this resonance is not the quark model state.

Instead, we employ the heavy-quark symmetry to constraint the ratio between the coupling

strengths in the amplitude as

gp1b/g
p
1a =

√
2 for j = 0, and =

1√
2

for j = 1.) (10.6)

Then, the ratio of decay into Σcπ and Σ∗c is computed as

R =
Γ(Λ∗b(6072)→ Σ∗bπ)

Γ(Λ∗b(6072)→ Σbπ)
=
g2

1b

g2
1a

p2L+1(Σ∗bπ)

p2L+1(Σbπ)
, (10.7)

where it contains the phase space factor with L = 1 for p-wave decay. We obtain the ratio as

R = 1.43 for j = 0, and = 0.36 for j = 1. (10.8)

Although the ratio R is not yet measured in the experiment, its value is reflected in the invariant

mass distribution. For comparison with the experimental data, we adjust the coupling strengths with

the constraints in Eq. (10.6) to reproduce the overall factor. Because the Σb(1/2
+) and Σ∗b(3/2

+) can

decay into Λbπ, we can dicuss the ratio in the Λbπ invariant mass distribution. But, for the case of

Ξ∗c → Ξcππ, the Ξ′c(1/2
+) can not decay into Ξcπ as shown in Fig. 10.3. In this situation, we cannot

discuss the ratio R through the Ξcπ invariant mass distribution because only Ξ∗c(3/2
+) is observed.

Λb

Λ*b (6072)

Σb

Σ*b

Ξc

Ξ*c (2970)

Ξ′ c

Ξ*c

Figure 10.3. The sequential process of Λ∗b and Ξ∗c . The Ξ′c state can not decay into Ξcπ due to
insufficient phase space represented by the red bar.
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Figure 10.4. The Dalitz plots of Λ∗b(6072)→ Λbππ in (m2
12,m

2
23) plane. The upper three plots are

made by fixed initial masses and the bottom one is the convoluted Dalitz plot.

10.2.3 Dalitz plot and related observables

In order to consider all of the signals of Λ∗b(6072) resonance measured in the experiments, we will

perfom a convolution of the Dalitz plots with a Breit-wigner distribution as

P (m2
12,m

2
23) =

1

N

∫
P (m;m2

12,m
2
23) dm

(m−MΛ∗b
)2 + Γ2

Λ∗b
/4
, (10.9)

with N as a normalization factor. In addition to that, we provide several plots made by a fixed initial

mass to show the illustration of how the convoluted Dalitz plot is obtained. In this calculation, we

assume its spin and parity 1/2+ with j = 0, which is the most probable one.

The resulting Dalitz plots are described in Fig. 10.4 where the convoluted one is presented at the
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bottom level. The Dalitz plots with fixed initial masses at M = 6.052, 6072, and 6092 MeV are plotted

at the first three layer from the top. We also plot the Λbπ
− invariant mass distributions at the back

fact for each Dalitz plot. For the Dalitz plots with fixed initial mass, there are four resonance bands

as indicated in the figure, but the Σ∗c resonances with different charges merge at M = 6052 MeV.

Furthermore, in the convoluted Dalitz plot, only two resonance bands are observed. The kinematical

reflections spread out in the Dalitz plot and appear as a background shape.

Now let us compare our result to the experimental data from LHCb collaboration. The only

provided data is the invariant mass distribution of Λbπ
±. This is slightly different from the one

in Fig. 10.4 at the bottom back face where only Λbπ
− invariant mass distribution is shown. To

compare with the data, one needs to combine between Λbπ
− and Λbπ

+ invariant mass distribution as

demonstrated in Fig. 10.5. We can see that the distribution is well reproduced, indicating that the

spin and parity of 1/2(0)+ is preferable. It is seen the ratio R between Σb and Σ∗b is roughly equal

to unity since where their peaks appear at a similar height. Furthermore, the background shape is

mainly originated from the kinematical reflections. This finding suggests that the contribution of the

f0(500) resonance is insignificant. Therefore, the decay is dominated by the Σ
(∗)
b resonant contribution.

Note that the Σ
(∗)−
b and Σ

(∗)+
b peaks in Λbπ

− and Λbπ
+ invarant mass distribution, respectively, have

different masses

m(Σ+
b )−m(Σ−b ) = −5.06± 0.18 MeV, (10.10)

m(Σ∗+b )−m(Σ∗−b ) = −4.37± 0.33 MeV, (10.11)

as we can see that their peaks are slightly off to each other.

5.75 5.80 5.85 5.90 5.95 6.00
m( 0

b
±) [GeV]

0

90

180

270 0
b
0
b

+

Total
LHCb

Figure 10.5. The comparison with the experimental data of the Λbπ
± invariant mass distribution.

Our prediction is indicated by the red line. The Λbπ
+ and Λbπ

− components are also shown.
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Angular correlation

To measure the spin of the Λ∗b(6072) more seriously, one needs to measure the angular correlation

along the Σ∗b band. Naively, the angular correlation is destroyed or highly contaminated for the case of

broad resonance. However, we show that the angular correlation is still reliable for spin determination.

The square plot we obtain in this calculation is given in Fig. 10.6 where the angular correlation is

shown on the back face.

Let me repeat that the valley structure in the angular correlation is a strong indication that the

Λ∗b(6072) has spin 1/2. In general, the angular correlation in this three-body decay is given by

W (θ12) ∝
∣∣A1/2(Λ∗b → Σ∗bπ)

∣∣2 × (1 + 3 cos2 θ12) +
∣∣A3/2(Λ∗b → Σ∗bπ)

∣∣2 × 3 sin2 θ12. (10.12)

But, for the case of spin 1/2, the amplitude with helicity h = 3/2 is forbidden such that the angular

correlation will be proportional to 1 + 3 cos2 θ12. In actual cases, the interference effect should be

considered. We find that the angular correlation is not strongly modified as seen in Fig. 10.6 and is

given by

W (θ12) ∝ 1 + 3.3 cos2 θ12. (10.13)

If it is indeed the case, Λ∗b(6072) is strongly suggested to have the spin and parity JP = 1/2+. This

measurement of angular correlation can be done with the present experimental data by LHCb. We

also note that other spin and parity assignments. But, their possibilities can be ruled out if the angular

correlation and Λbπ
± invariant mass distribution are analyzed simultaneously. Lastly, after the spin

and parity of Λ∗b(6072) has been determined, we have still many questions related to their nature and

dynamics. The study with an emphasis on its internal structure should be pursued in future works.

Figure 10.6. The square plot and the angular correlation along the Σ∗b band for Λ∗b(6072) decay.
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10.3 Perspectives

In this chapter, we have discussed the possibility of Λ∗b(6072) as a Roper-like resonance with spin

and parity JP = 1/2+. Other candidates with various flavor contents are shown in Fig. 10.1. However,

there are still missing states such as Ξb and Ξ resonances, which can be searched in the current

experimental facilities such as LHCb, J-Parc, and Belle. Finding and analyzing the candidates of

Roper-like resonance are crucial things to do. Then, establishing the similarities among them may be

useful for the discussion of their internal structures. So far, the thorough discussions have been done

theoretically and experimentally but only limited to the nucleon sector. The extension of such studies

for the heavy baryon sector will not only confirm the finding in the nucleon sector, but also show how

the observables are transformed with the change of the flavor contents.

For the missing Roper-like resonances in heavy baryon sector, the three-body invariant masses will

be helpful since they favor three-body decays. For instance, the Ξ∗c(2970) is found to decay into Ξcππ.

Its two-body decay such as ΛcK is forbidden due to the brown-muck selection rule, 0+ → 0+ + 0−.

In fact, there are several Ξc states in ΛcK with the mass similar with Ξ∗c(2970), but they may not

correspond to the Roper-like resonance. Also with the same reason, the missing Ξb resonance could

be found in Ξbππ invariant mass with similar excitation energy.

Furthermore, it is also meaningful to revisit the light baryon sectors such as N(1440) and Λ(1600)

to analyze their three-body decays. We also note that their decay widths are also larges among other

light baryons and the coupling to f0(500) resonance is negligible. The other overlooked structures

may be unveiled when revisiting their three-body decays more seriously. Actually, we also notice that

the Ξ∗(1820) is found in Ξππ and ΛK invariant mass at similar energy. It is conjectured that this

situation is similar to Ξc case where they correspond to different particles. As we know the Xi and

Xi′ are difficult to distinguish.

Lastly, the unusual behavior of Roper-like resonances can provide an interesting place to under-

stand the hadron resonances in QCD.

“The most beautiful experience we can have is the mysterious.”, Albert Einstein
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Part IV

Summary and outlook
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Chapter 11

Closing remark

11.1 Dalitz plot analysis

In this dissertation, we have investigated three-body decays of heavy baryons for the study of their

internal structures. In doing that, we have computed various Dalitz plots along with their related

quantities such as the invariant mass distributions and angular correlations. It is shown that we can

discuss not only the internal structures as done for Λ∗c(2595) and Λ∗c(2625), but also the spin and

parity of the participating particles such as Λ∗c(2765) and Λ∗b(6072).

The Dalitz plot analysis could be one of the powerful tools for heavy hadrons spectroscopy since the

scattering process is not practically possible. In this study, we have developed the Dalitz plot based

on the effective Lagrangians in a non-relativistic frameworks with isobar models. We found that it is

efficient and sufficiently good in describing the three-body decays of the heavy baryons. If we want

to do more comprehensively, we should consider the dynamical model to include the coupled channel

effects. On top of that, we also discuss the effect of the finite width has been overlooked so far. It is

demonstrated that the convolution of the Dalitz plot is necessary for the case of the broad resonances

such as Λ∗c(2765) and Λ∗b(6072) because the convoluted Dalitz plot will have slightly different shape

and structure. In the future, the parameterization of the three-body decay will be of importance in

extracting the resonance information. So far, it has been continuously developed by several groups

around the globe. Finding an efficient and effective way is the essential key for future analysis.

Furthermore, this theoretical work is closely related to the experiment. Thus, the communica-

tion between theories and experiments in this field is very crucial. In the theoretical side, we should

continuously develop our model and propose interesting things to measure for experimentalists. Cur-

rently, there are several experimental facilities that are actively reporting discoveries on heavy flavored

hadrons. In addition to that, the upgrades of experimental facilities are also being planned. Nowadays,

there is a plenty of data available and their potential has not been completely unleashed. Therefore,

the study of heavy baryons has a good prospect for the coming decades.
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11.2 Baryon with various flavor contents

In this work, we have analyzed the two-pion emission decays of the low-lying Λc and Λb baryons.

This work can be considered as the first step toward the establishment of the heavy baryons studied

from the three-body decays. In fact, there are still many states which are not considered in the present

calculation as shown in Fig. 2.3. It is instructive to apply our methods to other excited states of heavy

baryons to discuss their structures.

For the low-lying Λ∗c with negative parity, they are found to be compatible with the quark model

expectation. In our analysis, the decay properties of Λ∗c(2595) and Λ∗c(2625) can be explained by the

quark model with the λ mode excitation as anticipated. However, it is known that the Λ(1405) which

is the analogous state of Λ∗c(2595) in the strangeness sector could correspond to the exotic state which

is beyond the quark model. The different behavior may correspond to the flavor dependent dynamics

in which we know that they are related to the orbital excitation. Also, it could be due to the dynamics

that originated from the nearby threshold.

On the other hand, Λ∗c(2765) and Λ∗b(6072) have very similar behaviors. In this study, we have

shown that they are most probably related to the Roper-like resonances with spin and parity JP =

1/2+. They share not only similar excitation energy but also decay property, indicating the flavor

independent nature. It is also understood that the Roper resonance N(1440) is not compatible with

the quark model. We further confirm this fact from the analysis of its analog states in heavy baryons

whose decay properties can not be explained by the quark model.

There is also another issue in the higher excited state of Λ∗c(2860),Λ∗c(2880) and Λ∗c(2940). The

problem of the identification of D-wave doublet seems to be puzzling. So far, two-body decay and

mass spectrum analyses have been done in various models for these states, but it is fair to say that the

puzzle is not resolved yet. Therefore, the three-body decay analysis can provide another constraint to

solve this puzzle. The analog states in Ξ∗c ,Ξ
∗
b , and Λ∗b states should be also investigated.

In summary, the study of the baryon in various flavor content may also provide interesting pictures

of the flavor dependent and independent dynamics. This sort of study may deepen our understanding

in the dynamics of hadron resonances.

“Physics is not about how the world is, it is about what we can say about the world.”, Neils Bohr
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Appendix A

Quark model computations

A.1 Jacoobi coordinate

λ
ρ

1

2

3
M

m

m
k k

k
(a) (b)

Figure A.1. Definitions of Jacoobi coordinate for three quarks inside baryon.

In the quark model calculation, there are several definitions of Jacoobi coordinates. In this work,

we define them as

~X =
1

2m+M
(m~r1 +m~r2 +M~r3) , (A.1)

~λ =
1

2
(~r1 + ~r2)− ~r3, (A.2)

~ρ = ~r1 − ~r2, (A.3)

and the position coordinates of each particles are given by

~r1 = ~X +
M

2m+M
~λ+

1

2
~ρ, (A.4)

~r2 = ~X +
M

2m+M
~λ− 1

2
~ρ, (A.5)

~r3 = ~X − M

2m+M
~λ. (A.6)

The separation between the center of mass motion ~X and relative coordinates ~λ and ~ρ is crucial in

the quark model computation. The center of mass motion is related to the translation of the baryon

and is not related to the excitation of its internal structure. In heavy baryons, the excitations of the

λ and ρ mode are treated exclusively because of the difference on their excitation energy.

122



A.2 Radial wave function

In the quark model, the harmonic potential is usually used as because the solutions are analitically

known. The solution for is given by

ψnlm(~r) = Rnl(r) Ylm(r̂), (A.7)

where it consists of radial wave function Rnl(r) and spherical harmonics Ylm(r̂). The radial wave

function can be calculated as

Rnl(r) = Nnl r
l exp(−a2r2/2) L(l+1/2)

n (a2r2), (A.8)

with the normalization

Nnl =

√
a3a2l

2
√
π

2n+l+3n!

(2n+ 2l + 1)!!
, (A.9)

and the generalized Laguerre polynomial

L(z)
n (x) =

x−zex

n!

dn

dxn
(
e−xxn+z

)
. (A.10)

We have denoted a =
√
µω as a pontential strength. The single and double factorial are different.

The double factorial is calculated for example as

3!! = 3× 1 (odd), (A.11)

4!! = 4× 2 (even). (A.12)

The resulting radial wave function up to N = 2 is given by

R00(r) =
2α3/2

π1/4
e−α

2r2/2, (A.13)

R01(r) =

(
8

3

)1/2 α5/2

π1/4
r e−α

2r2/2, (A.14)

R02(r) =

(
16

15

)1/2 α7/2

π1/4
r2 e−α

2r2/2, (A.15)

R10(r) =

√
6α7/2

π1/4

(
2

3
α2r2

)
e−α

2r2/2. (A.16)

The higher excitation can be calculated by using Eq. (A.8). The spherical harmonics are discussed in

Appendix B.
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A.3 Wave function in the quark model

Here, we only discuss the wave function of Λc and Σc up to N = 2 in the quark model. Other

heavy baryons with different flavor can be computed similarly. Moreover, the z component of the

heavy baryon spin can have either positive and negative sign. Here, we focus on the positive sign

which is sufficient for the actual computation. We use the notation Yc(nLζ , J(j)P ,m) for the quark

model configuration, the definition of which is defined in the main text. Note that the isospin wave

function is denoted by φΛc and φΣc .

The coupling between two angular momenta are given by

Ylm =
∑
m1

〈l1 l2 m1 m−m1|l1 l2 l m〉Yl1m1Yl2(m−m1), (A.17)

where m = m1 + m2 and Clebsh-Gordon coefficient 〈l1 l2 m1 m−m1|l1 l2 l m〉. For instance, we

couple the first excited state with l = 1 and spin-1/2,

[ψ01, χc]
1/2
1/2 = 〈1 1 1/2 − 1/2| 1/2 1/2〉ψ011 ↓c + 〈1 0 1/2 1/2| 1/2 1/2〉ψ010 ↑c,

=

√
2

3
ψ011 ↓c −

√
1

3
ψ010 ↑c, (A.18)

In this section, the wave function is obtained by the above algebra.

A.3.1 Ground states

Λc baryon

The ground state is given by

Λc(1S, 1/2(0)+, 1/2) =

[[
ψ00(~λ)ψ00(~ρ), d0

]0
, χc

]1/2

1/2

φΛc ,

=
1√
2

(↑↓ − ↓↑) ↑c ψ000(~λ)ψ000(~ρ) φΛc . (A.19)

Since the brown muck spin is j = 0, the ground state appears as an HQS singlet.

Σc baryon

For Σc, there are two ground states due to j = 1. The first one with spin-parity JP = 1/2+ is

expressed by

Σc(1S, 1/2(1)+, 1/2) =

[[
ψ00(~λ)ψ00(~ρ), d1

]1
, χc

]1/2

m

φΣc ,

=
1√
6
{2 ↑↑↓c −(↑↓ + ↓↑) ↑c}ψ000(~λ)ψ000(~ρ) φΣc , (A.20)
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while the second one with JP = 3/2+ is written as

Σ∗c(1S, 3/2(1)+, 3/2) =

[[
ψ00(~λ)ψ00(~ρ), d1

]1
, χc

]3/2

3/2

φΣc ,

= ↑↑↑c ψ000(~λ)ψ000(~ρ) φΣc , (A.21)

Σ∗c(1S, 3/2(1)+, 1/2) =
1√
3
{↑↑↓c +(↑↓ + ↓↑) ↑c}ψ000(~λ)ψ000(~ρ) φΣc . (A.22)

A.3.2 Negative parity states

Λ∗c baryon with λ mode

For Λc baryon, there are two states with λ-mode, thye are given by

Λ∗c(1Pλ, 1/2(1)−, 1/2) =

[[
ψ01(~λ)ψ00(~ρ), d0

]1
, χc

]1/2

1/2

φΛc ,

=
1√
6

{√
2(↑↓ − ↓↑) ↓c ψ011(~λ)− (↑↓ − ↓↑) ↑c ψ010(~λ)

}
ψ000(~ρ)φΛc , (A.23)

and

Λ∗c(1Pλ, 3/2(1)−, 3/2) =

[[
ψ01(~λ)ψ00(~ρ), d0

]1
, χc

]3/2

m

φΛc ,

=
1√
2

(↑↓ − ↓↑) ↑c ψ011(~λ)ψ000(~ρ)φΛc (A.24)

Λ∗c(1Pλ, 3/2(1)−, 1/2) =
1√
6

{
(↑↓ − ↓↑) ↓c ψ011(~λ) +

√
2(↑↓ − ↓↑) ↑c ψ010(~λ)

}
ψ000(~ρ)φΛc , (A.25)

Λ∗c baryon with ρ mode

The ρ-mode excitation is written as,

Λ∗c(1Pρ, J(j)P ,m) =

[[
ψ00(~λ)ψ01(~ρ), d1

]j
, χc

]J
m

φΛc (A.26)

where the brown muck spin can be j = 0, 1, or 2.

For j = 0, the wave function is given by

Λ∗c(1Pρ, 1/2(0)−, 1/2) =
ψ000(~λ)√

3

{
↓↓↑c ψ011(~ρ)− 1√

2
(↑↓ + ↓↑) ↑c ψ010(~ρ)+ ↑↑↑c ψ01−1(~ρ)

}
φΛc ,

(A.27)
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For j = 1, we have two states with JP = 1/2− and 3/2−. The wave functions are given by

Λ∗c(1Pρ, 1/2(1)−, 1/2) =
1√
6

{
[(↑↓ + ↓↑) ↓c − ↓↓↑c]ψ011(~ρ)−

√
2 ↑↑↓c ψ10(~ρ)+ ↑↑↑c ψ01−1(~ρ)

}
×ψ000(~λ) φΛc , (A.28)

and

Λ∗c(1Pρ, 3/2(1)−, 3/2) =
1

2

(
(↑↓ + ↓↑) ↑c ψ011(~ρ)−

√
2 ↑↑↑c ψ010(~ρ)

)
ψ000(~λ)φΛc , (A.29)

Λ∗c(1Pρ, 3/2(1)−, 1/2) =
1√
6

{
1√
2

[(↑↓ + ↓↑) ↓c +2 ↓↓↑c]ψ011(~ρ)− ↑↑↓c ψ010(~ρ)−
√

2ψ01−1(~ρ) ↑↑↑c
}

×ψ000(~λ) φΛc (A.30)

For j = 2, we have JP = 3/2− or 5/2−. They are given by

Λ∗c(1Pρ, 3/2(2)−, 3/2) =
1√
5

{
1

2
[4 ↑↑↓c −(↑↓ + ↓↑) ↑c]ψ011(~ρ)− 1√

2
↑↑↑c ψ010(~ρ)

}
ψ000(~λ) φΛc

(A.31)

Λ∗c(1Pρ, 3/2(2)−, 1/2) =
1√
5

{
ψ011(~ρ)

2
√

3
[3(↑↓ + ↓↑) ↓c −2 ↓↓↑c]−

ψ010(~ρ)√
6

[2(↑↓ + ↓↑) ↑c −3 ↑↑↓c]

− 1√
3
ψ01−1(~ρ) ↑↑↑c

}
ψ000(~λ) φΛc (A.32)

and for spin 5/2−,the wave function is expressed by

Λ∗c(1Pρ, 5/2(2)−, 5/2) = ψ000(~λ)ψ011(~ρ) ↑↑↑c φΛc (A.33)

Λ∗c(1Pρ, 5/2(2)−, 3/2) =
1√
5

{
[(↑↓ + ↓↑) ↑c + ↑↑↓c]ψ011(~ρ) +

√
2 ↑↑↑c ψ010(~ρ)

}
ψ000(~λ) φΛc(A.34)

Λ∗c(1Pρ, 5/2(2)−, 1/2) =
1√
5

{
1√
2

[(↑↓ + ↓↑) ↓c + ↓↓↑c]ψ011(~ρ) + [(↑↓ + ↓↑) ↑c + ↑↑↓c]ψ010(~ρ)

+
1√
2
ψ01−1(~ρ) ↑↑↑c

}
ψ000(~λ) φΛc (A.35)

The other wave functions can be calculated similarly by using Eq. (A.17).
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A.4 Amplitude calculation

Here we provide some examples for the calculation of the decay amplitude in the quark model.

The amplitude is calculated in the helicity basis which is divided into two parts: non-derivative and

derivative part:

Ah = A∇·σh +Aq·σh . (A.36)

Each part is given by

Aq·σh = −GIq·σ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ 〈Bi |~τ1 {~σ1 · ~q}|Bf 〉 , (A.37)

A∇·σh = −iGωπ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈
Bi

∣∣∣~τ1

{
(~∇λ + 2~∇ρ) · ~σ

}∣∣∣Bf〉 . (A.38)

where we define the kinematical quantities as

G =
gqA
2fπ

√
2MΛc

√
2MΣc , (A.39)

Iq·σ =
M

2m+M
ωπ − 2m, (A.40)

I∇·σ =
1

2
qλ + qρ, (A.41)

A.4.1 Σ(∗)
c → Λcπ decay

We start our calculation from non-derivative part. More explicitly, it reads

Aq·σh = −GIq·σ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈
D0
c |~τ1|D1

c

〉 〈
Λc(1/2

+) |~σ1 · ~q|Σc(1/2
+)
〉
. (A.42)

The index one in τ1 means it operate to first quark state. Assuming ~q = qẑ, then the values of the

Isospin factors 〈Λc(1/2+) |~σ1z q|Σc(1/2
+)〉 are〈
D0
c |~τ1|D11

c

〉
= −1, (A.43)〈

D0
c |~τ1|D10

c

〉
= 1, (A.44)〈

D0
c |~τ1|D1−1

c

〉
= −1. (A.45)

If we choose the Σ+
c state, the decay amplitude reads

Aq·σh = G
q

m
Iq·σ

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈
Λc(1/2

+) |σ1z|Σc(1/2
+)
〉
. (A.46)
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The spin and orbital factor in the equation above is computed as〈
Λc(1/2

+) |σ1+|Σc(1/2
+)
〉

= 0, (A.47)〈
Λc(1/2

+) |σ1−|Σc(1/2
+)
〉

= 0, (A.48)〈
Λc(1/2

+) |σ1z|Σc(1/2
+)
〉

= − 1√
3
ψ0(λ)ψ0(ρ). (A.49)

By inserting those factors into the decay width, we get

Aq·σh = G
q

m
Iq·σ

(
− 1√

3

)(∫
d3λe−i~qλ·

~λψ∗0(λ)ψ0(λ)

)(∫
d3ρ e−i~qρ·~ρψ∗0(ρ)ψ0(ρ)

)
,

= G
q

m
Iq·σ

(
− 1√

3

)
e
− q2λ

4a2
λ e
−

q2ρ

4a2ρ ,

=

(
− 1√

3

)
G
q

m
Iq·σF (q). (A.50)

Let us recall that the derivative part of the decay amplitude is written as

A∇·σh = iG
ωπ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈

Λc(1/2
+)
∣∣∣(~∇λ + 2~∇ρ) · ~σ

∣∣∣Σc(1/2
+)
〉
. (A.51)

Before stepping further, we need to work out the derivative piece acting on the wave function as follow

~∇λψ∗0(λ) = ~∇λ
(
R∗00(λ)Y ∗00(λ̂)

)
= λ̂

(
∂

∂λ
R00(λ)

)
Y00(λ̂)

= λ̂

(
a

3/2
λ

π1/4
2(−a2

λ)e−a
2
λλ

2/2

)
1√
4π

= λ̂

(
−2aλ

(
3

8

)1/2

R∗01(λ)

)
1√
4π

(A.52)
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Then, the product of λ̂ and spin operator σ is given by

λ̂ · ~σ = λ̂x · σx + λ̂y · σy + λ̂z · σz,

=
1√
2

(λ̂x + iλ̂y)σ− +
1√
2

(λ̂x − iλ̂y)σ+ + λ̂z · σz,

=
1√
2

(sin θ cosφ+ i sin θ sinφ)σ− +
1√
2

(sin θ cosφ− i sin θ sinφ)σ+ + cos θ σz,

=
1√
2

sin θ eiφσ− +
1√
2

sin θ e−iφσ+ + cos θ σz,

=

√
4π

3

(
Y ∗1−1(λ̂)σ− − Y ∗11(λ̂)σ+ + Y ∗10(λ̂)σz

)
. (A.53)

The product is now expressed by the spherical harmonics Ylm. Then, in total we can write

~∇λψ∗0(λ) · ~σ = − aλ√
2
R∗01(λ)

(
Y ∗1−1(λ̂)σ− − Y ∗11(λ̂)σ+ + Y ∗10(λ̂)σz

)
. (A.54)

Therefore, the matrix elements become〈
Λc(1/2

+)
∣∣∣~∇λ · ~σ∣∣∣Σc(1/2

+)
〉

= − aλ√
2

(
− 1√

3

)
R∗01(λ)Y ∗10(λ̂)ψ0(λ)ψ∗0(ρ)ψ0(ρ). (A.55)

In order to simplify the calculation, we divide the derivative part into two λ and ρ piece. The λ piece

reads

A∇λ·σh = iG
ωπ
m

(
− 1√

3

)(∫
d3ρ ψ∗0(ρ)ψ0(ρ)e−i~qρ·~ρ

)(
aλ√

2

∫
d3λR∗01(λ)Y ∗10(λ̂)ψ0(λ)e−i~qλ·

~λ

)
,

= iG
ωπ
m

(
− 1√

3

)(
e
−

q2ρ

4a2ρ

)(
i
qλ
2
e
− q2λ

4a2
λ

)
,

= −Gωπ
m

(
− 1√

3

)
qλ
2
F (q). (A.56)

whereas the ρ piece is given by

A
∇ρ·σ
h = −Gωπ

m

(
− 1√

3

)
qρF (q). (A.57)

Thus, the derivative part of the decay amplitude is now written as

A∇·σh = −Gωπ
m

(
− 1√

3

)
I∇·σF (q). (A.58)
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For the decay of Σ∗c(3/2
−), it differ only by the spin factor. The corresponding amplitude is given by

Aq·σh = −Gωπ
m

(√
2

3

)
Iq·σF (q), (A.59)

A∇·σh = −G q

m

(√
2

3

)
I∇·σF (q). (A.60)

A.4.2 Λ∗c(1Pλ, 1/2(1)−)→ Σcπ decay

We begin the calculation by calculating the spin-orbital factor for corresponding assignment. They

are given by

〈
Σc(1/2

+) |σz|Λc(1/2−)
〉

=

(
1

3

)
ψ∗0(λ)ψ10(λ)ψ∗0(ρ)ψ0(ρ), (A.61)

〈
Σc(1/2

+) |σ+|Λc(1/2−)
〉

=

(
−2

3

)
ψ∗0(λ)ψ11(λ)ψ∗0(ρ)ψ0(ρ), (A.62)〈

Σc(1/2
+) |σ−|Λc(1/2−)

〉
= 0. (A.63)

Decay amplitude of non-derivative part is calculated by assuming that momentum of pion is along

z direction. Then, it is written as

Aq·σh = −G q

m
Iq·σ

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈
Σc(1/2

+) |σz|Λc(1/2−)
〉
. (A.64)

Inserting the spin-orbital factor into the decay amplitude, we find

Aq·σh = −G q

m
Iq·σ

(
1

3

)(∫
d3λe−i~qλ·

~λψ∗0(λ)ψ10(λ)

)(∫
d3ρ e−i~qρ·~ρψ∗0(ρ)ψ0(ρ)

)
,

= −G q

m
Iq·σ

(
1

3

)(
e
−

q2ρ

4a2ρ

)(
−i qλ√

2aλ
e
− q2λ

4a2
λ

)
,

= iG
q

m
Iq·σ

(
1

3

)
qλ√
2aλ

F (q). (A.65)

We write the decay amplitude of derivative part as

A∇·σh = −iGωπ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈

Σc(1/2
+)
∣∣∣(~∇λ + 2~∇ρ) · ~σ

∣∣∣Λc(1/2−)
〉
. (A.66)
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The λ piece is computed as

A∇λ·σh = −iGωπ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈

Σc(1/2
+)
∣∣∣~∇λ · ~σ∣∣∣Λc(1/2−)

〉
,

= −iGωπ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
(
− aλ√

2
R∗01(λ)

)
×
(
Y ∗1−1(λ) 〈σ−〉 − Y ∗11(λ) 〈σ+〉+ Y ∗10(λ) 〈σz〉

)
ψ1m(λ)ψ∗0(ρ)ψ0(ρ),

= iG
ωπ
m

{(
aλ√

2

)∫
d3λe−i~qλ·

~λ

[(
2

3

)
ψ∗11(λ) +

(
1

3

)
ψ∗10(λ)

]
ψ1m(λ)

}
×
{∫

d3ρ e−i~qρ·~ρψ∗0(ρ)ψ0(ρ)

}
,

= iG
ωπ
m

(
e
−

q2ρ

4a2ρ

)(
aλ√

2

){∫
d3λe−i~qλ·

~λ

[(
2

3

)
ψ∗11(λ)ψ11(λ) +

(
1

3

)
ψ∗10(λ)ψ10(λ)

]}
,

= iG
ωπ
m

(
e
−

q2ρ

4a2ρ

)(
aλ√

2

)(
1

6a2
λ

(6a2
λ − q2

λ)e
− q2λ

4a2
λ

)
,

= iG
ωπ
m

1

6
√

2aλ
(6a2

λ − q2
λ)F (q). (A.67)

Meanwhile, ρ piece reads

A
∇ρ·σ
h = −iGωπ

m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈

Σc(1/2
+)
∣∣∣2~∇ρ · ~σ∣∣∣Λc(1/2−)

〉
,

= −2iG
ωπ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
(
− aρ√

2

)
ψ∗0(λ)ψ1(λ)ψ0(ρ)

×
(
ψ∗1−1(ρ) 〈σ−〉 − ψ∗11(ρ) 〈σ+〉+ ψ∗10(ρ) 〈σz〉

)
,

= 2iG
ωπ
m

{(
aρ√

2

)∫
d3λe−i~qλ·

~λ

∫
d3ρ e−i~qρ·~ρψ∗0(λ)ψ0(ρ)

×
[(

2

3

)
ψ∗11(ρ)ψ11(λ) +

(
1

3

)
ψ∗10(ρ)ψ10(λ)

]}
,

= 2iG
ωπ
m

(
aρ

3
√

2

){∫
d3λe−i~qλ·

~λψ∗0(λ)ψ10(λ)

}{∫
d3ρ e−i~qρ·~ρψ∗10(ρ)ψ0(ρ)

}
,

= iG
ωπ
m

(
aρ

3
√

2

)(
−i qλ√

2aλ
e
−

q2ρ

4a2ρ

)(
−i qρ√

2aρ
e
−

q2ρ

4a2ρ

)
,

= −iGωπ
m

1

3
√

2aλ
(qλqρ)F (q). (A.68)
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Thus, In total the decay amplitude of derivative part is written as

A∇·σh = A∇λ·σh +A
∇ρ·σ
h ,

= −iGωπ
m

{(
− 1√

2

)
aλ +

(
1

3

)
I∇·σ

qλ√
2aλ

}
F (q). (A.69)

A.4.3 Λ∗c(1Pρ, 1/2(1)−)→ Σcπ decay

For this assignment, the spin-orbital factors associated to the decay amplitude are given by

〈
Σc(1/2

+) |σz|Λc(1/2−)
〉

=

(
−
√

2

3

)
ψ∗0(λ)ψ10(λ)ψ∗0(ρ)ψ0(ρ), (A.70)

〈
Σc(1/2

+) |σ+|Λc(1/2−)
〉

=

(√
2

2

)
ψ∗0(λ)ψ11(λ)ψ∗0(ρ)ψ0(ρ), (A.71)

〈
Σc(1/2

+) |σ−|Λc(1/2−)
〉

=

(
−
√

2

6

)
ψ∗0(λ)ψ1−1(λ)ψ∗0(ρ)ψ0(ρ). (A.72)

The decay amplitude of non-derivative part is written as

Aq·σh = −G q

m
Iq·σ

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈
Σc(1/2

+) |σz|Λc(1/2−)
〉
. (A.73)

We insert the spin-orbital factors to the equation above, and we obtain

Aq·σh = −G q

m
Iq·σ

(
−
√

2

3

)(∫
d3λe−i~qλ·

~λψ∗0(λ)ψ0(λ)

)(∫
d3ρ e−i~qρ·~ρψ∗0(ρ)ψ10(ρ)

)
,

= −G q

m
Iq·σ

(
−
√

2

3

)(
−i qρ√

2aρ
e
−

q2ρ

4a2ρ

)(
e
− q2λ

4a2
λ

)
,

= iG
q

m
Iq·σ

(
−
√

2

3

)
qρ√
2aρ

F (q). (A.74)

The decay amplitude of derivative part is

A∇·σh = −iGωπ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈

Σc(1/2
+)
∣∣∣(~∇λ + 2~∇ρ) · ~σ

∣∣∣Λc(1/2−)
〉

(A.75)
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where the λ piece is computed by

A∇λ·σh = −iGωπ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈

Σc(1/2
+)
∣∣∣~∇λ · ~σ∣∣∣Λc(1/2−)

〉
,

= −iGωπ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
(
− aλ√

2

)
ψ0(λ)ψ∗0(ρ)ψ1m(ρ)

×
(
ψ∗1−1(λ) 〈σ−〉 − ψ∗11(λ) 〈σ+〉+ ψ∗10(λ) 〈σz〉

)
,

= iG
ωπ
m

(
aλ√

2

)∫
d3λe−i~qλ·

~λ

∫
d3ρ e−i~qρ·~ρψ0(λ)ψ∗0(ρ)

×
[(
−
√

2

6

)
ψ1−1(ρ)ψ∗1−1(λ)−

(√
2

2

)
ψ11(ρ)ψ∗11(λ) +

(
−
√

2

3

)
ψ10(ρ)ψ∗10(λ)

]
,

= iG
ωπ
m

(
aλ√

2

)(
−
√

2

3

){∫
d3λe−i~qλ·

~λψ∗0(λ)ψ10(λ)

}{∫
d3ρ e−i~qρ·~ρψ10(ρ)ψ∗0(ρ)

}
,

= iG
ωπ
m

(
−aλ

3

)(
−i qλ√

2aλ
e
−

q2ρ

4a2ρ

)(
−i qρ√

2aρ
e
−

q2ρ

4a2ρ

)
,

= iG
ωπ
m

1

6aρ
(qλqρ)F (q). (A.76)

and the ρ piece is calculated as follow

A
∇ρ·σ
h = −iGωπ

m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
〈

Σc(1/2
+)
∣∣∣2~∇ρ · ~σ∣∣∣Λc(1/2−)

〉
,

= −2iG
ωπ
m

∫
d3λ

∫
d3ρ e−i~qλ·

~λe−i~qρ·~ρ
(
− aρ√

2

)
ψ0(λ)ψ∗0(λ)ψ1m(ρ)

×
(
ψ∗1−1(ρ) 〈σ−〉 − ψ∗11(ρ) 〈σ+〉+ ψ∗10(ρ) 〈σz〉

)
,

= −2iG
ωπ
m

{(
aρ√

2

)∫
d3ρe−i~qρ·~ρ

[(
−
√

2

6

)
ψ∗11(ρ)−

(√
2

2

)
ψ∗11(ρ)

+

(
−
√

2

3

)
ψ∗10(ρ)

]
ψ1m(ρ)

}{∫
d3λ e−i~qλ·

~λψ∗0(λ)ψ0(λ)

}
,

= 2iG
ωπ
m

(
e
− q2λ

4a2
λ

)((
−aρ +

q2
ρ

6aρ

)
e
−

q2ρ

4a2ρ

)
,

= 2iG
ωπ
m

(
−aρ +

q2
ρ

6aρ

)
F (q). (A.77)

133



Therefore, in total the decay amplitude of derivative part is given by

A∇·σh = A∇λ·σh +A
∇ρ·σ
h ,

= −iGωπ
m

{
2aρ +

(
−
√

2

3

)
I∇·σ

qρ√
2aρ

}
F (q). (A.78)

The other amplitudes can be computed similarly by the procedures shown above.
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A.5 Concrete form of decay amplitudes

In this section, we will provide decay amplitudes for the Λc and Σc baryons in the quark model.

We will sandwich the amplitude in Eq. (4.63) by various heavy baryon wavefunctions. The resulting

amplitudes are given in the helicity basis. Here, we calculate the amplitude for the charmed baryons.

The amplitude for bottom baryons have the same amplitude structures, only the parameters are

different.

To simplify the notations, we define the normalization factor as

G =
gqA
2fπ

√
2MΛc

√
2MΣc (A.79)

and the Gaussian form factor as

F (q) = exp(−q2
λ/4a

2
λ) exp(−q2

ρ/4a
2
ρ) (A.80)

where q = |~q| is the pion momentum. We also define some quantities as following

C1 = G

[
2 +

ωπ
2m

(
1− M

2m+M

)]
F (p), (A.81)

Cλ0 = iG
ωπ
m
aλF (p), (A.82)

Cρ0 = iG
ωπ
m
aρF (p), (A.83)

Cλ2 =
iGM

aλ(2m+M)

[
2 +

ωπ
2m

(
1− M

2m+M

)]
F (p), (A.84)

Cρ2 =
iG

2aρ

[
2 +

ωπ
2m

(
1− M

2m+M

)]
F (p), (A.85)

Cλλ1 = G
ωπ
m

(
M

2m+M

)
F (p), (A.86)

Cρρ1 = G
ωπ
2m

F (p), (A.87)

Cλλ3 =
GM2

a2
λ(2m+M)2

[
2 +

ωπ
2m

(
1− M

2m+M

)]
F (p), (A.88)

Cρρ3 =
G

4a2
ρ

[
2 +

ωπ
2m

(
1− M

2m+M

)]
F (p), (A.89)

Cλρ1 =
ωπ
m

(
(−1)l

2aρM

aλ(2m+M)
+

aλ
2aρ

)
F (p), (A.90)

Cλρ3 =
GM

2aλaρ(2m+M)

[
2 +

ωπ
2m

(
1− M

2m+M

)]
F (p). (A.91)

Here, we will only summarize the resulting form of the amplitudes. The derivation of how to obtain

the amplitudes can be found in Appendix A.
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A.5.1 Σ(∗)
c → Λcπ amplitude

The amplitude can be expressed as

−iA1/2 = c q C1 (A.92)

where the coefficient c is given by

c =

{
−1/
√

3 for Σc,√
2/3 for Σ∗c .

(A.93)

Since both Σc and Σ∗c decay in p wave, the amplitude will be propotional to the pion momentum q.

For convenience, we have defined that Σ
(∗)
c stands for Σc and Σ∗c .

A.5.2 Λ∗c → Σ(∗)
c π amplitude

Negative parity state

The amplitude for Λ∗c(J
−)→ Σ

(∗)
c π is given by

−iAh = c0 C
ζ
0 + c2 q

2 Cζ2 (A.94)

where ζ is either λ or ρ mode. The coefficients c0 and c2 are summarized in Table A.1. It is worth

noting that Λc(1/2
−) decay into Σ∗cπ in d wave such that the coeficient c0 become zero. Similarly, it

also happens for Λc(3/2
−) and Λc(5/2

−) case. Note that there are two possible helicities, 1/2 and 3/2

for the case of Λc(3/2
−) and Λc(5/2

−) decaying into Σ∗cπ.

Another important observation is that Λc(1Pρ, 1/2(0)−) has both coefficient c0 and c2 zero. It is

occured because of the brown muck selection rule, namely the diquark transition 0− → 1+ + 0− is

forbidden. Intuitively, such forbidden transition is described in Fig. ??. Similarly, for s-wave decay of

Λc(1Pρ, 3/2(2)−)→ Σ∗cπ is not allowed because the diquark transition 2− → 1+ + 0− only occur in d

wave.

Positive parity state

The amplitude for Λ∗c(J
+)→ Σ

(∗)
c π is given by

−iAh = c1 q C
ζ
1 + c3 q

3 Cζ3 (A.95)

where ζ either λλ, ρρ or λρ, which belong to N = 2 excitations. As we may notice, the coefficients c1

and c3 now correspond to p- and f -wave decays, respectively. These positve parity states are either

radial (n=1) or D-wave (l = 2) excitations whose coefficients are summarized in Table A.2. And for

those the mixed λρ mode excitations, the coefficients are tabulated in Table A.3 and A.4.
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Table A.1. Coefficients in the amplitude for the decay of negative parity states.

Excitation JΛc(j)
P JPΣc h c0 c2

1Pλ 1/2(1)− 1/2+ 1/2 − 1√
2

1
3
√

2

3/2+ 1/2 0 −1
3

3/2(1)− 1/2+ 1/2 0 −1
3

3/2+ 1/2 − 1√
2

√
2

3

3/2 − 1√
2

0

1Pρ 1/2(0)− 1/2+ 1/2 0 0

3/2+ 1/2 0 0

1/2(1)− 1/2+ 1/2 2 −1
3

3/2+ 1/2 0 − 1
3
√

2

3/2(1)− 1/2+ 1/2 0 − 1
3
√

2

3/2+ 1/2 2 −1
6

3/2 2 −1
2

3/2(2)− 1/2+ 1/2 0 1√
10

3/2+ 1/2 0 1
2
√

5

3/2 0 − 1
2
√

5

5/2(2)− 1/2+ 1/2 0 1√
15

3/2+ 1/2 0 1√
30

3/2 0 1√
5
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Table A.2. Coefficients in the amplitude for the decay of negative parity states.

Excitation JΛc(j)
P JPΣc h c1 c3

2Sλλ 1/2(0)+ 1/2+ 1/2 1
3
√

2
− 1

6
√

2

3/2+ 1/2 −1
3

1
6

1Dλλ 3/2(2)+ 1/2+ 1/2 1
3

√
5
2 − 1

3
√

10

3/2+ 1/2 − 1
6
√

5
1

3
√

5

3/2 − 1
2
√

5
0

5/2(2)+ 1/2+ 1/2 0 1
2
√

15

3/2+ 1/2
√

3
10 − 1√

30

3/2 1√
5

0

2Sρρ 1/2(0)+ 1/2+ 1/2
√

2
3 − 1

6
√

2

3/2+ 1/2 −2
3

1
6

1Dρρ 3/2(2)+ 1/2+ 1/2
√

10
3 − 1

3
√

10

3/2+ 1/2 − 1
3
√

5
1

3
√

5

3/2 − 1√
5

0

5/2(2)+ 1/2+ 1/2 0 1
2
√

15

3/2+ 1/2
√

6
5 − 1√

30

3/2 2√
5

0

138



Table A.3. Coefficients for the positive parity Λ∗b (ρ mode) decays with λρ mixed excitations. l
denotes the total angular momentum defined by l = lλ + lρ.

Excitation l JΛc(j)
P JPΣc h c1 c3

1Dλρ 0 1/2(1)+ 1/2+ 1/2 − 1
3
√

3
1

3
√

3

3/2+ 1/2 − 1
3
√

6
1

3
√

6

3/2(1)+ 1/2+ 1/2 − 1
3
√

6
1

3
√

6

3/2+ 1/2 − 1
6
√

3
1

6
√

3

3/2 − 1
2
√

3
1

2
√

3

1 1/2(0)+ 1/2+ 1/2 1
3
√

2
0

3/2+ 1/2 −1
3 0

1/2(1)+ 1/2+ 1/2 −1
6 0

3/2+ 1/2 − 1
6
√

2
0

3/2(1)+ 1/2+ 1/2 − 1
6
√

2
0

3/2+ 1/2 − 1
12 0

3/2 −1
4 0

3/2(2)+ 1/2+ 1/2 −
√

5
6
√

2
0

3/2+ 1/2 1
12
√

5
0

3/2 1
4
√

5
0

5/2(2)+ 1/2+ 1/2 0 0

3/2+ 1/2 −1
2

√
3
10 0

3/2 −1
2

√
1
5 0
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Table A.4. Coefficients for the positive parity Λ∗b (ρ mode) decays with λρ mixed excitations. l
denotes the total angular momentum defined by l = lλ + lρ.

Excitation l JΛc(j)
P JPΣc h c1 c3

1Dλρ 2 1/2(1)+ 1/2+ 1/2 1
6

√
5
3 − 1

3
√

15

3/2+ 1/2 1
6

√
5
6 − 1

3
√

30

3/2(1)+ 1/2+ 1/2 1
6

√
5
6 − 1

3
√

30

3/2+ 1/2 1
12

√
5
3 − 1

6
√

15

3/2 1
4

√
5
3 − 1

2
√

15

3/2(2)+ 1/2+ 1/2 −1
2

√
5
6

1√
30

3/2+ 1/2 1
4
√

15
1

2
√

15

3/2 1
4

√
3
5 − 1

2
√

15

5/2(2)+ 1/2+ 1/2 0 1
3

√
1
5

3/2+ 1/2 −3
2

√
1
10

1
3

√
1
10

3/2 −3
2

√
1
15

1√
15

5/2(3)+ 1/2+ 1/2 0 −2
3

√
2
35

3/2+ 1/2 0 −2
3

√
1
35

3/2 0
√

2
105

7/2(3)+ 1/2+ 1/2 0 −
√

2
105

3/2+ 1/2 0 − 1√
105

3/2 0 − 1√
21
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Appendix B

Angular momentum

B.1 Clebsh-Gordan coefficients

The Clebsh-Gordan coefficients are essential in the construction of the heavy baryon wave function.

Here, we use the notation 〈j1j2m1m2|j3m3〉 for the Clebsh-Gordan coefficient. The coefficient is related

to the unitary transformation of state as given by

|j3m3〉 =
∑
m1,m2

〈j1j2m1m2|j3m3〉 |j1m1〉 |j2m2〉 , (B.1)

where 〈j1j2m1m2|j3m3〉 = 0 unless j1 + j2 ≥ j3 ≥ |j1 − j2| and m3 = m1 + m2. Also, the coefficient

has symmetry property as

〈j1j2m1m2|j3m3〉 = (−1)j1+j2−j3 〈j2j1m2m1|j3m3〉 . (B.2)

and orthogonality relation as∑
m1,m2

〈j1j2m1m2|j3m3〉
〈
j1j2m1m2|j′3m′3

〉
= δj3,j′3δm3,m′3

, (B.3)∑
j3,m3

〈j1j2m1m2|j3m3〉
〈
j1j2m

′
1m
′
2|j3m3

〉
= δm1,m′1

δm2,m′2
. (B.4)

The coefficients are also related to the other symbols, such as 3-j symbols

〈j1j2m1m2|j3m3〉 = (−1)j2−j1−m3 ĵ3

(
j1 j2 j3
m1 m2 −m3

)
, (B.5)

which have more symmetry properties such as(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j3 j1
m2 m3 m1

)
=

(
j3 j1 j2
m3 m1 m2

)
(B.6)

= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)
(B.7)

= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)
. (B.8)

Here, we have defined ĵ3 =
√

2j3 + 1. Then, we can construct the 6-j symbols by using the 3-j symbols
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as(
j1 j2 j3
m1 m2 m3

){
j1 j2 j3
l1 l2 l3

}
=

∑
m′1,m

′
2,m
′
3

(−1)l1+l2+l3+m′1+m′2+m′3

(
j1 l2 l3
m1 m′2 −m′3

)
×

(
l1 j2 l3
−m′1 m2 m′3

)(
l1 l2 j3
m′1 −m′2 m3

)
(B.9)

The 6-j symbol have the symmetry properties as given by{
j1 j2 j3
l1 l2 l3

}
=

{
j2 j3 j1
l2 l3 l1

}
=

{
j3 j1 j2
l3 l1 l2

}
=

{
j2 j1 j3
l2 l1 l3

}
=

{
l1 l2 j3
j1 j2 l3

}
(B.10)

Here are some special cases for Clebsh-Gordan coefficients, 3-j and 6-j symbols which are essential in

the calculations as

〈
jj′00|00

〉
= (−1)j

′−j

(
j j′ 0

m −m′ 0

)
=

(−1)j−m√
2j + 1

δmm′δjj′ , (B.11)(
j j 1

m −m 0

)
= (−1)j−m

m√
j(2j + 1)(j + 1)

, (B.12){
j1 j′2 j3
j2 j′1 0

}
= (−1)j1+j2+j3 1√

(2j1 + 1)(2j2 + 1)
δj1j′1δj2j′2 , (B.13){

j1 j2 j3
j2 j1 1

}
= (−1)j1+j2+j3+1

1
2 [j1(j1 + 1) + j2(j2 + 1)− j3(j3 + 1)]√
j1(j1 + 1)(2j1 + 1)j2(j2 + 1)(2j2 + 1)

, (B.14)

In some cases, we need to couple three different angular momenta, j1, j2, and j3. In this case, we

have two choices of coupling:

1. coupling j1 with j2 to form J12, and then coupling J12 with j3,

2. coupling j1 with j3 to form J13, and then coupling J13 with j2.

Two choices of coupling can be related as

∣∣{(j1, j3)J13 , j2}JM
〉

=
∑
J12

(−1)j2+j3+J12+J13 Ĵ12Ĵ13

{
j1 j2 J12

J j3 J13

}∣∣{(j1, j2)J12 , j3}JM
〉
, (B.15)

which follow the 6-j symbols. For the case of the coupling of four angular momenta, we can also write

the similar relation with 9-j symbols as

∣∣{(j1, j3)J13 , (j2, j4)J24}JM
〉

= Ĵ12Ĵ13Ĵ24Ĵ34


j1 j2 J12

j3 j4 J34

J13 J24 J

∣∣{(j1, j2)J12 , (j3, j4)J34}JM
〉
, (B.16)
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We can get the tensor product between two irredicule tensors with the Clebsh-Gordan coefficients

as

[T(k2) ⊗T(k2)](k3)
κ3 =

∑
κ1κ2

〈k1k2κ1κ2|k3κ3〉T (k1)
κ1 T (k2)

κ2 , (B.17)

and reverely we can also express the tensor product as

T (k1)
κ1 T (k2)

κ2 =
∑
k3κ3

〈k1k2κ1κ2|k3κ3〉 [T(k2) ⊗T(k2)](k3)
κ3 . (B.18)

Moreover, the scalar product of two irreducible tensor is given by(
T(k) ·U(k)

)
= (−1)kk̂

[
T(k) ⊗U(k)

](0)

0
=
∑
κ

(−1)κT (k)
κ U

(k)
−κ . (B.19)

These sort of product of two irredicule tensors is crucial in the calculation of wavefunction and am-

plitudes.

In doing the calculation of the transition amplitude, we can use the Wigner-Eckart theorem given

by

〈
JM

∣∣∣T (k)
κ

∣∣∣ J ′M ′〉 = (−1)J−M

(
J k J ′

−M κ M ′

)〈
J
∣∣∣∣∣∣T(k)

∣∣∣∣∣∣ J ′〉 (B.20)

to factor out the 3-j symbol or Clebsh-Gordan coefficients.
〈
J
∣∣∣∣∣∣T(k)

∣∣∣∣∣∣ J ′〉 is called the reduced matrix

element. For the special case, the spherical harmonics, the reduced matrix elements are given by

〈l1 ||YL|| l2〉 = (−1)l1
l̂1 l̂2L̂√

4π

(
l1 L l2
0 0 0

)
, (B.21)

and for the angular momentum operator, we obtain

〈j ||j|| j〉 = ĵ
√
j(j + 1), 〈j ||1|| j〉 = ĵ. (B.22)

and for the spin 1/2 operator, the reduced matrix element is computed as〈
1
2 ||σ||

1
2

〉
=
√

6,
〈

1
2 ||1||

1
2

〉
=
√

2. (B.23)
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B.2 Spherical harmonics

The spherical harmonis are given in Table B.1, which are useful for the quark model calculation.

Table B.1. The spherical harmonics Ylm(θ, φ) for l ≤ 3.

(l,m) Angular representation Spherical representation

(0, 0) +
1√
4π

+
1√
4π

(1, 0) +

√
3

4π

z

r
+

√
3

4π
cos θ

(1,±1) ∓
√

3

8π

1

r
(x± iy) ∓

√
3

8π
sin θe±iφ

(2, 0) +

√
5

16π

1

r2
(2z2 − x2 − y2) +

√
5

16π
(3 cos2 θ − 1)

(2,±1) ∓
√

15

8π

z

r2
(x± iy) ∓

√
15

8π
cos θ sin θe±iφ

(2,±2) +

√
15

32π

1

r2
(x± iy)2 +

√
15

32π
sin2 θe±2iφ

(3, 0) +

√
7

16π

z

r

(
5z2

r2
− 3

)
+

√
7

16π
(5 cos3 θ − 3 cos θ)

(3,±1) ∓
√

21

64π

1

r3

(
4z2 − x2 − y2

)
(x± iy) ∓

√
21

64π
(4 cos2 θ sin θ − sin3θ)e±iφ

(3,±2) +

√
105

32π

z

r3

(
x2 − y2 ± i2xy

)
+

√
105

32π
cos θ sin2 θe±2iφ

(3,±3) ∓
√

35

64π

1

r3

[
(x3 − 3xy2)± i(3x2y − y3)

]
∓
√

15

32π
sin3 θe±3iφ

Finally, a plane wave can be expanded in terms of spherical harmonics as

exp(ik · r) = 4π
∑
l,m

iljl(kr)Ylm(k̂)Y ∗lm(r̂) (B.24)

exp(−ik · r) = 4π
∑
l,m

(−i)ljl(kr)Y ∗lm(k̂)Ylm(r̂) (B.25)

where jl(k, r) represents a spherical Basel function. This plane wave expansion is crucial for calcula-

tions of matrix elements in the quark model.
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Appendix C

Three-body decay amplitude

C.1 Spin transition: l = 1 (p-wave)

C.1.1 Spin 1/2 to 1/2

The Pauli matrices are completely determined by the Clebsh-Gordan coefficients as described by

using Wigner-Eckart theorem as follows

〈
1/2 m′| σλ |1/2 m

〉
=

(
1/2 m 1 λ |1/2 m′

) 〈1/2 || σ ||1/2 〉√
2(1/2) + 1

=
(
1/2 m 1 λ |1/2 m′

) √6√
2〈

1/2 m′| σλ |1/2 m
〉

=
√

3×
(
1/2 m 1 λ |1/2 m′

)
(C.1)

where we have use the reduced matrix elements

〈j || j ||j 〉 =
√
j(2j + 1)(j + 1). (C.2)

For j = 1/2, and j = 1
2σ, we will obtain

〈1/2 || σ ||1/2 〉 = 2 〈1/2 || j ||1/2 〉 =
√

6 (C.3)

If we evaluate Eq. (C.1), we will reproduce the Pauli matrices in spherical coordinate as

σ+ =

(
0 −

√
2

0 0

)
, σ0 =

(
1 0

0 −1

)
, σ− =

(
0 0√
2 0

)
, (C.4)

The cartesian and spherical components of Pauli matrices are related by

σx = − 1√
2

(σ+ − σ−) , (C.5)

σy =
i√
2

(σ+ + σ−) , (C.6)

σz = σ0. (C.7)

The Cartesian components of Pauli matrices are written as

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (C.8)
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C.1.2 Spin 3/2 to 3/2

The Σ matrices are completely determined by the Clebsh-Gordan coefficients as described by using

Wigner-Eckart theorem as follows

〈
3/2 m′|Σλ|3/2 m

〉
=

(
3/2 m 1 λ |3/2 m′

) 〈3/2 || Σ ||3/2 〉√
2(3/2) + 1

=
(
3/2 m 1 λ |3/2 m′

) √60√
4〈

3/2 m′|Σλ|3/2 m
〉

=
√

15×
(
3/2 m 1 λ |3/2 m′

)
(C.9)

where we have use the reduced matrix elements

〈j || j ||j 〉 =
√
j(2j + 1)(j + 1). (C.10)

For j = 1/2, and j = 1
2Σ, we will obtain

〈3/2 || Σ ||3/2 〉 = 2 〈3/2 || S ||3/2 〉 =
√

60 (C.11)

If we evaluate Eq. (C.1), we will reproduce the Σ matrices in spherical coordinate as

Σ+ = − 1√
2


0
√

3 0 0

0 0 2 0

0 0 0
√

3

0 0 0 0

 , Σ− =
1√
2


0 0 0 0√
3 0 0 0

0 2 0 0

0 0
√

3 0

 , Σ0 =


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

 ,(C.12)

C.1.3 Spin 3/2 to 1/2 and vice versa

The matrix element between spin 1/2 and spin 3/2 is given by〈
3/2 m′

∣∣∣ S†λ ∣∣∣ 1/2 m〉 = (1/2 m 1 λ | 3/2 m′). (C.13)

We have used the convention that the reduced matrix element equals 1 meaning that〈
3/2 || S† ||1/2

〉√
2(3/2) + 1

= 1. (C.14)

Then, we have 〈
3/2 || S† ||1/2

〉
=
√

4 (C.15)
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The spin transition matrices can be expressed by

S†+ =
1√
3


√

3 0

0 1

0 0

0 0

 , S†0 =
1√
3


0 0√
2 0

0
√

2

0 0

 , S†− =
1√
3


0 0

0 0

1 0

0
√

3

 . (C.16)

The matrix element between spin 3/2 and spin 1/2 is given by

〈
1/2 m′ | Sλ | 3/2 m

〉
= (3/2 m 1 λ | 1/2 m′)

〈1/2 || S ||3/2 〉√
2(1/2) + 1

= (3/2 m 1 λ | 1/2 m′)

√
4√
2〈

1/2 m′ | Sλ | 3/2 m
〉

=
√

2× (3/2 m 1 λ | 1/2 m′) (C.17)

Then, the spin transition matrices read

S− =
1√
3

( √
3 0 0 0

0 1 0 0

)
, S0 =

1√
3

(
0
√

2 0 0

0 0
√

2 0

)
, S+ =

1√
3

(
0 0 1 0

0 0 0
√

3

)
. (C.18)

If we simply use Clebsh-Gordan coefficient without the reduced matrix element, we will get a slightly

different result by factor
√

2 compared to the one calculated by taking hermitian conjugate directly

Sλ = (S†−λ)† from Eq. (16). The conventional factor
√

2j′ + 1 in denominator is convenient because

the reduced matrix element will not change by interchanging bra and ket, namely,

〈1/2 || S ||3/2 〉 =
〈

3/2 || S† ||1/2
〉
. (C.19)

This is important especially when spin j in bra and ket are different. Please note that we will also use

the reduced matrix element equal to 1 for later calculation.

C.1.4 Spin 5/2 to 3/2 and vice versa

The matrix element between spin 3/2 and spin 5/2 is given by〈
5/2 m′

∣∣∣ T †λ ∣∣∣ 3/2 m〉 = (3/2 m 1 λ | 5/2 m′). (C.20)
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The spin transition matrices are explicitly written by

T †+ =
1√
10



√
10 0 0 0

0
√

6 0 0

0 0
√

3 0

0 0 0 1

0 0 0 0

0 0 0 0


, (C.21)

T †0 =
1√
10



0 0 0 0

2 0 0 0

0
√

6 0 0

0 0
√

6 0

0 0 0 2

0 0 0 0


, (C.22)

T †− =
1√
10



0 0 0 0

0 0 0 0

1 0 0 0

0
√

3 0 0

0 0
√

6 0

0 0 0
√

10


. (C.23)

If we take a hermitian conjugate, we will obtain

T− =
1√
10


√

10 0 0 0 0 0

0
√

6 0 0 0 0

0 0
√

3 0 0 0

0 0 0 1 0 0

 , (C.24)

T0 =
1√
10


0 2 0 0 0 0

0 0
√

6 0 0 0

0 0 0
√

6 0 0

0 0 0 0 2 0

 , (C.25)

T+ =
1√
10


0 0 1 0 0 0

0 0 0
√

3 0 0

0 0 0 0
√

6 0

0 0 0 0 0
√

10

 . (C.26)
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C.1.5 Spin 7/2 to 5/2 and vice versa

For the case of the spin transition from 5/2 to 7/2, the matrices are constructed by〈
7/2 m′

∣∣∣U †λ∣∣∣ 5/2 m〉 =
(
7/2 m 1 λ

∣∣5/2 m′) . (C.27)

which are explicitly given by

U †+ =
1√
21



√
21 0 0 0 0 0

0
√

15 0 0 0 0

0 0
√

10 0 0 0

0 0 0
√

6 0 0

0 0 0 0
√

3 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0


, (C.28)

U †0 =
1√
21



0 0 0 0 0 0√
6 0 0 0 0 0

0
√

10 0 0 0 0

0 0
√

12 0 0 0

0 0 0
√

12 0 0

0 0 0 0
√

10 0

0 0 0 0 0
√

6

0 0 0 0 0 0


, (C.29)

U †− =
1√
21



0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0
√

3 0 0 0 0

0 0
√

6 0 0 0

0 0 0
√

10 0 0

0 0 0 0
√

15 0

0 0 0 0 0
√

21


. (C.30)
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Its hermitian conjugate is given by

U− =
1√
21



√
21 0 0 0 0 0 0 0

0
√

15 0 0 0 0 0 0

0 0
√

10 0 0 0 0 0

0 0 0
√

6 0 0 0 0

0 0 0 0
√

3 0 0 0

0 0 0 0 0 1 0 0


, (C.31)

U0 =
1√
21



0
√

6 0 0 0 0 0 0

0 0
√

10 0 0 0 0 0

0 0 0
√

12 0 0 0 0

0 0 0 0
√

12 0 0 0

0 0 0 0 0
√

10 0 0

0 0 0 0 0 0
√

6 0


, (C.32)

U+ =
1√
21



0 0 1 0 0 0 0 0

0 0 0
√

3 0 0 0 0

0 0 0 0
√

6 0 0 0

0 0 0 0 0
√

10 0 0

0 0 0 0 0 0
√

15 0

0 0 0 0 0 0 0
√

21


. (C.33)

C.2 Spin transition: l = 2 (d-wave)

C.2.1 Spin 3/2 to 3/2

The d-wave transition matrix from spin 3/2 to spin 3/2 is defined by〈
3/2 m′ |Vλ| 3/2 m

〉
=

(
3/2 m 2 λ

∣∣3/2 m′) . (C.34)
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Explicitly, the matrices can be expressed as

V+2 =
1√
5


0 0

√
2 0

0 0 0
√

2

0 0 0 0

0 0 0 0

 , (C.35)

V+1 =
1√
5


0 −

√
2 0 0

0 0 0 0

0 0 0
√

2

0 0 0 0

 , (C.36)

V0 =
1√
5


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 , (C.37)

V−1 =
1√
5


0 0 0 0√
2 0 0 0

0 0 0 0

0 0 −
√

2 0

 , (C.38)

V−2 =
1√
5


0 0 0 0

0 0 0 0√
2 0 0 0

0
√

2 0 0

 , (C.39)
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C.3 Spin transition: l = 3 (f-wave)

C.3.1 Spin 3/2 to 3/2

The f -wave transition matrix from spin 3/2 to spin 3/2 is defined by〈
3/2 m′ |Wλ| 3/2 m

〉
=

(
3/2 m 3 λ

∣∣3/2 m′) . (C.40)

Explicitly, the matrices can be expressed as

W+3 =
1√
7


0 0 0 −2

0 0 0 0

0 0 0 0

0 0 0 0

 , (C.41)

W+2 =
1√
7


0 0

√
2 0

0 0 0 −
√

2

0 0 0 0

0 0 0 0

 , (C.42)

W+1 =
1√
35


0 −2 0 0

0 0 2
√

3 0

0 0 0 −2

0 0 0 0

 , (C.43)

W0 =
1√
35


1 0 0 0

0 −3 0 0

0 0 3 0

0 0 0 −1

 , (C.44)

W−1 =
1√
35


0 0 0 0

2 0 0 0

0 −2
√

3 0

0 0 2 0

 , (C.45)

W−2 =
1√
7


0 0 0 0

0 0 0 0√
2 0 0 0

0 −
√

2 0 0

 , (C.46)

W−3 =
1√
7


0 0 0 0

0 0 0 0

0 0 0 0

2 0 0 0

 , (C.47)
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C.3.2 Spin 5/2 to 3/2 and vice versa

The f -wave transition matrix from spin 3/2 to spin 5/2 is defined by〈
5/2 m′

∣∣∣X†λ∣∣∣ 3/2 m〉 =
(
3/2 m 3 λ

∣∣5/2 m′) . (C.48)

Explicitly, the matrices can be expressed as

X†+3 =
1√
28



0 0
√

15 0

0 0 0 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, (C.49)

X†+2 =
1√
14



0 −
√

5 0 0

0 0 1 0

0 0 0
√

6

0 0 0 0

0 0 0 0

0 0 0 0


, (C.50)

X†+1 =
1√
140



√
15 0 0 0

0 −7 0 0

0 0 −
√

2 0

0 0 0 3
√

6

0 0 0 0

0 0 0 0


, (C.51)

X†0 =
1√
35



0 0 0 0

3 0 0 0

0 −
√

6 0 0

0 0 −
√

6 0

0 0 0 3

0 0 0 0


, (C.52)

X†−1 =
1√
140



0 0 0 0

0 0 0 0

3
√

6 0 0 0

0 −
√

2 0 0

0 0 −7 0

0 0 0
√

15


, (C.53)

153



X†−2 =
1√
14



0 0 0 0

0 0 0 0

0 0 0 0√
6 0 0 0

0 1 0 0

0 0 −
√

5 0


, (C.54)

X†−3 =
1√
28



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3 0 0 0

0
√

15 0 0


, (C.55)

C.4 Amplitudes for various spin and parity assignment

Here we, will show the explicit form of the amplitude for Λ∗c → Λcππ decay.

For Λ∗c(1/2
−), the amplitude is given by

−iT (Σ0
c) = F1 χ

†
Λc

(σ · p2)χΛ∗c (C.56)

−iT (Σ∗0c ) = F2 χ
†
Λc

(S · p2) (S† · p1)(σ · p1)χΛ∗c (C.57)

−iT (Σ++
c ) = F3 χ

†
Λc

(σ · p1)χΛ∗c (C.58)

−iT (Σ∗++
c ) = F4 χ

†
Λc

(S · p1) (S† · p2)(σ · p2)χΛ∗c (C.59)

−iT (Direct) = F5 χ
†
Λc

(σ · (p1 + p2))χΛ∗c (C.60)

For Λ∗b(3/2
−), the amplitude is given by

−iT (Σ0
c) = F1 χ

†
Λc

(σ · p2) (S† · p1)(σ · p1)χΛ∗c (C.61)

−iT (Σ∗0c ) = F2 χ
†
Λc

(S · p2)χΛ∗c (C.62)

−iT (Σ++
c ) = F3 χ

†
Λc

(σ · p1) (S† · p2)(σ · p2)χΛ∗c (C.63)

−iT (Σ∗++
c ) = F4 χ

†
Λc

(S · p1)χΛ∗c (C.64)

−iT (Direct) = F5 χ
†
Λc

(S · (p1 + p2))χΛ∗c (C.65)
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For Λ∗b(1/2
+), the amplitude is given by

−iT (Σ0
c) = F1 χ

†
Λc

(σ · p2) (σ · p1)χΛ∗c (C.66)

−iT (Σ∗0c ) = F2 χ
†
Λc

(S · p2)
(
S† · p1

)
χΛ∗c (C.67)

−iT (Σ++
c ) = F3 χ

†
Λc

(σ · p1) (σ · p2)χΛ∗c (C.68)

−iT (Σ∗++
c ) = F4 χ

†
Λc

(S · p1)
(
S† · p2

)
χΛ∗c (C.69)

−iT (Direct) = F5 χ
†
Λc
χΛ∗b

(C.70)

For Λ∗b(3/2
+), the amplitude is given by

−iT (Σ0
c) = F1 χ

†
Λc

(σ · p2) (S · p1)χΛ∗c (C.71)

−iT (Σ∗0c ) = F2 χ
†
Λc

(S · p2) (Σ · p1)χΛ∗c (C.72)

−iT (Σ++
c ) = F3 χ

†
Λc

(σ · p1) (S · p2)χΛ∗c (C.73)

−iT (Σ∗++
c ) = F4 χ

†
Λc

(S · p1) (Σ · p2)χΛ∗c (C.74)

−iT (Direct) = F5 χ
†
Λc

(S† · (p1 + p2))(σ · (p1 + p2))χΛ∗c (C.75)

For Λ∗c(5/2
−), the amplitude is given by

−iT (Σ0
c) = F1 χ

†
Λc

(σ · p2) (S · p1)(T · p1)χΛ∗c (C.76)

−iT (Σ∗0c ) = F2 χ
†
Λc

(S · p2) (Σ · p1)(T · p1)χΛ∗c (C.77)

−iT (Σ++
c ) = F3 χ

†
Λc

(σ · p1) (S · p2)(T · p2)χΛ∗b
(C.78)

−iT (Σ∗++
c ) = F4 χ

†
Λc

(S · p1) (Σ · p2)(T · p2)χΛ∗c (C.79)

−iT (Direct) = F5 χ
†
Λc

(σ · (p1 + p2))(S · (p1 + p2))(T · (p1 + p2))χΛ∗c (C.80)

For Λ∗c(5/2
+), the amplitude is given by

−iT (Σ0
c) = F1 χ

†
Λc

(σ · p2) (σ · p1) (S · p1) (T · p1)χΛ∗c (C.81)

−iT (Σ∗0c ) = F2 χ
†
Λc

(S · p2) (T · p1)χΛ∗c (C.82)

−iT (Σ++
c ) = F3 χ

†
Λc

(σ · p1) (σ · p2) (S · p2) (T · p2)χΛ∗c (C.83)

−iT (Σ∗++
c ) = F4 χ

†
Λc

(S · p1) (T · p2)χΛ∗c (C.84)

−iT (Direct) = F5 χ
†
Λc

(S · (p1 + p2))(T · (p1 + p2))χΛ∗c (C.85)

We have defined the coupling Fi for each amplitude which consists of the coupling strength and the

Breit-Wigner function for sequential decay. For the cross diagrams, we can also obtain the amplitude

by changing the p1 → p2, p2 → p1, and m23 → m13. The higher partial wave for certain process

is neglected. For example Λ∗c(3/2
−) → Σ∗cπ in D-wave is neglected. It is because the contribution is
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very small compared with that of S-wave.

C.5 Squared amplitudes

For Λ∗c(1/2
−), we only consider Σc sequential process and direct process. Then, we have the

squared amplitude (spin averaged) as

|T1|2 = |F1|2|p2|2 (C.86)

|T2|2 =
1

9
|F2|2|p1|2

(
3(p1 · p2)2 + |p1|2 |p2|2

)
(C.87)

|T3|2 = |F3|2|p1|2 (C.88)

|T4|2 =
1

9
|F4|2|p2|2

(
3(p1 · p2)2 + |p1|2 |p2|2

)
(C.89)

|T5|2 = |F5|2
(
|p1|2 + |p2|2 + 2p1 · p2

)
(C.90)

|T1T ∗2 | =
1

3
F1F

∗
2

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.91)

|T3T ∗4 | =
1

3
F3F

∗
4

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.92)

|T1T ∗4 | =
2

3
F1F

∗
4 (p1 · p2)|p2|2 (C.93)

|T2T ∗3 | =
2

3
F2F

∗
3 (p1 · p2)|p1|2 (C.94)

|T1T ∗3 | = F1F
∗
3 (p1 · p2) (C.95)

|T2T ∗4 | =
1

9
F2F

∗
4 (p1 · p2)

(
9(p1 · p2)2 − 5|p1|2 |p2|2

)
(C.96)

|T1T ∗5 | = F1F
∗
5

(
|p2|2 + p1 · p2

)
(C.97)

|T2T ∗5 | =
1

3
F2F

∗
5

(
2|p1|2(p1 · p2) + 3(p1 · p2)2 − |p1|2 |p2|2

)
(C.98)

|T3T ∗5 | = F3F
∗
5

(
|p1|2 + p1 · p2

)
(C.99)

|T4T ∗5 | =
1

3
F4F

∗
5

(
2|p2|2(p1 · p2) + 3(p1 · p2)2 − |p1|2 |p2|2

)
(C.100)
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For Λ∗b(1/2
+), we only consider Σc and Σ∗c sequential processes. We ignore direct process for the

simplicity. Then, we have the squared amplitude (spin averaged) as

|T1|2 = |F1|2|p1|2|p2|2 (C.101)

|T2|2 =
1

9
|F2|2

(
3(p1 · p2)2 + |p1|2 |p2|2

)
(C.102)

|T3|2 = |F3|2|p1|2|p2|2 (C.103)

|T4|2 =
1

9
|F4|2

(
3(p1 · p2)2 + |p1|2 |p2|2

)
(C.104)

|T5|2 = |F5|2 (C.105)

|T1T ∗2 | =
1

3
F1F

∗
2

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.106)

|T3T ∗4 | =
1

3
F3F

∗
4

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.107)

|T1T ∗4 | =
1

3
F1F

∗
4

(
(p1 · p2)2 + |p1|2 |p2|2

)
(C.108)

|T2T ∗3 | =
1

3
F2F

∗
3

(
(p1 · p2)2 + |p1|2 |p2|2

)
(C.109)

|T1T ∗3 | = F1F
∗
3

(
2(p1 · p2)2 − |p1|2 |p2|2

)
(C.110)

|T2T ∗4 | =
1

9
F2F

∗
4

(
5(p1 · p2)2 − |p1|2 |p2|2

)
(C.111)

|T1T ∗5 | = F1F
∗
5 (p1 · p2) (C.112)

|T3T ∗5 | = F3F
∗
5 (p1 · p2) (C.113)

|T2T ∗5 | =
2

3
F2F

∗
5 (p1 · p2) (C.114)

|T4T ∗5 | =
2

3
F4F

∗
5 (p1 · p2) (C.115)
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For Λ∗c(3/2
−), we consider Σc and Σ∗c sequential processes and direct process. Thus, we have

|T1|2 =
1

3
|F1|2 |p1|4 |p2|2 (C.116)

|T2|2 =
1

3
|F2|2 |p2|2 (C.117)

|T3|2 =
1

3
|F3|2 |p2|4 |p1|2 (C.118)

|T4|2 =
1

3
|F4|2 |p1|2 (C.119)

|T5|2 =
1

3
|F5|2

(
|p1|2 + |p2|2 + 2p1 · p2

)
(C.120)

|T1T ∗2 | =
1

6
F1F

∗
2

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.121)

|T3T ∗4 | =
1

6
F3F

∗
4

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.122)

|T1T ∗4 | =
1

3
F1F

∗
4 |p1|2(p1 · p2) (C.123)

|T2T ∗3 | =
1

3
F2F

∗
3 |p2|2(p1 · p2) (C.124)

|T1T ∗3 | =
1

3
F1F

∗
3

(
3(p1 · p2)2 − 2|p1|2|p2|2

)
(p1 · p2) (C.125)

|T2T ∗4 | =
1

6
F2F

∗
4 p1 · p2 (C.126)

|T1T ∗5 | =
1

2
F1F

∗
5

(
2|p1|2p1 · p2 +

(
3(p1 · p2)2 − 2|p1|2|p2|2

))
(C.127)

|T3T ∗5 | =
1

2
F3F

∗
5

(
2|p2|2p1 · p2 +

(
3(p1 · p2)2 − 2|p1|2|p2|2

))
(C.128)

|T2T ∗5 | =
1

6
F2F

∗
5

(
|p2|2 + p1 · p2

)
(C.129)

|T4T ∗5 | =
1

6
F4F

∗
5

(
|p1|2 + p1 · p2

)
(C.130)
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For Λ∗c(3/2
+), we only consider Σc and Σ∗c , but we ignore direct process.

|T1|2 =
1

3
|F1|2|p1|2|p2|2 (C.131)

|T2|2 =
1

3
|F2|2

(
7|p1|2 |p2|2 − 6(p1 · p2)2

)
(C.132)

|T3|2 =
1

3
|F3|2|p1|2|p2|2 (C.133)

|T4|2 =
1

3
|F4|2

(
7|p1|2 |p2|2 − 6(p1 · p2)2

)
(C.134)

|T5|2 =
1

3
|F5|2

(
|p1|2 + |p2|2 + 2p1 · p2

)2
(C.135)

|T1T ∗2 | =
1

6
F1F

∗
2

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.136)

|T3T ∗4 | =
1

6
F3F

∗
4

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.137)

|T1T ∗4 | =
1

3
F1F

∗
4

(
2|p1|2 |p2|2 − (p1 · p2)2

)
(C.138)

|T2T ∗3 | =
1

3
F2F

∗
3

(
2|p1|2 |p2|2 − (p1 · p2)2

)
(C.139)

|T1T ∗3 | =
1

6
F1F

∗
3

(
(p1 · p2)2 + |p1|2 |p2|2

)
(C.140)

|T2T ∗4 | =
1

9
F2F

∗
4

(
5(p1 · p2)2 − |p1|2 |p2|2

)
(C.141)

|T1T ∗5 | =
1

6
F1F

∗
5

(
2
(
|p1|2 + |p2|2

)
(p1 · p2) + (p1 · p2)2 + 3|p1|2 |p2|2

)
(C.142)

|T2T ∗5 | =
1

6
F2F

∗
5

(
2
(
|p1|2 + |p2|2

)
(p1 · p2) + (p1 · p2)2 + 3|p1|2 |p2|2

)
(C.143)

|T3T ∗5 | =
1

6
F3F

∗
5

(
2
(
|p1|2 + |p2|2

)
(p1 · p2) + (p1 · p2)2 + 3|p1|2 |p2|2

)
(C.144)

|T4T ∗5 | =
1

6
F4F

∗
5

(
2
(
|p1|2 + |p2|2

)
(p1 · p2) + (p1 · p2)2 + 3|p1|2 |p2|2

)
(C.145)
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For Λ∗c(5/2
−), we only consider Σc and Σ∗c and direct process.

|T1|2 =
4

30
|F1|2|p1|4|p2|2 (C.146)

|T2|2 =
1

30
|F2|2 |p1|2

(
19|p1|2 |p2|2 − 15(p1 · p2)2

)
(C.147)

|T3|2 =
4

30
|F3|2|p1|2|p2|4 (C.148)

|T4|2 =
1

30
|F4|2 |p2|2

(
19|p1|2 |p2|2 − 15(p1 · p2)2

)
(C.149)

|T1T ∗2 | =
2

30
F1F

∗
2 |p1|2

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.150)

|T3T ∗4 | =
2

30
F3F

∗
4 |p2|2

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.151)

|T1T ∗4 | =
4

30
F1F

∗
4 (p1 · p2)

(
2|p1|2 |p2|2 − (p1 · p2)2

)
(C.152)

|T2T ∗3 | =
4

30
F2F

∗
3 (p1 · p2)

(
2|p1|2 |p2|2 − (p1 · p2)2

)
(C.153)

|T1T ∗3 | =
2

30
F1F

∗
3 (p1 · p2)

(
(p1 · p2)2 + |p1|2 |p2|2

)
(C.154)

|T2T ∗4 | =
1

30
F2F

∗
4 (p1 · p2)

(
17(p1 · p2)2 − 13|p1|2 |p2|2

)
(C.155)

For Λ∗c(5/2
+), we only consider Σc and Σ∗c and direct process.

|T1|2 =
4

30
|F1|2|p1|6|p2|2 (C.156)

|T2|2 =
1

30
|F2|2

(
3|p1|2 |p2|2 + (p1 · p2)2

)
(C.157)

|T3|2 =
4

30
|F3|2|p1|2|p2|6 (C.158)

|T4|2 =
1

30
|F4|2

(
3|p1|2 |p2|2 + (p1 · p2)2

)
(C.159)

|T1T ∗2 | =
2

30
F1F

∗
2 |p1|2

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.160)

|T3T ∗4 | =
2

30
F3F

∗
4 |p2|2

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.161)

|T1T ∗4 | =
2

30
F1F

∗
4 |p1|2

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.162)

|T2T ∗3 | =
2

30
F2F

∗
3 |p2|2

(
3(p1 · p2)2 − |p1|2 |p2|2

)
(C.163)

|T1T ∗3 | =
2

30
F1F

∗
3

(
|p1|4|p2|4 + (p1 · p2)2(10(p1 · p2)2 − 9|p1|2|p2|2)

)
(C.164)

|T2T ∗4 | =
1

30
F2F

∗
4

(
3(p1 · p2)2 + |p1|2 |p2|2

)
(C.165)
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