|

) <

The University of Osaka
Institutional Knowledge Archive

Title R LEEOBHIRRICEAT 2%

Author(s) | L&, FEN

Citation |KFRKZ, 2020, HEHwX

Version Type|VoR

URL https://doi.org/10.18910/77487

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



G =2 VA

FERLFOEMIERICEAT S

LS BT

2020 &£ 6 B

ABRRFKRFB T

i



BX

F1EF W 1
| B 5 A7) - — 1
1.2 KRBT BR ... 3
1.3 RERIXDIERL . ... 3
BT . 6

F2E BMELEMRZR 8
0 T 8
2.2 BRULBHEOIRR . ... 8
2.3 WM ERERA L .. 10
2.4 BRI R EEET 13

241 CEXZERBLI-GZEOREE. ... ... L. 13
242 SigZxZBLIBEDORAEE. ... 17
T 20
B R . . 21

FIE MELEMRKICRIFTEEREFOM 23
KT T 23
3.2 BBA—RTTA MO BRELBHICRIFTEE . ................. 23
3.3 BRLAEBFEENER LEBMICRIZFTIEE ... 29
34 AMTBHCENRELEMICRIFTESR . ... 32
3.5 EREBMURKEDBEFEMEDELR ... 34
3.6 E B . 43
= N 44

F4E FEI-VIZHBMZAV-HRELEMRZOEREMSET . ... ... 46
O T 46
4.2 SR IEHBEZAVVEREEERTOERE ... 46
4.3 BRULBIEOET ) T 93
4.4 BRIEHEBEER 54

4.4.1 BRI ETIU 54
4.4.2 FBWEHEIEN-OFTHBEE . ... .. 56
4.4.3 BIHOEKRIEDIEE .. 99
4.5 ARIBIMEEERE LEMOIE . ... ... 62



BB U . 68
BOFE BIRLEMNRRZZEL-REBELATPAOSRKREL ............ ... 70
TR P 10
5.2 BIRLEBMUOTHLBREUBBMES ... 70
521 BRLEBUVIHRELELAVEA FOKRERE ... .. 70

5,22 BRERBN ... 13

5.3 BRLICKDERBICHEDTE ... 79
5.3.1 BEABRLEREBRBELADRE ....................... 79

5.3.2 FEMFEMTICK A, ... ... 82

0. d B B 89
BB SRR . . 90
I — 92
6. 1 B E . 92
6.2 SROEREE ... . 94
PORXICEIARERIXE L VOERRMI ... 96
B B 98

i



1.1 AHROER

WRBERMAICE, ALk, B, YRy FOK S GHEHEHRAE®, ®WE,
RNT7V2T, Tyovy—, TL—FREDLSLREPHAE, HE BFOLS
RAENRFRLAGEHMAHS. CNoDEMORARE, BEIE, #E S,
BREF, ZEEHT, NoDRFEORFWMIEZHESIERZLGHATHDH1=D,
ERELENEFEFND.

HREBERAMABDOERELIE KA LTHROREEMEDOHRED 2 2HH
Y, BRICEALTIE, EAZECLTRIEZETS. HAHWE ERFICEAS
AEPT HEFICEZRTTHERLOOZERET SIFENEZAOND. —FA, ME
[CEALTIX, SBEXTRZEZAML, MBEORDZRETD. HHIWIRLEZE
YHEENEZLOND.

I, BRUEBICELTE BANPERRICE O TRBZEELELTDELDICE
MBRBICNEMETHILET, BEFREZALIETVDIOLHE . Ch
HDEBDEZLIE, BANRIZERLLNEES NS, - BBHBROHPICIEE
AICEESEICEENE - [RAHNOBRBEENEL, TOROERLOFEAIS
SO THEBEAMEB - AHNSH, VO IFEARRLOREICLGLEDLHD.
AEME, BEERERAMNICHAT IOBRANKELGY, BRRIET
THEAYTARICE BRSNE-REICHEDIGEENHD. DL DI, ERBHE
DERMGRE BBTFOERRKEZEDLY, RABRRLOREASELSEE
AE RN

HRBERAMRICHEARR LORBENEL S L, REREOHEBELICH
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DTUOIHALFEETST S0, BMDOMKTENRELEILLT S ENHS. C
D=8, EHRBERTROKBMETEEZRODIEICIE, COMKTENEIL
EERTDVENHDSN, TOEOHIZE, BRARRLEDERVIT HOEBIL
HEBERCFET S EARDOND.

ShoDI e, BREINEBROERELICE, ERLEDZRELH
DFFENBH TERICHSH. HEALERROMRNERTIEEE, REIEHD
AEZBEGRETITOCEARBMTH o2V, B&TEICE > TIHAELS
ARRTEELHD. D, BABRRLICKIRBILAZHRIEREMICL-T
FRTHENTENE, REFGOEEREZRLSEDIELEDIC, BRL
TORAEHOBEELICKVICEETHEH/FEINS.

BMRELEBIEAZFATEH=0I2E, F£T, BRANEZBIENEZFRT ILE
AHd. BANKEBGCADTRICHLTIE, B (F—RTF4 ) HhoDH
KREICE>THELSHE =34 b ORASF A b, ILULTUHA L) OFE
DEREZAMEREL, HEBDETITHESIMHEEOELL, ERBHOLEER
ok, ERBUEORLEZEEL-ERMEABELEZA SR - BEMEOERBITAE
PEIINTLE Y BHRELICSODVWTIHBRTDI Y —TE2EERLI-HMRE "L,
BETORIEMHDINEEAZA FOFHEIZEEVITAHAELLEZZRELEZDLD
VONBY, CASICKS>THERBCHDOFARESAMLT HLD0D, EEMHET
@ICIE+7EFERGL. —AT, ERLARICEVWTRRICARBDLNZE
NAELTERISZET, RHADERARICEBEEZRMAELDHEREEAMON
TW3 P COBRRLEBOEMHERIE, SANEFTHELS, BBRAICKST
LELDAIREMELNH S0, BERLEBRADTFRAREZSOHL-HICE, =
DEREZEHLETERLLETNAEGELEL. LALEGAL, COBRRLEDOE
MRREEET HOICE, FTRHEMWICHERZERZL, TOLTEYGER



HXERETOIVLELNHD.
BE, DRICEVLWTRIREZHRIET 526, BRLFEOEMRREZZ, HERE
LEBHEESZ EIZT 5.

1.2 FHROEM

AHAEDOEMIE, HBBEERANGORR LEDKBICHERERCFHET S

128, MRLEMEDAHD=_XLFHLNZIL, ThERBETIHBAXEESR

52LTHD. UTICHMLBIEBEZRY.

(1) BRLBIETOSIR " EMARICLYRRE L EHERERBRMICHERTS
EEBIT, MO CERLUSI ENRRLEHICRIFTEEZTMES 5.

2) LREHBROEFHEZEAT, RELEMBRICRIZTIHZERFEFMEL, €
DHRZEICERLEHVTARVERVTHAEREDOERLETS.

Q) MELEMOHBREMBH LTV, BRLEMLBLUL-BRTHIERE
BHEDAD=ZALIERLBETERYIDI LETRT.

4) ERELEBRRELERV T A EHRESR FEN BT ICHAAA, BEABRRL
o170y 0 BBRAOBRRE LEBGAZFMT ST KBENFE
DEEMEETRT.

1.3 FRX DR

B1ETIE BIEER HREMZRRD.

F2ETIE BEANEM ZHRICER LFEBETOS5RERARZTL,
BARBLUVAREHTOVIAHZAEL, TOUVITHENGHERLIBRETE
CHRBMVTHZTMTS. T, FMISCEZEELMEEZARICSIK
SIEMEREREITL, FNMTSCEDEVVIRER LBV T HICRIZTEEEHR



IS SoITHEMT S5 EXEELSELMEMERRICAKOAERZITL, &
my5Si EOEVIAERLEMVTAICRIFTIHEZTMIT 5.

%3 ETH, HEANMEMENRICERRZERZEALLYTEOREZTY,
BBA—RXTH4A4 +EBREL, 1 ETRLEERAZTHRELERVTAZ
AEL, BBA—RXATFHA IABERLEBEICREIEZEZRETS. YT
FTOVEBROBFEANBMZRRICREEREEZEATHERLZTL, REBET
DHRRELEMVOTAZREL, RERENAFER LERICREIZEEZRDS.
SB[ CE 0. 00IwthDIBIERFME RN RIC LR ERRICHER LEHO T HZ A
EL, H#IZHmYT 5 C ENRRLEMICRFTTHELZTET 5. &KIZ, L
CCRON-EBRBERZEICHER LER VT HICREIRERFEREL, &

ouf

BRFEZNTA—FELTHRLEBVSTHRUVERV T AREDERILZIT
5. EHKbIZH1=> TIZ, Greenwood-Johnson NIRRT S EREBVHIRED A h=
ALZEREL, TREMRRLEDOHELUMEERT.

5 4 ETIE, 5 3 ETIRE LTz Greenwood-Johnson M A h =X LAY, BERL
BHBEKTRYIDILZIMT S50, RRELEBETELLIRBELELEERE
LE-@ET7—UIEBFFD ZAV-REREMBFZTI. 5 BEOLEEE
MEMRELEBREBEBITESEICHRLEBEROEREZTL, RIZHERL
hDRIEYMOEEEEET D10, 7354~ £AVEA L, ILTUYA
fD 3 HEBRELEBERLBEDET U/ %175, |R&RIC, LEETILES
RICEREBMRITZITL, BRLEOKBIEEBRRE LEMV T HZTMEL,
Greenwood-Johnson A A= X LHAKYIDI & %KY .

5 ETIE BRRELEBEAFBA~DOERMEEARFEOZLARET TN TNR
SET B71=8, £3 Greenwood-Johnson A W= X LZRELER LEEVTH
DEAXEEEL, EROBEREZEE L-BINFEICHEAAT. RIZ, BT



maL=-7 0y EHBREHRELT, RBOAZAES S &ERIC, EiETJO
VIOABRARZERRICHERLEEZER LI FENBEITZITL, RBIC N ZEF@E L,
EREREHEBIESIETETIORLEEIRIET 5.

EO6ETIE, FB2ENCESETHONEHERERET S,
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2.1 #

BANBMZHRERITERETE, BRIEALYNSGHRISHZMA D EIGT
DERARICEEERNELS. COBRRLICETINZFEHTHLIRERLE
MRRIE, TORRITOVTEHERIATNSE—HF"?, EBRMICCOEHZER
FLIBRIE DY,

uj

ZITAETHE, BRELEMZERMICHERET D70, sERFLFEREEAH
TTHEANSIAE-HBEAZRRELEZBEOUVTAHZAEL, BFKEEEARTIK
BOVITHDENELHGBHVOIHZFTMLI. Ff-, CELSI EZXA
AEBRAERAVTHEEIZEIREREHABREZTL, CEPLSI ENEVABHRVLTH
[CRIFTEEIZDONTHET L=

2.2 MRLEEORRH

BRLEMRRE, EEZEICEHESHEBELOBRETEFNIIND EEBHEE
BHAELDHZ &b, EREMBRRLBLLTINS.

TEEBMIL, HMOBANS THEICHETENAE LB, BRIEALY/NE
WAEBRAZMA D EIENDERARICEEERISELLIBEETHS. DX
REMBRRE, BENSHE~OHEERNE LIS, 2 DOHEOBEOAKREVT
AIZE>THRETDIRMIENE, NEILALMZoNBIENEDERIZEL > TH]
EFH Z SN B Greenwood-Johnson A H =X LY ELTETIVMESA TS, LT

¢

TlE, BHEZA—XTFA b+, FMHRZILT OV FERELIZEEDERE



MDADZXLZEHRAT S, Fig. 2.1 [TRIHFBELTILOEXE &L Y BHEBEED
hTHEANEET 5L, FHEFBHEEENTEENNS VO OFKRT S Y. O
DEE, AN LEIR/EMCANERSND L, FHRLY LBRRIIMELEHE
TIEABEHEEESNBEERAELS.
EEADZIALERRELBRICHTEHTEASE, BRLBETIE, BAT
VT oY A MERiIN G, RIEM (AR MATEHESH, BRYILTOHA
FEBICED. CDEE, EAVEA MATHLEABRDOTIILT YA MER
FEBRRNEA A FORRICHEESNDT=®, 754 MEBICELET
EEBZLNS. CDH, BEETILTUYA L~ FHEEEAVE2A4 G
DETSAMEME) ERELIZEE, FIBELIIEFig 22ISRTEILKR
XHEL D Fig 2.2 KYBMHEMBEICIE, #HE 1 EZOBBEICHE 2 SRS
NCEFHEL 2R T AL HETEFAE2 LR TEEMNNS N OREL Y,
SOICHFHE2 FBELENTEENKRE VLV -OWMET S Y. ZoLE, sEn
SEIR/EMESANERI END &, BHECHE 1 LY LRRSHMENEE 2 TR
REISHEEESHh, BEERAELDHLIZHD.

Fig. 2.1 Overview of volume change in phase transformation.
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248 1 82 g

Fig. 2.2 Overview of volume change in tempering.

2.3 HEMLEARTGE

AEI CEBAL =R L B BRR ERBMIFHE S 670, BRKEALY /NS
B—EWNZET LE-RKELEEFREOETNENITOVWTHE LALEZIT-
T, BERLEBHOITHZAE L. #HEMIE Table 2.1 OWMHIMEEZFD C
£ 0.32wth, Si & 0. wthDHEBBERESEMEN—XIZ, C EZ 0.5wthe&
0.8wthiCIEL L=3MEDHMMTH Y, HEBEAMIREFig. 2.3 (@) &£ () IZRT.

BIEREBRICIIEREM VT HREICAVON-HAREE %, EMHARICITE
TERIHE Thermec mastor_z E7)L FINP-6 U=, HEDOEREL, &
BREREPODEICARY MAETHELLRERICK - TAELE. O HE
AEERRBRTEL—F—EMFICE > THBRAEROELTATEL, BHE
BTORB-—EOFHENARARDVTAHITHBE L. 5I5RERTIE, Fig
2412 RT &S50, HEBRAAIEIC14.5 mERCEL-EMAER Y K% 14.2N
DERATHLET, Oy FEROZLZEZREFTEERRFRAZE S Y

10



AXSEREMETAEL. ZRAIEAQY FIZIXKERIMmO7ILEFHEZRAL,
HREBRAAE LSBT AAMEmMT—/A—MI Lz, %46, 5IRAERF OFEHEIS
(FHAEZESTHMUIBIEFORBE Lz, BREICENIZEZHEILACLEDL
HERFEOY FRIGEDITRYIEELGA, o=, MBAAEISIRFARTIIERE
BEMBTHY, RS 200mm OFER FEIHDZ N ZH 35mm OFEEICEEBEHT
5. Li=p>oT, HAEREBHILR S 130mm DEHE & 425 A, HERF P RES 50mm 0
gFETHR SN, HBRROBIRENA-—ETHASIZLEHRL TS, EMEAR
DOMEEHEEMBATITL, HBRALERERETHDI7 U EIL L OMICHEER
ELTESO0.2mOEBRZEHEALL.

ABRSE(X, Fig. 2.5 & Table 2.2 12 R K512, F£9 1173K £ T 50K/s D
RETMEL (@), 30 BEFREFLAER(Q)ITEEET 30K/s DEETREA LG
ANT 5(@). RIZ, Table2. 3ITRYEHICT, BBRAIC—ELNEERL
KETTIIBKETIK/s DEETMRLTHRRELZ(@). TD#, 30 WRELE
®O®)ICKREL, BEFTIK/sDEETAHNLE®).

Table 2.1  Mechanical property of the specimen.
(Carbon 0.32wt%, Silicon 0.3wt%, JIS14A tension test piece)

0.2% proof stress | Tensile strength | Elongation | Reduction of Area
[MPa] [MPa] [%] [%]
803 935 23.7 69.8

11



Uniformly—heﬂxd—area <« 50 ,_— Gage length

i

(a) Tension test

. AVAVAA ,
Uniformly-heated-area 7
\ @_ - CD_ -
‘S
Eage Iengtl;l

(b) Compression test
Fig. 2.3 Shape and size of specimen.

Differential
transformer—w—_
] 0% |
Gage Iength/ N I
000 @

145

Fig. 2.4 Differential transformer type high temperature displacement meter.

Temperature
[K] ©
1173 4 G

»

773

)))

298

Quenching Tempering

Fig. 2.5 Heat treatment.
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Table 2.2 Heat treatment conditions.
condition value
(DHeating rate | 50 [K/s]
@Holding time | 30 [sec]
®@Cooling rate | 30 [K/s]
@Hearing rate 1 [K/s]
®Holding time | 30 [sec]
®cCooling rate 1 [K/s]

Table 2.3 Applied stress conditions during tempering.
A B C D E F G

Applied  Stress
[MPa]

300 | 200 | 100 | 50 0 -200 | -300

2.4 BRERLER

241 CEZZXELI-HEDHER

CE 0. 2wthDMBOBER L FRBRERICHITBEELVTHOEFEEFig 2.6
[ZRY. MEOVT AL, BEHCTRTEEICEELLZFATAEINZVTH
o, BRTHABMBICHRELEZEEHVTHZBROTGRLTVS. 48, K
FDAMDS GIE Table 2.3 DELZARGADEEZRLTINS. BEDHEM
EEBITVUTEIFETLEEVDTAIIIEMT M, BERETOVYUTEIIHL
TI3K TOY VT HIF0.83 ERRETHY 7, EERTOVYUIEE 2056Pa & Th
(£, 300MPa D3I EMICATEVY U T EETIZLDVTADEHRETSA
2.4x10"EETHLIDT, YOV RDBEKRGFHEOZEILE|E L TEELL:.
Fig. 2.6 d, 2RBEHICEVTEEDLR L LLICRVTHNREL, &
SHIZIGHERBTEHEATRN (R4 E ERR) SEVTHLELGY, 5I5RM]
FEMAELICBEOTHADREELTVD I NS BRARNKORRERL

13



BEFORBRIEREOENERLEMHVTHTHS. 4, TIKITEER 30 7
R L= AMREEROP TOTAZEIE, 300WPa BHDIBET1x10%, F4
HEFRRELBHOTA5X10°D 2EEETHS.

BRREURE 113K ITET5RELEHVIALA/ENEDERE Fig. 2.7
[ZRY. EdICE, BFEAHZE x MPal, BHUITAZ v & LEBEOEUKXZ6H
EL7=. 300MPa ETHEMEAITH L TERLBHEVOTAHERICEML, &
mygdCENSVMEIEE, KELGERVITANHKETSH. £, ERIGAT
KYLBIRIEATOANERIGAHICHT H2EHVTHDORERENTVERN
"Font.

DFIZ, MERLMEAMZ, BERHATLELNS Table 2.2 [TRITODE
HTHRALI-LEEDEELVTHOEFREFig. 28R Y. —BERINHR
BAZEMABLIGSE, 713K TO 30 WEAKRFICELWTHLHRANM ZHE L =R
[CRONE-BURREIRREITRVTAOANRELET L. CDOZ b, T1K
FTOBRRLIZKZVTAELIFY ) —TTHELEL, BHRELBEBICEVLTHE
AEIZELCHEIED, RRLEGZRECIERTHDIEHESINDS. T, &
Me3CEASVHHMIFERRLBUABETHEIZEND, BATLTUY
A DO ODREVOMEHEBRENCDERE L TEALONS. 4, ERICH
W=EMTEESEMTHY, RIEMERTRELTM, Cr, Mo ZHEIZTEA
TW5. EAVEA FFel)Icmz, LRERMERTRORIEMEET LSO TRILHE
CCZTIEHLTLS.

Fig. 2.7 ICEWTHESIREABROANEBERCHNERFLIYERELE
HOTHDERERENS L Lo-EBRAUTOESICEZALNS. RiEYWEL
T, BlZIEEALEA FFeQ)ZRRELTERZDZEITTS. TIK 2815
AR A FBEL, Jablonka 5 DEEREFR Y ZRALVNIE, CE 0. 32wthdHf

14



FHDZE, 1575kg/m* LEESINDS. COMBOTILT YA MAKO 773K I
BIT2EERL, SEXHD ICRBOHEXEA D &, 760bkg/m THY, 4 A
VA FOWHICE > TRBRRANHESNIIILT oA MBI GHhb D
oA MEBO TTIK DEERFSEXH D (CRBOFHEXLEALS & TT13ke/m’
ERBLoND. BHEBO TTIKICETA2BEZELEDHDHEFig 2.9 £45.
Fig. 2.9 &Y, BIETEHREAL-RAY, BMIILT oA MABERSND &I
£2oT, 754 MEABOERIEIZILT YA MEBE Y LEENKREL, &
BT L EBIC, EAVEA MAMEHT HEEHEI IS4 MEBEY £
BENNESL, FENEERI S EICHESD. D=, 754 MMERICIESI
BRISANELBETTHS. 72534 FRIZELLZRANEIRIENTHS=8
2, EMIEATEYLEERIEATOAVNRR LEMVTAHADRERENE K
2DEEZLND.

0014 T5A" 300MPa Plastic Strain
0.012 { +B: 200MPa ) (Tensile Side)
001 H OC: 100MPa

XD : 50MPa
0008 ;| OE: OMPa

0.006 Il %X F : -200MPa
A G : -300MPa

Strain [-]

BN

Plastic Strain

0.004
0.002

273 373 473 973 673 773

Temperature [K]
Fig. 2.6 Temperature-strain diagram (carbon 0.32wt%).
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0.01 -

@D y=3.13x105x
0.008 ® y=2.25x10"°x
0006 3 y=1.75%X10"x
0004 @ y= 7.11X10_6X
® y=1.06x105x

©OE

Plastic Strain [-]

0002 I @) y=1.32x10%
0 |-
002 | @ ©Carbon 0. 32wt%
' ® OCarbon 0.5 wt%
-0.004 ® OCarbon 0.8 wt%
-0.006 L : L L L L .

—-400 -300 -200 -100 O 100 200 300 400
Applied Stress [MPa]

Fig. 2.7 Relationships between applied stress and plastic strain
at tempering temperature of 773K

1 OA : 300MPa
0012 H +B: 200MPa
0o1 H ©C: 100MPa
0 XD : 50MPa
£ 0008 Il £ . omPa
& 0006 | XF : -200MPa
0.004 H AG : -300MPa
0.002
0

273 373 473 573 673 773
Temperature [K]
Fig. 2.8 Temperature-strain diagram of tempered specimen.

7750

7700

7650

7600

Density [kg/m3]

7550

7500
Cementite Martensite Ferrite

Fig. 2.9 Density of microstructure at 773K
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2.4.2 Si EEXELEBHEAEDHER

RIEMNER LBHOSTHICEZ DR EETMI 5=, 2.4 1 THWV=3H
BOMHBER—RIZSI EZ2.00FTHRML, 2.4.1 LREORAERZITL, KR
LEBUHUOSHEEL. Si ZRMLUEERIZ SiE0EMICEL->T, BREL
FFICRAEMAME T 2 EEDOTREASEAIZCTI L, RLERLEETDH
RIEMDITEHEN DG LGE I EN—RMICHONTLENSTHD . C 2
0.8wth, Si = 0.3wthd#t¥ & C & 0.8wth, Si E 2. OwthD M B DHEE D
FE-SEM(BER WA EEEBFHEME)ICLSFEEZ Fig. 210 [2577. KK
(a), b)[%, 573K TOHE LA, (o), (d)IF, 673K TOBRLBBEEZEZEN TN
SALTWS. AEKYBRRLUEREMNSIK DEHEEE, MM EBITRIEMDTH
FHITHNTHD. 613K DFZETIE, Si E 0. WthDAMBIZIXRALYDITELNZH
Rondnlzxl, SiE2 wthdMHE TORIEYOITEEFIFH SN TS,
RLEBRBEICETSH CE0.32wth, Si E 2. OwthDMBDEE LV T ADE R
ZFig. 211179, Fig. 2.6 LRI, MOV HIE, WHARFHICLSD
HEVOTAZROTVS. ARLYBRRLEEOEME EHITERLEMHVY
AHIEFRETHHLDD, Fig. 2.6 LR, BREOTADEIINESN EBDHN D,

BRLEE 713K TOHRRLEMVTALARCHOERZ, Si & 0.3wthé
2.0wthDIFE THEL Fig. 2.12(12Rd. HHICIE, BFIIGHZ x [MPa], #Bit
VHZ yELEFHOEUXZHELZ. ChonfERMND, Si E 2. 0wthD#
HEVITNhE, 0. WthDOMBITERTHRRE LEHVTHNNS N EADM S,
ChiF, Si EFEOTEITLY, BE SI3~TIK HETHE SN S RIEYN
Mlcn=CENFERTHLSEHEEESNS. ThabhE, BRELEBMHRRIE, B
RLBETERT SRIEME, TORAOTILT oS4 ML 54 M
BORIBBEISERT 2 AFEHICE DI LM S.

17



(a)Silicon 0.3% Martensite
Tempered at 573K

Fig. 2.10 SEM photos on cross sections of specimens (carbon 0.8%) :
(@),(b) tempered at 573K, (c),(d) tempered at 673K (Matrix).
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Plastic Strain
(Tensile Side)

0014 ™5 A~ 300MPa

0012 H +B: 200MPa

001 || ©C: 100MPa J
- XD : 50MPa =t
20008 B oE: OMPa o
S 0006 | XF:-200MPa i
n AG : -300MP AN

0.004 a A
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Fig. 2.11 Temperature-strain diagram(carbon 0.32wt%, silicon2.0wt%).
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Fig. 2.12 Comparison of plastic strain between
silicon0.3wt% and 2.0wt% specimen.
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BA—RTTALORRICHELITSM bEEAVE A FOEGHEBOERKIC
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AETIE, HBBERESEMZEZRMRIC, BANLEEBRAIC—EDSIRSG
hzQFRmLERETHRELT, BREABICHERURE BRI HOBEEKRE
EERMICIAET S, COLEFREBRETRD 3 2OEH, OBANEZOYITERQ
niE, QBRRLHOFEREENER, OBERRMOEATENENITLY, B
RLEOHRERLIZRIEFIZERFTHIREYOMHOERES—XTFHA b
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WE. COERBF—RATFTA IABRRELEEICRIFIEZEZTES 57=0, Al
ETAWV: 3 EEZRRICEANVEBERICRAZERZF > THIEONEE
L, BRLBPOUVTAZEFELI. ST, $7E00NELIL 27K LLTDIE
EIZAEHT L280ETHY, RARELITEEN, BANERLERET LEREL
—RATTA bEeBRETHNETHS. Fig. 3.1 & Table 3.1 IZRT LIS, &
9 1173K FT 50K/s mEETHMEL (D), 30 BRARFLEZR(Q)ICEEFET
30K/s DERETRALBEANT S (@). RITERFZERT TIK FTR2AL, 305
R L1=1%& (@), Table3. 1ISRYEHIZT, ABRFIT—EDRFRNZEMR
FAREBTTIIKET IK/s ORETMRLTHRELE(B). T0#&k, 30 #EERE
LI-RICBRFEIL (®), BERETIK/s DERETHELT= (D).

Temperature
[K] @
A
1173 F----- <

| A3
77355_?_;______45___\__‘ _____________________ ;
a1 @/ ! : \

208 Wi N\ R
0 @ Time
[0 B [sec]

Quenching Sub-zero treating ' Tempering

Fig. 3.1 Heat treatment with sub-zero treating.

Table 3.1 Heat treatment conditions.

condition value
(DHeating rate | 50 [K/s]
(@Holding time | 30 [sec]
Cooling rate | 30 [K/s]
@Holding time | 30 [min]
B®Hearing rate | 1 [K/s]
®Holding time | 30 [sec]
@Cooling rate | 1 [K/s]
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BMANLE-ERICH T EONEBZT &M (LT, YT7E€0MERE) &
BEANTZDOEMAM (UT, AsQ # &R DEBA—XTF4A hEZ Fig. 3.2
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WE—Y DEDRE, Rogun Ry TBHEOBEITK T HEREHT X #RE—
DRE, nlIILToHA MBEF—RT A MEOEOHEM, V, VIEEHED
HHETHS. SEDOFHETHW L. Ly Z Table 3.2 12, Ry, Ry
# Table 3.31ZRY. TCT, Ry Ryquinnld, —T 70 £ ADEERE
EF—A2 R—2R Crystallography Open Database (COD) ¥ & Y ER#& L =& D&
RIEREEIC, BT - REBEOHEHNY I Loz T VESTAZAWTEHELL-.

Fig. 3.2 &Y, ¥7EOMIEI ASQ M ELERTHEREBA—XTFHA4 FBRELLT
WbI EMbMD. Ff-, HMTSH C ENZVEMTE, BEF—XTFH4M4+
EDFVLENKREN EHADOMNS.

30

B Without sub-zero treatment
B With sub-zero treatment
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= = N
o (6] o
T T T
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(03]

o

0.32 0.5 0.8
. Carbon [mass %] .
Fig. 3.2 Volume fraction of Retained Austenite.
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Table 3.2 Integrated strength Iy (piry and I, piinnby X-ray diffraction

Martensite  (hkl) plane Austenite ¥ (W'K'I') plane
a(110) a(200) a(211) Y (111) 7 (200) 7 (220)
. Carbon 0.32wt% 224209 28159 58516 2352 2024 904
su\l:l)\ﬁi:ro Carbon 0.5wt% 224347 28728 59763 2268 1395 696
Carbon 0.8wt% 215564 22586 54890 3993 4953 2801
. Carbon 0.32wt% 222196 26415 56312 2335 2233 1125
svl_illl)t?:::o Carbon 0.5wt% 206781 30934 52192 2824 4294 2637
Carbon 0.8wt% 175714 26007 44500 36529 17011 9298

Table 3.3 Theoretical intensity Ryniy and Ry ik

Martensite « (hkl) plane Austenaite 7 (h'k'l") plane
a(110) a (200) a(211) r(11) v (200) ¥ (220)
100 15.9 29.2 73.9 35.5 20.8

HIEAME LW ASQ M DOEEFIKEE L 300MPa BFEREBICE ITHRELAR
BRETORELVTHDEEFZEE Fig. 3.312RF. ARKY CE0. 5wtk 0. 8wtk
D AsQ #M(E, $TEOMELERT, VFABKREVNI ELDbNE. HTEO#M
E ASQ HOEEFKEBICETARRELARBETORELRE LBV TAD
B&#%Fig. 3.4I12R9. 22T, BRLIBUVITAXEEFTOFHTOERR
LREICx LT Fig. 3.3 IZRIVT AN, Fig. 2.8 IT—HlERLI-ED
THEBRWTRLTWS. $JE0O#ME AsQ MOBFKREICKITSBRRE LSRR
BETOREEHERLEMVIHDOBEFZEEFig. 3.5I2FRY. 22T, BRELE
HOTHEIERNEETOERELEEICR LT Fig. 3.30)IZRTVTHAMDL,
Fig. .4 ITRTBRELIBUO T A& Fig. 28 ITRTBVTHERVTRLTL
%.

Fig. 3.4 &Y, C£0.32wthDMMH(IHY T L ONEBOERT, IV AIEIF
EAEEDLLIEL. ZhizxL, CE0. 5wth, 0.8wthdH T ERO#I(E, AsQ#f &
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FELERELTETFONSD, Fig. 3.5 &Y, BBA—XTFH414 FOFEIC
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F—RTHA4 FORRIZEHERBUNRER LERICRETEEFIEH TS
W=, ZERUVTAHANBEUOTAICRIFITHELFEALELBNEEZEZOND.
BRLUEE 713K [CEFTHRRELERVTALARFmG N EDERE Fig. 3.6
[ZRY. EAIZE, YTEOMOaRmEN%E x [WPa], BEVITAZyY & LR
DEBXZEHEL L=, 300MPa ETHARFAICH LT, BRELEBHOTAHETY
TEONEBEITOTVEMES ERRICIERICEML, AUXOIED (FIFE
LW, COTENLEBA—RTTHA FOBEICE->T, BRLAICHT 56
RLEMHUVTAHOBEREEDLLLGEWNI EALMND.
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Fig. 3.7 Temperature-Tempered shrinkage strain diagram
of tempered specimen with modified heating rate.
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Fig. 3.8 Mass of Cementite with modified heating rate.
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CNETORBRBERNS, BELEMVT AT, MHICHEMT S C ELixit
MOMHEEICE>TELET S LA DLMN oz, CORTHEFAT, LHEEMIR
REDELUMEZREL, EREMHFEHICHETIHELEEHRRICE IT58H
BRBOEHEHAT-.

TREMRRE, HEEBNETLTVESIRFPICENEZZITESE, BREAE
YINERRIENTH>THEMRERINELSIBRERTHS. BHELOHE~ADIEL
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HHEANDEREREILT DL, SCEDETICELDZEREHVT AL,
Deasalos MIRERX Y ) =¢R -HZAVLVTRATRENS.

e"P=Krp@(§)o = Krpé(2 — §)o = 2Krp §(1 — g)a (3.1)

CCT, KpplSZREBUFRHETEINDE. CDEE BB AcEZRELAsTE
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gTPZZKTF%'(l_ );S=3KTFE(1—E)S (33)

X QI DFHEMAELY, LT HE, TREMHVITHDEREEL L TRAH
% = *L%) 2),3),10>.

N\

éiTjP = 3K7rr(1 - f)ésij 3.4)

HR LBHRRIE, BHETHIMATILT O, b SEARRFENMRITHEL,
TILTUoHA MDUEET D EICMAT, FHETHI AR A FHHHT S
CETHBUOTHNELSD. TNICE>TELIRERAICHNZEATTSH
ETEMERNELD. COBMERIE BHELEFHED S EBREHDENE
HMTHAITILTUYA FHARATREL, COBHEOHTHEHRE LEzREDDE
ETEDPMICEBRFNIRGFEHLEZTILTOYAS METELD EEZEZ DN DS.
CDIEND, BRLEBMUOTHPIZTDONT, TREKVTHERED A H
ZXLMRETE, KB DZEAVTRADKLSITKRT.

$o(T)
=)o (3.5)

P = 2KrSo(T)(1 —
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2§p(T)(1 —

& ST))“ (3.6)

hE&Y, BRLEMERBK ZRET DEICE, A2 A4 FOKREDERE(T)
ERODVBENHS.

BRANBOTILTUOHAS FOBEEZM L L, BEEREQOREIBERERFICE
BINTWSELDETHE, BET THERLULERIZE, LTS EhoFE
MEIZACT) WEhDRENTHEL, EA V2 A FAEBEINE. EAV2 A b
[CBEENDIRBDHREEZMET HE, ChIFBHLERRELRLTHY,
UTOXTEREINS.

_4C(T)

= 3.1
%100 3.7

AV FRIZCEDIRFDEEESIE, MELIZEAVEA FOREEZE
M9 b

Mg C 12.01

M, ~ Fe,C_ 55485x3+12.01 0669 (3.8)
LY, M, BUTORXTESLS.
My  AC(T)
= = 3.9
Mo= 50669 6.69 (3.9)

CCT, BAVAA NDEEZp ETEHE, EAVAA FOERBVJIEILUTO &
SlTREIND.

My, AC(T)M
Vy= 7= 6.695°(T) (3.10)

Ft, €AV FOBEEXFIUTOXZANS .
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p?(T) =7686.45 — 6.6381072 7 — 3.12810~4T2 @.11)

—hH, AL FOFHICTHENACT)DRENEESIN=IILTUOHAS LD
BEIIM -—MERLRBDT, INTUoHA CNDEEEpMET D EARTEVJIILUTD

XTRSND.

AC(T)
M-My,_ (1-—gegIM (3.12)

V= =
M7 pM T pM(Gy — AC(T), T)

CIT, YILTFUoHA FOFERXRIUTOXERNS 2.

PM (G T)=pr(T) + (—152.3 + 6.790) C+ pgup” (T) (3.13)

pre®(T) [XBETICHITHHEBEE, p,,, 5 (T) FBEICRIEZTRIRLUNDEETT
FOEEERT. LEKY, AV FOBFRBIRDIE, KXG.10) &R

Toa

BI)MEUTOESIZREINS.
$o(T) = -
ATy +V 09 (T) 6.69 314
e pM(Cy — AKT),T) (AC(T) D+1 o1

FROERBHRE (T EEHRT B=OI2IE, REEBEBACTZRTET HLELDH

5. F_T, BEIYILT YA FOFHMLBEEZEZp™(6,AC(T),T) £$5&,

LGB 10)EXB IV SESAUIEICEHABFEEFIUTOXTRIND.

M (G AC(T), T)= o = .
' TV (6.69 — 4C(T)) 4C(T) (3.15)
6.69p"(Co — AC(D),T) T 6.690°(T)

Li=hoT, BEEDHINLEESNDIBRRELEDOVT APPE, BRTRIZHIT
BBEARIVT YA FDKEEY,, ERETICEITARRERILT VYA FORKIR
ZV, LT, MEOEBEENORATRIND
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M

3|V, +Y, 1™ (C,, AC(T), T
P8 (G, AC(T),T) = / £ = p( oM( LT
pM(CO'TR)

(3.16)

_ 3 pM(COiTR) _
— P™(G,AC(T),T)

UEDZ EMD, Fig 3.3(a) DEEFIKEDRET-U T HLBREOERN 15
b B MNPl & —BT DRFRBREACT)HH 3.11), (3.13), (3.15), 3. 16) i 5
RIESN, RESR(T)DHEESND.

£ % S00CICHERLEBIZEA V2 A FOMETHEHELERRREE
AC(T73K) A A A FDARTERFEEN(773K) % Table 3.4 ITRY. Ffz, BE
LEBELEAVAA FORBEREL(T)DBEZR%E Fig. 3.13 IZRF. Fig. 3.13
&Y, MRUBET ZxKl, EAVE A FORBEAIRE(T)Ey & LI-FF, LT
DEEXNBENS.

D CE0.32thDIBE - \
y =—1.45x*x102+2.92x*°x10°—2.03x*x10°+5.99xx10* —6.41x10
@ CE0.5wthDIBE -
(3.17)
y= 9.37x*x10M—8.47x*x10°+1.25x*x10"° —5.18xx10™*+6.41x10™

@ C=0.8wthDIFE :

y= 1.02x*x10™"2+1.56x°x10°—6.87x*x107+2.42xx10™* — 4.58x10™ /

Table 3.4 Mass of Carbon and Volume fraction of Tempered Martensite.

Carbon | Carbon Carbon Carbon

0.001% | 0.32% 0.5% 0.8%
AC(773K) 0% 0.108% | 0.359% 0.555%
Eo0(773K) 0 0.016 0.054 0.083
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0.1

oCarbon 0. 32wt%
mCarbon 0.5 wt%
®Carbon 0.8 wt%

0.08 r

0.06

0.04

0.02 LD

Volume fraction of cementite &4T)

0

273 373 473 573 673 773
Temperature 7'[K]

Fig. 3.13 Relationships between temperature and
volume fraction of cementite

Fig. 3.13 TRLEBRLEELEEA VA A FOREIR(T)DEMR
(3.17), Fig. 3.6 TRLI-BRIE N EER LEHV T HLPOBEGRN S, KM
DBRRLEHRBK, ZRO-$ER%E Fig. 3.14ITRY. C £ 0. 32wth M DB
R UEBE 3K DK, 1E, Eo(B73KMIFZEOTHY, HMDELLERTEHBHTKSE
HELHEST-DT, F5I700EBMA L. ARKY, BRLEHREK DOE
[, 1x10"H55x10"DHEANTHSD Z LhHM o1z,

8
% &Carbon 0. 32wt%
< = mCarbon 0.5 wt%
=< 6 {{®Carbon 0.8 wth
o5
a5 4
E -
2 .i. 4 | ¢ * ¢
[t
S8 o | u I
£ 2 m " 9
g s o ©®
O
0

273 373 473 573 673 773
Temperature [K]

Fig. 3.14 Relationships between temperature and

coefficient of tempered plastic strain.
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COBR LEHREK L, SEXH PICRE I TV ELAOHEMOEREE
MEBEYIKRELD. L AR FOERBEIR (T DELENHEERE
FOMEBDARBELIEOZILLEICERTNENWI LICERTSEEZONDS. F
f=, Greenwood-Johnson IZ&#L(E, ZEREBM{ZREK,ICEAT HLUTDX 3. 18) D
LS ICBBEFHROEBVTHAV(T)/VIZEHIL, BHEEFRDNSWNIES OB
RIS Aoy, (1) [TREBIT S EARENTNS?.

AV(T) 1

TF X Vo) (3.18)

ZCT, KQIOMNERLEMBERTLHILT ADEHERT L8, BRKIEH
oy (T EREV T HAV(T)/VEBH LT, BRIENG, (T) 1F, BERLAIZHH
LiztA 84 MEETEBRENMBOTLLGWVWT =54 MEE, THH5H
BETRLULEBEREMZ KNS TIKETIOKEIZFEL, SIRFMELMR,
ZORITAE L-BRRAOZAWN:. GonfBRRIEH%Z Table 3.5 I27RY.

FIEOTHAV(T)V X, BANBDOIILT YA FOKFEY, A2 4 b
DITEIZENACTIWEID RFNHEESN-TILT oYM FORKIEY,, EAUE
1 bDIRIEV,ZAWNT, UTORXTREINS.

AV(T) Vy+Ve—V
Vv 4

(3.19)

BEANEDIILT YA FOBREVIE, BEMEZRT, DT VYA FEEQM
NOUTODRTRIND.

M

= T (3.20)

|4

cilz, G 19IZxXG.10), K B.12), XB. 20 ZRAL, BEITIHLEUTD
XTRSND.
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(3.21)

AV(T)  pM(Co, To) (1_AC(T)> pM(Co, T)) AC(T)
Vv pM(C,—AC,T) 6.69 p?(T) 6.69

BHLAV(T)/V %0, (T)TRLI-ELEMMOBRR L BHEFREK, EOBERE
Fig. 3. 15 2R . &=, AV(T)/V R LEEREK, L DBFRZE Fig. 3.16 (2,
1/0y,(T) EBER LEMEREK, L DEFRE Fig. 317 [CTZAENTT. Chiod
B o BER L BEREK ARV ST HAV(T)/VIZHEI L, BKIE N0, (T) IRt
B3 %2 LMY, Greenwood-Johnson MRET HEREEHREZND A H =X A
EDFELUEERLTEY, EXILICEFTSRENRIETEI-EEZD.

Table 3.5 Yield stress of Carbon 0.001% material
373K 473K 573K 673K 773K

oy, (MPa) | 219 207 203 188 175
g 8 [TeCarbon 0. 32wth

%'E‘ mCarbon 0.5 wt%

9 % 6 | ®Carbon 0.8 wt%

s = y = 0.8476x + 0.0004

g9 .

Ex 4l e

G N

2 y = 2.1333x + 0.00005

S o I

£ 3 2 %0/.

S y = 1.875x + 0.00006

0 ] ]
0 0.5 1 15

AV | (Vay )[X 10*/MPa]

Fig. 3.15 Relationships between AV/(Va,,) and
coefficient of tempered plastic strain.
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Coefficient of tempered plastic

Coefficient of tempered plastic

0.0008

o
o
S
o
o

0.0004

strain K; [1/MPa]

0.0002

0

&Carbon 0. 32wt%
mCarbon 0.5 wt%

|®@Carbon 0.8 wt%

y =0.0049x + 0.0004
*

. _—5

L 2
y =0.0129x + 7E-05

e

y =0.0112x + 6E-05

0

0.005 0.01 0.015 0.02
AVIV

Fig. 3.16 Relationships between AV /V and

coefficient of tempered plastic strain.

0.0008  rreGarbon 0. 32wt%
mCarbon 0.5 wt%
. ®Carbon 0.8 wt%
§ 0.0006 y = 0.0737x + 5E-05
=
E 0.0004 | g/‘
% y = 0.1259x - 0.0005
7 0.0002 ¢ .//“.!;./../.
0 y = 0.0836x - 0.0003
0.004 0.005 0.006

1/6,, [1/MPa]

Fig. 3.17 Relationships between 1/, and

coefficient of tempered plastic strain.

42



3.6 #5
BEEERESESHEZNRIC, BRUBEHCEBTRREZEAT, BRLEY

UVTHZREL, BRELEMHRRICREFITHERFICOVTEHMEL:. T5IC

BRLEMUVITHEAEREAEDREARND, ZREBRKEDELUMEIZDONT

RIELTz. UTFICERIERETRT.

) BANEROMMICH T EOLEZ L THRELGS, HRLIEVT A0
HEHBIIRECLEDIOD, BRLEMVITAHEEDLoLGRWNW & ZHRALE
CHOTENLRBA—ATHA FHERLEMRRICREFITHE>/NMS N
Ehhh ot

ij

2) ERLEBORBERENRVEHTIE RIEVOMELIDLELLGL28, BE
LIV S ADMEMBEL R LERHVTHEEDITNELHES. D=8,
AT S CENZVMBITHL, BRLFEEENSGRRE LERRRICKET
FEEIREVWI LS oLz

3) &mMY S CENDAEVMBERRME, RIAEMOTHEADIZ 6, KR LI
MBOTHOWIMEL TR LEHOTATLEITNS LRI EEHALL.
COIENDS, FMTSH CENRRLEHRRICRIEFTEEEIREVN LN
Mot

4) BRLEBMHREIE HRLITROFBOTAICEHIL, HRLEOBHEERH
HMOEBEWESDBRIEAICREGITE E/DA>F-. COIZEMD
Greenwood-Johnson AMRET S EREBMRED A H =X L & DFELUMENHER
TE ARRTREIIRRELEMOBEAICELIERLORLMEEZTRL
1=
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%45
EET—UIZRERAVEBE L BRSO
BB RRAT

4.1 #%
BERLEMBERLEULERRE L TERERBERZNHD. ERERE &
HEFHOHRBEICKIY, L LHMAONDIENERBEADEERICE ST

ij

BlERRIEND. ZDAH=XLIE Greenwood-Johnson A =X L& LTH
LbNTWS. COEBBEMBERICEALTIE, Greenwood-Johnson #* 1 =X LIZ
EDV-EREEHBITICEY, ERBMUVITAHEZERICTRT S EATRE
Hd. AETIE MEBEOEREREML L TRESINT Greenwood-Johnson * 7
ZALEHRERLT, BRRLEMRRICERT S La2HlA-. BRELBARTH
HL-tEAVE A FOFRBEILEBELT, BEI—YIEH (FFT) 2RV
REREMBIZTL, BRELEHOEENLREZIT o1

4.2 BEIJ-)IZBEFRAN-KREERTOERE
SR 77— TE# (LT, FFTEFRT B) DFiElL, Moulinec & Souquet|Zk -
TIREIN?, HREMMBISERSINEY Y. KAFEOBEELTIZRT.

FHNEFEREDIGE, ARLEYRERRICETAELFIRD K S GEFEL
THIEDOIMTRI CENTES.
u(x) =u'(x) + &x 4.1)

ZZT, vIXEBHMGESEMARY FILTHY, ¢ IFEPREHEEFOELRME
BAa=y hEV)IZT—HKRIZERTH20TAHTUYILT, BIODFE 2 BIIERED
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EHIFEERT. G NDKVOTATUVILIE,
g(u(x)) = e('(x)) + & 4.2)
LB CDEE, KEEHZENE (W) =0 &Y, ZIT( HHIRR
{A¥&% (Representative Volume Element; RVE) NDAIEFEHN £ rd. THW M
TR EBEARDIEE, EBREROEEXETLUTOLIIZREINS.
a(x) = C(x): €2(x) = C(x): (£(x) — &7 (x) — E™(x)) 4.3)
ZIT, Cx) IFLERY FILxIZEIT52MERDEEEHRTVILTHY, &,
g &, " FENETNEEVTATUOVIL, EUOTHATUVIL, BEVTATY
VL, ERUVTHTUVLTHS. NELGSREREERT NIV IRCEEA
52T, RUIDDEAEAXFUTORICEEMZ L ENTES.
a(x) = €% &(x) + (€C(x) — €°): &(x) — C(x): (&P (x) + €™ (x))

=C%&(x)+1t(x) VxevV (4.4)

CCT, KU HDE2KXOELE2Hi(x)IE, FIXDE2HEFEIEEZFLE
H-LDTHS.

FEARRIUTOEY THS.

dive =0 VxeV, u'# o-n—# (4.5)

COT, #IXAMEREN, —# IRAMGEREN, () FEEEBRT VL,
BHEVTH, SFLUVERVTH (AHVTH) ITFEETE9BTUVILTHD.

7= IEBIZE T HERARDBZOFEXOBAR (4.4), FEAHEXA.D),
ZLTER—VTHERHE, ThENERERTROLSICRBEND.

a(®) =ic% (W (5H)®E) + 1(§) (4.6)
i6(§)-£=0 4.7
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2(6) = 5 (0% () + H(O®F) = T D) @8
SIT § HHEAS L, | ARMTHY, [ EEB0ET ) — B
FThE RUYOETI—TERILY, FHEKCHHS0THEENT
KBORE. ChBOBHAREEVTAEEOHERORE, Fig 41 77
st O AN,
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(1) MM

£ =&(x), o"(x) VxEV

. 2

2o "DERT—) TEH
" = FFT(6™)

. 4

(3) e" DUNF H| T
@ BTSN ENEY
e = /(lldiv(e™)||?) = J(IIE @)y < e e=1.0x1075
@ BRIEANHHEH

= 2
n _ Jdiven iy {lEam@lD _ .
. <™ M O €, e=10x10

> <

B VT AHREE(ODEE
O BRI NAELES
I =&M) -T(9:6"(@) VE#0 and &*1(0)=¢
@ BRI HLHEMH
E(E) = EM(§) —T°(§): () VE#0 and EL(0) = (") +C° 5" — (o™)

4

(5) e DFE T —1) TEH
én+1 — FFT—1(§n+1)

4

(6) - HETE
" (x) = g(€"1(x)) Vx €V

Fig. 4.1 Calculation flow of crystal plastic analysis.
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FY BMTHAVIHAERE () ERNEE () ZNHFHEL, 6"(0DZEE
EI—IEBT S RIZ, AFRNIOFEICELC-TEHEAELZHERSES
=ODUIRHIEZITL, O HEEEH(ODHEZIAICITS. 612, VFH
RESNEHT—YIEHRL, BERAEZNLTEHAREMT (DEHET S, 12
FELICT, ZHOEFERS n FHEDRTYITERT.

NLD—EDFEZEITL, Fig. 41 0Q) DIGRHIEDEHe" <e (22T
&, e =1.0x10° & LTLB)ZHETHFET, RP@~O)DEEERYIRLITS.

EREMERICEINE BEDIANYETHEDTANY ARICERUABET
e, BERMBICEMUVTADLRETD. COITANVEEITRYFRIE HESR
BEICE>TRESNS. COLSLGHMAELERE TRYREFEEN, fec &
BIZIEZ 12 D3 RYZRHAHY, becc ZRICIF 48 DI RYRMNHD. y*Zad N
DROVIHEEELET HE, BROTHRERERFIANTOIRYRODITANY FHE
DMK YRESND.

ZIT, pERATERENDATRYRDL2IY FTUYLTHS.
1
p* = (s"®@m” + m*®s") 410

s & méE, Fig. 42ISRTELIICaTRNYRDIARNYFRDAY MILET A
YEDERANY FILTHS.

Fig. 4.2 Overview of s* and m*®.
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TARYEICHERASIN S NBEEAMG AL, a3y FAIICKYERLTLS
ATV GEHESEN, *ARRACHEBZDEERERAREET S, C
DRFIEH, BRI EE AW A Critical resolved shear stress; CRSS) g*T
HhY, RATREINSD.

[z = [(p*:0)| = g“ (4.11)
SCT (CIRTUVILOREERY. BREVIHREOHMHME L BHEROIE
EREEERTDE, BHUOTHEEICES DOBHRENHD (T4 I —F
ADEH). LI=h>T, IR fec [THIFE12DITRYRELTEET DL,
BEDEMHUVITHEREICEETH-ODETAYRICEFLITRY REDHEA
EHERERICEET D O, HEBEERABRXZANT, £IYR
DIRNYBERET DHEN—BITHD .
Hutchinson® (&, X 4. 1) DEERE LT, RBICTREZTRNYROEES I
BRELIGEOHBEZUTORDEL SITRLTLNS.

% = sgn(1%) g% (4.12)
DAy FTUVILNIEFEAEELELGEWVMUNOTABEDIGE, EHDH
FFEICIRTFL, RUIDEUTOLSICEETET LN TES.

1% = g:p% = g% (4.13)

ZCT, BIEAO—EMARXIZLTOEY THS.
§% = Zhaﬁ|yﬁ| (4.14)
B

R A1) DR PIFBEBEIL/NSA—FTHD. ChoEMIFELAZANTRR
WEICREFESINDD, ABETELUTORXZHRALL.
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H B
h%* = h = H, sech? lﬂl (4.15)
T — To
h = qh + (1 — qQ)hS,p (4.16)

CZCT, h[FECREIENT A —%, H EDERKEOELFRE, 1o [ERHRRK
Bh, | $BFIENTHS. £, qIFBEEILr** L BEBILAPDHLETH D.
Fo, YpvPRIRYRBDITRY FEDQHMELFHHEI LD THS.
BRXZEZRAWVWAEaTRNYRICELDZBEAMVTAREIILUTOLSICTREIET
5.

p*=f%(e—&m) with fo=3,Y%C:ph 4.17)

ri
ri
A

yef = (x)"" and X% = hF 4 p% C:pF (4.18)

THY, BHEOXPIE, #TFUYLNEET IEBETHETINELESHEL. 20
28, FBRMITRYROZKE, T LHHLEBHEOXPORBIES ICRESLD. &
BAIZIEX A1) DD, BEOTAYREFIEENEEIIRE LA
THEE DRODNB.

FFT o#%fERinh T, LRERBUZEET DL Fig 4.1 OFETO
—IZBVT, FFTFIBEN) ~G) STl RF v TORVTHEETLYILE ()
FHEUHTS RIERRK A.13), @4.17), G.9ZRAVT, ntl XTF vy TOEAK
WIRET  (x), HAMTRY VT HFREY (x), BHEUVTHEETUVIL
" OEIEICEM TR, SSIERVSTHEEET IBEnH ATV TOEEVT
HEETOVILET (0)EEHL, REICHEIO—OFIEEGELT, EBHLEE
O HEETUVILE (x), &P (1), e (x) BEUBMERTUVILC(X)E
BRKADIHRATEIET, BARETUVILG" ()N FoND.
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4.3 MRLEEBOETIVYT

HRLBEBOET) V&, BEXXH 5 ICTRIBRANBEOET Y V28
[CHERER L 7=, BEANBIETIE, SEICMBSAL-MHENBAEINEERA—X
TFHA MEDNLRILT YA MEANOHEEEAELD. CDEE, TILTUY
4 FMEDOWRICE ST, A—RATFA MEL OB THRBUOITANELS. 2D
KEUVTHICEIYVARIGANFEEL, ABIGAICESSITHAANEEL, BHE
BOEEST S COBUERE BREADENA—XTFHA FMETRET S
28, BANBREOETY Y TIE Fig 43@ISRTELSITILTIUOHA K
HMEA—RTFHA MED 2ENBEEINTILNS.

—h, BERLBETHE, BRATILTUOYAS FHROEBRENEAEZA R E
LTHHETS. COEEEAVEA MDMEETILT YA FOFEIZE ST
ARBEOTHNELSE. COBRBOTHICEYRBEANFKLEL, RBHAIZS
SIZHINEEL, BUERIARETS. COBHERE BRIEAD/MEL
A, RIS LA V24 FORBECEBRENEFHITHDT HERE
TILTUoYA METRET S, C0=0, BRLEMZFTETS5-ODOHBEL
BEODETY VJ T, Fig. 430ITRTKSIC (1) fiHLEzEAVEZ Ak
DM, (2) EBFRENMBIHITHED LI-BRZEVILT YA ME (Thbb T
Z4 b)), Q) BBFRENMRESNE-FTFOIILT YA MED IHBZERET
LWENHD.
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Austenite

Martensite
Martensite

(@) Quenching

Martensite

Ferrite Ferrite

(b) Tempering
Fig. 4.3 Overview of material model during quenching and tempering.

4.4 MRINEH EBITRER
4.4.1 BBIETIL

FFT 12Kk H#EREMMETTIE, RVE ATHEFR (voxel) Z#FMMREICEEL,
HRAMLES voxel IR, WHEVTHEHETSH. C2T, BHETHEAY
LT84 FELTRE NI 100 BOHRMNEERL, TORBALLET VF
LIZEZfz. Flz, AVEA FET IS4 MEMBAEEZEDE LTS 100
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ED#%ZFRILEEIZHEDLSICTT VALIZAMSE, HFERTY TORBIZE
DETEAVEA MEEDRABDI 54 bRkt Foficsgk:t
AL FHBRRULIBHIFHERTY TES A LE L. RILTUHA ME
Btk c/a N1 THS 7154 FERLBFEBEZRHODLDEL. D=8,
TJx54 FOBRAMIIBETILTOUA FOBRALZZDFEFRSIHCED
ELT=. —flE LT 100 DR 64 BAOERFREFOIAKRDLEMICEE
SNTf-#EARAR &, TT0K ICREMER L - RICHIEARRBMN o £ S - 200 D
FLLAL (BRICEA RS bEEAVEZA VORABEDI 54 ) = Fig. 4.4
R

(@) Initial quenched martensite phase (martensite block)

cementite grain ferrite grain

Volume Volume
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E].OD
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E].DO
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It
=]
o
o

=05

IRRNARRIRRRRRARIR
o
[4,]

025

ED.DU

0.25

ED.OD

(b) Volume fraction of cementite phase (c) Volume fraction of ferrite phase
Fig. 4.4 Growth of cementite and ferrite grain during tempering
(100 grains in 64° cubic space);
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4.4.2 MRIEHLEIEHA-UVT HEER

0. 3% D ERFNMEAMBBD < ILToH A FMZEBAL, #EEEBO c/atkh 1.0
[CREINTVDERET S V. HEOKBIEREL0=¢=1 DiEELY, B
HEFHROEMOPEEIIHEDHMOEABTERINS. COFHEEATIL, #
FHDERBEREITLITIZRT KIMA (Kolmogolov-Johnson-Meh|-Avrami) EdAFE
RIZHES

§ =1-—exp(—ht") (4.19)
CCT, bénld, PRIBODESZEEZET HEREIZEKEFELEZHMHNTA—F—T
H5. HHEOBERANEFRIZTETSE, X (4.19) OBFBtOEIXEROIZERES

N, RITH-TEENFEIBEINS. GH BRAMEISIUOTILTHS.

570K, 670K, 770K £ TORRMBZEZEE LI-HEEHTEA SN HMEHFE
BINT A= FFTNnEn, Table 4.1, 4.2, 4. 3ITRT.

TAEA FOBRRIGAIFIEEIZKEL (1.0 GPa'?) =&, 3EMAEL LTH
Yk, /85 A—4%(F Unemoto S5DOXHK Y #SHBLTRET S. 734 b
X, 754 MEOBEESRABRTHEONIZIEA-V T AR or, (ere) ISEEIT/N
FA—RERETD. TILTUHA ML AL COERBERRE, 7254
N DRED R, RIVT YA FORBEDFE ELBEEORETILT VYA
MEDERSIREBRN S/FoNE -V HBERory (erm, Eo, Erer $u) EXET
BEITINTA—RFERFETSH. 150K, 760K, 770K TDO 754 FERRTIL
TUYA LOBEA-VFTHEIRE Fig. 4.5(2F7.
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Table 4.1 Parameters for crystal plasticity calculation at 570K

Cementite Ferrite Martensite
Bulk modulus(GPa) 149 149 149
Shear modulus (GPa) 68.7 68.7 68.7
Ho (GPa) 5 20
7o (MPa) 70 160
7s (MPa) 100 600
g 1.0 1.0

Table 4.2 Parameters for crystal plasticity calculation at 670K

Cementite Ferrite Martensite
Bulk modulus(GPa) 149 149 149
Shear modulus (GPa) 68.7 68.7 68.7
Ho (GPa) 5 20
7o (MPa) 60 150
7s (MPa) 90 480
q 1.0 1.0

Table 4.3 Parameters for crystal plasticity calculation at 770K

Cementite Ferrite Martensite
Bulk modulus(GPa) 149 149 149
Shear modulus (GPa) 68.7 68.7 68.7
Ho (GPa) 5 20
7o (MPa) 50 150
75 (MPa) 80 380
q 1.0 1.0
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Fig. 4.5 Macroscopic stress-strain curves (calculation and experiment)
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4.4.3 BHEOAKERE

RIZ, BEREE, &, BLUVEZEUTOLSICHET S, 2HTILTUY
1 FOEENM T, BERECWIDRIENBEAMTEBTSERET SH. O
DINToHA PN BRETCTHRERSIND L, THEEREAATWYD RFR(E
TILToHA FoEALL, KbVYIZEADS2A EHAFET S EAVEAF
[CEENDRFRDHBEENMGDZE, M lIHE LIZRFREIZFLL, RAT

RSND.

_AC(T)
%€~ "100

AL FRDOREODEELIEHI0.0669 THA=H, fiLi=tA 24+

DMEEMy FROAXTRIND.

. Mg AC(T)
970.0699  6.69

TAVEA NEELNPPDIBE, EAVZA FOERBVJIIRD &SRS S.

My, AC(T)M
7 pf T 6.69p0(T)

BE, A4 MOEEABRKEISEXHK 1D IYUTORTEZONS.

(4.20)

(4.21)

(4.22)

p?(T)=7686.45 — 6.6381072 T— 3.12810~4T? (4.23)
LE=A2T, {G-AQT)} W% ZERTHIILT YA FDEEEM, T D

& BERFOEAEKX Q. 20) Mo RAHAEY LD,

AC(T)
6.69

BRLPODBEBFRFZDBDIE, RALHAFTHT SEEOFLTOAREL,
REBVEBTREL2G 7254 MBAIZELET S EBRESNS. LEALST, B

My=M — My=(1 — M (4.24)

EM,X, 754 FEDEEM & C ECWHEERTHVILTUYAS FDE
EMyIZRIFEHN, UTOLSIZREINS.
Ma:MM+MFe (4 25)
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BEMICEFENDIRFRENR, VILTUHA FVEEMICEFNIAIRRELF
LUv=&, REABRLYIID.

My X (Co — AC(T))=My X Cy (4. 26)
X424 & (4.25) his, RILTOYA FOEEM, IR TEREIND.
., G-AC(r) - AC(T), . AC(T)
MM—MaT—(l =59 )(1 G M (4.27)

RILT oA CDEEZpM E LGS, IILToHA FORKTEY,IER 4. 26) &

YROESI2RENS.

My _ - AC(T) AC(T) M
VM_p_ TR )M(C‘O, )

HE, TILT YA b@%fiﬁ*%iﬁli%%ﬁtﬁik 15 EYLTOESY THS.

(4.28)

PM(C.T) = pre%(T) + (—152.3 + 6.79C) C+ pgyp" (T) (4.29)
K@ 28) FDpp *(MIERETIZE T HMBDEE, popy*(MDIEF 754 FEE
12T ORFRERKEEXTFTDODEELTTRT.

X(4.24), 4.2D)Hhb, 722534 FEEMIIROKXTERINS.

AC(T). AC(T)
650 )M (4. 30)

T154 FOKRBIRVIE, EXETISA FOEEHOLRRADL S I12%4
5.

Mpe=M — Mg— My = (1 -

Mg, AC(T) AC(T) M

pFe = (1_ 669 )( CO ) pe(T) (4 31)

CCT, 7x54 FOEERX, RETICETAMBOEBEEELE 754 FBEICH
TERREBREETROFENMELTEZALNS Y.

VFe=

pFe(T) = pre®(T) + psup (T) (4.32)
LD (4.22), 4.27), A4.30)H 5D, BHOKREIEE,, &, &y [FRATK
Hohb.
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I N S — (4.33)
Vot Vi Vi F Vot Vi + Vo, M Vot Vi + Vi,

BE, REDEE,, &, &y ZEHET BICE, FHEEREAC(TWIDREZEFE
ETTIAULENHD. LURIZ, FZOEHAEICOLNTHRRS.

$o

BMREIILT YA FOFEHEE)™ (G, AC(T), THIE, R @4.22), (4.28),
4.3 TRIND.

p™ (G, AC(T), T) =

Vot Vit Vi
- (4. 34)
AC(T) AC(T). AC(T) AC(T).. AC(D). 1 :
669071 T "6 ) preny T 660 ) T D oG, 1

UEZRAWVWT, BERLPDUVTH™ (G, AC(T), THIEEE 3 EZED 3. 16) LR
[ZRDESIZB/LNS.

pM(CO'TRT) -1 (4 35)
pTM(CO'AC(T)' T) .

e™ (G, AC(T), T) = 3\/

ZCT, pM(CyTr)lE, BERLAIDZERTR TORILT UYL FDEETHD
. EDRSH, RERBEEREOFHREAVEAC(T)WYE, Fig. 4.6 ITRIRET-
BUTMIREIDERIS/FON D™ EK (4.23), (4.28), (4.31), (4.33), (4.34)
MoROLoNSE. LEDFEICEYFToNT-5I0K, 670K, 770K TOE A2 Z 4
b, 7354 b RLULTUYA MEOEERESERZE Table 4. 4 [2RT.
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Fig. 4.6 Temperature-strain diagram of quenched martensite material (Cy:0.32wt%)

Table 4.4 \olume fraction of cementite, ferrite and martensite phase

Temperature [K] Cementite &g | Ferrite &z, | Martensite &y,
570 0.005 0.098 0.897
670 0.012 0.245 0.743
770 0.016 0.329 0.655

4.5 RHRINKE & BER L B 10 ETil

AEIDBERLBEOETILEZRANT, BREEBNZTL, EA224 0D
MHZECILT YA FORBEVOITHTHIemEE5ZAH EITEY, BEREL
FrOFRBEOARFIGEZETMME L 7= IV T HmE, OBBELTER
nad.

em = BE,l, (4. 36)
_ deyric
=g 4.37)

ZCT, BIERALYDMHICHESTILToH A FOIRFEE, 11X 2 BOESETY
YILTHD. INTA—ARBIE, Table 4.5 DAET—2 BT, EAVEA+
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DIRFERDEE 2T BUIEV T By ps c DEE—0.07 & L1z 1917

Table 4.5 \olume fraction of cementite, and measured shrinkage strain.

Temperature [K] Cementite ¢, | Measured shrinkage strain €y, ¢
570 0.005 -0.73x 1073
670 0.012 -1.17x 1073
770 0.016 —-1.53x 1073

EFH (BAVEA L, T34, RIILTUHA ) OMBAEFIEICE Table
4.1, 4.2, 4.3 OEZAW:. MHITEATILT YA FTHY, REIEL 570K
, 670K, BLUVTIKIZRRICMBASII, FRESNLIILEZEELTLS. 570K
, 610K, BLUTIKTHREFLIZZDTIZSA b, EAVEAF, BLUTILT
VYA FOEKREDEIL Table 4. 4 IZRLE=EYTHS.

TAVGA FDEBRRELHEN ST ON-TEYINEVTAHDEFRE Fic.
47189, COROERMBIEOTHIE, F2ETRLEZIOTHS Y. #&

mMBERBITTRONE AP A FOREREWNHEV I A(F RVE DFHETH
5. TLT, 3IRXTOHDEHRFBREDEMN Table 4.4 ERIETEHELDIC, &
RUBEICHLTERLGHIEHTCTHEIN TS, Fig 4.5 b, EBUVTH
e, THLLARBIREIEA V24 FORBAEOEME EHITHRELTL
5T EMHMS. £, ERMIGIED T AIE 770K T-0.0019 TH 5.

BEAMKETO TIKBRRELICE T HHEABHVITH2WE Fig. 4.8 I1TRY

LIz AVA A bafIE, Fig. 4.4 (b) ITRLE-BYTHD. £AUS
1 FOHBIZEBZRAFEAHIZEY, £AVE4 FOBABEDT =S4 8T 0.69
EFTORAMLGEEOTANEL TS,
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Fig 4.7 Evolution of the macroscopic strain with the volume fraction of cementite.
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Fig. 4.8 Equivalent plastic strain distribution without applied stress at 770K
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AELEVSTHEEENICHET 5 EMHM 5.

300MPa IS AA BT EN-IGEDHEBHR VT AN E Fig. 410 [TRY.
Fig. 410 1ZRT&SIZ, 710K TOFHMLGHEBBEHVTH(E 0.006 THS.
—H, EAVEA FORBEDT 54 FMEDORFIMAESBEHO T AEIERIC
KEL, Fig. 410 ® 300MPa TIE#9 1.0 THS. hlk, €A %24 FOREEHE
DRFFHGEEVT AN EROBHVTHICEEEZEZ TSI EERLTY
5. T, BATKETREFINGIEOIANEET HBEET, BATMWLERE
VIHANRETHEDDOMND. D2FY, BV THENEBEAIZKHRAER
HOEZIZLY, BRELEMHVTAMNELS. Thik, Greenwood-Johnson @
LREBUHLRILAN=_XLTHS.

BRI HEBHVTHOBEFEE Fig. 411 I2FY. ZORMD, tEEIIE
BHOSTAHIEFENELLITHEML, ERELAET I ENDAS. Th
HOFERMND, BREBUEFEMICIYBERLEMRENBFERTSE, TEMNLFE
MAlgETH I L ZMHER LT

0.005
%
< 0.004 ¢
©
% 0003 | 770K
Q
E:
3 o) 670K
’g_ 0.001 o
o
5 {3’ S70K =—Calculation
@ 0
O Experiment
-0.001 ' ' ' |
0 0.005 0.01 0.015 0.02

Average of volume fraction of cementite &,

Fig. 4.9 Evolution of macroscopic tempered plastic strain under a 300Mpa stress.
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AUBA CDEEMZEEHT A8, BBRAEZITof=. EAVEA FDERK
7tHR Fe DEEZRD, 1mol HEYDBIREDEEND, EAVEA4 FDEE
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REANCEHT S.
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ZLT, RAICKYBERLEBEE TIK TOEAVZ A FDAKRERHEy,,; TERIL
L, &z8HLE. —fHIELTCEOI2ZMDER LIEEICKT H2EALEA b+
DARTENFE % Table 5.1 RT.

$o

= 5.8
$6773 ©.8)

Sc

Table 5.1 Volume fraction of cementite.
T [K] 373 473 573 673 773

¢o [ 0.0002 | 0.0021 | 0.0048 | 0.0120 | 0.0162

& [1 | o001 0.13 0.30 0.74 1.00
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% Load
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(b) Compression test
Fig. 5.1 FEM model of tesnsion and compression test specimen.
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Fig. 5.3 True stress - True strain Curves for each tempering temperature

75



0.03

—273K(as quenched)
—373K
—473K
—573K
— 002 [|073K
1 —773K
£
©
173
.0
2
S 001 |
0 |
0 0.01 0.02 0.03

Normal strain [—]
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Fig. 5.8 Relationship between 0.2% proof stress and testing temperature
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0014 A : 300MPa Symbol : Experiment
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Fig. 5.9 Comparison between experimental strain and calculated strain.
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5.3 BRLICKSERBIEHELEDOTA
5.3.1 BABRLEREERBISHDAE
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EEFIEME FE-SEM 1K SEE% Fig. 5.12 [ZRY. Fig. 5.12(a) [EERL
ZIToTWAWNEBEIERPROMEE, (b) & (o) XBFAmMEEZENEH, 573K
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BELEIBNNOERE Fig. 5.13 IZRT. COHKRLIS, HERLEENLR
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BRFMBSMAICERDEEVITANEL, EHICRELUREICKCBRRELE
MOTHANEEL, BRBICAVFERSIA-EEZOND.

Measuring points of 0 mm, Stress direction
0.1mm, 0.5mm in depth for measurement
50
Heated sectﬁn
30 (Micro structure transformed layer)

100
Fig. 5.10 Schematic illustration of locally heated block specimen.

Table 5.2 Conditions of locally heating by TIG heat apparatus.

Current 100A

Torch distance 7mm
Torch feed 240mm/min

Heated length 80mm

Table 5.3 Tempering temperature conditions.
Tempering temperature [K]
(2hour keep, Air-Cooled)
273 (as quenched) | 473 | 573 | 673 | 773

Microstructure

5.94 transfgrmed layer
|

0.91

Fig. 5.11 Microstructure on cross section of block specimen.
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(c) Martensite o
(Tempered at 773K) NES I
; £10A

Cementite

Fig. 5.12 SEM photos on vertical sectlons of specimens :
(a) quenched, (b) tempered at 573K, (c) tempered at 773K
(d) tempered at 888K (Matrix).

100 A M Depth 0.0mm
= 0 H ADepth 0.1mm T
a ® Depth 0.5mm ! .
= -100 A
& -200 | - «
g -300 0.1mm 0.5mm
B -400 A ! S
2 ) o Measurmgi point

-500

of residual stress

_600 | | | | |

273 373 473 573 673 773 873
Tempering temperature [K]
Fig. 5.13 Relationpships between tempering temperature and residual stress.
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5.3.2 FEMfEHrI< &k 551

(a) BRTETIVEBITEH

REDHBERZER T H-0, BAMALELIOy VR EXKRIZ FEM
B EiTo1-. BAMEZ L-EEOKBICETIO Y 240K ET+5
[TREVWI END, TAVIHBAOHRRENETIIEEVT ARENMRET
5. SO, JOov/ERAORSARAPRENEZEAT 8 HiRFED
TH_REZRTETIVMEL-(Fig. 5. 1488). @MEEIE SFEERELT
J0yEBRAPLDOEKED 1/ 285 & L=, BETMEEIE, BTEERER
D=-HREZ@MAKLTHY, RNERBTEZREAMICE IOV IES
30mm (Zxf LT 0.01mm, #@AMIZ(E T Ay 21 50mm (3 LT 0.5mm & L1=. #
GEHBEICDEL LGB LBMEERCOVWTITEREKRESEEEET SH. tLE
(TEBEICK>THEL, BMREERIL—Y—05 v Ik ->TAIELS:

Fig. 5. 15 ITRIEZMINV=. BEIX 7805 kg/m D—EfEE L1=.

pi
f
I
I
|
,-C
100 1

N

Number of node /element
Node:14306
Element:4693

Fig. 5.14 FEM model of locally heated block specimen.
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Fig. 5.15 Physical properties (Specific Heat and Thermal conductivity).

FRITIE, MANEBERLD 2 DOBENLLEY, RANBRETEIETILOR
MBS PROREEEZNLEE 208K ™5 1473 K ETHEL, ETILEAE
EERFETAINTS. COELERAMBAMOBELEBTLEOERTEEN
ZhRem Acl & A3 D= m D FEE (763°C=1036K) & 745 & 5 ITHEL - HENSE
HERELL.

FEM SZfr D - AHEFOEREFH ZEKXMIZFig. 5.16 IZRYT. HFTMEE
MEEEEmEARE, XMEEZHAE RYOSAREERIEELTWLS. MR
EHIXMEBERMZEA4TEL, Fig 5.17TITRT & SITREERATFEE AZBRED
0 W/mm’Mis 2 ##IZ 12.5 Wmm* NMERMICERESE, 0%, 28T 0 W/m’
[CRADSE. Ff, AMELETE, ToyIHBRANREIC, BOAHESOER
RS 3. 13x10° W/ (mm? K) £ (T T 5. HRLBETIX, 28 =% Table
5.3ICRIMRLEEFTEELRE IK/s TH—IZCERSHE, BUERETE
EETE-1K/s TH—ICETSET-.
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Cooling surface,
Heat transfer coefficient:
3.13x10°°[W/ (mm? K) ]

Heating surface,
Heat flux 0~12.5[W/ mm’]

Insulation surface
(Symmetric surface)

14
12
10

Heat flux [W/mm?2]

8
6
4
2
0

Time [sec]
Fig. 5.17 Heat flux condition.

(b) FEATHER
RERDOBER LINBOHEZEE LI-@BITFE " (UT, #EREET2) &, ZniE

FECARRTRELEBERLERVITHEER LEBITFE LT, REEL
FTRDZDODBMFERICONT, RBESHOBFABEZLERLI:. ThiZ
DOFEE, BRABHKZEE BHUHUIH TLTIHOAREIEROBHEL
TERL-ETHEBBEBMMTTHS Y. T4bHE, BREKE BANBRE
CEWTH—RTFA b+, RN=F4F, RAFA+, ILTUHA FOEHED
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HKESEOBEHMTHY ¢, ERLBEBIZBVTREIILT YA FrHORKRRE
DEHTHS". FEINEITHERLE L THONEZRANBAROA—XTFHA b2
ZFig. 5. 18I1ZRY. Fig 5,18 kY, #—RXTF A FRADREELVIEA,
BIEI TR LTz Fig. 5. 11 OMBELLBESISLVRBELIFEF-BLTWVSI LN
b GE, ZITOMEBERRBE, MEEICA—XTFA ME, SHHEFIC
TILT oY A FBEESTWAB I EM, Fig. 5.11 ORFBEWMBEEL Fig.
5.12(a) DBEANEFD FE-SEM BN 0BRGN TH S =8, —RATF 4 ~FE 50%
UEDfEgEEE LT

Fraction of
Austenite

%100 [%]

+1.026e+00
B

+o. e-
+7.557e-01 0.96
+6.711e-01
+5.824e-01
+4.938e-01

+4.052e-01
+3.165e-01

+2.279e-01
+1.392e-01
+5.057e-02

-3.808e-02

Fig. 5.18 Contour of volume fraction of austenite
at maximum elevated temperature.
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RERSHW LI, THIFBERLEEOMRIZKY EWEBIS AN LY FERS
Ni-EHEESIND.

MERZERFZODETIVEFMBMRENVOTHEREDHEEE Fig. 520
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P :Without tempering plasticity
P+T : With tempering plasticity
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H A :Experiment
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Fig. 5.19 Effect of tempering temperature on residual stress.
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Fig. 5.20 Relationships between temperature and strain.
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P :Without-tempering-plasticity
P+T : With-tempering-plasticity

% : Evaluation point
50 oS P S P

Stress [MPa]

W W N
ER=
© & o

-400

-450 ' ' '
-0.004 -0.002 0 0.002 0.004
strain [-]
Fig. 5.21 Relationships between strain and stress.
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Fig. 5.22 Relationships between depth from the surface of
phase transformation layer and residual stress.
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